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1 Introduction

Measurements in High Energy Physics (HEP) rely on determining the compatibility of observed collision
events with theoretical predictions. The relationship between them is often formalised in a statistical model
f (x |φ) describing the probability of data x given model parameters φ. Given observed data, the likelihood
L(φ) then serves as the basis to test hypotheses on the parameters φ. For measurements based on binned
data (histograms), the HistFactory [1] family of statistical models has been widely used for likelihood
construction in both Standard Model (SM) measurements (e.g. Ref. [2]) as well as searches for new physics
(e.g. Ref. [3]). In this note, a declarative, plain-text format for describing HistFactory-based likelihoods
is presented that is targeted for reinterpretation and long-term preservation in analysis data repositories
such as HEPData [4].

This note introduces an alternative form of the HistFactory specification based on the ubiquitous
plain-text JSON format and its schema-language JSON Schema. Described in more detail in Section 2,
this schema fully specifies both structure and necessary constrained data in a single document and thus is
implementation independent. Section 3 demonstrates that the JSON documents describing the statistical
model of analyses are sufficient to reproduce key results of the originally published analyses such as
best-fit event yields, upper limits on parameters and exclusion contours. The results are reproduced in
two independent implementations of the HistFactory model; one based on the ROOT framework and one
developed within the scientific Python ecosystem. Finally, Section 4 shows how these preserved likelihoods
can be used to derive new results through reinterpretation.

1.1 The HistFactory Formalism

Statistical models described using HistFactory center around the simultaneous measurement of disjoint
binned distributions (channels) observed as event counts n. For each channel, the overall expected event
rate1 is the sum over a number of physics processes (samples). The sample rates may be subject to
parametrised variations, both to express the effect of free parameters η and to account for systematic
uncertainties as a function of constrained parameters χ. The degree to which the latter can cause a deviation
of the expected event rates from the nominal rates is limited by constraint terms. In a frequentist framework
these constraint terms can be viewed as auxiliary measurements with additional global observable data a,
which paired with the channel data n completes the observation x = (n, a). In addition to the partition of
the full parameter set into free and constrained parameters φ = (η, χ), a separate partition φ = (ψ, θ) will
be useful in the context of hypothesis testing, where a subset of the parameters are declared parameters of
interest (POI) ψ and the remaining ones as nuisance parameters θ. Often the signal strength of a process,
the ratio of its cross section to a particular reference cross section such as that expected from the Standard
Model or a given BSM scenario, is part of the parameters of interest ψ and the set of unconstrained, free
parameters η.

f (x |φ) = f (x |
free
↓
η, χ
↑

constrained

) = f (x |

parameters of interest
↓

ψ, θ
↑

nuisance parameters

) (1)

1 Here rate refers to the number of events expected to be observed within a given data-taking interval defined through its integrated
luminosity. It often appears as the input parameter to the Poisson distribution, hence the name “rate”.
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Thus, the overall structure of a HistFactory probability model is a product of the analysis-specific model
term describing the measurements of the channels and the analysis-independent set of constraint terms:

f (n, a | η, χ) =
∏

c∈ channels

∏
b∈ binsc

Pois
(
ncb �� νcb

(
η, χ

))
︸                                             ︷︷                                             ︸

Simultaneous measurement
of multiple channels

∏
χ∈χ

cχ (aχ | χ)︸            ︷︷            ︸
constraint terms

for “auxiliary measurements”

, (2)

where within a certain integrated luminosity one observes ncb events given the expected rate of events
νcb (η, χ) as a function of unconstrained parameters η and constrained parameters χ. The latter has
corresponding one-dimensional constraint terms cχ (aχ | χ) with auxiliary data aχ constraining the
parameter χ. The expected event rates νcb are defined as

νcb (φ) =
∑

s∈ samples
νscb

(
η, χ

)
=

∑
s∈ samples

*
,

∏
κ∈ κ

κscb
(
η, χ

)+
-︸                ︷︷                ︸

multiplicative modifiers

(
ν0
scb

(
η, χ

)
+

∑
∆∈∆

∆scb
(
η, χ

)
︸             ︷︷             ︸
additive modifiers

)
. (3)

As shown in Equation (3), the total rates are the sum over sample rates νscb, each determined from a
constant nominal rate ν0

scb
and a set of multiplicative and additive rate modifiers denoted κ (φ) and ∆(φ).

These modifiers are functions of model parameters, often a single parameter.

