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Topological networks for quantum communication between
distant qubits
Nicolai Lang1 and Hans Peter Büchler1

Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum
information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this
task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be
employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is
robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time
required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our
concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between
all of them.
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INTRODUCTION
Systems characterized by topological invariants are well known to
exhibit unique properties with potential applications in quantum
information processing and engineering.1 Ever since the first
experimental observation of the integer quantum Hall effect,2–4

many other condensed matter systems have been identified and
experimentally characterized, such as fractional quantum Hall
fluids5–7 and topological insulators and superconductors.8–16 The
latter belong to a particularly well-understood family of topolo-
gical systems described by non-interacting fermions, where
topological invariants can be defined on classes of random
matrices.17–20 This concept can be straightforwardly generalized
to bosonic setups, as well as classical systems,21–23 where the
topological features still give rise to intriguing properties, such as
localized and chiral edge modes. Here, we are interested in such
systems: We demonstrate that their topological properties can be
harvested for robust and efficient transfer of quantum information
over large distances.
Several different platforms for the realization of topological

systems of artificial matter with bosonic degrees of freedom are
currently explored: The construction of topological band struc-
tures and the observation of edge states has been achieved with
photonic circuits in the optical21,24,25 and the radio-frequency26

regime, as well as with classical coupled harmonic oscilla-
tors,22,23,27 and with cold atomic gases.28–34 These experimental
advances have been prepared and are supported by many
theoretical proposals, e.g. refs. 35–45. Several of the above
platforms are suitable to carry a single, quantized excitation with
low losses and dissipation along protected edge channels, which
opens the opportunity to harvest topological phenomena for
guiding and transmitting quantum information reliably. First
approaches in this direction have been proposed46,47 and
primarily focus on the transmission of excitations along protected
edge modes on the boundary of a two-dimensional, topologically
non-trivial medium.

Here, we show that a linear network of coupled bosonic
degrees of freedom, characterized by topological bands, can be
employed for the highly efficient exchange of quantum informa-
tion over large distances. We demonstrate the superiority of this
setup over its topologically trivial counterparts and exemplify its
application with the implementation of a robust quantum phase
gate. Our proposal is based on a (quasi) one-dimensional setup,
characterized by a Z topological index,48 and derived from
paradigmatic systems such as Kitaev’s Majorana chain49 and the
Su–Schrieffer–Heeger (SSH) model.50 It features symmetry pro-
tected, localized edge modes, the extend and overlap of which
can be tuned via coupling parameters to facilitate controllable
communication between them. Important features of our setup
are that relevant operations can be performed by global variations
of parameters, its robustness with respect to the pulse shapes
used for the transfer protocol, and that the time for the transfer
scales favorably with the separation of the qubits. This high gain in
performance is bought by more complex preparation schemes as
the coupling parameters have to respect symmetries protecting
the topological invariants.21,22,26,27 Finally, we demonstrate that
our concept can be extended to an ensemble of qubits embedded
in a two-dimensional network of local bosonic degrees of freedom
to allow for communication between all of them.
We consider macroscopically separated qubits that are coupled

by a linear quantum network, see Fig. 1a for an example. The
quantum network itself is constructed from bosonic degrees of
freedom with only local couplings between them, and generically
described by the Hamiltonian

Ĥn ¼
X
i;j

byi Hijbj: (1)

Here, byi (bi) are bosonic creation (annihilation) operators
accounting for the mode at site i with Hij the coupling amplitudes.
The network is designed such (see below) that at the end p of
each branch, a localized bosonic edge mode ~bp emerges with a
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controllable coupling between this mode and a local qubit. The
conceptually simplest setup to envisage is an optical network
coupled to a single atom with the level structure shown in Fig. 1b.
There the coupling Hamiltonian for the target qubit T takes the
form (within the rotating wave approximation)

ĤTðtÞ ¼ gTðtÞ ~byT aj i 1h jTþ~bT 1j i ah jT
h i

: (2)

The coupling gT(t) is controlled by external laser fields and allows
for the application of π-pulses between the qubit state 1j iT and
the edge mode ~bT, i.e., the emission of a photon into the edge
mode ~bT from state 1j iT is accompanied by a transition into the
auxiliary state aj iT; in the following, we denote such a π-pulse at
edge p by the unitary operation Πp. Note that the Hamiltonian
ĤCðtÞ for the control qubit C is similar, with the role of 1j iC and
aj iC exchanged.
Several fundamental quantum information processing tasks

between the qubits reduce to the transfer of edge excitations
within the linear network; we denote the corresponding unitary
operation that describes the transfer of excitations between edges
p and q as Tp↔q. As an example, the protocol for a controlled-
phase (CP) gate between a control qubit at position C and a target
qubit at position T reads

UCP ¼ ΠT � TC$T � Π2
C � TC$T � ΠT: (3)

Another example, the transport of a control qubit to a target
position, is simply described by the protocol

USWAP ¼ AC � ΠT � ΠC � TC$T � ΠC � ΠT � AC: (4)

