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Abstract: Identifying key nodes in networks is a fundamental problem in network sci-

ence. This study proposes a quantum deep reinforcement learning (QDRL) framework

that integrates reinforcement learning with a variational quantum graph neural network,

effectively identifying distributed influential nodes while preserving the network’s fun-

damental topological properties. By leveraging principles of quantum computing, our

method is designed to reduce model parameters and computational complexity compared

to traditional neural networks. Trained on small networks, it demonstrated strong general-

ization across diverse scenarios. We compared the proposed algorithm with some classical

node ranking and network dismantling algorithms on various synthetical and empirical

networks. The results suggest that the proposed algorithm outperforms existing baseline

methods. Moreover, in synthetic networks based on Erdős–Rényi and Watts–Strogatz

models, QDRL demonstrated its capability to alleviate the issue of localization in network

information propagation and node influence ranking. Our research provides insights into

addressing fundamental problems in complex networks using quantum machine learning,

demonstrating the potential of quantum approaches for network analysis tasks.

Keywords: vital node identification; quantum algorithm; reinforcement learning; complex

networks

1. Introduction

A large number of complex systems in nature can be simplified and described by

various networks [1], such as social relationship networks [2], scientific collaboration net-

works [3], the World Wide Web (WWW) [4], citation networks [5], food chain networks [6],

and protein–protein interaction networks [7]. Under the name of network science, unrav-

eling complexity with networks has became a vibrant research field for the past decades.

Research on the structure and function of these networks has revealed universal charac-

teristics across different systems, such as the small-world phenomenon, the power-law

distribution of node degrees, and the community structures within networks. An impor-

tant research focus in network science was ranking nodes according to their influence,

which has had numerous practical applications [8–10]. Important nodes, often referred

to as critical nodes, are those that significantly influence the structure and functionality

of networks [11–14]. Although the number of these critical nodes is typically small, their

impact can rapidly propagate through the network, causing cascading disruptions that

affect a large portion of the system [15,16]. This phenomenon underscores the necessity of
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accurately ranking node significance and identifying critical nodes to enhance our under-

standing of network robustness and to inform strategies for maintaining system integrity.

The complexity of graph structures arises from the non-Euclidean nature of graph-

structured data [17]. A potential solution for handling complex patterns lies in embedding

techniques, which learn graph representations in low-dimensional Euclidean spaces [18–20].

Graph embedding techniques embed high-dimensional and sparse network representations

into low-dimensional dense vector spaces while preserving the original network’s topologi-

cal information. Once low-dimensional representations are learned, many graph-related

tasks, such as node classification and link prediction, can be performed effectively [20].

Despite the successes of existing embedding methods, many earlier approaches were con-

strained by shallow learning mechanisms [20,21], limiting their ability to capture more

intricate patterns inherent in graphs. While a diverse range of deep learning methods,

such as graph transformers, has been developed, these approaches often face significant

computational overheads and rely on domain-specific assumptions, which may limit their

generalizability and scalability in diverse graph-based applications [22].

On the other hand, identifying an optimal series of critical nodes in general

graphs to optimize nontrivial and hereditary connectivity measures is often an NP-hard

problem [23–25]. Deep learning has demonstrated its efficacy in numerous applications.

Inspired by recent advances in deep learning techniques for solving combinatorial opti-

mization problems [26–28], this study integrated deep learning with complex network

analysis to address the critical node identification problem. However, as deep learning

models became increasingly complex, the number of parameters required to represent

these models grew significantly. This dramatic expansion in parameter space poses sub-

stantial challenges in terms of computational cost and model generalization—issues that

are conceptually related to the difficulties encountered in high-dimensional spaces.

In summary, reinforcement learning (RL) offers a robust framework for sequential

decision making under uncertainty, and its deep variants have proven effective in approx-

imating complex value functions and policies [29,30]. In our work, we leverage RL to

iteratively optimize node ranking based on cumulative rewards derived from network

dismantling tasks. While classical RL methods have shown success across various domains,

their capacity to capture the intricate, nonlinear interdependencies inherent in complex

networks can be limited.

Quantum deep reinforcement learning (QDRL) extends this framework by incorporat-

ing quantum computing principles, such as superposition and entanglement, to potentially

process high-dimensional state spaces more efficiently. Recent surveys and studies in quan-

tum reinforcement learning [31,32] indicate that QDRL may offer a novel computational

advantage, particularly in environments with complex dynamics. Furthermore, advances

in offline RL [33,34] underscore the importance of developing robust learning algorithms

under practical constraints.

Our proposed method is presented as a proof-of-concept that demonstrates the feasi-

bility of employing quantum algorithms for the node ranking problem. By situating our

approach within the context of the existing literature, we highlight both its theoretical foun-

dation and its potential for future scalability. As quantum hardware continues to advance,

we anticipate that the scalability and efficiency of QDRL will further improve, potentially

offering advantages over classical methods in the analysis of large-scale complex networks.

The remainder of this paper is organized as follows. Section 2 provides an overview of

the background knowledge, including Q-learning-based reinforcement learning methods,

the fundamentals of quantum computing, and the components of variational quantum

circuits. In Section 3, we present the algorithm design for identifying critical nodes in net-

works using quantum reinforcement learning. Section 4 details the experiments conducted
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on both real-world and synthetic networks, along with an analysis of the effectiveness and

advantages of the proposed method. Finally, Section 5 concludes the paper and discusses

potential future directions.

2. Quantum Deep Reinforcement Learning

This section introduces the fundamental techniques employed in the proposed method,

including the Double Deep Q-Network, the basic concepts of quantum computing, and the

principles and components of variational quantum circuits.