As summarised in Table 1, modifiers implementing uncertainties are paired with a corresponding default
constraint term on the parameter limiting the rate modification. In some cases, the available modifiers
only affect the total number of expected events of a sample within a given channel, i.e. only change
its normalisation, while holding the distribution of events across the bins of a channel, i.e. its “shape”,
invariant. Alternatively, modifiers may change the sample shapes. For the case of shape modifications,
HistFactory supports correlated and uncorrelated bin-by-bin modifications. In the former, a single
nuisance parameter affects the expected sample rates within the bins of a given channel, while the latter
introduces one nuisance parameter for each bin, each with its own constraint term. For the correlated
shape and normalisation uncertainties, HistFactory makes use of interpolating functions, fp (α) and
gp (α), constructed from a small number of evaluations of the expected rate at fixed values of the nuisance
parameter2 α. For the remaining modifiers, the parameter directly affects the rate.

Given the likelihood L(φ), constructed from observed data in all channels and the implied auxiliary data,
measurements in the form of point and interval estimates can be defined. The majority of the parameters
are nuisance parameters— parameters that are not the main target of the measurement but are necessary to
correctly model the data. A small subset of the unconstrained parameters may be declared as parameters of
interest for which measurement hypothesis tests are performed, e.g. profile likelihood methods [5]. Table 2
provides a summary of all the notation introduced in this note.

1.2 Declarative Formats

While flexible enough to describe a wide range of LHC measurements, the design of the HistFactory
specification is sufficiently simple to admit a declarative format that fully encodes the statistical model of
2 This is usually constructed from the nominal rate and measurements in the event rate at α = ±1, where the value of the modifier
at α = ±1 must be provided and the value at α = 0 corresponds to the corresponding identity operation of the modifier, i.e.
fp (α = 0) = 0 and gp (α = 0) = 1 for additive and multiplicative modifiers respectively. See Section 4.1 in [1].

3



Description Modification Constraint Term cχ Input

co
ns
tra

in
ed

Uncorrelated Shape κscb (γb ) = γb
∏

b Pois
(
rb = σ−2

b
��� ρb = σ

−2
b
γb

)
σb

Correlated Shape ∆scb (α) = fp
(
α

���∆scb,α=−1,∆scb,α=1
)

Gaus (a = 0| α, σ = 1) ∆scb,α=±1
Normalisation Unc. κscb (α) = gp

(
α

��� κscb,α=−1, κscb,α=1
)

Gaus (a = 0| α, σ = 1) κscb,α=±1
MC Stat. Uncertainty κscb (γb ) = γb

∏
b Gaus

(
aγb = 1��� γb, δb

)
δ2
b
=

∑
s δ

2
sb

Luminosity κscb (λ) = λ Gaus
(
l = λ0 | λ, σλ

)
λ0, σλ

fr
ee Normalisation κscb (µb ) = µb

Data-driven Shape κscb (γb ) = γb

Table 1: Rate modifications defined in HistFactory for bin b, sample s, channel c. Each modifier is represented by
a parameter φ ∈ {γ, α, λ, µ}. By convention bin-wise parameters are denoted with γ and interpolation parameters
with α. The luminosity λ and scale factors µ affect all bins equally. For constrained modifiers, the implied constraint
term is given as well as the necessary input data required to construct it. σb corresponds to the relative uncertainty
of the event rate, whereas δb is the event rate uncertainty in the sample relative to the total event rate νb =

∑
s ν

0
sb
.

Symbol Name

f (x |φ) model
L(φ) likelihood

data

x = {n, a} full dataset (including auxiliary data)
n channel data (or event counts)
a auxiliary data

ν(φ) calculated event rates

parameters

φ = {η, χ} = {ψ, θ} all parameters
η free parameters
χ constrained parameters
ψ parameters of interest
θ nuisance parameters

rate modifiers κ (φ) multiplicative rate modifier
∆(φ) additive rate modifiers

cχ (aχ | χ) constraint term for constrained parameter χ
σχ relative uncertainty in the constrained parameter

Table 2: Summary of notation introduced in this paper. Many of these will be subscripted to indicate that they affect
bin b of sample s of channel c. Bolded symbols indicate that they represent a set.

the analysis. This format defines the channels, all associated samples, their parameterised rate modifiers
and implied constraint terms as well as the measurements. Additionally, the format represents the
mathematical model, leaving the implementation of the likelihood maximisation to be analysis-dependent
and/or language-dependent. Originally XML was chosen as a specification language to define the structure
of the model while introducing a dependence on ROOT to encode the nominal rates and required input data
of the constraint terms [1]. Using this specification, a model can be constructed and evaluated within the
RooFit [6] framework.
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2 JSON Schema for HistFactory

The structure of the JSON specification of HistFactory models follows closely the original XML-based
specification [1]. This is described below with the channel specification, available modifier definitions,
definition of the observed data, and specification of the measurements to perform as part of a statistical
fit.

