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Abstract

This thesis is devoted to the study of a particular class of cosmological modified
gravity models known as nonlocal gravity theories and to the possibility of testing,
in greater generality, deviations from the standard cosmological model ΛCDM via
gravitational-wave detections. In particular, in the first part of this work we inves-
tigate the possibility that dark energy could be explained by infrared modifications
of general relativity, in the form of nonlocal operators appearing in the quantum
effective action for gravity. Despite a complete understanding of the gravity low-
energy behavior is still missing, there are indications pointing towards a non-trivial
infrared dynamics. Among several phenomenological nonlocal models proposed in
recent years, cosmological observations and Solar System tests seem to select one
particular model where the nonlocal term describes a mass for the conformal mode.
This model fits available cosmological data at the same level of ΛCDM and gives
quite similar predictions for cosmological parameters. The study of tensor perturba-
tions reveals a distinctive behavior with considerable departures from ΛCDM and
brings us to the second part of the thesis, dealing with modified gravitational-wave
propagation. Such an effect, going beyond the specific features of nonlocal gravity,
is very general in modified gravity theories and has to be added on top of the usual
modifications for the dark energy equation of state. We show how the current and
future generations of gravitational-wave detectors can constrain dark energy and
test the predictions of modified gravity theories about the propagation of gravita-
tional waves across cosmological distances.
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Résumé

Dans cette thèse, nous étudions deux sujets en gravité modifiée: les modifications
infrarouges non locales de la Relativité Générale et les tests de gravité modifiée avec
des sirènes standard à des distances cosmologiques.

Dans le Chapitre 1 nous montrons comment construire des termes de masse pour
le champ gravitationnel (en particulier pour le mode conforme du tenseur métrique)
sans violer l’invariance par difféomorphismes. Ceci est possible grâce aux non-
localités attendues dans la ‘quantum effective action’ pour une théorie fondamentale
contenant des particules sans masse (comme les gravitons en Relativité Générale).
Nous expliquons des aspects conceptuels dans l’étude des théories non locales, en
soulignant que la non-localité n’a de sens qu’au niveau de la ‘quantum effective ac-
tion’ , tandis que l’action fondamentale d’une théorie doit être locale pour éviter des
problèmes de causalité.

Dans le Chapitre 2, nous montrons les conséquences cosmologiques du modèle
non local RT, au niveau du ‘background’ et des perturbations scalaires. Constru-
ire un modèle qui remplit toutes les contraintes d’observation et donne des prédic-
tions testables dans un proche avenir est en général très difficile. Il est donc remar-
quable que le modèle RT, qui est actuellement un modèle phénoménologique sans
dérivation fondamentale, soit un modèle cosmologique réussi. Ses solutions cos-
mologiques montrent une expansion accélérée à l’époque actuelle, sans la nécessité
d’une constante cosmologique. Donc un terme de masse pour le mode conforme
peut fournir une source pour l’expansion accélérée de l’Univers. Les perturbations
scalaires sont stables et restent petites pendant toute l’évolution cosmologique. Elles
sont très proches de celles en ΛCDM; donc le modèle RT explique bien les données
cosmologiques actuelles, tout en restant potentiellement reconnaissable dans le fu-
tur.

Une analyse complète avec le Méthode de Monte-Carlo par chaînes de Markov
(MCMC) montre que le modèle peut expliquer les données cosmologiques au même
niveau que ΛCDM.

Le modèle RT se réduit à la Relativité Générale à de petites distances, sans avoir
besoin d’un mécanisme de ‘screening’ non linéaire et respecte la limite de variation
temporelle de la constante de Newton du ‘Lunar Laser Ranging’. Il s’agit en général
d’une propriété non triviale, même lorsque la solution statique a la limite correcte.
Donc le modèle RT passe toutes les contraintes du système solaire et des expériences
en laboratoire.

La plus grosse surprise du modèle RT se produit lors de l’étude de la propaga-
tion des perturbations tensorielles. En effet, dans le modèle RT, les ondes gravita-
tionnelles se comportent différemment que dans ΛCDM et peuvent conduire à de
grandes déviations.

Dans le Chapitre 3, nous expliquons en toute généralité la propagation modi-
fiée des ondes gravitationnelles, et nous étudions en détail comment les générations
actuelles et futures des détecteurs d’ondes gravitationnelles peuvent aider à tester
les modèles de gravité modifiée. Cette propagation est un observable spécifique aux
détecteurs d’ondes gravitationnelles et son effet est présent dans tous les théories
de gravité modifiée étudiées les mieux motivées. Dans de nombreux modèles de
gravité modifiée, la modification dans la propagation des ondes gravitationnelles
est suffisamment important et les détecteurs futurs (LISA, Einstein Telescope, Cos-
mic Explorer) seront capables de la tester.
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Notation

Units. We use natural units c = h̄ = 1 where c is the speed of light and h̄ = h/(2π)
is the reduced Planck constant.
The Newton gravitational constant G is kept explicitly in the equations or traded for
the reduced Planck mass MP = 1/

√
8πG ' 2.4× 1018 GeV, but we never set G = 1.

Metric signature, covariant derivatives and curvature. Unless otherwise specified,
we work in D = 4 spacetime dimensions. Greek indices µ, ν, . . . or α, β, . . . refer to
spacetime coordinates and take the values 0, 1, 2, 3. Latin indices i, j, . . . refer to
spatial coordinates and take the values 1, 2, 3.
We stick to the General Relativity conventions adopted in the textbook Gravitation
by Misner, Thorne and Wheeler [1]. The metric signature is (−,+,+,+) and we
follow the Einstein summation convention over repeated indices. The metric tensor
is denoted by gµν (with determinant g < 0) and the inverse metric tensor is written
as gµν.
The covariant derivative of a contravariant vector is

∇ν Aµ = ∂ν Aµ + Γµ
νρ Aρ ,

where the Christoffel symbols Γµ
νρ are given by

Γµ
νρ =

1
2

gµσ
(
∂ρgσν + ∂νgσρ − ∂σgνρ

)
.

The Riemann tensor is defined as

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

λρΓλ
νσ − Γµ

λσΓλ
νρ ,

and the Ricci tensor is obtained by contracting the first and third indices of the Rie-
mann tensor above, as Rµν = Rρ

µρν . The Ricci scalar is R = gµνRµν.
The Einstein equations with a cosmological constant Λ read

Gµν + Λgµν = 8πG Tµν ,

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor and Tµν is the energy-momentum

tensor of matter. They can be derived from the principle of least action applied to the
total action made by the Einstein-Hilbert term SEH (with the cosmological constant)
plus the matter action Sm:

S = SEH + Sm =
1

16πG

∫
d4x
√
−g (R− 2Λ) + Sm ,

with the definition
Tµν = − 2√−g

δSm

δgµν
.
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Chapter 1

Nonlocal gravity: theoretical
foundations

1.1 Introduction

The currently accepted cosmological model, known as the ΛCDM model, provides a
description of the Universe that is in agreement with a large number of observational
data, by only using a quite limited number of free parameters. One of the biggest
breakthroughs in cosmology, that gave a solid evidence to the model, was the dis-
covery that the Universe is currently undergoing a phase of accelerated expansion.
This milestone in our knowledge was first achieved, at the end of the last century, by
the Supernova Search Team [2] and the Supernova Cosmology Project [3], using type
Ia Supernovae (SNe) distance measurements. The ΛCDM model has been proven to
be consistent with a variety of other independent cosmological observations. These
include precision studies of the cosmic microwave backgound (CMB) anisotropies
and measurements of the baryon acoustic oscillations (BAO) scale in the correlation
function of galaxies using data from galaxy redshift surveys. However, even though
it is observationally successful, the model is not fully satisfactory from a theoretical
point of view. Indeed, the two ingredients that the ΛCDM model is named after,
namely Λ (the cosmological constant) and CDM (cold dark matter), are not fully
understood at different levels.

Dark matter is needed as an extra non-relativistic matter component (in addition
to ordinary non-relativistic matter, called “baryons” in the cosmological context) and
has a crucial role within the model, both at the background and perturbations level.
For instance, the presence of dark matter is fundamental for structure formation,
as it produces the potential wells for ordinary matter to collapse. Nevertheless the
fundamental nature of dark matter and its place in the Standard Model of particle
physics, or in some extension of it, are not established yet.

Regarding the cosmological constant Λ, it is responsible for explaining the accel-
erated expansion within the ΛCDM model, but its value needs a fine tuning to be
compatible with observations, because the observed value corresponds to an energy
density much smaller than what quantum field theory suggests to be natural for the
vacuum energy density [4]. This cosmological constant problem can be expressed more
precisely by using the language of renormalization in quantum field theory and con-
sidering that the bare cosmological constant receives corrections from vacuum loop
diagrams. The measurable quantity that is extracted from observations is the total
renormalized value of the vacuum energy density. It amounts to ρvac ∼ O(meV)4,
while the one-loop contribution of each particle species, computed with dimensional
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regularization1, is roughly quartic in the mass of the particle (see e.g. Section 2 of [6]
for the computation in the case of a scalar field). Since the Standard Model includes
particles up to about the TeV scale, the bare cosmological constant must cancel a
value of O(TeV)4 down to the measured O(meV)4, meaning that a precision of one
part over 1060 is needed. Such a highly fine tuning and the fact that the observed
meV scale associated to vacuum energy does not give any insight for particle physics
are probably hints that something is missing in our current understanding. Even if
one chooses to accept the fine tuning at one loop, the real obstacle to its viability
as a solution to the cosmological constant problem comes when considering higher-
order loop corrections, because their contributions are not significantly suppressed
with respect to the smaller orders and, as a consequence of this radiative instability,
it would be necessary to introduce a fine tuning of similar accuracy at each step in
perturbation theory.

The naturalness problem associated to the cosmological constant stimulates the
search for alternatives to the ΛCDM model that do not need a cosmological constant
for explaining the accelerated expansion. Given that the ΛCDM model is just based
on general relativity (GR) in the form of the Einstein-Hilbert action with a cosmo-
logical constant term and the matter action, alternatives to ΛCDM have to break
this assumption and take some other starting point. A quite logical step along this
line of reasoning consists in adding some dark energy component to the energy-
momentum tensor sourcing gravity or in attempting a modification of the gravity
sector of GR itself. The goal of these modifications is to produce an accelerated ex-
pansion at late times without relying on a cosmological constant, with the result that
the constant vacuum energy density of ΛCDM is effectively changed into a dark
energy contribution which evolves throughout the history of the Universe in a non-
trivial way. However, when considering modified gravity theories as a source for
dynamical dark energy, one should be careful not to introduce too many free pa-
rameters and not to simply change the problem of the unnatural smallness of the
cosmological constant into the same problem for the free parameters in the alter-
native model. Still, even considering these potential difficulties, it is interesting to
study modifications of GR by their own right and as a tool for better understanding
and appreciating GR itself. Indeed, historically the study of alternatives to GR has al-
ready been an active research field independently of the cosmological developments
and we have quite old examples for that (see, for instance, the Brans-Dicke theory [7]
in 1961). Today we also foresee the possibility to really test some interesting alter-
native theories of gravity at cosmological scales with current and forthcoming data;
this adds another good reason for the relevance of modified gravity studies.

A useful reference point when trying to modify GR is Lovelock’s theorem (1971) [8],
stating that, in four spacetime dimensions, GR equations (as obtained from the Einstein-
Hilbert action with a cosmological constant) are the only local and second-order
equations of motion that can be derived from an action containing only the metric
tensor. The theorem implies that there are five possible options leading to alterna-
tive theories of gravity, namely:

1) questioning the action principle for the metric as the most fundamental level of
description for gravity. According to this point of view, the geometrical nature

1A similar conclusion can be reached, even more simply, by using a cutoff regularization and con-
sidering the zero-point energy left by the canonical normalization procedure (see Section 5.7 of [5]). We
find it useful to present the discussion in terms of loop diagrams, because this allows us to mention
the radiative instability of vacuum energy, which is the central element of the cosmological constant
problem.
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of gravity is just an emergent phenomenon, that originates statistically from
the interaction of many more fundamental degrees of freedom. This approach
is known as emergent (or entropic) gravity and illustrations of it are presented
in [9] and [10].

2) adding other fields to the gravitational sector. These can be scalars, as in
Horndeski theories [11] or in the more general degenerate higher-order scalar-
tenosor (DHOST) theories [12, 13, 14, 15], vectors as in Einstein-Aether gravity
(reviewed in [16]) that breaks Lorentz invariance, or tensors as in bigravity [17]
where an additional metric tensor is present. Local2 massive gravity theories
also belong to this category of modified gravity models as they exhibit extra
degrees of freedom with respect to the two gravitational-wave polarizations of
the massless GR case, for a total of six in most of non-linear extensions of the
Fierz-Pauli action [18] (where a Boulware-Deser ghost appears [19]), reducing
to five for a class of ghost-free theories [20] including the de Rham-Gabdadze-
Tolley (dRGT) model [21]. A comprehensive review on the theoretical aspects
of massive gravity is given in [22].

3) introducing extra dimensions. A theory in this class that will also be use-
ful in the following is the Dvali-Gabadadze-Porrati (DGP) model [23] where
the ordinary four-dimensional spacetime metric lives on a brane of the five-
dimensional bulk.

4) allowing for higher than second order derivatives in the equations of motion
for the metric. Examples are f(R) gravity (see [24] for a review) and Hořava-
Lifshitz gravity [25]. The latter also breaks Lorentz invariance. It is important
to remember that, because of the Ostrogradsky theorem [26], particular care
has to be taken when dealing with higher-order equations of motion. At the
quantum level, the appearance of ghost-like degrees of freedom usually im-
poses to consider the theory to be viable only below some cutoff energy scale,
i.e. as an effective field theory.

5) assuming nonlocalities in the equations of motion. This possibility is one the
two main subjects of this thesis. We anticipate that nonlocalities are a sensible
ingredient when including quantum corrections to general relativity and it is
conceivable that they could produce relevant effects in the infrared (IR). As
we will discuss in the following, the relevant quantity to consider when taking
into account quantum effects is not the classical action, but rather the quantum
effective action. For a theory containing massless particles (like gravitons in
GR), nonlocalities necessarily appear in its quantum effective action.

When talking about the difficulties in building a quantum theory of gravity,
it is usually said that GR is perfectly fine as an effective field theory at energies
low enough with respect to the Planck scale. This conclusion can be driven from
the simple argument that GR, as a quantum field theory, is power-counting non-
renormalizable because the coupling constant κ = (32πG)1/2 = 2/MP ruling the
interaction between gravitons (see Section 2.2.4 of [27]) has dimensions of the in-
verse of mass. As a consequence of non-renormalizability, the quantum field theory

2We will see that nonlocal theories require some extra care when counting degrees of freedom.
Indeed the RR and RT nonlocal models that will be discussed in this thesis do not introduce extra
degreees of freedom with respect to GR, despite they give a mass to the conformal mode of the gravi-
ton. This is possible because diffeomorphism invariance is compatible with a mass term, as long as
nonlocal structures are used.
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of GR certainly needs an ultraviolet (UV) completion at the Planck scale (or below).
The statement above seems to imply that in the opposite regime, i.e. at low energies,
a perturbative treatment of the quantum field theory for GR is perfectly allowed and
gives correct predictions. However, there are several indications of a less trivial IR
dynamics due to non-perturbative effects. This is potentially very interesting for
cosmology, as it could imply observable effects at very large length scales (the idea
that quantum effects in gravity could have cosmological relevance already appeared
in old works [28]). We summarize the indications of a non-trivial IR behavior of
gravity following [29, 30, 31]. As reviewed in [32], the study of the IR limit of theo-
ries containing massless particles shows an intimate connection between soft theo-
rems (describing the limit of zero energy for massless particles in the external lines
of Feynman diagrams), memory effects and asymptotic symmetries. In the context
of GR, a non-unique vacuum structure is implied by the recovery of the very large
BMS group for asymptotically flat spacetimes [33, 34], instead of the simple Poincaré
group where the notion of particle is uniquely defined.

Examples of IR divergences have been found in de Sitter space, where some
gauge-invariant quantities, relevant for scattering processes and built from the met-
ric fluctuations around the de Sitter background, diverge. The low-energy diver-
gences are produced by the unboundedness of the graviton Feynman propagator at
large separations [35, 36], with the strongest effects coming from the propagator of
the conformal mode σ of the metric. This result was interpreted as an evidence for
quantum instability of de Sitter space, but a general consensus on that has not been
reached yet, because it seems that the infrared divergence in the propagator can be
eliminated by a nonlocal gauge transformation [37] (see also [38, 39]). Infrared diver-
gences appear as well when performing computations of physical quantities during
inflation [40].

de Sitter space has also been used for studying the consequences of quantum
fluctuations of massless fields coupled to gravity. In the case of a massless minimally-
coupled scalar field with a λφ4 self-interaction in a fixed de Sitter background, it has
been shown in different ways that the scalar field develops dynamically an effec-
tive mass m2

eff ∝ H2
√

λ where the H is Hubble constant of the de Sitter background
(see [41, 42, 43, 44, 45, 46, 47]). Besides the effects due to quantum fluctuations of
the gravitons itself, when gravity is coupled to matter fields, the quantum fluctu-
ations of the latter also affect the graviton dynamics. In particular, quantum fluc-
tuations of massless matter fields are of great interest for gravity in the IR regime:
an example is the non-trivial dynamics of the conformal mode due to the conformal
anomaly, which will be reviewed in some detail in Section 1.2.4. In four dimensions
and flat spacetime the conformal anomaly generates, in the quantum effective ac-
tion, a term proportional to (2σ)2, leading to a propagator for the conformal mode
Gσ(x, x′) ∝ log(x − x′)2. Its divergence at large separations suggests a non-trivial
large-distance dynamics and the contributions from the conformal anomaly have
already been used in reference to the cosmological constant problem [48].

In order to study the effects of quantum fluctuations in gravity and to adequately
understand the results cited above, we need to refer to the notion of quantum effec-
tive action, which will be discussed in Section 1.2. A crucial difference between the
classical action and the quantum effective action is that, while the former is local,
the latter has also nonlocal terms whenever the theory contains massless or light
particles. In gravity, because of the quantum fluctuations associated to the mass-
less graviton, nonlocal terms are unavoidably present, and could in principle sig-
nificantly affect the IR behavior of the theory. The techniques for computing these
nonlocal terms in the UV regime are well understood [49, 50, 51, 52, 53, 54], while
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in the IR regime, where they could be cosmologically relevant, the situation is much
less clear.

A typical non-perturbative IR effect is dynamical mass generation. We will see
through an explicit construction that mass terms for the metric can be written with-
out violating diffeomorphism invariance thanks to nonlocal operators, whose pres-
ence is allowed at the level of the quantum effective action. We will also briefly dis-
cuss some evidence, both from lattice gravity and from functional renormalization
group equations, suggesting the possibility of generating a mass scale. Of course,
to confirm or disprove conclusively a mechanism of dynamical mass generation for
gravity we would need a non-perturbative understanding of the low-energy regime,
that is currently not available. In the absence of a rigorous top-down derivation, an
alternative route consists in exploring the structure of possible nonlocal terms asso-
ciated to a mass scale and study their cosmological predictions; in this way one can
assess the viability of nonlocal gravity models and compare them with cosmological
datasets.

1.2 The quantum effective action

Every classical theory, once considered at the quantum level, receives corrections
from loop diagrams. The result can be summarized by saying that the classical fun-
damental action of the theory is changed into a quantum effective action (QEA) that,
when used at tree level, already takes into account the effect of quantum loops. Fol-
lowing [30], let us review how the QEA construction goes in quantum field theory,
by considering a single scalar field ϕ(x), with action S[ϕ], in flat spacetime. We first
introduce an auxiliary source J(x) and define the generating functional of Green’s
functions Z[J] and connected Green’s functions W[J], according to

Z[J] = eiW[J] ≡
∫

Dϕ eiS[ϕ]+i
∫

Jϕ , (1.2.1)

with
∫

Jϕ ≡
∫

d4x J(x)ϕ(x). The functional derivatives of Z[J] and W[J] with re-
spect to the external current J can be used to compute the Green’s functions and
the connected Green’s functions, respectively. In particular, the vacuum expectation
value of the field ϕ(x) in the presence of the source J(x) is given by

φ[J] ≡ 〈0|ϕ(x)|0〉J =
δW[J]
δJ(x)

. (1.2.2)

The QEA Γ[φ] is obtained by applying a Legendre transformation to W[J],

Γ[φ] ≡W[J]−
∫

φJ . (1.2.3)

In the expression above, the current J is to be intended as a function of φ, i.e. J = J[φ],
obtained from the formal inversion of φ[J] given in eq. (1.2.2). The definition in
eq. (1.2.3) shows that the QEA is a functional of the vacuum expectation value φ,
and not of the classical field ϕ as in the case of the classical action S[ϕ]. Using the
definitions in eq. (1.2.2) and eq. (1.2.3), the variation of Γ[φ] with respect to φ gives

δΓ[φ]
δφ(x)

=
∫

y

δW[J]
δJ(y)

δJ(y)
δφ(x)

− J(x)−
∫

y
φ(y)

δJ(y)
δφ(x)

= −J(x) , (1.2.4)
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showing that the variation of the QEA gives the equation of motion for the vacuum
expectation value of the field, in the presence of a source. An exact path integral rep-
resentation for the quantum effective action is obtained from eq. (1.2.1) and eq. (1.2.3)
and the property in eq. (1.2.4), reading3

eiΓ[φ] = eiW−i
∫

φJ =
∫

Dϕ eiS[ϕ]+i
∫
(ϕ−φ)J =

∫
Dϕ eiS[φ+ϕ]−i

∫ δΓ[φ]
δφ ϕ . (1.2.5)

The representation in eq. (1.2.5) indicates that the QEA is a functional of the vacuum
expectation value of the field, obtained by integrating out the quantum fluctuations.
An iterative procedure for the perturbative evaluation of Γ[φ] consists in starting
replacing Γ[φ] with S[φ] on the right-hand side of eq. (1.2.5) and finding a new re-
finement for the QEA at each step.

1.2.1 Extension to gravity

In a curved spacetime, a theory is described by the Einstein-Hilbert action SEH[gµν]
and the matter action Sm[gµν; ϕ], where ϕ denotes the matter fields, so that the total
action is S = SEH[gµν] + Sm[gµν; ϕ]. We want to consider the effects of quantum fluc-
tuations of matter fields, but we neglect the quantum fluctuations of gravity itself.
Integrating over the quantum fluctuations of matter fields (and not on those of the
metric), the procedure described before in flat spacetime (and leading to eq. (1.2.5))
can be easily repeated in curved spacetime to compute the QEA Γ[gµν; φ], which
satisfies

eiΓ[gµν;φ] = eiSEH[gµν]
∫

Dϕ eiSm[gµν;φ+ϕ]−i
∫ δΓ[gµν ;φ]

δφ ϕ , (1.2.6)

where ∫
δΓ[gµν; φ]

δφ
ϕ ≡

∫
d4x
√
−g

δΓ[gµν; φ]

δφ
ϕ . (1.2.7)

Let us specialize to the case in which the vacuum expectation values of the matter
fields vanish i.e. φ ≡ 〈0|ϕ(x)|0〉 = 0, and there is no external current that excites
them, which means δΓ/δφ = J = 0. The physical reason for this choice is that we are
interested to the resulting dynamics of the metric (affected by the quantum behavior
of matter fields) and not in the resulting dynamics of matter fields; therefore once we
integrate over the quantum fluctuations of the fields, we set them in their vacuum
state φ = 0. The corresponding vacuum quantum effective action obtained from
eq. (1.2.6) obeys

eiΓ[gµν] = eiSEH[gµν]
∫

Dϕ eiSm[gµν;ϕ] ≡ eiSEH[gµν] eiΓm[gµν] . (1.2.8)

The definition of the matter energy-momentum tensor Tµν ≡ 2√−g
δSm
δgµν

combined
with the equation for Γm[gµν] in eq. (1.2.8) then gives the following result for the
vacuum expectation value of Tµν,

〈0|Tµν|0〉 = 2√−g
δΓm

δgµν
. (1.2.9)

As a consequence, the equations of motion derived from the total quantum effective
action Γ = SEH + Γm give the Einstein equations Gµν = 8πG〈0|Tµν|0〉 where, on

3In the last step of 1.2.5 we also changed variable setting ϕ = ϕ′ + φ and we renamed the new
integration variable ϕ′ as ϕ.
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the right-hand side, all quantum fluctuations due to matter fields are automatically
included.

Finally, to get the full QEA one should also integrate over the quantum fluctua-
tions of the metric and include in the path integral formulation the Faddeev-Popov
determinant and a gauge fixing term, as usual for quantizing gauge theories.

1.2.2 Two observations: difference with the Wilson effective action and
boundary conditions

As stressed in [30], the QEA has not to be confused with the Wilson effective action,
which is used in both quantum field theory and statistical physics. The Wilson ef-
fective action is obtained by integrating out massive fields from the theory and is a
functional of the light fields left, useful for an effective description at energies low
compared to the masses of the heavy fields which have been integrated out. This
is different from what happens for the QEA, where we integrate out the quantum
fluctuations of the fields to obtain a functional of the vacuum expectation values of
all the fields, without introducing any definition of light or heavy fields. In partic-
ular, when considering massless particles, it would not make any sense to integrate
them out à la Wilson, but it is perfectly sensible to integrate over their quantum
fluctuations, as done in the QEA construction.

Another important point for correctly interpreting the results of the QEA con-
struction, both in the case of flat spacetime that we studied before and in the ap-
plication to gravity that we have now seen, is to understand what we mean by the
different occurrences of the vacuum state |0〉 and how its different choices affect
the vacuum expectation values. The answer to this question lays in the boundary
conditions of the path-integral formulation, which were not stated explicitly at the
beginning, but determine the meaning of the results. Assigning boundary condi-
tions is a necessary part of the definition of a path integal and different choices
correspond to different physical consequences. When using the standard Feynman
path integral we get the in-out vacuum expectation values, like 〈0out|Tµν|0in〉 for the
energy-momentum tensor. In-out matrix elements appear as intermediate steps in
QFT computations, e.g. in scattering amplitudes, but by themselves they are not
physical quantities. This is clearly proved by the fact that, even if ϕ̂ is an hermi-
tian operator (obtaining by promoting the classical field ϕ to a quantum field), the
expectation value 〈0out|ϕ̂|0in〉 is not real, and therefore cannot represent any phys-
ical quantity. Besides that, it obeys equations of motions in which the Feynman
propagator appears and which are therefore acausal (only the retarded propagator
corresponds to causal physics). In the corresponding gravitational case, i.e. when
we quantize gravity promoting the metric to an operator ĝµν, the vacuum expecta-
tion value 〈0out|ĝµν|0in〉 is not real, it does not obey causal equations of motion and
therefore cannot be interpreted as a semiclassical metric. To obtain physical vac-
uum expectation values, the Schwinger-Keldysh path integral has to be used, which
corresponds to in-in expectation values, like 〈0in|Tµν|0in〉. They represent vacuum
expectation values of operators at a given time and do not suffer from the non-reality
and acausality problems displayed by the Feynman case. In particular, if ϕ̂ is her-
mitian, then the quantity 〈0in|ϕ̂|0in〉 is real, and it obeys causal equations of motions
in which the retarded propagator appears [53, 55, 56]. When using the Schwinger-
Keldysh path integral the quantity 〈0in|ĝµν|0in〉 plays the role of a semiclassical met-
ric. This observation will be very useful to give the correct interpretation to the
equations of motion of the nonlocal models that we will build, which are intended
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to describe the behavior of the semiclassical metric when including quantum fluctu-
ations.

1.2.3 Nonlocalities in the quantum effective action of QED

As a first example, let us focus on QED and review the results for its quantum effec-
tive action following [29, 30]. After integrating out the quantum fluctuations due to
the electron, the dynamics of the photon is described by (see [57, 58, 59])

ΓQED[Aµ] = −
1
4

∫
d4x

[
Fµν

1
e2(2)

Fµν +O(F4)

]
. (1.2.10)

In the high-energy limit |2/m2
e | � 1, the form factor 1/e2(2) is given by

1
e2(2)

' 1
e2(µ)

− 1
12π2 log

(−2
µ2

)
, (1.2.11)

where µ is the renormalization scale and e(µ) is the renormalized charge at the scale
µ. The physical interpretation is that the nonlocality in coordinate space reflects the
running of the coupling constant in momentum space. Explicitly, the logarithm of
the d’Alembertian is a nonlocal operator defined by

log
(−2

µ2

)
≡
∫ ∞

0
dm2

[
1

m2 + µ2 −
1

m2 −2

]
. (1.2.12)

In the low-energy limit, |2/m2
e | � 1, i.e. when the electron is heavy compared to the

relevant energy scales and decouples from the photons, the quantum fluctuations
due to the electron only produce local terms, which are suppressed by powers of
|2/m2

e |,
1

e2(2)
' 1

e2(µ)
+

4
15 (4π)2

2

m2
e

. (1.2.13)

The QED case shows that nonlocalities appear in the quantum effective action when
we integrate over quantum fluctuations of massless or light particles. Indeed the
nonlocal structure log

(
−2
µ2

)
was originated in the high-energy regime, i.e. when the

electrons are light compared to the energy scale in consideration. On the contrary,
in the case of heavy electrons the result is the decoupling of the electrons and only
local operators appear.

1.2.4 An enlightening case: the anomaly-induced effective action

The construction of the vacuum QEA for gravity illustrated in Section 1.2.1 can be
carried out exactly for a theory with massless, conformally-coupled matter fields,
in D = 2 space-time dimensions, by integrating the conformal anomaly. The same
procedure can be used in D = 4 to obtain exactly the part of the QEA depending on
the conformal mode of the metric. We follow the discussion in Section 3 of [29], see
also [36, 48, 49, 52, 53, 54] for reviews.

The anomaly-induced effective action is an explicit example of an exact QEA
derivation for gravity starting from the fundamental action of the theory. Knowing
both the starting point (a healthy classical theory) and the final point (the anomaly-
induced QEA) will allow us to discuss some conceptual points and avoid possible
misunderstandings about the degrees of freedom appearing in a QEA. It will be
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quite simple and very useful to adapt those discussions to a correct understanding
of nonlocal gravity models, considering their lack of a fundamental derivation.

