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Resumo 

Consideramos o modelo de Thirring como uma teoria de gauge em (2+1) di- 

mensões (com um sabor fermiônico) e, usando o método causai de Bogoliubov, 

Epstein e Glaser, calculamos as correções radiativas de ordem mais baixa. Neste 

contexto, obtemos um valor não ambíguo para o coeficiente do termo induzido de 

Chern-Simons e mostramos que o bóson de gauge do modelo, que em nível árvore é 

um campo auxiliar, adquire dinâmica devido às inserções de polarização do vácuo. 

Adicionalmente, usando uma identidade de Ward, obtemos a função de vértice na 

camada de massa a partir da auto-energia do férmion. No caso da auto-energia e do 

vértice verificamos a presença de constantes indeterminadas (mas finitas) na solução 

final, como uma conseqüência da não-renormalizabilidade do modelo, e discutimos 

as vantagens de aplicar o método causai a teorias não renormalizáveis. 

Palavras Chaves: modelo de Thirring; simetria de gauge; causalidade; distribui- 

ções; correções radiativas; Chern-Simons. 

Áreas do conhecimento: 1050300-5 
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Abstract 

We consider the Thirring model as a gauge theory in (2+1) dimensions, with 

one fermion flavor, and calculate the lowest order radiative corrections by using 

the Bogoliubov, Epstein and Glaser causai approach. In this context, we obtain 

an unambiguous expression for the coefficient of the induced Chern-Simons term 

and show that the gauge boson, which at three levei is an auxiliary field, becomes 

dynamical due to the vacuum polarization insertions. In addition, we obtain the on 

mass Shell vertex function from the fermion self-energy by using a Ward identity. 

We verify that, for the self-energy and vertex function, there remain arbitrary (but 

íinite) constants in the final solution, as a consequence of the nonrenormalizabil- 

ity of the model, and discuss the advantages of applying the causai approach to 

nonrenormalizable theories. 
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Introdução 

Recentemente, tem havido grande interesse no estudo da geração dinâmica de 

massa fermiônica em teorias envolvendo interações de quatro férmions (ver, por 

exemplo, [1]). O interesse se deve, parcialmente, à expectativa de uma melhor 

compreensão do grande valor da massa do quark top quando comparada à massa 

dos outros quarks. 

Inicialmente, foram considerados modelos baseados no modelo de Nambu e Jona- 

Lasinio [2], de interações do tipo escalar/pseudo-escalar, combinado com interações 

de gauge. Mostrou-se que, quando a constante de acoplamento é maior do que um 

certo valor crítico, a interação induz a condensação do quark top. Assim, a simetria 

eletrofraca é quebrada e o quark top adquire uma grande massa [1]. Posteriormente, 

verificou-se que um comportamento similar ocorre para o modelo com interação de 

quatro férmions do tipo (corrente)0(corrente) em (2-1-1) dimensões, de modo que 

este modelo também tem sido considerado nesse mesmo contexto [3]-[5]. 

A teoria de um campo fermiõnico sem massa com interação do tipo (corrente)® 

(corrente) foi inicialmente considerada por Thirring em (1-1-1) dimensões [6]. Neste 

trabalho, Thirring mostrou que o modelo é exatamente solúvel e construiu os auto- 

estados do Hamiltoniano. No entanto, as manipulações em [6] eram formais e le- 

vavam a contradições. A solução completa da teoria foi dada por Klaiber em [7]. 

Mais tarde, verificou-se que a versão massiva do modelo de Thirring (a qual não é 

explicitamente solúvel) é perturbativamente equivalente a teoria de sine-Gordon [8]. 

Em d > 2 dimensões o modelo de Thirring não é perturbativamente renor- 

malizável. Porém, Krasnikov e Kyatkin [9] mostraram que em (2-hl) dimensões o 

modelo é renormalizável no contexto da expansão 1 /N. Desta forma, nas referências 

[3]-[5] o modelo de Thirring foi usado para averiguar a geração dinâmica de massa 

fermiônica, para 2 < d < 4 dimensões, no limite de N grande. 

Em [3]-[5], os autores linearizam a interação introduzindo um campo vetorial 

auxiliar e, a despeito do fato que o modelo de Thirring original não possui simetria 

de gauge local, tratam este campo auxiliar como um campo de gauge. Isto é feito, 

sob a alegação de uma simetria de gauge restrita [3], com a intenção de eliminar 

ambigüidades relacionadas à regularização. Contudo, o resultado desses artigos é 
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contraditório. 

Posteriormente, Itoh et al. [lO] reformularam o modelo de Thirring como uma 

verdadeira teoria de gauge, introduzindo a simetria local escondida. Kondo [11] 

obteve, basicamente, a mesma reformulação usando o formalismo de Batalin e Frad- 

kin para sistemas vinculados. Para a teoria abeliana estes formalismos são equiva- 

lentes ao procedimento de Stückelberg de decompor o campo vetorial em um novo 

campo vetorial e um campo escalar 9, deste modo obtendo uma teoria de gauge 

(para uma revisão do procedimento de Stückelberg ver [12]). O modelo de Thirring 

original é, então, uma versão de gauge fixo do modelo obtido em [10] e [11]. O mode- 

lo de Thirring como uma teoria de gauge também foi usado para estudar a geração 

dinâmica de massa para o férmion no esquema da expansão 1/N [10, 11, 13, 14]. 

Em (2-f 1) dimensões surge uma peculiaridade. A saber, para um número ímpar 

de férmions massivos de dois componentes (a massa pode estar presente na La- 

grangiana original ou ter origem dinâmica), existe a possibilidade de indução de um 

termo de Chern-Simons. Este termo, ímpar sob paridade, encontra aplicações em 

vários campos, variando de física da matéria condensada à matemática pura. Em 

especial, o termo de Chern-Simons pode ser relevante para o efeito Hall quântico 

fracionário, no contexto da eletrodinâmica quântica em (24-1) dimensões (QED3). 

Entretanto, 0 modelo de Thirring como uma teoria de gauge em (24-1) dimensões 

é uma teoria não renormalizável, a despeito de alguma semelhança formal com a 

QED3. Neste sentido, não é a teoria apropriada para estudar o efeito Hall. Ainda 

assim, muitas questões relacionadas ao termo de Chern-Simons podem ser tratadas 

neste modelo. Em particular, podemos considerar a questão da ambigüidade de 

regularização associada à massa topológica. 

E um fato bem conhecido que, em modelos onde as correções radiativas con- 

tribuem para o termo de Chern-Simons, a correção de massa topológica é depen- 

dente do esquema de regularização usado para tornar a teoria finita [15]. Este tipo 

de situação não é incomum em física e, de fato, sua origem está na má definição 

dos produtos de operadores ordenados temporalmente que aparecem na expansão 

perturbativa usual da matriz S [16]. Como uma conseqüência desta má definição, 

os elementos da matriz S em ordem mais alta na teoria de perturbação podem 

apresentar divergências na região do ultravioleta. 

Nos anos 70, Epstein e Glaser [17], seguindo 0 trabalho de Bogoliubov [16], 

propuseram um método indutivo de construção da matriz S em teoria de campos, 

no qual a causalidade exerce um papel crucial e todas as quantidades são matema- 

ticamente bem definidas. Neste método as divergências ultravioleta nunca se mani- 

festam, como conseqüência de uma cuidadosa bipartição das distribuições presentes 

na série perturbativa. Assim, o método causai de Bogoliubov-Epstein-Glaser (BEG) 
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nos fornece a possibilidade de calcularmos o termo induzido de Chern-Simons sem 

qualquer ambigüidade, fornecendo o valor correto da massa topológica. 

Ainda mais importante é o fato de que não é necessária a introdução de um 

cut-off, pois, como mencionamos, no método causai não aparecem divergências ul- 

travioleta. Isto sugere um modo alternativo para tratar teorias não renormalizáveis, 

pois, usando o método causai de BEG, tais modelos não se tornam dependentes do 

esquema de regularização utilizado para torná-los finitos. 

Tendo isto em vista, neste trabalho aplicaremos o método de BEG ao modelo de 

Thirring como uma teoria de gauge e calcularemos as correções radiativas de ordem 

mais baixa. Nosso principal interesse está no coeficiente do termo de Chern-Simons 

e na geração de dinâmica para o bóson de gauge, bem como em analisar de que 

forma a não-renormalizabilidade do modelo se refiete no método de BEG. 

Este trabalho está organizado como segue: no capítulo 1 daremos uma breve 

introdução ao modelo de Thirring em (1-1-1) dimensões e, a seguir, partindo da La- 

grangiana para o modelo de Thirring original em (2-1-1) dimensões introduziremos 

a simetria de gauge, seguindo o procedimento de Stückelberg. Na primeira seção do 

capítulo 2 faremos uma rápida revisão do método causai de BEG e, então, na se- 

gunda seção daremos uma prova da não-renormalizabilidade do modelo de Thirring 

como uma teoria de gauge pela aplicação deste método. No capítulo 3 calculare- 

mos o tensor de polarização do vácuo e obteremos o valor da massa topológica; a 

seguir, verificaremos que o bóson de gauge, que em nível árvore é um campo auxi- 

liar, adquire dinâmica devido às correções radiativas. Na última parte do capítulo 

3 analisaremos a estrutura dos diagramas de vácuo, que não podem ser ignorados 

no método causai. Dando seqüência ao cálculo das correções radiativas, no capítulo 

4 calcularemos a auto-energia do férmion e, por meio de uma identidade de Ward, 

obteremos a função de vértice na camada de massa (para momento transferido nulo). 

Neste capítulo também discutiremos como a não-renormalizabilidade se manifesta 

no método causai. Nas considerações finais discutiremos as questões abordadas neste 

trabalho e perspectivas futuras. 

Há, ainda, três apêndices onde apresentamos a notação, as funções singulares em 

(2-fl) dimensões e discutimos o teorema de Coleman-Hill [18] 
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Capítulo 1 

O Modelo de Thirring 

Xeste capítulo vamos introduzir a Lagrangiana do modelo de Thirring como 

uma teoria de gauge. Inicialmente, consideraremos a versão original do modelo, 

introduzido por Thirring em 1958 [6], e obteremos as funções de n pontos, seguindo 

uma visão geral do modelo de Thirring tal como ele tem sido tratado historicamente. 

Na segunda seção abordamos o tema em que estamos realmente interessados, isto 

é, o modelo de Thirring como uma teoria de gauge, em (2+1) dimensões, proposto 

por Itoh et al. [10] e Kondo [11]. Nesta seção rederivamos a Lagrangiana obtida em 

[10, 11] usando o formalismo de Stückelberg. 

1.1 O Modelo de Thirring em (1+1) dimensões 

O modelo de Thirring foi proposto na década de 50 com o propósito de estudar 

a estrutura matemática de campos quânticos relativísticos. A Lagrangiana deste 

modelo é aquela de um férmion de Dirac sem massa com interação do tipo corrente- 

corrente [6] 

de perto as referências [7] e [19]. O objetivo desta primeira seção é, basicamente, dar 

(1.1) 

e a teoria resultante é exatamente solúvel. 

De (1.1) temos a equação de movimento* 

(1.2) 

com a corrente conservada 

J^{x) = i;{xYi^il}{x) ; 

(1.3) 

d^j,J^{x) = 0 . 

*.\s convenções adotadas são dadas no apêndice A. 

4 



Desde que a Lagrangiana (1.1) não possui termo de massa, a corrente axial 

também é conservada; 

d^r^ix) = d^e^‘'Mx) = 0 , 

(1.4) 

onde fizemos uso do fato que no espaço-tempo bidimensional temos 

Uma vez que é o análogo bidimensional do rotacional de a conserva- 

ção da corrente axial implica que deve ser um gradiente. Isto, juntamente com a 

conservação da corrente vetorial, sugere que deva ser o gradiente de um campo 

escalar sem massa íp{x): 

□ íp{x) = 0 . 

(1.5) 

Esta mesma conclusão pode ser obtida partindo da expansão em componentes de 

Fourier para o campo ^(a:) e calculando a corrente formalmente [7, 19]. 

Entretanto, no espaço-tempo bidimensional não existe campo escalar sem massa 

satisfazendo os axiomas de Wightman. Isto se deve ao fato que, devido às di- 

vergências no infravermelho, em duas dimensões não existe distribuição que tenha 

suporte no cone de luz positivo, = 0 e > 0, seja invariante de Lorentz e posi- 

tiva definida (exceto pela S{p)). Contudo, isto não exclui a existência de operadores 

bem definidos obtidos a partir do campo p{x). Em especial, o operador exponencial 

de p{x) exerce um papel fundamental na representação de campos fermiônicos em 

termos de campos bosônicos [19]. 

Classicamente, a equação de movimento (1.2) pode ser resolvida assumindo a 

relação (1.5) e fazendo o ansatz 

-tp{x) = ) (1-6) 

onde é uma solução da equação de Dirac livre. Esta solução não é única e 

podemos construir uma família de soluções a um parâmetro observando que 

^P’{x) = ^ 

também é solução da equação de movimento. Nesta expressão c é um número real 

e p é o campo dual a <p: 

, (1.8) 
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relação esta que somente pode ser estabelecida no caso sem massa. 

Assim, usando (1.6), podemos escrever a solução geral para a equação de movi- 

mento clássica como (abandonando o sinal de apóstrofo) 

^{x) = > (1-9) 

onde a — P = Observe-se que a corrente do campo interagente é a mesma que 

para o campo livre. 

Deste modo, para quantizar o modelo de Thirring devemos resolver a questão 

de como definir o campo bosônico sem massa. Isto pode ser feito assumindo que 

íf{x) e pi{x) são campos bosônicos de massa zero canonicamente normalizados e 

relacionados por (1.8). Então, considera-se um espaço de métrica indefinida onde as 

funções de dois pontos são definidas pela sua regularização (no sentido distribucional 

[20]) no infravermelho [7, 19]; 

(0b(x)(/?(y)|0) = (0|<p(x)í^(?/)|0) = D^^'>{x - y) ; 

{0\íp{x)cp{y)\0) = D^+\x - y) , 

(1.10) 

sendo 

(1.11) 

= -—\n^{iyix^ -\-e){iiix~ + e) ; 

0<+>(i) = ^Sgn(p') (e”'"* - 8(k-p")) 

(1.12) 

— —lí 
47t ^ \ix~ + e) ’ 

onde ± e // é um cut-off infravermelho. Estas funções de 

dois pontos evidentemente nao são distribuições positivas definidas, o que é uma 

conseqüência da subtração devido à regularização. 

Por outro lado, a quantização pode ser feita assumindo que ■0^°^ (x) é um campo 

canônico (o que resulta numa solução mais geral do que aquela obtida considerando 

0(x) como campo canônico [7]). Então, para atribuirmos um significado bem 

definido para o campo 0 devemos rearranjar a equação (1.9) no seguinte modo: 

0(x) = .0(0)^^^ gi{av’+(i)+/?7®V+(i)} ^ 
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e, analogamente, 

^^2;) = (x)-/37®v (2)} ipW(^x) (1.14) 

onde (/?■*■ {(p~) é a parte de freqüência positiva (negativa) do campo tp (o mesmo vale 

para o campo dual (p). 

Isto nos permite obter uma expressão geral para a função de n pontos do campo 

interagente em termos da correspondente função para campos livres. Desde que a 

função de n pontos é o valor esperado no vácuo de um produto de operadores 

escolhendo dois fatores vizinhos temos 

Íj{xj)'ip{xj+i) ^i{a'Pxj+0'y^j<Pxj} ;(0) 
'rxj 

X 

onde os índices nas matrizes 7^ indicam que estas atuam sobre os espinores de mesmo 

rótulo. Então, o procedimento de cálculo é 0 usual: mover os operadores de aniquila- 

ção para a direita e os de criação para a esquerda, até que estes atuem no vácuo. 

Para comutar os operadores exponenciais usamos o fato que 

sempre que [A, B] for um c-número. Isto nos deixa com fatores exponenciais das 

funções de dois pontos e 

Para comutar as exponenciais dos campos escalares com '0^°^ devemos notar 

que um campo fermiônico livre (canônico) pode ser escrito em termos de campos 

bosônicos como [19]: 

(1.15) 

Com isto podemos derivar a relação 

{0|t/>(ii) ■ ■ •V’(^n)V'(</i) ■ ■ ■ tiVnW) - (1.16) 

X (!/„)|0) , 

sendo 

F(x, y) = - ^ {[a + D^+\xí - Xj) + X [7^. + 7^ D^+\xi - 
i.J = l 
i<j 

- Ê {[“ + ^'*’(</i - %) - A [-4 + 7Í,] - »,)} (1.17) 
• J = l 
i<j 

+ E {[« - ^7x^4] “ 2/j) + A [7^^ - 7^J {Xi - yj)} , 
i,j=l 
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onde definimos 

(2 llf q,2 _ 2^oi ; 

b lif /?2 - 20F/5 ; 

X‘^= aP — ^/ttol — \/^/? . 

(1.18) 

Adicionalmente, devemos notar que a função de n-pontos livre é uma soma de pro- 

dutos de funções de dois pontos, as quais podem ser facilmente calculadas. 

A solução (1.16) é claramente invariante por translações. Contudo, aparente- 

mente, não é invariante sob transformações de Lorentz homogêneas. Isto porque 

sob transformações de Lorentz as funções e se transformam como 

DÍ+)(Ao;) = D^+\x) ; 

dW(Ax) = Di+)(x) + ^, 

(1.19) 

onde senhx = i conforme podemos verificar diretamente de (1.11) e (1.12). 

Desta forma, vemos que a aparente não invariância de Lorentz da função de n 

pontos vem dos termos F(x, y) contendo D^'^\ o que poderia ser resolvido fazendo 

A = 0. Porém, neste caso estaríamos perdendo importantes características do mod- 

elo. De fato, A está relacionado ao spin do campo tp{x), o qual é dado por s = | -I- ^ 

e varia continuamente. Isto relete o fato que em (1+1) dimensões spin é uma 

questão de convenção (é definido como o rótulo das propriedades de transforma- 

ções de Lorentz), pois não há rotação em uma dimensão espacial. 