2.1 Workspace

{
"$schema": "http://json-schema.org/draft-06/schema#",
"$id": "https://diana-hep.org/pyhf/schemas/1.0.0/workspace.json",
"type": "object",
"properties": {

"channels": { "type": "array", "items": {"$ref": "defs.json#/definitions/channel"} },
"measurements": { "type": "array", "items": {"$ref": "defs.json#/definitions/measurement"} },
"observations": { "type": "array", "items": {"$ref": "defs.json#/definitions/observation" } },
"version": { "const": "1.0.0" }

},
"additionalProperties": false,
"required": ["channels", "measurements", "observations", "version"]

}

Listing 1: [7] The workspace schema specifies three top-level properties.

The overall document in Listing 1 describes a workspace, which includes

channels The channels in the model, which include a description of the samples within each
channel and their possible parametrised modifiers.

measurements A set of measurements, which define among others the parameters of interest for a
given statistical analysis objective.

observations The observed data, with which a likelihood can be constructed from the model.

A workspace consists of the channels and one set of observed data, but can include multiple measurements.
If provided a JSON file, one can quickly check that it conforms to the provided workspace specification as
in Listing 2.

1 import json, requests, jsonschema
2 workspace = json.load(open(’/path/to/analysis_workspace.json’))
3 # if no exception is raised, it found and parsed the schema
4 schema = requests.get(’https://diana-hep.org/pyhf/schemas/1.0.0/workspace.json’).json()
5 # If no exception is raised by validate(), the instance is valid.
6 jsonschema.validate(instance=workspace, schema=schema)

Listing 2: Python code demonstrating how an analysis workspace file can be validated against the workspace schema.

2.2 Channel

The Channel specification consists of a list of channel descriptions. Each channel, an analysis region
encompassing one or more measurement bins, consists of a name field and a samples field (see Listing 3),
which holds a list of sample definitions (see Listing 4). Each sample definition in turn has a name field,
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"channel": {
"type": "object",
"properties": {

"name": { "type": "string" },
"samples": { "type": "array", "items": {"$ref": "#/definitions/sample"}, "minItems": 1 }

},
"required": ["name", "samples"],
"additionalProperties": false

},

Listing 3: [8] A channel is defined by a channel name and a list of samples.

a data field for the nominal event rates for all bins in the channel, and a modifiers field of the list of
modifiers for the sample.

"sample": {
"type": "object",
"properties": {

"name": { "type": "string" },
"data": { "type": "array", "items": {"type": "number"}, "minItems": 1 },
"modifiers": {

"type": "array",
"items": {

"anyOf": [
{ "$ref": "#/definitions/modifier/histosys" },
{ "$ref": "#/definitions/modifier/lumi" },
{ "$ref": "#/definitions/modifier/normfactor" },
{ "$ref": "#/definitions/modifier/normsys" },
{ "$ref": "#/definitions/modifier/shapefactor" },
{ "$ref": "#/definitions/modifier/shapesys" },
{ "$ref": "#/definitions/modifier/staterror" }

]
}

}
},
"required": ["name", "data", "modifiers"],
"additionalProperties": false

},

Listing 4: [8] A sample is defined by a sample name, the sample event rate, and a list of modifiers.

2.3 Modifiers

The modifiers that are applicable for a given sample are encoded as a list of JSON objects with three fields.
A name field, a type field denoting the class of the modifier, and a data field which provides the necessary
input data as specified in Table 1.

Based on the declared modifiers, the set of parameters and their constraint terms are derived implicitly as
each type of modifier unambiguously defines the constraint terms it requires. Correlated shape modifiers
and normalisation uncertainties have compatible constraint terms and thus modifiers can be declared that
share parameters by re-using the same name3 for multiple modifiers. That is, a variation of a single
parameter can cause a change in expected sample rates due to both shape and normalisation variations.

The structure of each modifier type is reviewed below.

3 The name of a modifier specifies the associated parameter set such that modifiers with the same name share parameter sets.
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2.3.1 Uncorrelated Shape

The absolute event rate uncertainty for each bin of the sample is stored as an array of floats. The relative
uncertainties σb for each bin, which are used to construct the constraint term, can be computed from the
absolute uncertainties using the nominal sample data yield. An example is shown in Listing 5.

