
RESEARCH ON VISUALIZATION AND
INDEXING OF DATA BASED ON THE ELK STACK

Yukun Li1†, Jianshe Cao1, Qiang Ye, Yaoyao Du
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

1also at University of Chinese Academy of Sciences, Beijing 100049, China

Abstract
This paper proposes a comprehensive solution for real-

time collection and analysis of Beam Position Monitor
(BPM) telemetry data using Kafka and the ELK stack [1].
It involves transmitting PV variables from BPM electronic
devices to the Kafka messaging queue, enabling powerful
and scalable data streaming. By retrieving JSON formatted
data from Kafka using the ELK stack, efficient data index-
ing and visualization in Kibana are achieved. The paper
provides detailed explanations of the architectural design,
implementation details, and the advantages of using Kafka
as a central hub for BPM data dissemination. This integra-
tion not only enhances the performance and reliability of
the data processing pipeline but also offers a powerful tool
for physicists and engineers for real-time visualization and
monitoring of BPM data.

DISTRIBUTED MESSAGING SYSTEM
Kafka, in conjunction with Zookeeper, forms a distrib-

uted messaging system that ensures high reliability and
consistency within the Kafka cluster. Zookeeper serves as
Kafka’s configuration center, storing all crucial infor-
mation about Topics, Partitions, and Brokers. When Bro-
kers in the Kafka cluster join or leave, Zookeeper dynami-
cally adjusts the system configuration to ensure stable op-
eration of the cluster. Moreover, Zookeeper is responsible
for the fault recovery process when a Broker fails, by re-
electing new leaders to maintain the continuity of the mes-
saging system.

Kafka relies on Zookeeper to handle synchronization is-
sues within the cluster, where the stability and reliability of
Zookeeper directly impact the quality and efficiency of
Kafka services. Together, they support building an effi-
cient, scalable, and reliable real-time data processing sys-
tem.

Kafka Message Queue
Apache Kafka is a distributed streaming platform capa-

ble of efficiently handling vast data streams [2]. Its core is
a publish-subscribe messaging system designed for scenar-
ios requiring high throughput and low latency data trans-
mission.

The Architecture of Kafka is illustrated in Figure 1. The
operational mechanics of Kafka include multiple Produc-
ers, Servers (Brokers), Consumers, Consumer Groups, and
a Zookeeper cluster. Producers publish messages to Kafka,
where messages are stably stored on Brokers’ log files in
chronological order. Consumers read messages from the

Brokers and support message re-reads. Kafka enables mes-
sage broadcasting (where each message is read by multiple
consumers) and load balancing (where each message is
processed by only one consumer in a consumer group)
through Consumer Groups.

The operational mechanics of Kafka include multiple
Producers, Servers (Brokers), Consumers, Consumer
Groups, and a Zookeeper cluster. Producers publish mes-
sages to Kafka, where messages are stably stored on Bro-
kers’ log files in chronological order. Consumers read mes-
sages from the Brokers and support message re-reads.
Kafka enables message broadcasting (where each message
is read by multiple consumers) and load balancing (where
each message is processed by only one consumer in a con-
sumer group) through Consumer Groups.

Producer A

Producer B

Topic A
Partition 0

Topic A
Partition 1

Topic A
Partition 0

Topic A
Partition 1

Message 0 Message 1

Consunmer
A

Consunmer
B

Zookeeper

Consunmer
C

Kafka Cluster

Leader Follower

Follower Leader

Broke1

Broke2

Broke3 Partition0

Figure 1: Kafka architecture diagram.

Zookeeper Cluster
Zookeeper is software that provides consistency services

for distributed systems, maintaining configuration infor-
mation, name registration, and distributed synchronization
through a centralized service [3]. As a centralized coordi-
nation system for distributed applications, Zookeeper rec-
ords all critical system status information, essential for the
system’s reliability and consistency.

In Kafka, Zookeeper manages cluster metadata and en-
sures synchronization among Brokers. Kafka utilizes
Zookeeper for leader elections among Brokers, managing
metadata of Topics, and monitoring cluster states, ensuring
message availability and consistency in case of Broker fail-
ures. Each Kafka cluster includes a Zookeeper cluster to
maintain consistent cluster status.