2.1. Double Deep Q-Network

Reinforcement learning addresses the problem of how an agent can maximize its

cumulative reward within a complex and uncertain environment. During the training

process, the agent interacts with the environment by observing a state st ∈ S and then

selecting an action at ∈ A according to a policy π : S → A (i.e., at = π(st)). The

environment then transitions to a new state according to st+1 = f (st, at), and returns a

reward rt = r
(

f (st, at)
)

, where r : S → R is a transition of the state. The discount factor

γ ∈ (0, 1] is a hyperparameter that determines the present value of future rewards.

In Q-learning, the agent learns a Q-value, which evaluates the expected cumulative

reward starting from a given state–action pair (s, a), according to the following policy π as

(1) until the end of the episode. This Qπ(s, a) value is updated iteratively to optimize the

agent’s decision-making process [35,36].

Qπ(s, a) = Eπ

[

∞

∑
k=0

γk r
(

st+k, π(st+k)
)

∣

∣

∣
st = s, at = a

]

. (1)

Here, the expectation Eπ is taken over all possible future state trajectories and any

stochasticity in the environment and/or policy. Note that Qπ(s, a) depends on the initial

action a because different actions lead to different subsequent state trajectories and reward

sequences. The optimal Q-function is defined as Q∗(s, a) = maxπQπ(s, a) and by selecting

the action with the highest Q-value at each step. Thus, the objective of Q-learning is to

accurately estimate Q∗(s, a). The objective of Q-learning is to estimate the optimal Q-

function [29]. To ensure sufficient exploration of the environment by the agent, a commonly

used approach during training is the ϵ-greedy strategy. This strategy involves selecting

actions randomly with a probability of ϵ while choosing the action with the highest Q-value

with a probability of 1− ϵ. It is important to note that the Q-value reflects the cumulative

reward of not only the immediate action but also of all subsequent actions determined by

π [30,36]. The agent updates the Q-function through interactions with the environment,

following the equation below: [37]:

Q(st, at)← Q(st, at) + α
[

rt + γ max
a∈A

Q(st+1, a)−Q(st, at)
]

, (2)

where α is the learning rate, rt is the reward at time step t, and γ represents the discount

factor, reflecting the significance of future rewards. This update is applied iteratively as the

agent interacts with the environment, and under standard conditions, it converges to the

optimal Q-function Q∗(s, a) [37,38].

This paper proposes a quantum circuit design approach based on the Double Deep

Q-Network (DDQN) and experience replay techniques to enhance training stability [30].

Integrating DDQN’s improved action selection mechanism and experience replay’s efficient

memory utilization provides a more robust training process for quantum circuits.
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2.2. Quantum Computing

Quantum computing [39] is a novel computational paradigm that leverages fundamen-

tal principles of quantum mechanics, such as superposition, interference, and entanglement,

to process quantum information units. The basic unit of quantum information is the qubit,

which, unlike a classical bit, can exist in a superposition of 0 and 1. Using Dirac notation,

any quantum state can be expressed as

|ψ⟩ = α|0⟩+ β|1⟩, with α, β ∈ C, |α|2 + |β|2 = 1, (3)

where |0⟩ and |1⟩ denote the computational basis states in a two-dimensional Hilbert space.

When a measurement is performed on |ψ⟩, it collapses to either |0⟩ or |1⟩, with probabilities

|α|2 and |β|2, respectively. This property of superposition underlies the potential computa-

tional advantages of quantum computers relative to classical ones. Moreover, quantum

gates U act on qubits through unitary transformations, which are analogous to the logic

gates used in classical computing.

∣

∣ψ′
〉

= U|ψ⟩. (4)

A quantum system’s state can be transformed through sequential applications of

unitary operators U before measurement. These operators act as linear transformations in

complex Hilbert space and are characterized by the properties U†U = UU† = I, ensuring

both reversibility and norm preservation of the quantum state vector. Each unitary opera-

tion represents a coherent manipulation of the system’s quantum state while maintaining

quantum superposition.

Classical computers are represented by circuits consisting of wires and logic gates.

Analogously, quantum computers can be represented using quantum circuits comprising

wires and quantum gates. In a quantum circuit, each wire corresponds to a qubit that

carries quantum information, while quantum gates transform quantum states.

2.3. Variational Quantum Circuits

Variational quantum algorithms (VQAs) are an effective approach to implementing

algorithms on Noisy Intermediate-Scale Quantum (NISQ) computers [40], as they are par-

ticularly well suited for systems with a limited number of qubits, the presence of noise,

and constrained coherence times [41]. Variational quantum circuits (VQCs) are a set of

quantum gates operating on multi-qubit quantum systems [41,42]. Their fundamental oper-

ating principle lie in the combination of parameterized quantum circuits, with parameters

adjusted by classical optimizers to achieve the desired results, while being evaluated in

each optimization step [43]. VQCs were first introduced in the context of the Variational

Quantum Eigensolver (VQE) [44] and have since become a major research focus in quantum

machine learning [45–47]. An example of a VQC with five qubits is shown in Figure 1. To

provide a more detailed description of the entire VQC, suppose we have some objective

function f (θ, x) of a quantum circuit,

f (θ, x) = ⟨0|U†(θ, x)M̂U(θ, x)|0⟩, (5)

where |0⟩ is the initial state, and M̂ denotes the observable, and the parameterized gate

U(θ, x) is

U(θ, x) = e−iθGx. (6)