{ "name": "mod_name", "type": "shapesys", "data": [1.0, 1.5, 2.0] }

Listing 5: An example of an uncorrelated shape modifier with three absolute uncertainty terms for a 3-bin channel.
The data represent the absolute uncertainty for each bin of the sample.

2.3.2 Correlated Shape

This modifier represents a single source of uncertainty which has a different per-bin additive factor ∆(α)
on the various bins of a sample, hence a correlated sample shape. To implement an interpolation between
sample distribution shapes, the distributions with a “downward variation”(“lo”) associated with ∆(α = −1)
and an “upward variation” (“hi”) associated with ∆(α = +1) are provided as arrays of floats. An example
is shown in Listing 6.

{ "name": "mod_name", "type": "histosys", "data": {"hi_data": [20,15], "lo_data": [10, 10]} }

Listing 6: An example of a correlated shape modifier with absolute shape variations for a 2-bin channel. The
hi_data(lo_data) are the expected event rates for the upward(downward) variations for each bin of the sample.

2.3.3 Normalisation Uncertainty

The normalisation uncertainty modifies the sample rate by an overall factor κ(α) constructed as the
interpolation between downward (“lo”) and upward (“hi”) as well as the nominal setting, i.e. κ(−1) = κα=−1,
κ(0) = 1 and κ(+1) = κα=+1. In the modifier definition, κα=+1 and κα=−1 are stored as floats. An example
is shown in Listing 7.

{ "name": "mod_name", "type": "normsys", "data": {"hi": 1.1, "lo": 0.9} }

Listing 7: An example of a normalisation uncertainty modifier with scale factors recorded for the up/down variations
of an n-bin channel. The data represent the absolute upward/downward variations in uncertainty of the overall
normalisation for all bins of the sample.

2.3.4 Monte Carlo (MC) Statistical Uncertainty

As the sample counts are often derived from MC datasets, they necessarily carry an uncertainty due to the
finite sample size of the datasets. As explained in detail in Ref. [1], adding uncertainties for each sample
would yield a very large number of nuisance parameters with limited utility. Therefore a set of bin-wise
scale factors γb is introduced to model the overall uncertainty in the bin due to limited MC statistics. The
constraint term is constructed as a set of Gaussian distributions with a central value equal to unity for
each bin in the channel. The scales σb of the constraint are computed from the individual uncertainties of
samples defined within the channel relative to the total event rate of all samples: δcsb = σcsb/

∑
s ν

0
scb

.
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All samples within a channel are estimated from MC simulations. Only the samples with a declared MC
statistical uncertainty modifier enter the sum. In this declaration, the absolute bin-wise uncertainty σcsb of
the channel is provided under the data property as a list of floating point numbers. An example is shown
in Listing 8.

{ "name": "mod_name", "type": "staterror", "data": [0.1, 0.0, 0.2] }

Listing 8: An example of a statistical uncertainty modifier with absolute bin-by-bin uncertainties recorded for a 3-bin
channel.

2.3.5 Luminosity

Sample rates derived from theory calculations, as opposed to data-driven estimates, are scaled to the
integrated luminosity corresponding to the observed data. As the luminosity measurement is itself subject
to an uncertainty, it must be reflected in the rate estimates of such samples. As this modifier is of global
nature, no additional per-sample information is required and thus the data field is nulled. This uncertainty is
relevant, in particular, when the parameter of interest is a signal cross section. The luminosity uncertainty
σλ is provided as part of the parameter configuration included in the measurement specification discussed
in Section 2.5. An example is shown in Listing 9.

{ "name": "mod_name", "type": "lumi", "data": null }

Listing 9: An example of a luminosity modifier.

2.3.6 Unconstrained Normalisation

The unconstrained normalisation modifier scales the event rates of a sample by a free parameter µ. Common
use cases are the signal rate of a possible BSM signal or simultaneous in-situ measurements of background
sample rates (e.g. scaling a background using a control region). Such parameters are frequently the
parameters of interest of a given measurement. No additional per-sample data is required. An example is
shown in Listing 10.

{ "name": "mod_name", "type": "normfactor", "data": null }

Listing 10: An example of a normalisation modifier.

2.3.7 Data-driven Shape

In order to support data-driven estimation of sample rates (e.g. for multijet backgrounds), the data-driven
shape modifier adds free, bin-wise multiplicative parameters. Similarly to the normalisation factors, no
additional data is required as no constraint is defined. An example is shown in Listing 11.

