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Abstract: A new approach to the Dirac equation and the associated hadronic symmetries is proposed.
In this approach, we linearize the second Casimir operator of the Lorentz Group, which is defined by
the energy—-momentum four-vector and the fermion spin, thereby using the spinor-helicity represen-
tation instead of the three-vector representation of the particle momentum and spin vector. We then
expand the so-obtained standard Dirac equation by employing an inner abstract “hadronic” isospin,
initially describing a SU(2) fermion doublet. Application of the spin-helicity representation of that
isospin leads to the occurrence of a quadruplet of inner states, revealing the SU(4) symmetry via the
isospin helicity operator. This further leads to two independent fermion state spaces, specifically,
singlet and triplet states, which we interpret as U(1) symmetry of the leptons and SU(3) symmetry
of the three quarks, respectively. These results indicate the genuinely very different physical nature
of the strong SU(4) symmetry in comparison to the chiral SU(2) symmetry. While our approach
does not require the a priori concept of grand unification, such a notion arises naturally from the
formulation with the isospin helicity. We then apply the powerful procedures developed for the
electroweak interactions in the SM, in order to break the SU(4) symmetry by means of the Higgs
mechanism involving a scalar Higgs field as an SU(4) quadruplet. Its finite vacuum creates the
masses of the three vector bosons involved, which can change the three quarks into a lepton and
vice versa. Finally, we consider a toy model for calculation of the strong coupling constant of a
Yukawa potential.

Keywords: Lorentz group symmetry; expanded Dirac equation; isospin helicity; SU(4) electro-strong
symmetry

1. Introduction

SU(N) symmetries, Lie groups of the special unitary type, play an important role in
describing physical symmetries, in particular in the standard model (SM) of elementary
particle physics [1-3], such as SU(2) for the electroweak interaction for the leptons and
SU(3) for the strong interaction among quarks. The task of finding a way to include the
associated gauge bosons in the quantum mechanical framework of modern field theory
was first demonstrated in the seminal work by Yang and Mills [4]. While the mathematical
procedure of describing the fermions and their interactions through the SU(N) gauge
bosons by means of the covariant derivative is well established nowadays, to date, the
physical origin of these important symmetries remains unexplained from the theoretical
point of view. Rather, the physical origin of the gauge symmetries is of empirical nature.
SU(2) was chosen to describe the effects of parity violation on the assumption that the
weak interactions flipping the isospin only involve the left-chiral Weyl field [5] of massless
fermions. SU(3) was introduced ad hoc by Gell-Mann [6] and also independently by
Zweig [7], in order to bring some schematics into a variety of hadrons found in the early
days of particle accelerators.
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The fundamental empirical hadron symmetry SU(3) is derived here anew, whereby
the Dirac equation is discussed on the basis of the usual spinor representation of the
Lorentz group (LG). This is achieved by linearization of the Pauli-Lubanski (or the second
Casimir) operator of the Lorentz Algebra (LA) in terms of the energy—-momentum four-
vector. We then add to this physical picture an abstract internal isospin I of 1/2, which is
not connected with the LG, but intended to cope with the hadronic particle symmetry of the
two basic empirical fermion types of leptons and quarks. Isospin was originally suggested
by Heisenberg [8] to explain the nuclear force in the early days of nuclear physics, when
the heavy fermions (protons and neutrons) seemed to be the elementary building blocks
of nuclei.

Application of the spinor helicity formalism (which means mathematically going
from three-vector to two-component Pauli spinors) yields four orthogonal singlet and
triplet fermion states for spin 1/2 . Thus, the spinor-helicity formalism applied to isospin
causes a splitting into two unequal subspaces. We interpret the singlet state as the origin
of U(1) symmetry (one axis) corresponding to the charged lepton, and the triplet state as
the origin of the SO(3) symmetry group corresponding to the three quark colors (three
axes). These basic symmetries can be combined into a larger group of SU(4), which has
been suggested in a merely ad hoc manner half a century ago by Pati and Salam [9,10] to
unify the fermion interactions. For more recent discussions, references, and experimental
material with respect to the leptoquarks involved, see, for example, the paper by Blumhofer
and Lampe [11] and the reviews of Tanabashi and Rolli [12] and Tanabashi et al. [13].

Moreover, we apply the symmetry breaking mechanism of the SM here, as is used for
the breaking of chiral symmetry in the weak interactions. This new approach enhances
the complexity, while yielding completeness of the unified SU(4) theory as compared to
the Standard Model (SM), which employs only quantum chromodynamics (QCD). The
spinless scalar Klein—-Gordon equation can be accordingly generalized to include isospin
as well, thus changing this field into an isospin quadruplet associated with the “strong
Higgs” field. This quantum field (QF) can finally be coupled to the spinor fermion QF via
the SM methods developed for the SU(2) symmetry breaking. Three of the gauge bosons
involved obtain masses through the Higgs mechanism, whereas the quarks and lepton
remain unchanged and still have a common mass m.