Here, Ap denotes the exchange of the two states 1j ip and aj ip.
Note that this operation even performs the full exchange of the
two qubits due to the linearity of the network; a detailed
discussion of these operations can be found at the end of the
manuscript.
Motivated by these observations, we are in the following

interested in the efficient transfer (TC↔T) of edge excitations within
the linear network. The basic idea is most conveniently illustrated
for two qubits coupled by a one-dimensional network as
illustrated in Fig. 1a: The structure of the network gives rise to

topological bands with a gapped dispersion relation and entails
the existence of degenerate and localized edge modes within the
bulk gap. As the existence of edge modes is topologically
protected, it is robust against disorder. In a finite system, the
degeneracy of the topological edge states is only lifted
exponentially in the edge separation. However, globally tuning
the quantum network closer to the topological phase transition
into the trivial phase increases overlap and finite size splitting of
the edge states, and eventually allows for a π-pulse TC↔T between
the two edges. This simple idea is the core of our protocol;
compared to topologically trivial systems, it features several
superior properties regarding the speed of state transfer and its
robustness against disorder, as well as the absence of individual
addressing of each part of the network.
Finally, we would like to stress that our scheme is generic and

one can envisage various experimental platforms for its imple-
mentation. In addition to the discussed optical network,21

alternative setups are coupled optical cavities and circuit quantum
electrodynamics systems,51,52 as well as trapped polar molecules
or Rydberg atoms with a coupling mediated by dipolar exchange
interactions,45 while the local qubits can be artificial atoms,53

nitrogen-vacancy centers in diamond,54 or trapped ions.55

RESULTS
Topological network
We start with a description of the requirements on the quantum
network Ĥn to exhibit topologically protected edge modes in a
one-dimensional chain with two edges, as illustrated in Fig. 1a; the
generalization to 2D networks is discussed at the end of the
manuscript.
The most prominent paradigmatic model in one-dimension is

the Majorana chain, which exemplifies the concept of symmetry
protected topological phases, originally formulated for spinless
fermions with a mean-field p-wave pairing term.49 This model is
closely related to the Su–Schrieffer–Heeger (SSH) model50 in the
single-particle picture. It turns out that the necessary steps to
translate these models into our bosonic quantum network
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Fig. 1 Topological quantum networks. a One-dimensional chain of bosonic modes bi with globally tunable onsite couplings wðtÞ (orange);
derived from the SSH chain. It features a topological band structure with localized edge modes (in the topological phase), which can be
coupled to local qubits T and C. b The local qubits are realized as three-level systems with logical states 0j ip, 1j ip and the auxiliary state aj ip.
The state aj iC 1j iT

� �
can decay into 1j iC aj iT

� �
via an off-resonant transition and thereby emits an excitation into the localized edge mode ~bC

~bT
� �

. Tunneling excitations between the two edges is facilitated by tuning the chain close to the phase transition via wðtÞ and adiabatically

decoupling bulk from edge modes. c Possible 2D generalization of the network on a dimerized honeycomb lattice. Scattering-free transport is
guaranteed by topological protection which requires a sublattice symmetry. The latter is realized by directly coupling only “even” (filled
circles) with “odd” modes (filled squares). State transfer between qubits (empty circles) of different (the same) type is possible (impossible),
illustrated by the bold yellow (gray) path. Stray couplings in the bulk (shown for the upper path) are not detrimental to the transfer fidelity. d
Instead of locating the edge modes (filled colored circles and squares) with their qubits at the boundary, emanating SSH chains can be used to
separate the qubits from each other and the 2D bulk. There is no need to trace out a specific path as in c, but a weak addressability of the
individual chains is sufficient whereas the couplings of the bulk can be tuned globally. Details are given at the end of the manuscript
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language are more conveniently performed for the SSH model;
the discussion of the Majorana chain and its relation to the SSH
chain is presented in the Supplementary Information Sections 1
and 2.
The SSH model on a chain with L sites and open boundaries is

described by the Hamiltonian

ĤSSH ¼
XL

i¼1

wic
y
i ci þ

XL�1

i¼1

tic
y
i
ciþ1 þ h:c: (5)

with the two fermion operators ci and ci on each site. Note that
the indices i label the “upper” fermionic modes whereas bar-ed
indices i denote the “lower” ones, see Fig. 2a; we will use upper-
case indices I if we refer to both indifferently. Here, wi and ti are
the hopping amplitudes. For a uniform system with wi � w and
ti ¼ t, one obtains a gapless point for w ¼ t separating a
topological phase for w<t from the trivial phase for w>t. The
former features topologically protected edge modes, which are
fermionic in nature. The second-quantized Hamiltonian can be
encoded by a matrix HSSH via ĤSSH =Φ†HSSHΦ with the pseudo-
spinor Φ = c1; c1; ¼ ; cL; cL

� �T
. For real hopping amplitudes wi and

ti, the Hamiltonian exhibits time reversal symmetry T ¼ K, where
K denotes complex conjugation. Furthermore, time reversal T
together with the sublattice symmetry S ¼ USSH

C , represented by
the unitary

USSH
C ¼ 1L ´ L �

1 0

0 �1

� �
; (6)

yields the particle–hole (PH) symmetry C ¼ KUSSH
C with C2 = +1.

Hence, the SSH chain is in symmetry class BDI of the
Altland–Zirnbauer classification.17–20 In one dimension, this allows
for the definition of a Z topological invariant,11–14 which is
responsible for the emergence of the disorder-resilient edge
modes bound to the open ends of the chain in the topological
phase.
The implementation of an analog system with bosonic degrees

of freedom is straightforward: We replace the fermionic operators
by bosonic ones, i.e., cðyÞI ! bðyÞI . The bosonic Hamiltonian takes
the form

ĤbSSH � ξy HSSH þ δ1½ �ξ � ξyHbSSHξ (7)

with ξ ¼ b1; b1; ¼ ; bL; bL
� �T

and HbSSH = HSSH + δ1. The constant
positive energy shift δ > 0 is required to enforce positivity on the
matrix HbSSH and accounts for the energy ωI of each bosonic mode
bI. The bosonic Hamiltonian ĤbSSH features the same single-particle
band structure as the original fermionic chain, and exhibits the
same topological properties and topological quantum numbers.
Therefore, it gives rise to the same edge modes. Note that these
are statements about single-particle physics where statistics is not
relevant. To satisfy the PH symmetry, one must respect the
sublattice symmetry (6) that protects the topological invariant.
This is equivalent to the constraints

ωi ¼ δ ¼ ωi (8)

for all sites i and i, i.e., all bosonic modes must have the same
energy. Note that there are no constraints on the couplings wi and
ti.
To complete the picture, we point out that the bosonic

realization of the Majorana chain HbMC is unitarily equivalent to
that of the SSH chain HbSSH; this is shown in the Supplementary
Information Section 2. However, despite their unitary equivalence,
the bosonic networks impose different symmetry constraints on
the coupling Hamiltonians. Therefore, depending on the experi-
mental constraints on protecting the symmetry, it may be
advantageous to implement one or the other of the unitary
equivalent models.