É interessante considerar o caso particular de (1.16) em que temos a função de 

dois pontos 

(0|^(x)V'(0)|0) = . (1.20) 

Para o caso de campos livres a função de dois pontos pode ser facilmente obtida 

usando a expansão em componentes de Fourier do campo de Dirac. Esta é dada por 

[7, 19] 

5Í+)(a;) = (O|V'^°^(a:)'0^°^(O)|O) 

Com isto, e usando (7^ + 7y)5^"''^(a; — y) = 0, obtemos 

(1.21) 
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(1.22) (0|^(2;)^(0)|0) = £-e 

[^{x+ - ie)] [n{x - ze)] 
X 

[n{x^ - ze)] ^ [ix{x - ze)] 

1—(52 —1 

l->5l 

onde definimos 

I- def Q + ^ ~ 2A 

'*■ = 4^ 

def O + 6 4" 2 A 

(1.23) 

c* uei 
09 = 

47T 

Podemos obter a representação de (1.22) no espaço dos momentos usando [20] 

1 ^ r>^~^ 
' (a-KY=e'‘^0{p)^y 

2tt í 
(1.24) 

De onde temos que 

4 J d?xe'<‘'‘m[x)4:{(í)\0) = 
1 0(p+)0(p ) 

2/ir(<5i)r(á2 + i) 

(1.20) 

Desta expressão podemos observar que a função de dois pontos não apresenta pólos. 

Assim, o modelo de Thirring sem massa não possui estados de uma partícula, nem 

campos assintóticos. 

Outras propriedades do modelo de Thirring em (1+1) dimensões podem ser 

demonstradas [7]. Contudo, isto está fora do escopo desta pequena introdução, cujo 

objetivo é dar uma breve visão do contexto em que o modelo tem sido tratado, isto 

é, como um laboratório de teoria quântica de campos [6]. 

O trabalho de Klaiber [7] também lançou as bases para a teoria de bosonização, 

contexto em que se demonstrou a equivalência entre o modelo de Thirring massivo e 

a teoria de sine-Gordon [8] (ver também [21]). Porém, só recentemente este modelo 

tem despertado interesse em d > 2 dimensões, onde se tem revelado uma teoria 

bastante rica (apesar de perturbativamente não renormalizável). Neste trabalho 

estamos especialmente interessados na versão do modelo de Thirring, em (2+1) 

dimensões, introduzida por Itoh et al. [10] e Kondo [11], a qual consideramos na 

próxima seção. 
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1.2 O Modelo de Thirring como uma Teoria de Gauge 

Nesta seção, consideraremos o modelo de Thirring como uma teoria de gauge em 

(2 + 1) dimensões. Partiremos da Lagrangiana para o modelo de Thirring massivo 

com um sabor fermiônico 

£ = (^7^^), (1.26) 

onde é um campo fermiônico de 2 componentes e assumiremos, sem perda de ge- 

neralidade, que a massa m é positiva. A constante de acoplamento G tem dimensão 

de {massa)~^ e será redefinida como G = onde e é um parâmetro adimensional 

[14]. Desde que G tem dimensão de inverso de massa, podemos notar que em (2 4-1) 

dimensões o modelo de Thirring não é renormalizável perturbativamente. 

Esta Lagrangiana é invariante sob transformações U{1) globais, de modo que 

temos a corrente conservada 

df,f{x) = 0 , 

j^{x) — 'P(x)7^í^(x) . (1.27) 

No entanto, (1.26) não é invariante por transformações Í7(l) locais, ou seja, o modelo 

original de Thirring não é uma teoria de gauge. 

Outra transformação de simetria importante a ser considerada é a de paridade 

(V). Em duas dimensões espaciais a transformação de paridade não é dada pela 

reflexão usual x —)■ —x, pois esta transformação corresponde a uma rotação (seu 

determinante é det(A) = -1-1). Neste caso, a transformação imprópria de paridade 

deve ser considerada como a reflexão em apenas um dos eixos espaciais: 

x^ X 

X 

/I 

/2 
5 

Verifica-se, então, que o campo fermiônico transforma-se como 

'L(a:) 4 ^'(x') = e^S^^(a:) , (1.28) 

onde 5 é uma fase arbitrária, que pode ser omitida. Esta propriedade de transfor- 

mação de por sua vez, implica que o termo de massa fermiônica é ímpar sob 

transformação de paridade 

4 . (1.29) 

Assim, podemos notar que a presença de um termo de massa na Lagrangiana (1.26) 

quebra a simetria de paridade. Isto possibilita o surgimento de um termo de Chern- 

Simons (o qual também é ímpar sob paridade) devido às correções radiativas. 
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Introduzindo um campo vetorial auxiliar podemos linearizar a interação e 

reescrever a Lagrangiana (1-26) na seguinte forma 

£' = - m^'1' + —A'"A UI (1.30) 

com 

D^ = d^,- leA H 5 

devemos notar que .D^ não é uma derivada covariante, a despeito da semelhança 

formal, pois, conforme já foi dito, C' não possui simetria U{1) local e o campo 

não é um campo de gauge. De fato, as equações de Euler-Lagrange para o 3-vetor 

A^ resultam 

de modo que A^ é apenas uma representação apropriada para a corrente. 

No entanto, considerando a Lagrangiana linearizada (1.30) como ponto de par- 

tida, podemos introduzir uma simetria de gauge local através do formalismo de 

Stückelberg [12]. A saber, decompomos o campo A^ segundo 

Àf,{x) = Af,{x) - df,6{x) , (1.32) 

ao mesmo tempo que transformamos os campos fermiônicos segundo 

^(x) , 

'í!{x) , 

(1.33) 

onde Afj, é um campo vetorial e o campo de Stückelberg 9 é um campo escalar neutro. 

Efetuando estas transformações na Lagrangiana £', equação (1.30), obtemos 

onde 

— — 
jC” = - mip-ip — (A^ - (1.34) 

é, de fato, uma derivada covariante, pois a Lagrangiana (1.34) é invariante sob a 

transformação de gauge 

An —>■ A^ = A^ -I- dn.(t>, 

9 —y 9 — 9 (j), (1.35) 

ip —y tp' = 
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de modo que é realmente um campo de gauge. 

De (1.35) podemos notar que efetuando uma transformação de gauge para o 

gauge unitário 6' {(j) = —6), temos 

A!^{x) = Af,{x) - d^9{x) = Ãf,{x) , 

e, então, a Lagrangiana (1.34) coincide precisamente com a Lagrangiana linearizada 

Logo, 0 modelo original de Thirring é apenas uma versão de gauge fixo de (1.34). 

A introdução da simetria U{1) local no tratamento do modelo de Thirring tem 

várias vantagens. Em primeiro lugar, cálculos de loop são geralmente muito difíceis 

no gauge unitário [10], ou seja, no modelo de Thirring original. Contudo, a existência 

da simetria de gauge nos permite escolher o gauge apropriado aos nossos propósitos, 

pois a matriz S é independente de gauge (ainda que as funções de Green fora da 

camada de massa sejam dependentes de gauge). 

Além disto, ao calcularmos correções radiativas ao propagador do bóson vetorial, 

surge a possibilidade da indução de um termo de Chern-Simons. Sem a simetria de 

gauge qualquer regularização pode ser usada no tratamento das integrais divergentes, 

o que leva a resultados contraditórios quanto a se o termo de Chern-Simons é ou não 

induzido. A presença de uma simetria de gauge local pode ser usada na tentativa de 

resolver esta ambigüidade, uma vez que somente são permitidas regularizações que 

preservem tal simetria como, por exemplo, Pauli-Villars e regularização dimensional. 

Adicionalmente, desde que (1.34) tem simetria de gauge local, podemos intro- 

duzir um termo Cgf+fp, dado pela soma do termo de fixação de gauge e do termo 

contendo os campos fantasmas de Faddeev-Popov, de modo a obter uma Lagrangiana 

invariante sob transformações BRST: 

Í^Th,G = £ + Cgf+fp- (1.36) 

O termo Cqf+fp pode ser escolhido na forma [11] 

^GF+FP — —iSi c + (1.37) 

sendo 5b a variação BRST. Nesta expressão, c{x) e c{x) são os campos fantasmas 

de Faddeev-Popov, F[A, ^] é o funcional de fixação de gauge e B(x) é um campo 

auxiliar, conhecido como campo de Nakanishi-Lautrup. 

A variação BRST para um operador arbitrário O pode ser definida como 

50 = (^bO) ôt], onde Sr] é uma variável de Grassmann independente de x. 
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Então, verifica-se que a Lagrangiana completa, Crh^Gi é invariante sob o conjunto 

de transformações BRST 

6b0{x) 

Óbc(x) 

Sbc(x) 

5bB(x) 

ÔB-ip^x) 

SbiIj{x) 

d^c{x) ; 

c{x) ; 

0; 

iB{x) ; 

0; 

ie'ip{x)c{x) ; 

—ie'tl){x)c{x) 

(1.38) 

Na verificação da invariância de £t/i,g sob as transformações acima, é importante 

notar que a transformação BRST é nilpotente, isto é, para qualquer funcional F dos 

campos An, 9, c (c), B e 'tp (•0) temos Ôb^F = 0 [22]. Esta propriedade é constatada 

observando que os campos fantasmas de Faddeev-Popov são campos de Grassmann. 

Então, a invariância de Cgf+fp segue diretamente da propriedade de nilpotência 

da variação BRST e da definição de Cgf+fp, equação (1.37). A invariância de C" 

segue de sua invariância de gauge e do fato que para qualquer funcional dos campos 

de ip (rp), An e 9, a variação BRST é apenas uma transformação de gauge com 

parâmetro de gauge infinitesimal cp{x) = c{x)5rj. 

Fazendo uso da forma explícita destas transformações, a equação (1.37) pode ser 

reescrita como 

e] + - ic I (1-4,«]) d, + (^F(-4. «ij I c , 

de onde podemos ver que, escolhendo o funcional de fixação de gauge F[A, 9] se- 

paradamente linear era A e 9, os campos fantasmas de Faddeev-Popov desacoplam-se 

totalmente do sistema. 

Após integrar o campo B{x), o termo de fixação de gauge é dado por Cgf = 

-^(F[A, ^1)2 e podemos notar que no gauge covariante, dado por F[A] = o 

campo de Stückelberg interage com o campo (exceto no gauge de Landau Ç = 0). 

Assim, aqui vamos considerar o gauge R^: 

F[A, 9] = dnA^^ -f ÇA/2^, (1.39) 

que, além de permitir o desacoplamento dos campos fantasmas, tem a vantagem de 

desacoplar também o campo de Stückelberg dos campos de matéria (independente- 

mente de Ç). 
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Nas referências [10] e [11] este gauge foi usado em sua versão não local e local, 

respectivamente. Em [10] os autores consideraram uma forma não local do gauge 

R^, permitindo que o parâmetro fixando o gauge ^ fosse dependente do momento 

(derivada), com o propósito de analisar a geração de massa fermiônica através da 

equação de Schwinger-Dyson. Este gauge não local é o único que permite o uso 

da aproximação ladder (vértice nú) para a equação de Schwinger-Dyson de forma 

consistente com a identidade de Ward-Takahashi para a conservação da corrente. 

Contudo, tais gauges não locais são difíceis de tratar e a correspondente expansão 

perturbativa exibe problemas técnicos não triviais (ver referência [23]). Assim, para 

evitar tais problemas, seguiremos aqui a referência [11] e consideraremos a versão 

local do gauge i?ç, isto é, Ç = constante. 

Logo, a Lagragiana (1.37) pode ser escrita, no gauge Rç local, na forma 

C Th,G — + Ce + C ghj (1.40) 

com 

c-e = 

Cgh = i \ {df^c){d^c) - ^iWcc 

(1.41) 

(1.42) 

(1.43) 

onde desprezamos uma divergência total, que não afeta as equações de movimento, 

e reescalonamos o campo de Stückelberg segundo M6 9. A Lagrangiana £t/i,g 

será daqui por diante referida como a Lagrangiana do modelo de Thirring como uma 

teoria de gauge (por brevidade, MTG). 

De (1.40) podemos inferir algumas características deste modelo. Em primeiro 

lugar, a equação de movimento para o campo fermiônico é, formalmente, idêntica 

àquela para a QED3. Esta semelhança, contudo, é meramente formal, pois o MTG 

é uma teoria não renormalizável enquanto a QED3 é super-renormalizável. 

Além disso, as equações de Euler-Lagrange para o bóson de gauge são dadas por 

{dAA,) + = -f , (1.44) 

e não são equações de onda. Assim, o bóson de gauge não se propaga e não é 

um campo dinâmico em nível árvore. Este fato pode ser constatado simplesmente 

observando que não há um termo cinético associado a em (1.41). Ainda assim, 

vamos mostrar que o bóson de gauge adquire dinâmica devido às correções radiativas. 
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Outro ponto que deve ser notado é que o modelo de Thirring original é recupe- 

rado da Lagrangiana (1.41) no limite Ç oo, que corresponde ao gauge unitário 

[9]. Conforme podemos observar de (1.40), o parâmetro perturbativo no MTG é 

a constante de acoplamento adimensional e. Quando consideramos o limite para 

o gauge unitário, o parâmetro de expansão perturbativa volta a ser a constante de 

acoplamento do modelo de Thirring original G. No entanto, como uma conseqüência 

do processo de linearização, gráficos de mesma ordem em G são obtidos como o limite 

de gráficos de diferentes ordens em e (devemos notar que quando oo recupera- 

mos o vínculo (1.31)). Por exemplo., tanto a correção de vértice (0(e^)) quanto o 

diagrama de caixa (C>(e^)) são de mesma ordem O(G^) no limite de gauge unitário. 

É interessante observar que nas referências [3] e [4] a Lagrangiana (1.41) foi 

obtida apenas adicionando um termo de fixação de gauge covariante à Lagrangiana 

(1.30), ainda que não exista nenhuma simetria de gauge em tal modelo. O mérito 

da construção acima está em introduzir, de fato, uma simetria de gauge. Mas é 

somente a Lagrangiana completa (1.40) que possui tal simetria e justifica o uso 

de (1.41). Em especial, os campos fantasmas de Faddeev-Popov, apesar de livres, 

desempenham um papel importante na derivação de identidades de Ward-Takahashi 

para a obtenção da correção de vértice (ver cap. 4). 

Finalmente, devemos observar que a existência da simetria de gauge restringe a 

escolha dos esquemas de regularização a serem usados, quando do cálculo de corre- 

ções radiativas, àqueles que preservem esta simetria. Contudo, isto não é suficiente 

para remover a ambigüidade de regularização no coeficiente do termo induzido de 

Chern-Simons, quando calculamos a correção de loop fermiônico. Neste sentido, o 

método causai tem provado ser útil [24, 25], pois não sofre das dificuldades associadas 

às divergências ultravioleta, resultando em um valor não ambíguo para o coeficiente 

do termo induzido de Chern-Simons. 
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Capítulo 2 

O Método Causai de Bogoliubov, Epstein e Glaser 

Neste capítulo consideraremos uma breve introdução ao método causai de Bogo- 

liubov, Epstein e Glaser (BEG). A idéia de construir a matriz de espalhamento usan- 

do certas condições físicas explicitamente formuladas, entre as quais a causalidade 

é a principal, remonta a Stückelberg. Posteriormente, Bogoliubov e colaboradores 

levaram o programa adiante e obtiveram uma formulação mais clara da condição de 

causalidade a partir da introdução da matriz S{g), onde g é uma função teste. No 

entanto, estes autores obtiveram a expressão usual para a matriz S em termos de uma 

série exponencial ordenada temporalmente. Como é bem conhecido, esta expressão 

para a matriz S não é bem definida, apresentando sérios problemas relacionados às 

divergências ultravioleta. 

Epstein e Glaser [17], partindo da condições de invariância translacional e causa- 

lidade formuladas por Bogoliubov, procederam de forma mais cuidadosa e derivaram 

um método para a construção indutiva da matriz S{g) onde em todos os passos 

trata-se com distribuições bem definidas e, portanto, foram capazes de evitar as 

dificuldades devido às divergências ultravioleta. Na referência [17] este método foi 

aplicado a campos escalares, posteriormente o método foi aplicado à QED4 [24], 

QED3 [25] e a teorias de gauge não abelianas [26]. 

Este capítulo está organizado como segue. Na primeira seção enunciaremos os 

princípios físicos fundamentais que nos permitem construir a matriz S{g) perturbati- 

vamente no método causai. A seguir, descreveremos, de forma resumida, o processo 

de construção indutiva da matriz S{g). Veremos que o ponto crucial para evitarmos 

as divergências ultravioleta da teoria de perturbação usual é efetuarmos uma cor- 

reta bipartição das distribuições envolvidas e descreveremos o processo de bipartição. 

Nesta seção seguiremos de perto as referências [16, 17, 24, 27]. Na segunda seção, 

iniciaremos o programa de aplicar 0 método de BEG ao MTG, demonstrando a 

não-renormalizabilidade deste modelo através da aplicação do método causai [28]. 
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2.1 A teoria de Bogoliubov, Epstein e Glaser 

2.1.1 Construção Indutiva 

No método causai de BEG a matriz S é construída sem qualquer referência ao 

formalismo Hamiltoniano. Em lugar disto, sua forma explícita é obtida fazendo uso 

de certas condições físicas, sendo que causalidade e.xerce um papel crucial. Neste 

método a matriz S é vista como uma distribuição de operadores, expressa pela série 

perturbativa 

onde g{x) é uma função teste c-número pertencente ao espaço de Schwartz, g{x) G 

>S(R^). Desde que decaem rapidamente no infinito, as funções teste g{x) realizam 

o papel de ligar e desligar adiabaticamente a interação. .A.ssim, o limite adiabático 

g I deve ser considerado no final dos cálculos. 

