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N o a

Abstract: Digital quantum computers have the potential to simulate complex quantum systems.
The spin-boson model is one of such systems, used in disparate physical domains. Importantly, in
a number of setups, the spin-boson model is open, i.e., the system is in contact with an external
environment which can, for instance, cause the decay of the spin state. Here, we study how to
simulate such open quantum dynamics in a digital quantum computer, for which we use an IBM
hardware. We consider in particular how accurate different implementations of the evolution result
as a function of the level of noise in the hardware and of the parameters of the open dynamics. For
the regimes studied, we show that the key aspect is to simulate the unitary portion of the dynamics,
while the dissipative part can lead to a more noise-resistant simulation. We consider both a single spin
coupled to a harmonic oscillator, and also two spins coupled to the oscillator. In the latter case, we
show that it is possible to simulate the emergence of correlations between the spins via the oscillator.

Keywords: quantum computing; NISQ; open system

1. Introduction

A natural application of quantum computers is the simulation of quantum sys-
tems [1,2]. Furthermore, most hardware realizations of quantum computers implement
the qubit. A prevalent qubit-based quantum system is the spin system. Existing quantum
computers are based on unitary quantum circuits. Consequently, there has been a plethora
of research on closed quantum systems [3-6]. Amongst the spin models, an important class
is the spin-boson problem, where one or more spins are coupled to several bosonic degrees
of freedom. These models possess rich many-body physics and they can model realistic
coupling between electron transfer and protein motion or a solvent [7-11].

In recent years, NISQ computers [12,13] have offered a new perspective on the imple-
mentations on digital devices, leading to an explosion of activities. Not all computing tasks
are amenable to quantum processing. Classical optimization can often perform better than
quantum algorithms. The challenges of device-induced noise have led to the popularity of
hybrid quantum-classical variational algorithms (VQA) that split the workload between a
quantum and a classical processor. These techniques are ideally suited for the evaluation of
different quantities such as eigenstates [14], general quantum approximate optimization al-
gorithms [15], off-diagonal elements of matrices [16] and more [13]. Importantly, new error
mitigation approaches have also been proposed [17-19]. VQA has been applied to boson-
spin systems or its equivalents [20-22]. Regarding open systems, different VQA approaches
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have been tested. They include approaches based on imaginary time evolution [23,24],
stochastic Schrédinger Equation [25], variational quantum eigensolvers to reach steady
states [26,27], and the quantum-assisted simulator without a classical-quantum feedback
loop [28]. Mapping bosonic problems to quantum circuits has been laid out in [29-31],
while a recent implementation of spin-boson models can be found in [6].

Simulating open quantum systems entirely on digital quantum computers has primar-
ily focused on two-level systems. The amplitude damping channel has been implemented
with a unitary dilation of the Kraus operators [32], using uniformly controlled gates [33,34],
and with the amplitude damping circuit [2,35]. Larger systems have been realized using a
linear combination of unitary matrices [36,37] and modified stochastic Schrodinger equa-
tion methods [38]. In [25], the authors proposed a hybrid classical-quantum variational
approach to simulate generic Markovian open quantum systems.

Our aim is to simulate the open dynamics of a spin-boson model coupled to a dissipa-
tive channel on a digital quantum computer. We do this by mapping the bosonic modes
to qubits, Trotterizing the unitary evolution, and modeling the dissipative portion via
repeated collisions with a reset auxiliary qubit [35,39,40]. In doing so, we focus on using
different noise levels in the quantum computer, from the value in current hardware, to 1%
of it. With this in mind, we study how different implementations of the simulation perform
in presence of different noise levels.

The paper is organized as follows. In Section 2.1, we introduce the open spin-boson
model and lay out the circuit implementation. In Section 2.2, we describe the circuit
implementation of the unitary and dissipative evolutions. We then detail our use of
quantum hardware and noise-related limitations of the devices in Section 2.3. Our results
are presented in Section 3. We quantify the error stemming from approximations in the
model, and for different magnitudes of noise in the device. We study the optimal time-
step-sizes and dissipative rates in terms of fidelity. Finally, we increase the system size
to two spins and investigate whether it is possible to observe rising correlations amongst
the spins.

2. Method
2.1. Model

We consider Ng non-interacting spins coupled to a single harmonic oscillator, as well
as to a bath, as can be seen in Figure 1. The closed system is governed by the quantum Rabi
Hamiltonian [41-43], which describes the ultra-strong coupling regime, where the usual
rotating wave approximation breaks down and the counter-rotating term can no longer be
neglected [44-46].