Protocol for state transfer
Next, we discuss the protocol for state transfer. One of the key
features of the protocol is that we require only global (transla-
tional invariant), time-dependent tuning of the hopping ampli-
tudes wi; in particular, single-site addressability and control is not
required. The goal of the protocol is to coherently transfer a
single, quantized excitation from one of the localized edge modes
to the other by means of an adiabatic variation of the couplings w
in HbSSH.
The crucial point we exploit for state transfer is that in finite

systems and in the topological phase (for 0<w<t), there is a finite
overlap between the edge modes due to their exponential
extension into the bulk. While deep in the topological phase this
overlap is exponentially suppressed, it can be strongly enhanced
by tuning w closer to t from below, allowing for tunneling

topological trivial

b

a c

dMajorana chain

SSH chain

coupling

Tunable ...

mode

Barrier

Propagation

Fig. 2 Setups. Possible setups for state transfer via global control parameters. The left panel depicts networks with topological bands. The
models in the right panel are used for comparison and feature only trivial bands. Each model consists of locally coupled bosonic modes with
qubits coupled to the edge modes ~bC and ~bT. a The SSH chain inspired setup described by ĤbSSHðtÞ; globally tunable are only the onsite
couplings wðtÞ. b Network inspired by the Majorana chain (unitarily equivalent to the SSH setup) and described by ĤbMC tð Þ; the homogeneous
eigenfrequency differences δωðtÞ � ω�ðtÞ � ωþðtÞ are tunable. For details we refer the reader to Supplementary Information Section 1. c
Model with two artificial edge modes separated by a simple tunneling barrier of tunable eigenfrequencies ωbarrier(t); described by the
Hamiltonian ĤbBðtÞ. d The simplest model, based on free propagation of excitations and described by ĤbPðtÞ; all couplings tðtÞ are tuned
simultaneously
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between the macroscopically separated edge modes. In order to
prevent scattering into bulk modes, edge physics and bulk physics
have to be adiabatically decoupled. This can be achieved by
tuning w smoothly (and slowly, see below) towards the
topological transition and return to the “sweet spot” w ¼ 0
afterwards to relocalize (and thereby decouple) the edge modes.
To this end, we introduce a time-dependent hopping rate wðtÞ ¼
wmaxFðtÞ giving rise to the time-dependent network Hamiltonian
ĤbSSHðtÞ with perfectly localized edge modes at t = 0 and t = τ. For
simplicity, we choose for the adiabatic process the smooth pulse
shape

FðtÞ ¼ sin2 πt=τð Þ for 0 � t � τ: (9)

Here, τ denotes the characteristic time scale for the pulse. The
exact pulse shape does have influence on the performance of the
protocol, and setup-specific optimizations may yield quantitatively
better results, see below.
We analyze the transfer efficiency and its dependence on the

parameters τ and wmax by numerically evaluating the full unitary
time evolution. We start with an excitation in the left edge mode
~bC,

Ψ0j i ¼ 1j i1� 0; ¼ ; 0j ibulk� 0j iL� 1; 0; 0j i; (10)

and are interested in the transfer to the right edge mode ~bT, i.e.,
the state 0; 0; 1j i. The transfer is characterized by the overlap

0; 0; 1h jUτ wmaxð Þ 1; 0; 0j i �
ffiffiffiffi
O

p
eiφ: (11)

Here, O � 0 denotes the transfer fidelity, while φ is the relative
phase accumulated during the adiabatic process. Uτ wmaxð Þ is the
unitary time evolution operator at time t = τ, which depends
parametrically on wmax. To quantify the degree of adiabaticity, we
introduce another characteristic parameter which describes the
total edge mode population,

E ¼ Oþ 1; 0; 0h jUτ wmaxð Þ 1; 0; 0j ij j2: (12)

Deviations of E from unity indicate undesired losses into bulk
modes.
The qualitative results for the transfer are shown in Fig. 3a for an

optimized set of parameters τ and wmax, i.e., slow transfer with
τ 	 t�1 (ħ = 1). As expected, we find perfect transfer and
decoupling of edge and bulk modes. The overall performance is
quantified by O, φ and E, and depends on how close the protocol
parameter wmax is to the critical value t, the size of the system L,
and the global time scale τ; see Fig. 4a, b for a chain of length
L = 5. The edge weight E (gray background tiles) equals unity

almost everywhere, except for very fast protocols and tiny bulk-
edge gaps. We observe quite generally that for a smooth pulse
shape like F , the adiabatic bulk-edge decoupling is rather
generically established in the topological setup. The size of
colored squares denotes the transfer O, while the color accounts
for the value of the phase φ accumulated during the transfer
(measured in the rotating frame of the localized edge modes). We
find several disjoint branches with O 
 1 corresponding to an
increasing number of round trips of the excitation; see Fig. 4b. The
outermost branch allows for the fastest and most robust transfer,
and is therefore the desired parameter regime to perform
quantum operations. However, the most striking property of this
setup is a fixed phase φ accumulated during a transfer, i.e., φ = ±π/
2. The sign depends on the number of round trips and on the
parity of the chain length L, see Supplementary Information
Sections 4 and 5 for an explanation. This remarkable feature is a
peculiarity of the PH symmetric topological setup and in general
violated for other setups (see comparison below). A motivation for
the relation of PH symmetry and fixed phase is presented in
Supplementary Information Section 4.
As a concluding remark, note that there may be residual

couplings wmin � wmax that cannot be switched off for t < 0 and t
> τ. Weak residual couplings wmin (compared to t) can be tolerable
on the relevant timescales as they are exponentially suppressed
with the qubit distance L in the topological setup, while controlled
coupling is always possible for wmax ! t.