A série (2.1) é puramente formal e nenhuma afirmação pode ser feita acerca 

de sua convergência. As distribuições de n pontos Tn{x), que são expressas em 

termos dos operadores de campo livres da teoria, são os objetos básicos a serem 

determinados. 

As condições físicas necessárias para determinar a matriz S são: 

• Causalidade - para formular a condição de causalidade vamos considerar o caso 

em que a função teste g{x) pode ser expressa como a soma de duas funções 

teste gx e g2 que possuem suportes disjuntos no tempo; 

onde M indica o espaço de Minkowski. Se as funções teste gx e g2 satisfazem 

as condições acima, dizemos que o suporte de gx é anterior ao suporte de g2 

(supp gx < supp g2). 

Então, a condição de causalidade é dada por 

(2.1) 

sW = siW + S2W, (2.2) 

com 

supp C {x e M| G (—CX3, s)} 

supp p2 C {x G M| G (s, 00)} , 

S{gx +52) = S{g2)S{gx), (2.3) 
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que expressa causalidade no sentido que qualquer evento ocorrendo no sistema 

para tempos t < s não é influenciado pelo comportamento do sistema para 

tempos t > s. 

A condição (2.3) pode ser escrita em termos das distribuições T„ como 

Tji (^1) • • • ) ^n) — ^m(^l) • • • ) • • • j Xji) , (2-4) 

se {xi,...,Xm} > {Xm+i, • • •, a:n}; 

• Invariãncia de translação - sendo U{a,A) a representação usual do grupo de 

Poincaré V\ no espaço de Fock, exige-se 

U(a,l)S(g)U(a,l)-'= S{g,) , (2.5) 

onde 

9a{x) = g{x - a) . 

Em termos das distribuições de n pontos, a condição de invariãncia de transla- 

ção é dada por 

U{a, l)Tn{xi,.. .,Xn)U{a, 1)“^ = Tn{xi + a,..., Xn + a) . (2.6) 

Em teoria de perturbação causai não é necessário exigir a invariãncia de 

Lorentz; 

• Interação - a matriz S é completamente determinada a partir da estrutura 

causai uma vez conhecido o acoplamento, isto é, a primeira ordem na teoria 

de perturbação Ti{x). Para o MTG temos 

Ti{x) = -ie : 'ijj{x)Y'^{x) : A^{x) , (2.7) 

conforme pode ser visto de (1.41). É interessante notar que (2.7) é formalmente 

semelhante ao acoplamento da QED, ainda que os operadores de campo te- 

nham diferentes interpretações nos dois casos. 

A condição de causalidade (2.4) mostra que os objetos básicos a serem cons- 

truídos, T„, são produtos ordenados no tempo. Na formulação usual de teoria 

de campos, os Tn são dados simplesmente pelo ordenamento temporal obtido via 

multiplicação por funções degrau [16] 

Tn{Xi,...,Xn) = T{Ti{Xi),...,Ti{Xn)} 

= -i“jr,(xn,)...r,(xnj,(2.8) 
n 
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onde o somatório inclui todas as n! permutações possíveis. No entanto, esta formula- 

ção padece das dificuldades associadas às divergências ultravioleta, pois (2.8) não 

corresponde a distribuições bem definidas. No método de BEG, ao contrário, os 

Tn são obtidos através de uma análise cuidadosa, resultando em distribuições bem 

definidas. 

Para construir a matriz S é necessário introduzir uma série formal para a matriz 

S inversa 

°° l f 
S{gy^ = 1 + H — J ...d^XnTn{xi,...,Xn)g{xi).. .^(x„), (2.9) 

sendo que as distribuições T„(x) são obtidas por inversão formal de (2.1), 

f„(.Y) = (2.10) 
r=l Pr 

onde, uma vez que as distribuições Tn e Tn são simétricas em seus argumentos, 

adotamos a notação X = {xi,..., x„}. Na expressão acima, Pr indica todas as 

partições de X em r subconjuntos disjuntos 

X = XiU...UX, , \Xj\=rij (2.11) 

Então, o passo indutivo é como segue: se conhecemos todas Tm{X) com m < 

n — 1, podemos definir as distribuições 

Á^{xi,...,Xn) = ^f’„i(X)T„_„^(y,x„), 
P2 

R'n{Xi,...,Xn) = J2'^n-nÁ^^^n)fn,{X), 
P-2 

onde as somas percorrem todas as partições 

P2 : {xi,...,x„_i} = XUF , X 7^ 0, 

(2.12) 

(2.13) 

em subconjuntos disjuntos, com | X | = ni e | F |< n — 2. Se os somatórios acima são 

estendidos de modo a incluir o conjunto vazio X — 0 obtemos as distribuições 

.4„(xi,...,x„) == ^r„i(X)Tn_„^(r,x„) 

. . . , Xn^ -|- Tn(X\^ ■ ■ ■ ) ^n)) 

Pn (^11 • • • 1 Xn) J2Tn-m{Y,Xn)fn,{X) 

• • • » ^n) d" Tn{X\^ • ■ • ) -^n)) 

(2.14) 
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sendo que P2 refere-se a todas as partições 

P°:{x,,...,Xn-i} = XuY . (2.15) 

Observando as eqs. (2.14) vemos que as distribuições An and Rn não são conhecidas 

pela hipótese de indução, pois contêm a incógnita T„. No entanto, a diferença 

Dn{Xi, ...,Xn)=P!n-^'n = Rn- ^n, (2.16) 

é conhecida. Então, analisando as propriedades de suporte das distribuições (2.13)- 

(2.16), podemos determinar T„. 

E importante notar que no procedimento resumido acima nunca temos um pro- 

duto de distribuições no mesmo ponto. Assim, como o produto de distribuições 

definidas em subconjuntos disjuntos é o produto direto das distribuições , em todos 

os passos temos distribuições bem definidas. 

Vamos indicar os cones de luz avançado e retardado de x por 

V"^{x) = {y\ {y - xf > 0, ±(j/° - x°) > 0} , (2.17) 

e a generalização para n pontos é dada por 

= {(ari,...,Xn) I Xj E V^{x),yj = l,...,n}, (2.18) 

Com base na estrutura causai, demonstra-se que (A„) tem suporte retardado 

(avançado) e Dn tem suporte causai [17, 24], isto é, 

supp Rn{X) Ç r;|-_i(3:„), supp -4„(A:) Ç r-_i(a:„), (2.19) 

e 

supp Dn{X) C r+_i(x„) U r“_i(a:„) . (2.20) 

Assim, decompondo a distribuição causai Dn em suas partes retardada Rn e avan- 

çada An, obtemos a distribuição de n pontos T„ usando (2.14); 

Tn = Rn - Rn 

= - a; . (2.21) 

o único passo não trivial deste procedimento é efetuar a bipartição da dis- 

tribuição causai. 
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2.1.2 Bipartição da Distribuição Causai 

As distribuições causais que consideraremos são dadas, em termos dos operadores 

de campo assintóticos livres, por expressões do tipo 

E : Y[^{Xj)d'^{Xi,...,Xn)l[ n-4(i™):. (2.22) 
k j I m 

onde ip, ip são campos fermiônicos e A indica os campos dos bósons de gauge. Nesta 

expressão, são distribuições numéricas temperadas, d^ G <S'(R®"), com suporte 

causai. 

Para determinarmos a matriz S, é necessário decompor em suas partes retar- 

dada (r) e avançada (a) segundo 

éjx) = r„(X) - a„(X) , (2,23) 

supp r„(X) Ç rj_,(i„) , supp o„(X) Ç r;_,(i„) . (2.24) 

Devido à invariãncia por translações, é suficiente colocar = 0 e considerar 

d(o;) d^(a;i,..., 0) G íS ^R'”), m = 3n — 3 . (2.25) 

Além disso, sendo r"''(0)nr~(0) = {0}, podemos notar que o comportamento de 

d{x) na origem é crucial no problema de bipartição. Portanto, é necessário classificar 

as distribuições singulares neste ponto. Com este objetivo introduzimos as definições 

[24]: 

Definição 2.1 A distribuição d{x) G 5 (R™) tem uma quasi-assintótica do(^) 

x = 0 com respeito a uma função contínua positiva p{S), 5 > 0, se o limite 

lim p{ô)ô'^d{ôx) = do{x) ^ 0, (2.26) 

existe em 5'(R*"). 

A definição equivalente no espaço dos momentos é 

Definição 2.2 A distribuição d{p) G <S'(R'") tem uma quasi-assintótica do{p) em 

p = oo se 0 limite 

limp(á)(d(^),í (p)) = (do,^), (2.27) 

V 
existe para toda <P G <S(R'”). 
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y. V 
Em (2.27) d indica a transformada de Fourier distribucional de o? e a transfor- 

mada de Fourier inversa de íp. A função p{5) é chamada de função de contagem de 

potências. 

Definição 2.3 A distribuição d G <S'(R'") é dita singular de ordem co se ela pos- 

sui uma quasi-assintótica do{x) em x = 0, ou sua transformada de Fourier tem 

uma quasi-assintótica do{p) em p = oo, com função de contagem de potências p{5) 

satisfazendo 

lim = c“, V c > 0 . (2.28) 
<5->o p{5) ^ ’ 

A função p(â) satisfaz a seguinte estimativa [24]; para um número arbitraria- 

mente pequeno e > 0, existem constantes C e C' tais que 

Cô^-^ > p(ó) > . (2.29) 

A partir das definições acima podemos distinguir, dependendo do valor de u, 

dois casos: o; < 0 e o; > 0. Vamos considerar cada um destes casos separadamente. 

(z) a; < 0 - Neste caso podemos ver de (2.29) que 

p{õ) -> oo quando ú 0 , 

de modo que 

O processo de bipartição pode, então, ser feito introduzindo uma função monó- 

tona C°° sobre tal que 

Xo{t) = 

0 para í < 0 

< 1 para 0 < í < 1 

1 para í > 1 . 

(2.30) 

Adicionalmente, introduzindo um vetor v = (ui,... ,u„_i) G F"'' (ou seja, todos os 

vetores estão dentro do cone de luz frontal) pode-se mostrar [24] que o limite 

lim Xo d{x) 0(u • x)d{x) = r{x) , (2.31) 

existe e define a multiplicação de d{x) por uma função degrau 0. Assim, obtemos 

a distribuição retardada r e, como a — r — d, também a distribuição avançada a. 

Então, usando (2.21) obtemos T^- 

No espaço dos momentos (2.31) pode ser escrita como a relação de dispersão [27] 

djtp) 

— t-\-i0 
PG r+. (2.32) 
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Neste caso, a solução do problema de bipartição é única, 

(n) o; > 0 - Neste caso temos 

P(<^) —> oo quando ú —>■ 0 , 

e não podemos fazer a decomposição de d{x) pela simples multiplicação por uma 

função degrau 0 como no caso anterior. Para isto, é necessário escolher uma função 

teste satisfazendo 

D°‘íf{0) = 0 V |al < o; , 

onde +...+an 
G — Gi H“ . . . + 

dxi^ ... 

Para tanto, introduz-se uma função auxiliar w(x) e 5(R"') tal que 

(2.33) 

(2.34) 

w(0) = 1 , D“u;(0) = 0 para 1 < |a| < (^ , (2.35) 

e define-se 

{W(f){x) = (f{x) - w{x) ^(D“^)(0) , (2.36) 
|a|=o “• 

de modo que a decomposição segundo (i) é possível. Temos 

{r{x), (p{x)) {d, Q{v ■ x)Wíp) . (2.37) 

No espaço dos momentos a solução retardada é dada pela fórmula de dispersão 

[24]* 

f{p) = ^sgn(p,). (2.38) 

onde p € P'*' U P“. Esta fórmula é chamada de solução central, devido ao fato de 

ser normalizada na origem dos momentos; 

^p^(p)lp=o = 0 V|6|<a;. (2.39) 

A solução central, equação (2.38), tem a vantagem de não introduzir uma nova 

escala de massa na teoria (se em (2.39) o ponto de normalização fosse em p ^ 0, 

então, Ip^I = é uma nova escala). Além disto, esta solução preserva muitas das 

simetrias da distribuição causai, em especial covariância de Lorentz e invariância de 

gauge. 

*Esta expressão difere ligeiramente daquela considerada na referência [24], pois lá a solução 

central foi escrita somente para p G F+. 
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No entanto, ao contrário do caso em que o; < 0, quando cj > 0 a solução do 

problema de bipartição não é única. Se f(x) é a parte retardada de uma outra 

decomposição, então f(x) — r(x) é uma distribuição com suporte em {0}. Logo, a 

solução geral f para a distribuição retardada é dada por [20] 

f(x) = r(x) + CaD^^Six) , (2.40) 
|a|—0 

com r(x) definida em (2.37). Nesta expressão fez-se uso da condição de bipartição 

mínima^ que nada mais é do que a exigência que o processo de bipartição preserve 

a ordem singular da distribuição, isto é, 

ijj, ^ ijj(i , 

í 

onde Lür (u)r) é a ordem singular da distribuição retardada (avançada) e Udé sl ordem 

singular da distribuição causai. Esta condição exerce um papel muito importante 

em QED4 [24] e QED3 [25], e também será útil aqui. No espaço dos momentos temos 

f{p) = f{p) -f- Y. (2-41) 
|a|=0 

onde r(p) é dada por (2.38). Assim, vemos que a distribuição retardada (e, portanto, 

também Tn) é determinada a menos de um polinômio nos momentos, sendo que os 

coeficientes constantes Ca não são fixados pela estrutura causai; condições físicas 

adicionais são necessárias para fixá-los. 

Finalmente, é importante observar que uma correta determinação da ordem sin- 

gular da distribuição causai é crucial, pois o uso de um valor subestimado de lo 

em (2.38) tem profundas conseqüências físicas, podendo inclusive nos remeter às 

divergências ultravioleta da teoria de perturbação usual. Esta questão foi recen- 

temente considerada no caso da eletrodinâmica quântica em (1+1) dimensões [29] 

(modelo de Schwinger). É um fato bem conhecido que neste modelo o fóton adquire 

massa como uma conseqüência imediata da anomalia axial (ver [30] e referências 

lá citadas). No entanto, em [29] Aste et al. mostraram que, usando o valor de 

u obtido por contagem de potências, o fóton permanece sem massa (a teoria não 

é anômala) e somente determinando uj segundo os critérios considerados acima 0 

valor correto para a massa do fóton é obtido. Assim, vemos que a determinação de 

iü usando as definições 2.1-2.3 não é, de modo algum, equivalente à simples contagem 

de potências (ainda que em alguns casos ambos deem o mesmo resultado). 
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2.2 Não-renormalizabilidade do MTG 

A Lagrangiana equação (1.41), é nosso ponto de partida para o tratamento 

causai do MTG. Conforme vimos, implica em que o termo de primeira ordem 

na expansão perturbativa causai da matriz S é 

T\{x) = -ie : : A^,{x) = -fi{x) , (2.42) 

sendo que a última igualdade segue da equação (2.10). Desta expresssão vemos 

que o parâmetro adimensional e exerce o papel de parâmetro de expansão no MTG, 

análogo à carga elétrica em QED. No entanto, no limite ^ > oo, quando recuperamos 

a relação entre .4^ e a corrente fermiônica no modelo de Thirring original, temos 

que 0 verdadeiro parâmetro de expansão é G. 

Para ir de n = 1 para n = 2 na teoria de perturbação temos que formar a 

distribuição causai, que conforme descrito na seção anterior é dada por: 

D2{xuX2) = [Ti{xi),Ti{x2)\ . (2.43) 

Então, ordenando normalmente os produtos de operadores pelo teorema de Wick, 

obtemos as contribuições em D2 aos vários processos em que estamos interessados 

(polarização do vácuo, auto-energia do férmion, etc.). Neste processo necessitaremos 

das seguintes contrações entre os campos livres: 

\'tpa{xij^f,\{x2) = 75ÍÍ^(a:i - 0:2) , (2.44) 

\^g{xMb\{x2) Í5ÍJ^(x2-a;i) , (2.4Õ) 

\Af,{xi)A^\{x2) = iD\;^\xi - X2) , (2.46) 

sendo que as expressões explícitas para as funções singulares e são consi- 

deradas no apêndice B. 

Contudo, antes de iniciarmos os cálculos em teoria de perturbação, é útil derivar 

uma expressão geral para a ordem singular máxima u> de gráficos arbitrários no 

MTG. 

Proposição 2.1 Para 0 modelo de Thirring como uma teoria de “gauge” a ordem 

singular é 

^ = 3 - / - + ^n, (2.47) 

onde f (b) é 0 número de férmions (bósons) externos e n é a ordem da teoria de 

perturbação. 

25 



Prova. A prova é por indução [24, 28]. Inicialmente, verificamos (2.47) para os 

diagramas de ordem mais baixa (o termo de primeira ordem (2.7) tem o; = 0, por 

definição). 

Então, para verificar que esta relação é preservada ao passar de n — 1 para n em 

teoria de perturbação, devemos considerar o produto tensorial de dois subgráficos 

com ordem singular ui e lü2, respectivamente. Por hipótese de indução ui e tU2 satis- 

fazem (2.47). Este produto tensorial está ordenado normalmente, dando surgimento 

a contrações fermiônicas e bosônicas. Inicialmente, vamos considerar o caso em que 

/(, contrações bosônicas surgem neste processo. Então, a distribuição numérica da 

expressão contraída é da forma 

k 
tf\xi-Xr, . . . , Xr-l-Xr) “?/«> • • • > Vv-l-yv) 

j-l 

í(Cl, • • • , Cr-l, • • • , Vv-l, v), (2.48) 

onde {xrj} é um subconjunto de {xi,...,Xr} e {Vvj} é um subconjunto de 

{yii • • • ,yv}- Em (2.48) levamos em consideração a invariância de translação e in- 

troduzimos as coordenadas relativas 

Cj ^Ti Vj — yj 2/u) y — yv (2.49) 

Os símbolos [n] and [u] indicam a coleção de índices {ixi,..., jj,i} e (i/i,..., vi}, 

respectivamente. 