Asp = hwata + 2 (ho7 + ed) + Ao (at +a), ¢))

Experimentally, the ultra-strong coupling regime has been investigated in circuit QED [47-52],
trapped ions [53], photonic systems [54], and semiconductors [55,56].

In Equation (1), 2" and 4, respectively, create and destroy one excitation in the harmonic
oscillator while &) = ¢;" + 07 and 67 are Pauli operators acting on the spin(s). / is the local
magnetic field in the z direction while € is a field in the x direction. A is the magnitude
of the coupling between the spins and the harmonic oscillator, with frequency w. In the
following, we will work in units such thath =7 = 1.
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Figure 1. Depiction of the model described by Equations (1) and (2) for a number of spins Ng = 2.
The two spin sites are coupled to one harmonic oscillator of frequency w via coupling parameter A.
Each of the spins dissipates independently into the environment at a rate of .

The dissipative part of the dynamics is here described by a Markovian master equation
in Gorini—-Kossakovski-Sudarshan-Lindblad form [57,58]

dp en o i sl [, 0
diz = —[Asp,p] + 7 }_(LpL{ — {LiLi p}) @)
k

with the amplitude damping channel L; = ||), (1| acting on the k—th spin and v being
the decay rate. ||) represents the vacuum state, whereas |1) represents the excited state of
the spin.

Equation (2) describes a setup where loss from imperfections in the cavity is negligible
compared to the spins emissions. In these systems, undesired decay transitions can include
the emission of frequencies which are suppressed in the cavity and are thus effectively
lost [59-61].

2.2. Circuit Implementation

In this section, we describe how we implement the evolution governed by Equations (1)
and (2) in a quantum circuit.

2.2.1. Encoding of the Hamiltonian

We map the spin and bosonic operators in Fsp to Pauli operators, and Trotterize the
unitary e~iHss!, The spin part is trivially mapped to qubits. For the bosonic subspace
and operators, we use a d-level-to-qubit mapping with Gray Code as the integer-to-bit
encoding, as described in [31,62]. We give more details on the mapping to Qp qubits in

Appendix A.

2.2.2. Trotterization of Unitary
To implement the unitary evolution operator U = e~iHss! we consider the first-order
U; and second-order U, Suzuki-Trotter product formulas [63,64]

u, = (e—ihlAt pmilAt e—ihNAt) £ 3)

Uy = (e~ YN iy il %)ﬁ 4)
where hy are N different, non-commuting, terms of the Hamiltonian after encoding and
At = t/N. The individual exponentials of Pauli strings e~ ! are then implemented via
the CNOT-staircase [2,3], which is taken care of by Qiskit [65]. See Equations (A2) and (A3)
in Appendix A for more details on .
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2.2.3. Collisional Model

We model the local master equation, namely Equation (2), via repeated collisions [39,66].
Figure 2 gives a depiction of a single collision. We consider the spin qubit s, and aux-
iliary qubit 2 and where a controlled-Ry () (rotation around y axis) is followed by a
controlled-NOT and a reset of the auxiliary qubit, see Appendices C and D for more details.

To reproduce Equation (2) we use 6 = arcs'm(\/ 1-— e—“Yf) [2].

.—D— _ T
a: 4 HE-  Hrvo) W]

Figure 2. Circuit implementation of the dissipative part of the circuit, D, which represent a single col-
lision to model Equation (2). s is the qubit representing the spin while a represents the auxiliary qubit.

2.2.4. Integration of Dissipative and Unitary Part

To integrate the step of Figure 2 in the main circuit, we employ a first-order Suzuki-
Trotter decomposition which alternates between the unitary and the dissipative parts.
In Figure 3a, we depict three steps of the evolution of a single spin coupled to a harmonic
oscillator mapped to two qubits, while in Figure 3b, we show our implementation of three-
step evolution of the case with two spins and one harmonic oscillator. For considerations of
connectivity, the auxiliary qubits needed for the dissipative channel are placed at the edges
of the circuit, next to the spins. After all time-steps are finished, the qubits representing the
spin(s) sy and the bosons by, are measured, while the state of the auxiliary qubit is ignored.

bo : : :E

b : — U U U —1A
R

ai : | D) : (a)

al: miinNeln

[ D D D
-
b : ' A
S 1 ] I
by : | ||i|
A P e P _Dﬂlﬂ__
a2 P P

Figure 3. Circuit structure, alternating between a unitary evolution and collisions with auxiliary
qubits and resets. (a) For a single spin and a (b) two spin system. Here, the spins are represented by
sk, the harmonic oscillator modes (4 levels) are encoded in the by, qubits and the auxiliary qubits are
represented by a;. X-Gate represents the initial state preparation, ||.) represents resets, the final gates
represent measurements, while D is described in Figure 2.