Here, G is the Hermitian generator of the gate [48].
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Fig. 1. Schematic diagram of a VQC. Each wire corresponds to one qubit, and each box on a wire represents a single-qubit
gate. Boxes spanning multiple wires represent multi-qubit gates. The number of wires in the circuit corresponds to the number
of qubits in the system. The input data is represented by 𝑥, the adjustable parameters by 𝜃, and the quantum gates by 𝑈 . All
elements are initialized to |0⟩, with the final layer performing measurement operations.
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a function operating on 𝑁 qubits over 𝐿 layers. For a given layer 𝑙, it can be represented as a set of140

parallel single-qubit rotation gates:141 𝑈 𝑙 (𝜃𝑙, 𝑥𝑙) = 𝑁⊗𝑗=1 𝑈 𝑙𝑗 (𝜃𝑙𝑗, 𝑥𝑙𝑗) . (7)

These single-qubit rotation gates can be expressed as 𝑈 𝑙𝑗 (𝜃𝑙𝑗, 𝑥𝑙𝑗) = 𝑒−𝑖𝑎𝐺𝑙𝑗𝜃𝑙𝑗𝑥𝑙𝑗 , where 𝐺𝑙𝑗 is a linear142

combination of Pauli operators and 𝑎 is a real constant. 𝐺𝑙𝑗 can be represented as a Hermitian ma-143
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derivative of 𝑈 𝑙𝑗 (𝜃𝑙𝑗, 𝑥𝑙𝑗) can be written as:145 𝜕𝑈 𝑙𝑗 (𝜃𝑙𝑗, 𝑥𝑙𝑗)𝜕𝜃𝑙𝑗 = −𝑖𝑎𝐺𝑙𝑗𝑥𝑙𝑗𝑒−𝑖𝑎𝐺𝑙𝑗𝜃𝑙𝑗𝑥𝑙𝑗 = −𝑖𝑎𝐺𝑙𝑗𝑥𝑙𝑗𝑈 𝑙𝑗 (𝜃𝑙𝑗, 𝑥𝑙𝑗) . (8)

Therefore, after the measurement operation, the derivative of the entire circuit can be expressed as:146 𝜕𝑓(𝜃, 𝑥)𝜕𝜃 = ⟨0| (𝜕𝑈†(𝜃, 𝑥)𝜕𝜃 ) 𝑀̂ 𝑈(𝜃, 𝑥) |0⟩ + ⟨0| 𝑈†(𝜃, 𝑥)𝑀̂ (𝜕𝑈(𝜃, 𝑥)𝜕𝜃 ) |0⟩ . (9)

where 𝑀̂ denotes the observable and 𝑈(𝜃, 𝑥) = ∏𝐿𝑙=1 𝑈 𝑙(𝜃𝑙, 𝑥𝑙) = ∏𝐿𝑙=1 ⊗𝑁𝑗=1𝑈 𝑙𝑗(𝜃𝑙𝑗, 𝑥𝑙𝑗).147

(3) Measurement Operations. The measurement operation involves measuring the expectation value148

of the observable 𝑀̂ , which is composed of one or more qubits. Typically, the loss function for a149

given task is defined by the expectation values 𝑓𝑀̂(𝜃, 𝑥) = ⟨𝑀̂⟩ = ⟨0| 𝑈†(𝜃, 𝑥)𝑀̂𝑈(𝜃, 𝑥) |0⟩ of150
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3. Methodology152

We employed VQAs in reinforcement learning to identify key players in networks. Considering the153

complexity of mapping graph structures to quantum states, we combined message-passing-based graph154

Figure 1. Schematic diagram of a VQC. Each wire corresponds to one qubit, and each box on a

wire represents a single-qubit gate. Boxes spanning multiple wires represent multi-qubit gates. The

number of wires in the circuit corresponds to the number of qubits in the system. The input data

are represented by x, the adjustable parameters by θ, and the quantum gates by U. All elements are

initialized to |0⟩, with the final layer performing measurement operations.

Thus, a VQC typically consists of three main components:

(1) Initialization of Quantum States: The initial quantum state is prepared by setting all

qubits to |0⟩.

(2) Parameterized Quantum Circuit: The parameterized quantum circuit (PQC) consists

of input parameters x and variational parameters θ, as illustrated in Figure 1. PQCs

are trained by querying quantum devices through classical optimization algorithms.

The input data x are used for information embedding, mapping classical data x and

θ to quantum states U(x, θ)|0⟩ in the Hilbert space through parameterized quantum

gates [49,50]. Similar to the weights in neural networks, variational parameters are

randomly initialized before training. During the iterative process, the variational

parameters θ are adjusted using appropriate methods to optimize the loss function.

For instance, in the context of supervised machine learning, the loss function L can

be minimized by performing gradient descent over ∇θL. Several analytical and

numerical approaches have been developed to compute the gradients of quantum

circuits with respect to their parameters [51–53]. In this study, we employed the

parameter-shift rule for gradient computation. A parameterized quantum circuit can

be regarded as a function operating on N qubits over L layers. For a given layer l, it

can be represented as a set of parallel single-qubit rotation gates:

Ul
(

θl , xl
)

=
N
⊗

j=1
Ul

j

(

θl
j , xl

j

)

. (7)

These single-qubit rotation gates can be expressed as Ul
j

(

θl
j , xl

j

)

= e
−iaGl

j θ
l
j x

l
j , where

Gl
j is a linear combination of Pauli operators, and a is a real constant. Gl

j can be

represented as a Hermitian matrix with two eigenvalues, e0 and e1 [48]. Owing to the

properties of the exponential function, the derivative of Ul
j

(

θl
j , xl

j

)

can be written as

∂Ul
j

(

θl
j , xl

j

)