The way we obtain these results suggests the very different physical nature of the
hadronic SU(4) as compared to the chiral SU(2) symmetry. This new route does not require,
but implies, the idea of unification at the outset; however, the notion arises naturally from
isospin helicity. We then also apply the powerful procedures developed in the SM for
the electroweak interactions in order to break SU(4) symmetry. The finite Higgs vacuum
creates the masses of the three vector bosons, which can change the three quarks into a
lepton and vice versa. We finally discuss their masses. In Appendix A, we consider a
simple toy model for the calculation of the coupling constant related to a Yukawa [14]
model potential.

Here, we present a model of electro-strong interactions in the spirit of casting some-
what more light on the genuine nature of the U(1) and SU(3) symmetries, with the help
of the mathematical and physical principles of Lorentz invariance of the two associated
Casimir operators of the Lorentz group (LG) and their connections with the notion of
isospin. The paper extends and deepens the recent theoretical approaches by Marsch
and Narita [15-20]. Following the physical reasoning and mathematical procedure of the
electroweak unification of the SM, we can combine gauging of the strong hypercharge field
with gauging of the SU(4)-related fields. Thus, we retain strong electromagnetism and
obtain a kind of “strong” charge-exchange reactions, the strengths of which depend on
the two coupling constants ¢ and g’. Three new types of vector gauge boson fields are
involved, which are named here Vf and carry the strong charge. The present theory is
constructed in analogy to the Glashow—-Weinberg-Salam (GWS) theory [5,21] of the SM
quantum electroweak dynamics, but it is chirally symmetric and essentially relates electric
charge to isospin helicity and to the strong hypercharge introduced in analogy to the weak
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hypercharge. In such a theory, all particles carrying the strong charge interact by charge
exchange reactions mediated by massive vector bosons. Of course, only the quarks finally
take part in QCD after SU(4) symmetry breaking.

2. Spin and Casimir Operators of the LG, the Mass Squared and Pauli-Lubariski Operator
2.1. Spin

The spin S is a fundamental physical quantity in particle quantum mechanics. It may
be considered as inner property of the particle, and represents a kind of intrinsic rotation
operator described by the three-vector S having non-commuting components. But it has
nothing to do with the Lorentz invariant propagation of any particle per se. Spin obeys the
commutator relation

S xS =iS. 1)

For its physics and mathematics see, for example, the modern textbook of Weinberg [22].
Tomonaga [23] wrote an enlightening book about the story of spin.

2.2. The Role of Spin in Defining the Generators of the Lorentz Group

Yet, it turns out that spin also plays an important role in space-time symmetries. It
defines the generators of the rotation group in the three-dimensional Euclidean space, for
SO(3) in the adjoint representation and for SU(2) in the fundamental spinor representation.
Moreover, the two vector generators, rotation J and boost K of the Lorentz Group [24] in
Minkowski space-time, can be combined to define the two spins

5. =3 (1+iK), 83 =1, @
2 4

which expresses the basic property of chirality of the LG. The chiral spins form two
subalgebras of the Lorentz algebra, commute with each other [S+,S+] = 0, and obey the
spin commutator (1). In the fundamental spinor representation of the LG, one simply has
S, =1/20,and S_ =0,0or S_ =1/20,and S = 0 in terms of the Pauli matrices. For the
four-vector representation of the LG, Marsch and Narita [17] have shown that the right-
and left-chiral spin can be expressed as S+ = 1/2X in terms of the larger 4 x 4 matrices

0 £1 0 O 0 0 1 0
0 0 i 00 " o il0 -1 0 0 3)
SRR
+1 0 0 O

They have been used to define an extended Dirac equation [17,19], which also encom-
passes the up and down components of the chiral fermion doublet associated with the
SU(2) symmetry group.

2.3. Casimir Operators of the LG and Dirac Equation

Wigner [25] and Bargman and Wigner [26], in their influential work, emphasized the
important role of the two Casimir operators of the Poincaré group and Lorentz group
(LG) [24,27]. Let us start with the first Casimir operator of the LG, which is the squared
four momentum of a particle and equals to its mass squared in the case of finite mass. The
second is the first times the spin squared, S?, a rotational invariant.

We will not consider orbital angular momentum here, but just the intrinsic spin of a
particle. We stay in Fourier space for the four-momentum p* = (E, p), and obtain

G = P”Py = m?, 4)
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Cy = m*S% = m?s(s + 1)1ps41. (5)

On the basis of Equation (5), we describe here a lucid method to derive the Pauli—
Lubariski [28,29] operator. We make use of the fact that, for the three-vector momentum p
(the components of which commute) and any spin S we obtain from (4) and (5), another
equation involving the spin explicitly is as follows :

