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Abstract

The proton beam driving the spallation process at the Eu-

ropean Spallation Source, in Lund, will be accelerated and

delivered onto a tungsten target by a linac. This linac is com-

posed of four different families of accelerating structures: a

drift tube linac, a section of spoke resonators and two sec-

tions of elliptical cavities for the particles’ medium and high

relativistic β. These structures provide 99.8% of the total

energy gained by the beam along the accelerator. It is neces-

sary, then, to have an accurate model describing the physics

of the cavities in the ESS Linac Simulator (ELS), which

is the online model that will simulate the accelerator dur-

ing operation. Here, we present an RF-cavity model based

on the field maps that we implemented in ELS, showing a

maximum 10% deviation from TraceWin in the horizontal,

vertical and longitudinal planes.

INTRODUCTION

In order to accurately model the accelerating components

used in the ESS Proton Linac, the beam physics team is

adopting a description of the electromagnetic field based on

one-dimensional maps. Each spoke resonator and RF cavity

is characterized by a file containing the value of the longi-

tudinal electric field measured along the axis of symmetry

(z axis). This field has a sinusoidal behaviour in the inner

part of a cavity and an exponential decay on the two ends,

as described in [1].

These field maps are then used to calculate the matrix

representing the linear part of the equations of motion of a

particle subjected to each field. The result is used to trans-

port the beam envelope by applying the matrix of the linear

elements to the covariant matrix of the beam.

To calculate the equations of motion we used two different

approaches: the first evaluates the contribution of each step

of the field map on the variation of the x ′, y′ and z′momenta
components for a particle, applying it as thin kicks. With this

method, more precise cavity sampling improves accuracy.

The second approach is to integrate the field in a certain

number of cells (the NCell method), using the Transit Time

Factor [2] to evaluate the proper phase and energy changes

between cells. Each cell is then treated as a thin accelerating

gap in the middle of a drift.

Both methods are then compared with the code used for

the design of the ESS Proton Linac—TraceWin [3]—which

can simulate the same kind of field maps.
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FIELD MAPS
The transversal normalized momenta can be written in

the paraxial approximation as

x ′ =
dx
ds
=

dx/dt
ds/dt

≈ px

ps
(1)

y′ =
dy
ds
=

dy/dt
ds/dt

≈ py
ps

(2)

we will evaluate x ′, noting that the same treatment is valid
for y′. The variation of momentum in x is given by

dx ′

ds
≈ d(px/ps )

ds
=

d(px/ps )
dt

dt
ds
=

ṗxps − px ṗs
p2s

dt
ds

≈ 1

βsc
ṗx − x ′ṗs

ps
=

ṗx − x ′ṗs
γs β

2
smc2

(3)

where βs and γs are the relativistic parameters of the particle
traveling in the s direction and the dot represents the time
derivative.

The ṗx and ṗz components can be evaluated in terms of
the Lorentz force

d�p
dt
= q

(
�E +

�p
γm
× �B

)
(4)

and, again using the paraxial approximation pz ≈ ps , which
is valid for the transverse plane, we have

ṗx = q
(
Ex +

pyBz − pzBy

γm

)
≈ q

(
Ex + ps

y′Bz − By

γm

)

(5)

and

ṗs = q
(
Ez +

pxBy − pyBx

γm

)
≈ q

(
Ez + ps

x ′By − y′Bx

γm

)

(6)

where the quantities x ′By and y′Bx are always zero because

the velocity is parallel to the magnetic field, then

ṗs = qEz . (7)

Substituting Eqs. (5) and (7) into (3) we have

dx ′

ds
=

q
γs β

2
smc2

(
Ex + ps

y′Bz − By

γm
− x ′Ez

)
. (8)

For our model, we are interested in the linear part of the

fields where the following equations hold

Ex =
∂Ex

∂x
x, Ey =

∂Ey

∂y
y (9)

Ez = Ez0(s) cos(ωt + φ) (10)

Bx =
∂Bx

∂y
y, By =

∂By

∂x
x (11)

Bz = 0 (12)

and whereω is the frequency of the cavity and φ is the phase.
Substituting these equations into Eq. (8), we have

dx ′

ds
=

q
γs β

2
smc2

(
∂Ex

∂x
x − βsc

∂By

∂x
x − x ′Ez

)
. (13)
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For the vertical plane y, the calculation is the same and the

result is

dy′

ds
=

q
γs β

2
smc2

(
∂Ey

∂y
y + βsc

∂Bx

∂y
y − y′Ez

)
(14)

while for the longitudinal plane we have

dz′

ds
=

q
γs β

2
smc2

(
1

γ2s

∂Ez

∂z
z − z′Ez

)
. (15)

The only information provided in the field map is Ez , mean-

ing that Ex , Ey , Bx and By are calculated as functions of Ez .

This is possible because of the cylindrical symmetry of the

cavity and the boundary conditions requiring that the fields

vanish at the edge of the cavity. A full treatment of this fact

can be found in [1].

Equations (13), (14) and (15) express the instantaneous

kick that can be used to evaluate the dynamics for a small

space interval ds. The sum of all the kicks along the cavity

is essentially an integrator that enumerates the motion of a

particle in the electromagnetic field. The validity of these

equations is limited to particles close to the central axis

because of the linearization of the field.