∂θl
j

= −iaGl
j x

l
je
−iaGl

j θ
l
j x

l
j = −iaGl

j x
l
jU

l
j

(

θl
j , xl

j

)

. (8)



Entropy 2025, 27, 382 6 of 18

Therefore, after the measurement operation, the derivative of the entire circuit can be

expressed as

∂ f (θ, x)

∂θ
= ⟨0|

(

∂U†(θ, x)

∂θ

)

M̂ U(θ, x)|0⟩+ ⟨0|U†(θ, x)M̂

(

∂U(θ, x)

∂θ

)

|0⟩. (9)

where M̂ denotes the observable, and U(θ, x) = ∏
L
l=1 Ul(θl , xl) = ∏

L
l=1⊗

N
j=1Ul

j (θ
l
j , xl

j).

(3) Measurement Operations: The measurement operation involves measuring the ex-

pectation value of the observable M̂, which is composed of one or more qubits.

Typically, the loss function for a given task is defined by the expectation values

fM̂(θ, x) =
〈

M̂
〉

= ⟨0|U†(θ, x)M̂U(θ, x)|0⟩ of one or more VQCs. These expectation

values can then serve as inputs for classical post-processing.

3. Methodology

We employed VQAs in reinforcement learning to identify key players in networks.

Considering the complexity of mapping graph structures to quantum states, we combined

message-passing-based graph neural network algorithms [54,55] to encode graphs into

quantum states in Hilbert Space. These quantum graph states were then used as inputs for

quantum reinforcement learning algorithms. By adjusting the parameters of the quantum

gates in the VQAs based on the measurement results at the output, we trained the model

on synthetic networks.

In our designed quantum reinforcement learning framework, the architecture pri-

marily comprised encoder and decoder components. The encoder component mapped

the network structure onto quantum circuits using a quantum graph convolutional net-

work. This part aggregated neighborhood information on the quantum circuits, encoding

the graph into quantum states while preserving the original graph structure as much as

possible to facilitate subsequent processing using quantum computational methods.

The output of the encoder component served as the input to the decoder component.

The decoder component used VQCs as function approximators for the Q-function in

reinforcement learning. Apart from the approximator structure, other mechanisms were

similar to those in DDQN: employing a target Q-network for delayed updates, using a

greedy strategy to determine the agent’s next action, and performing experience replay to

sample and train the Q-network based on VQCs.

The overall model framework is illustrated in Figure 2.

3.1. Encoder

Given the limited number of available qubits in current quantum systems, we imple-

mented a graph partitioning strategy prior to training. For a graph G with n nodes, we

decomposed it into n subgraphs, where each subgraph comprises node i and its first-order

neighbors. During training on synthetic graphs, we utilized node i’s degree centrality, be-

tweenness centrality, and other topological metrics as initial node features. For evaluation

on real-world networks, we employed the intrinsic node features instead.

The encoder mapped graph data into a Hilbert space amenable to quantum computa-

tion by encoding network nodes into quantum states while preserving the original graph’s

neighborhood information. This was implemented through a multi-layer message-passing

neural network constructed on quantum circuits to aggregate neighboring information.

The mathematical formulation is as follows:

|φv⟩
t = U1|φv⟩

t−1 ⊗

(

⊗
u∈N (v)

U2|φu⟩
t−1

)

, (10)
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where |φv⟩
t denotes the quantum state representation of node v at layer t, while U1 rep-

resents the quantum gate parameters for node v. Similarly, |φu⟩
t−1 refers to the quantum

state features of v’s neighboring nodes u at layer t− 1 , and U2 represents the quantum gate

parameters employed by node u. The operator ⊗ signifies the tensor product operation.

Parameters U1 and U2 jointly constitute the trainable parameters of the encoder component.

Figure 3 illustrates the quantum circuit for aggregating first-order neighbor information in

the encoder.

Entropy 2008, 8 7
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Figure 2. Model framework diagram. (a) illustrates the processing workflow of the encoder,

which primarily encodes network data into quantum states. (b) depicts the decoder in a two-step

Markov process.

init
U

cov
U ent

U
1

v
0

n

cov
U

+

+

+

ent
U

x
R

x
R

x
R

y
R

y
R

z
R

z
R

y
R

z
R

(a)

(b) (c)

𝑞 ( )

( ) ( )

( ) ( )

Figure 3. Quantum circuit diagram for the encoder aggregating first-order neighbor information.

(a) illustrates the overall process of encoding first-order neighbors, which is divided into three

components: Uinit, Ucov, and Uent. |φv⟩
1 in (a) denotes the quantum state representation of node v

after aggregating information from its first-order neighbors. Uinit encodes the feature vector of a

node into the rotation gates of the quantum circuit. Ucov, as shown in (b), encodes the parameters U1

and U2 into the node v and its neighboring node u, respectively. Uent, in (c), generates entanglement

among all nodes.

In Figure 3, each line represents a node. The circuit in the Uinit component encodes

node features into the rotation parameters of quantum gates, corresponding to the initial

state of the nodes. RX , RY, and RZ denote quantum gates that perform rotations on the X,

Y, and Z axes, respectively. The rotation parameter corresponding to node v is U1, and that
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of its neighboring node u is U2. The quantum gates used in Uent are CNOT gates, which

entangle the nodes within the system. Figure 3 represents a quantum system corresponding

to a subgraph composed of node v and its first-order neighbors. The output of this system is

the quantum state representation of node v after aggregating the information from its first-

order neighbors. The quantum state obtained after aggregating the first-layer information

serves as the input for constructing the second-layer aggregation circuit. By iterating this

process, the quantum state representation of a node embedding that aggregates information

up to the k-hop neighborhood can be obtained.

