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Abstract This paper contains a discussion of a relativistic
spin-0 system in the presence of a Gödel-type background
space-time. The Duffin–Kemmer–Petiau (DKP) equation in
the presence of a Gödel-type background space-time is stud-
ied in detail. After a derivation of the final form of this equa-
tion in the considered framework, free spin-0 particles have
been studied.

1 Introduction

The properties of Gödel-type problem space-time have been
studied in the Riemannian Gödel-type [1] and for Riemann–
Cartan–Gödel-type space-time [2–4]. Santos et al. discussed
homogeneous Gödel-type solutions in hybrid metric–Palatini
gravity. They showed that under certain conditions on the
matter sources the problem of finding space-time homoge-
neous solutions in f (R) (hybrid metric–Palatini) theories
reduces to the problem of determining solutions of this type
in f (R) gravity in the metric formalism. Also they deter-
mined a perfect-fluid Gödel-type solution in f (R) gravity,
and showed that it is isometric to the Gödel geometry, and
therefore exhibits violation of causality [5]. Furtado et al.
investigated the Gödel solution in modified gravity whose
action presents itself as a sum of the usual Einstein–Hilbert
action and the gravitational Chern–Simons term and showed
that the Gödel metric solves the modified equations of motion
[6]. As an application of Gödel-type problems in the rela-
tivistic studied we can indicate that gravitational coupling of
Klein–Gordon and Dirac fields to matter vorticity and space-
time torsion, in the context of Einstein–Cartan theory with

a e-mail: hha1349@gmail.com
b e-mail: mimip44@naver.net
c e-mail: soroushzrg@gmail.com
d e-mail: hadisobhani8637@gmail.com

a Gödel-type metric, have been done by Figueiredo [7]. A
close relation was seen between a family of Gödel-type solu-
tions of 3+1 general relativity and the Landau problem, as
reported by Drukker [8]. The quantum dynamics of a scalar
particle in three spaces whose metrics are described by dif-
ferent classes of Gödel solutions, with a cosmic string pass-
ing through the spaces has been studied [9]. The solutions
of the Klein–Gordon equation in the background of Kerr–
Newman, Gödel and Friedmann–Robertson–Walker space-
times with a cosmic string passing through them have been
obtained; some of their consequences have been discussed,
with emphasis on the role played by the presence of the cos-
mic string [10]. Relativistic bound states solutions for the
Dirac equation dealing with three cases of the Gödel-type
solutions with torsion, where a cosmic string passes through
these three cases of the space-time, have been investigated
[11]. Weyl fermions in a family of Gödel-type geometries in
Einstein general relativity have been studied recently [12],
and some valuable efforts are available in Refs. [13–16].

In recent years there has been a renewed interest in the
Duffin–Kemmer–Petiau (DKP) theory describing spin-0 and
spin-1 mesons [17] due to discovery of a new conserved four-
vector current with positive zeroth component [18,19], which
can be thus interpreted as a probability density. DKP equation
is similar to Dirac equation for spin-1/2 particles, because
DKP is a first-order formalism like the Dirac formalism [20–
24]. In other words, the DKP equation is a generalized Dirac
equation for integral spin interactions, which can be obtained
by substituting gamma matrices by beta matrices and follow-
ing an interesting algebra like the DKP algebra. In some cases
it can be shown that using the DKP equation is better than the
Klein–Gordon or Proca equation [25–30]. The first-order rel-
ativistic DKP equation has been used to study the interactions
of spinless mesons with nuclei [31]. There have been made
valuable efforts using the DKP equation such as deuteron–
nucleus scattering using the DKP equation, motivated by the
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fact that this theory suggests a spin-1 structure from com-
bining two spin- 1

2 [32]: study of the meson–nuclear interac-
tion and the relativistic model of α–nucleus elastic scatter-
ing [33,34], investigation of the DKP equation, with equally
vector and scalar potentials for the general deformed Morse
potential, obtaining creation and annihilation operators that
showed these operators satisfied the commutation relation of
the SU (1, 1) group [35], study of the DKP equation in the
presence of external electromagnetic fields in Friedmann–
Robertson–Walker metric [36] and with a time-dependent
interaction [37].