2.3. Quantum Hardware Simulation

To perform our quantum circuit simulations and run it on actual quantum hard-
ware, we use IBM’s Qiskit software [65]. The Quantum Computer we use is the 7-qubit
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ibmq_jakarta device with a native gate set {CNOT, ID, RZ, SX, X}. Each circuit is run with
213 — 8192 shots (repetitions).
We quantify the error at each point in time as the infidelity Z [67]

2

1(0,) =1 (1| Vae Vi) ) ©)

where we obtain the density matrix ¢’ of the circuit via quantum state tomography. We also
consider a time-averaged version of the infidelity Z, which is obtained by averaging the
infidelity over time, except for the time t = 0, which consists of just the state preparation.
The exact density matrix p for the benchmark is obtained from the exact evolution of the
master Equation (Equation (2)), for which we use QuTiP [68]. To mitigate the measure-
ment error on noisy hardware, we classically post-process the results with Qiskit’s error
mitigation, which approximates the inverse of the noise matrix of the readout [69].

Reduced-Noise Models

While it is important to study how current quantum processors can evaluate the
model we study, we also aim to explore what could be the performance of future, less
noisy, hardware. To model these scenarios, we use the same error channels that IBM uses
to describe their current devices.

The noise models include error sources in the gates, as thermal relaxation (relaxation
and dephasing) and depolarizing errors, and also readout errors [70].

For our reduced-noise models we scale down the average gate infidelity Zg,4,, the gate
times G4, and the false-readout probabilities, probability of measuring 1 when the state is
0 P(1]0) or vice versa P(0|1), by the same noise-factor &, or more precisely

IGute — C: : IGate (6)
tGate — g “tGate (7)
P(1]0), P(0[1) — ¢ - P(1]0), - P(0[1) (8)

where ¢ ranges from 0 to 1.

Indeed, realistically some of these parameters will not see equal improvement in the
coming years, but a more detailed analysis of differentiated improvements of different
aspects is beyond the scope of this work. Details on the error channels can be found in
Appendix B.

3. Results

Inaccuracies in the implementation of the model on a quantum computer can stem
from different causes of completely different nature. We will first consider errors that rise
from the Trotterization of the evolution in Section 3.1. We will then consider errors due to
the noisy nature of the quantum computer in Section 3.2. In Section 3.3, we will then study
the case of two spins coupled to the harmonic oscillator.

In the following, for the Hamiltonian, we choose the parameters e = 0.5, w =4, A =2
for one spin and € = 0.5, w = 6, A = 2 for two spins. For the open dissipative rate, we
choose v = 1. With these parameters, an accurate evolution of the system up to a time
t = 2 can be obtained considering simply four levels for the harmonic oscillator, which can
then be encoded with two qubits. For the initial state, we consider a pure product state
between spins and bosons, with one spin in the excited state and zero excitations in the
harmonic oscillator. This choice of initial conditions allows observing oscillatory, non-trivial
dynamics from early times, while not requiring too many levels for the harmonic oscillator.

3.1. Error from the Circuit Implementation

As explained earlier, to implement the open dynamics, we Trotterize the unitary
and dissipative parts of the master equation. However, for the implementation of the
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unitary evolution, we need to rely on another layer of Trotterization. In Figure 4, we
consider a unitary evolution with Hamiltonian Hsp from Equation (1) for a time-step At
and the possible implementation error, but considering no noise from the machine (blue
lines). Implementing the various non-commuting terms of Hsp in Qiskit [65] requires
48 single-qubit- and 19 CX-Gates or 79 single-qubit- and 28 CX-Gates, when using first or
second-order Trotter, respectively, (Table Al).

0.6 1

0.44
X

0.2

0.0

Figure 4. Time-averaged infidelity for the evolution from t = 0 to t = 2. Noiseless simulations of
the Hamiltonian v = 0 (blue line, dots) and the open system y = 1 (orange line, triangle). The solid
and dashed lines are used, respectively, for first-order and second-order Trotter implementations.
The common parameters are € = 0.5, w = 4, A = 2. The number of time-steps for At = t/
N =0.1,02,0.3,04,0.5 are N = 20,10, 7, 5,4, respectively, not counting t = 0, which just consists of
the initial state preparation.