To capture as much global information from the graph as possible, a global node was

introduced to obtain the quantum state representation of the entire graph. A new global

node was created that connects to all nodes in the graph while ensuring that the global

node was not included in the neighbor sets of other nodes. The global node aggregated

its neighbors following the process outlined in Figure 3. The output after aggregating

multi-layer neighbors for the global node was used as the quantum state representation of

the entire graph, corresponding to the state S in the decoder design.

The Uinit in Figure 3 is responsible for calculating the parameters of quantum rotation

gates that map nodes onto the quantum circuit, representing the initialization of nodes.

The steps are as follows:

(1) Randomly initialize the rotation parameter vector
−→
θ , with the same dimension as

the initial features of the nodes. Let the initial feature of node v be −→xi . These initial

features represent the intrinsic attributes of each node prior to any encoding or

learning process. In practical applications, such as in social networks, these features

may include user-specific information like basic account details, gender, location,

and follower count [2]. In contrast, for synthetic networks, initial features are often

derived from structural metrics such as clustering coefficients, degree centrality, or

other topological measures that capture the network’s connectivity and community

structure. The quantum circuit for the mapping of node v is shown in Figure 4.
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Figure 4. Quantum circuit diagram for the mapping component.

In this circuit, the input is the quantum state |0⟩. RX represents the rotation gate

around the X axis in the quantum circuit. xik and θk denote the k-th component of

the initial feature of node i and the k-th component of the initial rotation parameter,

respectively. The output is the quantum state mapping |φi⟩ of node i.

(2) Calculate the Euclidean distance correlation matrix D for the graph as follows: let
−→xi represent the initial feature of node i. The similarity between nodes i and j is

computed as [56]

Dij =
⟨−→xi ,−→xj ⟩

∥−→xi ∥ ∥
−→xj ∥

, with i ̸= j, (11)

where ⟨·, ·⟩ denotes the inner product.

(3) Calculate the Hilbert space distance correlation matrix D
′

based on quantum state

mappings. Let |φi⟩ denote the quantum state mapping of node i. The similarity

between nodes i and j, where i ̸= j is in the Hilbert space, is given by

D′ij = ⟨φi|φj⟩, with i ̸= j. (12)
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(4) Compute the loss to adjust the initial rotation parameter
−→
θ . Define the loss function as

L = ∑
ij

|Dij − D
′

ij|. (13)

Use the interpolation-based derivative-free optimization method UOBYQA [57] to

determine the optimal rotation parameter vector
−→
θ that minimizes the loss function.

3.2. Decoder

The decoder constructed a multi-layer parameterized quantum circuit to approximate

the Q-function, mapping the processed quantum state representation to a node importance

ranking vector. In reinforcement learning, the process consists of the environment state

S, the actions A taken in response to the environment, and the rewards R obtained after

taking the actions. In the node ranking problem, the quantum state representation of the

residual network after each round of node removal was treated as the state S, the quantum

state representations of the nodes to be removed were treated as the action A, and the

reduction in the accumulated network connectivity (ANC) [58] after node removal was

used as the reward R. The formula for calculating ANC is as follows:

ANC(v1, v2, . . . , vN) =
1

N

N

∑
k=1

σ(G\{v1, v2, . . . , vk})

σ(G)
, (14)

where N represents the number of nodes, vi denotes the i-th removed node, and σ is the

connectivity function. In this paper, the primary function of σ is to measure the size of

each connected component in the network, thereby providing a reliable quantitative basis

for evaluating overall connectivity. Specifically, we define σ(G) as σ(G) = ∑Ci∈G
δi(δi−1)

2 ,

where Ci denotes the i−-th connected component of the graph G, and δi represents the

number of nodes within Ci. Accordingly, the reward Rt at time t can be derived as

Rt = ANC(v1, v2, . . . , vt−1)− ANC(v1, v2, . . . , vt).

To map the encoded quantum state representation |S⟩ produced by the encoder into a

Q-value for each node in the reinforcement learning framework, we constructed a multi-

layer parameterized quantum circuit, as shown in Figure 5. Each layer consists of three

primary operations:

1. Data re-uploading Ux, which re-uploads the state features onto the circuit [46,59].

2. Parameterized rotations Ry(θyi
) and Rz(θzi

), where {θyi
, θzi
} are trainable parameters

corresponding to each qubit i. For the sake of clarity and conciseness, we denote

the trainable parameters for the Ry gates as Uy and those for the Rz gates as Uz.

Collectively, Uy and Uz comprise the trainable parameter set of the decoder.

3. Entangling gates (CNOT), which entangle different qubits to capture correlations

across the system.
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Figure 5. The quantum circuit diagram for a single layer of the decoder part. Ux represents the data

re-uploading, while the rotation angles of RY and RZ are trainable parameters of the decoder. Each

layer of rotation gates is succeeded by a layer of CNOT gates, facilitating entanglement within the

system. The complete decoder is constructed by stacking multiple layers of this circuit.
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Mathematically, we can represent one layer of the decoder circuit as follows:

∣

∣

∣
y(l+1)

〉

=

(

J

∏
j=1

CNOTj

)(

n
⊗

i=1

U
(l)
z U

(l)
y

)

Ux

∣

∣

∣
y(l)
〉

, (15)

where
∣

∣

∣
y(l)
〉

∈ H⊗n denotes the quantum state of the n-qubit system at the l-th de-

coder layer. The unitary operator Ux performs data re-uploading, and the tensor product
⊗n

i=1 U
(l)
z U

(l)
y applies parameterized rotations about the Y and Z axes on each qubit. The

subsequent ordered application of CNOT gates induces entanglement among the qubits.