For a free particle whose spin is 0, the well-known first-
order relativistic DKP equation is [37]

(iβμ∂μ − m)� = 0 (h̄ = c = 1), (1.1)

where m is mass of the particle and β j ( j = 0, 1, 2, 3) are
matrices which satisfy the commutation relation

βμβνβλ + βλβνβμ = gμνβλ + gλνβμ, (1.2)

where Eq. (1.2) defines the DKP algebra and the metric tensor
is gμν = diag(1,− 1,− 1,− 1). The β matrices for the spin-
0 systems are

β0 =
(

θ 0̄
0̄T 0

)
, β i =

(
0̃ ρi

−ρi
T 0

)
, (1.3)

in which 0̃, 0̄ and 0 are 2 × 2, 2 × 3 and 3 × 3 matrices,
respectively, and also we have

θ =
(

0 1
1 0

)
, ρ1 =

(−1 0 0
0 0 0

)
,

ρ2 =
(

0 −1 0
0 0 0

)
, ρ3 =

(
0 0 −1
0 0 0

)
. (1.4)

In this case � is a five component spinor.
In this paper, we want to study the DKP equation for spin-0

systems in the presence of a Gödel-type background space-
time without considering torsion effects and to investigate in
detail the effect of the existence of such a background on the
considered system. This paper has been organized as follows:
the Gödel-type background space-time and derivation of the
β matrices are presented in Sect. 2. Free spin-0 particles in
the presence of Gödel-type background space-time is studied
in Sect. 3. Finally, the conclusions appear.

2 Derivation of DKP elements in the presence of
Gödel-type background space-time

In this section, it is supposed that DKP equation for spin-0
particles to be derived in the Gödel-type background space-

time. At first three class of this kind of space-time will be
introduced then Christoffel symbols, spin connections and
spinorial affine connections will be calculated in order to
construct the new β matrices in a curve space.

The space-time metric representing a class of the Gödel-
type solution with can be written as

ds2 = −
(

dt + α

sinh2(lr)

l2
dφ

)2

+ α2 sinh2(2lr)

4l2
+ dr2 + dz2, (2.1)

where the coordinates (t, r, φ, z) are defined in the ranges of
0 ≤ r < ∞, 0 ≤ φ ≤ 2π and −∞ < z < ∞. Moreover,
the parameter 
 characterizes the vorticity of the space-time,
and the parameter α characterizes the cosmic string, since it
is associated with the angle deficit α = (14λ), with λ being
the mass per unit length of the cosmic string, and it assumes
values in the range 0 < α < 1. It is instructive to note here
that in the case of a Gödel-type background three classes of
families of solutions are possible:

• Considering l = 0 in the line element (2.1), then the
Gödel-type space-time reduces to the Som–Raychaudhuri
solution [38] in the presence of a cosmic string. Thereby,
the line element becomes

ds2 = −
(

dt + α
r2dφ
)2 + dr2 + α2r2dφ2 + dz2.

(2.2)

• In the case l2 < 0 in the line element (2.1), which cor-
responds to the Gödel-type space-time with a spherical
symmetry in the presence of a cosmic string. In this case,
we have the new coordinates R = i

2l and θ = r
R [9];

then the line element (2.1) becomes

ds2 = −
(

dt + α
r2

1 + r2

4R2 dφ

)2

+
(

1 + r2

4R2

)−2 (
dr2 + α2r2dφ2

)
+ dz2.

(2.3)

• We address the case of l2 > 0 in the line element (2.1),
which corresponds to the hyperbolic Gödel-type space-
time with the cosmic string [9]. In this case, the line ele-
ment (2.1) becomes

ds2 = −
(

dt + α
r2

1 − l2r2 dφ

)2

+
(

1 − l2r2
)−2 (

dr2 + α2r2dφ2
)

. (2.4)
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We are interested in working on the second case. There-
fore, considering l2 < 0 in (2.1), which means there is a
spherical symmetry in the presence of a cosmic string, and
introducing the new coordinates R = i/2l and θ = r/R, the
line element gets the form

ds2 = −
⎛
⎝dt + α 
 r2(

1 + r2

4R2

)dϕ

⎞
⎠

2

+
(

1 + r2

4R2

)−2 (
dr2 + α2r2dϕ2

)
+ dz2. (2.5)