ELK STACK
The ELK technology stack, composed of Elasticsearch,

Logstash, and Kibana, is a collection of three open-source
tools mainly used for efficiently handling large data vol-
umes through search, analysis, and visualization. The ELK

†Li Yukun, working on accelerator beam measurement and control.
E-mail: liyukun@ihep.ac.cn.

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP50

386

MC7: Data Acquisition and Processing Platforms

WEP50

WEP: WEP: Wednesday Poster Session: WEP

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

stack offers a powerful and flexible solution from data col-
lection to processing, and visualization, where each com-
ponent plays a crucial role in the data handling process [4].

Logstash
Logstash is a powerful data processing pipeline capable

of simultaneously collecting data from multiple sources,
transforming it, and sending it to designated reposito-
ries [5]. It supports various input, filter, and output plugins,
adapting to nearly any type of log format and data source.
Any type of event stream can be processed and transformed
through Input, Filter, and Output plugins in Logstash. Its
flexibility and robust data transformation capabilities make
it an ideal choice for data preprocessing and cleansing.

Logstash can couple with various external systems, col-
lecting data from sources including log files, system mon-
itoring tools, and other data streams. It can gather data from
multiple sources at the same time. In this paper, Kafka is
chosen as the data source for Logstash. As a high-perfor-
mance message queue, Kafka can cache data in the Kafka
cluster to prevent data loss. Deploying Kafka as a data
source for Logstash instead of directly transmitting data
through Logstash aims to relieve the pressure on Logstash
as a data pipeline and avoid data loss.

Logstash supports various Filters, such as grok, json,
mutate, etc. By using filters, Logstash can parse and trans-
form data into structured and query-friendly formats. For
instance, this paper uses the json plugin to convert array-
type json format data into list types. Data processed by
Logstash can also be outputted to multiple destinations
through output plugins. This paper chooses to output data
to the Elasticsearch cluster, although Logstash also sup-
ports other storage systems like Amazon S3, MongoDB,
etc.

Elasticsearch
Elasticsearch is a highly scalable open-source full-text

search and analytics engine. It operates in real-time,
providing quick and efficient storage, search, and analysis
of large-scale data [6]. Built on Apache Lucene, Elas-
ticsearch supports various types of search capabilities, in-
cluding full-text search, structured search, and geospatial
search.

As a distributed system, Elasticsearch automatically dis-
tributes data and query loads across multiple nodes, han-
dling massive amounts of data. It provides near real-time
search capabilities, enabling quick retrieval of data. Elas-
ticsearch also supports automatic sharding and replication,
which facilitates handling hardware failures and supports
horizontal scaling of clusters.

For deployment, this paper opts for a three-node Elas-
ticsearch cluster. In an Elasticsearch cluster, multiple
nodes work together, sharing data and processing tasks.
The cluster elects a master node through an election pro-
cess, which manages the cluster's metadata and controls
cluster operations. If a network failure or other issue causes
some nodes to lose connection with others, it could lead to
multiple nodes or groups of nodes believing they are the
master node, conducting operations independently. This

split-brain scenario can severely affect data integrity and
availability.

Kibana
Kibana is a data visualization front-end platform for

Elasticsearch, used for searching, viewing, and interacting
with data stored in Elasticsearch indices [7]. Through
Kibana, users can create data queries and charts, visually
presenting data in a straightforward manner.

Kibana’s dashboard interface supports various chart
types, including bar charts, line charts, pie charts, and scat-
ter plots, allowing for diverse styles of data visualization.
Kibana provides a web-based interface, enabling users to
analyze and query data in Elasticsearch in real-time.

SYSTEM ARCHITECTURE AND
IMPLEMENTATION

Data Transmission Process
The data transmission architecture is illustrated as Fig-

ure 2 [8]. Data acquisition programs retrieve PV variables
already written to the database from Archiver and convert
these process variables into JSON formatted data. This data
is then written to a pv_list as a data cache. At this stage, the
data in the cache is array-type, which is then converted to
list-type before being written into the designated Kafka
message topic. After confirming successful message trans-
mission, the topic, partition, and offset of the data written
to Kafka are printed. Once data is written to Kafka, it is
sent to the Elasticsearch cluster through the Logstash pipe-
line, where it generates a data index, ultimately visualized
on the Kibana interface.