In Figure 4, we evaluate the infidelity for both unitary and dissipative evolutions,
i.e., following Equation (2) for v = 0 (blue lines with circles) or v = 1 (orange lines
with triangles), versus At. We observe that the second-order Trotterization, dashed lines,
has significantly smaller infidelity than a first-order implementation, continuous lines.
Interestingly, beyond At ~ 0.3, the infidelity in just the Hamiltonian simulation is larger
than the infidelity when including the dissipation. Furthermore, independently of whether
one considers first-order or second-order Trotterization, the dissipative dynamics has either
smaller infidelity or it is very close to the unitary case. This implies that the unitary step
implementing the Hamiltonian is the main contribution to the infidelity compared to the
implementation of the dissipation.

3.2. Error in the Presence of Noise

We now turn to more realistic, and thus noisy, devices. In Figure 4, for noiseless
simulations, we observed that the infidelity increases monotonously with the time-step
size At, and that a second-order Trotterization is always preferred. In the presence of noise,
however, an increased number of gates can lead to stronger noise effects, and thus instead
of improving the quality of the simulations, it may result in worse fidelity. In Figure 5a,
we thus consider the evolution of the full model, unitary and dissipative part, up to a time
t = 2 for different magnitudes of noise ¢ = 0.01, 0.1, 1 (from lighter to darker colors), for
either a first-order Trotter step (continuous lines) or a second-order Trotter step (dashed
lines). In particular, we depict the infidelity versus the length of the time-step At. We
observe that for intermediate values of noise ¢ = 0.1, 1 there is an optimal time interval
At that corresponds to the lowest infidelity, and that first-order Trotterization can perform
better at smaller At.
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e a (b)

1072 1071 100

Figure 5. (a) Infidelity averaged over time as a function of time-step size At for an evolution from
t = 0 to a final time t; = 2. Different noise levels ¢ = 0.01, 0.1, 1 are represented by lighter to
darker colors. (b) Time-averaged (blue circles) and final (orange triangles) infidelity as a function
of noise levels. Here, the final time is taken as t = 2 and we choose At = 0.2. In both panels,
results from first-order Trotter implementations are represented by continuous lines, while those
from second-order are represented by dashed lines. Parameters e = 0.5, w =4,A =2,y = 1.

We now consider the open-system dynamics case. The impact of noise on fidelity is
depicted in Figure 5b. Here, we show both the average infidelity over the time interval from
t = 0 tot = 2 (blue line with circles), and the infidelity at the final time (orange line with
triangles). We consider exclusively a second-order Trotter decomposition and a time-step
At = 0.2. Figure 5b indicates a monotonous growth of infidelity with the noise-factor ¢,
for the parameters explored.

In Figure 6, we show the infidelity versus time for first-order (solid lines) and second-
order (dashed line) Trotterizations, while At = 0.2. We observe that, only for small values
of ¢, one would prefer a second-order Trotterization to improve on the fidelity of the
states. We note, not shown here, that for { = 0.01, the dynamics is almost identical to the
noiseless case.

To better understand the role of dissipation, we aim to verify its effect on the accuracy
of the simulation. To focus specifically on the role of 7y, we consider only a second-order
Trotter evolution, a fixed value of At = 0.2 and ¢ = 0.01, where the simulation of the
quantum computer shows generally better performance compared to levels of higher mag-
nitudes of noise ¢ = 0.1, 1. In Figure 7a, we plot the time-averaged infidelity at different
values of v, with (an orange line with circles) and without noise (blue line with triangles).
In noiseless simulations, the infidelity increases with <, while in noisy simulations the
infidelity initially reduces to a minimum at v = 1. Our understanding is that the dissi-
pation in the exact calculations acts in a similar way as the intrinsic noise on the device,
by drawing the system to its ground state and reducing coherence. It can thus be easier
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for a lossy quantum hardware to simulate a lossy system compared to a closed system
(v = 0). However, a system with larger v also implies further difficulties in the simulations
stemming, for example, from Trotterization. It thus occurs that the intrinsic dissipative

dynamics can, in some regimes, be better represented on a noisy device.

0.6

Figure 6. Infidelity as a function of time in open-system simulation in presence of noise. Using first-

order Trotter (solid) and second-order Trotter (dashed) at At = 0.2. At noise-factor ¢ = 0.01, 0.1, 1

(from lighter to darker colors). Other parameters aree = 0.5, w =4,A =2,y =1.
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Figure 7. (a) Infidelity averaged over time versus dissipative rate v with noise { = 0.01 (orange

line with circles) and without noise (blue line with triangles). (b) Infidelity as a function of time
v =0, 05,1, 1.5, 2, 2.5 (from lighter to darker colors). Second-order Trotter at At = 0.2 and the

other parameters aree = 0.5, w =4, A = 2.
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In Figure 7b, we plot the infidelity versus time for different values of the dissipative
rate y. We observe that, for y < 1, the infidelity tends to increase with time, while for larger
values of ¢ > 1.5, the infidelity can decrease after a maximum at an earlier time f ~ 0.4.