Scaling and adiabaticity
An important aspect for quantum information processing over
large distances is the scalability of the protocol with separation L
between the qubits. We identify the two relevant time scales of
the transfer protocol: The inverse edge mode splitting ΔE�1

edge,
which determines the time for a state transfer between the two
edge states, and second, the inverse of the bulk–edge separation
ΔE�1

bulk, which gives a lower bound on the protocol time scale due
to the required adiabatic bulk–edge decoupling.
We start by considering the scaling of these energies when the

topological phase transition w ¼ t is approached from the
topological phase w<t. In the limit L → ∞, the eigenvalues of
HbSSH derive from the transcendental equation (see Supplemen-
tary Information Section 5 for the derivation)

Δw0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δw02 � λ02

p

Δw0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δw02 � λ02

p ¼ e�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δw02�λ02

p
(13)

Fig. 3 State transfer—qualitative results. For the four setups depicted in Fig. 2 and the corresponding protocols described in the text, we
show the full time evolution of a single excitation that is initially localized in the left mode ~bC and transferred to the right mode ~bT. The
protocol parameters wmax a, δωmax b, ωmin

barrier c, tmax d and the time scale τ are tuned to optimize transfer O and edge weight E. The upper row
shows the amplitude of the single-particle wave function under the time evolution prescribed by Ĥ�ðtÞ. The lower row parallels the time
evolution by the single-particle spectrum of Ĥ�ðtÞ, i.e., the spectrum of H�ðtÞ. In this work, we focus on the topological setup derived from the
SSH chain a and compare it with the trivial setup of a simple tunneling barrier c
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with Δw0=L ¼ t � w measuring the distance to the topological
phase transition. The lowest two solutions λ00 and λ01 of Eq. (13)
determine the relevant energies ΔEedge = 2λ00/L and
ΔEbulk ¼ λ01 � λ00

		 		=L, see Fig. 5a, b. Notably, both energies scale
as ~1/L with the result that their ratio R = ΔEbulk/ΔEedge saturates
for large L. For a fixed ratio R of the two energy scales, it is
therefore required to approach the critical point as t � w 
 1=L. E.
g., for R = 10 one finds t � w 
 3:3=L, see Fig. 5b.
This result demonstrates that if one requires an adiabatic

protocol wðtÞ with a fixed minimum ratio Rmin ¼ ΔEmin
bulk=ΔE

max
edge at

the minimal distance Δwmin ¼ t � wmax from the critical coupling,
then the time τ for the protocol scales as τ 
 L; see Fig. 5c, d for
simulations. The latter corresponds to the optimal scaling
achievable since the Lieb–Robinson bound predicts a finite
propagation speed for information.56

However, we still need to adiabatically decouple bulk from edge
modes, since losses to the bulk cannot be refocused in edge
modes via a global tuning of parameters. A common (and
conservative) estimate for adiabaticity then reads τ≳ ΔEmin

bulk

� ��2
,

which leads to the non-optimal scaling condition τ ~ L2. We
demonstrate in the following, that a much better scaling is
achievable by a rigorous estimation of the adiabaticity condition.
To this end, we parametrize the time with s = t/τ, s ∈ [0, 1] and
make the ansatz wðtÞ ¼ wmax � PðsÞ, where the generic pulse P :
½0; 1� ! ½0; 1� and its first derivative vanish for s = 0, 1, and
Pð1=2Þ ¼ 1.
Then, the non-adiabatic losses to the bulk can be rigorously

upper bounded57 by

1� E � CL½P�
τ

� �2

; (14)

where

CL½P� ¼
Z 1

0
ds

C1 I00j j
εL þ Ið Þ2 þ

Z 1

0
ds

C2 I0j j2
εL þ Ið Þ3

(15)

with I � 1� P, C1,2 numerical constants, and
εL ¼ Δw0

min= L� Δw0
min

� �
; see the Supplementary Information

Section 6 for details. Note that Ið1=2Þ ¼ 0 and εL 
 1=L so that
CL½P� diverges for L → ∞ in general. In order to bound the bulk
losses, the scaling of τ has to match the scaling of CL½P�.

For PðsÞ ¼ FðsÞ ¼ sin2ðπsÞ we find CL½F � 
 L1þ
1
2 so that a

scaling of τ 
 L1þ
1
2 is necessary for bulk–edge decoupling in the

limit of long chains, see Fig. 5e. This is better than the quadratic
scaling expected from the minimal gap ΔEmin

bulk. Unfortunately, the
optimal scaling τ 
 L allowed by the Lieb–Robinson bound cannot
be reached by the unoptimized pulse F . However, in Supple-
mentary Information Section 6 we prove that there is a sequence
of polynomial pulses Pn such that CL½Pn� 
 L1þ

1
n for n≥ 2 even

integers, i.e., the scaling can be drastically improved by pulse
optimization so that linear scaling can be approached to an
arbitrary degree. Numerical simulations of the bulk losses for
various scalings of τ reveal that they indeed follow the prescribed
scaling of the rigorous upper bounds, see Fig. 5f. As a final remark,
we stress that the coefficients in CL½Pn� become larger with n, i.e.,
there is a pay-off between scaling and offset. Thus one may even
benefit from pulses with poor scaling if only chains of fixed length
are considered.