Tomando a transformada de Fourier de t(Ç, ?]) 

i(pi,...,Pr-i,qi,...,qv-i,q) oc J , (2.50) 

(o sinal de proporcionalidade indica que estamos omitindo potências de 27t) e levando 

em consideração que os produtos tornam-se convoluções, temos 

^ / 4 \ k 
i{pi,...,pr-i,qi,...,qv-i,q) oc 

xt 1 V- ,Pi - k, r{i)i ■ ■) n , 9. + k^^s), • • •)> 
J=1 

(2.51) 

onde r{i) = v{s) se, e somente se, Xi e Ps estão unidos por uma contração. Para 

coordenadas Xj e pm que não estão unidas por uma contração temos apenas Pj e Pm 

como argumentos, respectivamente. Nesta expressão, D^^\k) é a transformada de 

Fourier de D^^\x)., que é dada por 

(2.52) 
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Aplicando i{pi,... ,q) sobre uma função teste ^ G obtemos 

(í,í)oc J(2.53) 

onde ip[fu/]{p , q ) é definida como 

E%)n 
/ j-í j=i 

X ^ {■■■,Pi + kr{i),---,q's-ky(s),---,q). (2.54) 

{p,q) = / (n (ç - è ) n ) 

Para determinar a ordem singular de t, segundo a definição 2.2, temos que con- 

siderar a distribuição escalonada í(^,..., |). Logo, temos 

oc (5^y d^'^-^pd^'’-^qiY^{p)t^2\Q)Í^5[,z^]{p ,q), (2.55) 

com m = 3(r + u — 1) e 

(p. 9) = / í n {q - n ) n (%) 
\j-i / j=i j=i 

X í (...,í(p- + A:r(i)),...,5(çl-/!:„(s)),...,5ç'). (2.56) 

Introduzindo as variáveis kj = 6kj e q = 6q, e observando que^ 

£i(+)(t) = hàLsmi— 

= ^S<»{P)0(ko) ® Díllik), (2.57) 

obtemos 

^5[nu]{p, q) = dq), (2.58) 

onde o sobrescrito 0 indica que é substituído por Dq^I em (2.54). Então, 

substituindo (2.58) em (2.55) e fazendo a mudança de variáveis ôp = p, Sq = q, 

encontramos 

I (2-59) 

^Ver a equação (B.22). 
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Mas, por hipótese de indução, as distribuições e têm ordem singular e 

U2 com funções de contagem de potências p\{5) e respectivamente. Assim, 

verificamos que o limite considerado na definição 2.2 existe, para a distribuição í, 

com função de contagem de potências dada por 

cuja ordem singular é 

Logo, substituindo 

para uji e u>2, resulta 

p{6) = 5=’‘*-V.(í)P2(í), 

u) — 3/() — 3 + u)\ + UJ2- 

‘X f 3,^1 = 3 - /í - -òi + -Ui, 

u) — ^ — ifi + Í2) — 2 (^1 + ^2 — 2íb) + -(ni + 722), 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

o que prova a proposição acima para contrações bosônicas. 

Para o caso de If contrações fermiônicas o procedimento é o mesmo descrito 

acima, sendo que devemos substituir pela função de anticomutação fermiônica 

De acordo com (B.3), no espaço dos momentos é dada por 

5(+l(A;) = Qt + m)5^^\k‘^ — rn^)Q{k^) , 

de modo que no lugar de (2.57) temos 

(2.64) 

^ (5 ~0^HP)eCk^) = ôsi'^\k), (2.65) 

onde o índice 0 em indica que trata-se da distribuição com massa nula. 

Então, seguindo os passos anteriores, a única diferença, no que se refere a ordem 

singular, é que no lugar de (2.58) teríamos 

^s{p,q) =-^Í^°{5p,5q), (2.66) 

o que nos leva a função de contagem de potências 

p(í) = í"'/-Vi(í)P2(í), (2.67) 

com ordem singular 

oj — 2/^ — 3 -b u)\ + ÍÜ2- (2.68) 
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Logo, substituindo (2.62) para uii e u)^, obtemos 

a; = 3 — (/i + /2 — 2lf) — -{bi + 62) + ^2)» (2.69) 

o que prova a proposição acima para If contrações fermiônicas. 

Da equação (2.47) podemos obter a ordem singular para as correções de um loop 

do MTG. Para a polarização do vácuo (n = 2, / = 0, ò = 2) temos ujpy = 1, para 

a auto-energia do férmion (n = 2, / = 2, ò = 0) temos cjae = 2 e para a correção 

de vértice (n = 3, / = 2, ò = 1) temos ujy = 1. Estas correções radiativas serão 

consideradas nos próximos capítulos [28, 31]. 

Finalmente, é importante observar que devido à não-renormalizabilidade do 

MTG, conforme segue da proposição 1, o número de coeficientes no polinômio em 

p, equação (2.41), aumenta indefinidamente quando consideramos ordens mais altas 

em teoria de perturbação. Isto significa que não conseguiremos determinar todos 

estes coeficientes por considerações de simetria, de modo que a teoria permanecerá 

com parâmetros indeterminados. Ainda assim, conforme iremos mostrar, para a 

polarização do vácuo, em segunda ordem na teoria de perturbação, conseguiremos 

determinar todas as constantes que aparecem, obtendo um valor não ambíguo para 

a massa topológica [28]. 
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Capítulo 3 

O Vácuo Perturbativo e o Bóson Dinâmico 

No capítulo anterior introduzimos o método causai de BEG e demos início ao 

programa de aplicá-lo ao MTG, tendo demonstrado a não-renormalizabilidade deste 

modelo. Neste capítulo daremos prosseguimento a este programa através do cálculo 

de correções radiativas em segunda ordem na teoria de perturbação. Assim, na 

primeira seção calcularemos o tensor de polarização do vácuo. Em seguida, verifi- 

caremos que as inserções de polarização do vácuo geram dinâmica para o bóson de 

gauge (o qual, conforme vimos no capítulo 1, é um campo auxiliar em nível árvore). 

Finalmente, na última seção consideraremos a questão da estabilidade do vácuo. 

3.1 Polarização do Vácuo 

Nesta seção calcularemos o tensor de polarização do vácuo para o MTG usando 

o método causai. Conforme vimos no capítulo anterior, o tensor de polarização 

do vácuo tem ordem singular Wpv = 1 e, assim, o processo de bipartição é não 

trivial e deve ser efetuado por meio da solução central, equação (2.38). Devido a 

não unicidade deste processo de bipartição de distribuições, surgirão constantes não 

determinadas pela causalidade. Contudo, verificaremos que todas estas constantes 

podem ser determinadas por considerações de simetria, resultando num valor não 

ambíguo para a massa topológica. 

No capítulo 2 obtivemos a distribuição causai em segunda ordem na teoria de 

perturbação, equação (2.43). Para obter a contribuição em D2{xi,X‘z) para os diver- 

sos processos possíveis, devemos ordenar normalmente os produtos de operadores 

usando o teorema de Wick. Assim, tendo feito este ordenamento de Wick, obtemos 

que a contribuição para o tensor de polarização em D2{x\,X2) é dada por [24] 

X : A^{xi)A^{x2) (3.1) 
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onde y = Xi — X2 e são as funções de comutação fermiônicas, descritas no 

apêndice B. 

Usando a propriedade cíclica do traço, podemos escrever a distribuição numérica 

associada com U>2(xi,X2)|pv na forma 

#‘^(xi,a:2) = P^"(y)-P"'^(-y), (3.2) 

onde definimos 

P^-iy) e^Tr [7"5<+>(!/)7‘'5<''(-!/)^ ■ (3.3) 

Em segunda ordem na teoria de perturbação é necessário verificar explicitamente 

se a distribuição possui suporte causai [24]. Isto pode ser feito notando que 

pode ser reescrita como 

d^-iy) = -e2TV{7<‘S(y)7-SW(-!;) -7'‘5<*^!/)7‘'S(-9)} . 

onde S[y) = S^^\y) + S^~\y). Desde que S{y) tem suporte em U^(0) U V (0) (ver 

apêndice B) e ambos os termos na expressão acima contém S(y), verifica-se que o 

suporte de d^''{y) é causai. Assim, podemos efetuar a bipartição de d^''{y) segundo 

o procedimento anteriormente explicado. 

Uma vez que os cálculos são mais fáceis no espaço dos momentos, vamos consi- 

derar a transformada de Fourier de 

= ttV / <^yP“''(yy‘‘’'. (3.4) 
(27t)2 J 

a qual, substituindo a expressão (B.3) para as funções de anticomutação fermiônicas, 

pode ser escrita como 

P“''lk) = --^/d=pe(po)í(p^-m2) 
(27T)2 j 

X Q{ko - po)<5[(*: - pf - m^\j'“'{k,p) , 

(3.5) 

com 

= -2[{m^ - + 2p^p'' - {p>^k'' + k^p‘') 

-I- g'"‘'p- k + im£^‘'^ks]. (3.6) 

Usando as equações (3.5) e (3.6) podemos mostrar que P^'" é invariante de gauge, 

ou seja, 

k,P>^^{k) = 0 . (3.7) 
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Isto, juntamente com a exigência de invariância de Lorentz, nos permite atribuir a 

P^‘' a seguinte estrutura tensorial 

P^^{k) = Pr{k) + P^''{k), (3.8) 

onde P^'" e P^'' indicam, respectivamente, as partes simétrica e anti-simétrica pela 

troca dos índices n e u, sendo dados explicitamente por 

P^^''{k) = (Fr - fcV‘^)5i(A:2), (3.9) 

P^‘'{k) = ime^‘'^ksÈ2{k'^). (3.10) 

Projetando Bi{k'^) e È2{k‘^) de P^‘'{k), obtemos 

= (3.U) 

&(*:') = ■ (3-12) 

Consideremos, inicialmente, Bi{k‘^). De (3.5) e (3.11) temos 

2 

Bi{k‘^) = - -5 í d^p G(po)ó(p^ - m^)e(ko - po) 
(ZTTJ^k-^ J 

X S[{k — p)^ — m^] p ■ k — p^ + 3rrP (3.13) 

onde já efetuamos o traço. Definindo ç k —p, podemos observar que as distribui- 

ções 5 nesta expressão implicam = rrP, ou seja, os 3-vetores p e q são do 

tipo tempo, pois m? > 0. Isto, por sua vez, implica que o vetor k também é do tipo 

tempo. Logo, sem perda de generalidade, podemos escolher um referencial em que 

k = {ko,0,0). Neste referencial, após integrar em po, temos 

BM) = 
e} kl + 4m^ r cPp 

(27t)5 2kl 
J ^ e(ko - E)S{kl - 2koE) , (3.14) 

onde E — (|p|^ -I- m^)2. A distribuição 5 no argumento desta integral exige que 

1^ = \J’^ — Tin?-, o que implica em 

È,{kl) 
k^ -f- 4m^ 

(27r)t 2ko 
eikl-im^)jÇle(k„-E)^^s(’^-E) 

kl 4- 4m^ 

(27t)2 2kl 
Q{kl — 4m^) e{ko). (3.15) 
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Esta expressão nos dá o resultado de B\ no referencial especial em que k — {ko, 0,0). 

O resultado em um sistema de Lorentz arbitrário é obtido fazendo k^ —>■ k^. Por- 

tanto, temos 

Consideremos agora B^ik'^), que das equações (3.5) e (3.12) é 

B2{k‘^) = -7^ / Q{Po)d{p^ - m^)0(A:o - Po)ô[{k - p)^ - m^] . (3.17) 
(27t)2 J 

Seguindo o mesmo procedimento usado no cálculo de Bi{k‘^), obtemos 

Uk^) = ~^e{ko)e{e - Am\ (3.18) 
(27t)2 2\/k^ 

Desde que a transformada de Fourier de P^‘'{—y) é dada por P^'^{—k), da equa- 

ção (3.2) temos que a distribuição causai d^‘'{k) também pode ser separada em parte 

simétrica e anti-simétrica pela troca de e u 

d>()t) = P^''{k) - P''>^{-k) 

= df(Â:) + CW, (3.19) 

onde 

df(fc) = {k>^k-' -k^g>^^)Bi{k‘^), (3.20) 

C(A:) = ime^^^ksB2{k^), (3.21) 

com as distribuições B\{k‘^) e B2{k‘^) dadas por 

B2Ík'^) = ^^^^^sgn(Â:o)©(A:2-4m^). (3.23) 

Com o auxílio das equações (3.20) e (3.21) podemos encontrar a ordem singular 

de d^‘"(A:) e d'^‘'{k), usando as definições 2.2 e 2.3 dadas no capítulo anterior. Fazendo 

uso destas definições encontramos a;^ = 1 para a ordem singular da parte simétrica 

e Wa = 0 para a ordem singular da parte anti-simétrica de d^‘'{k). Uma vez que 

33 



<^s{a) > 0, O processo de bipartição da distribuição causai em suas partes retardada 

e avançada é não trivial, e se faz necessário o uso da solução central, equação (2.38). 

Desde que e são independentes devido à estrutura tensorial, o 

processo de bipartição deve ser considerado em separado. Vamos considerar primeiro 

a parte simétrica, cuja solução retardada é dada por 

rf (A:) = - k^g^'' 
ZTT 

/ + 00 

-oo 
dt 

(t — iOA:o)^(l — t + iOko) ’ 
(3.24) 

substituindo a expressão explícita para B\{k‘^) temos 

r^{k) 
le 

8(27t) 
jik^^k"'- k'^g^'')sgn{ko) í dt-— 
2 J-OO ( i — (1 — í + zO/lq) 

(3.25) 

X 1 + 
4m^ 

t‘^kP' |í|\/^ 

A função 0 no integrando desta expressão limita o intervalo de integração, de modo 

que esta equação pode ser escrita como 

onde as integrais 7i(4m^, k"^) e /2(4m^, /c^) são dadas por 

/i(4m^,A:^) —2 dt- 
^ — 1 — iOko 

e 

— z7TSgn(A:o)0(A:^ — 4m^) 

(3.26) 

(3.27) 

l2{4m^,k^) —2 dt 
1 

^ t‘^(t^ — 1 — iOko) 

Am? 

(3.28) 

Assim, substituindo o resultado de Ii e I2 em (3.26), obtemos a expressão final para 

a distribuição retardada associada a parte simétrica: 

(k) (3.29) 
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sendo 

, 2 r 4m 1 / 4m^\ 

X — Í7TSgn(A:o)ô(^^ — 4m (3.30) 

No entanto, desde que a ordem singular de d^'' é maior que zero (u;^ = 1), a solução 

do problema de bipartição não é única. Assim, de (2.41) temos que a solução geral 

do problema de bipartição para a parte simétrica é dada por 

ff (A:) = ff (Â:) + Co9>^'^ + + C^k'^ + (3.31) 

onde Co, C^, Cf e Cf são constantes que não são determinadas pela estrutura causai. 

Contudo, estas constantes devem ser determinadas de modo a preservar o máximo 

de simetrias presentes na Lagrangiana original. Assim, devemos impor que C^ = 0 

para preservar a estrutura simétrica da distribuição. A estrutura de Lorentz e o fato 

que Cf e Cf são c-números nos levam a impor Cf = Cf = 0. Finalmente, para 

preservar a simetria de gauge, kf^f^‘'{k) = 0, a constante Co deve ser nula. Portanto, 

a solução geral do problema de bipartição para a parte simétrica da distribuição 

associada a polarização do vácuo é simplesmente a solução central, equação (3.29). 

Vamos, agora, considerar a bipartição da parte anti-simétrica de Neste caso, 

devemos fazer uso de (2.38) com u — 0. Logo, a correspondente parte retardada é 

dada por 

tB2{fk‘^) 

{t — iOko){l — t + iOko) 

me 
TS^‘'^ks sgn(A:o) / dt-  
2 J-OO ( 1 — 6 4 2(27t) (1 — t iOAjo) 

(3.32) 

Do mesmo modo que para a parte simétrica, podemos escrever a integral acima em 

termos de Ii: 

CW = . (3,33) 
2(27t)2 vk^ 

Então, usando (3.27) temos 

(27t) 
(3.34) 
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onde 

1 

47T y/i^ 
In — ■j7rsgn(Â:o)0(^^ ~ 4m^) 

1 

No entanto, esta solução também não é única. A solução geral é dada por 

rT(^) = r^ik) + Cog^’' + . 

(3.35) 

(3.36) 

Mas, a constante Cq deve se anular para preservar a estrutura anti-simétrica e Cis 

também deve ser nula para preservar a invariância de gauge. Assim, também para a 

parte anti-simétrica do tensor de polarização a solução geral do problema de biparti- 

ção é dada simplesmente pela solução central, equação (3.34). 

Tendo efetuado a bipartição da distribuição causai, estamos aptos a proceder 

o último passo no processo indutivo da teoria de BEG para obter a distribui- 

ção numérica Í2(^ij^2)|pv associada a distribuição de operadores T2{xi,X2)\pv A 

equação (2.21), escrita no espaço dos momentos e em termos das correspondentes 

distribuições numéricas, é 

Í2/i:/(^)|pv “• ^íiu{k) ^p,v{k) , (3.37) 

onde é a transformada de Fourier da distribuição numérica associada com a 

parte de i?2(^i>^2), definida em (2.13), que contribui para a polarização do vácuo. 

Usando (2.13) temos que 

r!2ÍXi,X2)\^^ = : A^(a:i) {-e^Tr [S^+^(x2 - a;i)7'^5(“^(xi - X2)Y]} ■ ■ 

(3.38) 

Comparando esta expressão com (3.3) verificamos que r'= —Pi,^(—y). Por- 

tanto, sua transformada de Fourier é r'^^{k) = -Puu.{-k), com Pp,u{k) dado nas 

equações (3.8), (3.16) e (3.18). 