Database

Kafka Cluster

Elasticsearch Cluster

Kibana

Start

EPICS IOC

PV Update

Data Acquisition

Logstash

No

Yes

Figure 2: Data transmission flowchart.

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP50

MC7: Data Acquisition and Processing Platforms

387

WEP: WEP: Wednesday Poster Session: WEP

WEP50

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

System Architecture
The overall system architecture is designed as shown in

the Figure 3. The EPICS-IOC represents a hardware BPM
electronics, supplying PV variable data for the entire sys-
tem. The end-users interact with a data visualization inter-
face and monitor the operation of various system modules.
Deploying traditional Kafka and ELK components requires
extensive and complex environment configuration. To en-
hance compatibility across different environments and im-
prove the system’s portability and scalability, the entire
system adopts a microservices architecture. It uses the
Docker container engine to deploy Kafka, Zookeeper,
Logstash, Elasticsearch, and Kibana within a three-node
Kubernetes high-availability cluster [9]. The data acquisi-
tion program is implemented using a Python script.

Docker container technology primarily addresses com-
patibility issues across different environments by provid-
ing a virtual Linux system environment, allowing container
applications to be compatible with various host environ-
ments. Kubernetes cluster technology offers a more ad-
vanced and flexible way to orchestrate, schedule, and man-
age containers in larger and more complex systems.

Kube-Api-Server

Kube-Scheduler

Kube proxy

Kube-Controler-Manager

Kubelet

Kube proxy

Kubelet

Master

Node1

Node2

ETCD

Kafka

Kafka

Zookeeper

Archiver Database

Logstash Elasticsearch

Elasticsearch

Elasticsearch

Kibana

Figure 3: System architecture diagram.

System Implementation
The configuration for services such as Kafka,

Zookeeper, and the ELK stack is defined through YAML
files within the Kubernetes cluster. Configuration files al-
low defining services including Service, Deployment,
StatefulSet, ConfigMap, PersistentVolume, and Persis-
tentVolumeClaim [10].

Service.yaml enables port configuration for each ser-
vice. The port configuration for each service is shown in
Table 1. For services like Zookeeper and Logstash that do
not require external access, their service ports only need to
be exposed to other services within the system, in this case,
Kafka and Elasticsearch. The default ClusterIP mode can
satisfy these requirements. However, Kafka requires data
input from external systems into the message queue, and
Kibana needs terminal access to the data visualization
dashboards, thus for Kafka and Kibana services, the Node-
Port mode is selected. Elasticsearch is a special case as it
needs a web interface to confirm its operational status and
internal ports to receive data transmitted from the Logstash

pipeline. For these dual types of port exposure require-
ments, both NodePort and ClusterIP modes are set accord-
ingly.

Table 1: Port configuration table

Service
Type

Port
Type

Default
Port

External
Port

Kafka NodePort 9092 30092
Zookeeper ClusterIP 2181 -
Logstash ClusterIP 9600 -
Elas-
ticsearch

NodePort/
ClusterIP 9200/9300 30920/-

Kibana NodePort 5601 30561

In Kubernetes, container orchestration involves various
resource object types. This document deals with Deploy-
ment and StatefulSet types. For general services, Deploy-
ment is typically chosen as it is used to manage stateless
applications where each Pod’s replica can replace another
without retaining any specific state. Deployment ensures
that multiple replicas of an application are evenly distrib-
uted across the cluster, accessed through load balancers,
which helps achieve high availability and load balancing
of the application. Deployment supports declarative update
strategies, allowing application versions to be updated
without downtime. In this document, Kafka, Zookeeper,
Logstash, and Kibana are all of the Deployment type, as
these services generally do not involve data storage issues.
Kafka, as a message queue, usually does not persist data
continuously.