Let us consider 2D gravity, including also a cosmological constant λ, coupled to
N massless matter fields,

S =
∫

d2x
√
−g(κR− λ) + Sm , (1.2.14)

and let us suppose that the N = Ns + N f matter fields included in Sm are given by Ns

conformally-coupled massless scalars4 and N f conformally-coupled massless Dirac
fermions. In D = 2 we use a = 0, 1 as Lorentz indices, and the metric signature
is ηab = (−,+). For conformal matter fields, classically the trace Ta

a of the energy-
momentum tensor vanishes. However, at the quantum level the vacuum expectation
value of Ta

a is non-zero, and is given by

〈0|Ta
a |0〉 =

N
24π

R , (1.2.15)

where N = Ns + N f . The result in eq. (1.2.15) is the trace anomaly (or conformal
anomaly) and its derivation for a conformally-coupled scalar field can be found in
Section 14.3 of [53]. Its peculiarity is that, even if it can be obtained with a one-loop
computation, it is actually exact at all perturbative orders, see again Section 14.3
of [53] for a proof. In other words, no contribution to the trace anomaly comes from
higher loops. Using eq. (1.2.9) we can deduce the QEA corresponding to the vacuum
expectation value in eq. (1.2.15). To perform the calculation, let us write

gab = e2σ ḡab , (1.2.16)

where ḡab is a fixed reference metric. The function σ(x) of spacetime coordinates is
known as the conformal mode of the metric. Correspondingly, the Ricci scalar can
be written as

R = e−2σ(R− 2�σ) , (1.2.17)

where the overbars denote the quantities computed with the metric ḡab. In D = 2, we
can always find a local coordinate transformation such that the reference metric is
ḡab = ηab and hence gab = e2σηab. Then the Ricci scalar simplifies to R = −2e−2σ2ησ
where 2η is the flat-space d’Alembertian, while the determinant of the metric gives√−g = e2σ. From eq. (1.2.9) it follows that

δΓm =
1
2

∫
d2x

√
−g 〈0|Tab|0〉δgab =

∫
d2x

√
−g 〈0|Tab|0〉gabδσ , (1.2.18)

and we can express the functional derivative of Γ[σ] with respect to σ(x) as

δΓm

δσ
=
√
−g 〈0|Ta

a |0〉 = −
N

12π
2ησ . (1.2.19)

Finally, the integration of eq. (1.2.19) gives

Γm[σ]− Γm[0] = −
N

24π

∫
d2x σ2ησ . (1.2.20)

4For reference, we recall that Ss = − 1
2
∫

d4x
√−g

(
gµν∂µ ϕ∂ν ϕ + 1

6 Rϕ2
)

is the action for a
conformally-coupled scalar field ϕ in D = 4 spacetime dimensions. The action is invariant under
conformal transformations gµν → g̃µν = Ω2(x)gµν, for any arbitrary function of spacetime Ω2(x).
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Since we have set D = 2 we can say that Γm[0] = 0, because when σ = 0 we have
locally gab = ηab and there cannot be any curvature determining a non-zero value
of Γm[0]. The exactness of the trace anomaly in eq. (1.2.15) also implies that this
derivation of the anomaly-induced QEA in D = 2 is exact at all perturbative orders.

The result can also be rewritten in a generally-covariant form by using nonlocal
operators. To achieve such a form we observe that 2g = e−2σ2η , where 2g is the
d’Alembertian computed with the full metric gab = e2σηab. Then, the equation R =
−2e−2σ2ησ gives R = −22gσ, which can be inverted as σ = −(1/2)2−1

g R. The
inverse d’Alembertian 2−1

g is the nonlocal operator that allows us to write the QEA
in a manifestly covariant way, known as the Polyakov QEA:

Γm[gµν] = −
N

24π

∫
d2x e2σσ2gσ = − N

96π

∫
d2x

√
−g R2−1

g R . (1.2.21)

As we said at the end of Section 1.2.1, a study of the full quantum gravitational
dynamics also requires to integrate over the quantum fluctuations of the metric.
When integrating over those metric flucuations in the path integral, the setting of
gab = e2σ ḡab, as in eq. (1.2.16), gives a gauge-fixing condition. Therefore, besides
the conformal mode σ, also the Faddeev-Popov ghosts will affect the path-integral
integration. It can be shown, see [60, 61, 62], that the Faddeev-Popov ghosts give
a contribution −26 to be added to N, while the conformal factor σ gives a contri-
bution +1. Therefore, neglecting the topologically-invariant Einstein-Hilbert term
and including the cosmological constant λ, the exact quantum effective action of 2D
gravity reads

Γ = −N − 25
96π

∫
d2x
√
−g R

1
2

R− λ
∫

d2x
√
−g . (1.2.22)

From eq. (1.2.17) and dropping terms depending only on the reference metric ḡab,
and not on σ, we can write a local expression for Γ in terms of the conformal mode:

Γ =
∫

d2x
√
−ḡ
[

N − 25
24π

ḡab∂aσ∂bσ +
N − 25

24π
Rσ− λe2σ

]
. (1.2.23)

It is useful to explain a possible confusion that emerges when trying to extract
the spectrum of the theory from the QEA in eq. (1.2.23). We are going to see that such
an operation is not allowed and only the fundamental action correctly expresses the
physical content of the theory. We can also rephrase the situation by saying that the
interpretation of a formal expression like that in eq. (1.2.23) changes completely in
the two cases in which we take it as a fundamental action or as a quantum effec-
tive action. Understanding this point is important for a correct interpretation of the
phenomenological nonlocal models that we will study later.

Let us try to read the spectrum of the quantum theory from eq. (1.2.23), treating
it as if it were the fundamental action of a QFT; then we would conclude that, for
N 6= 25, there is one dynamical degree of freedom, σ. Recalling that our signature
is ηab = (−,+), we would also conclude that for N > 25 this degree of freedom is a
ghost and for N < 25 it has the right sign for the kinetic term. For N = 25 there is
no dynamics at all.

This conclusion is clearly wrong because we know that eq. (1.2.23) is the QEA
of a fundamental theory which is just 2D gravity coupled to N healthy fields, and
there cannot be any ghosts in the spectrum of the fundamental theory. If we perform
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the quantization of the fundamental theory in the gauge of eq. (1.2.16), the fields in-
volved are the matter fields, the Faddeev-Popov ghosts and the conformal mode σ.
Each of them has its own creation and annihilation operators, which generate the
full Hilbert space of the theory. However, as always in theories with a local invari-
ance (in this case diffeomorphism invariance) the physical Hilbert space is a subset
of the full Hilbert space. Similarly to the physical-state condition 〈s′|∂µ Aµ|s〉 = 0
required in the Gupta-Bleuler quantization of electrodynamics to discard the ghost
states associated to A0, here the condition on physical states |s〉 and |s′〉 can be ob-
tained from

〈s′|Tab
tot|s〉 = 0 , (1.2.24)

where Tab
tot is the sum of the energy-momentum tensors of matter, ghosts and σ. As

explicitly proved in [63], this condition eliminates from the physical spectrum both
the states associated with the reparametrization ghosts and the states generated by
the creation operators of the conformal mode. The physical spectrum of the funda-
mental theory is simply given by the quanta of the N healthy matter fields5, with no
ghosts in the theory. Those N matter fields are not visible in the QEA of eq. (1.2.23)
because we integrated them out in the path integral. We also observe that the fact
that no physical quanta are associated to σ does not mean that the field σ itself has no
physical effects. For example in QED there are no physical quanta associated to A0,
but the interaction mediated by A0 is exactly what is responsible for the Coulomb
potential in the static case. In the language of Feynaman diagrams, this is possible
because the condition of having no physical states for σ in gravity (or for A0 in QED)
just means that σ cannot appear in external lines, but it can still appear in internal
lines and mediate interactions in that way.

In the case D = 4 the trace anomaly is

〈0|Tµ
µ |0〉 = b1C2 + b2

(
E− 2

3
2R
)
+ b32R , (1.2.25)

where C2 ≡ CµνρσCµνρσ is the square of the Weyl tensor, E ≡ R2 − 4RµνRµν +
RµνρσRµνρσ is the Gauss-Bonnet term, and the values of the coefficients b1, b2, b3 de-
pend on the number of massless conformally-coupled scalars, fermions and vector
fields. This result for the trace anomaly is exact and receives contribution only at
one loop order. When we introduce the conformal mode σ by writing gµν = e2σ ḡµν,
we cannot set ḡµν = ηµν as we did in the case D = 2. Explicitly, the integration of
the conformal anomaly gives

Γanom[gµν] = Γanom[ḡµν]−
b3

12

∫
d4x

√
−g R2

+
∫

d4x
√
−ḡ

[
b1σC̄2 + b2σ

(
Ē− 2

3
� R̄
)
+ 2b2σ∆̄4σ

]
,(1.2.26)

where ∆4 is the Paneitz operator

∆4 ≡ 22 + 2Rµν∇µ∇ν −
2
3

R2+
1
3

gµν∇µR∇ν . (1.2.27)

The quantity Γanom[ḡµν], corresponding to Γanom[gµν] evaluated at σ = 0, cannot be
determined from the conformal anomaly alone, because in D = 4 we can no longer

5The conformal mode is never a propagating degree of freedom and, in D=2, there are no graviton
polarizations.
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set ḡµν = ηµν. The maximal information that we can get is the dependence of the
QEA on the conformal mode σ.

The covariantization of eq. (1.2.26) is not uniquely determined and a possiblity
is given by the Riegert action [64]

Γanom[gµν] = Γc[gµν]−
b3

12

∫
d4x

√
−g R2 (1.2.28)

+
1
8

∫
d4x
√
−g
(

E− 2
3
2R
)

∆−1
4

[
b2

(
E− 2

3
2R
)
+ 2b1C2

]
.

It is interesting that, again, a covariant form requires the use of nonlocal operators.
In this case the inverse Paneitz operator is needed, while for D = 2 the inverse
d’Alembertian appeared.

1.3 Nonlocality and mass terms for gauge theories

Now that the notion of quantum effective action has been discussed, we can explain
how it may contain nonlocal mass terms for gauge fields (or for the gravitational
field), despite preserving gauge (or diffeomorphism) invariance. We follow the pre-
sentation in [31].

1.3.1 Massive gauge fields

A simple example is given by massive electrodynamics considered by Dvali in [65].
The Proca action for a massive photon coupled to an external conserved current jµ is

S =
∫

d4x
(
−1

4
FµνFµν − 1

2
m2

γ Aµ Aµ − jµ Aµ

)
, (1.3.1)

and the corresponding equation of motion reads ∂µFµν −m2
γ Aν = jν. Applying the

derivative ∂ν on both sides and using the current conservation equation ∂ν jν = 0 we
find m2

γ ∂ν Aν = 0. Therefore, for mγ 6= 0, we obtain ∂ν Aν = 0. Despite this condition
is the same as the Lorentz gauge, one should keep in mind that there is no gauge
invariance in massive electrodynamics. Thus ∂ν Aν = 0 is just a dynamical conse-
quence of the equations of motion, and does not express any gauge fixing condition,
as it would not make any sense. Using ∂ν Aν = 0, the equation of motion becomes
(2−m2

γ)Aµ = jµ, so that we can summarize the equations of motion derived from
the Proca action (1.3.1) as

(2−m2
γ)Aµ = jµ , ∂ν Aν = 0 . (1.3.2)

As it is well known, the theory exhibits three degrees of freedom and describes a
massive spin-1 particle.

Now, let us compare the Proca action with the nonlocal action

S =
∫

d4x

[
−1

4
Fµν

(
1− m2

γ

2

)
Fµν − jµ Aµ

]
, (1.3.3)

whose equation of motion reads(
1− m2

γ

2

)
∂µFµν = jν . (1.3.4)
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The action (1.3.3) is nonlocal but gauge invariant, and we can therefore impose
∂µ Aµ = 0 as a choice of gauge, so that eq. (1.3.4) reduces to (2− m2

γ)Aµ = jµ. We
ended up with the same two equations in (1.3.2), showing that eqs. (1.3.1) and (1.3.3)
are two equivalent formulations of the same classical theory. Another way to show
the equivalence of the two theories is to use the Stückelberg trick. We introduce the
Stückelberg field ϕ and replace

Aµ → Aµ + (1/mγ)∂µ ϕ , (1.3.5)

in the Proca action (1.3.1), which becomes

S[Aµ, ϕ] =
∫

d4x
[
−1

4
FµνFµν − 1

2
m2

γ Aµ Aµ − 1
2

∂µ ϕ∂µ ϕ−mγ Aµ∂µ ϕ− jµ Aµ

]
.

(1.3.6)
We have added a new degrees of freedom ϕ, but we have gained a gauge symmetry,
defined by the transformation

Aµ → Aµ − ∂µθ , ϕ→ ϕ + mγθ , (1.3.7)

since the combined transformation leaves invariant the right-hand side of eq. (1.3.5).
The equations of motion obtained from the action (1.3.6) are

∂µFµν = m2
γ Aν + mγ∂ν ϕ + jν , (1.3.8)

2ϕ = −mγ∂µ Aµ . (1.3.9)

Then eq. (1.3.9) can be formally solved by ϕ(x) = −mγ2
−1(∂µ Aµ) and inserting this

into eq. (1.3.8) we get eq. (1.3.4) [or, equivalently, inserting it into S[Aµ, ϕ], eq. (1.3.6),
we get eq. (1.3.3)]. It is worth observing that the Ward identities of QED do not
forbid a photon mass term [66]. Indeed, they only imply that the photon self-energy
Σµν is transverse, so that, in momentum space, it can be written as

Σµν(p) =
(

gµν −
pµ pν

p2

)
F(p2) . (1.3.10)

If, in the limit p2 → 0, F(p2) 6= 0, then the photon acquires a nonzero mass, which is
precisely the one described by the nonlocal term in eq. (1.3.3).

Following [67] it is also useful to rewrite the nonlocal mass term in a different
way that will be enable us to make contact with the gravitational case. We separate
the gauge field into its transverse and longitudinal parts,

Aµ = AT
µ + ∂µα , (1.3.11)

where ∂µ AT
µ = 0. Under a gauge transformations Aµ → Aµ − ∂µθ, we have α →

α − θ and AT
µ → AT

µ, so AT
µ is gauge invariant. To invert eq. (1.3.11) we take the

divergence, which gives ∂µ Aµ = 2α. This can be formally inverted as α = 2−1∂µ Aµ.
Substituting this into AT

µ = Aµ − ∂µα we get

AT
µ = Aµ −

1
2

∂µ∂ν Aν ≡ Pν
µ Aν , (1.3.12)

where

Pν
µ ≡ δν

µ −
∂µ∂ν

2
(1.3.13)
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is a nonlocal operator. The transverse part AT
µ is therefore a gauge-invariant and

nonlocal functional of the gauge field Aµ. In terms of AT
µ, it is straightforward to

check that the action (1.3.3) can be rewritten as6

S =
∫

d4x
(
−1

4
FµνFµν − 1

2
m2

γ AT
µ ATµ − jµ Aµ

)
. (1.3.14)

In the case of massive electrodynamics the nonlocality is only apparent, since we
have seen that the nonlocal term in the equation of motion (1.3.4) can be made local
with the gauge choice ∂µ Aµ = 0. In this sense, the above manipulations can be per-
formed even at the level of fundamental action, since anyhow the nonlocality can
be gauged away. Using non-abelian gauge theories we can build less trivial exam-
ples where the nonlocality is genuine and only makes sense at the level of quantum
effective action, because, as we will explain in Section 1.3.3, nonlocalities in the fun-
damental action are not compatible with causality, while they are perfectly fine in
the QEA.

The non-abelian generalization of the nonlocal mass term in eq. (1.3.3) is

m2
g

2
Tr
∫

d4x Fµν
1
2

Fµν , (1.3.15)

where Fµν = Fa
µνTa, 2ab = Dac

µ Dµ,cb and Dab
µ = δab∂µ − g f abc Ac

µ is the covariant
derivative. Comparing with eq. (1.3.3) we see that this nonlocal term corresponds to
giving a mass mg to the non-abelian gauge bosons (plus extra nonlocal interaction
terms to reconstruct a gauge-invariant quantity). Such a nonlocal mass term cannot
be reduced to a local term with a gauge choice, and has been postulated to appear
in the quantum effective action of QCD, in order to reproduce lattice QCD non-
perturbative results on the running of the strong coupling constant and on the gluon
propagator at low energies, see [68, 69, 70].

1.3.2 A mass for the conformal mode of gravity

Nonlocal variables and linearized GR over Minkowski

We now discuss possible generalizations of the above construction to the gravita-
tional field, following [31]. A possible route is to begin with gravity linearized
over Minkowski space. First of all, it is useful to see how linearized gravity can
be rewritten in terms of nonlocal variables, analogous to AT

µ of the previous Section
(we follow the discussions in [67, 71]). We begin by writing gµν = ηµν + κhµν, where
κ = (32πG)1/2. To quadratic level, the Einstein-Hilbert action becomes

S(2)
EH =

1
2

∫
d4x hµνEµν,ρσhρσ , (1.3.16)

6We can further replace Aµ with AT
µ both in the kinetic term and in the interaction with the current

of eq. (1.3.14), because α is a pure gauge degree of freedom and it can then be set to zero with a gauge
transformation.
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where Eµν,ρσ is the Lichnerowicz operator,7 while the interaction with matter with
energy-momentum tensor Tµν, to linear order in hµν, is given by

S(1)
int =

κ

2

∫
d4x hµνTµν . (1.3.17)

The linearized equations of motion derived from S(2)
EH + S(1)

int are therefore

Eµν,ρσhρσ = −κ

2
Tµν . (1.3.18)

We next decompose the metric as

hµν = hTT
µν +

1
2
(∂µεν + ∂νεµ) +

1
3

ηµνs , (1.3.19)

where hTT
µν is transverse (∂µhTT

µν = 0) and traceless (ηµνhTT
µν = 0), and therefore has

five independent components. We have therefore decomposed the 10 independent
components of the symmetric tensor hµν into the five components of hTT

µν , the four
components of εµ, and the scalar s. Under a linearized diffeomorphism hµν →
hµν− (∂µξν + ∂νξµ) we have εµ → εµ− ξµ while hTT

µν and s are gauge invariant. Thus
εµ describes the four pure gauge degrees of freedom, while s plus the five compo-
nents of the TT tensor hTT

µν describe the six gauge-invariant degrees of freedom of the
gravitational field. Notice that, at this linearized level, s is equivalent to the confor-
mal mode of the metric. Indeed, restricting to the scalar sector (i.e. setting εµ = 0
and hTT

µν = 0) and writing gµν = e2σηµν, comparison with eq. (1.3.19) shows that, at
the linear level, 2σ = s/3.

Similarly to the electromagnetic case of section 1.3.1, the quantities that appear
in the right-hand side of eq. (1.3.19) are nonlocal functionals of the original metric
perturbation hµν. The inversion of eq. (1.3.19) is straightforward [67]. It is convenient
to further separate εµ into its transverse and longitudinal parts, εµ = εT

µ + ∂µα, where
∂µεT

µ = 0. Then, taking the trace of eq. (1.3.19) we get h = (4/3)s + 2α, while
contracting eq. (1.3.19) with ∂µ∂ν, gives ∂µ∂νhµν = 2[s/3 + 2α]. Combining these
equations we get

s =
(

ηµν − 1
2

∂µ∂ν

)
hµν , α = −1

3
1
2

(
ηµν − 4

2
∂µ∂ν

)
hµν . (1.3.20)

We can now extract εT
µ by applying ∂µ to eq. (1.3.19) and using the above expressions

for α and s. This gives εT
µ = 22−1Pρ

µ∂σhρσ. Finally, substituting these expressions
into eq. (1.3.19) we get

hTT
µν = hµν −

1
3

(
ηµν −

∂µ∂ν

2

)
h− 1

2
(∂µ∂ρhνρ + ∂ν∂ρhµρ) +

1
3

ηµν
1
2

∂ρ∂σhρσ

+
2
3

1
22 ∂µ∂ν∂ρ∂σhρσ . (1.3.21)

7Its precise definition is Eµν,ρσ ≡ 1
2 (η

µρηνσ + ηµσηνρ − 2ηµνηρσ)2 + (ηρσ∂µ∂ν + ηµν∂ρ∂σ) −
1
2 (ηµρ∂σ∂ν + ηνρ∂σ∂µ + ηµσ∂ρ∂ν + ηνσ∂ρ∂µ).
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These results can be written more compactly using the projector Pµν = ηµν− (∂µ∂ν/2).
In particular,

s = Pµνhµν , (1.3.22)

hTT
µν =

(
Pρ

µ Pσ
ν −

1
3

PµνPρσ

)
hρσ . (1.3.23)

The fact that this expression for hTT
µν is indeed transverse and traceless is easily checked

by using the properties of Pµν, ∂µPµν = 0, ηµνPρ
µ Pσ

ν = Pρσ and ηµνPµν = 3.
Plugging the decomposition (1.3.19) into the action (1.3.16) one finds that εµ can-

cels (an obvious consequence of the fact that it is a pure gauge mode), and [71]

S(2)
EH =

1
2

∫
d4x

[
hTT

µν2(h
µν)TT − 2

3
s2s
]

. (1.3.24)

Performing the same decomposition as in (1.3.19) for the energy-momentum tensor,
the linearization of the interaction term becomes

S(1)
int =

κ

2

∫
d4x

[
hTT

µν (T
µν)TT +

1
3

sT
]

, (1.3.25)

where T = ηµνTµν. The equations of motion (1.3.18) derived from S(2)
EH + S(1)

int can
then be rewritten as

2hTT
µν = −κ

2
TTT

µν , 2s =
κ

4
T . (1.3.26)

At first, eq. (1.3.26) can be surprising, because it seems to imply that hTT
µν and s de-

scribe six radiative gauge-invariant degrees of freedom. Of course, we know that
in GR only the two degrees of freedom associated to the helicities ±2 are radiative,
while the remaining four gauge-invariant degrees of freedom are non-radiative and
satisfy Poisson equations. Furthermore, the sign of the kinetic term of s in eq. (1.3.24)
is such that the scalar s seems to be a ghost. As discussed in [71], the resolution of
this apparent paradox is related to the nonlocal relation between the original metric
perturbation hµν and the variables {hTT

µν , s}. The fact that this relation is nonlocal in
time, and not only in space, implies that the initial data assigned on hµν on a given
time slice are not sufficient to provide initial data on {hTT

µν , s}, so a naive counting
of degrees of freedom in terms of {hTT

µν , s} goes wrong. A simple example to un-
derstand what exactly goes wrong, again discussed in [71], is provided by a scalar
field φ that satisfies a Poisson equation ∇2φ = ρ. If one introduces a field φ̃ related
to φ by a nonlocal relation such as φ̃ = 2−1φ, the original Poisson equation can be
rewritten as 2φ̃ = ρ̃, where ρ̃ ≡ ∇−2ρ, so now φ̃ looks like a propagating degree of
freedom. However, for ρ = 0 the original equation ∇2φ = ρ (with vanishing bound-
ary conditions at infinity) only has the solution φ = 0. If we want to rewrite this
equation in terms of φ̃ without introducing spurious degrees of freedom we must
therefore supplement the equation 2φ̃ = ρ̃ with the condition that, when ρ̃ = 0, the
only acceptable solution is φ̃ = 0, which precisely kills the radiative solution. Notice
that the nonlocal relation between the variables {hTT

µν , s} and the full hµν is different
from what happens in the standard 3 + 1 decomposition of the metric perturbations
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over flat space,

h00 = 2ψ , h0i = βi + ∂iγ

hij = −2φδij +

(
∂i∂j −

1
3

δij∇2
)

λ +
1
2
(∂ivj + ∂jvi) + HTT

ij , (1.3.27)

where vi and βi are transverse spatial vectors, ∂iβ
i = 0 and ∂ivi = 0, and HTT

ij is
transverse and traceless with respect to the spatial indices, ∂jHTT

ij = 0 and δijHTT
ij =

0. Indeed, the 3 + 1 decomposition only involves spatial derivatives and therefore
its inversion is nonlocal in space but local in time. From these variables, one can
form six variables that are invariant under linearized gauge transformations: the two
Bardeen variables, Φ = −φ− (1/6)∇2λ and Ψ = ψ− γ̇ + (1/2)λ̈, that are scalars
under spatial rotations; the spatial vector Ξi = βi− (1/2)v̇i, which, being transverse,
has only two independent components; and the spatial tensor HTT

ij , which is already
gauge-invariant (again, at the linearized level) and, being transverse and traceless
(and carrying only spatial indices, contrary to hTT

µν ), also has only two independent
components. Standard analysis (see e.g. [72, 73] or chapter 18 of [74]) then shows
that, after performing the same decomposition for the energy-momentum tensor,
namely

T00 = ρ , T0i = Si + ∂iS ,

Tij = Pδij +

(
∂i∂j −

1
3

δij∇2
)

Σ +
1
2
(∂iΣj + ∂jΣi) + Σij , (1.3.28)

where ∂iΣi = 0, ∂iSi = 0, ∂iΣij = 0 and δijΣij = 0, the linearized equations of motion
can be rewritten as

∇2Φ = −4πGρ , ∇2Ψ = −4πG(ρ− 2∇2Σ) , (1.3.29)
∇2Ξi = −16πGSi , 2HTT

ij = −16πGΣij . (1.3.30)

We then get the standard result that only the two degrees of freedom of the tensor
perturbations obey a wave equation, while the remaining gauge-invariant degrees
of freedom described by Φ, Ψ and Ξi obey Poisson equations, and therefore are non-
radiative.

Comparing the decompositions (1.3.19) and (1.3.27) one finds that the field s can
be written explicitly as a nonlocal function of the Bardeen variables as [71]

s = 6Φ− 22−1∇2(Φ + Ψ) . (1.3.31)

The apparent radiative nature of s in eq. (1.3.26) is an artifact due to this nonlocal
relation, that introduces a spurious degree of freedom associated to the homoge-
neous equation 2s = 0. Indeed, from eq. (1.3.29), ∇2(Φ + Ψ) is fully determined
by the source terms, and vanishes if the latter vanish. Thus, in order to eliminate
this spurious degree of freedom we must supplement eq. (1.3.26) with the condition
that s = 0 when T = 0, i.e. we must discard again the homogeneous solution of
eq. (1.3.26) (and similarly for the helicities 0,±1 of hTT

µν ). At the quantum level, this
implies that there are no creation and annihilation operators associated to s, and s
cannot appear on the external legs of a Feynman diagram. Therefore, the apparent
ghost-like nature of s in eq. (1.3.24) is fictitious and, of course, in General Relativity
there is no actual ghost.
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Nonlocal mass terms at the linearized level

As we have seen, the use of the variables {hTT
µν , s} is not convenient if we want

to count the independent degrees of freedom of the theory and determine their
radiative/non-radiative nature; for those purposes it is better to work directly with
the original metric perturbation hµν, or with the variables of the 3+1 decomposition
(1.3.27), or with the ADM decomposition. However, the variables {hTT

µν , s} have the
advantage that one can very easily see how a diff-invariant nonlocal mass term can
be naturally written for different modes of the gravitational field, at the linearized
level. Following [31] , we can simply modify eq. (1.3.24) into

Γ(2) =
1
2

∫
d4x

[
hTT

µν (2−m2
1)(h

µν)TT − 2
3

s(2+ m2
2)s
]

, (1.3.32)

for some masses m1 and m2, where we have chosen the signs in front of m2
1 and m2

2
so that m2

1 > 0 and m2
2 > 0 corresponds to non-tachyonic masses. These mass terms

are clearly diff-invariant, since hTT
µν and s are diff-invariant (again, at the linearized

level). On the other hand, because of the relations (1.3.22,1.3.23), once rewritten in
terms of hµν they will be nonlocal. We have indeed used the notation Γ, rather than
S, to stress that, because of the nonlocality, this modification makes sense at the level
of the quantum effective action Γ, rather than for the fundamental action S.

To go beyond the linearized approximation, we can search for covariantizations
of these expressions, as we will do in Section 1.3.2. The second term gives a mass to s
or, equivalently, to the conformal mode. The models that we will study in the follow-
ing will be covariantizations of the above expression, with m2

1 = 0 and m2
2 ≡ m2 > 0.

We are therefore assuming that there exists a mechanism that, in the quantum effec-
tive action, generates a mass for the conformal mode, while leaving hTT

µν massless. At
the phenomenological level this is required by the fact that, among a large class of
models explored, only those of this form appear to have a viable cosmological evo-
lution. At the theoretical level, this is also suggested by various arguments, that will
be discussed in Section 1.3.4. Thus, we will look for a covariantization of a quantum
effective action that, at quadratic level, has the form

Γ(2) =
1
2

∫
d4x

[
hTT

µν2(h
µν)TT − 2

3
s(2+ m2)s

]
, (1.3.33)

so that the linearized equations of motion (1.3.26) are modified into

2hTT
µν = −κ

2
TTT

µν , (2+ m2)s =
κ

4
T . (1.3.34)

To perform the covariantization, it is now convenient to go back to the original met-
ric perturbation hµν. Using eq. (1.3.22), we immediately see that eq. (1.3.33) can be
rewritten as

Γ(2) =
1
2

∫
d4x

[
hµνEµν,ρσhρσ −

2
3

m2(Pµνhµν)
2
]

, (1.3.35)

while eq. (1.3.34) is equivalent to

Eµν,ρσhρσ −
2
3

m2PµνPρσhρσ = −κ

2
Tµν . (1.3.36)
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In view of the covariantization, it is also convenient to rescale hµν → hµν/κ, so that
now gµν = ηµν + hµν,

Γ(2) =
1

64πG

∫
d4x

[
hµνEµν,ρσhρσ −

2
3

m2(Pµνhµν)
2
]

, (1.3.37)

and
Eµν,ρσhρσ −

2
3

m2PµνPρσhρσ = −16πG Tµν . (1.3.38)

The RR and RT models

We now look for possible covariantizations of the above expressions, as done in [31].
Covariantizations, when they exists, are in general not unique. However, some
choices can be more natural than others. We will see that, starting from the equation
of motion (1.3.38) or from the quantum effective action (1.3.37), one ends up quite
naturally with two different covariantizations, that define two possible models.