O tensor de polarização do vácuo é, então, definido como 

P-iLÁk) = -í(27t)2 Í2t,u[k\^ , 

e, usando (3.16), (3.18), (3.29) e (3.34), pode ser escrito na forma: 

W‘'{k) = [g^'' - 
k^ 

n^^\k^)+ime^^‘'^ksU^^\k'^), 

(3.39) 

(3.40) 

onde 

Am 1 
+ 

167T [ k"^ a/p 

* + \fS 

1 + 
4m2' 

In 

k^ J 

— Í7T0(P — 4m^) (3.41) 
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e 

n(2)(F) 
1 

47T 
In 

1 _ rw 
^ V 4m2 

1 + vS 

— ÍTrQ{k^ — 4m^) (3.42) 

Destas expressões podemos notar que o efeito de subtrair f' é transformar sgn(fco) 

em um fator 1. Em = 0 temos 

n(i)(o) = 0, 

n(2)(o) = 
47rm 

(3.43) 

(3.44) 

É um fato bem conhecido na literatura que o coeficiente do termo induzido de 

Chern-Simons é dependente de como as divergências ultravioleta são regularizadas 

(ver, por exemplo, as refs. [11] e [15]). A regularização de Pauli-Villars usual, por 

exemplo, tem como resultado n(^)(0) = 0 [15]. No entanto, pode-se implementar 

Pauli-Villars de forma a obter o resultado acima [32]. Já as regularizações dimen- 

sional [15] e analítica [33] induzem um termo de Chern-Simons com n^^^(O) dado por 

(3.44). A vantagem do método causai é que, devido ao fato que em todos os passos 

estamos tratando com distribuições bem definidas, em nenhum momento surgem 

divergências ultravioleta e, portanto, o resultado obtido é livre de ambiguidades. 

Neste ponto é interessante notar que, a despeito do fato que o MTG é uma teoria 

não renormalizável, fomos capazes de determinar todas as constantes Ca aparecendo 

na solução geral para o tensor de polarização através da exigência que algumas 

simetrias formais fossem preservadas. De fato, isto não é surpreendente se notarmos 

que o tensor de polarização do vácuo é, formalmente, o mesmo para o MTG e para 

a QEDs, esta última uma teoria super-renormalizável. 

3.2 O Bóson de Gauge Dinâmico 

Nesta seção, calcularemos o propagador do bóson de gauge corrigido pelas inser- 

ções de polarização do vácuo, na aproximação de um loop. Verificaremos que há a 

geração de um pólo no propagador corrigido, indicando que o bóson de gauge adquire 

dinâmica devido às correções radiativas. 

O propagador do bóson de gauge corrigido pelas inserções de polarização do 

vácuo pode ser representado graficamente conforme a figura 3.2.1. 
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Fig. 3.2.1 - Inserções de polarização do vácuo. 

Nesta figura, a bolha hachurada representa o propagador corrigido, que indicare- 

mos por V, e as bolhas simples representam as inserções de polarização do vácuo 

em um loop. Isto pode ser escrito em termos da série 

íT) = iDp iDp ill iDp iDp dd iDp dd iDp -1-... 

= iDp + iDp iU iV , 

(3.45) 

onde n representa as inserções de polarização do vácuo e Dp é o propagador do 

bóson de gauge livre. Desta equação temos 

= (Dp-' + n,„. (3.46) 

É importante notar que esta aproximação para o propagador do bóson de gauge 

dá a contribuição exata para o termo de massa topológica, pois devido ao teorema 

de Coleman-Hill [18] as correções radiativas de ordem mais alta não contribuem para 

este termo. 

Em particular, devido ao fato que o MTG não é renormalizável, o número de 

coeficientes indeterminados nos polinômios em k aumenta indefinidamente quando 

consideramos correções de ordem mais alta. Portanto, em princípio, podemos ter ter- 

mos do tipo Ce^vsk^ surgindo na solução geral da parte anti-simétrica. No entanto, 

0 teorema de Coleman-Hill tem como conseqüência que o coeficiente de tais termos 

deve ser determinado como sendo zero ordem a ordem na teoria de perturbação. 

Na derivação deste teorema (ver apêndice C) a invariância de gauge exerce um pa- 

pel central, de modo que podemos, novamente, perceber a relevância da construção 

considerada no capítulo 1. 
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Vamos, agora, proceder a inversão da equação (3.46). Para este fim, é útil 

introduzir o conjunto ortonormal de projetores 

M2) 

1 

2 ~1^ 

pHU 
M3) 

k^^k'' 

~k^ ’ 

(3.47) 

que satisfazem as relações de ortonormalidade 

p(j) u   pliu . 
Ui) “ Ui) ’ 

(3.48) 

Pj.«pm. ^ 0 _ 

e a relação de completeza 

í; PU) = S"" ■ (3.49) 
i=l 

Em termos destes projetores o propagador do bóson de gauge livre 

mk) = j), . 

pode ser escrito como a seguinte combinação linear 

= jp (í-ÍI + Ífí - kT^,P(Í) . (3.50) 

Usando a ortonormalidade dos projetores é uma tarefa trivial inverter esta 

equação: basta considerarmos a combinação linear dos projetores com os coeficientes 

dados pelos inversos dos correspondentes coeficientes na equação acima. Logo, 

(Dí-)-' = lí-p + Pi;^ - - . (3.51) 

Do mesmo modo, podemos escrever o tensor de polarização do vácuo como 

WUk) = (P('í; + + ^^^(Pfi) - Pgpn(2)(A;2)_ (3 52) 

Introduzindo estas expressões em (3.46), obtemos 

(2^/x.)-i ^ {M2 + nW(A;2) + m\/Fn(2)(A:2)}pM^ 

+ (A;2) - (A;2) } ~p^^ . 
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Então, invertendo esta expressão pelo procedimento descrito acima e reorganizando 

os termos, temos que o propagador corrigido é dado por 

= - 
1 

A;2 - n(A;2) 

M2 + n(i)(A;2) 

k‘^ ) [mn(2)(A;2)]2 
— le- 

ka 

mn(2)(A;2)_ 

^Â:2(A:2 -ÇM2)’ 
(3.53) 

onde 
j. P (U^ + nW(A:^))^ 

^ ' [mnW(/fc2)|2 
(3.54) 

A forma deste propagador corrigido indica que um pólo é gerado pelas inserções 

de loop de férmions. Isto significa que o bóson de gauge, que em nível árvore é apenas 

um campo auxiliar, adquire dinâmica através das correções radiativas. 

Indicando a massa do bóson de gauge por Mgb, temos que o pólo do propagador 

está localizado em 

= n(M^J , para 0 < Mgb < 2m , (3.55) 

e, usando a forma explícita para I1(â:^), vemos que Mgb é dada pela solução da 

equação transcendental 

{mMgbU^^\M^g,)f = (a/2 + , para 0 < Mgb < 2m . (3.56) 

Vamos considerar a solução desta equação nos limites de acoplamento muito fraco 

(G ^ 0) e muito forte (G oo). Contudo, deve-se notar que o limite de acopla- 

mento muito forte (que deve ser tomado com e fixo e, portanto, M 0) somente 

pode ser considerado em um gauge geral pois no gauge unitário este limite é mal 

definido devido à dependência de no último termo de (3.53). Isto é, o modelo 

de Thirring original, que corresponde ao gauge unitário do MTG, é mal definido na 

região de acoplamento forte. 

Assim, no limite G —>■ oo (M^ —>• 0) temos que 

n(«; )m>=o [„,n(2)(it2)]2 ’ 

e das equações (3.43) e (3.44) temos que II(0)a/2=o = 0, de modo que Mgb = 0 é, de 

fato, uma solução. Notando que o bóson de gauge pode ser interpretado como um 

par ligado de férmion e anti-férmion, este resultado reflete o fato que no limite de 

acoplamento forte a massa deste estado ligado deve ser zero. 

Por outro lado, para obter a solução no limite de acoplamento fraco, devemos 

retornar a equação (3.56) e considerar 

=M^ + , 
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o que, usando (3.41) e (3.42), pode ser escrita como 

Mbg Am j 
In 1 + 

47T 

mG 

Esta equação é consistente com a solução Mgb = 0 para G —>• oo e, adicionalmente, 

implica que para acoplamento muito fraco G ^ 0+ temos 

2m 
= 1 — 0; exp (3.58) 

onde a = 2e"^. Ou seja, no limite de acoplamento fraco a massa do canal vetorial 

tende a 2m, conforme seria de se esperar. 

Finalmente, devemos observar que a expressão para o propagador corrigido, eq. 

(3.53), tem um limite bem definido quando m —> 0, mas neste caso não há pólo para 

momento do tipo tempo. 

3.3 Estabilidade do Vácuo 

É um fato bem conhecido que ao considerarmos a expansão perturbativa para 

a matriz S nos deparamos com contribuições devido aos diagramas de vácuo. No 

formalismo convencional de teoria quântica de campos estes diagramas apresentam 

divergências ultravioleta severas e são usualmente omitidos. No método de BEG, 

no entanto, estes diagramas também devem ser considerados. 

A razão pela qual os diagramas de vácuo podem ser omitidos no formalismo 

ordinário de TQC é que eles contribuem apenas com um fator constante multiplica- 

tivo, de valor absoluto um, para a matriz S. Isto é, a matriz S pode ser escrita como 

[34] 

S = CS', 

onde G é um fator numérico dado pela soma de todos os termos associados com 

diagramas de vácuo e 5' é a matriz S construída com a omissão destes diagramas. 

Então, usando a unitariedade da matriz 5, pode-se mostrar que |Gp = 1. Portanto, 

G deve representar um fator de fase (infinito). Assim, desde que efeitos observáveis 

são expressos em termos de valores absolutos de elementos da matriz S, os diagramas 

de vácuo não levam a qualquer efeito observável e podem ser totalmente omitidos. 

No método causai de BEG os diagramas de vácuo não “exponenciam” e, por- 

tanto, não podem ser omitidos [24, 35]. Neste caso, não há problemas relacionados 

à divergências ultravioleta, pois em todos os passos na construção da matriz S ma- 

nipulamos distribuições bem definidas, e também os diagramas de vácuo são finitos. 

Contudo, ao tomarmos o limite adiabático ^ ^ 1 na matriz S, equação (2.1), os 
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diagramas de vácuo podem apresentar sérios problemas na região do infravermelho. 

Para ver isto, vamos considerar a contribuição de um diagrama de vácuo, em segunda 

ordem na teoria de perturbação para a amplitude de transição vácuo-vácuo: 

lim (01 S2{g) 10) = linii í d^xi(fx2 T2^'"{xi,X2)g{xi)g{x2) . (3.59) 
3->l 3->-l 2 J 

Tomando a transformada de Fourier desta expressão, temos 

lini (01 52(^) |0) = lini í êp f^^''{p)g{p)g{-p) • (3.60) 

0 limite adiabático será efetuado escolhendo uma função teste fixa go{x) G 5(R^) 

com 5^0 (0) = 1 e fazendo o limite escalonado 

g{x) = goi^x) onde e —>■ 0 . (3.61) 

Então, a transformada de fourier da função teste g{x) pode ser escrita como 

g{p) = / d^x go{ex)e-^P'^ 
(27t)2 J 

(3.62) 

Logo, a contribuição do diagrama de vácuo, em segunda ordem na teoria de 

perturbação, é 

3 

(3.63) 

= ito ^ y rf3j, fr(cp)gMgÁ-P), 

e este limite existe somente se vai a zero com, pelo menos, p^ quando p —>■ 0. 

No entanto, para que a teoria sob consideração seja fisicamente relevante, o vácuo 

deve ser estável. Isto é, a matriz 5 deve satisfazer a exigência que 

lim(0l5(5)|0) = l, (3.64) 

o que, dito de outro modo, significa que o vácuo não deve ser modificado pela 

interação. 

Em termos de teoria de perturbação a exigência (3.64) implica que devemos ter 

lini (0| 5n(p) |0) = 0 Vn>l, (3.65) 
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de modo que o limite considerado em (3.64) deve se anular. 

Assim, por consistência, devemos mostrar que o vácuo do MTG é estável até 

a ordem em que estamos considerando (i.e., segunda ordem) e que o limite (3.64) 

satisfaz a exigência acima para este modelo. Caso isto não fosse assim não faria 

sentido considerar as demais correções radiativas para este modelo. 

Vamos, então, calcular as contribuições para o diagrama de vácuo em segunda 

ordem na distribuição causai para o MTG. Estas são dadas por [24] 

DI^‘"{xuX2) = 

(3.66) 

+ ie^Tv[j^S^^\y)YS^~\-y)] Dl^J(y) , 

onde y x\ — X2- Nesta expressão, o primeiro termo corresponde a distribuição 

R'2{xi,X2) que foi definida em (2.13) e é necessária para determinarmos T2^‘^{xi,X2)- 

Assim, temos 

i?2(a:i,X2)vac = -ie^d{y) , (3.67) 

onde introduzimos a definição 

d{y) ‘‘á Tr{7“S<->(»)7‘'5<+>(-y)} DM(-y) . (3.68) 

Em termos desta distribuição d(y), a distribuição causai D2^‘^(xi, X2) pode ser 

reescrita como 

D2^'^(xi,X2) = -ie^ [d{y) - d{-y)] . (3.69) 

Desde que os cálculos são efetuados mais facilmente no espaço dos momentos, 

vamos considerar a distribuição transformada de Fourier de d{y): 

d{p) = j d^qid^q2 Tr {7‘'5^+)(9i)7^5(~)(ç2)} DIVÍQ2 ~ Qi ~ p) ■ (3.70) 

Substituindo as expressões explícitas para e que no espaço dos momentos 

são dadas por (ver apêndice B): 

5(±)(ç) = ±^_(^ + m)S{q‘^ - m2)0(±gO) ; 
(27T) 2 

temos que 

^ Anfn Tr (7^()^i + m)7‘^(^2 + ^)}d{qj- m^)Q{q°^) 
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X 5{ql - rn^)Q{-ql){q2 - çi - p)M-i ~ Qi ~ P)^ 

X 5 [(92 - 9i - pf - 0(92 - 9i - P°) • (3-71) 

Esta expressão pode ser simplificada introduzindo a identidade 

1 -- J (91 — q2 — k) , (3.72) 

que nos permite reescrever d{p) como 

i\P{2t:)2 J 

X d?qxd?q2 Tr + m)7'^(^2 + "^)] <^(9i “ ^^)0(9?) 

X 5(92 - m2)0(-9^)5(^)(9i - 92 - A:)} . (3.73) 

Mas, integrando em 92 e comparando com (3.5), notamos que o termo entre chaves 

na integral acima pode ser identificado com e~‘^ {2tt)^ P^‘'{k), onde P^'' é a função 

de polarização do vácuo definida em (3.3). Logo, podemos fazer uso dos resultados 

da seção 3.1 e escrever 

,-2 

X ei-k'^-p°){k+p)^{k + p),p>^‘'{k), 

(3.74) 

com P^‘' dado nas equações (3.8)-(3.10), (3.16) e (3.18). 

Uma vez que P^'' está contraído com um termo simétrico em p q u, temos que 

o termo anti-simétrico P^'' não contribui, e ficamos com 

,-2 

d{p) 
le 

M2(27t)2 / 
d-^k 5 (A: 4-p) - ÍM" 

(3.7Õ) 

X ©(—A:° — p°) |(p • A:)^ — p^A;^| 5i(A:^) . 

Então, substituindo a expressão explícita para Bi, equação (3.16), temos 

d{p) — 7 y d^A: 5 [(A:-f p)^ - 0(-A:°-p°) 
8M2(27t) 

X 0(A:^ — 4m^)0(A:°) |(p • A:)^ — p^A:^ j -^= ^1 -t- 

(3.76) 

4m^\ 

) 
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Analisando o argumento das funções 0 e 5 na expressão acima, temos que o 

3-vetor p é tipo tempo (estamos assumindo > 0). Portanto, podemos escolher 

um referêncial onde p — {pq, 0) para efetuar os cálculos. Assim, neste referêncial, 

após integrarmos na variável angular e em |^|, temos 

iPo 

16M2(27t) 
dko Q{ko)Q kl - {ko + po)^ + 

X e{-ko - po) {{pq + ko)^ - 

'' 4m^ \ 

^kl-{p, + koY + ^hP 
(3.77) 

X 1 + 
kl-{p, + k,Y + ^M\ 

De fato, das propriedades de suporte das funções 0 e á presentes no integrando de 

(3.76) verificamos que po < 0 e Po > (2?ri + >/ÇM)^. Assim, introduzindo uma nova 

variável de integração s dada por 

s \Jkl- (po + A:o)2 + ÇM2 , 

ficamos com 

d{po) = 
i 0(-po) 

64Aí2(27r)t Po 

VpI+?ã72 

0 Põ I - (2m + ^M)- 

(3.78) 

/ J2m 
ds 1 + 

4m^ 
{s^ - 2s^(p^ + + {pI - ÇiV/2)2} . 

Efetuando a integração indicada na expressão acima e fazendo a continuação para 

um sistema de Lorentz arbitrário, temos que 

i 0(-po), 
d{p) = 

64M2(27T)t 

20m2 

-0 p^ - {2m + ^- — {p‘^+^iVP)l 

(p2 + ÇAÍ^)! + (p2 _ çM^)2(p2 + çM^)è (3.79) 

3/2 c^^2\ A 2 ~ ^''df2)2 2® 5' + —m^ip^ + — Awr— — —rrv 
y (p2+,fAf2)2 lÕ 

Conforme vimos na equação (3.67), isto nos dá a distribuição R'2{p)v&c = —ie^d{p). 

Então, para obtermos a distribuição causai para o diagrama de vácuo no MTG é 

necessário subtrair da expressão acima a distribuição d(—p) e multiplicar por —ie^. 