{ "name": "mod_name", "type": "shapefactor", "data": null }

Listing 11: An example of an uncorrelated shape modifier.
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2.4 Observations

The observations provided by the analysis are the observed data for each channel (or region). These data
are provided as an array mapping the channel name to an array of floats, which provide the observed rates
in each bin of the channel. The auxiliary data are not included as they are an input to the likelihood that
does not need to be archived and can be determined automatically from the specification.

An example is shown in Listing 12.

{ "observations": [
{"name": "chan_name_one", "data": [1.0, 2.0, 3.0]},
{"name": "chan_name_two", "data": [2.0, 0.0, 1.0]}

]}

Listing 12: An example of channel data for two 3-bin channels.

2.5 Measurements

Given the data and the model definitions, a measurement can be defined. In the current schema, the
measurement defines the name of the parameter of interest as well as parameter set configurations4. Here,
the remaining information not covered through the channel definition is provided, e.g. for the luminosity
parameter. For all modifiers, the default settings can be overridden where possible:

inits Initial value of the parameter.

bounds Interval bounds of the parameter.

auxdata Auxiliary data for the associated constraint term.

sigmas Associated uncertainty of the parameter.

fixed Boolean flag indicating whether or not the parameter is set constant.

An example is shown in Listing 13.

{
"name": "MyMeasurement",
"config": {

"poi": "SignalCrossSection", "parameters": [
{ "name":"lumi", "auxdata":[1.0],"sigmas":[0.017], "bounds":[[0.915,1.085]],"inits":[1.0] },
{ "name":"mu_ttbar", "bounds":[[0, 5]] },
{ "name":"rw_1CR", "fixed":true }

]
}

}

Listing 13: An example of a measurement. This measurement, which scans over the parameter of interest
SignalCrossSection, is setting configurations for the luminosity modifier, changing the default bounds for the
normfactor modifier named mu_ttbar, and specifying that the modifier rw_1CR is held constant (fixed).

4 In this context a parameter set corresponds to a named lower-dimensional subspace of the full parameters φ. In many cases
these are one-dimensional subspaces, e.g. a specific interpolation parameter α or the luminosity parameter λ. For multi-bin
channels, however, e.g. all bin-wise nuisance parameters of the uncorrelated shape modifiers are grouped under a single name.
In general, a parameter set definition provides arrays of initial values, bounds, etc.
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2.6 Toy example

Listing 14 demonstrates a simple measurement of a single two-bin channel with two samples: a signal
sample and a background sample. The signal sample has an unconstrained normalisation factor µ, while
the background sample carries an uncorrelated shape systematic controlled by parameters γ1 and γ2. The
background uncertainties for the bins are 10% and 20% respectively.

{
"channels": [

{ "name": "singlechannel",
"samples": [
{ "name": "signal",
"data": [5.0, 10.0],
"modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]

},
{ "name": "background",
"data": [50.0, 60.0],
"modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0,12.0]} ]

}
]

}
],
"observations": [

{"name": "singlechannel", "data": [50, 60]}
],
"measurements": [

{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
]

}

Listing 14: A toy example of a 2-bin single channel workspace with two samples. The signal sample has expected
event rates of 5.0 and 10.0 in each bin, while the background sample has expected event rates of 50.0 and 60.0 in each
bin. An experiment provided the observed event rates of 50.0 and 60.0 for the bins in that channel. The uncorrelated
shape systematic on the background has 10% and 20% uncertainties in each bin, specified as absolute uncertainties
on the background sample rates. A single measurement is defined which specifies µ as the POI.

3 Search for Sbottom Squarks

This section demonstrates the use of the HistFactory JSON schema to preserve the statistical model of
ATLAS analyses in the context of a recent search for sbottom squarks based on the full Run-2 dataset using
139 fb−1 of proton-proton collision data [9]. The search for new physics performs hypothesis tests on a
simplified model that is parameterised by the masses of the sbottom squark b̃1 and the neutralinos χ̃0

2, χ̃
0
1.

The search defines three separate statistical models labeled A, B, and C. Within each model all channels
correspond to disjoint regions5 in phase space.

Model A Two channels are defined: A control channel CRtt_meff and a signal channel SRs_meff. Both
channels have three bins.

Model B Two single-bin channels are defined: CRtt_cuts and SR_cuts.

Model C Three channels are defined: Two control regions (CRtt_cuts with three bins, CRz_cuts with
one bin) and a signal region SR_metsigST channel with four bins.