Let us start from the covariantization of eq. (1.3.38). The linearization of the
Einstein tensor Gµν is G(1)

µν = −(1/2)Eµν,ρσhρσ, so the term Eµν,ρσhρσ = −2G(1)
µν in

eq. (1.3.38) is uniquely promoted to −2Gµν in the full covariant theory, by the re-
quirement that we recover GR for m = 0. The nontrivial part is the covariantization
of the mass term. At linear level the Ricci scalar becomes R(1) = −(ηρσ2− ∂ρ∂σ)hρσ,
that can be rewritten as R(1) = −2(Pρσhρσ), so

Pρσhρσ = −2−1R(1) . (1.3.39)

Therefore eq. (1.3.36) is equivalent to

− 2G(1)
µν +

2
3

m2Pµν2
−1
η R(1) = −16πG Tµν , (1.3.40)

where the notation 2η stresses that, until now, the 2 operator was the one with re-

spect to the flat metric ηµν. After promoting G(1)
µν to Gµν, if we want to preserve

energy-momentum conservation ∇µTµν = 0, we must promote Pµν2
−1
η R(1) to a

transverse tensor, whose covariant derivative vanishes. To this purpose it is use-
ful to observe that, in a generic Riemannian manifold, any symmetric tensor Sµν can
be decomposed as

Sµν = ST
µν +

1
2
(∇µSν +∇νSµ) , (1.3.41)

where ∇µST
µν = 0 [75, 76]. The extraction of the transverse part of a tensor is itself

a nonlocal operation. In flat space, where ∇µ → ∂µ, proceeding as we have done in
the derivation of eqs. (1.3.20)–(1.3.21), one finds that

ST
µν = Sµν −

1
2η

(∂µ∂ρSρν + ∂ν∂ρSρµ) +
1
22

η

∂µ∂ν∂ρ∂σSρσ . (1.3.42)

Using this expression we can easily check that, in flat space, for a tensor Sµν of the
form Sµν(x) = ηµν A(x), we have ST

µν = Pµν A(x). Thus, to linear order in an expan-
sion over flat space, the term Pµν2

−1
η R(1) in eq. (1.3.40) is the same as the transverse

part of the tensor (ηµν2
−1
η R(1)), that we denote as (ηµν2

−1
η R(1))T, and eq. (1.3.40) is

the same as
G(1)

µν −
1
3

m2(ηµν2
−1
η R(1))T = 8πG Tµν . (1.3.43)
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In this form, there is a natural covariantization given by

Gµν −
1
3

m2
(

gµν2
−1R

)T
= 8πG Tµν , (1.3.44)

where now 2−1 is the inverse of the covariant 2 operator with respect to the generic
metric gµν, and the operation of taking the transverse part is the fully covariant op-
eration defined by eq. (1.3.41).

The equation (1.3.44) defines the so-called RT model, where R stands for the oc-
currence of the Ricci scalar and T for the extraction of the transverse part. This model
was first proposed in [77] and, after the study of many alternative possibilities, it
turns out to be the only viable one. It is defined at the level of a nonlocal equation of
motion rather than by a QEA and there is currently no known nonlocal action from
which eq. (1.3.44) can be derived.

A different covariantization emerges naturally if we rather start from the quan-
tum effective action (1.3.37). As usual, d4x (1/4)hµνEµν,ρσhρσ becomes d4x

√−gR
while, using eq. (1.3.39), (Pµνhµν)2 is the same as (2−1

η R(1))2, which is naturally co-
variantized into (2−1R)2. Thus, a natural covariantization of eq. (1.3.37) is

ΓRR =
1

16πG

∫
d4x
√
−g

[
R− m2

6
(2−1R)2

]
=

1
16πG

∫
d4x
√
−g

[
R− m2

6
R

1
22 R

]
, (1.3.45)

where in the last line we have integrated 1/2 by parts. This gives the model that
was first proposed in [78], also known as the RR model, after the two occurrences of
the Ricci scalar in the nonlocal term.

Since they can be built as covariantizations of the same nonlocal mass terms over
Minkowski, it is clear that the RT and RR model are the sasme at linear order in an
expansion over flat space. However, they are in general different, and have different
cosmological predictions. The RR model shares most of the phenomenologically at-
tractive properties of the RT model, such as viable cosmological background evolu-
tion, stable cosmological perturbations, good fit to Cosmic Microwave Background
(CMB), Baryon Acoustic Oscillations (BAO), type Ia Supernovae (SNe) and structure
formation data. However, as we will see, it does not pass the constraints from Lunar
Laser Ranging; on the contrary, the RT model passes all the observational tests.

1.3.3 Conceptual aspects: localization and causality

A nonlocal QEA can be rewritten in local form by introducing auxiliary fields (see
also [79, 80, 81, 82, 83, 84, 85]). This is quite convenient for working out the pre-
dictions of the theory (e.g. for studying the equations of motions of the theory, the
cosmological perturbations, etc.), but requires some care at the level of interpreta-
tion, in order not to confuse the auxiliary fields with actual degrees of freedom of
the theory. We follow the discussion in [31] and, as a simple example, we consider
the theory of a massive photon discussed in section 1.3.1. We have seen that it can be
formulated as a local but non gauge-invariant theory, as in eq. (1.3.1), or as a gauge-
invariant theory at the price of nonlocality, as in eq. (1.3.3). One might also get a
theory that is at the same time local and gauge-invariant, by introducing an auxil-
iary anti-symmetric tensor field Uµν defined by Uµν = 2−1Fµν and implementing
this definition into the action (1.3.3) via a Lagrange multiplier. In this way, one gets
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a local and gauge-invariant action written in terms of the two fields Aµ and Uµν. The
equations of motion of the theory can then be rewritten as

∂µFµν = jν + m2∂µUµν , 2Uµν = Fµν . (1.3.46)

While the steps leading to eq. (1.3.46) are formally correct, this local and gauge-
invariant formulation seems to suggest that the theory has many more degrees of
freedom than the Proca theory of a massive photon that was our starting point: we
apparently have a massless gauge-invariant vector field Aµ, which carries two de-
grees of freedom, interacting with an antisymmetric tensor field Uµν, which appar-
ently carries six degrees of freedom. This seems very different from the three degrees
of freedom of a massive vector field from which we started. Of course, new degrees
of freedom cannot pop out from nowhere, and the delicate point here lays in the
passage from an equation such as Uµν = 2−1Fµν to the equation 2Uµν = Fµν, i.e.
the inversion of the 2 operator. By itself, the most general solution of an equation
such as 2Uµν = Fµν is given by a solution of the inhomogeneous equation plus the
most general solution of the associated homogeneous equation 2Uµν = 0. The latter
carries with itself the six degrees of freedom associated to Uµν. Clearly, if we want
this local and gauge-invariant formulation to be equivalent to the original Proca the-
ory, we cannot accept the most general solution of 2Uµν = Fµν. In other words,
the initial condition of the auxiliary field Uµν cannot be taken as independent, but
must be fixed in terms of the initial condition of the two transverse and the lon-
gitudinal components of Aµ, so that the theory indeed still has three independent
degrees of freedom. In this sense, Uµν is just an auxiliary field, and does not carry
independent degrees of freedom. In particular, at the quantum level there are no
creation/annihilation operators associated to it.

The same situation can also be seen clearly for the Polyakov quantum effective
action in D = 2, that we discussed in Section 1.2.4. In particular one could localize
eq. (1.2.21) by introducing an auxiliary field U = −2−1R. However, recalling that
the conformal mode was σ = −(1/2)2−1R, we recognize that U is not an indepen-
dent degree of freedom, but rather U = 2σ. In other words, U is not a generic so-
lution of the equation 2U = −R with the corresponding infinite number of choices
for the homogeneous solution Uhom of the equation 2Uhom = 0, but rather, only a
precise choice of U, i.e. U = 2σ, gives the correct description. In terms of initial
conditions for U, we can then say that they are fixed in terms of the initial condi-
tions of the conformal factor as σ, as Uin = 2σin and U̇in = 2σ̇in. At the quantum
level, there are no creation/annihilation operators associated to U because there are
no free coefficients coming from Uhom that can be promoted to operators.

In the following we will use a similar localization procedure for the RR and
RT models. As in the examples above, the auxiliary fields that will be introduced
are not new independent degrees of freedom; rather, their initial conditions should
be understood as fixed in terms of the initial conditions on the metric, and again
there are no creation/annihilation operators associated to them. This excludes is-
sues of ghosts at the quantum level. If one had an explicit derivation of the nonlocal
term from a fundamental theory, one would in principle be able to determine explic-
itly their initial conditions in terms of those on the metric, just like we saw for the
Polyakov action. But in practice, lacking such a derivation, the initial conditions on
the auxiliary fields of the RR and RT models must be taken as free phenomenologi-
cal parameters. We will see in Chapter 2 that, in the cosmological context in which
we are interested, this ignorance introduces only very limited freedom, both at the
level of background evolution and of cosmological perturbations, and the predictive
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power of the theory is not significantly reduced.

Localization of the RR and RT models

We next show how to write nonlocal gravity in a local form. We write the equations
both for the RR model, and for the RT model that will eventually be our main fo-
cus, since the comparison between the two models can be instructive, and also the
manipulations of the equations of the RR model are somewhat simpler. To write
the RR model in a local form we introduce two auxiliary fields U and S, defined by
U = −2−1R and S = −2−1U [78]. This can be implemented at the Lagrangian level
by introducing two Lagrange multipliers ξ1, ξ2 into eq. (1.3.45),

ΓRR =
1

16πG

∫
d4x
√
−g

[
R
(

1− m2

6
S
)
− ξ1(2U + R)− ξ2(2S + U)

]
.

The variation with respect to hµν gives Gµν = (m2/6)Kµν + 8πGTµν, where

Kµ
ν ≡ 2SGµ

ν − 2∇µ∂νS + 2δ
µ
ν2gS + δ

µ
ν ∂ρS∂ρU − 1

2
δ

µ
ν U2 −

(
∂µS∂νU + ∂νS∂µU

)
,

(1.3.47)
while the variation with respect to the Lagrange multipliers ξ1, ξ2 gives 2U = −R
and 2S = −U. Thus, the RR model is formally written as a scalar-tensor theory,
with two scalar fields U and S, although, as we have discussed in section 1.3.3, U
and S are not independent degrees of freedoms, and their initial conditions are in
principle fixed in terms of the initial conditions of the metric. In particular, there
are no independent solutions associated to the homogeneous equations 2U = 0 and
2S = 0, and no corresponding quanta at the quantum level.

For the RT model the localization proceeds by defining again U = −2−1R. We
also introduce Sµν = −Ugµν = gµν2

−1R and we extract its transverse part ST
µν by

using eq. (1.3.41). Thus, eq. (1.3.44) is localized in terms of an auxiliary scalar field U
and the auxiliary four-vector field Sµ that enters through eq. (1.3.41). The equations
of motion then read [77, 86]

Gµν +
m2

6
(
2Ugµν +∇µSν +∇νSµ

)
= 8πG Tµν , (1.3.48)

2U = −R , (1.3.49)
(δ

µ
ν2+∇µ∇ν)Sµ = −2∂νU , (1.3.50)

where eq. (1.3.50) is obtained by taking the divergence of eq. (1.3.41) with Sµν =
−Ugµν. The equations of motion of the RT model have a suggestive property in
connection with the cosmological constant problem. Let us perform a shift U(x) →
U(x) + u0, with u0 a constant. Equations (1.3.49) and (1.3.50) are invariant while
eq. (1.3.48) becomes

Gµν +
m2

6
(
2Ugµν +∇µSν +∇νSµ

)
= 8πG

(
Tµν − λgµν

)
. (1.3.51)

where λ = m2u0/(24πG). Thus, u0 (or, equivalently, the initial condition on U)
generates a cosmological constant, and one could choose u0 to cancel any vacuum
energy term in Tµν.

It is also instructive to consider the equations of motion of the RR and RT models
linearized over flat space, eq. (1.3.38), that were our starting point, and write them
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in terms of the auxiliary fields and of the metric variables of the 3 + 1 decomposi-
tion (1.3.27). Since, by construction, the RR and RT model coincide when linearized
over flat space, we use the RR model, whose localization is slightly simpler, since it
involves two scalar fields U and S, rather than U and Sµ for the RT model. One then
finds that eqs. (1.3.29)–(1.3.30) are modified into

∇2 [Φ− (m2/6)S
]

= −4πGρ , Φ−Ψ− (m2/3)S = −8πGΣ ,(1.3.52)

∇2Ξi = −16πGSi , 2HTT
ij = −16πGΣij , (1.3.53)

(2+ m2)U = −8πG(ρ− 3P) , 2S = −U , (1.3.54)

Notice that eq. (1.3.54) is needed to close the system, since S appears in eq. (1.3.52).
Equations (1.3.52) and (1.3.53) shows that the original metric perturbations Φ, Ψ and
Ξi remain non-radiative variables that satisfy Poisson equations, just as in GR. The
auxiliary fields U and S satisfy Klein-Gordon equations, but, as we already said,
their initial conditions are fixed in terms of the initial conditions on the metric, and
therefore are not free radiative degrees of freedom either. From these equations it is
also clear that the conformal mode s remains a non-propagating degree of freedom
also in the RT or RR models. Indeed, combining the two equations in (1.3.52) we get

∇2(Φ + Ψ) = 2∇2
(

Φ− m2

6
S
)
+ 8πG∇2Σ

= −8πG(ρ−∇2Σ) . (1.3.55)

Then, from eq. (1.3.31) we get (again at the linearized level over flat space)

s = 6Φ− 22−1∇2(Φ + Ψ)

= 6Φ + 16πG2−1(ρ−∇2Σ) . (1.3.56)

We see that the nonlocal term in s is fully determined by the energy-momentum
tensor, in particular by the density ρ and by the anisotropic stress Σ that enters in Tij
through eq. (1.3.28). Thus, s remains a non-radiative degree of freedom, exactly as
in GR, and vanishes if ρ = 0 and Σ = 0.

Causality

We next discuss why nonlocal terms would induce problems with causality if added
at the level of a fundamental action, while they do not in a quantum effective action,
following [31].

To illustrate the problem with causality of a nonlocal fundamental action, con-
sider for instance an action with a nonlocal term proportional to (1/2)

∫
d4x ϕ2−1ϕ

where ϕ is a scalar field [71]. To complete the definition of this term we must specify
the Green’s function G(x, x′) used to define 2−1, and then

1
2

∫
d4x ϕ(x)(2−1ϕ)(x) ≡ 1

2

∫
d4xd4x′ ϕ(x)G(x, x′)ϕ(x′) . (1.3.57)

Consider now the contribution of this term to the equation of motion. Taking the
variation with respect to ϕ, we get

1
2

δ

δϕ(x)

∫
dx′dx′′ϕ(x′)G(x′; x′′)ϕ(x′′) =

1
2

∫
dx′[G(x; x′) + G(x′; x)]ϕ(x′) ≡ 2−1

symϕ ,

(1.3.58)
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where 2−1
sym is the inverse d’Alembertian with respect to the symmetrized Green’s

function [G(x; x′) + G(x′; x)]/2. Thus, independently of the choice of G(x, x′), in
the equations of motion we end up with a symmetric Green’s function. Since the
retarded Green’s function is not symmetric, it cannot be obtained from such a varia-
tion. The equations of motion obtained from a nonlocal classical action are therefore
in general acausal. This is one of the reasons why a fundamental action must be
local.

We have already seen in Section 1.2.2 that causality is recovered when using
the Schwinger-Keldysh path integral in the definition of the QEA. At the level of
the equations of motion for the evolution of vacuum expectation values, the result
of the computation with the Schwinger-Keldysh path integral amounts to perform
a formal variation of the quantum effective action, without specifying the Green’s
function used to define 2−1, and then replacing the resulting occurrences of 2−1 in
the equations of motion with the 2−1 operator defined using the retarded Green’s
function (see [51] and Section 12.1.6 of [53]).

1.3.4 Origin of an IR mass scale

It is interesting to discuss possible mechanisms for the generation of nonlocal terms
relevant for the IR dynamics and associated to a mass scale. As a starting point,
we recall that perturbative loop corrections due to massive matter fields cannot be
responsible for producing cosmologically relevant nonlocal structures, as shown in
[87]. Let us review how the explanation goes.

Perturbative loop corrections do not affect the IR regime

In gravity the one-loop corrections induced by matter fields can produce nonlocal
form factors in the quantum effective action, associated to terms quadratic in the
curvature [50, 51, 88, 89, 90, 91] (see also [49, 52, 54] for reviews). The resulting QEA
can be expressed using form factors as

Γone−loop =
∫

d4x
√
−g
[

1
16πG

R− R kR(2)R− CµνρσkW(2)Cµνρσ + GB
]

, (1.3.59)

where “GB” denotes a similar nonlocal term that reduces to the topological Gauss-
Bonnet term when its form factor is set to one. Consider the contribution to the form
factor from a particle of mass M. When the particle is very massive compared to
the energies involved (whose scale is set by the Hubble parameter H(t) in a cosmo-
logical setting), then the particle decouples and its contribution to the form factor is
local and suppressed by a factor O(2/M2) � 1. In this case only local terms are
produced and the situation, just like we have seen in Section 1.2.3 about QED when
2/m2

e � 1. To get nonlocal operators we should look at the case where the particle
of mass M is light with respect to the energy scale involved. In that situation, the
form factor kR has the form [90, 91, 92, 93]

kR

(−2
M2

)
= α log

(−2
M2

)
+ β

(
M2

−2

)
+ γ

(
M2

−2

)
log
(−2

M2

)
+ δ

(
M2

−2

)2

+ . . . ,

(1.3.60)
and similarly for kW . In [94] it was observed that the logarithmic terms and the
term (M2/2) have little effect on the cosmological evolution in the present epoch,
so one might hope that the leading term is actually given by the term proportional to
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M4/22, which is the same operator appearing in eq. (1.3.45) for the RR model. Com-
paring eq. (1.3.60) with eq. (1.3.45) we see that they match only if m = O(M2/MP),
where MP is the reduced Planck mass. The expansion in eq. (1.3.60) can only be
valid today if M � H0, and therefore we see that loop corrections from light par-
ticles could only generate a nonlocal term m2R2−2R with m = O(M2/MP) �
H0(H0/MP). However, we will see in Chapter 2 that m has to be of order H0 to
reproduce the dark energy content today and certainly cannot be suppressed with
respect to H0 by the very small factor H0/MP. Hence, loop corrections from light
particles cannot provide the required value of m while, on the other hand, we have
already seen that heavy particles give only local contributions to the form factors,
suppressed by O(H2

0 /M2)� 1.

Dynamical mass generation

In this subsection we will discuss indications, from various non-perturbative tech-
niques, in favor of the possibility of a dynamical mass generation in the IR limit of
four-dimensional quantum gravity, in particular in relation to the conformal mode.
We follow the presentation in [31].

Functional renormalization group equations. Renormalization group (RG) equa-
tions, such as the Polchinski equation [95] and the Wetterich equation [96] are exact
equations transform the problem of performing a functional integration for comput-
ing the path integral of the QEA into a functional differential equation. In practice,
just as the evaluation of the functional integral for an interacting theory requires ap-
proximations or numerical methods, one is usually required to truncate the space of
action functionals allowed in QEA, to have some hope to solve the functional RG
equation. This is the same RG idea used in statistical physics for studying critical
phenomena, when one restricts the attention to some couplings among the infinite
number of them that is in principle allowed by the symmetries of the microscopic
interaction. Therefore the results obtained from functional RG equations can depend
on the truncation adopted and require some care in their interpretation. For gravity,
functional RG techniques have been developed particularly in connection with the
asymptotic safety program, i.e. the search for a non-trivial UV fixed point (see [97]
for review). Only more recently, these tools are being applied to the study of the
IR behavior of gravity, and a number of functional RG studies have found indica-
tions of strong quantum gravity effect in the IR [98, 99, 100, 101]. Dynamical mass
generation could be compatible with the findings in [102], where, in a truncation of
the theory including only the Einstein-Hilbert term and the cosmological constant,
it was found that, evolving the RG flow toward the IR, for some trajectories the run-
ning of Newton’s constant hits a singularity at a finite momentum scale. But, as we
said, the the singularity could also be an artifact of the truncation. Another inter-
esting result in [98] suggests that the cosmological constant could be screened by
strong IR effects due to the quantum fluctuations of the trasverse-traceless modes,
while the conformal mode fluctuations could generate a new mass scale. This is
compatible with the phenomelogical RT and RR models, as they exhibit a mass term
for the conformal mode.

Lattice gravity. A possible non-perturbative tool is provided by lattice gravity, based
either on a simplicial decomposition of the space-time manifold in Euclidean space
(see [103] for review), or on causal dynamical triangulations (CDT) (see [104, 105]
for reviews).
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Using numerical simulation of CDT it is possible to have some informations on
the two-point function of the conformal mode, and ref. [106] showed that the nu-
merical results provide evidence for a massive conformal mode, corresponding to
a linearized nonlocal quantum effective action of the form in eq. (1.3.33), whose co-
variantizations can give the RR or RT models. This numerical result was not studied
in the continuum limit, but it is still an indication that quantum effects could gener-
ate a mass for the conformal mode of the metric.

Naturalness of the mass scale in nonlocal gravity models.
Let us rewrite the quantum effective action (1.3.45) of the RR model as

ΓRR =
M2

P
2

∫
d4x
√
−g

[
R− 1

6
m2R

1
22 R

]
=

∫
d4x
√
−g

[
M2

P
2

R− R
Λ4

RR

22 R
]

, (1.3.61)

where ΛRR = (1/12)m2M2
P. In this form, it is clear that ΛRR should be taken as the

fundamental scale generated dynamically, corresponding to a dimensionless form
factor kR(2) = Λ4

RR/22 in RkR(2)R, while the parameter m is just a derived quan-
tity introduced for convenience. ΛRR is a scale generated generated dynamically and
its value cannot be predicted, similarly to what happens for QCD where the value
of ΛQCD can only be obtained by comparison with observations. As we already an-
ticipated, we need m = O(H0) in order to have a viable dark energy content in the
present epoch. Therefore,

ΛRR = O(H0mPl)
1/2 = O(meV) . (1.3.62)

A similar analysis can be carried out for the RT model to find a scale ΛRT of the same
order as in the RR case. The appearance of a meV scale is not particularly surprising
for QFT and is certainly much more natural than what would be needed to explain
dark enrgy by introducing some particle of mass m. Indeed, in the latter case, m is
the fundamental scale with a very small value m ∼ H0 ∼ 10−33 eV.
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Chapter 2

Nonlocal gravity: cosmological
implications

2.1 Cosmology of the RT model

2.1.1 FRW background

Let us study the existence and properties of a Friedman-Robertson-Walker (FRW)
background for the RT model, following the presentation given in [31]. We consider
a spatially flat background, ds2 = −dt2 + a2(t)dx2. For symmetry reasons the spatial
component Si of the auxiliary field Sµ must vanish, since there is no preferred spatial
direction, and the only variables are U(t) and S0(t), together with the FRW scale
factor a(t). Eqs. (1.3.48)–(1.3.50) then become [77, 31]

H2 − m2

9
(U − Ṡ0) =

8πG
3

ρ (2.1.1)

Ü + 3HU̇ = 6Ḣ + 12H2 , (2.1.2)
S̈0 + 3HṠ0 − 3H2S0 = U̇ , (2.1.3)

where we have written Tµ
ν = diag(−ρ, p, p, p), and the dot denotes the derivative

with respect to cosmic time t. It is convenient to define Y = U − Ṡ0, h = H/H0, and
Ωi(t) = ρi(t)/ρc(t), where i = M, R, DE labels radiation, matter and dark energy, re-
spectively, and ρc(t) = 3H2(t)/(8πG) is the critical density for closing the Universe
at time t. We will also use the standard notation ΩM ≡ ΩM(t0), ΩR ≡ ΩR(t0) and
ΩDE ≡ ΩDE(t0) (where t0 is the present value of cosmic time) for the present values
of Ωi(t). We henceforth use the dimensionless variables

x ≡ ln a(t) (2.1.4)

instead of cosmic time t, and we denote d f /dx = f ′. Then the Friedmann equation
(2.1.1) reads

h2(x) = ΩMe−3x + ΩRe−4x + γY(x) , (2.1.5)

where
γ ≡ m2/(9H2

0) . (2.1.6)

This shows that there is an effective DE density

ρDE(t) = ρ0γY(x) , (2.1.7)
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where ρ0 = 3H2
0 /(8πG). Using U(x) and Y(x), eqs. (2.1.2) and (2.1.3) take the form

Y′′ + (3− ζ)Y′ − 3(1 + ζ)Y = 3U′ − 3(1 + ζ)U , (2.1.8)
U′′ + (3 + ζ)U′ = 6(2 + ζ) , (2.1.9)

where, using eq. (2.1.5),

ζ(x) ≡ h′

h
= − 3ΩMe−3x + 4ΩRe−4x − γY′

2(ΩMe−3x + ΩRe−4x + γY)
. (2.1.10)

Initial conditions

As a next step, we discuss the initial conditions on the auxiliary fields, following
refs. [29, 107, 31]). To get a first analytic understanding we observe that, in any given
cosmological epoch, such as radiation dominance (RD), matter dominance (MD), or
an earlier inflationary de Sitter (dS) phase, ζ(x) has an approximately constant value
ζ0, with ζ0 = 0 in dS, ζ0 = −2 in RD and ζ0 = −3/2 in MD. In the approximation of
constant ζ eq. (2.1.9) can be integrated analytically, and has the solution [77]

U(x) =
6(2 + ζ0)

3 + ζ0
x + u0 + u1e−(3+ζ0)x . (2.1.11)

The first term on the right-hand side is a particular solution of the inhomogeneous
equation, while u0 and u1 parametrize the most general solution of the homoge-
neous equation 2U = U′′ + (3 + ζ0)U = 0. The initial conditions on U, i.e. U(xin)
and U′(xin), are in one-to-one correspondence with the choice of the solutions of
homogeneous equation, i.e. with u0 and u1. The constant u0 corresponds to the rein-
troduction of a cosmological constant, as we have seen in eq. (1.3.51). Our aim is to
see if we can obtain a self-accelerated evolution from the nonlocal term, without in-
troducing by hand a cosmological constant, and we will therefore set u0 = 0. A non-
vanishing u0 could always be reintroduced later, and, not surprisingly, produces an
evolution that is intermediate between that of the RT model with u0 = 0 and that
ΛCDM, see Section 7.4 of [29]. The other solution of the homogeneous equation, pro-
portional to e−(3+ζ0)x, is instead a decaying mode, in all cosmological phases. Thus,
the solution with initial conditions U(xin) = U′(xin) = 0 has a marginally stable
direction, corresponding to the possibility of reintroducing a cosmological constant,
and a stable direction, i.e. is an attractor in the u1 direction. Consider next eq. (2.1.8).
Using eq. (2.1.11) and solving for Y(x) we get

Y(x) = − 2(2 + ζ0)ζ0

(3 + ζ0)(1 + ζ0)
+

6(2 + ζ0)

3 + ζ0
x + u0 −

6(2 + ζ0)u1

2ζ2
0 + 3ζ0 − 3

e−(3+ζ0)x

+a1eα+x + a2eα−x , (2.1.12)

where α± = (1/2)[−3 + ζ0 ±
√

21 + 6ζ0 + ζ2
0]. In both RD and MD we have α+ < 0

and α− < 0, so both modes are decaying. This means that, if we start the evolution
deep in the RD phase, with u0 = 0 in order not to have a cosmological constant,
and u1 ∼ a1 ∼ a2 ∼ O(1), the solution will quickly approach the one obtained with
initial conditions U(xin) = U′(xin) = Y(xin) = Y′(xin) = 0. We will refer to this
solution as the ‘minimal’ RT model.

The situation becomes more interesting if we start the evolution during a pri-
mordial phase of de Sitter-like inflation, before RD. In dS there is a growing mode
with α+ = (−3 +

√
21)/2 ' 0.79. Then Y will grow during dS (exponentially in
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x, so as a power of the scale factor), and will then decrease again during RD and
MD. In general, a growing mode during MD or the late RD phase would be fatal to
the viability of the model, because any perturbation of the initial conditions would
result in an activation of the unstable mode, and would bring the solution very far
from a FRW solution driven by Tµν, as in standard cosmology (this is indeed a cri-
terium that ruled out several other nonlocal models). For the evolution during an
early dS phase the situation is, however, different [107]. Indeed, let us denote by
xin the value of x = ln a at a time, during inflation, when we set initial conditions
u1 ∼ a1 ∼ a2 ∼ O(1), and by xend the value when inflation ends and RD begins (we
neglect for simplicity an intermediate reheating phase). We use the notation

xend − xin = log (aend/ain) ≡ ∆N , (2.1.13)

so ∆N is the number of e-folds from the time where we set initial condition of order
one, to the end of a de Sitter phase of inflation. Thus, if Y(xin) has a generic value of
order one (i.e., is not fine-tuned to zero), by the end of inflation

Y(xend) ' exp{αdS
+ ∆N} ' exp{0.79∆N} . (2.1.14)

The evolution of U can be computed similarly, using eq. (2.1.11). During a quasi-
de Sitter phase of inflation, starting from a value of order one, we get

U(xend) ' 4∆N . (2.1.15)

The important point is that, despite the exponential growth in eq. (2.1.14), even for
very large values of ∆N the corresponding DE density ρDE(x) = ρ0γY(x) has no
effect on the inflationary dynamics. This is due to the fact that ρ0 = 3H2

0 /(8πG) ∼
(10−3eV)4 is extremely small compared to the energy density during inflation. For
instance, if Y(xin) = O(1) and we take ∆N = 60, at the end of inflation we get
Y(xend) = O(1020). Even with such a large value of Y, we have

[ρ0Y(xend)]
1/4 ∼ 10−3eV×Y1/4(xend) ∼ 102 eV . (2.1.16)

This is totally negligible compared to the inflationary scale M, that has typical val-
ues, say, of order 1013 GeV. Thus, during the inflationary phase the evolution of the
scale factor is the same as in standard GR without the nonlocal term. So, the im-
portant conclusion is that, at the level of background evolution, there is no evident
pathology associated with the exponential growth of Y(x). Rather, one will have to
study in detail the evolution through dS, RD and MD to see if it gives a viable and
interesting background cosmology. As we will recall below, following [29, 107], in-
deed the corresponding background evolution is viable, and also quite interesting.
As discussed in [107], even at the level of cosmological perturbations this growth
during de Sitter is innocuous, again because of the smallness of the scale associated
to the nonlocal term with respect to the inflationary scale.