Benchmarking against topologically trivial setups
To unveil the characteristic features of the topological setup, we
contrast it with two similar but topologically trivial networks, see
Fig. 2c, d. The simplest approach to envisage is based on initially
decoupled modes at fixed frequency ωI � ω, a homogeneous
tuning of all couplings wi ¼ ti � tðtÞ ¼ tmaxFðtÞ, and employs the
free bulk propagation of the initially localized edge modes. As
shown in Fig. 3d, this approach fails to relocalize the excitation at
the opposite edge due to the propagation via bulk modes; such a
protocol would require either fine tuning of the pulse shape via
optimal control and/or local addressability of all couplings within
the network. It is therefore not competitive against the topological
setup.
A more sophisticated approach mimics the presence of

localized edge modes by a large tunnel barrier: The two modes
at the edge have fixed frequency ω1 ¼ ωL ¼ ωedge ¼ const, and
are separated from each other by a “potential barrier” of modes
with tunable frequencies ωbarrier(t) and fixed couplings t ¼ w. In
analogy to the topological setup, this network exhibits exponen-
tially localized edge modes. Transfer is again achieved by lowering
the excitation gap to the bulk modes to allow for tunneling

Fig. 4 State transfer—quantitative results. In a, c we plot the figures of merit for transfers driven by ĤbSSHðtÞ and ĤbBðtÞ in dependence of the
protocol timescale τ and the distance from criticality, namely Δwmin ¼ t � wmax and Δωmin

barrier ¼ ωmin
barrier � ωedge. The diameter of the gray

background squares encodes the edge weight E; a thinning of the gray background tiling therefore indicates a loss of adiabaticity. In the
shown parameter regimes, however, the edge weight is almost everywhere close to unity as there is barely any loss to bulk excitations (except
for regions of fast protocols close to criticality). The diameter (color) of the colored squares encodes the transfer O (phase φ) after the protocol
reached its final state (φ is measured in the rotating frame of the localized edge modes). a shows results for a topological SSH setup of size L=
5. c shows the corresponding data for a trivial tunneling barrier setup of size L= 5. In b, d we plot O, φ, and E along the dashed slices in a, c,
respectively. Note that the phase is fixed for the topological setup: φ=±π/2
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between the edges. The protocol of this scheme reads

ωbarrierðtÞ ¼ ωmax
barrier þ ωmin

barrier � ωmax
barrier

� � � FðtÞ (16)

where ωmax
barrier 	 ωedge will be kept fixed and ωmin

barrier>ωedge is a
tunable protocol parameter. The bosonic network Hamiltonian of
this scheme is denoted by ĤbBðtÞ.
As shown in Fig. 3c, the tunneling approach still allows for near

perfect transfer for optimal parameters and long times. However,
the quantitative comparison in Fig. 4c shows that the trivial
tunneling approach requires longer time scales of the protocol
and is more sensitive to bulk losses. Even then the adiabatic

decoupling is much harder to achieve with ĤbBðtÞ than with
ĤbSSHðtÞ, as the plots of E along the dashed cuts in Fig. 4b, d
reveal.
However, the most striking difference is the phase accumulated

during the protocol: for the trivial setup, it is highly sensitive to
both parameters. This is expected for a generic adiabatic protocol
and is in stark contrast to the topological setup. The reason for this
qualitative difference is rooted in the PH symmetry of the SSH
setup which gives rise to the symmetric band structure depicted
in Fig. 3a, as opposed to the asymmetric band structure of the
barrier setup in Fig. 3c. As a consequence, we find that even for
the ideal, topologically trivial setup, adiabatic protocols are
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scales LΔEedge= 2λ00 (solid yellow) and LΔEbulk ¼ λ01 � λ00

		 		 (solid black) for L → ∞ calculated from the results in a. Fixing the ratio R=ΔEbulk/
ΔEedge (here R= 10) determines Δw0 via the intersection marked with a circle (here Δw0 
 3:3). c Simulations of transfer fidelity O (solid red)
and edge weight E (dashed black) for system size L= 5, protocol timescale τ= 50 and pulse wðtÞ ¼ t � Δwminð Þ � FðtÞ as function of Δwmin.
Optimal transfer for fixed L and τ is found numerically for Δwmin 
 0:26 with bulk loss 1� E 
 1 � 10�4. d The same as in c for doubled size L=
10 and timescale τ= 100. Now, optimal transfer is achieved for Δwmin 
 0:26=2 ¼ 0:13 with bulk loss 1� E 
 2 � 10�5. e Rigorous upper
bounds τ�1CL½P� for PðsÞ ¼ FðsÞ ¼ sin2ðπsÞ and τ= τ0 ⋅ L1+α with α ¼ 0; 12 ; 1 and τ0= 100, Δw0

min ¼ 3:3. A scaling τ 
 L1þ
1
2 yields constant bulk

losses for L → ∞. f Simulations of the bulk losses 0 � 1� E � 1 for the parameters in e without tuning for optimal transfer. We find that the
scaling follows the corresponding upper bounds. Note that the loss was chosen large (~50% for L= 10) for illustrative purposes and can be
controlled via τ0 (here τ0= 1, 0.3, 0.1 for α ¼ 0; 12 ; 1)
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unsuitable as the sensitivity of the phase increases for longer
wires: a transfer preserving quantum coherence requires fine
tuning of the shape of the transfer pulse. This effect becomes even
more drastic in the presence of disorder.