5 Region and Channel are often used interchangeably among experimental particle physicists.
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As no significant excess has been observed, exclusion hypothesis tests are performed for each model on
a grid of points defined by the two-dimensional parameter space of the simplified model to infer a set
of expected and observed CLs values [10]. Based on the hypothesis tests results, a 95% CLs exclusion
contour has been derived delineating the parameter sub-space excluded by the analysis. Here for each point,
the CLs result of the statistical model with the most stringent expected limit is taken.

3.1 Preserved Likelihood

The full set of likelihoods for the three models is included as auxiliary material of the the HepData record
of the analysis [11]. In Listing 15, an abridged structure of the workspace is shown, leaving out the modifier
specifications.

{
"channels": [
{
"name": "CRtt_meff",
"samples": [
{"data": [0.44396111369132996, 0.549005925655365, 0.2581719756126404], "name": "diboson"},
{"data": [3.6903815269470215, 1.1958770751953125, 1.0939558744430542], "name": "W"},
{"data": [0.22261416912078857, 0.04251996800303459, 0.0], "name": "Z"},
{"data": [3.7213690280914307, 1.1334068775177002, 0.26062288880348206], "name": "ttZ"},
{"data": [0.9883568286895752, 0.8140284419059753, 0.346008837223053], "name": "ttW"},
{"data": [8.139641761779785, 4.380062580108643, 2.243513584136963], "name": "st"},
{"data": [118.6123046875, 51.03012466430664, 20.230464935302734], "name": "ttbar"},
{"data": [8.659423828125, 2.7713887691497803, 0.6784200668334961], "name": "ttH"},
{"data": [0.46871495246887207, 2.207951784133911, 1.8667230606079102], "name": "sbottom_1000_131_1"}

]
},
{
"name": "SR_meff",
"samples": [
{"data": [0.3429398238658905, 0.0, 0.04357590526342392], "name": "diboson"},
{"data": [0.2169857919216156, 0.13739198446273804, 0.0430174358189106], "name": "W"},
{"data": [1.2066327333450317, 0.8350478410720825, 0.4176981449127197], "name": "Z"},
{"data": [0.6686786413192749, 0.25316545367240906, 0.10552376508712769], "name": "ttZ"},
{"data": [0.06484010815620422, 0.08128178119659424, 0.009203530848026276], "name": "ttW"},
{"data": [0.4294568598270416, 0.33714672923088074, 0.5907787084579468], "name": "st"},
{"data": [6.269027233123779, 4.050149440765381, 1.817328929901123], "name": "ttbar"},
{"data": [0.6425122618675232, 0.3274693489074707, 0.07939066737890244], "name": "ttH"},
{"data": [0.008575495332479477, 0.13540373742580414, 0.18992283940315247], "name": "sbottom_1000_131_1"}

]
}
],
"measurements": [
{
"config": {
"parameters": [
{"sigmas": [0.017], "inits": [1.0 ], "auxdata": [1.0], "name": "lumi", "bounds": [[0.915,1.085]]
}

],
"poi": "mu_SIG"

},
"name": "NormalMeasurement"

}
],
"observations": [ {"name": "SR_meff", "data": [12.0, 3.0, 2.0]}, {"name": "CRtt_meff", "data": [153.0, 52.0, 19.0]} ]

}

Listing 15: A slimmed down specification of a likelihood in Region A of the analysis for the
(
b̃1, χ̃

0
2, χ̃

0
1

)
=

(1000, 131, 1) GeV point. The modifier specifications (and schema version) are left out for readability.
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3.2 Result Reproduction

The original workspaces are converted to a set of XML and ROOT [12] files via RooStats [13]. From these
files the pyhf xml2json command-line tool produces a JSON HistFactory workspace.

Based on the set of JSON documents defining the search grid, a subset of results from the original analysis
are reproduced, using two implementations of the HistFactory model.

pyhf Implementation The pyhf [14] package implements the mathematical model of HistFactory
purely within the scientific Python software stack, i.e. using the scipy [15] and numpy [16] libraries.

round-trip ROOT Implementation In this approach, the JSON workspace is converted into a set of XML
and ROOT files using the json2xml subcommand of the pyhf command line tool. From these files the
hist2workspace command-line tool produces a RooFit workspace, from which hypothesis tests can be
performed using the RooStats interfaces.

This section compares these two sets of results, both of which are shown to agree well with the original
results of the analysis. Figure 1 highlights the procedure to generate the workspaces for the implementations
described below.