The entanglement network implemented by the product of CNOT gates follows a ring

topology, where each qubit acts as a control for the subsequent qubit, and the last qubit

controls the first one. Specifically, for an n-qubit system, we implemented the sequence

CNOT1→2, CNOT2→3, . . ., CNOTn−1→n, CNOTn→1, where CNOTi→j indicates a CNOT

gate with qubit i as the control and qubit j as the target. This circular arrangement ensures

that information can propagate through the entire qubit register, enabling the creation of

complex entangled states necessary for representing the Q-function.

Stacking L such layers yields the final state
∣

∣

∣
y(L)

〉

, and the trainable parame-

ters {U
(l)
y , U

(l)
z } are optimized via repeated measurements to approximate the desired

Q-function.

3.3. Computing Q-Values

Following the construction of the multi-layer decoder, projective measurements were

performed on the final quantum state to extract Q-values. Let
∣

∣

∣
y(L)

〉

denote the output

state of the final decoder layer; the Q-value for an action at in state st can be expressed as

the expectation value of a measurement operator M̂at :

Q(st, at) = ⟨y(L)|M̂at |y
(L)⟩, (16)

where M̂at is a Hermitian measurement operator chosen as the Pauli Z observable that

corresponds to the Q-value of action at [39]. Multiple measurement shots are employed to

obtain a statistically robust estimate of the expectation value, which is used as the Q-value

in the reinforcement learning procedure. Evaluating these Q-values for all feasible actions

yields a ranking vector that reflects the relative importance of each node.

3.4. Loss Function Design

The trainable parameters consisted of two components: encoder parameters

ΘE = {U1, U2} and decoder parameters ΘD = {Uy, Uz}. The encoder error was mea-

sured by the quantum state representations of nodes after encoding, where connected

nodes were expected to have similar quantum state features. The decoding error arose

from the delayed update mechanism of deep Q-networks, where a target Q-network with

an identical structure to Figure 5 but different parameters was constructed. The target

Q-network’s initial parameters matched those of the Q-network updated at each step, with

periodic updates from the Q-network parameters.

The Q-values generated after measuring the Q-network were denoted as Q(st, at),

where st represents the environmental state at time t. The target Q-values produced by the

target Q-network were expressed as rt + γmax
a

Q(st+1, a), where rt represents the reward

obtained at time t, and γ ∈ [0, 1] is the discount factor weighing the importance of future

rewards. Thus, the overall error for one training iteration was formulated as
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Loss(ΘE, ΘD ) = α
N

∑
i,j=1

si,j

∥

∥|φi⟩ − |φj⟩; ΘE

∥

∥

2

2

+ E(st ,at ,rt,t+n ,st+n)∼U(B)

[

(

rt,t+n + γmaxa′ Q̂
(

st+n, a′; Θ̂D

)

−Q(st, at; ΘD)
)2
]

,

(17)

where E(st ,at ,rt,t+n ,st+n)∼U(B) represents the expectation value over samples randomly drawn

from the replay memory to reduce sample correlation. The term rt,t+n denotes the n-step

return, which is the accumulated reward from time step t to t + n. α denotes the encoding

error weight. si,j indicates whether node i and node j are connected. If i ∈ N (j), then

si,j = 1; otherwise, si,j = 0. |φi⟩ represents the quantum state feature of node i obtained

after node encoding. |φi⟩ represents the quantum state feature of node i obtained after

node encoding. The semicolon notation indicates parametric dependence. The Q̂ denotes

the target network, which uses fixed parameters Θ̂D during optimization steps.

4. Experiments and Results

This model supports training on small synthetic networks and subsequent applica-

tion in real-world scenarios. Synthetic networks were generated using the Erdős–Rényi

(ER) [60] and the Watts–Strogatz (WS) [61] networks, with 30 to 50 nodes. For each node,

initial feature representation is constructed from several topological metrics, including

degree centrality [62], eigenvector centrality [63], betweenness centrality [64], closeness

centrality [62], and the clustering coefficient [61]. Experimental results demonstrate that the

model performed well when the network size was several hundred nodes. Comparative

benchmarking against canonical centrality measures, including degree, PageRank [65],

eigenvector, coreness [66], and betweenness centrality, confirms the feasibility of our pro-

posed quantum-inspired algorithm. The results validate that the approach effectively

operates within the established theoretical framework. The number of model parameters

was linearly related to the number of network layers, thereby reducing computational

complexity relative to classical deep neural networks, which often exhibit much faster

parameter growth. In this section, we briefly describe the three empirical networks used in

the experiments. Subsequently, we analyze the ranking results of QDRL on toy networks.

Then, we illustrate the relationship between the node ranking performance of QDRL and

the p-values in ER and WS networks.

4.1. Data Description

To evaluate the performance of QDRL, we performed experiments on three real-world

networks:

Football [67]: This network, consisting of 115 nodes and 613 edges, represents the

schedule of Division I college football games during the 2000 season in the United States.

Each node corresponds to a football team, while each undirected edge indicates that a game

was played between the two connected teams.

USAir [68]: The USAir network, consisting of 332 nodes and 2126 edges, represents the

U.S. air transportation system. Each node corresponds to an airport, while each undirected

edge indicates the existence of a direct flight connection between two airports.