Effects of disorder and symmetry protection
The unique features of the topological setup become even more
apparent in the presence of disorder and/or imperfections in the
preparation. Here, we focus on quenched disorder on the time
scales for a transfer. The disorder is described as Gaussian noise
with dimensionless standard deviation p acting on the parameters
in the Hamiltonian, i.e., for the onsite hopping we have wih ih i ¼ w
and w2

i � w2

 �
 � ¼ p2w2 with �h ih i the disorder average. In the

following, two classes of disorder will be of interest: PH symmetric
disorder affects only mode couplings, but assumes perfect mode
frequencies; recall Eq. (8). In contrast, PH breaking disorder affects
both mode couplings and frequencies.
For the topologically trivial setup, both types of disorder give

rise to Anderson localization of the “artificial” edge modes, see

Fig. 6a–c. The transfer protocol, however, relies on the delocaliza-
tion of the edge modes, which is prohibited by Anderson
localization. As a consequence, disorder leads to a significant
reduction of transfer fidelity and increased bulk losses, Fig. 6d.
Furthermore, the phase φ accumulated during the transfer
strongly fluctuates for each disorder realization; more details on
this aspect are given in Supplementary Information Section 4.
In contrast, for the topological SSH setup, the PH symmetric

disorder respects the protecting symmetry. Then, Anderson
localization of the edge modes is forbidden by a topological
obstruction11,13,14 and the required overlap between the two edge
modes can be established, see Fig. 6b. As a consequence, the
transfer can still be performed perfectly with a fixed phase φ = ±π/
2. However, this requires that for each disorder realization one is
allowed to adapt the transfer time τ of the protocol. In an
experimental setup this corresponds, for example, to imperfec-
tions in sample preparation, which can be overcome by calibrating
the setup and the transfer protocol beforehand. In turn, the PH
breaking disorder leads also in the topological setup to localization
of the edge modes and a reduction of transfer fidelity, see Fig. 6d.

Disorder Disorder

Site

topological trivial

deloc deloc

loc

loc

deloc

loc

b

a

c

d

SSH chain Barrier

Time Time

PH sym.PH break. PH break. PH sym.

Fig. 6 Effects of disorder. In a–c we show the spatial amplitudes of the two edge modes (blue and red) at three different times during the
protocols of the SSH setup (left) and the barrier setup (right) for a no disorder, b PH symmetric disorder, and c PH breaking disorder. Note the
(de-) localization of the edge states for PH symmetric disorder in b. In d we show the transfer Oh ih i (bullets) and edge weight Eh ih i (circles) for
PH breaking (black) and symmetric (red) disorder. The averages are computed from N= 1000 samples for a chain of length L= 5 with a
retuning of τ for every single disorder realization to optimize transfer. The error bars denote one standard deviation of the sample
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Application: CP gate
As an application, we demonstrate how the proposed state
transfer, protected by PH symmetry, can be employed for a CP
gate between two remote qubits that are coupled to the local
edge modes of the topological SSH network. The complete
protocol for a CP gate between the target qubit T and the control
qubit C is based on a well-known scheme that makes use of
auxiliary levels aj iT/C.58 We focus on the setup shown in Fig. 1b for
the qubits and the auxiliary states with the coupling Hamiltonian
between the qubits and the edge modes of the SSH chain given
by Eq. (2). The full protocol for the CP gate follows the procedure
in Eq. (3) and is described in the following, see Fig. 7.
First, the full sequence UCP leaves the states 0j iC 0j iT and

1j iC 0j iT invariant because there are no excitations in the network.
On the other hand, for 0j iC 1j iT and 1j iC 1j iT the first π-pulse ΠT on
the target qubit maps the state 1j iT to a bosonic excitation in the
right edge mode ~bT with the phase −π/2. It is important that this
operation is performed slowly compared to the energy gap to
bulk excitations in the SSH chain: Then, energy conservation
allows one to only address the coupling to the edge states and
suppress admixture of bulk excitations. The subsequent transfer of
the excitation to the left edge TC↔T implies an additional phase π/
2 + Lπ. The full Rabi cycle Π2

C provides a phase π if and only if the
control qubit is in state 1j iC. The subsequent transfer back TC↔T

and the π-pulse ΠT provide additional phases π/2 + Lπ and −π/2.
Therefore, the full protocol implements the mapping 1j iC 1j iT →

− 1j iC 1j iT while all orthogonal states remain invariant. Given
quantum coherence during the protocol, this realizes a controlled
phase gate with phase π. A full numerical time evolution for the
state 1j iC 1j iT is shown in Fig. 7c, d, confirming the above
argumentation.
Finally, we point out that the linearity of the network implies

that the transfer takes place for each excitation of edge modes
independently. I.e., if nC; nTj i denotes the state with nC excitations
in the left edge mode ~bC and nT excitations in the right edge
mode ~bT, the transfer operation TC↔T implements the mapping
nC; nTj i ! ð± iÞnCþnT nT; nCj i (for even/odd L). This observation
immediately implies that the unitary operation USWAP in Eq. (4)
swaps the qubits.