3.2.1 Background-only Fit

In the search for sbottom squarks a background-only fit is performed. This is a fit where the POI is held
constant at zero and the rest of the nuisance parameters are allowed to float. Here, only a subset of the
channels, the control regions, enter the likelihood that is subsequently maximised to infer the best-fit values
of the parameters φ. In this fit all parameters that give rise to non-zero expected rates for signal samples,
usually the signal strength that is the POI of the model, are fixed to zero. With these parameter values,
background yields in the remaining channels can be computed. The event yields in the signal regions of all
three models are shown in Table 3. The agreement is excellent and the size of the residual differences are
largely due to numerical effects (e.g. p.d.f. approximation choices in RooFit). In addition, the best fit
values under both frameworks and their post-fit uncertainties are shown in Figure 2 for Model A. Here,
excellent agreement not only in the parameter values but also their uncertainties is observed as well.

3.2.2 Upper Limits

Based on the statistical models, hypothesis tests can be performed to determine the compatibility of the data
with and without a Beyond the Standard Model component. The tests are performed using the asymptotic
formulae of the profile likelihood-based test statistic q̃µ [5]. The results of these tests are provided as upper
limits on the visible cross section of Beyond the Standard Model physics. The results obtained from ROOT
and pyhf are shown in Figure 3.
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Figure 1: The diagram of the technical procedure to go from the original ROOT workspaces provided by the analysis
team, to the JSON workspaces used by pyhf, and finally the round-trip ROOT workspaces. pyhf provides utilities to
convert between two different HistFactory specification formats.

3.2.3 Exclusion Contours

Based on the single-point hypothesis test procedure at fixed µ = 1.0, i.e. the nominal Beyond the Standard
Model expectation, a set of tests for all simulated grid points can be performed to infer a 95% CLs exclusion
contour. pyhf ships with utilities that allow a conversion between ROOT HistFactory workspaces and
python HistFactoryworkspaces: pyhf xml2json and pyhf json2xml. Using the procedure described
in Figure 1, the results obtained from the archived statistical models using original ROOT, round-tripped
ROOT, and pyhf are overlaid in Figure 4. This shows excellent agreement as well, with minor numerical
differences. Additionally, it validates the completeness of the JSON HistFactory specification.

4 Reinterpretation

Beyond the reproduction of the original results, the preservation of the statistical model in a structured form
also aids in the derivation of new results through the method of reinterpretation. In the reinterpretation of
analyses a subset of the samples contributing to the expected event rates, most commonly those associated

13



Model A Model B Model C

SRA-L SRA-M SRA-H SRB SRC22 SRC24 SRC26 SRC28
Observed events 12.00 3.00 2.00 3.00 28.00 12.00 4.00 3.00

Fitted SM bkg events 8.35 5.66 3.01 3.29 20.87 10.29 3.95 2.45

tt̄ 4.77 3.69 1.73 2.31 3.89 1.08 0.34 0.12
Z+jets 1.21 0.84 0.41 0.28 8.50 5.73 1.92 1.08
Single+top 0.43 0.33 0.59 0.48 2.70 1.21 0.68 0.44
tt̄ +W/Z 0.73 0.33 0.12 0.08 2.52 1.01 0.52 0.25
tt̄ + h 0.65 0.33 0.08 0.12 0.16 0.04 0.08 0.00
W+jets 0.22 0.13 0.04 0.02 2.16 0.63 0.24 0.42
Diboson 0.34 0.00 0.04 0.00 0.94 0.58 0.17 0.13

(a) ROOT

Model A Model B Model C

SRA-L SRA-M SRA-H SRB SRC22 SRC24 SRC26 SRC28
Observed events 12.00 3.00 2.00 3.00 28.00 12.00 4.00 3.00

Fitted SM bkg events 8.37 5.66 3.01 3.30 20.85 10.28 3.95 2.45

tt̄ 4.79 3.70 1.73 2.31 3.88 1.08 0.34 0.12
Z+jets 1.20 0.84 0.41 0.28 8.49 5.72 1.92 1.08
Single+top 0.43 0.33 0.58 0.48 2.71 1.22 0.68 0.44
tt̄ +W/Z 0.73 0.33 0.12 0.08 2.52 1.01 0.52 0.25
tt̄ + h 0.65 0.33 0.08 0.12 0.16 0.04 0.08 0.00
W+jets 0.22 0.13 0.04 0.02 2.16 0.63 0.24 0.42
Diboson 0.34 0.00 0.04 0.00 0.94 0.59 0.17 0.13

(b) pyhf

Table 3: Comparison of background-only fit results between (a) ROOT and (b) pyhf. The results correspond to Table
6 in [9] and use its region definitions.

to Beyond the Standard Model processes are replaced with alternative predictions derived from a new
theoretical model, while keeping the remaining estimates, typically those derived for Standard Model
processes, unchanged. Reinterpretation is efficient when the resources to compute the former are small
compared to those required to derive the latter. New rate estimates for additional physics processes can
be derived through either re-executing the original analysis as forseen in RECAST [17] or approximate
re-implementations implemented in third-party frameworks.