Equations (2.1.14) and (2.1.15) give the values of Y(x) and U(x) when they enter
the subsequent RD phase (apart from some minor modification due to reheating). As
we will see explicitly in Section 2.1.1, even if in the RD and MD phases the solution
obtained with vanishing initial conditions is an attractor, the fact that Y(x) enters the
RD phase with an exponentially large value gives an evolution that is sensibly differ-
ent from that of the minimal model, simply because there is not enough time to relax
to zero this exponentially large value by the end of the MD phase and the beginning
of the current DE-dominated phase, when (having chosen m of order H0) the energy
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scale associated to Y eventually becomes comparable to the total energy density.
Thus, there is a residual dependence of the dark energy evolution near the present
cosmological epoch, from the value ∆N that determines, through eqs. (2.1.14) and
(2.1.15), the values of the auxiliary field when the enter the RD phase.

The conclusion is that, at the level of the background cosmological evolution,
our ignorance on the initial conditions of the auxiliary fields can be reabsorbed into
a single parameter ∆N, that gives the number of e-folds from the moment when
these fields have initial conditions O(1) during inflation, until the end of inflation
(plus the parameter u0, that corresponds to reintroducing a cosmological constant,
and that we will set to zero).

As discussed in [30], no further freedom emerges at the level of cosmological per-
turbations. Indeed, at the perturbation level we must consider all Fourier modes of
the perturbations, so in principle we should assign the initial conditions on δUk(x),
δYk(x) and on their first time derivatives, at an initial time xin. The fact that the auxil-
iary fields do not represent arbitrary degrees of freedom but are fixed in terms of the
metric means that the initial conditions for the perturbations of the auxiliary fields
will be of order of the metric perturbations. One can therefore ask what happens if
we start with initial conditions of this order of magnitude. The explicit numerical
study in [30] shows that the effect of such a change in the initial conditions of the
perturbations is completely negligible.

We want to study the predictions of the RT model for a few values of ∆N. For
this purpose, it is useful to recall that, for inflation taking place at a scale Minfl =
(ρinfl)

1/4, assuming instantaneous reheating, the minimum number of e-folds re-
quired to solve the flatness and horizon problems is (see e.g. Section 21.1 of [74])

(∆N)min ' 64− log
1016 GeV

Minfl
. (2.1.17)

In the following, beside the ‘minimal’ model defined by initial conditions of order
one during RD, which is equivalent to setting ∆N = 0 (or, equivalently, ∆N of order
one), we will study also the cases ∆N = 34, 50, 64 that, according to eq. (2.1.17), ap-
proximately correspond to the minimum value of ∆N for Minfl = {103, 1010, 1016}GeV,
respectively. These values are chosen because Minfl = 103 GeV corresponds to in-
flation at the electroweak scale, which is on the lower range of possible inflationary
scales, while Minfl = 1016 GeV is the highest value consistent with the non-detection
of tensor perturbations in the CMB anisotropies, and Minfl = 1010 GeV is an inter-
mediate value which is quite often considered as a typical inflationary scale.

Of course, the number of e-folds during inflation at a given scale does not need
to be the minimum required to solve the flatness and horizon problems and, for a
given value of Minfl, we could chose a higher value of ∆N. We have therefore studied
also how the results change increasing ∆N for a fixed value of Minfl. As pointed
out in [107], increasing ∆N the results eventually saturate to a limiting curve (as a
function of redshift). In particular, setting Minfl = 1016 GeV, we find that this limiting
curve is reached, within sub-percent level accuracy, already for ∆N ' 70. In the
following, beside the cases (Minfl = 103 GeV, ∆N = 34), (Minfl = 1010 GeV, ∆N =
50) and (Minfl = 1016 GeV, ∆N = 64), we will also show the results for (Minfl =
1016 GeV, ∆N = 100), that represents the limiting curve for the various background
quantities as a function of redshift. For brevity, we will refer to these cases as the RT
model with ∆N = 34, 50, 64 and 100, respectively. We have checked that the same
limiting curve is obtained starting from a different value of Minfl and raising again
sufficiently ∆N. This behavior is due to a scaling property of the equations when Y
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starts from a very large value at the beginning of RD [107].
A quite interesting aspect of the cosmological evolution of the RT model with

initial conditions set during inflation, that will emerge clearly from the discussion
below, is that the behavior of dark energy at the present epoch depends on the exis-
tence and duration (as quantified by ∆N) of a phase of primordial inflation, provid-
ing an unexpected connection between early- and late-time cosmology.

Results

Given the initial conditions and a choice of values for the cosmological parameters
ΩM and h0 (defined as usual from H0 = 100h0 km s−1Mpc−1), the numerical integra-
tion of the equations for the background evolution, eqs. (2.1.5)–(2.1.9), is straightfor-
ward. In practice, in the numerical implementation of our integration routine, we
consider that the transition between inflation and RD takes place when, extrapolat-
ing backward in time the present energy density in radiation ρR,0, the energy density
in radiation ρR,0/a4 becomes equal to M4

infl, i.e. when the scale factor has the value a?
given by a? = ρ1/4

R,0 /Minfl (we are working in the approximation of instantaneous re-
heating). Using ρ1/4

R,0 ' 2.41× 10−4 eV, the corresponding value of x = log a is x? '
−65.9 + log(1016 GeV/Minfl). Assuming that initial conditions of order one have
been set ∆N e-folds earlier, at the inflation-RD transition we take Y = exp{0.79∆N}
and U = 4∆N. The numerical integration through the full RD phase would be nu-
merically difficult, and not necessary, since we know that, until we are deep in RD,
the solution for Y evolves according to the slowest-decaying mode, which decays as
exp{−0.70x} and the solution for U stays constant. Thus, at a value x0 still deep into
RD (we take x0 = −15; RD-MD equilibrium is at x ' −8.1) we have U(x0) = 4∆N,
U′(x0) = 0, Y(x0) = exp{0.79∆N − 0.70(x0 − x?)} and Y′(x0) = −0.70Y(x0). At
this point we start the numerical evolution with these initial conditions. To produce
Fig. 2.1, for the minimal model and for ∆N = 34, 50, 64 we have used the respective
mean values for ΩM and h0 from Table 2.2, obtained from our MCMC chains. For
the limiting curves ∆N = 100 we have not rerun our MCMC and we have used
the same values as for ∆N = 64, which is an excellent approximation since we see
from Table 2.2 that, for large ∆N, the variation in the parameters are very small (and
would give effects totally unappreciable on the scale of the figures). A final detail
is that, in ΛCDM, assuming flatness and fixing ΩM and ΩR, directly fixes ΩΛ from
ΩM + ΩR + ΩΛ = 1, and one can immediately integrate the evolution equations.
In contrast, in the nonlocal model, once fixed ΩM and ΩR (and assuming flatness),
the remaining parameter in the equations is γ, which is fixed by trials and errors
until the value of the dark energy energy fraction today, ΩDE, obtained from the so-
lution of the equations, satisfies the condition ΩM + ΩR + ΩDE = 1, i.e. ΩDE ' 0.7.
The corresponding values of γ turn out to be γ ' 5.13555× 10−2 for the minimal
model, and γ ' {2.69512× 10−3, 1.0321× 10−3, 3.73915× 10−4, 1.94944× 10−11} for
∆N = 34, 50, 64, 100, respectively. For the mass m this means m/H0 ' 0.68 for the
minimal model, and m/H0 ' {0.16, 0.10, 0.06, 4.2× 10−8} for ∆N = 34, 50, 64, 100.

The upper left panel of Fig. 2.1 shows the evolution of the dark energy density
ρDE(x), normalized to the total energy density ρtot(x) = ρM(x) + ρR(x) + ρDE(x),
as a function of x [recall that here x = ln a, and we normalize the scale factor so
that a(t0) = 1]. For orientation, matter-radiation equilibrium is at x ' −8.1, at the
present epoch x = 0, and x > 0 corresponds to the cosmological future. We see from
the plot that the DE density due to the nonlocal term is negligible until the relatively
recent cosmological epoch, when eventually dominates.
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FIGURE 2.1: Upper left: ρDE(x) normalized to the total energy den-
sity ρtot(x) as a function of x. Upper right: ρDE(z) normalized to the
critical energy density today, ρ0, as a function of redshift z. Lower
panel: the DE equation of state wDE(z) as a function of redshift. The
curves correspond to the minimal RT model (blue solid line) and the
RT model with ∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-
dashed), ∆N = 64 (cyan, dotted) and ∆N = 100 (black solid line).

Figure from [31].

When ρDE(x) is normalized to ρtot(x), which includes the contribution of ρDE(x)
itself, the result for the minimal model and for the RT models with large ∆N look all
very similar, and the various curves are basically indistinguishable. However, the
individual behaviors of ρDE(x) are quite different. This is shown in the upper right
panel of Fig. 2.1, where ρDE is shown as a function of the redshift z [related to x by
x = − log(1 + z)], and normalized to the constant critical energy density today ρ0.
We see that, as we approach the present epoch from large z, in the minimal model
ρDE increases, until it reaches the present value ρDE/ρ0 ' 0.7, which is fixed by our
choice of ΩM ' 0.3. In contrast, for large ∆N, ρDE starts from a very large value deep
in RD (a consequence of the large value of the auxiliary field Y at the end of inflation),
and then decreases for most of its evolution, until the present epoch. This behavior
can be understood observing that, for ∆N = 0, the evolution of Y is determined by
the particular solution of the inhomogeneous equation (2.1.8), which stays close to
zero during RD and then starts to increases with time during MD, until we enter in
a regime dominated by DE; in contrast, for large ∆N the solution starts from a very
large initial value at the beginning of RD and then decays according to the decaying
modes of the associated homogeneous equation, until, close to the recent epoch,
the decaying modes have become smaller than the solution of the inhomogeneous
equation, that takes over, so the solution for Y starts to rise again.

As mentioned before, for sufficiently large ∆N, the results saturate toward a lim-
iting curve, independent of the chosen value of Minfl. As explained in [107], this is
due to the fact that, for sufficiently large ∆N, an increase in the initial values of Y
at the beginning of RD is exactly compensated by a decrease in γ, and we end up
on the same solution. This limiting curve is shown as the black solid line in Fig. 2.1,
obtained for definiteness setting (Minfl = 1016 GeV, ∆N = 100). For instance, in
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RT, minimal ∆N = 34 ∆N = 50 ∆N = 64 ∆N = 100
w0 −1.041 −1.034 −1.053 −1.066 −1.077
wa −0.023 +0.127 +0.218 +0.283 +0.335

TABLE 2.1: Values of w0 and wa for the RT model, minimal and with
various values of ∆N. Table from [31].

this and in all similar plots below, on the scale of the figure all the curves with
Minfl = 1016 GeV and ∆N >∼ 70 are indistinguishable, and fall on this asymptotic
curve.

The lower panel in Fig. 2.1 shows the DE equation of state, defined as usual from
the conservation equation

ρ̇DE + 3H(1 + wDE)ρDE = 0 . (2.1.18)

The different evolutions of ρDE for the minimal model and for large ∆N result in
different, and quite distinctive behaviors of wDE as a function of redshift. For the
minimal model wDE(z) is always on the ‘phantom’ side, wDE(z) < −1, while, for
large ∆N, the evolution exhibits ‘phantom crossing’ at z ' 0.30− 0.35. In all cases,
we see that the DE density starts to dominate near the present cosmological epoch,
and its equation of state corresponds to accelerated expansion. Thus, the nonlocal
term generates a dynamical DE density that drives an accelerated expansion of the
Universe at the current cosmological epoch. This is already a very non-trivial re-
sult: it means that giving a mass to the conformal mode, and covariantizing it as
discussed in Section 1.3.2, provides an explanation for the observed accelerated ex-
pansion of the Universe.

Fig. 2.2 shows the relative difference [HRT(z)− HΛCDM(z)]/HΛCDM(z) between
each RT model (minimal and with ∆N = 34, 50, 64, 100) and ΛCDM. Once again,
the predictions of each model are computed using the respective mean values of the
cosmological parameters in Table 2.2. At z = 0 the difference between the various
curves is due to the different mean values for H0, and at large z (but still within
MD) it is determined by the different mean values for ΩM. We see that, at z = 0,
the minimal RT model differs from ΛCDM by about 1%, while the RT models with
large ∆N give a prediction for H0 basically indistinguishable from that of ΛCDM.
Away from z = 0, |∆H(z)|/H(z) is of order 0.5% or less. The evolution with red-
shift is, however, quite distinctive, with ∆H(z)/H(z) oscillating and changing sign
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FIGURE 2.3: The DE equation of state wDE(z) from the numerical
integration of the equations (blue solid lines), compared with the
parametrization (2.1.19) (magenta dashed lines) for RT minimal (up-
per left panel) and RT with ∆N = 34 (upper right), ∆N = 50 (lower

left) and ∆N = 64 (lower right). Figure from [31].

as z increases. These differences with respect to ΛCDM can be compared to a com-
pilation of measurements of H(z) at different redshifts. We will perform this test
in Section 2.1.3, after having performed the Bayesian parameter estimation for the
models.

It is interesting to compare the actual predictions of the model to the results ob-
tained with the standard (w0, wa) parametrization wDE(a) = w0 + (1− a)wa [108,
109], or, in terms of redshift,

wDE(z) = w0 +
z

1 + z
wa . (2.1.19)

Setting w0 ≡ w(a = 1) and wa ≡ −(dw/da)|a=1 we get the values of w0 and wa
given in Table 2.1. In Fig. 2.3 we compare the actual numerical result for w(z) to the
fit provided by this parametrization. We see that, for large ∆N, the parametrization
(2.1.19) is not very accurate beyond some value of z, with the range in z shrinking as
∆N increases.

2.1.2 Scalar perturbations

Perturbation equations

Cosmological scalar perturbations for the RR and RT model (in the minimal case)
have been studied in detail in [110, 111] (see also [31, 29] for reviews). Here, after
recalling the basic formalism, we will extend the results to the RT model with large
∆N and we will present updated results on various indicators of cosmological per-
turbations, using the values of the cosmological parameters that will be determined
in section 2.1.3 by the comparison with observations. We work in the Newtonian
gauge, where, in the scalar perturbation sector, the perturbed FRW metric has the
form

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdxidxj , (2.1.20)
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Matter-radiation equilibrium is at x ' −8.1, and in this region one
sees the usual transition between two different plateaux in Ψ. Figure

from [31].

where Φ and Ψ are the Bardeen variables. We similarly perturb the auxiliary fields,
writing

U(t, x) = Ū(t) + δU(t, x) , Sµ(t, x) = S̄µ(t) + δSµ(t, x) , (2.1.21)

where, in this Section, background quantities are denoted with an overbar. In FRW,
S̄i vanishes because at the background level there is no preferred spatial direction,
but its perturbation δSi is non-vanishing. As with any vector, we can decompose it
into a transverse and longitudinal part, δSi = δST

i + ∂i(δS), where ∂i(δST
i ) = 0. Since

we are considering scalar perturbations, we only retain δS. Thus, in the RT model
the metric perturbations in the scalar sector are described by Ψ, Φ, δU, δS0 and δS. It
is convenient to trade S0 and S for

V = H0S0 , Z = H2
0 S , (2.1.22)

so we eventually work with the variables {Ψ, Φ, δU, δV, δZ}. We similarly perform
the usual expansion of the energy-momentum tensor, writing

T0
0 = −(ρ̄ + δρ) , T0

i = (ρ̄ + p̄)vi , Ti
j = ( p̄ + δp)δi

j + Σi
j , (2.1.23)
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where ρ̄ and p̄ are the unperturbed density and pressure. The matter perturbation
variables are therefore δρ, δp, vi, and the anisotropic stress tensor Σi

j, which is sym-
metric and traceless, Σi

i = 0. The pressure perturbations can be written as δp = c2
s δρ,

where c2
s is the speed of sound of the fluid, and we define as usual δ ≡ δρ/ρ̄ and

θ ≡ δij∂ivj, with δR, θR referring to radiation and δM, θM to matter. We only con-
sider the contribution to Tµν from radiation and non-relativistic matter, so Σi

j = 0.
We transform the perturbation equations to Fourier space and we denote comoving
momenta by k. We further define

k̂ = k/(aH) , θ̂ = θ/(aH) . (2.1.24)

We also use
κ ≡ k/keq , (2.1.25)

where keq = aeqHeq is the wavenumber of the mode that enters the horizon at matter-
radiation equilibrium. Numerically, keq ' 0.014 h0 Mpc−1 ' 0.010 Mpc−1. To illus-
trate our numerical results, we use as reference values κ = 0.1, 1 and 5 (or just κ = 0.1
and 1, when the results for κ = 5 turn out to be graphically indistinguishable from
κ = 1). The mode with κ = 5 entered inside the horizon already during RD, while
the mode κ = 1 reentered at matter-radiation equality. In contrast, the mode with
κ = 0.1 was outside the horizon during RD and most of MD, and re-entered at
z ' 1.5.

In the scalar sector, the perturbed Einstein equations were computed in [111]

k̂2Φ + 3(Φ′ −Ψ) =
3

2h2ρ0

[
δρ + γρ0

(
δU − hδV ′ + 2hΨV̄ ′ + hΨ′V̄

)]
, (2.1.26)

k̂2(Φ′ −Ψ) = − 3
2h2ρ0

[
ρ̄(1 + w)θ̂ + k̂2γρ0

(
h2δZ− h2

2
δZ′ + hΨV̄ − h

2
δV
)]

,(2.1.27)

k̂2(Ψ + Φ− 3γδZ) =
9

2h2ρ0
ρ̄(1 + w)e2xσ , (2.1.28)

Φ′′ + (3 + ζ)Φ′ −Ψ′ − (3 + 2ζ)Ψ +
k̂2

3
(Φ + Ψ)

= − 3
2h2ρ0

[
δp− γρ0

(
δU − h(Φ′ − 2Ψ)V̄ − hδV − k̂2

3
h2δZ

)]
, (2.1.29)

where k̂ = k/(aH), θ̂ = θ/(aH), an overbar denotes here a background quantity
and, as before, the prime denotes the derivative with respect to x ≡ ln a, and ζ(x) ≡
h′/h. The linearization of the equations for the auxiliary fields gives

δU′′ + (3 + ζ)δU′ + k̂2δU = 2k̂2(Ψ + 2Φ) + 6(Φ′′ + (4 + ζ)Φ′)− 6
[
Ψ′ + 2(2 + ζ)Ψ

]
+2ΨŪ′′ +

[
2Ψ(3 + ζ) + (Ψ′ − 3Φ′)

]
Ū′ (2.1.30)

δV ′′ + (3 + ζ)δV ′ +
k̂2

2
h(δZ′ − 4δZ)− h−1δU′ = 2ΨV̄ ′′ +

[
2(3 + ζ)Ψ + 3(Ψ′ −Φ′)

]
V̄ ′

+
[
Ψ′′ + (3 + ζ)Ψ′ + 6Φ′

]
V̄ −

[
(1/2)k̂2 − 3

]
(δV − 2ΨV̄) , (2.1.31)

δZ′′ + (1 + ζ)δZ′ + 2
(

k̂2 − (3 + ζ)
)

δZ = 2h−2δU

−h−1 [δV ′ + 5δV − 4ΨV̄ ′ − 2(Ψ′ −Φ′ + 4Ψ)V̄
]

. (2.1.32)
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In Fig. 2.4 we show the time evolution of the Fourier modes of the Bardeen vari-
able Ψk for the RT model (minimal and with ∆N = 34, 50, 64), obtained from the
numerical integration of these perturbation equations, and we compare with the
result in ΛCDM, for κ = 0.1, κ = 1 and κ = 5. We actually plot k3/2Ψk, whose
square gives the variance of the field per unit logarithmic interval of momentum.
We see that, up to the present time x = 0, the evolution of the scalar perturbations
is well-behaved, and very close to that of ΛCDM, and become closer and closer as k
increases. This can be understood from the fact that any instability induced by the
nonlocal term on the cosmological evolution can only develop on a timescale t such
that mt is (much) larger than one. However, we have seen that m is of order H0, and
in fact numerically smaller, with m ' 0.68H0 for the minimal RT model and even
smaller for large ∆N. Thus, any instability induced by the nonlocal term can only
develop on a timescale larger or equal than to a few times H0, and therefore in the
cosmological future, where these modes could eventually enter a non-linear regime.

Scalar perturbations during inflation

Here we study the behavior of scalar perurbations during a phase of primordial
inflation, following the analysis in [107]. By construction, a successful model of pri-
mordial inflation must be such that, during the inflationary phase, all the modes
relevant for cosmology eventually exit the horizon. It can be natural to set initial
conditions on the auxiliary fields at the time that they exit the horizon (see the dis-
cussion below for the proper initial conditions), so we need to study the stability
of the perturbation equations for super-horizon modes. In this regime the physi-
cal wavelength is much larger than H−1 and the physical momentum k/a � H, so
k̂ � 1. Then, in eqs. (2.1.26)–(2.1.32) we keep only the lowest-order terms in k̂2. We
also limit ourselves for simplicity to an inflationary phase in the limit of a de Sit-
ter expansion, supported by a constant vacuum energy density. Then the matter
perturbations δρ, θ̂ and σ vanish in the exact de Sitter limit.

Furthermore the dimensionless Hubble parameter h(x) = H(x)/H0 becomes
constant and is numerically very large for all typical inflationary scales. Indeed,

hinfl ≡
Hinfl

H0
=

(
ρinfl

ρ0

)1/2

'
(

Minfl

3× 10−3eV

)2

, (2.1.33)

where ρinfl is the energy density during a phase of de Sitter inflation, and Minfl ≡
ρ1/4

infl is the corresponding mass scale. We can then show that all terms in the above
equation involving V̄(x) can be set to zero. Indeed, from Y = U − Ṡ0, it follows that
V ′ = (U − Y)/h. Using Ū(x) = 4x and Ȳ(x) ' exp{0.79x} (apart from an overall
constant of order one) it follows that, during inflation, V̄(x) = O(h−1

infl exp{0.79x}).
Thus V̄ reaches a maximum value at the end of inflation of order h−1

infl exp{0.79∆N}.
Despite the exponential term, this is still an extremely small number, because hinfl is
huge. For instance, for Minfl = 1013 GeV, from eq. (2.1.33) we have hinfl ∼ 1049 and,
even setting ∆N = 60, h−1

infl exp{0.79∆N} ∼ 10−49 × 1020 is totally negligible. More
generally, for inflation at a scale Minfl, the minimum number of efolds necessary
for solving the horizon and flatness problems (neglecting the effects of reheating) is
given by

∆N ' 64− log
(

1016 GeV
Minfl

)
. (2.1.34)
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Combining this with eq. (2.1.33) we get

h−1
infle0.79∆N ' 10−33

(
1016 GeV

Minfl

)1.21

, (2.1.35)

that even for Minfl as low as 1 TeV is at most of order 10−18. Since all occurrences of
V̄ in the perturbation equations appear multiplied overall by factors O(1) or even
O(1/h), we can set V̄(x) = 0 in the above equations. In contrast, from eq. (2.1.11),
Ū′ = 4 is a number O(1).

As usual, because of general covariance, in the scalar sector the four linearized
Einstein equations (2.1.26)–(2.1.29) are not independent once we take into account
the linearized energy-momentum conservation, and we have only two indepen-
dent equations. We take them to be eqs. (2.1.26) and (2.1.28) which, together with
eqs. (2.1.30)–(2.1.32) give a system of five equations for the five functions Ψ, Φ, δU, δV
and δZ.

To take the limit k̂2 � 1 in eq. (2.1.28) we observe that, on the left-hand side,
we have k̂2 = k2/(a2H2), while on the right-hand side we have ρ̄e2x/(h2ρ0). Since
e2x = a2 and ρ̄ ∼ ρ0/a4, this term is of order H2

0 /(a2H2). All modes of cosmological
interest are inside the horizon at the present time, so they have k > H0. Thus, even
if we take the limit k̂ → 0, the factor k̂2 on the left-hand side of eq. (2.1.28) is larger
than the factor ρ̄e2x/h2ρ0 on the right-hand side. On top of this, on the right-hand
side we also have the factor (1 + w)e2xσ, which vanishes in an exact de Sitter phase,
and is in any case quadratic in the perturbations of an inflaton field (see footnote 8
of [107]). Thus, in this limit eq. (2.1.28) becomes Ψ + Φ− 3γδZ = 0.

It is convenient to introduce rescaled variables u, v, z from δU = h2u, δV = hv
and, for uniformity of notation, δZ = z. Then the independent equations take the
following form, for super-horizon modes during inflation:

Φ′ −Ψ =
1
2

γ(u− v′) , (2.1.36)

Ψ + Φ = 3γz , (2.1.37)
u′′ + 3u′ = (6Φ′′ + 12Φ′ − 2Ψ′)/h2 , (2.1.38)

v′′ + 3v′ − 3v = u′ , (2.1.39)
z′′ + z′ − 6z = 2u− v′ − 5v . (2.1.40)

We observe that, with this rescaling, h disappears from eq. (2.1.36). Furthermore,
in the limit h → ∞, the right-hand side of eq. (2.1.38) vanishes and the equations
for the perturbations of the auxiliary fields, u, v and z, decouple from the matter
perturbations. Solving the homogeneous equations associated with eqs. (2.1.38)–
(2.1.40) we see that z has a mode growing as e2x and v a mode growing as eαdS

+ x '
e0.79x. By the end of inflation, within this linearized approximation, z has grown by
a factor e2∆N compared to its initial value, while v by a factor e0.79∆N . Taking for
instance ∆N = 60, we have e2∆N ∼ 1052. At first sight, this leads to the conclusion
that these perturbation variables leave the linear regime. If this were the case then,
through their coupling with the metric perturbations in eq. (2.1.36), they would spoil
cosmological perturbation theory and the initial conditions Φ, Ψ ∼ 10−5 provided
by inflation in the standard scenario, leading to an unacceptable cosmology.

However, this conclusion is incorrect because it does not take into account that,
because of the rescaling performed, the natural values of the initial conditions on
the variables u, v and z are extremely small. In terms of the original auxiliary field
U ≡ −2−1R, a natural initial condition, say set at the time tin that the modes exit
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the horizon during inflation, could be Uin = O(1). The precise value of Uin has
no importance and, as we will see from the final result, it is enough that the ini-
tial conditions set at this time are not astronomically large numbers, say 1055, see
eq. (2.1.44) below. Hence u(t) ≡ U(t)/h(t)2, where h(t) = H(t)/H0. As we have
seen in eq. (2.1.33), during a phase of primordial inflation h2(t) ≡ h2

infl is a huge
number. For instance, for Minfl = 1013 GeV, we have h2

infl ∼ 1098. Thus, the natural
initial condition on u during inflation is

uin = h−2
inflUin , (2.1.41)

which, for Minfl = 1013 GeV, means uin ∼ 10−98Uin. The same happens for the vari-
ables v and z (which are those that display instabilities). The natural initial condition
on S0 is such that (∂0S0)in ∼ Uin and using ∂0 ∼ H we get (S0)in ∼ H−1

inflUin. There-
fore, for the variable V = H0S0, we have Vin ∼ UinH0/Hinfl = h−1

inflUin. The rescaled
variable v is defined by v = V/h and therefore

vin ∼ h−2
inflUin . (2.1.42)

Similarly, one can see that the natural initial conditions on the momentum modes Sk
are given by Ua2 ∼ k2Sk, where k is the comoving momentum. As we mentioned, a
natural time to impose initial conditions is when the mode is crossing the horizon,
so that k2/a2 ∼ H2

infl. Then Sin ∼ Uin/H2
infl and for z ≡ H2

0 S we get initial conditions

zin ∼ h−2
inflUin , (2.1.43)

just as for u and v. The mode that grows faster is z, which during de Sitter grows
as e2x. Thus, starting from an initial value ∼ h−2

infl, it reaches a value at the end of
inflation of order h−2

infle2∆N . Using eq. (2.1.33), we see that this is still an extremely
small value,

h−2
infle2∆N ' 10−55

(
1016 GeV

Minfl

)2

, (2.1.44)

that for Minfl = 1013 GeV is of order 10−49 and even for Minfl as low as 1 TeV is still of
order 10−29. Thus, the perturbations of the auxiliary fields always remain minuscule
during de Sitter inflation, despite their formally growing modes.

A posteriori, the physical interpretation of this result is obvious. The energy
scale associated to the nonlocal term is so small compared to the inflationary scale
that the nonlocal term has no impact whatsoever on the evolution during inflation.
This is precisely what we found in Sect. 2.1.1 for the background evolution during
inflation, where again we found an instability in the variable Y, that however has no
consequence on the dynamics of the scale factor during inflation.

The RT model therefore has a viable cosmological evolution, both at the back-
ground level and at the level of perturbations, during all cosmological phases, de-
spite the presence of an instability during an early inflationary phase. The basic
reason is that the energy scale associated to the nonlocal term is totally negligible
with respect to the inflationary scale.

Deviations from GR

The full set of perturbation equations computed in [111] is needed for implementing
the model into a Boltzmann code and comparing its predictions to CMB, BAO and
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SNe observations, as we will do in Section 2.1.3. For a first qualitative understand-
ing, however, it is convenient to introduce some simpler indicators of deviations
from ΛCDM. One such quantity is the effective Newton’s constant, which is de-
fined so that the modified Poisson equation for the Fourier modes Φk can be rewrit-
ten as in GR, with G replaced by Geff(x, k) [recall that here x ≡ ln a(t) is used to
parametrize the time evolution, and should not be confused with a spatial variable],

k2Φk(x) = 4πGeff(x; k)a2ρ0 (2.1.45)

×
[

ΩRe−4x
(

δR,k(x) +
4
k̂2

θ̂R,k(x)
)
+ ΩMe−3x

(
δM,k(x) +

3
k̂2

θ̂M,k(x)
)]

.