(E? —p?)S* = S?E2— ((S-p)(S-p) + (S x p) - (S x p)) ©)
= (SE+iS x p)> — (S-p)* = —WHW,,

which is nothing but the covariant form for the negative square of the Pauli-Lubarski
operator, reading
WH = (S-p,SE+iS x p) (7)

in its four-vector form. Note that we made use of the identity S- (S x p) + (S x p)-S = 0.
Therefore, Equation (6) is Lorentz invariant, and is just the second Casimir operator C, of
the Lorentz group. For spin s = 1/2, the square of cross-product in (6) is equal to the square
of scalar product multiplied by a factor of 2, which gives (¢ x p) - (¢ x p) = 2(¢ - p)%.
Note that this relation is only valid for the Pauli matrices, and not for any other matrices of
higher spins. When we exploit that relation, we obtain from (6) the equation

(E2—m*)1p = (0 -p)?, (8)

from which the Dirac equation in the Weyl basis readily follows by operating on Pauli
bi-spinors, and by subsequent factorization of the resulting equation in terms of first-order
operators. Consequently, the Casimir operator C; can be written as the square of the *p,,.
We use the natural units, c = i = 1. Acting with p,, = id;, on a four-component spinor field
P (x) yields the famous Dirac [30] equation

Yoy = mp. 9)

This equation describes a fermion with mass m and spin 1/2 by the four 4 x 4 Dirac
gamma matrices [1,3] obeying the Clifford algebra,

Yo+ ot =281y, (10)

with the Minkowski metric g#¥. The Dirac equation can be extended [17,19,20] by including
the chiral spins as defined in (2) and (3).

2.4. Spinor-Helicity Formalism

Returning to the Casimir operators, the general Equation (6) is valid for any spin. The
key question, then, is “can it, while being a second-order (in E and p) algebraic equation
in Fourier space, also be factorized to the first order in a mathematically convenient and
appealing form like that used in deriving the Dirac equation?” The algebraic way to achieve
this goal is to use the relation (¢ - p)?> = p?15. This formula has as an interesting property,
in that any three-vector scalar product can be replaced by matrices, a procedure that is
called spinor-helicity formalism [3].

However, if one applies this formalism to an arbitrary intrinsic spin S, then its non-
commutativity yields more complicated results. First, note that with the Pauli matrices we
obtain, for any three vectors a and b which do not commute, the special result

(c-a)(c-b)=(a-b)ly+ic-(axb). (11)
Application of this relation to the three-vector operator S yields

128% = (- 8)(( - 8) + 1p(2s11)) = Lo(as41)(5(s +1)). 12)
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Here, the dot symbol again denotes a scalar product of the three vectors, but in the case of
matrices, it also implies Kronecker multiplication (symbol @ left off here) with the Pauli
matrices. This relation was first obtained in 1936 by Dirac [31] in his early attempt to derive
a relativistic wave equation for any spin. At this point, it is natural to define the novel spin
helicity [19] as follows:

H(s)=(0-S) =0-S =0, @5+ 0y @Sy +0,®8,. (13)

We can thus rewrite Equation (8) in matrix form, and then expand C, to encompass
the kinetic helicity, o - p, as well as the spin helicity o - S. This modified matrix equation
finally reads

(12E> = (¢ - p)*) (0 - 8) (0 - S + 1p(a511)) = mPs(s + 1) 1p(2641)- (14)

The key advantage here is the fact that there are no three-vector scalar products of
either p or S with itself any more; we introduced matrix multiplications and two degrees
of freedom associated with the Pauli matrices. We emphasize that the above equation
connects the Lorentz group (LG) with the intrinsic spin group by Kronecker multiplication.
This multiplication procedure is in compliance with the strict requirements of the Coleman-—
Mandula theorem [32].

3. Physics of the Spin Helicity Operator

Here, we first derive the basis vectors of eigenfunctions of the spin helicity H(s)
operator [19,20]. There are 2(2s + 1) orthogonal basis vectors, i.e., twice as many as the
case for the original spin S with quantum number s. Therefore, the dimension of the space
associated with H(s) is doubled in comparison with that of the genuine matrices related to
the spin vector S. The corresponding eigenvector equation is

H(s)¢j(s) = (- S)pj(s) = s¢;(s)- (15)

Here, the index j has 2(2s + 1) possible values, corresponding to to the dimension of the
spin helicity representation. For the Kronecker product with the Pauli matrices, the helicity
matrices are 4 x 4 matrices for s = 1/2. According to its definition, we explicitly have

B S, Sc—iS,
H(S)_<sx+isy s, ) (16)

We only quote this matrix operator for the spin quantum number s = 1/2, for which
we obtain the real matrix

1 0 0 0

1. 1[0 -1 2 o0

HG) =310 2 -1 0 17)
00 0 1

The four eigenvectors form, respectively, an orthogonal set for the four-dimensional
configuration space of the spin helicity. The related eigenvalues are 1/2 for the first three
and —3/2 for the fourth one. These eigenvectors read

¢1=(1,0,0,0)%, ¢ = \%(0, 1,1,0)t,

18
¢3 = (0,0,0,1)F, ¢y = %(o, 1,-1,0)%. (18
We can then diagonalize the H(s) matrix by unitary transformation using the above
eigenvectors. Thus, one obtains the diagonal matrix in the following form:

HL) = %diag[l,l,l,—S]. (19)

2
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Apparently, the spin helicity space of dimension 4 factorizes into two distinct, asym-
metric spaces of dimensions, 3 and 1, for spin 1/2. This asymmetry originates in the basic
Equation (12), in which the spin helicity enters with a linear and quadratic term, owing to
the fact that the three components of the spin S do not commute.