Assim, a distribuição causai no espaço dos momentos, D'^‘^{p), é obtida de (3.79) 

simplesmente multiplicando tudo por ie^ e substituindo 0(—po) por sgn(po). 
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Analisando a equação acima segundo as definições dadas no capítulo 2, verifi- 

camos que a distribuição causai para o vácuo tem ordem singular Wvac = 4 e, assim, 

para obtermos a distribuição retardada temos que usar a solução central, equação 

(2.38). Logo, 

r,„(p) = ^sgn(po) /_” + ’ 

e substituindo (3.79) podemos escrever 

_ i e^sgn(po) sgn{tp)e{tY ~ Q^) ./,2 
^'vaciPj 27r64A/2(27r)t-/-oo {t - iOpof{l - t + iOpo)^^ 

onde introduzimos as definições 

(2m + \J^MY , 

(3.80) 

(3.81) 

(3.82) 

def ^ í -1 C!\/f2\| 20t71 ^ 
f{p^) 

l 15 
{p^ +  T-(p + ÇA/ )^ 

(p^ - ÇAÍ^)^(p^ -I- ÇA/^)2 -I- ^m^(p^ -b .^A/^) 
O 

(3.83) 

(p‘^ + ^]VP)^ 15 

Considerando as propriedades de suporte das funções © e sgn, podemos reescrever 

a expressão (3.81) como 

Kacip) = 
le 

64A/2(27t) 2 JJk- í^(l -t‘^ + iOpo) 
(3.84) 

ou 

- ^ ^ í l’ 4 7 20 2 2 7 , 4 7 
P -/2 + P ^3 

64AP2f27rl2 l lo 3 

+ 

64A/2(27t) 

64m^ 2®m^ r o -r /.,r2Tl . 22t z-m- 
^ [p 7, + ÇM J5] -4mpJ,~ O r j 

(3.85) 

onde utilizamos as integrais J\-Jq definidas abaixo. Para expressar o resultado destas 

integrais de forma mais compacta, é útil introduzirmos as definições 

2 def ÇAf 
Z = 

P" 
(3.86) 
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ÇM2 

(2m + v^M)2 ’ 

em termos das quais as integrais Jj são dadas por 

(3.87) 

Ji W -2 
^ - 1 _ iOpo) í2 

/. 2n2 r 2 2 16 /2 2 16 2 - , 
= (1 + .) J7-3. -^^+(3- 4-- + 36)(1 + 6).; 

(3.88) 

2\ § 

5z^ 3 V5 3 

(3.89) 

J3 = -2 
r 

/•i 2\2 T 228 /2 2 3 2 \ 3 - (1-0 .77-3^ +^+(3^ -- + j6)(l + 6)!; 

(3.90) 

dt 
í'(í2-l-iOpo) 

= In i-\/5 

i + \/I 

!7Tsgn(po)e(p^ - a^) + 2i/^ + 2 ( ^ 
\ 2 

a2 3 

(3.91) 

-21 ■ dt 
t®(í^ — 1 — zopo) 

- j 

(3.92) 
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j def 
'>'6 — — 1 — zOpo) 

= {l-Z^fJs + 
2 

52^ 
(1 + 6)2 + (2^ - 4) 

2(l + ò)i 

3z2 
(3.93) 

+ 
2(1+ 6)2 1 

(4-3z^ + ^^) + -(-^ + y^^-2z 
86 16 

onde introduzimos duas novas integrais J7 e Jg, dadas por 

1 
J7 

- -^Ír 

r2\ è 
dt- 

tR — 1 — iOpo) 

= — 2 + 2vT+~ò — vT+^ln 

1 + 
í2 

\/l + z2 - 1 

TTTi^TT 

+ Vl + z'^\n 
y/l + z'^ — y/l + b 

y/l + Z^ + y/l + b 

(3.94) 

Í7TSgn(po)€)(p^ - a^)Vl + , 

e 

T 4®.^ Js — -2 
— 1 — iOpo) 

1 

vTT^ 
In 

VT+^ — y/l + b 

y/TRz^ + y/l + b 
(3.95) 

1 

y/l + z^ 
In 

y/TT¥-l 

y/TT^+1 
- Í7TSgn(po)0(p^ - a^)^=== 

y/l + z^ 

Finalmente, substituindo os resultados (3.88)-(3.95) para as integrais Ji em (3.85) 

obtemos a expressão exata, em segunda ordem, para a distribuição retardada asso- 

ciada com o diagrama de vácuo. Contudo, desde que desejamos apenas estabelecer 

a existência do limite adiabático, estamos interessados na expressão para fyRp) no 

limite p —>• 0 (com Ç mantido finito). Assim, vamos considerar as integrais J{ neste 

limite. 

Notando que quando p —> 0 as funções 0 não contribuem, temos que 0 limite 

das integrais J4, J7 e Js é dado por 

'A(p)|p_^o 
-UÉ.]", 

5 \a^J 7 \a^J 
(3.96) 
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<^7(P)| p->-0 íj!Ly 
i [íMy 

(3.97) 

16 / 16 14, 4,,, . 

IÕ5 + (“ÍÕ5 + l5'’+5'’ Í^V + [(MV +■■■ ’ 

Mp)lp^o = 2(1-v/TT6) ^OVPj 

[4 
b) vTTb 

(é) 

(3.98) 

+ 
16 16 8 

uõn-i5^í5‘-3‘^'^ 

2 \3 
+ ... . 

Todas as demais Ji podem ser escritas em termos destas três, conforme as equações 

(3.88)-(3.93). 

Substituindo (3.88)-(3.93) e (3.96)-(3.98) em (3.85), temos 

^vac(p)| 
ze^ 

p—^0 
64M2(27t) 

vTTè 

ÇA/2 

vn? /221 32 2 

vu^y^ 

128 8 , 8,2 

■ÍÕ5'^Í5'’'^5'’ 

128m3 rl 1 4 2 

— is ^ - 5” 

+ 1 A28 ^ 221 m2 \| ^ (3.99) 
ÇA/2 \^105 14 ^l\P J 

No entanto, rvac(p) é uma solução particular para o problema de bipartição da 

distribuição causai. A solução geral é obtida notando que a ordem singular de 

é cjvac = 4. Logo, temos 

^vac(p) = rvac(p) + Cq + C2P^ + , (3.100) 

como solução geral. Nesta expressão está implícito que algumas constantes per- 

mitidas por (2.41) são assumidas serem nulas, de modo que a estrutura escalar de 

Lorentz da distribuição seja preservada. As constantes Cq, C2 e C4 são finitas porém 

indeterminadas. 

Então, a distribuição T2^{p) é dada por 

friP) = rvac(p) - K.ÁP) , (3.101) 

com Ry^ciP) dada em (3.67). Contudo, no limite p —>■ 0 a distribuição Ry^^ip) não 

contribui, conforme podemos constatar de sua forma explícita, equações (3.67) e 

(3.74). Assim, temos que 

'^2^^ip) — ^vac(p)|p^o + ^0 + C2P^ + C4P^ (3.102) 
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Com isto podemos retomar a análise da contribuição de Tp‘^{p) para a amplitude 

de transição vácuo-vácuo e, de acordo com as equações (3.64) e (3.102), temos 

lini (0| S2{g) |0) = -^^^lirn-^ í d^p go(p)go{-p) 
g-*í z «->^0 J 

(3.103) 

X (^vac(ep) + Co -I- C2eV + C4eV} • 

Analisando esta expressão,vemos imediatamente que o limite do quarto termo entre 

chaves é zero e, desde que rvac(p) comporta-se como C(p®) quando p 0, também 

0 limite do primeiro termo se anula. No entanto, o limite dos demais termos não 

existe a menos que as constantes Co e C2 se anulem. Assim, devemos impor 

Co = C2 = 0. 

Deste modo temos que a exigência limg_,.i (0 | 52 (p) | 0) = 0 é satisfeita e o vácuo 

do MTG é estável. 

No limite do gauge unitário (Ç —> 00) verifica-se que 

rvac(p)|ç^oo = 0 . (3.104) 

De modo que, para o modelo de Thirring original, o diagrama de vácuo corresponde 

a distribuição 

fr‘^(p)|ç^oo = C4P^ (3.105) 

onde a constante C4 permanece indeterminada. O fato desta constante não ser 

determinada não tem qualquer conseqüência, pois os diagramas de vácuo somente 

têm relevância para a estrutura do método de BEG e (obviamente) não levam a 

qualquer efeito observável. Na verdade, esta impossibilidade de determinar todas 

as constantes que aparecem na solução geral do problema de bipartição é uma con- 

seqüência do fato que o modelo tratado é não renormalizável (em QED3, uma teoria 

super-renormalizável, todas as constantes que aparecem na distribuição do vácuo 

são determinadas pela exigência de estabilidade). 

É interessante notar que a distribuição (3.105) corresponde ao diagrama de Feyn- 

man 

o qual, quando calculado pelos métodos usuais de teoria quãntica de campos, é quar- 

ticamente divergente. Recentemente, Jackiw [36] propôs que seja atribuído a parte 

divergente de um diagrama de Feynman um valor finito mas indeterminado, sendo 
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que esta indeterminação somente pode ser eliminada recorrendo a propriedades for- 

mais do modelo (por exemplo, simetrias). Do resultado acima podemos ver que o 

método de BEG fornece uma base formal para tal procedimento. 
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Capítulo 4 

Auto-energia e o Operador de Corrente Corrigido 

Neste capítulo calcularemos as demais correções radiativas de ordem mais baixa 

para o MTG. Assim, na primeira seção, consideraremos a auto-energia do férmion. 

Na segunda seção derivaremos uma identidade de Ward relacionando a função de 

vértice, para momento transferido nulo, à auto-energia do férmion. Então, obte- 

remos a função de vértice na camada de massa, ou operador de corrente. Nesta 

seção também discutiremos de que modo a não-renormalizabilidade do modelo se 

manifesta no método de BEG. 

4.1 Auto-energia do Férmion 

O cálculo da auto-energia do férmion é importante em tratamentos usuais de 

teorias efetivas envolvendo a interação de quatro férmions, tal como o modelo de 

Nambu e Jona-Lasinio [2], para a obtenção da equação de auto-consistência (a equa- 

ção de gap). Em tais tratamentos, a auto-energia é divergente e se faz necessário a 

introdução de um cut-off ultravioleta. A para regularizá-la. Então, a equação de auto- 

consistência proporciona uma relação entre a massa dinamicamente gerada para o 

férmion, a constante de acoplamento do modelo e A, sendo que estes parâmetros 

devem ser ajustados de modo a reproduzir dados experimentais. 

Não é nossa intenção discutir a equação de auto-consistência, e suas conseqüên- 

cias, para o modelo de Thirring (Ç —)■ oo). Mas, ainda assim, é importante calcular 

a auto-energia pelo método de BEG para enfatizar as diferenças entre este método e 

os usuais no cálculo de loops em teorias não renormalizáveis. Este tipo de cálculo é 

relevante também no contexto do tratamento moderno de teorias de campo efetivas 

(ver o capítulo 19 de [22] e as referências lá citadas). 

Vamos, então, obter a distribuição de auto-energia do férmion. A contribuição 

de R'2{xi,X2) é dada por [24] 

l?2(^i>^2)|ae = : ^{x\) S^~\xi - X2)Y{^2 -Xi)]i2{x2) : , (4.1) 
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e a contribuição de é 

A!^{xi,X2)\Ke = X2)-í''D)^X^i-^2)]í^{x2) : . (4.2) 

Estas distribuições a valor de operador nos permitem escrever a parte da distribuição 

causai, D2 = R'2 — ^2, correspondendo a auto-energia como 

D2{Xi,X2)\a.e =■ Í^{^l)d^e{y)^{^2) ■ , (4-3) 

onde y a;i — X2 e a distribuição numérica dae é dada por 

daeí!/) = -e"7“ [•?'■'(»)£’!,:’(-») + S<+>(!/)flií’(!/)] 7" • (4.4) 

Além desta contribuição há outra que difere somente pela troca de X\ por X2, de 

modo a obter T2{xi,X2) simétrico. 

O primeiro passo é investigar as propriedades de suporte da distribuição d^t{y). 

Para tanto, notamos que c?ae(y) pode ser reescrita como 

4e(2/) = [S{y)D^^{-y)-^S^^\y)D,M 7 (4.5) 

e tanto S{y) quanto D{y) podem ser expressas em termos da distribuição de Pauli- 

Jordan*, a qual tem suporte causai. Assim, d^{y) também tem suporte causai, isto 

é, desaparece para y do tipo espaço. 

Desde que dae tem as propriedades de suporte desejadas, podemos separá-la em 

partes retardada e avançada. Contudo, este procedimento é feito mais facilmente no 

espaço dos momentos, de modo que devemos considerar a transformada de Fourier 

da distribuição causai. Para isto, é conveniente separar d^{y) segundo 

4e(y) = -e^7^ [d^i^Xy) + dX{y)}l'' , (4.6) 

onde definimos 

diJ{y) \y)DXi-y) =-S^ ^y)DXiy)] 

(4.7) 

d^iy) = s^^\y)D‘Í\y) ■ 

Vamos, inicialmente, considerar a transformada de Fourier de d^^J{y), que é dada 

pela convolução 

ÍJ{P) = í d\ \q)Dl^J{p-q) 
(ZTTj 2 

(27T) 
Í d^q ié + m)D^ \q)DXiP ~ q) ■ 

7r) 2 J 

(4.8) 

*Ver apêndice B. 
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Substituindo as expressões explícitas para as funções singulares no espaço dos mo- 

mentos (ver apêndice B): 

\q) = -m^)e{-qo) 
(27T)2 

podemos escrever 

Í~JÍP) = ,5 íié + m)5{q‘^ - m^)0(-ço)(p ~ q)^{p ~ q)u 
M‘‘{27r)2 J 

(4.9) 

X 5 {p - q? - Q{-Po + 9o) , 

ou 

diu\p) = T {p^^Pu (7^4 + ml) - {'y°‘La + rniu) 

(4.10) 

- Pu (7“ d^.a 4- TTlIfji) 4- 7 + , 

onde introduzimos as integrais 

I = J d^qS{q'^-m?)Q{-qo)5[{p-q)^ ~^M^]e{-po + qo) ■, (4.11) 

h = / qnd{q^ - m^)0(-ço)í [(p - qf ~ <fM^] 0(-po + 9o) ; (4.12) 

V = j d^q q^,qud{q^ ~ m?)Q{-qo)ô [{p - qf - .^M^] 0(-po + 9o) ; (4.13) 

I, J d^q q^^q„qj{q'^ - m^)0(-ço)6(-po + 9o) 

X í [(p - 9)^ - 

(4.14) 

Em todas as integrais acima verificamos que p é do tipo tempo, como uma con- 

seqüência das ô e Q (desde que > 0). Assim, podemos considerar um referencial 

especial em que p = (po, 0,0) para efetuarmos os cálculos. Neste referencial, após 

integrarmos em ço, temos 

(Pq 
1 = j + 2po£, + m?~ ÇM‘‘)e{-pa - E,) . (4.15) 
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A delta no integrando implica em 

k1 = 
1 

2 boi 
Po -{rn- y/^MyJpl - {m + , (4.16) 

e, desde que > 0, devemos ter pg > (m + Adicionalmente, a função 0 

no integrando em (4.15) exige que po < 0. Portanto, o resultado da integral, neste 

referencial especial, é 

2V^ 
Po -(m + yêM)^] . 

Retornando a um referencial arbitrário, temos 

.©(-Po) I - 7T--' 0 
2VF 

p^ - (m + v^A/)2j . (4.17) 

Consideremos agora que no referenciai em que p = (po, 0,0) é dada por 

d^q q^5{q^ - m^)0(-ço)5 [pg - 2poÇo + 0(-po + ço) , (4.18) 

desta expressão podemos ver que se p 0 a integral se anula por simetria. Assim, 

procedendo do mesmo modo que no cálculo de 7, temos 

I, = á;27r0(-po)0 Pl~ijn + 
{pI + - ÇA/2) pg 

NpI Po 
(4.19) 

o que nos leva a 

/„ = 27re(-p„)e [p^ - (m + \/çA./)2] 7 + ^ , (4.20) 

em um referencial arbitrário. 

As integrais 7^i, e 1^^^ podem ser calculadas do mesmo modo que as integrais 

acima e o resultado é 

7T 

~ 4V^ 
e(-po)0 p^ - (m + ^f^Mf ( 2 (p^ + - ÇA7^)^' 9,xu\m‘^  

4p^ 

+ 
PuPu (3(p^ + - <f A/^) 

(4.21) 

P" 

7T 

4p2 

^©(-Po)0 

— m 

8vb^ 

^ 1 (p/ifPa 4" 9fJ-aPi> A 9vaPfji^ 

p" - (m + (l + j 

_ (P^ + 
4p2 (4.22) 

PuPuPa 15(p^ + - ^A7^)^ _ ^^2' 

P" 4p2 
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Substituindo o resultado das integrais em (4.10) obtemos No 

entanto, para obtermos uma expressão mais manuseável, é conveniente notar que a 

distribuição causai pode ser escrita como 

d^{p) = -e^(d^ \p)+S~^\p)) , (4.23) 

onde 

d(±)(p) 'Y^d^^\p)Y . (4.24) 

Então, usando as propriedades das matrizes 7 em (2+1) dimensões^ temos que 

d^~^p) é dada por 

“ AP(27r)§8x/F®‘ 
- (m + y^M)' 

Í2 

(4.25) 

X |2mÇM'^+/i (p^ + m^) I 1 + p2 — 4m 

Vamos agora considerar o cálculo de d^^^^p) na equação (4.7). Do mesmo modo 

que no caso anterior, a transformada de Fourier de d^^J{y) é dada por uma con- 

volução: 

= 7t\t / d^q S^^\q)D\^Xp - Q) 
(27T)2 j 

(4.26) 

= 7-\t f (i + m)b'-*'>(q)b'-*\p - q) , 
[lTr)2 J 

onde 

= 7-^<5(ç^ - m2)0(ço) ; 
(27T)2 

de acordo com as expressões (B.5) e (B.22) do apêndice B. Portanto, temos 

4Í^(p) = f d^q{i + rn)5{q^-rrí^)Q{qü){p-q)^{p-q),, 
A/-^(27t)2 J 

X í [(p - qf - ÇAí’] 0(po - 9o) . 