StatefulSet is designed for applications that need to
maintain persistent state. It guarantees a fixed, persistent
identifier for each Pod’s replica, even when rescheduled to
other nodes. StatefulSet provides stronger guarantees on
creating and terminating Pods. They are always created and
terminated in order, ensuring the current Pod is running be-
fore starting the creation of the next one. This is particu-
larly important for applications requiring strict startup se-
quences, like Elasticsearch as a distributed database men-
tioned in this document. When configuring the Elas-
ticsearch service, three replicas are created, and persistent
volumes are also created for each Pod, ensuring each Pod
has its storage which is remounted to the corresponding
Pod if rescheduled to another node.

EXPERIMENTS AND RESULTS
The underlying platform for the system is the Proxmox

VE virtualization platform, which includes a Kubernetes
cluster environment composed of three virtual machine
nodes. YAML files for various services are deployed
within the cluster. The dashboard interface like Figure 4
allows monitoring of service conditions. After starting
Kafka and the ELK components, the data acquisition pro-
gram is executed, entering Kafka to view the JSON array-
type data already written into the message queue. Entering
the Logstash backend to execute the conf file transmits the
data from the Kafka message queue to Elasticsearch, where
Elasticsearch automatically generates a data index. As

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP50

388

MC7: Data Acquisition and Processing Platforms

WEP50

WEP: WEP: Wednesday Poster Session: WEP

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

shown in the Figure 5, the Kibana dashboard interface of-
fers a visualization interface, which can be added to query
the data in Elasticsearch.

Figure 4: Kubernetes dashboard.

Figure 5: Kibana visualization dashboard.

CONCLUSION
This paper proposes a method for real-time analysis and

visualization of PV data within BPM using the Kafka mes-
sage queue and ELK stack. Given the extensive data que-
rying and processing requirements, this method has signif-
icant practical value. The research approach combines
Docker container technology and a highly available Kuber-
netes cluster with a microservices architecture, enhancing
system stability and scalability for handling large-scale
data in major scientific installations. The system has under-
gone prolonged testing in a production environment,

demonstrating good operational performance and validat-
ing the technical feasibility of this approach. Future re-
search will integrate different system data collection, que-
rying, and processing needs to further enhance system per-
formance and reliability.

REFERENCES
[1] Elastic stack,

https://www.elastic.co/elastic-stack/
[2] Apache Kafka, https://kafka.apache.org/
[3] Apache Zookeeper,
 https://zookeeper.apache.org/

[4] M. Bajer, “Building an IoT Data Hub with Elasticsearch,
Logstash and Kibana”, IEEE Xplore, Aug. 01, 2017.
doi: 10.1109/FiCloudW.2017.101

[5] Logstash, https://www.elastic.co/logstash
[6] Elasticsearch,

https://www.elastic.co/elasticsearch

[7] Kibana, https://www.elastic.co/kibana
[8] Sasaki, Shinya, T. T. Nakamura, and M. Hirose, “Monitoring

system for IT infrastructure and EPICS control system at
SuperKEKB”, 17th international conference on accelerator
and large experimental physics control systems
(ICALEPCS’19), New York, USA, 2019, pp. 05-11.
doi:10.18429/JACoW-ICALEPCS2019-WEPHA134

[9] E. Kristiani, C.-T. Yang, C.-Y. Huang, Y.-T. Wang, and P.-
C. Ko, “The Implementation of a Cloud-Edge Computing
Architecture Using OpenStack and Kubernetes for Air
Quality Monitoring Application”, Mobile Networks Appl.,
vol. 26, pp. 1070-1092, Jul. 2020.

 doi: 10.1007/s11036-020-01620-5

[10] R. Wang, Y. Guo, N. Xie, R. Gu, and Z. Li, “A new deploy-
ment method of the archiver application with Kubernetes for
the CAFe facility”, Radiat. Detect. Technol. Methods, vol.
6, pp. 508-518, Oct. 2022.
 doi:10.1007/s41605-022-00356-y

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP50

MC7: Data Acquisition and Processing Platforms

389

WEP: WEP: Wednesday Poster Session: WEP

WEP50

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENG ()
 /ENU (Setup for JACoW - paper size, embed all fonts, compression, Acrobat 7 compatibility.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.000 792.000]
>> setpagedevice