Inspection of the symmetry group SU(4), describing the general rotations in the four-
dimensional complex space, reveals that the spin helicity matrix is identical (aside from a
normalization constant) with the fifteenth matrix A of the SU(4) group. This is a strong
hint to the possible importance of this group to describe the hadronic interactions. It is
well known that the group SU(3) is a subgroup of SU(4) and fundamental for QCD in the
SM. So, the suggestive interpretation of the two subspaces is that SU(3) is connected to the
three colored quarks, whereas the remaining subspace with U(1) symmetry is connected
with the single lepton. Returning again to (14), we obtain for the spin 1/2 the result

1 1 3
(12E =0 p)(12E+ 0 p) ® (H(5)(H(35) + 1) = m* 1g, (20)
whereby we expressed the spin helicity operator in terms of its eigenfunctions according to
Equation (19). We use it here to introduce two normalized diagonal matrices, which obey
HyH, = H1Hy = 14, and read as follows:

Hy = diag[1,1,1,—3], H; = diag[1,1,1,—1/3]. (1)

With their help, and by introduction of the four-momentum differential operator p, =
id, = i(9/0t,d/0x), we can write (20) as a second-order wave equation with differential
operators acting on a two-component Pauli spinor ¢(x). This equation reads

0 0 0 0
(i(l2at +0- a—x) ®HO> (i(l2aif —0- a—x) ®H1>q0®4> =m’p® ¢. (22)

Following the mathematical procedure presented in the papers by Marsch and
Narita [18,20], we can readily linearize the above wave equation and finally obtain an
expanded Dirac equation in the Weyl basis. It involves, of course, the Dirac fermion bi-
spinor ' = (¢, 1), describing a spin one-half particle and antiparticle, as well as the
four-component state vector ¢ of the SU(4) group. We obtain

Yo, ¥ = m¥Y. (23)

We have the new expanded spinor ¥ = 1 ® ¢, whereby the first three components of
oF = ( Xq1, Xq2, X3, X1) belong to the SU(3) subgroup of quarks, and the fourth to the U(1)
of the lepton, and the chis just denote complex numbers.

4. Hadronic Isospin and SU (4)
4.1. The Hadronic Isospin 1

We recapitulate that there is an empirical duality between quarks and leptons, al-
though, as derived in the previous section, the dimensions of the relevant state spaces are
different and determined by spin helicity. According to the early intuitive ideas of Heisen-
berg [8] concerning isospin, he just considered the proton and neutron as a fundamental
and stable fermion isospin doublet, and assumed them to have equal masses to preserve
the employed SU(2) symmetry. Yet, here we will not disregard the composite structure of
the hadrons, but consider instead the quarks and leptons themselves as the basic particle
degrees of freedom.

Concerning nomenclature, we use the traditional symbol I for the abstract hadronic or
nuclear isospin, which is defined just like the spin S and based on the Pauli matrices as
well, and so define

1 .
I= E(U’X,(Ty,O’Z), IxI=il (24)
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As compared to the kinetic helicity of the momentum p, o - p, which has two values
corresponding to parallel and antiparallel orientation of the momentum and spin of the
fermion, the isospin helicity o - I reveals four orientations, related with three quarks
and one lepton. Yet, we know from the SM that leptons do not take part in the strong
interactions. How can one obtain this result from the previous considerations? Like in the
weak interaction connected with the chirality of the fermions and symmetry group SU(2),
the mechanism to separate the two fermion species is by breaking the SU(4) symmetry.
This is the topic of the next subsections.

4.2. Hypercharge Operator and Helicity Operator

The symmetry group SU(4) describes the possible rotations around the four axes of
the complex Euclidian space C* of four dimensions. We determined it above as the space of
the spin helicity, which has four real orthogonal eigenfunctions spanning that space. We
refer to the literature for the detailed representation matrices of SU(4) [16].

What matters here is, firstly, the so-called hypercharge operator named Y, and secondly,
the operator H, which we already identified as the spin helicity operator. The two associated
real and diagonal matrices can then be written as follows:

~ 1
7 H=—

0
N 8 (25)

5

=~

OO O -
O O = O
O = OO
W o oo
OO O
O O = O
O = O O

-3

They reflect the fact that the original isospin duality leads via the helicity to three
quarks, which share their available space equally, and thus each has a hypercharge of 1/3,
and then to only a single lepton having a hypercharge of 1. The zero trace of H guarantees
strong charge neutrality of the quadruplet. As diagonal matrices these two operators
commute with each other. Furthermore, Y and H also commute with the eight matrices
of the subgroup SU(3), yet not with the matrices A? with 2 running from 9 to 14. Both
matrices have been normalized such that TrY? = 1/2 and TrH? = 1/2. The same standard
normalization is applied to all the other SU(4) group matrices as well.