Figure 8 shows the average occupation in the harmonic oscillator, panel (a), and the
expectation values of ¢* of the spin, panel (b), versus time. In both panels, the dotted
line corresponds to the exact values, whilst the solid and dashed lines to § = 0.01, 0.1, 1,
respectively, from lighter to darker shades, and solid lines are used for first-order Trotteri-
zations, while dashed lines are used for second-order. For each noise level ¢, we used the
Trotterization order which corresponds to the lower fidelity.

The oscillatory evolution of the occupation of the harmonic oscillator is captured, only
partially, with the smaller non-zero noise parameter considered ¢ = 0.01, panel (a), while the
occupation of the harmonic oscillator at § = 1 quickly stagnates around a value of 1. Instead,
the simpler evolution of 6~ is also captured fairly well for the different values of ¢, as the
simulated dissipation of the spin is closer to the relaxation of the spin-qubit under noise.

0.00 -

Figure 8. (a) Average bosonic occupation (#1) and (b) (6%) as a function of time. Different noise levels
¢ = 0.01, 0.1, 1 are presented, respectively, by lighter to darker colors. As a reference, exact simulations
are depicted by dotted lines. Results obtained using first-order Trotterization are with solid lines, while
second-order with dashed lines. Other parametersaree = 0.5, w =4,A =2and y = 1.

3.3. Two-Spin System

We here extend the system to two spins to see whether it is possible to the study
correlation developing between them through a mediated interaction via the harmonic
oscillator, as the two spins do not directly interact with each other. We use the parameters
€ =05, w =6A=2and vy = 1. We prepare the initial state in a product state of one
spin in the excited state, one in the ground state, and the harmonic oscillator as completely
empty. This allows us to observe non-trivial dynamics while still requiring just a few
occupied levels of the harmonic oscillator.
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As for the single-spin simulations, we first evaluate infidelity in the presence of noise.
Simulating two spins requires roughly twice the number of gates as simulating one spin. A
single At evolution with a first-order Trotter requires 113 single-qubits and 36 CX-Gates,
while the second-order Trotter requires 177 single-qubits and 70 CX gates, as can be seen in
Figure A1 and Table A1l in Appendix A. Furthermore, in the case of two spins, we find the
optimal Trotter time-step At to be the same as for the single spin case (not shown).

To study the emerging correlations between the spins mediated by interaction with
the photons, we consider the spin-spin correlators

C* = (of03) — (67)(03). ©)

These connected correlation functions (also called second-order Ursell functions or cumu-
lants) correspond to the covariance in statistics and vanish if and only if [71(')
statistically independent [71-73].

In Figure 9, we show C%Z and CXX for, again, ¢ = 0.01, 0.1, 1 from lighter to darker
lines. The solid lines correspond to first-order Trotter and dashed lines to second-order Trotter
and these Trotterization orders have been chosen as they result, for the respective amount
of noise, in the lowest infidelity. In both panels, the dotted lines correspond to the exact
values. The exact case simulations show a build-up in anti-correlation in z direction at t = 0.4,
before reducing to 0 which can already be observed for ¢ = 0.1. A correlation in x direction
builds up monotonously over time and one would need ¢ = 0.01 for a clearer signal.

and [Tz(') are

Figure 9. Correlations for the case of two spins: (a) spin-z connected correlation C%Z (b) spin-x
connected correlation CXX as a function of time. Different noise levels ¢ =0.01, 0.1, 1 are presented,
respectively, by lighter and darker colors. As a reference, exact simulations are depicted by the dotted
lines. Results obtained using first-order Trotterization are represented by solid lines, while those
using second-order Trotterization are represented by dashed lines. Other parameters are € = 0.5,
w=6,A=2andy=1.
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In principle, correlations could be observed for a higher number of spins. In practice,
the larger number of qubits needed, and their connectivity, would result in an increased
number of gates which would limit the fidelity in NISQ devices. We also note that, going
from one to two spins, we had to increase w to keep the higher levels of the harmonic
oscillator sparsely populated. If one does not want to increase the number of levels studied
for the harmonic oscillator, a similar adjustment, such as decreasing the coupling between
the harmonic oscillator and the spins, would be necessary when increasing the number
of spins.