Karate Club [69]: The Karate Club network, consisting of 34 nodes and 78 edges,

represents the social relationships between members of a university karate club, as observed

by Wayne Zachary in 1977. Each node corresponds to a club member, and each undirected

edge indicates a social interaction or tie between two members.

Because the number of qubits available in current quantum hardware is limited, we

selected relatively small networks to ensure the feasibility of our quantum circuit implemen-
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tations. Despite their modest scale, these datasets exhibit diverse topological characteristics,

thereby allowing us to assess the adaptability and robustness of our proposed method

across different network structures.

4.2. QDRL Node Ranking on Real-World Datasets

We compared our approach with node centrality metrics such as degree and between-

ness, as well as the PageRank method, with the experimental results shown in Figure 6.

Figure 6a–c evaluate the performance of the model from the perspective of the ANC curve.

The results demonstrate that QDRL performed comparably to the baselines, particularly on

smaller networks such as Football and Karate Club. Considering the limited number of

qubits used during training, QDRL’s ability to aggregate information achieved an optimal

state when applied to networks of smaller scale.
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Fig. 6. The dismantling performance of different methods on real-world networks. The x-axis represents the proportion
of nodes removed. In a–c, the y-axis denotes the ANC values after node removal, while in d–f, the y-axis represents the size
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Figure 6. The dismantling performance of different methods on real-world networks. The x axis

represents the proportion of nodes removed. In (a–c), the y axis denotes the ANC values after node

removal, while in (d–f), the y axis represents the size of the GCC (giant connected component).

Figure 6a,d demonstrate that the trend lines of QDRL were similar to those of other

methods. Therefore, we conducted a separate visualization and correlation analysis of node

rankings for the Football dataset, as shown in Figure 7. Figure 7g presents the pairwise

Pearson correlation coefficients computed over the rankings of all nodes. The Pearson

correlation coefficient is defined as

rxy =
∑

N
i=1(xi − x̄)(yi − ȳ)

√

∑
N
i=1(xi − x̄)2

√

∑
N
i=1(yi − ȳ)2

, (18)

where xi and yi denote the ranking scores for node i from two different methods, and x̄ and ȳ

are the corresponding mean values. A coefficient close to +1 indicates that the two methods

yield similar ranking orders, whereas a coefficient close to −1 suggests that the rankings

are inversely related. Values near zero indicate little or no linear correlation between the

methods. This measure thus provides a quantitative assessment of the consistency between

different node ranking approaches. Combined with the results from Figures 6 and 7, it was

evident that QDRL not only maintained comparable performance but also provided unique

insights. Additionally, the QDRL approach identified influential nodes that were more
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uniformly distributed across the network topology, in contrast to traditional methods which

tend to concentrate on densely connected regions. This spatial distribution of key nodes

helped overcome the “rich-club” phenomenon, where importance is disproportionately

assigned to highly interconnected nodes. The more balanced identification of influential

nodes is particularly valuable for applications requiring diverse network coverage, such

as information dissemination or network monitoring, as it prevents the overemphasis on

already well-connected regions while recognizing important nodes in peripheral areas that

might otherwise be overlooked.Entropy 2008, 8 14
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titative assessment of the consistency between different node ranking approaches. Combined with the338
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more uniformly distributed across the network topology, in contrast to traditional methods which tend341

to concentrate on densely connected regions. This spatial distribution of key nodes helped overcome342

the “rich-club” phenomenon, where importance is disproportionately assigned to highly interconnected343

nodes. The more balanced identification of influential nodes is particularly valuable for applications344

requiring diverse network coverage, such as information dissemination or network monitoring, as it pre-345

vents the overemphasis on already well-connected regions while recognizing important nodes in periph-346

eral areas that might otherwise be overlooked.347

To further illustrate QDRL’s capability to mitigate the effects of localization, we constructed a toy348

network to demonstrate QDRL’s ability to capture global information, as shown in Fig. 8. We selected349

Figure 7. Visualization and correlation analysis of node rankings for six methods. Using the Football

network as an example, the vertex colors in (a–f) are proportional to the normalized values of each

method, applying min-max normalization. (g) visualizes the pairwise Pearson correlation, where the

letters (a–f) on the x axis and y axis represent degree, PageRank, eigenvector, coreness, betweenness,

and QDRL, respectively.

To further illustrate QDRL’s capability to mitigate the effects of localization, we con-

structed a toy network to demonstrate QDRL’s ability to capture global information, as

shown in Figure 8. We selected two groups of node sets for analysis, each containing two

nodes: {C, K} and {B, N}. Figure 8 reveals that nodes C and K are direct neighbors of

node F, which is highly influential. While proximity to an influential node often increases

a node’s ranking in classical centrality metrics, QDRL incorporates additional structural

information that prevents overemphasis on immediate adjacency to a single dominant

node. Specifically, QDRL learns from the global dismantling effect observed during train-

ing, thereby assigning lower ranks to C and K despite their closeness to F. This does not

imply that F should have no influence at all but rather that QDRL balances local prox-

imity with broader connectivity patterns. Consequently, C and K receive rankings that

diverge from those assigned by other methods, underscoring QDRL’s capacity to capture

network-wide context.