NCELLS
An alternative method to calculating the beam dynamics

of a particle in an RF cavity is to evaluate the Time Transit

Factor (TTF) and consequently the equations of motion, as

described in [2]. The definition of TTF as function of the

relativistic factor β is

T (β) =
1

E0

∫ ∞

−∞
Ez0(s) cos(φ(s) − φs )ds (16)

where E0 is the maximum amplitude of the field, φ(s) =
2π
βλ s, λ is the wavelength of the RF frequency and φs is the
synchronous phase defined such that∫

Ez0(s) sin(φ(s) − φs )ds = 0. (17)

The energy gain for the reference particle is given by

ΔW = q
∫ ∞

−∞
Ez0(s) cos(φ(s))ds = qE0T (β) cos(φs ).

(18)

For the transverse horizontal (x) component, we can assign
x = x0 + zx ′

0
, x ′ = x ′

0
and k = 2π

βλ and integrate Eq. (13)

βγΔx ≈ q
βsmc2

(∫
(x0 + zx ′0)

(
∂Ex

∂x
− βsc

∂By

∂x

)
ds

−x ′0

∫
Ezds

)
. (19)

After some manipulation (assuming the field vanishes at the

endpoints) we finally obtain the coefficients

k11 = 1 − q
2 β̄2γ̄3mc2

(
γ̄2 + k

T ′(β)
T (β)

)
E0T (β)cos(φs )

(20)

k22 = 1 − q
2 β̄2γ̄3mc2

(
γ̄2 − k

T ′(β)
T (β)

)
E0T (β)cos(φs )

(21)

k21 = −qkE0T (β) sin(φs )
2 β̄γ̄2mc2

(22)

where

T ′(β) =
1

E0

∫ ∞

−∞
zEz0(s) sin(φ(s) − φs )ds. (23)

The γ̄ denotes the average between γ at the entrance and exit
of the cavity and correspondingly for β̄ and β.

The transport matrix for the single accelerating gap is then

Gx = �
�

k11C 0
k21

(βγ) f
k22C

�
�
. (24)

where (βγ) f denotes the relativistic factors calculated at the
exit of the cavity. The C coefficient is needed because the

matrix is obtained as a first order approximation of the real

solution, so it is not fully symplectic. That is, C adjusts the

determinant such that it is the ratio between the energy at

the entrance and the exit of the cavity:
(βγ)i
(βγ) f

. The matrix for

the vertical plane Gy is identical to Gx .

For the longitudinal z plane, the substitution is z =
z0 + 1

γ2
zδ0, δ = δ0. Integrating Eq. (15), we obtain the

coefficients

k21 =
qkE0T (β) sin(φs )

β̄2mc2
(25)

Gz = �
�

γ f

γi
0

k21
γi (βγ2) f

(βγ2)i
(βγ2) f

�
�
. (26)

The matrices calculated here are for one accelerating gap.

A cavity is split where the field crosses zero and is repre-

sented by several cells. Each cell is simulated by a gap

(located at
βφs

k ) interleaved with drifts.

RESULTS
The models of NCells and field maps described in the

previous sections were implemented in the online simulator

ELS, which is contained in the OpenXAL framework [4].

The simulations were performed using the conditions listed

in Table 1.

Table 1: Beam Parameters

Parameter Value
Initial Kinetic Energy 3.62 MeV

Beam Peak Current 62.5 mA

Particles per bunch 1.1 × 109
Duty Cycle 4%

Freq. before the Medium β sect. 352.21 MHz

Freq. after the Medium β sect. 704.42 MHz

Horizontal Normalized Emit. 0.25 × 10−6 m rad

Vertical Normalized Emit. 0.25 × 10−6 m rad

Longitudinal Normalized Emit. 0.36 × 10−6 m rad

The initial energy, 3.62 MeV, occurs at the entrance of

the MEBT section. The beam is transported through the

DTL, which we represent with 177 RF gaps, then it crosses

26 Spoke resonators, 36 medium-β cavities and finally 84
high-β cavities. The space-charge effects are incorporated
as described in [5].
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We can then compare TraceWin operating with the field

maps versus ELS operating with NCells or field maps. The

first comparison is for the energy gain along the linac. Here,

the twomodels implemented in ELS are in perfect agreement

with TraceWin, as shown in Fig. 1, with a relative average

difference of 0.15% for the NCells and 0.13% for the field

maps.

0 100 200 300 400 500 600
0

1

2

s [m]

γ
−1

TraceWin

ELS NCells

ELS Field maps

Figure 1: [Color] Energy of the beam expressed in γ − 1
along the accelerator calculated with the TraceWin field

maps, the ELS NCells and the ELS field maps. The three

models are in excellent agreement.

The next benchmarks are the three r.m.s. of the beam for

the horizontal, vertical and longitudinal planes, shown in

Fig. 2: I, II and III, respectively. For the horizontal plane,

the values for relative average difference between TraceWin

and ELS are 4.58% and 4.56%, respectively, for the NCells
and field maps.

For the vertical plane, the values for relative average dif-

ference between TraceWin and ELS are 4.35% and 3.88%,
respectively, for the NCells and field maps.

The maximum differences between the two ELS models

and TraceWin are within 10% in the longitudinal plane.

CONCLUSIONS
We presented here the two methods, numerical field map

integrator and NCells, used at ESS to handle the field map

description of RF cavities. Both methods are implemented in

the ESS Linac Simulator as part of the OpenXAL framework.

The comparison with the software TraceWin shows a very

good agreement, within 10% of deviation.
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Figure 2: [Color] Standard deviation on the horizontal (I),

vertical (II) and longitudinal (III) planes evaluated with the

TraceWin field maps, the ELS NCells and the ELS field

maps. The three models are in good agreement.
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