4. Conclusions

In this paper, we have studied the feasibility of simulating open spin-boson dynamics
on a quantum computer. We used a second-quantization mapping of the bosonic degrees
of freedom and Trotterization of the unitary to implement the Hamiltonian. To implement
the dissipative dynamics, we used collisions and resets with auxiliary qubits.

We found that, in our parameter regime, the Hamiltonian simulation is the limiting
factor to the fidelity. We surveyed optimal Trotterization formulas and time-step sizes
depending on the level of noise in the system. We selected the open dissipative rate with
the highest fidelity in noisy circuits, and we found that current noise levels in the machine
we considered would make such simulations particularly challenging.

Anticipating future improved devices, we ran our simulations on 10% and 1% of
current noise levels, and we were able to show that it would be possible to attain much
higher fidelities. Furthermore, certain observables could be well represented with larger
amounts of noise. Importantly, the simulation of an open system can be more accurate than
unitary evolution as the open system dynamics could be closer to how a noisy computer is
already affecting a state.

Future developments in noise reduction in the hardware, in post-processing error
mitigation, as well as in reducing the number of gates for unitary evolutions can lead to a
significant increase in simulation power.

In our system, we have limited the dissipation to the spins. An interesting avenue for
future work could be the inclusion of loss in the bosonic degrees of freedom of the cavity,
for which additional auxiliary qubits, gates, and connectivity requirements could prove
challenging.
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Appendix A. Encoding of Bosonic Operators Onto Qubits

We will quickly review the d-level-to-qubit mapping we used to encode the bosonic
operators as strings of Pauli matrices. The method and different binary encodings are
discussed in [31]. The steps can be summarized as:
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1.  Truncate the infinite-dimensional harmonic oscillator at some level dyo
Rewrite each bosonic operator A as a sum of level transitions

3. Assign each level an integer

|l> integer |l> ieN
4.  Write each integer in binary
. . Qs
.. integer—to—Dbit
i) =8 & |bw), b € {0,1}
m=1

5. Map each bit pair |by,) (b}, | to Pauli matrices using

0) (0] = 5(1 +°)
1) (1] = 5(1-0%)
0) (1] = 5 (0% +i0¥) = o
1) (0] = 56"~ io¥) =~

The result is that each level transition is written as a string of Pauli operators and each
bosonic operator A as a sum of Np Pauli strings

R Np QB
A=) @b, oy € {1,6%0%,0°} (A)
P Rt

where Qp = [v/dyo| is the number of qubits which encode the bosonic levels ([-] is the
ceiling function).

Appendix A.1. Gate Requirements

When writing the integers in binary in step 4, different integer-to-bit encodings result
in different Pauli strings and ultimately in a different representation of the Hamiltonian.
While the representations of the Hamiltonian are theoretically equivalent, they come with
different gate counts and thus result in different performances on noise devices.

As integer-to-bit encodings, we considered standard binary and gray code, since both
of these are compact, i.e., they require the minimum amount of qubits. Table A1 shows the
gates required to evolve one time-step of the Trotterized unitary e~iHssAt and dissipation
on the ibmq_jakarta device. This includes additional CX-Gates to implement any necessary
SWAP-Gates due to limited qubit connectivity (Figure A1). For our Hamiltonian Hsp, gray
code yielded less gates than standard binary in all cases, which is why we used gray code
throughout the main text.
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Figure Al. Qubit connectivity of the used ibmq_jakarta device.

Table A1l. Gate counts, both for CX-Gate and single-qubit gates, to evolve one time-step of master
Equation (2) on the Jakarta device.

Standard Binary Gray Code
Ng duo Trotter order Single CX Single CX
1 4 First 53 21 94 43
1 4 Second 94 34 75 28
1 8 First 156 66 122 60
1 8 Second 282 124 191 107
2 4 First 106 37 122 36
2 4 Second 191 65 168 74
2 8 First 270 139 200 156
2 8 Second 496 272 409 255

Appendix A.2. Mapped Hamiltonian

After the mapping of the harmonic oscillator to qubits, the Hamiltonian (Equation (1))
is written as a sum of Pauli strings . The unitary eXk Ik is then Trotterized (Equation (3)).
The mapped Hamiltonian HAgp = Y hx we implemented for the main text reads explicitly

Asp = — V20%00*10% + V20%00;
+ (1 = V3)o* 0" 20% + (1 + V3)0% g0, (A2)

1 1
+ ZU'X() — EO'ZO —20%10% — 40"

for the single spin case, and

Hsp = — V20%00% 107 + V20 00"
+ (1 - \/§)U’x0(7x2(721 + (1 + \/5)(7"0(7"2
1

+ 400~ V205105307 + V20% 1053 (A3)

+ (1 - \/g)O'xz(Tx?,O'zl + (1 + \/g)U'xzo'xg,

1 1
+ Zaxg — EUZO —30%10% — 6071
1
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for two spins case. Each term constitutes one of the /i, in Equations (3) and (4).