4.1 Likelihood Patches

The process of replacing certain samples of the original likelihood with updated ones can be viewed as
applying a patch p to the likelihood L to derive a new one L ′: L

p
→ L ′. The choice of JSON as a

serialisation format for the likelihood also enables an unambiguous definition of such likelihood patches
using the JSONPatch format [18] — an ordered array of transformations applied to the original document.
The patch format provides a well-defined target for reinterpretation tools to produce, when combined with
the original likelihood, likelihoods for a reinterpretation.
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Figure 2: Best-fit parameter values and their uncertainties for the background only fit of the ATLAS sbottom search
Model A likelihood. Analysis specific nuisance parameters are described in Ref. [9] and systematic variations are
described in public notes from the ATLAS combined performance groups.

4.1.1 Example

This sub-section demonstrates the use of JSON patches in the context of HistFactory JSON documents.
Using the 2-bin toy example in Listing 14, a JSON patch can be applied to replace the nominal expected
event rates, an array of two floats, with new values. This can be seen in Listing 16.

[{
"op": "replace",
"path": "/channels/0/samples/0/data",
"value": [8.0, 3.0]

}]

Listing 16: A JSON patch with a single transformation to replace the nominal expected event rates.

This patch, provided as a file patch.json can be applied to the original likelihood, stored in a file
original.json using the jsonpatch command line tool6 which produces the result in Listing 17.

6 For example, running: jsonpatch original.json patch.json > new.json.
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Figure 3: Scan of CLs for a range of fixed signal strengths µ. Shown are the observed CLs values as well as those
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background-only hypothesis.
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Figure 4: Exclusion contours at the 95% CL in the m(b̃1, χ̃
0
2) phase space for the m( χ̃0

1) = 60 GeV signal scenario
using the SR with the best-expected sensitivity. The shaded band shows the impact of the theory uncertainties on the
SM background, and the experimental uncertainty on both the background and the signal. The contours labeled
ROOT are calculated from the original workspaces of the analysis. From these original workspaces, xml2json was
run and pyhf was used to produce the contours labeled pyhf. Finally, json2xml was used to generate XML and
ROOT files, from which ROOT workspaces can be built, to produce the contours labeled roundtrip. The overlaid
exclusion contours, produced by pyhf and ROOT, reproduce the contours of Figure 8(a) in Ref. [9]. All curves are
superimposed at the level of graphical precision.
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{
"channels": [

{ "name": "singlechannel",
"samples": [
{ "name": "signal",
"data": [8.0, 3.0],
"modifiers": [ { "name": "mu", "type": "normfactor", "data": null} ]

},
{ "name": "background",
"data": [50.0, 60.0],
"modifiers": [ {"name": "uncorr_bkguncrt", "type": "shapesys", "data": [5.0,12.0]} ]

}
]

}
],
"observations": [

{"name": "singlechannel", "data": [50, 60]}
],
"measurements": [

{ "name": "Measurement", "config": {"poi": "mu", "parameters": []} }
]

}

Listing 17: The result of applying the JSON patch in Listing 16 to Listing 14.

The new JSON file can then be processed either through the ROOT implementation or the pyhf implement-
ation.

5 Conclusions

A large number of results published within HEP use a single family of statistical models — HistFactory
— to model the analysis and perform statistical tests. The simple structure of HistFactory allows for
an archiving of the full statistical model in a JSON format which has been introduced in this note, which
is optimised for long-term archival on data repositories such as HEPData. This note demonstrates the
ability to archive the models from a recent search for sbottom squarks using 139 fb−1 of proton-proton
collision data recorded with the ATLAS detector using the plain-text JSON specifications introduced in this
note. Finally, key statistical results of the analysis are reproduced with two independent implementations
of the HistFactory model — the ROOT and Python scientific software ecosystems — underscoring the
implementation independence and long-term viability of the archived data.
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