4.3. Electro-Strong Symmetry Breaking

In this subsection, we partly follow the physical reasoning presented in [16], and
also employ the mathematical procedures known from electroweak unification and SU(2)
symmetry breaking in the SM [3]. We describe the hadronic dynamics by means of the
isospin helicity and the consequent SU (4) symmetry, which is then broken by a gauge-field
rotation. We employ similar techniques than in the Glashow—Weinberg-Salam theory
in order to break that symmetry. The general unitary phase transformation operator U,
which acts on the state vector ¢ and yields ¢y = U¢, leaves the scalar product invariant,
¢'¢ = ¢p{;¢u. The phase operator U can be cast into an instructive form, which includes the
hypercharge and helicity operators (25) and the generators of SU(4). They are represented
by the fifteen 4 x 4 matrices A?, given for example in [16], and describe the possible rotations
in the four-dimensional complex state space spanned by the four basis vectors given in (18).
Thus, we obtain the unitary phase operator

14
U = exp (i(g'BY + ga®H+g Y a"A%)). (26)

a=1

A gauge-field theory using the isospin-related SU(4) symmetry in this way is, to our
best knowledge, a novel approach in the hadronic sector of elementary particle physics.
We use the conventional notation such that ¢’ stands for the coupling constant for the
hypercharge operator Y, and g the coupling constant for the SU(4) gauge symmetry. The
related scalar angle B and the 15 angles a* (2 runs from 1 to 15) are all real. In a local gauge
symmetry, they depend of course upon the space-time coordinate x = (t,x) = x#, which
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we may omit here to ease the notation. We just need to consider the two diagonal-matrix
operators Y and the isospin helicity H that is identical to A!'. Both can now be mixed by a
rotation, such that we obtain the new linear combinations as follows:

B _( cos® —sinf w’
< al® ) 7\ sind cosd w )’ @7
Here, 0 is the rotation or mixing angle that still is to be determined. Inserting the new

coordinates into the operators appearing in the phase (26) of the operator U, we obtain for
the argument in the exponential function

¢'BY +ga®H = «'Q + wR. (28)

with the new matrix operators Q and R and gauge rotation angles w and «’, the gradients of
which determine the new gauge fields. We obtain the electro-strong field as A, = 9w’ (x),
and the other gauge field B, = d,,w(x), which is also a mixture of the hypercharge operator
Y and the original SU(4) helicity operator A'°. By, is the analogue of the field Z, in
the electroweak section of the SM. By their constructions, the charge operators are both
represented by diagonal 4 x 4 matrices, which read

o 1 (g’ cos O+ gsin6)13 0 (29)
V24 0 3(g' cos® —gsinf) )’
and, similarly,
R 1 (—g'sinf + gcosb)13 0 (30)
V24 0 —3(g'sin6 + gcosh) )°

Here, 13 is the 3 X 3 unit matrix and Q and R are of block-diagonal form. Close inspection
of (29) and (30) shows that, if ¢’ cos @ = ¢ sin = g for a particular angle B¢, these matrices
become more transparent and Q contains merely integers. The above condition implies
that tan s = g'/g, which is defined in analogy to the so called Weinberg-Glashow
angle [5] of the SM. Once it is fixed by the ratio of the coupling constants, the entity Q turns
out to be the operator of the “electro-strong” charge of the quarks, with the charge unit

q = g9'//g8*+ (¢’')?. The quark charge operator Q couples to the electro-strong gauge
field A,. Thus, one obtains the new operators

_ 9 (130
e-5(3 )

g (BCEEE 0
R_%( 0 —3(E+8) ) 2

Of course, these two operators commute, since they are represented by diagonal matrices.
So, we are dealing here with Q with a hadronic multiplet of three charged quarks and a
lepton of charge zero, which therefore does not take part in the remaining SU(3) strong
interaction.

With the redefinition of the gauge fields by a simple rotation, we have separated the
quarks from lepton, yet not entirely, because the coupling between the two species is still
included in the six generators A?, with a running from 9 to 14. They correspond to what
have been called “leptoquarks” in the literature [33-36], which are the corresponding vector
bosons exchanging the charges of the hadronic fermions, i.e., transforming quarks into
leptons and vice versa. We appropriately rename Q as Q,;. However, there is also still the
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R matrix stemming from A!°. For equal coupling constants, ¢ = ¢/, g turns out to be just
g/ /2. Moreover, R then takes the simple form

R—qxfé(og _01>. (33)

Thus, we are dealing here with a lepton of charge —1, the electron, and the upper part of
the diagonal being zero that corresponds to a decoupling of the quarks from the gauge field
By,. According to Equation (31), for Q,, the quark charge is 1/3. Then, what is the nature of
R? It is just the strong charge operator acting on the electron that is coupled to the gauge
field B, associated with the U(1) symmetry. We, therefore, also rename R in the special
form (33) as Q.