Appendix B. Noise Model

Qiskit supplies noise models based on device properties measured during calibration.
In order to simulate an improved future device, we engineer our noise from an identical
model, but from lower noise levels.

The noise model contains three error sources [70]: (i) thermal relaxation (relaxation
and dephasing); (ii) depolarizing (Pauli) error; and (iii) readout (measurement) error. At
every gate, first the thermal relaxation and then the depolarizing error is applied. The
strength of the depolarizing error is calculated backwards, to reach a target ‘gate error’
when combined with the thermal relaxation. Details can be found at [74].

Appendix B.1. Error Sources
Appendix B.1.1. Thermal Relaxation Error

Thermal relaxation is defined by the qubit-specific parameters T; time, T, time, qubit
frequency fq,pir and qubit temperature 7, The thermal error channel is then given time
to act according to a gate-dependent gate time. For two-qubit-gates, the error is simply the
tensor product between two single-qubit channels.

T is qubit-specific time until relaxation, i.e., to decay from the excited state to the
ground state. T, qubit-specific coherence time, or time until dephasing. The qubit fre-
quency foupir is the difference in energy between the ground and excited states. The qubit
temperature 7, is assumed to be 0 in Qiskit’s and our noise models.

The qubit frequency and temperature enter only via the excited state population. If
foubit = o0 or Touir = 0, the excited state population is 0. Since 7, = 0 in our models,
both the frequency and temperature can effectively be ignored as parameters.

For T, < Ty, thermal relaxation is most straightforwardly described by (assuming the
device to be at 0 temperature)

Kr, = VPi1, (A4)
K1, = V/Pz0%, K1, = \/ Preset |1) (1] (A5)
2
&r(p) = Y KrpKf, (A6)
i=10

It is composed of the probabilities of a phase-flip Pz, a reset to the ground state Peset, or for
nothing to happen Pj. The probabilities Pz, Pyeset are calculated from Ty, T, and the gate
time tgae-

Preset =1 — Pr, =1 ¢ o™y (A7)
Py =(1— Preset) (1 - 72?) /2 (A8)
=(1 = Preset) <1 - e_tG””'(le_Tll)) /2 (A9)

P1 =1 —"Pz — Preset- (A10)

If 2T; > T, > Tj thermal relaxation has to be described by its Choi matrix

p = Er(p) = n[C(p" @ 1) (A11)
1 0 0 Pr,
0 0 0 0
CgT N 0 0 7)‘reset‘ 0 (A12)

PTZ 0 0 1 — Preset
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which can also be used if T, < T; to compute the process fidelity in Equation (A21).
At the time of writing, all qubits on the Jakarta hardware satisfied T, < Tj. This is not
necessarily the case for all devices provided by IBM or in general.

Appendix B.1.2. Depolarizing Error

The depolarizing noise (or Pauli) channel is composed of either a bit-flip (6*), a phase-
flip (6%) or both at the same time (¢¥), all with equal probability [70].

3
p— Ep(p) = Y Kp pKp, (A13)

i=1
Kp, = v/1— Ppl, Kp, = ,/%&x (A14)
Kp, = %&y, Kp, = %&Z (A15)

Gate Infidelity

The probability of a depolarizing error is calculated from the target gate infidelity
ZGate, and the infidelity due to thermal relaxation Z7.

Ip = Zgate — It (Al6)

The target gate infidelity is given as a parameter, while Zt has to be calculated as

Fr=1-1Ir (A17)
= ]:uvg(gTr U) (A18)
= [aptpluter(p)euly) (a19)
 dTp(Er,U) +1
N d+1 (A20)

where T, (€1, U) is the process fidelity of the input quantum channel £r with a target
unitary U, and d is the dimension of the channel.

Zpro(E1, F) = F(Cer/d, pF) (A21)

where F is the state fidelity as defined in the main text

F(p1,02) = (Tr[ \/pﬁpz\/pﬁ} )2 (A22)

Cg,/d is the normalized Choi matrix for the channel £, and d is the input dimension of
Er.