(4.27) 

^Ver apêndice A. 
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Comparando a expressão acima para S-^J{jp) com a expressão (4.9) para 

podemos notar que as únicas diferenças são um sinal global e os sinais dos argu- 

mentos das funções 0. Assim, o cálculo de procede exatamente do modo 

descrito acima e o resultado final pode ser obtido daquele para d^~\p) fazendo 

0(~Po) —t ~©(Po)- 

Finalmente, usando a equação (4.23), obtemos a distribuição causai para a auto- 

energia do férmion no espaço dos momentos 

4e(p) = Ad{p^)Í> + Bd{p^) , 

com 

1 

(27r)i SVF^M- 
rSgn(po)©[p^ - 

X 
p2 ) 

{p^ 4- m^) (1 4- — ) - 4m^ 

Bd{p^) = ^J^sgn(po)0[p^ - 
(27t) 

onde introduzimos a definição 

[m 4- 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

Tendo obtido a distribuição causai no espaço dos momentos, podemos determinar 

sua ordem singular usando as definições consideradas no capítulo 2. Verifica-se, 

então, que a auto-energia tem ordem singular = 2, de acordo com a equação 

(2.47), e a bipartição deve ser efetuada por meio da solução central 

  

{t - íOpo)^(l - í 4- zOpo) 
(4.32) 

Substituindo (4.28)-(4.30) na expressão acima, temos 

f(p) 
ie^ sgn(po) r+°° 

dt 
sgn(ípo) 

0(íV - «") 
(27t)Í SlVPy/^ J-OO \t\{t - ÍOpo)^(l -t + iOpo) 

X (íV + m^) (1 + 
2 — _ 

(4.33) 

4m' 4- 2mÇNP 
Pp"^ j 

Então, usando as propriedades das funções 0 e rearranjando os termos, esta ex- 

pressão pode ser escrita como 

f{p) = 
le 

(27t) 
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(4.34) 

- {2w? + ^M^)l2{a^,p^) + rri^p - <^M^)/3(a^p^)] } , 

sendo que as integrais Ii e I2 já foram obtidas quando do cálculo do tensor de 

polarização do vácuo e são dadas nas equações (3.27) e (3.28), respectivamente. A 

integal 73(0^,p^) é definida por 

r / 2 2\ def r) 7°° f 
í,{a,p) - 

iOpo) 

= 7i(a^p^) + 2 

(4.35) 

Então, substituindo 0 resultado das integrais 7i — I3 na expressão (4.34), veri- 

ficamos que a distribuição retardada, associada à auto-energia do férmion, tem a 

seguinte estrutura 

f{p) = À(p‘)ii + B{p^) , (4.36) 

onde 

Ã(p2) 
(27r)t8v^M2 

(p^ -I- rr?) 1 + 
m‘ -eA/2' 

p^ 

X 

+ 

Z7TSgn(po)©[p^ 2(2m^ + ÇiV/2) 

(4.37) 

e 

W) 
i 

(27t)Í4v^ 
In - Z7Tsgn(po)0 [p^ - or 

(4.38) 

Contudo, conforme vimos no capítulo 2, para o; > 0 a solução do problema de 

bipartição não é única. Logo, neste caso, a solução geral contém um polinômio de 

grau dois em p (pois o;ae = 2): 

f (p) = r(p) + Co + Cii) + C2P^ , (4.39) 
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onde as constantes Ci's não são determinadas pela causalidade, de modo que condi- 

ções físicas adicionais são necessárias para fixá-las. 

Para obtermos a distribuição de 2 pontos associada à auto-energia do férmion, 

é necessário subtrair ráe(p) de (4.39), onde ráe(p) = —e^S~\p) é a transfor- 

mada de Fourier da distribuição numérica associada à ^2)|ae- Então, definimos 

a auto-energia do férmion S(p) como 

Ê(p) - -í(27t)ÍT2-(p) 

= -z(27t)2 (f(p) - r'(p)) . 

(4.40) 

Logo, substituindo (4.39) e (4.25), podemos escrever 

t(p) = + Bij?) + C„ + Cl/ + C,p2 , (4.41) 

onde redefinimos as constantes de modo a incluir o fator —z(27t)2. Nesta expressão 

temos 

A{p^) = 
(27r)t8v^M2 

X (in 

{p^ -1- m^) 1 -f- pz — Am^ 

1 - a/21 V a- — Í7T0 2 2 p — a M 

+ 
2"^^/ 2 ^^T2\i Ip'^ ^ f 
p- 3 V 

(4.42) 

B(/) = 
i 

(27r)t Ay/^ 
In 

1 - \ K V 

1 + 
Í7T© 2 2 p — a 

,2\ r 

(4.43) 

e, a exemplo do que aconteceu no cálculo do tensor de polarização do vácuo, o efeito 

de subtrair ráe(í*) ® trocar sgn(po) por 1. 

Vamos agora considerar o propagador fermiônico corrigido pelas inserções pró- 

prias de auto-energia 

iSp — iSp + iSp íE iSp + íSf íE iSp zE iSp + • • • , (4.44) 
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onde Sp indica o propagador de Feynman corrigido, Sf é o propagador de Feynman 

livre para o férmion e S indica as inserções próprias de auto-energia (que aqui 

estamos considerando somente até segunda ordem em teoria de perturbação). Esta 

série é representada graficamente na figura abaixo. 

+ 

Fig. 4.1.1 - Representação gráfica da série (4.44). 

A série geométrica (4.44) pode ser somada notando que, no espaço dos momentos, 

o propagador fermiônico livre é dado por 

íSfÍp) = 
i 

^ — m + iO 
(4.45) 

e usando a bem conhecida identidade 

1 

A-B 
Ír1 + 1r1rÍ 
A A A A A 

(4.46) 

onde A e B são quaisquer dois operadores. Deste modo, o propagador fermiônico 

corrigido pelas inserções de auto-energia, em segunda ordem, é dado por 

zS'fÍp) = 
i 

^ — m + È(p) -b iO ’ 
(4.47) 

com È dado em (4.41). 

Tendo obtido o propagador corrigido, podemos impor que o pólo de S'f continue 

sendo na massa presente na Lagrangiana, isto é, em m. Esta condição, equivalente 

a impor a condição de normalização 

é(p)f^=m = 0 , (4.48) 

pode ser satisfeita escolhendo Co como 

Co = 
e^vn? my/^M \ 

a2 ) 

Im 
— - mCi - m^C2, (4.49) 
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de modo que 

m A{p^)]í) +B{p‘^) + 
12-k l\P 

my/^M\ 

a? ] 

+ Ci{]() — m) + C2{p^ - riP) . 

(4.50) 

Então, podemos notar que este procedimento nos deixa com duas constantes 

indeterminadas na auto-energia do férmion. Vamos postergar a discussão a respeito 

da determinação destas constantes para depois que discutirmos a função de vértice. 

4.2 Correção de Vértice 

Nesta seção vamos considerar a correção de vértice para o MTG. Mas, ao invés 

de construir a função de vértice considerando a correspondente distribuição causai 

em terceira ordem na teoria de perturbação e fazendo a subseqüente bipartição 

em distribuições avançada e retardada, vamos tirar proveito do fato que o MTG é 

invariante BRST para obtê-la através de uma identidade de Ward. 

A razão para não aplicarmos diretamente o método de BEG é que, desde que o 

MTG é não renormalizável, a ordem singular das distribuições associadas com um 

dado processo em ordem mais alta na teoria de perturbação é, em geral, positiva 

(em especial, para o vértice temos Wy = 1). Isto, por sua vez, torna difícil encontrar 

uma solução analítica para a solução central. 

Vamos, então, derivar a identidade de Ward que nos permite obter a função de 

vértice a partir da auto-energia do férmion. Para este fim, devemos considerar varia- 

ções sob transformações BRST de funções de Green da forma (0|T{O(?/)c(a:)}|0), 

onde 0{y) é uma notação abreviada para um produto arbitrário dos campos A^, 

ip- e xp (que devem ser tratados como campos independentes) tomados nos pontos 

yi,y2,--- = y- Desde que o modelo considerado é invariante sob transformações 

BRST, segue que as funções de Green também são invariantes sob estas transforma- 

ções (ver, por exemplo, a referência [37]), ou seja 

<^B(0|T{O(?/)c(a;)}j0) = 0 , (4.51) 

ou 

(0|T{O(y)áBc(a;)}|0) = (0|T{(áBO(y)) c(o;)}j0) . (4.52) 

Neste ponto, é útil considerarmos a forma assumida pelas transformações BRST 

após termos integrado o campo auxiliar de Nakanishi-Lautrup. Então, temos 

5-bA^{x) = df,c{x) ; (4.53) 
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Ób^(x) = Mc(x) ; (4.54) 

ô'bc(x) = 0 ; (4.55) 

Óbc(x) = -^F[A,9]-, (4.56) 

ÔB'tp{x) = ieip{x)c{x) , (4.57) 

onde a função de fixação de gauge é dada pelo gauge 

F[A,9] = d^Af, + ^iVI9 . 

Logo, substituindo 5bc em (4.52), ficamos com 

<0|t{O(!/)f[.4,í)1(i)}|0> = iç(0|r{(ÍBO(í/))c(i)}|0), (4.08) 

e, substituindo a expressão explícita para F[A,9], obtemos 

d^{0\T{O{y)A>^{x)}\0) = íe(0|T{(ÍBO(y))c(x)}|0) , (4.59) 

onde já descartamos o termo contendo o campo de Stückelberg, pois como 9{x) 

é um campo livre e 0{y) não possui nenhum operador de campo 9 temos que 

(O|T{O(y)0(x)}|O) = O. 

A expressão (4.59) nos permite obter a identidade de Ward que desejamos, bas- 

tando escolher 0{y) de forma apropriada. Inicialmente, vamos escolher 

0{y) — Au{y): de modo que a equação (4.59) assume a forma 

aí(0|7’{.4„(i).4„(»)}|0) = iça>;(0iT{c(»)cM|0), (4.6O) 

OU, equivalentemente 

-y) = iÇaíAjjÍ!, - x) , (4.61) 

onde Vfj,ix e são os propagadores de Feynman completos para o bóson de gauge e 

os campos fantasmas de Faddeev-Popov, respectivamente. No entanto, uma vez que 

os campos fantasmas são campos livres, temos que A^^j vem a ser um propagador 

livre, que no espaço dos momentos é dado por 

-ÇM2+Í0 ■ 

Assim, a identidade de Ward (4.61) pode ser reescrita, no espaço dos momentos, 

como 

• (‘‘•63) 

^Comparando as transformações BRST e F[A,9] dados aqui com aqueles dados no capítulo 1 

percebemos que há uma diferença com relação a potências de M. Isto se deve ao reescalonamento 

que fizemos no campo de Stückelberg (ver comentários após (1.40)). 
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Nosso objetivo ao derivar esta identidade de Ward é que ela será útil na derivação 

da identidade de Ward para a função de vértice. Por consistência, devemos notar 

que a expressão que obtivemos para o propagador bosônico corrigido pelas inserções 

de polarização do vácuo em segunda ordem, equação (3.53), está de acordo com a 

identidade de Ward (4.63). 

Vamos agora considerar 0[y) = 'ip{y)xp{z) em (4.59), de modo a obter a identi- 

dade de Ward para o vértice. Então, notando que a variação BRST de 0{y) é dada, 

neste caso, por 

Sb = -ie7p{y)c{y)íp{z) - ieip{y)i;{z)c{z) , 

temos 

d^{0\T{Af,{x)^{y)^{z)}\0) = -e^ {{0\T{i){y)'^(z)c{y)c{x)}\0) 

(4.64) 

- {0\T{i;{y)i;{z)c{z)c{x)}\0)] , 

e, sendo 

(0ir{V’(x)?/)(y)}|0) = íS'f{x - y) ; 

{0\T{Af^{x)i){y)ip{z)}\0) = V^{x,y,z) , 

(4.65) 

onde S'f indica o propagador fermiônico completo e V^{x,y, z) é a, função de Green 

para o vértice, temos 

y, z) = e^S'p{y - z) ^ghiy - - ^gh(z - x) (4.66) 

Esta expressão pode ser reescrita no espaço dos momentos tomando a transformada 

de Fourier e usando a convenção 

(27r)“í<’> ÍSPí) •■■,?») = j éxi ■ ■ ■ - ■ ■ ,xk) ■ 

(4.67) 

Com isto, a identidade de Ward (4.66) pode ser escrita no espaço dos momentos da 

seguinte forma: 

ÍQ'"yn{Q,p',P) = {-5f(p' -q)~ S'fÍP + q)} . (4.68) 

onde p' = p + q. Então, usando (4.62) a equação acima pode ser reescrita como 

Q"'yt^{Q,P',P) = —^r^]^{^'FÍP'-Q)-S'F{p + q)} ■ (4.69) 

63 



Para obter a identidade de Ward acima numa forma mais útil, é conveniente 

introduzir a função de Green amputada para o vértice, P^, a qual esta relacionada 

à V^{q,p',p) através da expressão 

v^{k,p',p) = eV^‘'{k)S'Ap')r.{p',p)S'M . (4.70) 

Então, substituindo (4.70) em (4.69) e usando a identidade de Ward (4.63), temos 

qn^^{p',p) = S'p{p + q)~^ - SfÍp)-^ . (4.71) 

Mas, a função de Green amputada pode ser escrita como T^{p',p) = 7^ + i\^{p',p), 

onde a função de vértice representa as correções radiativas. Logo, usando a 

expressão explícita para o propagador fermiônico completo, temos 

q^k^{p',p) = t{p + q)-t{p) , (4.72) 

e, no limite de momento transferido nulo (ç^ —)• 0), obtemos a relação 

ÂnP.P) = ÍT-Ê(p) . (4.73) 

Ao derivarmos a identidade de Ward acima notamos a vantagem do gauge R^, 

pois é crucial neste procedimento que os campos fantasmas tenham a mesma massa 

que .4^ e 9. A razão para isto, do mesmo modo que em QED massiva [38], é que a 

soma dos termos de massa destes três campos é invariante BRST (a menos de um 

termo de superfície). 

Usando (4.73) e a expressão explícita para a auto-energia do férmion, equação 

(4.50), obtemos a função de vértice para o MTG no limite de momento transferido 

nulo: 

- M ^ í 
yW(p,p) = + 2C2P^ + I T {p^ + m^) 1 + — 4m^ 

X In 

+ p^ 

i-Vg 

i + i/S 

y 1 + 

- 2(2m^ + f 1 + I 
V 0,^ y/p^^a^ V 3c 3a2 

2>rrr 
1 - 

m 
^)ln 
P 

1 - \ K 
+ 

a 

p^ — 

X ( (p^ + vn?) 1 + 
m' 

p2 ) 
- 4m" - 

I + V^ 

4m^ {vn? — 

\/o?p^ P^ 

(Ap^ 2o? 

\/à^p^ y Zo? p2 _ q2 
(4.74) 
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2 fl/A-2 e^M 

+ Pfj. 

IGTTy/^ 
^ inQ{p^ - a^) <1 7^ 

Zvn? 

(p2 + m^) 1 + ^^^\-,rrÀ 
P ) 

+Mi + pZ 1 - 
m‘ 

p2 j 

X |2mÇA/^ + 

Esta expressão pode ser simplificada notando que ela aparece entre os espinores de 

Dirac ü{p) e u{^, que satisfazem as equações 

{p^ + m?) 1 + 
mr — 

p2 — 4m? 

u{p){i)-m) = 0 ; 

(j) — m)u{p} = 0 . 

Então, podemos obter a função de vértice na camada de massa. Para isto, é im- 

portante que consideremos um gauge geral ^ 7^ 0, de modo que a auto-energia 

(e, conseqüentemente, a expressão (4.74)) não tenha divergências no infravermelho. 

Deste modo, os dois últimos termos em (4.74) não contribuem e obtemos 

(p, p) |p2— + 2C2P^ -b 
SirmJVP 

(2m^ + + ("^“ ~ ( 1 + TTT 

2(m^-eM^)Y 

a )_ 
(4.75) 

De fato, neste gauge geral Ç 7^ 0 a função de vértice não sofre de dificuldades 

no infravermelho porque o bóson de gauge é massivo, o que também assegura a 

existência do limite adiabático para o correspondente elemento de matriz 5. 

Neste ponto, podemos retomar a questão das constantes indeterminadas que 

aparecem na solução para as distribuições de auto-energia e vértice. Ainda que 

tenhamos obtido a função de vértice pela identidade de Ward, é fácil notar que 

se a tivéssemos construído pelo procedimento usual de BEG teriamos obtido como 

solução geral 

Ã^{p, p) = Â^{p, p) + C7^ -b C'p^ (4.76) 
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onde indica a solução obtida usando a solução central para efetuar a bipartição. 

As constantes finitas C e C são uma conseqüência da ordem singular Wy = 1 do 

vértice, de acordo com (2.47). Então, devido a identidade de Ward, temos 

C = Ci, C = 2C2. (4.77) 

Deste modo, as mesmas constantes estariam presentes na solução final. 