4.4. Covariant Derivative after Symmetry Breaking

The general covariant derivative, as obtained after the SU(4) symmetry breaking, then
reads

14
Dy =0y —i(QqAu(x) + QiBu(x) + ) _ 9,4 (x)A"). (34)
a=1

The first eight A? generators correspond to the SU(3) subgroup of QCD, and the
remaining three to the “leptoquarks”. From now on, instead of the superscript a, we use a
simple subscript # for counting of the fields from 9 to 14, and can then define the following
six convenient linear combinations of the lambdas:

Ag1o = 3(Ag £idy),
Mip = 3(An £idn), (35)
Mzs = 5 (M3 £idy).

They are all real, and contain a single one, but are otherwise zeros. By definition, they
are not hermitian, yet obey (A*)" = AT. Therefore, we quote only three of them here.
They connect quarks with the lepton. The plus and minus signs indicate opposite rotations
in state space around the relevant axes. To ease the notation, we introduce Af = )\;lo,

A;E = )‘ﬁ,u' and A3i = )‘i,lzy Then, (AF)T = AJ} for n = 1,2,3. These three matrices read
0 0 01 0 00O 0 00O
00 0O 0 0 01 0 00O
+_ +_ +_
2A7 = OOOO’ZAZ_ 0000'2A3_ 0 0 01 (36)
0 00O 0 00O 0 00O
The summed up matrices obey the relation
1000
3
110100
A —A+) — =
0 0 0 3

which is aside from a factor the previous Y operator (25). Moreover, we find that (A;F)? = 0,
and AfAY = 0 for n unequal m. Thus, any product of the lambdas for equal super-
script vanishes. The expectation value of (37) evaluated with the simple field vector
¢" = (0,0,0,1) delivers the value 3. Correspondingly, we redefine the associated gauge
fields as follows:
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LS RTIET
(V5 ) u(x) = 9p(a'’ Fia'?),
(Vii)f,(x) = aZ(tx” Tial), (38)
Uﬁ(x) = ay“a(x),

where 2 now runs only from 1 to 8. In the end, the covariant derivative consisting of
hermitian operators reads

8
iDy, = idy + QqAu(x) + QuBy(x) +g ) Uy (x)A’ (39)
a=1
3
+8 Y (Vi) Ay + (Vi) () A7) (40)
n=1

This way, we have clearly separated the notations for the U(1) and SU(3) quantities from
the remaining SU(4) ones, which provide the connections between quarks and leptons.

5. The Higgs Mechanism Applied to Hadronic Interactions
5.1. The Hadronic Higgs

In the above described way, we can, consistently with the empirical SM phenomenol-
ogy, describe how the hadronic fermions with the single mass m transform under the
fundamental representations of the SU(2) isospin group, yielding the SU(4) symmetry,
and assemble them in a multiplet carrying the strong charge. The hadronic fermion is
described by its spinor field ¥ obeying the Dirac Equation (23). We consider an additional
scalar Higgs-type particle field ® with unspecified assumed mass My. Then, the particle
part of the Lagrangian for the combined boson and fermion sectors reads

Lp = (D,@)Y(D'®) — M{® D + ¥9#iD, ¥ — m¥Y, (41)

with the covariant derivative given in (39). As usual, ¥ = (79¥)". For the sake of
completeness, D), is repeated and further discussed below. The covariant derivative may
be split appropriately as

with the abbreviation for the gauge-field interaction term A, in (39). For the following, we
require the validity of the Lorentz condition for all gauge fields, i.e., that 0¥ A, = d¥B,, =
U, = o Vf = 0. Moreover, the interaction term is hermitian, i.e., (Ay)Jr = Ay

It is instructive to multiply, by use of the decomposition (42), the squared kinetic term
out, as it appears in the boson sector of the Lagrangian Lp. The result is

(D'®)" (D, @) = (9"®)"(0,®)
—(PA¥)¥(i0,®@) — (10,D)" (A* D) + OTAFA,D. (43)

The first term is the kinetic term of the free scalar Higgs boson field, the second two
terms correspond to the coupling of the Higgs boson current density with the vector boson
gauge fields, and the third describes the interaction between all the gauge fields. It also
contains terms (quadratic in the gauge fields), which can give rise to masses of the gauge
bosons by means of finite expectation values in the Higgs field.

Of course, the scalar Higgs field has to be a quadruplet consistent with SU(4) symme-
try. It should be uncharged with respect to the strong interaction, and therefore we chose
the state vector of the simplest form:

®f =v(0,0,0,1). (44)

Here, v is the vacuum expectation value of the strong Higgs field, which is expected to be
nonzero in accordance with the known SM assumptions as applied to the weak interactions.
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Trivially, 0#®, = 0. This is used in evaluating the interaction term of the vector boson fields
in the Higgs vacuum which, after (43), gives the subsequent contribution to the Lagrangian:

Ly = PTAFA, Dy (45)

This enormous simplification is due to the fact that all kinetic derivative terms in (43)
vanish in the constant Higgs vacuum v.