Importantly, for our reduced-noise models, the infidelity from thermal relaxation Zt is
linear in the gate time fg4. Thus, when we rescale Zgute — € - ZGates tGate — € * tGate, W€
indirectly scale Zp — ¢ - Zp, Zt — ¢ - Zt. This way, the relative contribution of the error
channels Zp /Zt to the infidelity remains unchanged.
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Depolarizing Error Probability

If we write the depolarizing error in terms of the identity and the complete depolariz-
ing channel D, we can rewrite the gate fidelity

Ep=(1—=Pp)-1+Pp-D (A23)
I, gate = 1—Zcate (A24)
= F(ép-E&r) (A25)
=1-Pp)Fr+Pp-Fp (A26)
=Fr—Pp-(d-Fr—1)/d (A27)

where d = 27405 is the dimensionality of the gate. From this, the solution to the depolariz-
ing error probability is

PD = d(]:T —fgate)/(d ‘]:T — 1) (AZS)
:d(IGute_IT)/(d']:T_l) (A29)

More details can be found at [74].

Appendix B.1.3. Measurement Error

A measurement error is equivalent to a bit-flip 6~ followed by a noiseless readout [70].
The probability of the readout error Py is given by the probability P(n|m) of recording a
noisy measurement outcome as 7, given that the true measurement outcome is .

K, =v/1—Pgl, Kg, = /Pré™ (A30)
Pr=)_ P(n|m) (A31)
n#£m

where 1, m run over all qubits, in the case of two qubits n,m € {00,01,10,11}. See [74] for
further details.

Appendix B.1.4. Error Sources in the Reference Device

Given the three error sources, one can ask which error source causes the dominant
contribution to the noise in our results. As we use measurement error mitigation and it is
independent of the circuit depth, we will ignore the measurement error. Instead, we focus
on the ratio of thermal and depolarizing errors in contributing to the infidelity, Zr /Zp. To
give a rough estimation, we assume all gates ¢ € {CNOT, RZ, SX, X} and all qubits g are
used equally often, and average over both.

N,=7 N,=4
1} 13 IT(M))
Ir/Ip = — — ( A32
T Ny g=1 (Ng ; Ip(q,8) ( )

We calculate Z7(q, g) and Zp (g, §) using Equations (A17) and (A16), respectively, and obtain
the current calibration data from IBM. At the time of writing, the result for the Jakarta
deviceis Z1/Zp = 15.4. We conclude that thermal relaxation is the main source of infidelity
in our simulations, by one order of magnitude compared to depolarization.

Appendix B.1.5. Calibration Data

We base our reduced-noise models on the same hardware that we run our full-noise
circuits on, the 7 qubit IBMQ Jakarta device.

At the time of writing, the calibration data are:

Processor: Falcon r5.11H, V1.1.0

Avg. CX-Gate error: 1.109¢ 2

Avg. readout error: 3.349¢ 2
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Avg. Ty: 139.01 us

Avg. Tp: 44.82 us

Avg. gate time: 454.095 ns

Avg. qubit frequency: 5.08 GHz

Avg. qubit anharmonicity —0.329 GHz
For more details, see [75].

Appendix C. Gate Definition

Some of the gates used are defined here. A controlled operation CO is defined as
CO(0) = I [ L)L [+0(0) @ | 1)(T], (A33)

where the operation O is a X gate in case of the CX-Gate, or a rotation around the y-axis Ry
or z axis Rz. Ry and Ry are, respectively, defined as

. 0.\  [cos % —sin g
Ry(6) = exp(—zzY) = (sing COS% , (A34)
_iA
Ry —exp(—ilz) = (€7 9. (A35)
2 0 el2

Furthermore, the v/X gate is given by

ﬁ_l(l—l—i 1—1‘)‘ (A36)

2\1—i 1+

Appendix D. Transpiled Circuits

The amplitude damping circuit as in Figure 2 uses gates which are not available on
the quantum computer we were using. Instead, the IBM Jakarta device uses the gate set
{CNOT, ID, RZ, SX, X}. The amplitude damping circuit, in terms of these gates and as it
was implemented on the hardware, is in Figure A2.

st — Rz VX VX
a: —vX Rz VX Rz—— Rz

- Ry

s: — Rz VX Rz

a: O— Rz

ol

)

Figure A2. The dissipation circuit represented in Figure 2 in terms of the gates available on the IBM
Jakarta device. Both lines for qubits s, a continue from the first row to the second.
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