Its explicit expression in terms of the perturbed fields is [111]

Geff(x; k)
G

= 1 + γ
δUk + h (2ΨkV̄ ′ + Ψ′kV̄ − δV ′k) + 3h2 (δZk − 1

2 δZ′k
)
+ 3h

(
ΨkV̄ − 1

2 δVk
)

ΩRe−4x
(

δR,k(x) + 4
k̂2 θ̂R,k(x)

)
+ ΩMe−3x

(
δM,k(x) + 3

k̂2 θ̂M,k(x)
) .

(2.1.46)

From this expression one finds that, for sub-horizon modes, i.e. in the limit k̂ � 1,
we have [111]

Geff(x; k)
G

= 1 +O
(

1
k̂2

)
. (2.1.47)

As we will see in Section 2.1.4, this property, which is not shared by other modified
gravity models and in particular by the RR nonlocal model, is crucial, since it al-
lows the RT model to evade limits on the time variation of the (effective) Newton’s
constant obtained from Lunar Laser Ranging.

Together with Geff, a second useful indicator is [112]

η(x; k) =
Φk(x) + Ψk(x)

Φk(x)
, (2.1.48)

which, in GR, vanishes in the absence of anisotropic stress. Alternatively, two useful
quantities are the functions µ(x; k) [113] and Σ(x; k) [112] defined by the relations

Ψ = [1 + µ(x; k)]ΨGR Ψ−Φ = [1 + Σ(x; k)](Ψ−Φ)GR , (2.1.49)

where the subscript denotes the same quantities computed in GR, assuming a ΛCDM
model with the same value of ΩM as the modified gravity model. In the literature
the quantity that we call 1 + µ is sometimes denoted by µ, and similarly our 1 + Σ
is sometimes denoted by Σ. Our definitions are such that, in GR, µ = Σ = 0. The
advantage of this parametrization is that it separates the modifications to the motion
of non-relativistic particles, which is described by µ, from the modification to light
propagation, which is encoded in Σ. Therefore µ is sensitive to structure formation
and Σ is sensitive to lensing.

In Fig. 2.5 we show the numerical results for the effective Newton constant as
a function of redshift, for the minimal RT model and for the RT model with ∆N =
34, 50, 64, for κ = 0.1 and 1. We see that, already for κ = 0.1 (i.e. k = 0.1keq '
0.001 Mpc−1), Geff differs by G by less than 1%, and, for higher values of k, Geff goes
quickly to G, in agreements with eq. (2.1.47) (for instance, in the plot for κ = 5,
|Geff/G| would always be below 1.001). For these values of k, there are also some



2.1. Cosmology of the RT model 41

0 2 4 6
z

0.98

0.99

1.00

1.01

(G
ef

f/G
)(z

)

0 1 2 3
z

0.998

0.999

1.000

1.001

1.002

(G
ef

f/G
)(z

)

FIGURE 2.5: Geff/G as a function of z for fixed κ, for the minimal RT
model (blue solid line) and for RT with ∆N = 34 (magenta, dashed),
∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1

(left panel) and κ = 1 (right panel). Figure from [31].

oscillations as a function of z and, for given z, the envelop of the oscillations repro-
duces the 1/k2 behavior found analytically in eq. (2.1.47). Notice that, because of
eq. (2.1.47), on small scales Geff reduces to the standard Newton’s constant G probed
by solar system or by laboratory experiments. However, at typical cosmological
scales such as k ∼ keq, its value is different, even at z = 0. In particular, in the RT
models with large ∆N, on these scales Geff < G, i.e. gravity is weakened on cos-
mological scales, while for the minimal RT model it is strengthened. Fig. 2.6 shows,
on a logarithmic scale, the dependence of |(Geff/G)− 1| on the wavenumber k, for
three different values of the redshift, z = 0, 0.5 and 1.

Fig 2.7 shows η as a function of z, again for κ = 0.1 and 1, while in Figs. 2.8
and 2.9 we show the same results for the indicators Σ and µ. Notice in particular
that both Σ and µ have a rather non-trivial dependence on k for cosmological scales
k ∼ keq. We see from the plots that, at small redshifts, in the RT model with large
∆N, for k = 0.1keq both Σ and µ are positive (with 1 + Σ higher by about 5% than
the ΛCDM value of unity, and µ by about 10% in z = 0), while for k = keq or larger
the situation is reversed and Σ and µ become negative at small z.

Another useful derived quantity is the growth rate f (z, k) ≡ d log δM/d ln a. In
ΛCDM, for the typical wavenumbers relevant for structure formation, f (z, k) is ba-
sically independent of wavenumber k and very well fitted by f (z) = [ΩM(z)]γ with
γ a constant, numerically close to 0.55. More precisely, writing f (z) = [ΩM(z)]γ(z),
the function γ(z) for ΛCDM is shown as the gray solid line in Fig. 2.10, so it is in-
deed approximately constant and given numerically by γ ' 0.55, within percent
level accuracy. We find that the fit f (z) = [ΩM(z)]γ(z) also holds for the RT model,
again with a function γ(z) independent of the wavenumber k. The corresponding
functions γ(z) are shown in Fig. 2.10 for the RT model, minimal and with large ∆N.
We see that, for large values of ∆N, γ(z) is indeed independent of z within percent
level accuracy, just as in ΛCDM, and again is given numerically by γ ' 0.55 (not
to be confused with the parameter γ of the background equation for the RT model).
For the minimal RT model the variation of γ(z) with redshift is somewhat larger,
but still it stays between 0.55− 0.56 up to z = 2. Notice that the growth index γ is
a useful quantity only as long as we are in the epoch where DE is still important.
When we are deep into MD, ΩM(z)→ 1, and [ΩM(z)]γ → 1 independently of γ.

Two main conclusions emerge from our study of the cosmological perturbations
of the RT model in the scalar sector. First, they are well-behaved. This is already a
rather non-trivial result. Several modified gravity models have indeed been ruled
out by the presence of instabilities in their perturbations. This was for instance the
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FIGURE 2.6: |(Geff/G)− 1| as a function of k for fixed z, for the min-
imal RT model (blue solid line) and for RT with ∆N = 34 (magenta,
dashed), ∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted),
on a logarithmic scale. The three panels refers to z = 0 (upper left
panel), z = 0.5 (upper right) and z = 1 (lower panel). The sign of
(Geff/G) − 1 is such that, close to the vertical axis, Geff/G > 1 for
the minimal model and Geff/G < 1 for the other cases, and the sign
changes each time the logarithmic plot has a downward spike. Figure

from [31].

case for the DPG model [23], which opened the way to the study of IR modifications
of GR and has a self-accelerated solution [114, 115] but had a ghost-like instability
on the self-accelerated branch [116, 117, 118, 119, 120]. Massive gravity [121, 21, 122]
has difficulties already in obtaining a viable background FRW evolution [123], while
in bigravity [17] a background FRW solutions exist, but, in a branch of solutions
that has a dynamical dark energy, the cosmological perturbations have instabilities
in both the scalar and tensor sectors [124, 125, 126, 127, 128, 129, 130]. Thus, already
the fact of producing quite naturally a viable cosmological background evolution
with self-acceleration, and stable scalar perturbations, is a non-trivial results.

The second conclusion that emerges from this study is that, both in the back-
ground evolution and in the scalar perturbations, the RT model is very close to
ΛCDM, with deviations of at most a few percent, for all ∆N. This already indi-
cates that the model is a good candidate for fitting well the current cosmological
observations. In the next Section we will confirm this conclusion by comparing the
RT model with ΛCDM from the point of view of the quality of the fit to the cos-
mological observations, and we will perform Bayesian parameter estimation for the
values of the cosmological parameters.

2.1.3 Comparison with cosmological datasets

We now show the details of a comparison with cosmological observations, using the
most recent cosmological datasets. We have implemented the perturbations of the
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FIGURE 2.7: η as a function of z, for the minimal RT model (blue solid
line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green,
dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left panel) and

κ = 1 (right panel). Figure from [31].
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FIGURE 2.8: Σ as a function of z, for the minimal RT model (blue solid
line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green,
dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left panel) and

κ = 1 (right panel). Figure from [31].

RT model into the CLASS cosmological Boltzmann code [131], that we have mod-
ified so to describe the background evolution and scalar perturbations of the RT
model. The modified version of the CLASS code that we used is publicly available
on GitHub [132].

Methodology and parameters

For ΛCDM, the Planck baseline analysis uses six independent cosmological param-
eters: the Hubble parameter today H0 = 100h0 km s−1Mpc−1, the physical baryon
and cold dark matter density fractions today ωb = Ωbh2

0 and ωc = Ωch2
0, respec-

tively, the amplitude As and tilt ns of the primordial scalar perturbations, and the
reionization optical depth τre. Note that, assuming flatness, the energy fraction ΩΛ
associated to a cosmological constant is a derived parameter, fixed by the flatness
condition. In the RT model we have a mass scale m [or, equivalently, the dimension-
less parameter γ, eq. (2.1.6)] which replaces the cosmological constant, and again
can be taken as a derived parameter, fixed by the flatness condition. Thus, for the
RT model, we can take the same six independent cosmological parameters, as in
ΛCDM.

An important extension, however, is provided by the sum of neutrino masses,
∑ν mν. As discussed in [133], their inclusion can a priori be important when compar-
ing a modified gravity model to ΛCDM. Oscillation experiments give a lower limit
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FIGURE 2.9: µ as a function of z, for the minimal RT model (blue solid
line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50 (green,
dot-dashed) and ∆N = 64 (cyan, dotted), for κ = 0.1 (left panel) and

κ = 1 (right panel). Figure from [31].
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FIGURE 2.10: The function γ(z) related to the growth rate f (z) by
f (z) = [ΩM(z)]γ(z), for ΛCDM (gray solid line), for the minimal RT
model (blue solid line) and for RT with ∆N = 34 (magenta, dashed),
∆N = 50 (green, dot-dashed) and ∆N = 64 (cyan, dotted). Figure

from [31].

∑ν mν >∼ 0.06 eV [134] (assuming a normal mass hierarchy dominated by the heav-
iest neutrino mass eigenstate). In the Planck baseline analysis the sum of neutrino
masses is kept fixed to this minimum allowed value. As discussed in the Planck pa-
pers [135, 136], there is actually no compelling theoretical reason for this choice, and
there are other possibilities, including a degenerate hierarchy with ∑ν mν >∼ 0.1 eV.
The choice of fixing the sum of neutrino masses to the minimum allowed values
is justified by the fact that, in ΛCDM, letting the sum of neutrino masses as a free
parameter, one finds that its marginalized posterior is peaked in zero, and if we let
it vary with the prior ∑ν mν > 0.06 eV the data drive ∑ν mν back to the prior (see
Fig. 34 of [136]). In contrast, as was realized in [133], in a modified gravity model
the posterior for ∑ν mν could be peaked at a value higher than the lower bound
0.06 eV. This happens in the RR nonlocal model [133, 30] and also in the minimal RT
model [31]. A uniform comparison of a modified gravity model with ΛCDM there-
fore requires to let ∑ν mν as a free parameter in both models. We denote by νΛCDM
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the ΛCDM model in which ∑ν mν is added to the list of free parameters.
In summary, we perform Bayesian parameter estimation for both νΛCDM and

the RT model (minimal, and with ∆N = 34, 50, 64), and we will compare the quality
of their fits to the datasets discussed below, using, as free parameters,

θ = {H0, ωb, ωc, As, ns, τre, ∑νmν} . (2.1.50)

For CMB, SNe and BAO we use the following likelihoods:

• For CMB we use the Planck 2018 data release, using the low-` temperature-only
likelihood, the low-` EE likelihood, and the high-` temperature and polariza-
tion PLIK likelihood described in ref. [137], as well as the lensing likelihood
based on temperature+polarization map-based lensing reconstruction [138].

• For type Ia supernovae we use the likelihood of the Pantheon type Ia super-
nova sample [139], which includes data from the Pan-STARRS1 (PS1) Medium
Deep Survey. Before the Pantheon release, our studies on nonlocal models
used the JLA dataset [140].

• For BAO we use the likelihoods of the BAO detection of the 6dF Galaxy Survey
[141] and the BAO scale measurement of SDSS DR7 Main Galaxy Sample [142].
We use updated SDSS data for the power spectrum of BAO from Data Release
12 [143].

The MCMC code used for obtaining the results for the RT model showed in the
following section is Cobaya 2.0.2, because it already implemented the Planck 2018
likelihood. Before the last Planck release, i.e. when sticking to the Planck 2015 like-
lihood, we used the MCMC code MontePython 2.2.2.

For the RT model the initial conditions of the perturbations of the auxiliary fields
δU and δSµ are set to zero. As we have explicitly verified for the RR model in [30],
taking different initial conditions, of the order of the metric perturbations (which is
their natural scale, since, as discussed already in Section 1.3.3, the initial conditions
on the auxiliary fields are in principle fixed by the initial conditions on the metric
perturbations) has a totally negligible effect.

After having determined in this way the mean values of the parameters of the
models (ΛCDM and RT, minimal and with various ∆N), we will use these values to
compare the models with further datasets, namely measurements of H(z) (“cosmic
chronometers”) and f σ8 data.

Comparison with CMB, BAO, SNe, H(z) and f σ8.

Fit to CMB+BAO+SNe and Bayesian parameter estimation. Table 2.2 shows the re-
sults for the Bayesian parameter estimation and the resulting χ2 for νΛCDM and the
RT model (minimal, and with ∆N = 34, 50, 64), using the combined CMB+SNe+BAO
data. Beside the values of the seven fundamental independent parameters given in
(2.1.50), we also give some useful derived parameters, namely ΩM, the reionization
redshift zre, and the amplitude of matter density fluctuations in spheres of radius
8h−1 Mpc, σ8. In the last line we show the differences in χ2, with respect to the value
for νΛCDM. We recall that, for models with the same number of free parameters,
as νΛCDM and the RT models, the conventional interpretation (based on [144]) is
that a difference |∆χ2| 6 2 implies statistical equivalence between the two models,
while 2<∼ |∆χ2|<∼ 6 suggests weak evidence in favor of the model with lower χ2, and
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Parameter νΛCDM RT, minimal RT, ∆N = 34 RT, ∆N = 50 RT, ∆N = 64

H0 67.89± 0.47 68.74+0.59
−0.51 67.95± 0.48 67.90± 0.47 67.88± 0.48

∑ν mν [eV] < 0.057 (at 1σ) 0.071+0.024
−0.066 < 0.048 (at 1σ) < 0.044 (at 1σ) < 0.041 (at 1σ)

ωc 0.1193± 0.0009 0.1120± 0.0009 0.1191± 0.0009 0.1190± 0.0009 0.1189± 0.0009

100ωb 2.242± 0.013 2.237± 0.013 2.243± 0.013 2.244± 0.013 2.244± 0.013

ln(1010 As) 3.045± 0.014 3.043± 0.014 3.047± 0.014 3.048+0.013
−0.015 3.049± 0.014

ns 0.9665± 0.0036 0.9649± 0.0036 0.9670± 0.0036 0.9673± 0.0035 0.9672± 0.0035

τre 0.0555± 0.0072 0.0537± 0.0072 0.0565± 0.0073 0.0572+0.0065
−0.0075 0.0575± 0.0071

ΩM 0.3085± 0.0060 0.3029+0.0061
−0.0070 0.3075± 0.0061 0.3076± 0.0060 0.3076± 0.0060

zre 7.76± 0.72 7.60± 0.73 7.86± 0.72 7.93± 0.70 7.96± 0.70

σ8 0.8164+0.0097
−0.0068 0.823+0.0130

−0.0087 0.8141+0.0089
−0.0067 0.8134+0.0088

−0.0064 0.8129+0.0084
−0.0066

∆χ2 0 1.30 -0.48 -0.20 -0.00

TABLE 2.2: Mean values and 1σ errors of the parameters for νΛCDM
and the RT model (minimal, and with ∆N= 34, 50, 64), using CMB,
BAO and SNe. H0 is in units of km s−1 Mpc−1. The last line gives
the difference in the χ2 of each given model with respect to νΛCDM.

Table from [31].
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FIGURE 2.11: Left panel: the two-dimensional likelihood in the
(ΩM, σ8) plane for νΛCDM (red), the minimal RT model (blue) and
the RT model with ∆N = 64 (green). The stars are the best-fit val-
ues of the parameters (note that the values reported in Table 2.2 are
rather the mean values). Right panel: the same for (ΩM, H0). Figure

from [31].

|∆χ2| & 6 indicates strong evidence in favor of the model with lower χ2. Thus, all
models considered fit the data at a statistically equivalent level.

The result of Bayesian parameter estimation shows that all models with large ∆N
give predictions extremely close to those of νΛCDM, consistently with the analysis
of the previous sections, that showed that these models are very close to ΛCDM both
in the background evolution and in the cosmological perturbations. The minimal
RT model differs a bit more, and in particular predicts a slightly higher value of H0,
which in any case is not enough to significantly relieve the tension with the local H0
measurement [145, 146]. Indeed, as discussed in [147, 148], it might not be possible
to solve the H0 tension, together with other potential tensions within ΛCDM, with
a modification of only the late-Universe dynamics (as in our nonlocal model). The
other difference of the minimal RT model is that it predicts a non-zero value for the
sum of the neutrino masses, while all other models considered only give an upper
bound.
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FIGURE 2.12: As in Fig. 2.11, for (∑ν mν, H0). Figure from [31].

νΛCDM RT, minimal ∆N = 34 ∆N = 50 ∆N = 64
∆χ2 0 −1.13 0.22 0.42 0.57

TABLE 2.3: Values of ∆χ2, with respect to νΛCDM, for the RT model,
minimal and with various values of ∆N, from the fit to a compilation

of measurements of H(z). Table from [31].

Figures 2.11 and 2.12 show the two-dimensional likelihoods for (ΩM, σ8), (ΩM, H0)
and (∑ν mν, H0). The pattern that emerges, from this and similar plots, is that the RT
model with large values of ∆N is extremely close to ΛCDM, as we already saw from
Table 2.2, while the minimal RT model has some more significant differences, such
as a slightly higher value of H0 (although, as mentioned above, not enough to sig-
nificantly decrease the tension with local measurements), of σ8, and of the sum of
neutrino masses.

Cosmic chronometers. Another useful observational test is provided by measure-
ments of H(z) at different redshifts (“cosmic chronometers" [149]). We use a compi-
lation of 36 measurements of H(z) between z = 0.07 and z = 2.34, given in Table I of
[150]. Using the respective prediction for H(z) in ΛCDM and in the RT models (with
the respective mean values of ΩM and H0 from Table 2.2, obtained from the MCMC
comparison to CMB+BAO+SNe) to fit these H(z) measurements, we find the differ-
ence in χ2, with respect to νΛCDM, shown in Table 2.3. The corresponding reduced
χ2, all of order 0.63− 0.64, show that, by themselves, all the models fits these data
well.

Structure formation and f σ8 data. The properties of the models with respect to
structure formation are already partly tested by the inclusion of BAO in our MCMC
analysis. We further show the comparison of the models with a set of measurements
of f σ8, using the datapoints that we used in [30, 31]. As said in [31], many more mea-
surement exists, like those collected in [151]. However, many of these datapoints are
correlated, due to overlap in the galaxy samples used, and no covariance matrix
is available for the full dataset, nor for most of its subsets. Furthermore, different
datapoints have been obtained with different fiducial cosmologies, and survey sys-
tematics may vary with time of publication and lead to inhomogeneities in the data.
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νΛCDM RT, minimal ∆N = 34 ∆N = 50 ∆N = 64
∆χ2 0 1.41 −0.05 −0.18 −0.28

TABLE 2.4: Values of ∆χ2, with respect to νΛCDM, for the RT model,
minimal and with various values of ∆N, from the fit to a compilation

of measurements of f σ8. Table from [31].
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FIGURE 2.13: A collection of measurements of f σ8 and the corre-
sponding predictions of νΛCDM and of the RT model, minimal and
with ∆N = 34, 50 and 64. The curve for the minimal RT model is
the upper one, while all others are almost indistinguishable on this
scale. The data points are from 6dF GRS [152] (red), SDSS LRG [153]
(green), BOSS CMASS [154] (purple), WiggleZ [155] (orange), VIPERS

[156] (black) and BOSS DR12 [143] (cyan). Figure from [31].

Therefore the use of the full dataset, without the appropriate covariance matrix and
corrections, would lead to results of dubious interpretation.

Fig. 2.13 shows the data and the predictions of ΛCDM and of the RT model,
minimal and with ∆N = 34, ∆N = 50, ∆N = 64, obtained using for each model the
respective mean values of ΩM and H0 from Table 2.2. The corresponding differences
of χ2, with respect to the value in νΛCDM, are given in Table 2.4. We see that,
once again, the differences between ΛCDM and the RT model with various ∆N are
not statistically significant. From the plots of Geff in Fig. 2.5 we see that at low k
(upper left panel) the minimal RT model predicts Geff/G > 1, while the RT models
with large ∆N predict Geff/G < 1. The data favor a weakening of gravity at these
scales, so the RT models with large ∆N are slightly preferred with respect to ΛCDM,
and the minimal RT model is slightly disfavored, but in all cases at a statistically
insignificant level.

Finally, Fig. 2.14 shows the relative difference in the linear power spectrum of the
RT models with respect to ΛCDM (each one computed using their respective mean
values of the cosmological parameters) as a function of k, for z = 0 (left panel), and
as as a function of z, for the mode with k = 0.1/Mpc (right panel).

The conclusion of this analysis is that, on the one hand, the RT model, for all
values of ∆N, is very close to ΛCDM at the level of background evolution and scalar
perturbations, and fits the observations at the same level as ΛCDM. On the other
hand, the deviations, which for both the background and scalar perturbations are



2.1. Cosmology of the RT model 49

10 2 10 1 100

k [1/Mpc]

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

P(li
n)

(k
)/P

(li
n)

CD
M

(k
)

1

10 1 101 103 105 107

z

0.010

0.005

0.000

0.005

P(li
n)

(z
)/P

(li
n) CD

M
(z

)
1

FIGURE 2.14: Relative difference of total linear matter power spec-
trum, with respect to best-fit ΛCDM, for the minimal RT model (blue
solid line) and for RT with ∆N = 34 (magenta, dashed), ∆N = 50
(green, dot-dashed) and ∆N = 64 (cyan, dotted). Left panel: as a
function of k, at z = 0. Right panel: as a function of redshift, for the

mode with k = 0.1/Mpc. Figure from [31].

typically at the percent or sub-percent level, could in principle be within reach for
future missions. For instance, assuming that the function µ(a, k) that characterizes
deviations from the Poisson law is scale independent and parametrizing its depen-
dence on the scale factor as µ(a) = µsas, a future survey such as EUCLID [157], for
fixed cosmological parameters, is expected to measure µs with an error ∆µs = 0.0046
for s = 1 and ∆µs = 0.014 for s = 3 [158]. The RT model has also been selected by the
Dark Energy Science Collaboration (DESC) of the Large Synoptic Survey Telescope
(LSST), among a few modified gravity models, for further studies and development
of dedicated pipelines [159].

2.1.4 Solar System constraints

No vDVZ discontinuity

Any cosmological model that modifies GR on cosmological scales must also be able
to reproduce the successes of GR at much smaller scales, such as the solar system and
laboratory scales. In theories that introduce extra fields, as in scalar-tensor theories,
or extra polarization of the gravitons, as in massive gravity, this is highly non-trivial.
The linearized theory does not reduce to GR, and screening mechanisms involving
the non-linearities of the theory are needed. As discussed in [86], for the RT model, in
contrast, the situation is much simpler: already at the linear level the theory reduces
smoothly to GR, and there is no discontinuity such as the vDVZ discontinuity of
massive gravity.

Let us consider first the GR limit for the RT model linearized over flat space. In
this case eq. (1.3.44) reduces to eq. (1.3.38). In order to compute the matter-matter
interaction induced by this coupling of Tµν with hµν we can proceed as in [77]. We
use the gauge invariance of the linearized theory to fix the De Donder gauge ∂µ[hµν−
(1/2)hηµν] = 0 and then, going in momentum space, the resulting equation can be
solved for the Fourier transform h̃µν(k), to obtain

h̃µν(k) =
16πG

k2

[
T̃µν(k)−

ηµνk2

2(k2 −m2)
T̃(k) +

m2

3(k2 −m2)

(
ηµν −

kµkν

k2

)
T̃(k)

]
,

(2.1.51)
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where T = ηµνTµν is the trace of the energy-momentum tensor. Plugging this result
into the linearized interaction term

Sint =
1
2

∫
d4x hµνTµν , (2.1.52)

and using the conservation equation kµT̃µν(k) = 0, we get

Sint = 8πG
∫ d4k

(2π)4 T̃µν(−k)∆µνρσ(k)T̃ρσ(k) , (2.1.53)

where

∆µνρσ(k) =
1

2k2 (ηµρηνσ + ηµσηνρ − ηµνηρσ) +
1
6

[
1
k2 −

1
k2 −m2

]
ηµνηρσ . (2.1.54)

The first addend is the usual GR result due to the exchange of the helicities ±2 of a
massless graviton. The second addend in brackets vanishes for m → 0. Therefore
the RT model has no vDVZ discontinuity, and reduces smoothly to GR as m→ 0. In
the regime where a linearization over flat space is adequate, for modes with |k2| �
m2 the predictions of the RT model differ from the predictions of GR by a factor
1 +O(m2/k2). We have seen that the comparison with cosmological observations
fixes m ∼ H0 (or even smaller for large ∆N). For |k| = (1 a.u.)−1 (as appropriate to
solar system experiments), m2/k2 ∼ (1 a.u./H−1

0 )2 ∼ 10−30, and the predictions of
the RT model are indistinguishable from that of GR.

The absence of vDVZ discontinuity can also be understood observing that the
second addend in brackets in eq. (2.1.54) induces a matter-matter interaction

8πG
∫ d4k

(2π)4
1
6

T̃(−k)
[

1
k2 −

1
k2 −m2

]
T̃(k) . (2.1.55)

Comparing with eq. (1.3.33) one realizes that the two terms in brackets correspond
to the exchange of the helicity zero component of hTT

µν and of the trace mode s. In
GR, where s is massless and both hTT

µν and s appear with a 2 factor in the quadratic
lagrangian [see eq. (1.3.24)] these two terms cancel exactly, while here the cancella-
tion is only partial but is recovered for m → 0. Notice that both the helicity zero
component of hTT

µν and s are non-propagating degrees of freedom in GR and remain
non-propagating in the RT model. We have indeed seen in eqs. (1.3.52)–(1.3.54) that,
in the RR or RT models linearized over flat space, the only radiative degree of free-
dom of the metric are still given by the helicity ±2 modes described by HTT

ij and s
remains non-radiative, see eq. (1.3.56). Exactly as in GR, the negative sign in front
of the 1/(k2 −m2) term in eq. (2.1.55), which would correspond to a ghost if it were
due to a propagating particle, is therefore innocuous from the point of view of quan-
tum vacuum stability. We recall that the helicity zero components of hTT

µν and s are
not associated to creation/annihilation operators and cannot appear on the external
lines of a Feynman diagram.

Schwarzschild solution

After having checked the recovery of the GR limit in Minkowski space, let us con-
sider the GR limit for the Schwarzschild solution, by studying the static spherically
symmetric solution of the RT model. A typical issue of massive gravity theories is
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that they become non-linear when r is smaller than a distance, the Vainshtein ra-
dius, which is parametrically larger than the Schwarzschild radius rS of the source;
e.g. rV = (GM/m4)1/5 in the theory defined by adding a Fierz-Pauli mass term
to the Einstein-Hilbert action [160, 161], and rV = (GM/m2)1/3 [162] in the dRGT
theory [121, 21]. For m = O(H0) and M = M�, we have (GM/m2)1/3 ∼ 100 pc.
Since linearized theory only holds for r > rV , in massive gravity in the whole range
of distances probed by solar system and laboratory experiments the linearized ex-
pansion is not valid, and one must show that a Vainshtein mechanism is at work,
i.e. that the inclusion of classical non-linearities restore the continuity with GR at
r � rV . Explicit examples of this type have indeed been found for the dRGT theory
[163, 164].

For the RT model, however, the situation is much simpler, and the limit m→ 0 of
the Schwarzschild solution is smooth. The Schwarzschild solution in the RT model
has been worked out in [86]. In the limit r � rS, the result for the metric is

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2 θ dφ2) , (2.1.56)

where

A(r) = 1− rS

r

[
1 +

1
3
(1− cos mr)

]
, (2.1.57)

B(r) = 1 +
rS

r

[
1− 1

3
(1− cos mr) +

1
3

mr sin mr
]

, (2.1.58)

In the limit mr � 1 (but still r � rS), eqs. (2.1.57) and (2.1.58) give

A(r) ' 1− rS

r

(
1 +

m2r2

6

)
, (2.1.59)

and (to first order in rS/r) B(r) = 1/A(r). We also mention that the solution for
the auxiliary field U = −2−1R is simply given by U(r) = (rS/r) cos mr (valid for
both the RT [86] and RR [165] models). The auxiliary field Sµ(x) of the RT model, in
spherical coordinates, has only one non-vanishing component, which is Sr(r); when
solving the equations it is convenient to define V(r) from Sr(r) = B1/2(r)rV(r) and,
for r � rS, V(r) reduces to V(r) ' −rS/(2r) (see [86]).

For comparison, in massive gravity the analogous computation gives [160, 22]

A(r) = 1− 4
3

rS

r

(
1− rS

12m4r5

)
. (2.1.60)

The factor 4/3 in front of rS/r is due to the extra contribution coming from the ex-
change of the helicity-0 graviton, and gives rise to the vDVZ discontiuity. In contrast,
no vDVZ discontinuity is present in eq. (2.1.59). Furthermore, in eq. (2.1.60) the cor-
rection blows up as r decreases, and for r ∼ rV = (GM/m4)1/5 it becomes of the
order of the leading term, signaling the breakdown of the linearized approximation.
In eq. (2.1.59), in contrast, the correction becomes smaller and smaller as r decreases,
and perturbation theory is valid at all scales r � m−1, until we arrive at r ' rS,
where eventually also GR becomes non-linear.