The metric tensor can be deduced in view of Eq. (2.5) to be

gμν(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 − α 
 r2(
1+ r2

4R2

) 0

0 1(
1+ r2

4R2

)2 0 0

− α 
 r2(
1+ r2

4R2

) 0 α2r2−α 2
2 r4(
1+ r2

4R2

)2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.6)

whose inverse is

(
gμν

)−1
(x) = gμν(x)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

r2
2 − 1 0
−

(
1+ r2

4R2

)



a 0

0
(

1 + r2

4R2

)2
0 0

−
(

1+ r2

4R2

)



α
0

(
1+ r2

4R2

)2

α2r2 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(2.7)

Using the definition of eμ
a and eaμ in the presence of the Gödel-

type background, we have

eaμ (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 α 
 r2(
1+ r2

4R2

) 0

0 1(
1+ r2

4R2

) 0 0

0 0 αr(
1+ r2

4R2

) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.8)

eμ
a (x) =

⎛
⎜⎜⎜⎜⎝

1 0 −
r 0

0
(

1 + r2

4R2

)
0 0

0 0

(
1+ r2

4R2

)
α r 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ , (2.9)

which must satisfy

eμ
a (x)eaν (x) = δμ

ν , (2.10)

eaμ(x)eν
b(x) = δab , (2.11)

gμν = eaμ(x)ebν(x)ηab, (2.12)

where ηab = diag(−1, 1, 1, 1). The next step is a deriva-
tion of the related Christoffel symbols. These symbols are
calculated as

�
μ
νλ(x) = gμρ(x)

2

(
gρν,λ(x) + gρλ,ν(x) − gνλ,ρ(x)

)
.

(2.13)

Therefore the four Christoffel symbols are obtained:

�t
i j (x) =

⎛
⎜⎜⎜⎜⎜⎝

0 4 r R2 
2

r2+4R2 0 0
4 r R2 
2

r2+4R2 0
4r3R2α 


(
1+4R2 
2

)
(r2+4R2)

2 0

0
4r3R2α 


(
1+4R2 
2

)
(r2+4R2)

2 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

(2.14)

�r
i j (x) =

⎛
⎜⎜⎜⎝

0 0 r α 
 0
0 − 2r

r2+4R2 0 0

r α 
 0
rα2

(−4R2+r2
(
1+8R2
2

))
r2+4R2 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (2.15)

�
ϕ
i j (x) =

⎛
⎜⎜⎜⎜⎝

0 − 

r α

0 0

− 

r α

0
4R2−r2

(
1+4R2
2

)
r3+4 r R2 0

0
4R2−r2

(
1+4R2
2

)
r3+4 r R2 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (2.16)

�z
i j (x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (2.17)

The spin connections can be determined using Christoffel
symbols with the definition

ωμāb̄(x) = ηā c̄e
c̄
ν(x)eσ

b̄
(x)�ν

σμ − ηā c̄e
c̄
ν(x)∂μe

ν

b̄
(x).

(2.18)

Thus, the spin connections are

ωt (x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 −
 0
0 
 0 0
0 0 0 0

⎞
⎟⎟⎠ , (2.19)

ωr (x) =

⎛
⎜⎜⎜⎝

0 0 − 4R2

r2+4R2 0

0 0 0 0

− 4R2

r2+4R2 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (2.20)

ωϕ(x) =

⎛
⎜⎜⎜⎜⎝

0 4r R2α 

r2+4R2 0 0

4r R2α 

r2+4R2 0 − −4αR2+αr2

(
1+4R2
2

)
r2+4R2 0

0 − 4αR2−αr2
(
1+4R2
2

)
r2+4R2 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

(2.21)
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ωz(x) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (2.22)

Also the only non-vanishing component of the spinorial
affine connection �μ(x), according to the definition �μ(x) =
1
2ωμab(x)

[
βa, βb

]
, can be identified as

�t (x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 
 0
0 0 −
 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (2.23)

�r (x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (2.24)

�ϕ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0

0 0 0
α
(−4R2+r2

(
1+4R2
2

))
r2+4R2 0

0 0 − α
(−4R2+r2

(
1+4R2
2

))
r2+4R2 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.25)

�z(x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (2.26)

Recalling Eq. (1.3), and their general form in a curved space
according to βμ (x) = eμ

a βa , we have

β t (x) =

⎛
⎜⎜⎜⎜⎝

0 1 0 r 
 0
1 0 0 0 0
0 0 0 0 0

−r 
 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (2.27)

βr (x) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 − r2

4R2 0 0
0 0 0 0 0

1 + r2

4R2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (2.28)

βϕ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 − 1+ r2

4R2

α r 0
0 0 0 0 0
0 0 0 0 0

1+ r2

4R2

α r 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.29)

βz(x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (2.30)

Now, having these elements enables us to write the DKP
equation in the presence of a Gödel-type background space-
time.