Aqui, ao contrário do que ocorre no cálculo do tensor de polarização do vácuo, 

não temos como lançar mão de considerações de simetria para eliminar as constantes 

indeterminadas Ci e C2- No entanto, pode-se impor uma condição de normalização 

sobre a função de vértice. Por exemplo, poderiamos impor uma condição preser- 

vando a solução central em p = 0, isto é, A^(0,0) = 0. Devido a identidade de Ward 

(4.73), esta condição é equivalente a 

A. 
dp. 

S(p) = 0, 
p=0 

(4.78) 

e fixa Cl = 0, mas a constante C2 permanece indeterminada. 

O fato importante aqui é que a impossibilidade de determinar todas as cons- 

tantes, usando condições físicas outras que causalidade, é uma conseqüência da 

não renormalizabilidade do modelo. Assim, a constante indeterminada C2 deve ser 

considerada como um parâmetro livre do modelo efetivo. 

Para finalizar, vamos considerar o limite Ç —> (X), para fazer a conexão com 0 

modelo de Thirring original. Este limite deve ser feito com M finito, isto é, tomamos 

e <C Então, temos 

^(p) lç->oo C2Íp‘^ - m?) , (4.79) 

A'"(P,P)|Ç^OO (4.80) 

Devemos notar que, no limite do gauge unitário, 0 gráfico de auto-energia do férmion 

corresponde ao gráfico “girino” e a correção de vértice corresponde ao diagrama 

“peixe” com momento entrando ç = 0. Nos tratamentos usuais de teorias de campos 

estes diagramas são dados por constantes divergentes. Então, desde que no método 

causai nunca temos divergências, é razoável esperar que o resultado deste limite 

dependa somente das constantes indeterminadas. 
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Considerações Finais 

Xeste trabalho investigamos a estrutura perturbativa do modelo de Thirring 

como uma teoria de gauge (MTG), em (2+1) dimensões, até segunda ordem. Isto 

foi feito usando o método causai de Bogoliubov, Epstein e Glaser (BEG) para a 

construção da matriz S de forma indutiva. A razão para empregarmos este método 

no tratamento do MTG é que ele permite o cálculo de todas as quantidades de 

modo não ambíguo, pois nunca surgem divergências ultravioleta, proporcionando 

um método alternativo para o tratamento de teorias não renormalizáveis. 

Assim, usando o método causai, demonstramos a não-renormalizabilidade do 

MTG e obtivemos uma expressão explícita para a ordem singular máxima u> de 

cada diagrama do modelo, equação (2.47). Uma vez que a ordem singular está 

relacionada com o grau do polinômio nos momentos que surge na solução geral de 

um diagrama (para a; > 0), a expressão obtida nos permitiu inferir que o número 

de constantes indeterminadas aumenta indefinidamente com a ordem na teoria de 

perturbação para um modelo não renormalizável. 

Posteriormente, calculamos o tensor de polarização do vácuo e verificamos que, 

apesar da não-renormalizabilidade do modelo, foi possível determinar todas as cons- 

tantes arbitrárias aparecendo em sua solução geral. Isto não é surpreendente se 

notarmos que o tensor de polarização tem a mesma forma para o MTG e para a 

QED3, esta última uma teoria super-renormalizável. 

Ao calcularmos o tensor de polarização do vácuo para o MTG verificamos que 

ocorre a indução de um termo de Chern-Simons. Em tratamentos usuais de teorias 

de campos o coeficiente do termo de Chern-Simons é, geralmente, dependente do 

esquema de regularização usado para tornar a teoria finita. A vantagem de uti- 

lizarmos o método causai é que sempre lidamos com distribuições bem definidas, de 

modo que tais ambigüidades não existem. O caráter singular do tensor de polariza- 

ção somente se reflete nas constantes arbitrárias aparecendo na solução final e que 

não podem ser determinadas por causalidade, mas que são determinadas de modo a 

preservar as simetrias do modelo. Assim, 0 método causai nos permite determinar 

univocamente a massa topológica, dada por (3.44). Na seqüência vimos que este é 

o valor exato da massa topológica, de acordo com o teorema de Coleman-Hill,. 
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Consideramos, também, o propagador do bóson de gauge do MTG corrigido pelas 

inserções próprias de polarização do vácuo e verificamos que estas inserções geraram 

um pólo no propagador. Este fato indica que o bóson de gauge, que em nível árvore é 

um campo auxiliar, torna-se dinâmico devido às correções radiativas. Interpretando 

este bóson como um estado ligado de férmion e anti-férmion, obtivemos a massa 

deste estado ligado nos casos extremos de acoplamento muito fraco e muito forte, 

os valores obtidos {Mgt, = 2m e Mgb = 0, respectivamente) estando de acordo com 

o esperado. 

Uma característica do método causai de BEG é que os diagramas de vácuo não 

podem ser omitidos e, geralmente, apresentam as divergências mais severas na região 

do infravermelho. Assim, é importante verificar se a teoria sob consideração possui 

limite adiabático bem definido, pois caso contrário o vácuo é instável e a teoria não 

faz sentido. No capítulo 3 demonstramos que para o MTG o limite adiabático é bem 

definido. 

Adicionalmente, calculamos a auto-energia do férmion e derivamos uma identi- 

dade de Ward relacionando a auto-energia à função de vértice. Então, verificamos 

que, em um gauge geral ^ 0, é possível obter a função de vértice na camada de 

massa (para momento transferido nulo). Aqui, vimos que não foi possível determinar 

todas as constantes aparecendo na solução geral da auto-energia e do vértice. 

As constantes que surgem no método causai, e que não são determinadas por 

considerações de simetria, devem ser incorporadas como parâmetros livres do modelo 

efetivo analisado. Uma possibilidade é reparametrizar tais constantes usando uma 

escala de massa A característica da teoria (por exemplo, uma constante adimensional 

poderia ser parametrizada por c = In onde m é uma massa da teoria). Temos, 

então, uma situação parecida com a usual. As diferenças importantes são: i) no 

método causai a introdução de tal escala A não acarreta as dificuldades usuais; ii) 

o significado é diferente, isto é, A é uma escala que caracteriza a teoria e não um 

cut-off. 

O tratamento usual de modelos efetivos como o considerado aqui possui o in- 

conveniente de ser, em geral, fortemente dependente do esquema de regularização 

usado e até mesmo do estágio em que a regularização é aplicada (ver referências 

[1, 2] para o modelo de Nambu e Jona-Lasinio). Esta é uma situação claramente 

insatisfatória, pois com um mesmo modelo podemos ter resultados contraditórios ou 

ainda resultados não físicos (por exemplo, limiares complexos não físicos associados 

ao cut-off). Conforme vimos, o método causai fornece um alternativa ao tratamento 

usual que não sofre das dificuldades acima. Neste sentido, seria interessante consi- 

derar a aplicação deste método a um modelo com fenomenologia associada, tal como 

o modelo de Nambu e Jona-Lasinio. 
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Um problema importante, dando continuidade a este trabalho, é considerar a 

extensão do método causai para temperatura finita, onde persistem problemas rela- 

cionados à regularização e, além disto, ainda há muito a ser considerado à respeito de 

modelos que induzem termos de Chern-Simons [39]. Outra possibilidade é a adapta- 

ção do método causai ao contexto da expansão l/N, onde se sabe que o modelo de 

Thirring é renormalizável [9]. 
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Apêndice A 

Notação 

A.l (1+1) dimensões 

Em (1+1) dimensões adotamos a métrica 

= 1 . 

A representação adotada para as matrizes 7 é dada por 

7O = cTi ; 7^ = ; 7^ = 75 = 7+1 = , 

onde (7* indica as matrizes de Pauli: 

A álgebra satisfeita pelas matrizes 7 é 

{7', 7"} = 2s'"; 

[7',7l = ; 

, 

onde é o tensor anti-simétrico de Levi-Civita 

; eoi = = 1 , 01 

que satisfaz as relações 

  yn • 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.õ) 

(A.6) 
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A.2 (2+1) dimensões 

A álgebra para as matrizes 7 em (2+1) dimensões é realizada usando as matrizes 

de Pauli 

7° = + , 7^ = , 7^ - . (A.7) 

As matrizes 7 satisfazem a seguinte álgebra 

{7^ 7“} = , YY = S"" - fe'“'7í , 

onde 0 tensor métrico é dado por 

/ 1 0 0 \ 

9iíi> 0-10 

VO 0 -ly 

e é o tensor totalmente anti-simétrico de Levi-Civita, satisfazendo 

(A.8) 

(A.9) 

e”'" = 1 i 

= glgl - gU: ; 

c- p- pua   3! . 

(A.IO) 

Algumas identidades de traço úteis são: 

Tr 7^^ = 0 ; 

Tr YY = ; 

Tr YYl^ = ; 

Tr yYYY = - g^^g''^ + g^’^gY ■ 

(A.ll) 



Apêndice B 

Funções Singulares 

Na construção das distribuições causais Dn, equação (2.16), é necessário usar 

as funções singulares e D^^\x). Neste apêndice vamos considerar a forma 

explícita destas distribuições em (2+1) dimensões e algumas de suas propriedades. 

As funções são as funções de anticomutação fermiõnicas em instantes dife- 

rentes: 

-^2) = , (B.l) 

v‘56a^(3^2-a:i) = {^i~^(a:i),'0Í+^(x2)} . (B.2) 

Expandindo o campo fermiônico em componentes de Fourier e calculando os an- 

ticomutadores acima obtemos a expressão explícita para S^^\x), dada pela trans- 

formada de Fourier distribucional [25, 40] 

S^^\x) = ±j^ [ ék {Ijí + m)e{±ko)5{}^ - , (B.3) 
J 

e que pode ser escrita como 

S^"^\x) = + m)D^'^\x) , (B.4) 

onde (x) indica as distribuições escalares 

D^^Hx) = I d?k Q{±ko)5{e - m2)e-*^'^ . (B.õ) 

Além de S^^\x), outra distribuição que desempenha um papel importante no 

método causai é o anticomutador total do campo de Dirac S{x), dado pela soma de 

S^'^\x) e S^~\x)\ 

5(:r) S^^\x) + S^-\x) 

-- (i^ + m)D{x), 

(B.6) 
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onde D{x) é a distribuição de Pauli-Jordan 3-dimensional (com massa m) 

D{x) = D^+\x) + D^-\x) 

= j d^k sgn(A:o)5(A:^ - . 

A distribuição de Pauli-Jordan tem suporte causai 

(B.7) 

Supp D = {x G M I > 0} , (B.8) 

isto é, D{x) se anula para x do tipo espaço. Desde que S{x) pode ser escrita 

em termos da distribuição de Pauli-Jordan, de acordo com (B.6), temos que S{x) 

também tem suporte causai. 

Devido às suas propriedades de suporte, a distribuição de Pauli-Jordan pode ser 

decomposta em distribuições retardada e avançada segundo [24] 

D{x) = D^^\x) - D^^x) , (B.9) 

onde [40] 

D^^\x) = 

D^^x) = 

Do mesmo modo, temos as distribuições retardada e avançada para o campo 

espinorial 

/ 

/ 

(fik e 

(27t)^ rm? — — ikoO 

d?k 

(27t)^ w? — k!^ + i/ioO 

(B.IO) 

(B.ll) 

S^^\x) = + ; 

= {i^ + m)D^''{x) . 

(B.12) 

Os propagadores de Feynman para o campo escalar e espinorial podem ser es- 

critos em termos das distribuições consideradas acima como 

Df{x) = D^^\x) - D^-\x) = D^\x) + D^+\x) ; 

(B.13) 

onde o sinal global na expressão para Sp-, em comparação com Dp, é para estar de 

acordo com as convenções geralmente adotadas. A forma explícita dos propagadores 
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de Fevnman é 

Dp(x) = I 

Sf(x) = j 

(27t)^ 

(27t)^ k'^ — rrk + 

d^k ^ + m 

-ik-x . (B.14) 

(B.15) 

A determinação das funções singulares associadas ao bóson de gauge do 

MTG, não pode ser feita diretamente calculando os comutadores, pois os campos 

A/j, são campos compostos. Assim, o procedimento que seguiremos aqui é o inverso 

daquele descrito acima, isto é, partiremos das funções e e, usando as 

equações análogas a (B.13), obteremos 

Rigorosamente, não podemos falar de propagador do campo A^, pois este não sa- 

tisfaz uma equação de onda. No entanto, podemos atribuir um “propagador” formal 

ao campo pela inversão do correspondente termo quadrático na Lagrangiana. 

Assim, da Lagrangiana do MTG, equação (1.40), temos que o inverso do termo 

quadrático em é dado por 

o contorno que consideramos para tratar os pólos do segundo termo na expressão 

acima. Aqui, vamos considerar três possíveis modos de contornar estes pólos, cor- 

respondentes aos propagadores de Feynman, retardado e avançado usuais: 

com 

Contudo, deve-se notar que não está definida enquanto não determinarmos 

(B.16) 

e 

(B.17) 

(B.18) 

Então, podemos obter a distribuição 

= d’;:(x)-dihx) 

(B.19) 
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que tem suporte causai, pois pode ser escrita em termos da função de Pauli-Jordan 

em (2+1) dimensões: 

~ > (B.20) 

onde o índice \AM em D{x) indica a massa associada a esta distribuição. 

Tendo as distribuições (B.16)-(B.18), podemos usar as definições análogas à 

(B.13) para obter 

DÍV(x) = D^^ix) - Dllix) ; 

DlrAA = Dltix) - D^^Ax) . 

(B.21) 

de onde temos que as funções singulares para o bóson de gauge do MTG são 

dadas por 

- ÇA-/")«(±*o)e-“ ' . (B.22) 
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Apêndice C 

O Teorema de Coleman-Hill 

0 teorema de Coleman-Hill [18] diz que a correção de um loop fermiônico ao 

propagador do bóson de gauge dá a contribuição exata para o termo de massa 

topológica. Tendo em vista a importância deste teorema para o problema que es- 

tamos tratando, neste apêndice vamos reproduzir o argumento de Coleman-Hill no 

contexto da teoria de distribuições. 

Conforme vimos, em duas dimensões espaciais considerações de invariância de 

Lorentz e invariância de gauge admitem dois fatores de forma para o tensor de 

polarização do vácuo 

= (g^''k^ - Pr) (C.l) 

onde redefinimos a expressão para o Y[^''{k) de forma ligeiramente diferente daquela 

usada no texto. 

A massa topológica é dada por H^^^(O), o coeficiente do termo de ordem k na ex- 

pansão em série de potências do tensor de polarização. Assim, para demonstrar que 

as correções radiativas de ordem superior em teoria de perturbação não contribuem 

para a massa topológica basta demonstrar que estas correções são de ordem O(k^). 

Seguindo [18], vamos considerar um “vértice efetivo” de n bósons de gauge, dado 

pela soma de todos os gráficos consistindo de um único loop fermiônico com n bósons 

externos afixados. Associado a este vértice temos uma distribuição numérica regular 

ifj.1... ... ,kn), uma função generalizada dos n -1 momentos independentes. Por 

convenção, vamos considerar os primeiros n — 1 momentos como independentes e 

kn fixo pela conservação de momento. Iremos considerar a distribuição no 

espaço Euclidiano, onde ela é uma função generalizada analítica dos momentos. 

Assim, a invariância de gauge exige 

ki"ini...t,n{ki,...,kn) = 0. (C.2) 

Diferenciando com respeito a k'( e tomando k^ = 0, obtemos 

= 0, (C.3) 
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ou, expandindo em série de Taylor (lembre que é uma distribuição regular) 

= 0{ki). (C.4) 

Do mesmo modo, é também 0{k2). Logo, desde que para n > 2 os momentos 

kl e k2 são variáveis independentes, temos que 

ii^,...t^n{ki,...,kr,) = 0{kik2), n>2. (C.5) 

Isto mostra que deve ser, pelo menos, 0{ki... kn-i)- Contudo, fazendo uso 

da estrutura de Lorentz, verifica-se que é de ordem 0{ki... kn) para n > 2 

(ver o apêndice da ref. [18]). 

Então, a partir dos “vértices efetivos” de n bósons, podemos construir um gráfico 

de auto-energia do bóson simplesmente contraindo linhas bosônicas (isto implica em 

contrair as distribuições com a função singular D^^\k), equação (B.22)). 

Devemos contrair todas as linhas bosônicas dos “vértices efetivos” exceto duas, que 

são as linhas externas do gráfico de auto-energia e carregam os momentos k e —k. 

Com este procedimento temos as seguintes possibilidades: 

i) as duas linhas externas estão afixadas a loops distintos; 

ii) as duas linhas externas estão afixadas ao mesmo loop, mas este tem mais que 

duas linhas bosônicas; 

Ui) as duas linhas externas estão afixadas ao mesmo loop e este tem somente duas 

linhas bosônicas; 

No entanto, no caso (i) o gráfico total é O(k^) devido à (C.4) e, portanto, não pode 

contribuir para a massa topológica, pois esta é dada pelo coeficiente de um termo de 

ordem k. Do mesmo modo, no caso (ii) o gráfico é 0{k‘^) devido à (C.õ) e também 

não pode contribuir para 11(0). Somente no caso [üi) podemos ter uma contribuição 

não nula de ordem A:, mas esta é justamente a contribuição de um loop fermiônico 

em segunda ordem na teoria de perturbação . Assim, as correções radiativas de 

ordem mais alta em teoria de pertubação não contribuem para a massa topológica. 

Uma condição para que o teorema de Coleman-Hill seja satisfeito é que não 

existam partículas de massa nula na teoria, pois caso contrário as divergências no 

infravermelho invalidam a prova do teorema [41]. Devemos observar que, em um 

gauge arbitrário ^ ^ 0, o bóson gauge do MTG é massivo e o modelo não padece 

de dificuldades devido às divergências no infravermelho. Deste modo, o teorema de 

Coleman-Hill se aplica ao MTG em um gauge geral. 
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Como observação final, devemos notar que a invariância de gauge exerce um 

papel central na derivação deste teorema e, novamente, podemos perceber a im- 

portância da construção considerada no capítulo 1, que permite considerar o modelo 

de Thirring como sendo uma teoria de gauge. 
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