In conclusion, in the RT model, in static situations GR is smoothly recovered,
with correction O(m2r2). The same conclusion holds in the RR model, for which
we performed a similar analysis in [165]. Given that m is of order H0, these cor-
rections are utterly negligible for all r of order of solar system scale or smaller; e.g.
m2r2 ∼ 10−30 for r of order of the Earth-Sun distance. Even on galactic scales these
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corrections to GR are totally irrelevant, with m2r2 ∼ 10−17 for r = 10 kpc.

Lunar Laser Ranging test

The above results show that, in a static situation, the RT and RR models recover all
successes of GR at short scales. As was pointed out in [166] and then accurately
studied in [165], this is not yet sufficient to guarantee that these models are viable at
solar system scales. Another crucial test comes from the limit on the time variation
of Newton’s constant from Lunar Laser Ranging (LLR). The current observational
result is Ġ/G = (7.1± 7.6)× 10−14 yr−1 [167]. This measurement is so accurate that,
even if performed at the Earth-Moon scale over the last few decades, it provides
significant constraints on cosmological models. Indeed, if we rewrite this limit in
terms of the Hubble parameter today, using H0 ' h0 × (9.777752 Gyr)−1, we get

Ġ
G

= (0.99± 1.06)× 10−3
(

0.7
h0

)
H0 . (2.1.61)

Quite generally, in modified gravity models Newton’s constant becomes time de-
pendent on cosmological scale. The scale for the time variation today is given by
H0, so on cosmological scales one typically finds Ġ/G ' H0. If, in a given modified
gravity model, this result holds also down to the scale of the solar system and of the
Earth-Moon system, then the bound (2.1.61) is violated and the model is ruled out.

In the case of the RT model, however, we have seen in eq. (2.1.47) that Geff reduces
to G at small scales. Therefore, it has no time dependence and the RT model satisfies
trivially the LLR limit. The situation is different for the RR model and for other
modified gravity models like Deser-Woodard model. Indeed, in the RR model, for
sub-horizon modes, one finds [165, 111, 166]

Geff(t)
G

=

[
1− 1

3
m2S̄(t)

]−1 [
1 +O

(
1
k̂2

)]
, (2.1.62)

where S̄(t) is the background cosmological solution for the auxiliary field S. This
dependence on S can be traced to the term 2SGµν in Kµν, see eq. (1.3.47). If one
plugs here the solution for S̄(t) corresponding to the FRW background, one finds
that Geff(t)/G is of order H0, and the bound (2.1.61) is violated. In this case one
cannot appeal to non-linear screening mechanisms, since we have seen that the RR
model (just as the RT model) has a smooth limit m → 0, so the linearized expansion
can be trusted.

Of course, the FRW metric has no direct relevance for the Earth-Moon system.
The latter, just as the solar system, does not expand with the Hubble flow. How-
ever, the point is that a scalar field, such as S, that evolves on a background that
interpolates between the Schwarzschild solution at short scales and the FRW solu-
tion at large distances, in general inherits a time dependence on small scales from
the matching with the solution at large distances. As an extreme example, in GR
one can consider the Einstein-Straus space-time, in which, inside a sphere of radius
r0, the metric is taken to be exactly the static Schwarzschild metric generated by the
mass M, while in the exterior it is given by a FRW solution with energy density ρ
(see e.g. [168, 169] for review). The two metrics are then matched by requiring that
the induced metric on the boundary surface Σ agrees on the two sides. This fixes
the matching radius r0, that, with respect to the Schwarzschild coordinates of the
interior, turns out to be given by M = (4/3)πr3

0ρ, where ρ is the energy density in
FRW. In this case the solution for the metric is exactly static in the interior region, so
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it describes a limiting case in which the cosmological expansion in the inner region
is perfectly screened. Nevertheless, if one studies the propagation of a scalar field
obeying the equation 2φ = 0 in this metric, one finds that the solution for the field in
the inner region is time dependent [169]. This is due to the fact that we must impose
a matching condition for the scalar field at the surface Σ, and in this way the field
inherits a time dependence even in the inner region.

For the RR model, a detailed analysis of the solution for the scalar field S in
a background that interpolates between the static solution at short distances and
FRW at large distances has been performed in [165]. A useful way of studying the
problem is to follow the time evolution of the auxiliary fields U and S of the RR
model, starting before the epoch of structure formation. At that time the FRW met-
ric holds everywhere, and U and S evolve with time according to the cosmological
background solutions Ū(t) and S̄(t). As structures form and become non-linear, the
analysis of [165] shows that the solutions for U and S remain of the form

U(t, x) = Ū(t) + δU(t, x) , S(t, x) = S̄(t) + δS(t, x) , (2.1.63)

where δU(t, x) and δS(t, x) remain small perturbations of Ū(t) and S̄(t), respectively.
In essence, the physical reason behind this result is that, even when structures be-
come non-linear, e.g. in the formation of galaxies, clusters, etc., the metric pertur-
bation Φ never become large. In non-linear structure formation only the second
spatial derivatives of Φ become large compared to their values in the linear regime
(in particular the Laplacian of Φ, which is related to the density contrast, can become
huge); however, the spatial derivatives of Φ never enter in the equations that govern
the dynamics of the auxiliary fields U and S. Indeed, in a perturbed FRW metric, to
first order in Φ, the explicit expression of the d’Alembertian is

2U = −(1 + 2Φ)(Ü + 3HU̇)− 4Φ̇U̇ + a−2(1− 2Φ)∇2U , (2.1.64)

so spatial derivatives of Φ do not appear. As a result, non-linear structure forma-
tion does not stop the time evolution that the auxiliary fields inherited from the
earlier epoch described by a spatially homogeneous FRW solutions. Near mas-
sive bodies, the perturbations δU(t, x), δS(t, x) just reduce to the static solutions
U(r), S(r) studied in the previous subsection, and remain small as long as r is
larger than the Schwarzschild radius of the massive bodies (recall for instance that
U(r) = (rS/r) cos mr, which is much smaller than one for r � rS). So, in the end,
at the Earth-Moon system scale, the solution for S is, with good approximation, the
sum of the cosmological and static solutions, S(t, x) = S̄(t) + Sstatic(r). A study
of purely static solutions misses the term S̄(t), because assumes from scratch that
the solution is time-independent. This time dependence induces a time-dependence
of the Newton’s constant, such that the RR model violates the limit (2.1.61) and is
therefore ruled out by Lunar Laser Ranging.

In contrast, as we have seen in eq. (2.1.47), in the RT model the effective Newton’s
constant reduces to G at small scales and looses all the dependence on the auxiliary
fields. Thus the RT model passes without problems the LLR test.
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Chapter 3

Modified gravitational-wave
propagation

3.1 Gravitational waves in modified gravity

3.1.1 Modified gravitational-wave propagation

In the previous Chapter we have studied the cosmological consequences of non-
local gravity (in particular of the successful RT model) at the level of background
evolution and scalar perturbations. We now turn to tensor perturbations, i.e. grav-
itational waves (GWs) propagating in a FRW background. We will see, following
[170, 171, 172], that the RT model has striking predictions in the tensor sector, that
could be detected in the near future by GW detectors. However, before discussing
the specific predictions of the RT model in Section 3.1.2, we want to develop some
tools that are completely general for the propagation of GWs across cosmological
distances in modified gravity theories and that will lead us to introduce the notion
of GW luminosity distance. In this way we will be able to enlarge the scope of our
analysis and discuss general constraints (current or future) on modifed gravity the-
ories, obtained from GW detections.

As a first step, it is useful to review GW propagation over a FRW background in
the case of GR.

GW propagation in GR

In GR the evolution of tensor perturbations over FRW is governed by the equation

h̃′′A + 2Hh̃′A + k2h̃A = 16πGa2σ̃A , (3.1.1)

where h̃A(η, k) are the Fourier modes of the GW amplitude, and we use the index
A = +,× to label the two polarizations. We are using now conformal time η, related
as usual to cosmic time t by dt = a(η)dη, and a(η) is the scale factor. In this section
the prime denotes the derivative with respect to cosmic time η, and H = a′/a. The
source term σ̃A(η, k) is related to the helicity-2 part of the anisotropic stress tensor
(see e.g. [74]). In the following we will be interested in the free propagation between
source and observer, and we will set it to zero. To get rid of the Hubble friction term,
it is convenient to introduce a field χ̃A(η, k) from

h̃A(η, k) =
1

a(η)
χ̃A(η, k) . (3.1.2)
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Then eq. (3.1.2) becomes

χ̃′′A +

(
k2 − a′′

a

)
χ̃A = 0 . (3.1.3)

For modes well inside the horizon, such as the GWs targeted by ground-based and
space-born detectors, the term a′′/a ∼ 1/η2 is totally negligible with respect to k2;
for instance, for a GW with a frequency f ∼ 102 Hz, as typical of ground-based
interferometers, (kη)−2 ∼ (500 km/H−1

0 )2 ∼ 10−41. We can then neglect the term
a′′/a in eq. (3.1.3), which then becomes a standard a wave equation for χ̃A, that tells
us that GWs propagate at the speed of light (that we have set here equal to unity).
The factor 1/a in eq. (3.1.2) tells us how the GW amplitude decreases as it propagates
across cosmological distances, from the source to the observer.

For a coalescing binary, the factor 1/a combines with the standard behavior 1/r
in the near region, as well as with redshift-dependent factors that arise when trans-
forming frequencies and masses from the source frame to the detector frame. Thus
one finds the standard result hA ∝ 1/dL(z), where dL is the luminosity distance to
the source (see e.g. section 4.1.4 of [27] for a detailed derivation). This is the origin
of the fact that coalescing binaries are “standard sirens” [173], i.e. they allow a direct
reconstruction of the luminosity distance of the source.

More precisely, in the so-called restricted post-Newtonian (PN) approximation,
where one takes into account the PN corrections to the phase but not to the ampli-
tude, one finds

h+(t) =
2(1 + cos2 ι)

dL(z)
(GMc)

5/3[π f (t)]2/3 cos Φ(t) , (3.1.4)

h×(t) =
4 cos ι

dL(z)
(GMc)

5/3[π f (t)]2/3 sin Φ(t) , (3.1.5)

where Φ(t) is the phase, that in general needs to be computed to a high PN order,
Mc = (1 + z)(m1m2)3/5(m1 + m2)−1/5 is the redshifted chirp mass (i.e. the quan-
tity actually observed in the detector frame), f (t) is the observed GW frequency,
that sweeps upward in time, and ι is the inclination angle of the normal to the
orbit with respect to the line of sight. The chirp mass is accurately determined
from the time evolution of f (t) [e.g., to lowest order in the PN expansion, ḟ =
(96/5)π8/3(GMc)5/3 f 11/3]. Then the amplitude of GWs from a coalescing com-
pact binary provides an absolute measurement of its luminosity distance and in this
sense coalescing compact binaries are the GW analogue of standard candles. As we
see from eqs. (3.1.4) and (3.1.5), the main uncertainty on the standard siren measure-
ment of dL(z) comes from the partial degeneracy with cos ι. This can be broken in
particular if both polarizations can be measured, or if we have informations on the
inclination angle, e.g. from the observation of an electromagnetic jet. We also stress
that, in GR, the luminosity distance dL(z) measured by standard sirens (with the
methodology that we just discussed) is exactly the same as the standard luminosity
distance associated to electromagnetic signals.

In GR, for a cosmological model with dark energy density ρDE(z), the relation
between luminosity distance and redshift is

dL(z) =
1 + z

H0

∫ z

0

dz̃√
ΩM(1 + z̃)3 + ΩR(1 + z̃)4 + ρDE(z̃)/ρ0

. (3.1.6)

Therefore, a simultaneous measurement of dL and of the redshift z (with an elec-
tromagnetic counterpart, or the study of the dL − z relation with statistical methods)
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allows us to get cosmological information. In particular, for sources at small redshift,
z � 1, eq. (3.1.6) reduces to the Hubble law dL(z) ' H−1

0 z, so from a measurement
at such redshifts we can get a measurement of H0. This has indeed been possible
with the detection of the binary neutron star (BNS) coalescence GW170817, which is
at a redshift z ' 0.01, and has given the value H0 = 70.0+12.0

−8.0 km s−1 Mpc−1 [174].
The detection of coalescences at higher redshift could in principle allow us to access
also the DE equation of state.

Much work as been devoted in the literature to the use of standard sirens for
cosmology [175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189].

GW propagation in modified gravity

In many modified gravity theories, including the RT model, the free propagation of
tensor perturbations over FRW is governed by an equation of the form

h̃′′A + 2H[1− δ(η)]h̃′A + k2h̃A = 0 , (3.1.7)

with a model-dependent function δ(η). Indeed, in a generic modified gravity model
both the “friction term" 2Hh̃′A and the term k2h̃A in eq. (3.1.7) are modified. As we
will recall below, the models that modify the k2h̃A term predict a speed of gravity
different from the speed of light. The observation of GW170817 and of the associated
GRB has set a limit |cgw − c|/c < O(10−15) [190], so such models are ruled out.1 In
particular, a large class of Horndeski theories and other modifications of GR have
been ruled out by this limit [192, 193, 194, 195]. It turns out that the models that
survive this constraint still modify the friction term. A propagation equation of the
form (3.1.7) was indeed first found in some scalar-tensor theories of Horndeski type
[196, 197, 198, 199] and in the RR nonlocal model [30, 170]. In [200] it was shown that
it also takes place in many other Horndeski-type theories that pass the test on speed
of gravity (such as f (R) theories, Jordan-Brans-Dicke, galileon cosmology, etc.), in
Degenerate Higher Order Scalar-Tensor (DHOST) theories, and in bigravity. Similar
effects take place in theories with extra dimensions, as originally found in [201] (see
also [202]), although in this case they are due to the loss of gravitons to the bulk and,
in general, are not described by eq. (3.1.7) (see also [203] for a discussion a modified
GW propagation within the effective field theory approach to dark energy, [204, 205]
for general formalisms for testing gravity with GW propagation, and [206, 207, 208]
for further related work in the context of scalar-tensor theories).

Let us then study the general consequences of eq. (3.1.7) (we closely follow the
discussion in [170, 171]). We proceed as in the GR case, except that now, to eliminate
the friction term, we must introduce χ̃A(η, k) from

h̃A(η, k) =
1

ã(η)
χ̃A(η, k) , (3.1.8)

where ã now satisfies
ã′

ã
= H[1− δ(η)] . (3.1.9)

Then we get

χ̃′′A +

(
k2 − ã′′

ã

)
χ̃A = 0 . (3.1.10)

1Although it could still in principle happen that there is dependence on wavenumber that allows
for cgw 6= c for modes k well below the frequencies probed by LIGO/Virgo and restore cgw = c to
sufficient accuracy at LIGO/Virgo frequencies. This could be motivated in some models [191].
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Once again, inside the horizon the term ã′′/ã is totally negligible. The remaining
equation,

χ̃′′A + k2χ̃A = 0 , (3.1.11)

shows that GWs still propagate at the speed of light. This is a consequence of the
fact that the term k2χ̃A in eq. (3.1.7) is the same as in GR. If the coefficient of this term
had been different, we would have got a speed of GWs cgw 6= c.

As we see from eq. (3.1.9), the effect of the modified friction term is that now the
amplitude of h̃A is proportional to 1/ã rather than 1/a. Then, in the propagation
from the source to the observer, the amplitude is multiplied by a factor ãemis/ãobs ≡
ã(z)/ã(0), instead of a factor aemis/aobs = a(z)/a(0), where the labels refer to the
emission time (at redshift z) and the observation time, at redshift zero, respectively.
Therefore

h̃A ∝
ã(z)
ã(0)

a(0)
a(z)

1
dL(z)

=
ã(z)
a(z)

1
dL(z)

, (3.1.12)

where dL(z) is the usual notion of luminosity distance (note that, since only the
ratios ã(z)/ã(0) and a(z)/a(0) enter, without loss of generality we can choose the
normalizations ã(0) = a(0) = 1). Eq. (3.1.12) motivates the introduction of a ‘GW
luminosity distance’ d gw

L (z) [170], related to the standard luminosity distance appro-
priate for electromagnetic signals, that we henceforth denote by d em

L (z), by d gw
L (z) =

[a(z)/ã(z)] d em
L (z). Rewriting eq. (3.1.9) as (log a/ã)′ = δ(η)H(η) and integrating,

we get [170]

d gw
L (z) = d em

L (z) exp
{
−
∫ z

0

dz′

1 + z′
δ(z′)

}
. (3.1.13)

In modified gravity, the quantity extracted from a measurement of the GW ampli-
tude of a coalescing binary is d gw

L (z), rather than d em
L (z). To avoid misunderstand-

ings, notice that the actual distance traveled by GWs from the source to the observer
is the same as the distance traveled by electromagnetic signals. Eq. (3.1.13) is simply
a convenient way of expressing the fact that, in modified gravity, the amplitude of
the GW decreases in a different way during the propagation, so that, for a coalesc-
ing binary, the observed amplitude, rather than depending only on d em

L (z) and on
the inclination of the orbit, as in GR, it further depends on δ(z), in such a way that
the combined dependence on d em

L (z) and δ(z) can be reabsorbed into the quantity
d gw

L (z).

Conservation of graviton number

The fact that, in modified gravity, the GW amplitude over FRW does not scale as 1/a
raises a question. As we will recall below, in GR the fact that in FRW h ∝ 1/a ensures
that the GW energy density ρGW scales as 1/a4; in turn, this is consistent with an
interpretation of a GW as a collection of massless graviton, whose comoving number
density (i.e. number per unit volume in comoving coordinates) is conserved. Indeed,
the fact that the graviton number per comoving volume is conserved means that the
graviton number per physical volume scales as 1/a3, while the fact that the graviton
is massless implies that its energy scales as 1/a, giving overall the 1/a4 behavior of
ρGW. One might then wonder whether the scaling h ∝ 1/ã is an indication that the
graviton number is not conserved in modified gravity theories. We will see here that,
in fact, in all the theories where GW propagation obeys eq. (3.1.7), the energy density
ρGW scales as 1/a4 and therefore the comoving number density of gravitons is still
conserved. To this purpose, one must realize that the expression of ρGW in a generic
modified gravity model is different from the GR expression. Let us first recall how
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things work in GR. We consider tensor perturbations over the FRW metric. Using
conformal time, we write

ds2 = a2
[
−dη2 +

(
δij + hTT

ij

)
dxidxj

]
. (3.1.14)

It is convenient to expand the Fourier transform of hTT
ij in the basis of the polarization

tensors,
h̃TT

ij (η, k) = ∑
A=+,×

eA
ij (k̂)h̃A(η, k) , (3.1.15)

where the polarization tensors are normalized as eA
ij (k̂)e

A′
ij (k̂) = 2δAA′ . Expanding

the Einstein-Hilbert action to second order in hTT
ij one then finds (see e.g. sect. 21.3.4

of [74])

S2[h] =
1

32πG ∑
A

∫
d3xdη a2 [∂ηhA∂ηhA − ∂khA∂khA

]
= −1

2 ∑
A

∫
d4x

√
−ḡ ḡµν∂µ ϕA∂ν ϕA , (3.1.16)

where ḡµν = a2ηµν is the background FRW metric in (η, x) coordinates, and

ϕA(η, x) =
1√

16πG
hA(η, x) . (3.1.17)

The action governing the two polarization amplitudes hA is therefore the same as the
curved-space action of two canonically-normalized scalar fields ϕA. The variation
of the action (3.1.16) gives eq. (3.1.1) (with the left-hand side equal to zero, unless
we add also the matter action). At the same time, from this action we can get the
energy-momentum tensor of GWs,

tµν ≡ − 2√−ḡ
〈δS2[h]

δḡµν
〉 = ∑

A
〈∂µ ϕA∂ν ϕA − gµν

1
2

gρσ∂ρ ϕA∂σ ϕA〉

=
1

16πG ∑
A
〈∂µhA∂νhA − gµν

1
2

gρσ∂ρhA∂σhA〉 , (3.1.18)

where 〈. . .〉 denotes the spatial average over several wavelengths of the GWs, or the
temporal average over several periods (see e.g. sect. 1.4 of [27]). We denote by tηη

the µ = ν = 0 component of tµν in coordinates (η, x) and by ttt ≡ t00 the µ = ν = 0
component of tµν in coordinates (t, x). From tηη(dη)2 = ttt(dt)2 and dt = adη if
follows that t00 = tηη/a2, so eq. (3.1.18) gives

t00 =
1

32πG
1
a2 ∑

A
〈(∂ηhA)

2 + (∂ihA)
2〉 . (3.1.19)

On a plane wave the terms 〈(∂ηhA)
2〉 and 〈(∂ihA)

2〉 are equal. From eq. (3.1.11), for
wavelengths well inside the horizon, i.e. for kη � 1, χ̃A(η, k) ∝ sin(kη + α), with α
a phase. Therefore h̃A(η, k) ∝ sin(kη + α)/a(η) and, again for kη � 1,

∂ηhA(η, k) ∝
k cos(kη + α)

a(η)

[
1 + O

(
1

kη

)]
. (3.1.20)
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In 〈(∂ηhA)
2〉 the term cos2(kη + α), averaged over several periods, simply gives a

factor 1/2, so 〈(∂ηhA)
2〉 ∝ 1/a2 and, from eq. (3.1.19), it then follows that ρgw = t00

is proportional to 1/a4, as indeed we expect for any form of radiation.
Let us now see how the situation changes in modified gravity. The propagation

equation is now given by eq. (3.1.7). Using eq. (3.1.9) we see that it can be obtained
from the GR equation with the replacement a(η) → ã(η). It can then be formally
obtained from the variation of the quadratic action resulting from the replacement
a(η)→ ã(η) in eq. (3.1.16), i.e. from

SRT
2 [h] =

1
32πG ∑

A

∫
d3xdη ã2 [∂ηhA∂ηhA − ∂khA∂khA

]
. (3.1.21)

Introducing an effective Newton’s constant from

1
G̃(η)

≡ 1
G

ã2(η)

a2(η)
(3.1.22)

we can rewrite eq. (3.1.21) as

SRT
2 [h] = ∑

A

∫
d3xdη

1
32πG̃(η)

a2 [∂ηhA∂ηhA − ∂khA∂khA
]

. (3.1.23)

Thus, as far as tensor perturbations are concerned, at the quadratic level the modi-
fied gravity model can be obtained from GR with the replacement G → G̃(η). Note
that G̃(η) plays the role of an effective Newton’s constant for tensor perturbations
only and is, in general, different from the effective Newton’s constant governing
scalar perturbations. For example, we have seen in Section 2.1.2 that, in the RT
model, scalar perturbations are governed by a different effective Newton’s constant,
that we denoted as Geff(η, k), and which, contrary to G̃(η), depends also on the
wavenumber k.

Repeating the above derivation of the energy-momentum tensor of GWs, eq. (3.1.18)
becomes

tµν =
1

16πG̃(η)
∑
A
〈∂µhA∂νhA − gµν

1
2

gρσ∂ρhA∂σhA〉 , (3.1.24)

simply because the variation δS2[h]/δḡµν is insensitive to the time dependence of
G̃(η). The energy density ρgw = t00 is then given by

ρgw =
1

16πG̃(η)

1
a2 ∑

A
〈(∂ηhA)

2〉 . (3.1.25)

Notice that the 1/a2 factor comes from the transformation from tηη to ttt, i.e. from
the relation dt = adη. This is determined by the FRW background metric, so it
still involves a rather than ã. In contrast, hA ∝ sin(kη + α)/ã and therefore now,
for kη � 1, ∂ηhA ∝ k cos(kη + α)/ã, which replaces eq. (3.1.20). Again, the term
cos2(kη + α) averages to 1/2, so in the end the time dependence of ρgw is

ρgw ∝
1

16πG̃(η)

1
a2 ã2 =

1
16πG

1
a4 . (3.1.26)

Thus, once taken into account the fact that the modification of the Einstein equations
implies also a modification of the formula for the GW energy-momentum tensor, we
find that, in FRW, the GW energy density of the modified gravity model still scales
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as 1/a4, despite modified GW propagation. Therefore, the energy density still cor-
responds to that of an ensemble of massless gravitons, whose number density in
comoving coordinates is constant (so that the number density in physical coordi-
nates scales as 1/a3) and whose energy scales as 1/a. Notice also that the redshift
of the graviton frequency ω ∝ 1/a, or of the wavelength as λ ∝ a, are kinemati-
cal properties that depend only on the background FRW metric, and are the same
in GR and in modified gravity. Since the RT model obeys an equation of the class
in eq. (3.1.7) (and many other models do, as we already mentioned before), this re-
sult about graviton number conservation also gives useful guidance for attempts at
deriving the RT model from a fundamental local theory. In particular, it rules out the
possibility that the RT model could be derived from a theory with extra dimensions
in which gravitons are lost to a higher-dimensional bulk, and rather points towards
the dynamical mass generation mechanisms discussed in sect. 1.3.4.

In some models, like the RR model, not only ρGW ∝ 1/a4, but furthermore the
effective Newton constant G̃ for the tensor perturbations is the same as the effective
Newton’s constant Geff in the scalar sector. In particular, it can be shown [171] that
this relation holds in any modified gravity theory described by an action of the form

S =
1

8πG

∫
d4x

√
−g A(φ)R + . . . , (3.1.27)

which is minimally coupled to matter, where A can be a nontrivial functional of
extra fields in the gravitational sector, here denoted collectively as φ, and the dots
denote other possible gravitational interaction terms, that can depend on φ but do
not contain terms purely quadratic in the gravitational field hµν nor interactions with
ordinary matter.

It is important to observe that the time variation of the effective Newton constant
Geff(η, k) can only hold on cosmological scales. At such scales, typical cosmological
models predict a time dependence such that, today, |Ġ/G| ' H0, with a coefficient
in general of order one. A scenario in which this result holds down to Solar Sys-
tem or Earth-Moon scales would be ruled out by Lunar Laser Ranging experiments,
that by now impose a bound |Ġ/G|<∼ 10−3H0 [167]. If a model predicts a non-trivial
value for the ratio d gw

L (z)/d em
L (z) and its “tensor” Newton constant is equal to the

“scalar” Newton constant, then, to be observationally viable, it must have a screen-
ing mechanism at short scales, so that the time-dependent effective Newton constant
Geff(η, k) cannot be extrapolated down to the Earth-Moon scale (this is the case, for
instance, for Hordenski, DHOST theories, and bigravity).

Phenomenological parametrization of d gw
L (z)/d em

L (z)

It is useful to introduce a simple parametrization for the modified GW propagation
effect, in the same spirit of what is usually done for the background evolution and
for the scalar sector of modified gravity theories. Of course, a parametrization is
useful when it encompasses a large class of theories. We know that the deviation of
the background evolution from ΛCDM is determined by the DE density ρDE(z) or,
equivalently, by the DE equation of state wDE(z). In principle one could try to recon-
struct the whole function wDE(z) from cosmological observations, but current results
are unavoidably not very accurate (see e.g. fig. 5 of [209]). The standard approach
is rather to use a parametrization for this function, that catches the qualitative fea-
tures of a large class of models. The most common is the Chevallier–Polarski–Linder
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parametrization [108, 109], which makes use of two parameters (w0, wa),

wDE(a) = w0 + wa(1− a) , (3.1.28)

corresponding to the value and the slope of the function at the present time. In terms
of redshift,

wDE(z) = w0 +
z

1 + z
wa . (3.1.29)

One can then analyze the cosmological data adding (w0, wa) to the standard set of
cosmological parameters. Similarly, some standard parametrizations are used for
describing the modification from GR in the scalar perturbation sector, in order to
compare with structure formation and weak lensing, see e.g. [113, 112].

Here we are interested in tensor perturbations, where the effect is encoded in
the non-trivial function d gw

L (z)/d em
L (z). Again, rather than trying to reconstruct this

whole function from the data, it is more convenient to look for a simple parametriza-
tion that catches the main features of a large class of models in terms of a small
number of parameters. We now introduce the 2-parameter parameterization that
we proposed in [171],

Ξ(z) ≡ d gw
L (z)

d em
L (z)

= Ξ0 +
1− Ξ0

(1 + z)n , (3.1.30)

which depends on the parameters Ξ0 and n, both taken to be positive. In terms of
the scale factor a = 1/(1 + z) corresponding to the redshift of the source,

d gw
L (a)

d em
L (a)

= Ξ0 + an(1− Ξ0) . (3.1.31)

The value Ξ0 = 1 corresponds to GR. This parameterization is designed to smoothly
interpolate between a unit value

Ξ(z� 1) = 1 , (3.1.32)

at small redshifts – where cumulative effects of modified gravity wave propagation
have not sufficient time to accumulate differences with respect to GR, see eq. (3.1.13)
– to a constant value Ξ0

Ξ(z� 1) = Ξ0 , (3.1.33)

at large redshift. The index n determines the rate at which this asymptotic value is
reached. Indeed, in the large redshift regime we expect that the effects of modified
gravity “turn-off” and |δ(z � 1)| � 1, since modified gravity should mainly af-
fect late-time evolution (also for ensuring compatibility with CMB observations), in
which case the quantity Ξ(z) approaches a constant. This (Ξ0, n) parametrization
was originally proposed in [171], inspired by the fact that it fits extremely well the
prediction for Ξ(z) obtained from nonlocal modifications of gravity (see also [30]
for a review), but it was then realized that its features are very general, so that it is
expected to fit the predictions from a large class of models. Indeed, it has been con-
firmed in [200] that this parametrization fits well scalar-tensor theories (both models
in the Horndeski class, e.g. f (R) and coupled Galileon models, and DHOST theo-
ries).
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Given this (Ξ0, n) parametrization, from eq. (3.1.13) we have

δ(z) = − d ln Ξ(z)
d ln(1 + z)

=
n (1− Ξ0)

1− Ξ0 + Ξ0(1 + z)n . (3.1.34)

In this parametrization the quantity δ(z) indeed goes to zero at large redshifts, as
desired since at early times gravity propagates as in GR. At late times, instead, δ(z�
1) = n (1− Ξ0).