3 Free spin-0 particles in the presence of Gödel-type
background space-time

In the previous section, the DKP matrices were constructed
with the aim of Christoffel symbols, spin connections and
spinorial affine connections. Having the β matrices in a curve
space helps us to study of DKP equation in a curve space.
The DKP equation in a curved space is given by

[
iβμ(x)

(
∂μ + �μ (x)

) − (M + S (r))
]
� = 0, (3.1)

where we have derived βμ(x) and �μ(x) in the previous
section. Using the derived DKP elements in the previous
section, we have

βμ(x)�μ(x) =

⎛
⎜⎜⎜⎜⎝

0 0 − 1
r + r

4R2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (3.2)

in which summation convection has been used. Supposing
the wave function to be

� (t, r, ϕ, z) = e−i Et+im ϕ+ikz

⎛
⎜⎜⎜⎜⎝

C1 (r)
C2 (r)
C3 (r)
C4 (r)
C5 (r)

⎞
⎟⎟⎟⎟⎠ (3.3)

and S(r) = 0, we arrive at the following coupled differential
equation:

− 4αMrR2C1(r) + 4αEr R2C2(r) − iαr3C ′
3(r)

− 4iαr R2C ′
3(r) + iαC3(r)

(
r2 − 4R2

)

+ 4αEr2R2
C4(r) + mr2C4(r)

+ 4mR2C4(r) + 4αkr R2C5(r) = 0, (3.4)

EC1(r) − MC2(r) = 0, (3.5)

− 4MR2C3(r) + i
(
r2 + 4R2

)
C ′

1(r) = 0, (3.6)

C1(r)
(
−4αEr2R2
 − m

(
r2 + 4R2

))
(3.7)

− 4αMrR2C4(r) = 0,−kC1(r) − MC5(r) = 0, (3.8)

in which a prime means a derivative with respect to r . These
equations can be decoupled after a little algebra, which results
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in

C2 (r) = EC1(r)

M
, (3.9)

C3 (r) = i
(
r2 + 4R2

)
C ′

1(r)

4MR2 , (3.10)

C4 (r) = −C1(r)
(
4αEr2R2
 + mr2 + 4mR2

)
4αMrR2 , (3.11)

C5 (r) = −kC1(r)

M
(3.12)

and a differential equation for the first component of the wave
function as

(
1 + r2

4R2

)2 [
d2C1(r)

dr2 + 1

r

dC1(r)

dr

]

+
[
−

(
k2 + M2 − E2 + (Er
)2

)
− m2r2

16R4α2 − m2

2α2R2

− m2

r2α2 − Em
r2

2αR2 − 2mE


α

]
C1(r) = 0, (3.13)

which is in agreement with the differential equation obtained
in Ref. [9]. Thus we can obtain a new differential equation
with the help of a new variable ξ = r2

r2+4R2 :

ξ(1 − ξ)
d2F(ξ)

dξ2

[ |m|
α

+ 1

−
(

2|m|
α

+ 4
R2E + 2

)
ξ

]
dF(ξ)

dξ

×
[
m2

α2 + 2
R2
( |m|

α
+ m

α
+ 1

)
E

+|m|
α

− R2(k2 + M2)

]
F(ξ) = 0, (3.14)

whereC1(ξ) = (1−ξ)γ ξβF(ξ), γ = λ
2 , λ = ∣∣m

α
+ 4
R2E

∣∣ ,
β = ∣∣ m

2α

∣∣. Equation (3.14) is the general form of the hyper-
geometric equation. Therefore, a solution of Eq. (3.14) can
be written as

F(ξ) = 2F1 (A, B,C, ξ) , (3.15)