Extension to 2D networks of coupled qubits
An important aspect of the SSH chain is its symmetry class BDI
(due to the real hopping amplitudes wi and ti), so that the setup is
characterized by a Z topological invariant. This allows us to extend
the analysis to two-dimensional setups by placing several SSH
chains parallel to each other and adding couplings between them,
see Fig. 1c for a possible realization. As long as these couplings are
real and respect the sublattice symmetry, the setup is still
topologically protected and each chain endpoint carries an edge
mode. Possible relaxations of the symmetry constraints are
presented in Supplementary Information Section 3.
Due to the sublattice symmetry, there are two types of modes,

“even” and “odd” ones, depending on how they transform under
S ¼ USSH

C [recall Eq. (6)]. Edge mode pairs of different types can
communicate efficiently by tuning the couplings along a
connecting path that resembles the one-dimensional SSH setup;
this is illustrated in Fig. 1c. Because of the bulk gap, this procedure
is very robust and couplings that deviate from the desired path
(“stray couplings”) have no detrimental effect on the state transfer,
as long as they respect the symmetries and do not couple to other
edge modes. This can be guaranteed by a modification of the
setup such that qubits and edge modes are relocated at the end
of one-dimensional chains that emanate from the 2D network, see
Fig. 1d. Remarkably, the setup allows for an enhancement of the
edge mode overlap by tuning the couplings of the 2D bulk
globally instead of tracing out a particular path that connects the
qubits. Therefore, the minimal experimental requirement is the
individual addressability of each branch that connects an edge
mode to the 2D bulk. Since the edge modes can now be
separated, this constraint is very weak, and in general already
satisfied by the requirement of local gate operations on the qubit.
Note that coupling edge modes of the same type is obstructed

by the sublattice symmetry, as indicated by the lower path in
Fig. 1c and proven in Supplementary Information Section 3.
However, the implementation of an exchange of qubits via USWAP
facilitates the application of the controlled phase gate UCP
between any pair in the network: If the two qubits couple to
edge modes of different types, one can directly perform the CP
gate between them. Conversely, if the qubits couple to edge
modes of the same type, one first performs an exchange USWAP
with an arbitrary qubit of the opposite type, applies the CP gate,
and maps the qubit back by another exchange.

DISCUSSION
We have demonstrated that a topological network consisting of
linearly coupled bosonic degrees of freedom, capable of carrying
single, quantized excitations, allows for efficient quantum com-
munication between distant qubits. Weak addressability of each
branch within the network is sufficient and no local addressability
of individual sites is required. Remarkably, the time scale for the
operations scales almost linearly with the distance between the
qubits. Furthermore, topological protection guarantees robustness

1

TransferTransferMap MapCPHASEa

b

c

d

Control
Qubit

Target
Qubit

Si
te

Target
Qubit

Fig. 7 CP gate—pulse sequence and results. a Schematic illustration
of the five steps needed to perform the CP gate UCP (3) on two
remote qubits, see setup in Fig. 1a, b. b The complete pulse
sequence consisting of two π pulses ΠT to map the target qubit to
and from edge mode ~bT, a 2π pulse Π2

C to perform the actual CP
gate, and two-edge mode tunneling pulses TC↔T. c Numerical single-
particle evolution for the two-qubit basis state 1j iC 1j iT for a chain of
length L= 10. The density plot encodes the squared single-particle
amplitude, where the upper and lower edges correspond to the
logical states 1j iC and 1j iT with their adjacent boundary modes
1j i~bC¼ 1;0; 0j i ¼ ~byC 0j i and 1j i~bT¼ 0;0; 1j i ¼ ~byT 0j i. d Square of the
absolute value of the overlaps with 1j iT (solid black), 1j i~bT (solid red),
1j i~bC (solid blue), and 1j iC (dashed black). The relative phases w.r.t.
the target qubit are shown as insets. Note that the scales for the
Rabi pulses and the topological state transfer differ by a factor of τ
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against quenched disorder in the setup by evading Anderson
localization of the edge modes. In summary, we have shown that
the unique properties of (quasi) one-dimensional topological
systems can be harvested for efficient quantum communication
between qubits. These benefits come with the price of higher
complexity in realization and preparation as the coupling
parameters have to respect the symmetries protecting the
topological invariants.

METHODS
For more details on the derivations, see the Supplementary Information.

Data availability
The numerical code and the datasets used for this study are available from
the corresponding author on reasonable request.

ACKNOWLEDGEMENTS
This research has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant
agreement No. 681208). This research was supported in part by the National Science
Foundation under Grant No. NSF PHY-1125915.

AUTHOR CONTRIBUTIONS
All authors contributed to the paper equally.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Quantum Information
website (https://doi.org/10.1038/s41534-017-0047-x).

Competing interests: The authors declare no competing financial interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-abelian

anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159
(2008).

2. Ando, T., Matsumoto, Y. & Uemura, Y. Theory of hall effect in a two-dimensional
electron system. J. Phys. Soc. Jpn. 39, 279–288 (1975).

3. v. Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determi-
nation of the fine-structure constant based on quantized hall resistance. Phys.
Rev. Lett. 45, 494–497 (1980).

4. Laughlin, R. B. Quantized hall conductivity in two dimensions. Phys. Rev. B 23,
5632–5633 (1981).

5. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in
the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

6. Stormer, H. L. et al. Fractional quantization of the hall effect. Phys. Rev. Lett. 50,
1953–1956 (1983).

7. Willett, R. et al. Observation of an even-denominator quantum number in the
fractional quantum hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).

8. Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science
318, 766–770 (2007).

9. Hsieh, D. et al. A topological dirac insulator in a quantum spin hall phase. Nature
452, 970–974 (2008).

10. Xu, Y. et al. Observation of topological surface state quantum hall effect
in an intrinsic three-dimensional topological insulator. Nat. Phys. 10, 956–963
(2014).

11. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topolo-
gical insulators and superconductors in three spatial dimensions. Phys. Rev. B 78,
195125 (2008).

12. Kitaev, A. Periodic table for topological insulators and superconductors. In AIP
Conference Proceedings, Vol. 1134, 22–30 (AIP, 2009).

13. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topolo-
gical insulators and superconductors. In AIP Conference Proceedings, Vol. 1134
10–21 (2009).

14. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and
superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010
(2010).

15. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82,
3045–3067 (2010).

16. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod.
Phys. 83, 1057–1110 (2011).

17. Wigner, E. P. On the statistical distribution of the widths and spacings of nuclear
resonance levels. Math. Proc. Camb. Philos. Soc. 47, 790 (1951).

18. Wigner, E. P. On the distribution of the roots of certain symmetric matrices. Ann.
Math. 67, 325 (1958).

19. Dyson, F. J. The threefold way. algebraic structure of symmetry groups and
ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962).

20. Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).

21. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge
states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

22. Susstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a
mechanical topological insulator. Science 349, 47–50 (2015).

23. Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl.
Acad. Sci. 112, 14495–14500 (2015).

24. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496,
196–200 (2013).

25. Ling, C. W., Xiao, M., Chan, C. T., Yu, S. F. & Fung, K. H. Topological edge plasmon
modes between diatomic chains of plasmonic nanoparticles. Opt. Express 23,
2021 (2015).

26. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-
resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

27. Süsstrunk, R., Zimmermann, P. & Huber, S. D. Switchable topological phonon
channels. New J. Phys. 19, 015013 (2017).

28. Atala, M. et al. Direct measurement of the zak phase in topological bloch bands.
Nat. Phys. 9, 795–800 (2013).

29. Jotzu, G. et al. Experimental realization of the topological haldane model with
ultracold fermions. Nature 515, 237–240 (2014).

30. Aidelsburger, M. et al. Measuring the chern number of hofstadter bands with
ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2014).

31. Mancini, M. et al. Observation of chiral edge states with neutral fermions in
synthetic hall ribbons. Science 349, 1510–1513 (2015).

32. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge
states with an atomic bose gas in the quantum hall regime. Science 349,
1514–1518 (2015).

33. Duca, L. et al. An aharonov-bohm interferometer for determining bloch band
topology. Science 347, 288–292 (2015).

34. Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A thouless
quantum pump with ultracold bosonic atoms in an optical superlattice. Nat. Phys.
12, 350–354 (2015).

35. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical wave-
guides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett.
100, 013904 (2008).

36. Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal-symmetry breaking in
circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

37. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with
topological protection. Nat. Phys. 7, 907–912 (2011).

38. Berg, N., Joel, K., Koolyk, M. & Prodan, E. Topological phonon modes in fila-
mentary structures. Phys. Rev. E 83, 021913 (2011).

39. Yannopapas, V. Topological photonic bands in two-dimensional networks of
metamaterial elements. New J. Phys. 14, 113017 (2012).

40. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat.
Phys. 10, 39–45 (2013).

41. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8,
821–829 (2014).

42. Kariyado, T. & Hatsugai, Y. Manipulation of dirac cones in mechanical graphene.
Sci. Rep. 5, 18107 (2015).

43. Wang, Y.-T., Luan, P.-G. & Zhang, S. Coriolis force induced topological order for
classical mechanical vibrations. New J. Phys. 17, 073031 (2015).

44. Wang, P., Lu, L. & Bertoldi, K. Topological phononic crystals with one-way elastic
edge waves. Phys. Rev. Lett. 115, 104302 (2015).

45. Peter, D. et al. Topological bands with a chern number C=2 by dipolar exchange
interactions. Phys. Rev. A 91, 053617 (2015).

46. Yao, N. et al. Topologically protected quantum state transfer in a chiral spin
liquid. Nat. Commun. 4, 1585 (2013).

47. Dlaska, C., Vermersch, B. & Zoller, P. Robust quantum state transfer via topolo-
gically protected edge channels in dipolar arrays. Quantum Sci. Technol. 2,
015001 (2017).

Topological networks for quantum communication
N Lang and HP Büchler

9

Published in partnership with The University of New South Wales npj Quantum Information (2017)  47 

https://doi.org/10.1038/s41534-017-0047-x


48. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750
(1989).

49. Kitaev, A. Y. Unpaired majorana fermions in quantum wires. Phys.-Usp. 44,
131–136 (2001).

50. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett.
42, 1698–1701 (1979).

51. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with super-
conducting circuits. Nat. Phys. 8, 292–299 (2012).

52. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).
53. Lukin, M. D. et al. Dipole blockade and quantum information processing in

mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).
54. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep.

528, 1–45 (2013).
55. Duan, L.-M. & Monroe, C. Colloquium: quantum networks with trapped ions. Rev.

Mod. Phys. 82, 1209–1224 (2010).
56. Lieb, E. H. & Robinson, D. W. The finite group velocity of quantum spin systems.

Commun. Math. Phys. 28, 251–257 (1972).
57. Jansen, S., Ruskai, M.-B. & Seiler, R. Bounds for the adiabatic approximation with

applications to quantum computation. J. Math. Phys. 48, 102111 (2007).

58. Haack, G., Helmer, F., Mariantoni, M., Marquardt, F. & Solano, E. Resonant
quantum gates in circuit quantum electrodynamics. Phys. Rev. B 82, 024514
(2010).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Topological networks for quantum communication
N Lang and HP Büchler

10

npj Quantum Information (2017)  47 Published in partnership with The University of New South Wales

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Topological networks for quantum communication between distant qubits
	Introduction
	Results
	Topological network
	Protocol for state transfer
	Scaling and adiabaticity
	Benchmarking against topologically trivial setups
	Effects of disorder and symmetry protection
	Application: CP gate
	Extension to 2D networks of coupled qubits

	Discussion
	Methods
	Data availability

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