In general the parametrization (3.1.30) of d gw
L (z)/d em

L (z) is more robust than the
corresponding parametrization (3.1.34) of δ(z). Indeed, even if δ(z) should have
some non-trivial features as a function of redshift, such as a peak, still these features
will be smoothed out by the integral in eq. (3.1.13). Since anyhow d gw

L (z)/d em
L (z)

must go to one as z→ 0 and we expect that in most models it will go asymptotically
to a constant at large z, in general the fit (3.1.30) to d gw

L (z)/d em
L (z) will work reason-

ably well even in cases where the corresponding fit (3.1.34) is not too good. This is
the case for example in DHOST theories, see Section 3.1.2 of [200].

The main exception to the validity of the (Ξ0, n) parametrization in eq. (3.1.30)
is bigravity, where the effects of graviton oscillations lead to a peculiar behavior for
the GW luminosity distance as a function of redshift, see Section 3.3 of [200].

To conclude this Section, let us emphasize the importance of modified GW prop-
agation, as encoded for instance in the parameters (Ξ0, n) defined by eq. (3.1.30), for
studies of dark energy and modified gravity at advanced GW detectors. This stems
from two important considerations:

1. We have seen that, in general, a modified gravity model induces deviations
from ΛCDM at the background level (through the DE equation of state), in the
scalar perturbation sector, and in the tensor perturbation sector. Concerning
the background modifications, as encoded for instance in the (w0, wa) param-
eters, several studies [180, 181, 188, 171] have shown that the accuracy that
LISA, or third-generation ground-based interferometers such as the Einstein
Telescope, could reach on w0 is not really better than the measurement, at the
level of a few percent, that we already have from Planck in combination with
other cosmological probes such as Baryon Acoustic Oscillations (BAO) and Su-
pernovae (SNe). The results presented in the next Sections will indeed confirm
these findings. In contrast, d gw

L (z)/d em
L (z) is an observable that is only acces-

sible thanks to GW observations.

2. On top of this, we realized in [170, 171] that, in a generic modified gravity the-
ory, in which the deviation of d gw

L (z)/d em
L (z) from 1 is of the same order as the

deviation of wDE(z) from −1, the effect of d gw
L (z)/d em

L (z) on standard sirens
dominates over the effect of wDE(z). This can be understood from the explicit
expression of the standard (“electromagnetic") luminosity distance given in
eq. (3.1.6). From this expression one might think, naively, that if one changes
the equation of state of DE by, say, 10%, this will induce a corresponding rela-
tive variation of dL again of order 10%. However, this is not true because the
cosmological parameters, such as H0 and ΩM, that enter in eq. (3.1.6), are not
fixed, but must themselves be determined self-consistently within the model,
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by comparing with cosmological observations and performing Bayesian pa-
rameter estimation, and their best-fit values change if we modify the DE con-
tent of the model. The fit to cosmological data basically amounts to requiring
that the model reproduces some fixed distance indicators at large redshifts,
such as the scale determined by the peaks of the CMB or that from the BAO.
Thus, Bayesian parameter estimation has a compensating effect, changing the
luminosity distance in a direction opposite to that induced by a change in
ρDE(z), in such a way to keep as small as possible the variation of d em

L (z) at
large redshifts. Thus, after performing Bayesian parameter estimation, a rela-
tive change in wDE by, say, 10%, would only induce a relative change of order,
say, 1% in dL(z). In contrast, modified GW propagation is an extra effect, that
is not compensated by degeneracies with other (fitted) cosmological parame-
ters, and therefore dominates over the effect of wDE. We confirm this physical
argument in the next Sections, where , where we found that, using standard
sirens at LISA [200] or 3G detectors [210] (Einstein Telescope, Cosmic Explorer)
in combination with other cosmological probes, Ξ0 can be measured with a sig-
nificantly better accuracy than w0.

Therefore Ξ0, or more generally modified GW propagation, is a prime observ-
able for dark energy studies with advanced GW detectors.

3.1.2 GW propagation in the RT model

We now discuss GWs in the RT model, focusing on the signal from coalescing bina-
ries at cosmological distances. First of all, notice that this model only changes the
gravitational part of the action but not the matter action, so the coupling to matter
is unchanged, and at the linearized level, is still given by the usual hµνTµν coupling.
Thus, the source term in eq. (3.1.1) is not affected. Furthermore we have seen that,
at short scales, such as the distance between the two bodies in a coalescing binary,
the RT model reduces to GR to huge accuracy, so there is no appreciable modifica-
tion to the orbital dynamics of a binary system, and the waveform produced by a
coalescing binary in the region far from the source (where the 1/r GW behavior sets
in, but still the expansion of the Universe can be neglected) is the same as in GR. In
the signal received by a coalescing binary, the only difference will then come from
the free propagation of the GW from the source to the observer, across cosmological
distances. The equation governing the free propagation of tensor perturbations in
the RT model is [31]

h̃′′A + [2H− 3γV̄aH0]h̃′A + k2h̃A = 0 . (3.1.35)

So the ‘friction term’ 2Hh̃′A is modified with respect to GR, but the term k2h̃A is not.
Thus, first of all we see that the RT model passes the constraints from the speed of
GWs. As we have mentioned, this is a non-trivial constraint that has ruled out many
modified gravity theories. (3.1.35) is of the form (3.1.7), with

δ(η) =
3γV̄(η)H0

2H(η)
, (3.1.36)

where we have used H = aH. Recall that, for the RT model in a FRW background,
we have defined the auxiliary field V from V = H0S0, where S0 is the µ = 0 compo-
nent [in coordinates (t, x)] of the auxiliary four-vector field Sµ of the RT model, see
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FIGURE 3.1: The functions δ(z) (left panel) and d gw
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L (z) (right
panel), for the minimal RT model (blue solid line) and for RT with
∆N = 34 (magenta, dashed), ∆N = 50 (green, dot-dashed) and ∆N =

64 (cyan, dotted) and ∆N = 100 (black solid line). From [31].
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solid line), using for each model its own mean values of H0 and ΩM.

From [31].

eq. (2.1.22). Recalling the definition (2.1.6) of γ, we can also write eq. (3.1.36) as

δ(η) =
m2S̄0(η)

6H(η)
. (3.1.37)

Using the numerical solution of the background evolution equation of the RT model
studied in Section 2.1.1, we can therefore immediately compute δ and d gw

L /d em
L , as

functions of the redshift. The results are shown in Fig. 3.1. These results are quite
spectacular, in particular at large ∆N. For instance, for ∆N = 64, at large z the ratio
d gw

L /d em
L tends asymptotically to a value ' 1.65, corresponding to a 65% deviation

from GR, a truly huge effect. In the limit of large ∆N [exemplified here by the case
(Minfl = 1016 GeV, ∆N = 100); as we mentioned, for Minfl = 1016 GeV this asymp-
totic curve is actually reached already at ∆N >∼ 70], at large z the ratio d gw

L /d em
L

reaches a value ' 1.80, i.e. a 80% deviation from GR. Similarly, at z = 0, δ(0), in the
limit of large ∆N, saturates to a value −1.11, so, in eq. (3.1.7), near z = 0 the term
1− δ(0) ' 2.11 is more than twice the GR value.

This is very surprising because we have seen that, for all values of ∆N, the RT
model differs from ΛCDM by less that 1% at the level of background evolution (see
fig. 2.2), and by a few percent to below percent level, depending on wavenumber, for
the scalar perturbations, see e.g. Figs. 2.5-2.14. This is indeed what allows the model
to fit well the current cosmological observations. One would have then naturally
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guessed that also in the tensor perturbation sector the differences would be of the
same order. Instead, for large ∆N, they are much bigger, a very good news for GW
experiments.

For comparing the RT model to ΛCDM the relevant quantity, rather than the
ratio of d gw

L to d em
L , both computed within the RT model, is actually the ratio of d gw

L ,
computed in the RT model, to the luminosity distance dΛCDM

L computed in ΛCDM
(for which the notion of electromagnetic and GW luminosity distance coincide), and
in which, in each model, the respective mean values of the parameters H0 and ΩM

are used. However, the results for dgw,RT
L /dΛCDM

L turn out to be practically the same
as the results shown in the right panel of Fig. 3.1. This can be seen by writing

dgw,RT
L (z)

dΛCDM
L (z)

=

(
dgw,RT

L (z)

dem,RT
L (z)

)
×
(

dem,RT
L (z)

dΛCDM
L (z)

)
, (3.1.38)

where, for clarity, we have denoted by dgw,RT
L (z) the GW luminosity distance d gw

L in
the RT model. The first factor on the right-hand side is the quantity that we have
already shown in the right panel of Fig. 3.1. The second factor is shown in Fig. 3.2,
and we see that is very close to one; in particular, for the RT model with large ∆N, it
reaches at most a value of order 1.006 for ∆N = 100 near z ' 0.3, and then quickly
goes asymptotically to values of order 1.001. This can be understood observing that
the ratio dem,RT

L (z)/dΛCDM
L (z) is determined by two factors. First, by the different

mean values of H0 and ΩM between the RT model with the given ∆N and ΛCDM;
second, by the different redshift dependence of the DE density, or, equivalently, the
different DE equation of state wDE(z). However, we have seen in Table 2.2 that
Bayesian parameter estimation gives for the RT model values of H0 and ΩM very
close to those of ΛCDM, particularly at large ∆N; furthermore, as discussed in [171],
the change in the value of these parameters goes precisely in the direction to can-
cel the effect in the change of the DE equation of state. This is due to the fact that
Bayesian parameter estimation in practice requires the model to fit some fixed dis-
tance scales at large redshifts, such as the scales given by the CMB peaks or by the
BAO oscillations; thus, if, compared to ΛCDM, one changes wDE(z) in the direction
of giving, say, a larger (electromagnetic) luminosity distance at large redshift, H0 and
ΩM change in the direction such that they partially compensate for this change. As a
result the electromagnetic luminosity distance, particularly at moderate to large val-
ues z, changes very little. Thus, the difference in the GW luminosity distance of the
RT model, compared to ΛCDM, in practice is entirely given by the effect of modified
GW propagation, while the DE equation of state and the difference in H0 and ΩM
among RT and ΛCDM have a negligible effect.

As we already discussed, the z dependence of the ratio d gw
L /d em

L is easily un-
derstood observing that, by definition, at z → 0 we must have d gw

L /d em
L → 1 be-

cause, if the distance to the source goes to zero, there can be no effect from modified
GW propagation. At large z, d gw

L /d em
L goes to a constant because, in the RT model,

as in most other modified gravity model, the emergence of dark energy is a rela-
tively recent phenomenon, so the modifications to GR, and hence the function δ(z)
in eq. (3.1.7), go to zero at large redshifts. As a consequence, at large z the integral in
eq. (3.1.13) saturates to a constant value. As shown in Fig. 3.3, the numerical results
for d gw

L (z)/d em
L (z) are extremely well fitted by the simple (Ξ0, n) parametrization

in eq. (3.1.30). The best-fit values of Ξ0 and n are given in Table 3.1.
Comparing Fig. 3.3 with Fig. 2.3, we see that the (Ξ0, n) parametrization works

much better than the (w0, wa) parametrization for the equation of state. This is due
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FIGURE 3.3: The function d gw
L (z)/d em

L (z) from the numerical inte-
gration (blue solid line), compared with the fit (3.1.30) (magenta,
dashed). Upper left panel: for the minimal RT model; upper right:
RT with ∆N = 34; lower left: RT with ∆N = 50; lower right: RT with

∆N = 64. From [31].

RT, minimal ∆N = 34 ∆N = 50 ∆N = 64 ∆N = 100
Ξ0 0.93 1.27 1.49 1.65 1.80
n 2.59 2.08 2.00 1.95 1.91

δ(0) 0.15 −0.46 −0.76 −0.95 −1.12
δ(0)/(1− Ξ0) 2.29 1.67 1.54 1.46 1.39

TABLE 3.1: Table from [31].Values of Ξ0, n, δ(0) ≡ δ(z = 0) and
δ(0)/(1− Ξ0) for the RT model with various values of ∆N. The re-
sults have been obtained using for each model its own mean values

for ΩM and h0 from Table 2.2.

to the fact that eq. (3.1.30) catches correctly both the z→ 0 limit and the large z limit.
Fig. 3.4 compares the numerical result for δ(z) (blue solid line) with the fit of

eq. (3.1.34), using the same values of Ξ0 and n as in Table 3.1 (magenta, dashed
lines). We see that the (Ξ0, n) parametrization provides a fit to δ(z) less good than to
d gw

L (z)/d em
L (z), particularly near z = 0. This is due to the fact that, for d gw

L (z)/d em
L (z),

the (Ξ0, n) parametrization catches correctly both the value in z = 0 and the large
z limit; thus, as long as d gw

L (z)/d em
L (z) is smooth in between, it is natural to find a

value of n such that the (Ξ0, n) parametrization performs well. In contrast, the value
of δ(z = 0) is not automatically reproduced by the parametrization (3.1.34), and
indeed we see from the figures that in this region the parametrization is not accu-
rate. For instance, the numerical integration gives the values of δ(0) ≡ δ(z = 0)
shown in Table 3.1, while the parametrization (3.1.34) would incorrectly predict
δ(0) ' {0.17,−0.57,−0.98,−1.27,−1.53}. Note that, with the parametrization of
eq. (3.1.30) and eq. (3.1.34), we have

δ(0) = n(1− Ξ0) . (3.1.39)

This suggests that, after having fixed Ξ0 so to reproduce exactly the large-z behavior
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FIGURE 3.4: The function δ(z) from the numerical integration (blue
solid line), compared to the parametrization (3.1.34) with the value of
n obtained from the best fit to d gw

L (z)/d em
L (z) (magenta, dashed), and

with n = δ(z = 0)/(1− Ξ0) (green, dot-dashed). Upper left panel:
for the minimal RT model; upper right: RT with ∆N = 34; lower left:

RT with ∆N = 50; lower right: RT with ∆N = 64. From [31].

of d gw
L (z)/d em

L (z), rather then choosing n from a best fit to d gw
L (z)/d em

L (z), we could
choose n = δ(0)/(1−Ξ0), so that the parametrization (3.1.34) reproduces exactly the
value of δ(0). The values obtained in this way are given in the last line of Table 3.1.
If one uses these values of n, the fit to d gw

L (z)/d em
L (z) significantly degrades, but

the fit to δ(z) becomes more accurate, and is shown as the green dot-dashed lines
in Fig. 3.4. In general, since the directly observable quantity is d gw

L (z)/d em
L (z), it is

more important to have a simple and accurate analytic representation for it, rather
than for δ(z). Of course, for an accurate comparison with the data, one can also use
directly the results of the numerical integration, which are obtained very quickly.

For comparison, the result for the RR model is also of the form (3.1.7), except that
the function δ is given by

δ =
3γ dV̄/d log a
2(1− 3γV̄)

, (3.1.40)

and now V = H2
0 S, where S is the auxiliary field of the RR model, defined by U =

−2−1R and S = −2−1U. The numerical integration then gives again a result very
well fitted by eq. (3.1.30), with Ξ0 ' 0.97 and n ' 2.5 [171]. However, contrary to
the RT model, here the deviation from GR is only about 3%.
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3.2 Cosmology at 2G and 3G detectors

We now analyze the cosmological information that is possible to extract from the cur-
rent and future generations of gravitational-wave detectors, in particular regarding
the dark energy sector of the Universe. We have seen that, already from a theoreti-
cal point of view, modified gravitational-wave propagation plays a primary role for
testing modified gravity theories that attempt an explanation of dark energy. Here
we want to substantiate this statement quantitatively and, furthermore, we want to
study the most general cosmological constraints that GW detectors will be able to
provide. In this way we can also compare them with the information already avail-
able from electromagnetic observations.

The first observations of gravitational waves (GWs) from binary black-holes co-
alescences [211, 212, 213, 214, 215, 216], as well as the first observation of a neu-
tron star binary coalescence [217], together with the associated γ-ray burst (GRB)
[218, 219, 190] and the follow-up studies of the electromagnetic counterpart (see
[220] and references therein) have opened the era of GW astronomy. In the near fu-
ture, with advanced LIGO and advanced Virgo reaching their target sensitivity, and
other detectors such as KAGRA and LIGO-India joining the search, it is expected
that such detections will take place routinely. On a longer timescale the space in-
terferometer LISA [221], that is expected to fly in 2034, and third-generation (3G)
ground-based interferometers currently under study, such as the Einstein Telescope
(ET) in Europe [222, 223] and Cosmic Explorer (CE) in the US [224], will have the
potential of detecting a large number of coalescing compact binaries at cosmological
redshifts.

In this Section we follow [210] and present our contribution to the currently on-
going effort for exploring the scientific potential of 3G interferometers (see the recent
ET Science Case paper [225]), by performing an updated study of the cosmological
information that can be obtained from the observation of standard sirens. Follow-
ing [210], we focus on binary neutron stars (BNS) with an electromagnetic counter-
part as appropriate for ground-based detectors, since in this case BNS merge within
the bandwidth of the detector, and thus can in principle be detected in coincidence
with an electromagnetic signal that can allow us to identify the host galaxy and
therefore obtain the redshift.

Using the strategy presented in [226, 227, 228, 229, 230, 231], we start by con-
structing mock catalogs of BNS detections at GW detectors. We consider first a
network of 2G detectors composed by advanced LIGO-Hanford, advanced LIGO-
Livingston, advanced Virgo, Kagra and LIGO India, assumed to be at their target
sensitivity. We will refer to this as the HLVKI network. We will then consider 3G
detectors studying two different configurations, namely a single ET detector, and a
network made of a single Einstein Telescope plus two Cosmic Explorers.

We will then study the possibility of simultaneous detection of an electromag-
netic counterpart, focusing on the case of a joint GW-GRB detection. A single GW
detector, even in a triangular configuration as planned for ET, cannot provide the
localization of a coalescing binary with a significant accuracy. However, the de-
tection of a temporally coincident GRB can still allow for the measurement of the
redshift of the source; indeed, GRB satellites such as Swift regularly obtain redshifts
of GRBs, without the need of a GW localization. In particular, for 3G detectors we
will estimate the expected number and the redshift distributions of coincidences be-
tween GW events and the electromagnetic signal observed at a GRB detector with
the characteristics of the proposed THESEUS mission [232, 233, 234], that could be
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in operation at the same time as 3G detectors.2

A network of third-generation GW detectors, such as the ET+CE+CE configura-
tion, would instead localize the source, whose redshift could then be measured also
by optical/IR telescopes. For instance, the electromagnetic signal from a kilonova
associated to a BNS coalescence could be detected up to z ' 0.55 by optical imag-
ing at LSST and Subaru, up to z ' 0.76 with infrared imaging at WFIRST, and up
to z ' 0.37 by optical spectroscopy at ELT. However, it is currently difficult to esti-
mate how much telescope time will be devoted by these facilities to the follow-up
of GW events. Here we limit ourselves to the coincidence with GRB detectors, but
we should keep in mind that, for a network with significant localization capabilities
such as ET+CE+CE, at z<∼ 0.5 a significant number of coincidences with optical/IR
telescopes is in principle possible, to the extent that the number of such coincidences
could be much larger than those obtained from GRB detections, so for such a net-
work our estimates will be conservative. To construct our mock source catalogs we
will examine different possibilities for the local merger rate and for the probability
of determining the redshift through the detection of an associated GRB.

3.2.1 Mock source catalogs

GW events

In order to simulate a catalog of binary neutron stars coalescences, we first produce
an extra-galactic population of neutron star binaries using the Monte Carlo algo-
rithm developed in [226, 227, 228, 229, 230, 231]. We use the fiducial model of [235]
for the distribution of the parameters and we proceed as follows for each source: the
location in the sky Ω̂, the cosine of the orientation ι, the polarization ψ and the phase
of the signal at coalescence φ0, are drawn from uniform distributions. The redshift
is drawn from a (normalized) probability distribution p(z),

p(z) =
Rz(z)∫ 10

0 Rz(z)dz
, (3.2.1)

where Rz(z) is the merger rate density per unit redshift, in the observer frame. It can
be expressed as

Rz(z) =
Rm(z)
1 + z

dV(z)
dz

, (3.2.2)

where dV/dz is the comoving volume element and Rm is the rate per volume in the
source frame. The latter is given by

Rm(z) =
∫ tmax

tmin

R f [t(z)− td]P(td)dtd , (3.2.3)

where R f (t) is the formation rate of massive binaries, P(td) is the distribution of the
time delay td between the formation of the massive progenitors and their merger,
and t(z) is the age of the Universe at the time of merger. We assume that R f (t) in
eq. (3.2.3) follows the cosmic star formation rate, for which we use the recent model

2We stress that, in this thesis, we are referring to the capabilities of the future THESEUS mission
as they were estimated when ref. [210] was written. These prospects could be modified with time,
according to what sensitivity is judged to be realistic. From internal communications, it seems that
the actual capability of THESEUS should be degraded with respect to the one assumed when the
study [210] was conducted. As a consequence, the new forecasts for cosmological studies with joint
GW/GRB detections at ET/THESEUS could be different from what we discuss here.
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FIGURE 3.5: The strain sensitivities of advanced and 3G GW detec-
tors. For ET we use the ET-D sensitivity curve. From [210].

of [236]. We further assume that the time delay distribution follows P(td) ∝ tα
d , with

α = −1 for td > tmin, where tmin = 20 Myr is the minimum delay time for a massive
binary to evolve until coalescence, and tmax is a maximum time delay, set equal to
the Hubble time. The overall normalization is fixed by requiring that the value of Rm
at z = 0 agrees with the local rate estimated from the O1 LIGO observation run and
the O2 LIGO/Virgo observation run [216], using the median rates obtained from the
GstLAL pipeline. The result depends on the assumption for the mass distribution of
the neutron stars. For a flat mass distribution

Rm(z = 0) = 662 Gpc−3 yr−1 , (3.2.4)

while for a Gaussian mass distribution

Rm(z = 0) = 920 Gpc−3 yr−1 . (3.2.5)

In the following we will refer to them just as the “O2 rates”, and we will give our
results both for the flat distribution and for the Gaussian distribution. To have a
quantitative measure of how the results depend on our astrophysical assumptions,
we will also generate alternative catalogs of GW events by assuming a Madau-
Dickinson star formation rate [237] and an exponential time delay between forma-
tion and merger with an e-fold time of 100 Myr [238]. This will also allow us to
compare with the results presented in Table 1 of ref. [239], which also computes
the number of BNS detected per year at the HLVKI network and at the ET+CE+CE
network under these astrophysical assumptions [and using a local comoving BNS
merger rate of 1000 Gpc−3yr−1, that is close to our rate for a Gaussian mass distribu-
tion, eq. (3.2.5)].

Next, for each BNS generated by this procedure, we determine if its resultant
GW emission is detectable with a given GW detector network. We consider three
cases: (1) a 2G network composed by advanced LIGO-Hanford+advanced LIGO-
Livingston+advanced Virgo+Kagra+LIGO India (HLVKI). (2) A single 3G detector,
chosen according to current estimates for the sensitivity of the Einstein Telescope.
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(3) A three-detector network made by ET and two CE. The sensitivity curves that we
use are shown in Fig. 3.5.3 The signal-to-noise ratio (SNR), ρa, detected by matched
filtering with an optimum filter in the ideal case of Gaussian noise, in a detector
labeled a, is

ρ2
a = 4

∫ ∞

0
d f
|F+,ah̃+ + F×,ah̃×|2

Sn,a
, (3.2.6)

where f is the GW frequency in the observer frame, h̃+ and h̃× the Fourier trans-
forms of the GW strain amplitudes of + and × polarizations, F+,a and F×,a are the
antenna response functions to the GW + and× polarizations, and Sn,a( f ) is the one-
sided noise power spectral density (PSD) of detector a. The coherent SNR, assuming
uncorrelated noises among the detectors, is simply given by the quadrature sum of
the individual SNRs, ρ2

tot = ∑a ρ2
a. The triangular configuration of ET provides three

independent differential signals between the arms, equivalent to three detectors, and
again the coherent SNR is given by the quadrature sum of the individual SNRs for
these three equivalent detectors.

For low-mass systems such as BNS the SNR in one detector is dominated by the
inspiral part of the signal and is then given

ρ2
a =

5
6
[GM(1 + z)]5/3F 2

a

c3π4/3d2
L(z)

∫ finsp(z)

fmin

d f
f−7/3

Sn,a( f )
. (3.2.7)

Here M is the intrinsic chirp mass, a combination of the two component masses,
dL(z) is the luminosity distance, G is the gravitational constant, c is the speed of
light, fmin is the low frequency limit of the detector and finsp(z) = finsp/(1 + z)
is the observed (redshifted) gravitational-wave frequency at the end of the inspiral
phase. The factor

F 2
a =

(1 + cos2 ι)2

4
F2
+,a + cos2 ι F2

×,a , (3.2.8)

characterizes the detector response. In order to decide which detectors contribute
to the combined SNR, we assume that each detector has a duty cycle of 80%. We
then classify the event as detectable if the combined SNR among the detectors in the
network, ρtot, is larger than a SNR threshold level, that we take to be ρthreshold = 12.
Both for the HLVKI network and for 3G detectors we assume for definiteness 10
years of running (which, given the 80% duty cycle for each detector, corresponds to
a shorter stream of actual coincident data). This assumption should be taken as a
limiting case (which, for the 2G case, is also necessary to have a sufficient sample of
events to obtain the convergence of our MCMC); however, the results for a shorter
time span T can be obtained basically by rescaling our results by a factor

√
T/10 yr,

corresponding to the fact that, with a large number of events N, the error scales
roughly as 1/

√
N.

In order to generate our mock catalogs of measured luminosity distances of stan-
dard sirens, we assume a fiducial ΛCDM model with ΩM = 0.3087 and H0 =
67.64 km s−1 Mpc−1, corresponding to the mean values obtained from the CMB +
BAO + SNe dataset that we will use, which is presented in detail in Section 3.2.2.
Extracting randomly the redshift of the source from the theoretical distribution ob-
tained from eqs. (3.2.1)–(3.2.3) and using our fiducial cosmological model, we obtain
a value of dL(z) for each source. To take into account the observational error in the
reconstruction of the luminosity distance from the GW data, we scatter randomly the

3The ET and CE sensitivity curves, as well as the assumed locations of ET (in Europe) and two CE
(in the US) correspond to the choices currently used to develop the Science Case for 3G detectors.
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values of dL(z) according to a Gaussian distribution with a width ∆dL(z) equal to the
expected error in the reconstruction. For each generated event, this is estimated from
∆dL/dL = 1/SNR, following e.g. ref. [176]. Note that, comparing with the result of
an actual mock parameter reconstruction, one finds that, because of the degeneracy
with the inclination angle, this can result in an underestimate of the actual value of
∆dL/dL, by a factor which has a significant scatter from event to event, but is generi-
cally∼ 2 [178]. However, for GW signals detected in coincidence with a GRB (which
are the signals that we consider here), assuming that the GRB is beamed within an
angle of about 25◦ one finds that the correlation between distance and inclination is
substantially broken, and the above estimate becomes more accurate [178].

Beside the instrumental error, we must consider the error due to lensing. Follow-
ing [180, 181], we model it as4(

∆dL(z)
dL(z)

)
lensing

' 0.05z , (3.2.9)

and we add it in quadrature to the instrumental error. However, we will see below
that, for the sources at z < 1.5, that will largely dominate our results, the lensing
error is subdominant with respect to the instrumental error.

If the source is at very low redshift, once determined the measured redshift as
discussed in Section 3.2.1, to obtain the cosmological redshift we must correct for
the peculiar Hubble flow. This is estimated adding an error on z corresponding to a
recessional velocity of the host galaxy of 200 km/s, as in ref. [241].

Electromagnetic counterpart

In general, to identify the counterpart, one can consider two possible strategies. The
first, that has been implemented successfully with GW170817, consists in having a
network of GW detectors, that allows us to localize the source relatively well. Then,
the follow-up with telescopes working, e.g., in the optical or IR can identify the host
galaxy and determine its redshift. The second possibility, that can be applied even
when no GW localization is available (as, for instance, with a single ET detector) is
to use the temporal coincidence of the GW event with a short GRB; for many short
GRBs, the redshift has indeed been determined from the X-ray afterglow, that can
be accurately localized by Chandra or Swift/XRT. For instance, in the sample of 67
Swift short GRBs discussed in [242], 53 events were rapidly followed up with the
on-board X-ray Telescope, leading to 47 detections of the source.

The estimate of the number of coincidences between GW events and electromag-
netic observations depends crucially, of course, on the rate of expected GW events,
as well as on the network of GRB satellites and telescopes available at the time. We
therefore discuss the 2G and 3G cases separately.

GRB coincidences with the HLVKI network. We begin by investigating the pos-
sibility of detecting in coincidence a GW signal at the HLVKI network and a GRB
with the current generation of GRB satellites. We assume here that the Fermi-GBM
can make a coincident detection and that Swift can slew to the combined GW/GRB

4Actually, after publication of [210], we came to know that the linear function in eq. (3.2.9) largely
overestimates the lensing error, see Fig. 12 of the ET Science Case paper [225], adapted from Fig. 3
of [240]. As a consequence the orange lines in Figs. 3.8, 3.9, 3.11, 3.12 must be discarded. In any case,
all this has no effect on the results that we obtain because the lensing error, even when overestimated
from eq. (3.2.9), is negligible with respect to the instrumental error at the redshifts relevant for joint
GW/GRB detections (as mentioned right after eq. (3.2.9)).
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error box and identify an X-ray counterpart. We note here that for 170817A Swift was
occulted by Earth at time of Fermi trigger, so imaging by the X-ray telescope (XRT)
took place around 1 hr post trigger. At that time it was able to cover 90% of the GW
skymap to rule out any bright sources [243].