A = 1

2

(
1 + 2|m|

α
+ 4
R2E

)

+ 1

2

√
1 + 4
R2E + 2
R2

( |m|
α

− m

α

)
E + 4R2

(
E2 − k2 − M2

)
,

(3.16)

B = 1

2

(
1 + 2|m|

α
+ 4
R2E

)

− 1

2

√
1 + 4
R2E + 2
R2

( |m|
α

− m

α

)
E + 4R2

(
E2 − k2 − M2

)
,

(3.17)

C = |m|
α

+ 1. (3.18)

The energy eigenvalue relation can be obtained:

En,m = − ±α
√
a + b + c0

4αR2
(
4R2
2 − 1

) (3.19)

a = 8R2
(

2 − 8R2
2
) ( |m| (α + |m| + 2αn)+

α2
(
R2

(
k2 + M2

) + n2 + n
)
)

;
(3.20)

b = R4
2(2α + 7 |m| + m + 8αn)2; (3.21)

c0 = R2
(2α + 7 |m| + 8αn) + mR2
; (3.22)

For each of the energy levels E , the set of states hav-
ing the same n is once again degenerate, with degenerate
states being distinguished by their angular momentum m.
However, the degeneracy of each level is now finite, there is
an upper bound and a lower bound defined by the interval
−n ≤ m

α
≤ 4R2
E . Note that the presence of topological

defects reduces the degeneracy of the energy levels, since the
parameter has values in the range 0 < α < 1. It should be
noted that we have not considered the effects of torsion in
our calculations [35]. To present physical interpretation of
the results we should plot some figures. In Fig. 1, the proba-
bility density ofC1(r) has been plotted. In our calculation, we
considered free particle. In the Minkowski space-time it can
be possible to find the free particles anywhere, but as can be
shown by Fig. 1, the free particles only can exist somewhere
in space, but this cannot be true for the Gödel type space-time.
Treatments of the probability density in the curved space con-
sidered show that free particles are not really free and without
interactions with the space-time, and they are interacting. To
proceed with the interpretation of the results, we have plotted
the energy of particles and anti-particles as a function of n in
Fig. 2. In this figure we have considered a specific value for
the α and plotted the energy as a function of n. The effects of
the parameter 
 can easily be seen. By increasing the value
of the parameter 
, the absolute value of the energy will
increase. In Fig. 3, we have shown the effect of the α param-
eter on a specific level for different values of 
. It is shown
that when the α parameter increases, the value of the energy
approaches a specific value. The important results that can be
understood from these figures is that in the Minkowski space-
time for the particle and anti-particle we deal with the same
energy with different sign; but in the considered space-time,
we deal with different values of the energy for the particle and
anti-particle. This kind of distinction caused in the new curve
space. It is easy to show that by removing the curvature of
space-time and leaving the Gödle type and using Minkowski
space-time, we can find the same energy with different signs.
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Fig. 1 The wave function
probability density in the curve
space. The constant are
n = 5, k = 1, α = 0.5, 
 =
0.05, R = 1, M = 10,m = 1
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(b) Plots of E+ as function of n.

Fig. 2 Energy as a function of α. The constants have been set as α =
0.5, k = 1, R = 1, M = 10,m = 1
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Fig. 3 Energy as a function of α. The constants are α = 0.5, k =
1, R = 1, M = 10,m = 1
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4 Conclusions

In this paper, the DKP equation for spin-0 system in the
presence of Gödel-type background space-time with for free
particle was studied. In Case of Gödel-type background is
possible three class of family of solution. These solutions
could be selected considering one of form of l = 0 in which
the Gödel-type space-time reduces to the Som–Raychaudhuri
solution, l2 < 0 which correspond to Gödel-type space-
time with a spherical symmetry in the presence of a cos-
mic string and l2 > 0 that corresponds to the hyperbolic
Gödel-type space-time with the cosmic string. We selected
the second case for our study. The β matrices in the Gödel-
type space-time should be constructed. Consequently, we cal-
culated Christoffel symbols, spin connections and spinorial
affine connections. Having these elements and definition of
covariant derivative, we could derive DKP equation in the
Gödel-type space-time. Then for a free particle in that space-
time this equation was solved. The wave function and energy
spectrum were derived.
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