In contrast, nodes B and N receive higher rankings under QDRL. Although these

nodes do not have particularly high degrees, Figure 8g shows that they act as structural

“bridges”, connecting multiple substructures in the network. Removing B or N increases

fragmentation more effectively than might be suggested by local metrics alone. It should

be noted that other nodes such as S or K can also exhibit bridging properties in certain

contexts. However, in this particular configuration, B and N play a more critical role in

the global dismantling process, leading QDRL to rank them among the top three nodes

alongside F. After removing F, N, and B, as identified by QDRL, the network splits into

more evenly distributed subgraphs compared to other methods, indicating a reduction in

the localization of message propagation.
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Fig. 8. Node rankings in the toy network under six different methods. For clarity, the specific rankings of each node
are depicted in the figure, with the size and color of nodes proportional to their perceived importance, where 1 represents the
highest rank and 20 the lowest. Panel d shows the ANC curves of the six methods, with the x-axis representing the proportion
of nodes removed. Panel h shows the trend of ranking changes for each node across the different methods.

Figure 8. Node rankings in the toy network under six different methods. The specific rankings of

each node are depicted in panels (a–c,e–g). The size and color of nodes are proportional to their

perceived importance, with rank 1 representing the highest importance and rank 20 the lowest. Panel

(d) shows the ANC curves of the six methods, with the x axis representing the proportion of nodes

removed. Panel (h) shows the trend of ranking changes for each node across the different methods.

4.3. QDRL Node Ranking on Synthetic Networks with Varying Edge Densities

To investigate the relationship between QDRL’s performance and network properties,

we conducted analyses based on the ER [60] and WS [61] networks, with the generated

networks set to a size of n = 40. For th ER networks, the edge probability pER-value was in

the range [0.05, 0.5] with an interval of 0.05, while for the WS networks, the initial node

degree k was fixed at 4, and the rewiring probability pWS-value was in the range [0.01, 0.15]

with an interval of 0.01. For each pER-value and pWS-value, 100 networks were generated.

The results are shown in Figure 9.
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ponents, suggesting that node removal has a greater destructive impact on the network. In contrast, a377

larger area signifies slower disintegration and greater resistance to fragmentation attacks, implying that378

the identified nodes do not serve as critical bridging nodes in the network. In Fig. 9a and Fig. 9d, it379

was observed that QDRL performs comparably to other methods in ER networks. As shown in Fig. 9c,380

when 𝑝𝐸𝑅 was small, network disintegration occurred more rapidly, whereas for larger 𝑝𝐸𝑅-values, the381
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Figure 9. A performance comparison of six methods under varying edge densities on synthetic

graphs generated using ER and WS networks. Panel (a,d) show the area under the ANC curves for

each generated network. Panel (b,e) depict the proportion of nodes removed when the GCC size

was 10% of the total network size. Panel (c,f) illustrate the curves of the optimal GCC size for each

corresponding p-value.
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From Figure 9, the area under the ANC curve reflects the speed of network disinte-

gration and the degree of fragmentation. A smaller area indicates faster disintegration

and more fragmented connected components, suggesting that node removal has a greater

destructive impact on the network. In contrast, a larger area signifies slower disintegration

and greater resistance to fragmentation attacks, implying that the identified nodes do

not serve as critical bridging nodes in the network. In Figure 9a,d, it can be observed

that QDRL performed comparably to other methods in the ER networks. As shown in

Figure 9c, when pER was small, network disintegration occurred more rapidly, whereas

for larger pER-values, the network dismantling rate initially decreased gradually and then

accelerated. This is attributed to the increased homogeneity of information in strongly

connected networks. In the WS networks, as illustrated in Figure 9d,e, QDRL significantly

outperformed other methods when pWS was small, indicating QDRL’s ability to identify

more influential nodes in highly clustered topologies. Although the clustering coefficient

remained relatively high and did not vary significantly within the range 0.01 < pWS < 0.15,

the average path length decreased noticeably as pWS increased. This reduction in path

length implies that nodes become more globally interconnected, thereby influencing how

QDRL ranks nodes in terms of their overall impact on network disintegration. As shown in

Figure 9e, even as pWS grew, the GCC size under QDRL remained markedly lower than for

other methods, suggesting that QDRL captures these long-range dependencies effectively

and disperses network fragments more evenly. Moreover, Figure 9f shows that QDRL’s

disintegration trend line exhibited reduced fluctuation compared to Figure 9c, reflecting

that QDRL strikes a better balance between regularity and randomness when determining

node influence rankings in WS networks.

5. Conclusions

In this study, we proposed a quantum deep reinforcement learning algorithm for

identifying critical nodes in networks, thereby demonstrating that network analysis tasks

can be effectively addressed with quantum algorithms. The model was designed within

a reinforcement learning framework, comprising an encoder and a decoder. The encoder

utilized Quantum GraphSage to aggregate multi-hop neighbor information, capture long-

range correlations between nodes, and preserve the original graph structure. The decoder

employed a quantum DDQN to ensure stability during model training. This model was

trained on small synthetic networks and subsequently applied to real-world networks,

demonstrating its superior generalization performance. Benefiting from quantum comput-

ing, the parameter count of the model scaled linearly with the number of network layers,

significantly improving training efficiency.

The experimental results indicate that QDRL achieves performance comparable to

classical methods on small-scale networks, serving as a proof-of-concept for the applicability

of quantum approaches to network analysis. Given the current limitations in available

qubits, our experiments were conducted on relatively small networks; however, these

findings reveal that quantum algorithms can offer unique insights into node importance

rankings and network dynamics.

Looking ahead, as quantum computing technology advances and larger quantum sys-

tems become accessible, the scalability and computational advantages of our approach are

expected to increase. Future quantum processors, with their inherent parallelism and expo-

nential state space, could enable our model to be applied to much larger and more complex

networks, ultimately leading to superior performance compared to classical techniques.

Overall, our work establishes a foundation for leveraging quantum deep reinforcement

learning in complex network analysis and paves the way for further exploration as quantum

hardware continues to evolve.
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