To calculate £ requires us to consider the expectation values of the various matrices
appearing in (45). Trivially, A?®, = 0 for a = (1,...,8) running through the elements
of the SU(3) subgroup. Also, Q®, = 0. Moreover, (A%)?®, = &, fora = (9,...,14).
Furthermore, ®}(A%)2®, = 0 fora = (9,...,14) and, finally, we obtain ®} (A\*A?)®, =
0 for the three index pairs (a,b) = (9,10), (11,12),(13,14). The lambda matrices and
related calculations can also be found, for example, in the previous paper by Marsch and
Narita [16]. We also make use of the fact that matrices A° and A9, and A and A12, as well
as A3 and A1, anticommute. We further use the relation (37). In the ,end we obtain the
result

L = B (x) By (x) (P{R*Dy) + (46)
2
gy (i (VO ()A, + (Vn>”(x)Ai)> Dy. 47)
n=1

The squared expression involving the three V vector bosons is to be understood as
being summed up over the Greek relativistic indices as well. Evaluation of the expectation
values of the lambda matrices in the Higgs vacuum leads to the final result for the mass
Lagrangian:

3
Lar = MRB"By + M5 3 (Vi) (Vi Ju)- (48)
n=1

The squared masses of the three vector bosons Vljfm turn out to be the same, and arise
from expectation values of the SU(4) generators in the Higgs vacuum. The squared mass
of the vector boson of the R field is given by M2 = (®1R%®,). The mass squared of the
V bosons are all equal and given by My, = ¢?v?/4. In conclusion, all vector bosons that
change the strong charge have become massive by the famous Higgs mechanism, involving
here a scalar quadruplet vacuum field with a strong charge of —1, like that of the electron.

5.2. Discussion of the Vector Boson Masses

In order to confine the nuclear forces to the size of the nucleus (about 1.5 fm), the vector
gauge bosons should, in fact, be massive, unlike the photon mediating electromagnetism
through the vector potential A, that reaches out to infinity. In the SM, it is the Higgs
mechanism [1-3,37] that gives the weak gauge bosons masses by breaking chiral symmetry,
whereby the related Higgs field also has a non-vanishing vacuum expectation value. In the
present case, the above vector boson masses are given by

3 1
MA = 0, MR =V 5(82 + (g/)Z)’ MV = Evg (49)

Consequently, the masses are entirely determined by the two coupling constants. Ap-
parently, the R boson mass is greater than the V mass. For ¢ = ¢’, we obtain Mg = 2v/3My,
i.e., the R boson mass then is 3.46 times larger than the V boson mass. These results mean
that the field B, acting solely on the lepton becomes massive, whereas the electro-strong
tield Ay, acting on the three quarks remains massless, and thus its quanta propagate like
photons at the speed of light. In our opinion, there is no good physical reason to assume
that g and ¢’ differ. So, we shall assume from now on that they are equal. Then, the vector
boson of the gauge field By, is heavy, with the mass Mg = v/3vg.
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In the SM, the coupling constants are well known experimentally from QED and
QCD, and are applied to interpret the particle accelerator and scattering results [38,39].
The electromagnetic fine structure constant is defined as a, = €?/(477), and has the value
ae = 1/137 = 0.0073. The “strong fine-structure” constant is defined as a; = gz /(47), and
is experimentally known to be running between about 0.1 at 200 GeV, and attains the value
of about 0.5 at 1 GeV. In a simple toy model in Appendix A, we show that only a coupling
constant greater unity may lead to bound states in a Yukawa potential [14].

How great then is the mass of the vector bosons that transfer the electro-strong charge
from the quarks to the lepton and vice versa? This depends on the strong Higgs vacuum
v, which remains a purely theoretical concept at this point. However, for an estimation,
we may assume that v about equals the value of the electroweak Higgs, which gives
v = (247-251) GeV [3]. Let us further assume then that the mass is equal to that of the
electroweak W, which is My = 80.4 GeV. Then, we can simply infer after (49) that the
strong coupling constant is § = gz, with g, = e/ sinfyy = 0.64¢p and e = 0.303¢, whereby
eg is the elementary electrostatic charge unit. The Weinberg angle is sinf = 0.472 [3], as
determined experimentally. Under our above assumptions, the vector boson associated
with the gauge field B, is rather heavy, and its mass My is in energy units equal to
278.18 GeV, which is well in reach for the CERN accelerator.

In conclusion, we obtain the rounded value g = 0.64¢ for the strong coupling constant,
and thus, under the above assumption, the electro-strong charge is equal to that of the
electroweak interaction. From the measured value of ag = 0.12 at 80 GeV [3], one obtains
g = V/4muas = 1.2¢p, which is about two times the above-estimated value. The V bosons in
the present model exchange charges of value j:% between the quarks and the lepton.

Under the equal mass assumption, the strong (V) and weak (W) charge-changing
vector bosons could not be easily experimentally distinguished, because one would have to
determine, in addition to the charge, whether they carry the color charge or weak charge.
It should be stressed, though, that the equal mass assumption does not seem to be that
unreasonable. Marsch and Narita [16] have already applied it with some success to the
electroweak SU(2) symmetry breaking within their SU(8) unification model.

6. Results and Conclusions

The main results of this paper are the following. The starting point of our derivations
was the second Casimir operator C; of the Lorentz group, which links in a multiplicative
way the Lorentz invariant squared four-momentum with the intrinsic spin squared (a
rotational invariant) of any massive particle. For the fermion spin of one-half, the standard
Dirac equation can readily be derived from C;. When using the vector representation
of the Lorentz group, with the chiral spin operators (2) and (3) acting on complex four-
component Minkowski spinors [17], one can extend the Dirac equation to include also the
chiral symmetry involving the SU(2) group. This subject was dealt with extensively in
references [19,20].

In order to also obtain the SU(3) symmetry group of the strong interactions as in the
SM, we introduced the hadronic isospin, the helicity of which leads naturally to the unifying
SU(4) symmetry group that contains SU(3) as a subgroup. Application of the usual
methods of the SM to break the SU(4) symmetry by means of the (what we called for the
present purpose hadronic) Higgs mechanism then yields the Quantum Chromodynamics
(QCD) for the three quarks and the U(1) symmetry group for the resulting single lepton. In
addition, one obtains three “leptoquarks”, i.e., massive vector bosons the masses of which
we estimated roughly to be of the order of the W of the SM electroweak interactions. They
can, by charge exchange, transform quarks into leptons and vice versa. As compared to
previous unification models proposed in the cited literature, the present model makes a
minimum number of assumptions, is quite transparent, and is based on the new concept
of isospin helicity which, for the isospin 1/2, hints directly to the importance of SU(4) for
unification.
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Appendix A. On the Strong Coupling Constant

Here, we shall present another derivation of the coupling constant g for the hadron
interaction. In the main text, we just assumed that it may be given by the QCD coupling
constant at the energy of 1 GeV, which yields the “strong fine-structure” constant a5 = 0.12,
and consequently a strong coupling constant of g = 1.23eg. Here, we consider a simple
Yukawa-type shielded but attractive potential U(r), with a shielding length Aj; determined
by the mass M of the involved boson and with the coupling constant G. The potential reads

GZexp (—r/Aum)
4regr '

Ur)=-— (A1)
Here, g is the vacuum permittivity or dielectric constant. In adequate units for quantum
field theory, the potential has to be divided by %c. For electromagnetism, the fine structure
constant has been measured, and it is of course known. We define the constant ag in
analogy to the fine-structure constant &, for electrodynamics with ¢ = . In electrostatic
cgs units, we have 47t¢p = 1, and thus @, = €3/ (hic). In the natural units as used in
high-energy-particle (hep) physics ¢ = i = ¢y = 1, we obtain a, = €3/ (47).

For the hadronic interaction mediated by an extremely short-lived vector boson con-
sidered here, the coupling constant has not directly been measured, but it must be as-
sumed in reasonable accord with indirect empirical evidence, like obtained from hadron
scattering [38]. However, we may instead consider the simple energy argument, saying
that G may be determined by equating the Yukawa potential at the Compton wave length
of the boson Ap; = 1/ (Mc) with its energy at rest. Thus, we obtain with x = r/Ay, and
the toy potential

U(x) = —aGWMcz. (A2)

The total, kinetic and potential energy of a relativistic particle with momentum
p = ch/r moving in such an attractive potential is given by

E(x) _ _“Gexp (—x) n 1 _

M2 o f(x), (A3)

with the function f(x) =1 — ag exp (—x). To obtain a bound state at some x, the value of
f(x) must be negative, which means that the potential term dominates. But, for x > 0, the
exponential term becomes smaller, and thus a; must be larger than unity to obtain a bound
state at a finite distance from the singular point at x = 0. It is intuitively clear that to excite
the trapped particle to a higher energy state, it must absorb an energy amount of the order
of Mc?, i.e., the energy of the boson providing the potential.

The extremum of the energy is attained at the location xo, where E’ (xo) = dE(xg)/dxo = 0.
As the coupling constant is positive, the resulting maximum of E(xy) is determined by the
condition
op (X0), (A4)

1+ xg

See the graphical representation in Figure Al. Then, a relativistic particle can be
trapped in the potential well at x < x(. For example, xg = 0 for ag(x9) = 1, or xg = 2 for
ag(xp) = 2.46. The relation (A4) turns out to be independent of the boson mass M. Then,
one can solve for the coupling constant, giving for example for xy = 2 the value G = 5.56¢y.
In that case, the hadronic coupling constant is about four times that of the strong one and

ag(xo) =
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eighteen times that of the electromagnetic one! That appears to be an unrealistic result,
owing to the simplicity of the assumed model. However, it illustrates that a short-range
potential must be rather deep to bind a relativistic particle.
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~ 1 —]
9] or 7
=
~
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_4 PN YR TN TN [N TN T T T N ST TN T T [T T T N 1
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Figure A1l. Graphical representation of the function E(x)/ Mc? in Equation (A3) for xg = 0 (in black),
xo = 1 (in dark gray), and xp = 2 (in light gray).
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