For a GRB detected in coincidence with a GW signal we require that the peak
flux is above the flux limit of the satellite. Based on the modeling of [244] we assume
a Gaussian structured jet profile model of GRB170817A given by

L(θV) = Lc exp
(
− θ2

V
2θ2

c

)
, (3.2.10)

with L(θ) the luminosity per unit solid angle, θV the viewing angle and Lc and θc
structure parameters that define the angular profile. The structured jet parameter is
given by θc = 4.7◦. The value of Lc is given by Lc = Lp/4π erg s−1 sr−1, where Lp
is the peak luminosity of each burst, which is obtained by sampling Φ(Lp)dLp. We
assume the standard broken power-law distribution of the form

Φ(Lp) ∝
{ (

Lp/L∗
)α , Lp < L∗(

Lp/L∗
)β , Lp > L∗

(3.2.11)

where Lp is the peak luminosity assuming isotropic emission in the rest frame in the
1-10000 keV energy range, L∗ is a characteristic value separating the two regimes,
and the slopes describing these regimes are given by α and β respectively. Following
[245] we use the values α = −1.95, β = −3 and L∗ = 2× 1052 erg sec−1. Given a
source at luminosity distance dL one can convert 4πL(θV) to an observed peak flux
as a function of viewing angle, FP(θV), obtained from the value of the GW inclination
angle. A Fermi-GBM detection is recorded if the value of FP(θV) is greater than the
flux limit of 1.1 ph sec−1 cm−2 in the 50-300 keV band for Fermi-GBM [244], noting
that 95% of the bursts detected in the 64 ms timescale are within this limit. We further
assume the total time-averaged observable sky fraction of the Fermi-GBM, which is
0.60 [246]. Using this procedure, among the events in the GW BNS catalog generated
as discussed in sect. 3.2.1, we select those that have an observed GRB counterpart.

Table 3.2 shows the number of BNS sources along with the number of coincident
GRB detections determined using the procedure above, for the HLVKI network. We
see that 10 years of observation would yield of order 14-15 joint detections. In Fig. 3.6
we show the redshift distribution of the GW events (left panel) and of the GW-GRB
coincidences (right panel), for a realization of our catalog.

To test the impact of changing our astrophysical assumptions, we have also gen-
erated a catalog of GW events assuming a Madau-Dickinson star formation rate and
an exponential time delay between formation and merger with an e-fold time of
100 Myr, as in ref. [239]. In this case, assuming again a duty cycle of 80% and a net-
work SNR threshold level ρthreshold = 12, we find that the number of BNS detected
at the HLVKI network, for the Gaussian mass distribution, is 64/yr, to be compared
with the value 48/yr reported in ref. [239].

GRB coincidences with 3G detectors. For 3G detectors the estimates are of course
more uncertain. Indeed, the identification of the counterpart depends on the net-
work of GRB satellites and of telescopes at the time when 3G detectors will operate,
as well as on issues that are presently difficult to predict, such as the prioritization
that will be given by various telescopes to the follow-up of GW signals.
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FIGURE 3.6: Left panel: the redshift distribution of 10 yr of GW events
from a realization of the mock catalog at the HLVKI network, for the
flat and the Gaussian mass distribution. Right panel: the redshift
distribution of 10-years of GW-GRB coincidences between the HLVKI

network and the current generation of GRB satellites. From [210].

Network GW events Joint GW-GRB events
Flat Gaussian Flat Gaussian

HLVKI 768 814 14 15

TABLE 3.2: Number of GW events detected by second generation
(2G) networks in 10 years, and the expected GW-GRB coincidences
obtained by assuming a GRB detector with the characteristics of
Fermi-GBM. We show detection rates for BNS populations generated
using O2 rates corresponding to both flat and Gaussian mass distri-

butions. From [210].

The proposed THESEUS mission [232, 233, 234] could be particularly useful for
performing coincidences between GW events and GRBs, even in the absence of lo-
calization from the GW signal. A crucial difference with the 2G case is that, at the
sensitivity level of 3G detectors, there will be many more GW events compared to
what GRB satellites could detect. The main reason for this is that the GRB instru-
ments are limited by their flux sensitivity for the more distant GRB emissions at
wider viewing angles. For instance, it was estimated in [180] that ET will be able to
detectO(105− 106) BNS mergers per year. As we will see below our estimate, given
in Table 3.3, is that ET will detect about (6− 7) × 105 events in 8 yr of actual data
taking, corresponding to a rate of order (0.8− 0.9)× 105/yr, consistent with previ-
ous estimates, although somewhat smaller. In any case, according to the estimate
in [233], only about 15− 35 coincident short GRB (sGRB) per year will be detected
by THESEUS with its X-Gamma ray Imaging Spectrometer (XGIS); we will see be-
low that our results, using somewhat different assumptions for the GRB luminosity
and BNS rate, gives a slightly higher number of coincidences, but still of this or-
der of magnitude. Beside the collimated prompt GRB emission, more isotropic soft
X emission is also expected from the afterglow. This could be detected by the Soft
X-ray Imager (SXI) on board THESEUS, leading possibly to a few hundred more de-
tections per year [233]. In any case, the number of joint GW-GRB detections will be
a very small fraction of the number of GW events.

With a network of at least three GW detectors, accurate localization of the GW
signal becomes possible, allowing for electromagnetic follow-up observations, that
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Network GW events Joint GW-GRB events
Flat Gaussian Flat Gaussian

ET 621,700 688,426 389 (128) 511 (169)
ET+CE+CE 5,420,656 7,077,131 644 (213) 907 (299)

TABLE 3.3: Number of GW BNS events detected by third generation
(3G) networks in 10 years of data taking (assuming a 80% duty cy-
cle for each detector) and the corresponding GW-GRB coincidences
obtained by assuming a GRB detector with the characteristics of
THESEUS-XGIS; numbers in parenthesis show the number of sources
with arcmin localisation. BNS populations are generated using the
O2 rates corresponding to ‘flat’ and ‘Gaussian’ mass distributions.

From [210].

could determine the redshift of the source. If the source localization is already avail-
able through GWs, LSST could detect the counterpart up to z ' 0.55 and WFIRST
up to z ' 0.76, and many more telescopes in the UV, optical, IR, radio could detect
the counterpart at smaller redshifts, say z ∼ 0.1− 0.3. However, the follow-up of
O(103) well localized GW events at z ∼ 0.5 would require the equivalent of 1 yr of
dedicated LSST time, which is not realistic. Currently, a more realistic estimate is
that LSST might use of order of 1% of its time for GW follow up, so it will be chal-
lenging for LSST to observe more than O(10) counterparts per year, at z ∼ 0.5. The
localization cost is much smaller at z ∼ 0.1, where O(100) events per year could be
a more realistic expectation, but this will depend on the science prioritization in the
2030s, when 3G detectors will hopefully operate. Given these large uncertainties, in
this analysis we will limit ourselves to the coincidences with GRB detectors.

We repeat our simulations for the coincidence with a single ET detector and with
a ET+CE+CE network, assuming that a THESEUS type satellite will be used for co-
incidence searches. For the GRB detection we assume a duty cycle of 80% due to
a reduction of 20% as the satellite passes through the Southern Atlantic Anomaly,
a flux limit of 0.2 ph sec−1 cm−2 in the 50–300 keV band and a sky coverage frac-
tion of 0.5 [234]. We note that the XGIS will be able to localise sources to around
5 arcmin only within the central 2 sr of its field of view (FOV); outside this central
region localisation will be coarse at best. We therefore consider two scenarios: one,
that we will denote as ‘optimistic’, in which all the events detected by XGIS have a
measured redshift, and one, that we will denote as ‘realistic’, where we assume that
only around 1/3 of the sGRBs detected by XGIS could provide redshift estimates.

Events rates, redshift distributions and error ∆dL(z)/dL(z)

In our MCMCs we will use a given realization of the catalog of events obtained
with the procedure discussed above. It is however useful to describe the qualitative
features of these catalogs, such as the redshift distributions of the events and the
average value of ∆dL(z)/dL(z) as a function of redshift. This will provide a physical
insight into which sources contribute most, to compare with previous works, and to
provide ready-to-use formulas that can be applied to future studies.

Events at a single ET detector.
Table 3.3 shows the results of our simulations for the 3G era in terms of the num-

ber of GW signals from BNS, along with the number of joint GW/sGRB detections;
the number of events with arcmin localisation are shown in parenthesis.
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FIGURE 3.7: Left panel: the redshift distributions of 10-years of BNS
detections by a ET detector. Middle panel: the coincident detections
made by THESEUS in the ‘optimistic’ scenario for the FOV. Right
panel: the coincident detections in the ‘realistic’ scenario. Notice that
the vertical scale for the left panel is very different from that in the

middle and right panels. From [210].

FIGURE 3.8: The ET instrumental contribution to the relative error
∆dL/dL for the specific realization of the catalog of BNS detections
shown in Fig. 3.7. All the GW events, with or without a detected EM
counterpart, are taken into account. Left panel: for the flat distribu-
tion of neutron star masses. Right panel: for the Gaussian distribution
of neutron star masses. In each panel, the cyan shaded area corre-
sponds to all the BNS events, while the coordinates of the blue points
are given by the mean values of the redshift and of ∆dL/dL in each
redshift bin, with the bins chosen as in Fig. 3.7. The blue error bars
are the standard deviations of ∆dL/dL in each redshift bin. The hori-
zontal green line at ∆dL/dL = 1/12 is fixed by the SNR threshold of
12. The red line and the light red region are the fits to the blue points
and error bars, given explicitly in the text. The orange dotted line is
the error on ∆dL/dL induced by lensing. The redshift ranges shown
in the two panels differ as a result of the different maximum values

of redshift reached in the two corresponding catalogs. From [210].



78 Chapter 3. Modified gravitational-wave propagation

For a single ET detector our estimate of the rate of BNS detection is between
6.2× 105 and 6.9× 105 events in 10 yr, having assumed a duty cycle of 80%, which,
in the case of a single detector, corresponds to 8 yr of actual data. This corresponds
to a rate (normalized to the actual time of data taking)

R ' (0.8− 0.9)× 105 BNS/yr , (3.2.12)

consistent with previous estimates, although somewhat smaller. This can be traced
to the fact that we have used a threshold for the network SNR, obtained by combin-
ing the three arms of ET, given by ρthreshold = 12, while previous work, e.g. ref. [181],
used ρthreshold = 8. We also see from Table 3.3 that, with a single ET detector, we
should expect around 39− 51 coincident sGRB/GW events in one year of observa-
tion using the XGIS and the SXI detectors. These numbers differ from the 15− 35
events quoted in [233] for two main reasons. Firstly, the assumed luminosity func-
tion and BNS rate differs from that assumed in [233]. Secondly, our calculations as-
sume a structured jet profile based on GRB170817A. From our sample of detections
one could expect around 13− 17 events yr−1 to have arcmin localisations.

Figure 3.7 shows the redshift distributions of 10-years of BNS detections using
ET, along with the joint GW-GRB distributions with optimistic and realistic scenar-
ios for the FOV of THESEUS. We see that the vast majority of the joint GW-GRB
detections is at z<∼ 1. In this realization of the catalog, the ET event with the highest
redshift is at z ' 2.91 for the flat mass distribution and at z ' 2.10 for the Gaussian
mass distribution, while the joint detection with the highest redshift is at z ' 1.63
(found both in optimistic and realistic scenario for the THESEUS FOV, and for the
Gaussian mass distribution). We find that the higher-z sGRB detections have view-
ing angles close to the jet axis corresponding with almost face-on BNSs; this selection
effect was highlighted in [228].

Figure 3.8 shows the ET instrumental contribution to the relative error on lumi-
nosity distance, considering all the events in the specific realization of the catalog of
BNS detections presented in the left panel of Fig. 3.7. The events are organized in
the same redshift bins as Fig. 3.7 and, for the events belonging to each bin, the mean
value of ∆dL/dL and its standard deviation σ(∆dL/dL) are evaluated. Of course,
the mean value of ∆dL/dL increases with distance, until we reach the threshold at
SNR=12, and therefore the value ∆dL/dL = 1/12, beyond which we no longer record
the triggers as detections. In contrast, its variance eventually decreases; this is due
to the fact that, in a given bin at some intermediate redshift, we have events with
different possible orientations with respect to the detector, and therefore different
SNR. As the redshift increases toward the horizon of the detector, only the events
with optimal orientation can go above the threshold.

It is useful to provide a fit for the mean value and for the standard deviation of
∆dL/dL, as a function of the redshift. In order to increase the significance of the fit,
in the case of flat mass distribution the two highest redshift bins containing events
of the catalog shown in Fig. 3.7 have been excluded (they only contain a very low
number of events and we do not show them in the figure).

It is instructive to compare our fits to the instrumental error on ∆dL/dL, with the
fit to the instrumental error found in [181], which is(

∆dL

dL

)
= 0.1449z− 0.0118z2 + 0.0012z3 , (3.2.13)

as well as with the lensing error (3.2.9). The comparison is shown in Fig. 3.9. We see
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FIGURE 3.9: Our fits to ∆dL/dL for the flat distribution of neutron star
masses (blue solid line) and for the Gaussian case (magenta dashed
line), compared to the error due to lensing given in eq. (3.2.9) (orange
dotted line) and to the fit (3.2.13) to the instrumental error given in

ref. [181] (green dot-dashed line). From [210].

first of all that our fits to the instrumental error are consistent with that of ref. [181]
at low redshifts, say z<∼ 0.3, but are smaller at large redshift. The sensitivity curve
for ET used in ref. [181] [see their eq. (19)] is relatively close to the one that we use,
shown in Fig. 3.5. The reason for the difference is rather that we use a SNR threshold
ρthreshold = 12, while ref. [181] uses ρthreshold = 8. On the one hand, this implies that
we get less events, and up to smaller redshift, compared to ref. [181]. On the other
hand, since ∆dL/dL is estimated as 1/SNR, the events that we retain are those with
smaller value of ∆dL/dL and therefore also the average value of ∆dL/dL over the
events in a redshift bin is smaller. This effect becomes more important as z increases,
as there are many more events that are sub-threshold with respect to ρthreshold = 12,
but above threshold with respect to ρthreshold = 8.

It is also interesting to compare the lensing contribution to ∆dL/dL to the ob-
servational error, in the light of this understanding of the dependence of the aver-
age observational error on the threshold. Comparing the fit obtained in ref. [181]
with ρthreshold = 8, given by the green dot-dashed line in Fig. 3.9, to the lensing
error, given by the orange dotted line, one would be tempted to conclude that, at
ET, the error induced by lensing is negligible at all redshifts. In fact, this state-
ment needs some qualification. The green dot-dashed line represents the average
of ∆dL/dL over an ensemble of events, in the same redshift bin, selected by requir-
ing SNR > ρthreshold = 8. However, within each bin, the events that are most useful
for cosmological studies are those with the smallest errors on ∆dL/dL, i.e. with the
highest SNR. Already selecting only the events with SNR > ρthreshold = 12 reduces
significantly the instrumental error averaged over such events, and we see that for
this ensemble of events lensing becomes larger than the mean value of ∆dL/dL at
z>∼ 1.5.

We have seen above that the vast majority of the GW-GRB coincidences are at
z < 1. Therefore, in our analysis, lensing will indeed be subdominant. However,
it must be kept in mind that, if one restricts the analysis to the ‘golden events’, i.e.
the loudest and best characterized events in each redshift bin (corresponding to the
lower edge of the cyan shaded area in Fig. 3.8), the effect of lensing will become
more and more important. The contribution to the error on ∆dL/dL from lensing,
estimated as in eq. (3.2.9), is shown as the orange dotted line in Fig. 3.8. We see that,
for z < 1, it is comparable to the lower edge of the distribution of events given by the
cyan shaded area, and therefore its inclusion, in quadrature with the observational
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FIGURE 3.10: As in Fig. 3.7 for the ET+CE+CE network and its co-
incidences with THESEUS. For uniformity, we use the same redshift

range in the three panels. From [210].

FIGURE 3.11: As in Fig. 3.8, for the ET+CE+CE network. From [210].

error, at most degrades by a factor
√

2 the error on ∆dL/dL on these very few events
at the edge of the distribution. These events are interesting because they are those
with the smallest error, but for z < 1 they are extremely rare. For larger redshifts the
situation is different and we see that, say at z ' 1.5, for a non-negligible fraction of
the events the error from lensing can be the limiting factor.

Events at a ET+CE+CE network.
In the second line of Table 3.3 we show the results for the ET+CE+CE network.

This configuration, featuring three 3G detectors, can be considered an extreme case.
Other cases, such as one ET detector and two advanced 2G detectors, will be inter-
mediate between this case and a single 3G detector. The result for the GW events in
Table 3.3 in the Gaussian case corresponds to a detection rate of 710k events/yr. To
understand the dependence of these results on the astrophysical assumptions, we
have also generated a catalog of GW events, for ET+CE+CE, assuming a Madau-
Dickinson star formation rate and an exponential time delay between formation and
merger with an e-fold time of 100 Myr. In that case we find 840k events/yr, in good
agreement with the value 990k events/yr found, under similar hypothesis, but a
slightly larger rate Rm(z = 0) = 1000 Gpc−3 yr−1, in ref. [239].

For the coincidences with GRBs we find that, for an ET+CE+CE network, we
would get of order 64− 90 coincident events per year, and around 20− 30 events per
year will have arcmin localisations. Observe that, even if the ET+CE+CE network
has a number of GW detections larger than a single ET by a factorO(10), the number
of coincidences with GRBs is higher only by a factor less than 2. This already tells
us that the bottleneck, for joint GW-GRB detections, is on the GRB side, that cannot
keep pace with the GW detection rate of 3G detectors.

Figure 3.10 shows the redshift distributions of BNS detections using ET+CE+CE,
over 10 yr, along with the joint GW-GRB distributions with optimistic and realistic
scenarios for the FOV of THESEUS. In this realization of the catalog, the ET+CE+CE
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FIGURE 3.12: The fit to the average value of the instrumental error on
∆dL/dL for ET (blue solid line) and for ET+CE+CE (magenta dashed
line) (both, for definiteness, for the flat mass distribution), compared

to the error due to lensing (orange dotted line). From [210].

event with the highest redshift is at z ' 9.63 for the flat mass distribution and at
z ' 9.66 for the Gaussian mass distribution; this is due to the fact that a single CE
already has a reach to BNS of order z ' 9 (while we have seen above that, for BNS,
ET alone reaches z ' 2− 3). For the joint GW-GRB detections we find that the one
with the highest redshift is at z ' 3.38 (found both in optimistic and realistic scenario
for the THESEUS FOV, and for the Gaussian mass distribution). Notice that, in the
left panel, events with z>∼ 6 are not visible on the vertical scale used in the figure,
but are indeed present.

Fig. 3.11 shows the instrumental error for the luminosity distance in our catalog
of events for ET+CE+CE, with the same meaning of the lines and shaded areas as in
Fig. 3.8. The distribution now extends to much higher redshifts, because, as we have
seen, CE (assuming the current design configuration, with 40 km arms) has a much
larger horizon to BNS.

However, we also see from Fig. 3.11 that the contribution to the error from lens-
ing, given by the dotted orange line, becomes quickly dominant at z>∼ 1.5 [assuming
that the linear extrapolation (3.2.9) is still correct at large redshifts]. For the study of
joint GW-GRB detections that we have performed this has a limited impact, as for
ET+CE+CE the bulk of the joint GW-GRB detections is at z<∼ (1− 1.5). Given the
localization capability of the ET+CE+CE network, one could still hope to extract
cosmological information from the very large number of standard sirens at larger
redshifts, through statistical methods. However, at these redshifts the dominant
contribution to ∆dL/dL will come from lensing (similarly to what happens for LISA).
This is clearly seen from Fig. 3.12, where we plot the instrumental error ∆dL/dL at
ET and at ET+CE+CE, in the range z < 2 where they can be compared, and the er-
ror due to lensing. We see that, even if the instrumental error from the ET+CE+CE
network is obviously better than for a single ET, above z ' 1 the error in ET+CE+CE
starts to be dominated by lensing, so that at z>∼ 1.5 both ET and ET+CE+CE are
dominated by lensing and therefore eventually this becomes the limiting factor in
both configurations.

This limitation could however be turned into a virtue. The situation is indeed
similar to the one that was discussed a decade ago in ref. [179], in the context of a
study for the Big Bang Observer (BBO). It was found that also in BBO the error is al-
most entirely dominated by lensing. This means that, once one has determined the
dependence of dL on z from the full ensemble of sources (and possibly by combining
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standard sirens with CMB, BAO and SNe), the scatter around this mean value for
each single BNS event is basically a measurement of the gravitational lensing mag-
nification along that line of sight. Given the very large number of sources, this will
produce a map of the lensing magnification across the sky; in particular, the cor-
responding two-point correlation function gives a measurement of the convergence
power spectrum, and provides important information on cosmological structure for-
mation.

3.2.2 Constraints on ΛCDM parameters

In this section we study how the addition of the standard sirens with GRB counter-
part that could be observed with the HLVKI network or with 3G detectors, would
contribute to the knowledge of cosmological parameters in ΛCDM. The measure-
ment of the luminosity distances from a set of coalescing binaries therefore gives
constraints on H0 and ΩM.

The most accurate results are obtained by combining the constraints from stan-
dard sirens with other cosmological datasets such as CMB, BAO and SNe, to remove
the degeneracies between cosmological parameters. A priori it would be interesting
to study also the constraints that emerge using only standard sirens, that, even if less
constraining, are conceptually interesting because they have systematics completely
different from those of electromagnetic observations. However, for 2G detectors
with a counterpart identified through a GRB, we find that the number of sources is
too small to obtain significant results from standard sirens alone, and we will present
only the results obtained by combining standard sirens with CMB+BAO+SNe. For
3G detectors, we will also show the separate results from standard sirens. When
combining standard sirens with CMB, BAO and SNe, we use the following datasets:

• CMB. We use the 2015 Planck [247] measurements of the angular (cross-)power
spectra, including full-mission lowTEB data for low multipoles (` 6 29) and
the high-` Plik TT,TE,EE (cross-half-mission) ones for the high multipoles (` >
29) of the temperature and polarization auto- and cross- power spectra [209].
We also include the temperature+polarization (T+P) lensing data, using only
the conservative multipole range ` = 40− 400 [248, 249].

• Type Ia supernovae. We use the JLA data for SN Ia provided by the SDSS-
II/SNLS3 Joint Light-curve Analysis [140].

• Baryon Acoustic Oscillations (BAO). We use the isotropic constraints provided
by 6dFGS at zeff = 0.106 [141], SDSS-MGS DR7 at zeff = 0.15 [142] and BOSS
LOWZ at zeff = 0.32 [250], as well as the anisotropic constraints from CMASS
at zeff = 0.57 [250].

We then run a MCMC, similarly to what we have done for LISA related work,
see in particular 3.4.2 for a description of the likelihood used for standard sirens.

Since standard sirens, within ΛCDM, are only sensitive to H0 and ΩM, we fo-
cus on the two-dimensional likelihoods in the (ΩM, H0) plane (although, of course,
when we combine standard sirens with CMB+BAO+SNe, the fact that the addition
of standard sirens allows a more accurate determination of H0 and ΩM also has a
beneficial effects on the determination of the other parameters, because it helps to
reduce the degeneracies).
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FIGURE 3.13: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (ΩM, H0) plane, in ΛCDM, from CMB+BAO+SNe (red),
and the result obtained by combining standard sirens at the HLVKI
network with CMB+BAO+SNe (blue). Left: in the case of flat neutron
star mass distribution. Right: in the case of gaussian neutron star

mass distribution. From [210].

Results for the HLVKI network

The result is shown in Fig. 3.13, where we compare the likelihood in the (ΩM, H0)
plane obtained from a MCMC using the above CMB+BAO+SNe dataset (red con-
tours) with those obtained from the combined datasets CMB+BAO+SNe+standard
sirens (blue contours), for the two distributions of neutron star masses. The contours
from standard sirens only are not shown since the MCMC fails to converge due to
the small number of sources.

In table 3.4 we show the relative errors ∆H0/H0 and ∆ΩM/ΩM obtained from
the corresponding one-dimensional marginalized likelihood. We see that, for the
HLVKI network, the addition of joint GW-GRB detections to the current cosmologi-
cal dataset does not improve substantially the accuracy on H0 and ΩM. This should
be traced to the fact that, as we see from Table 3.2, if we perform coincidences of
the GW events with GRBs, we only have of order 15 joint detections, even over a
10-yr period. On the other hand, at the typical redshifts of the events seen by 2G de-
tectors, the network of optical and infrared telescopes is expected to provide many
more electromagnetic counterparts. In our analysis, even for 2G detectors we have
restricted ourselves to a study of coincidences with GRBs only, also as a benchmark
for the study of GW-GRB coincidences with 3G detectors. However, it is clear that
for 2G detectors the contribution of optical/IR telescopes will be crucial and could
raise substantially the number of standard sirens with observed counterpart.

Our results are broadly consistent with the analysis of [241, 251], which show
that, to obtain a measurement of H0 below 1% at 2G detectors with standard sirens
only, O(50− 100) standard sirens with counterpart are needed. This would allow to
address the discrepancy between the local measurement of H0 and the value inferred
by Planck and BAO observations assuming ΛCDM, which has now reached the 4.4σ
level [145].

Results for ET

We next consider the case of joint detections between a single ET detector and a
GRB detected by THESEUS, again restricting at first to ΛCDM. The result is shown
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CMB+BAO+SNe combined, flat combined, gaussian
∆H0/H0 0.72% 0.65% 0.66%

∆ΩM/ΩM 2.11% 1.91% 1.96%

TABLE 3.4: Accuracy (1σ level) in the reconstruction of H0
and ΩM with CMB+BAO+SNe only, and the combined result
CMB+BAO+SNe+standard sirens, using the HLVKI detector network

and the flat and gaussian mass distributions. From [210].
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FIGURE 3.14: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (ΩM, H0) plane, in ΛCDM, from CMB+BAO+SNe (red),
standard sirens at ET with a GRB counterpart determined by THE-
SEUS (gray), and the result obtained by combining standard sirens
with CMB+BAO+SNe (blue). Left: in the case of flat neutron star
mass distribution. Right: in the case of gaussian neutron star mass
distribution. We use the optimistic estimate for the FOV of THESEUS.

From [210].

in Figs. 3.14 and 3.15, where we compare the likelihood in the (ΩM, H0) plane ob-
tained from a MCMC using our CMB+BAO+SNe dataset (red contours) with those
obtained from standard sirens only (gray contour) and the combined datasets CMB +
BAO + SNe + standard sirens (blue contours). In particular, in Fig. 3.14 we show the
result for the two distribution of neutron star masses in the optimistic scenario for
the FOV of THESEUS, while in Fig. 3.15 we show the result for the two distribution
of neutron star masses in the realistic scenario for the FOV.

First of all observe that, despite the fact that the mock catalog of standard sirens
has been generated by taking as fiducial cosmological model ΛCDM with the val-
ues of H0 and ΩM obtained from these CMB+BAO+SNe data, the contour obtained
from standard sirens only is not always centered on the mean values given by the
CMB+BAO+SNe contour. This is an unavoidable consequence of the fact that, in
order to simulate the result from actual observations, we have scattered the values
of dL(z) with a variance ∆dL(z) given by the expected observational error, see the
discussion in Section 3.2.1. Of course, this is the situation that would take place in
an actual observation (although the actual position of the gray contour will depend
on the particular realization of the random scattering of the data around their mean
value), and all that we should expect is that the contours are consistent at, say, the
(1− 2)σ level, which is indeed the case. However, one should be aware of the fact
that, if we combine the standard sirens and the CMB+BAO+SNe dataset in a real-
ization where the two contours do not overlap well, we get a larger error on the
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FIGURE 3.15: As in Fig. 3.14, with the realistic estimate for the FOV
of THESEUS. From [210].

CMB+BAO+SNe ET, ET, combined, combined,
flat gaussian flat gaussian

∆H0/H0 0.72% 0.28% 0.23% 0.16% 0.15%
∆ΩM/ΩM 2.11% 3.68% 3.38% 0.59% 0.57%

TABLE 3.5: Accuracy (1σ level) in the reconstruction of H0 and ΩM
with only CMB+BAO+SNe, with only standard sirens (with the flat
and gaussian mass distributions, respectively) and the combined re-
sults CMB+BAO+SNe+standard sirens, using ET and THESEUS and

assuming the optimistic FOV of THESEUS. From [210].

parameters with respect to what is obtained in a realization where the contours hap-
pens to overlap well. Once again, this is exactly the situation that will be faced in
the actual experiment.

The accuracy on H0 and ΩM from the corresponding one-dimensional likelihood
are given in Table 3.5 (for the optimistic FOV of THESEUS) and Table 3.6 (for the
realistic FOV). From these tables we see that standard sirens at ET, already before
combining them with other cosmological datasets, give an accuracy on H0 between
0.2% and 0.4%, depending on the scenarios considered. This is a very interesting ac-
curacy, that would allow to conclusively arbitrate the tension between the local H0
measurement and the Planck-ΛCDM value, with totally different systematic com-
pared to SNe. In particular, this measurement would have the potential of falsifying
ΛCDM.

If instead the value of H0 from standard sirens should agree with the CMB +
BAO + SNe value obtained using ΛCDM, it would then make sense to combine
these datasets. As we see from the tables, in that case the overall accuracy on H0
could reach (0.15− 0.25)%.

Results for ET+CE+CE

We finally consider the ET+CE+CE network. The two-dimensional likelihoods in the
(ΩM, H0) plane are shown in Figs. 3.16 and 3.17, and the corresponding 1σ accura-
cies from the one-dimensional likelihoods are shown in Tables 3.7 (for the optimistic
FOV of THESEUS) and Table 3.8 (for the realistic FOV). We see that, in this case, with
standard sirens only we get an accuracy of H0 of about 0.2%, while, combining with
the other cosmological datasets we can reach an accuracies of order (0.07− 0.12)%.
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CMB+BAO+SNe ET, ET, combined, combined,
flat gaussian flat gaussian

∆H0/H0 0.72% 0.42% 0.39% 0.26% 0.25%
∆ΩM/ΩM 2.11% 6.17% 5.88% 0.82% 0.82%

TABLE 3.6: As in Table 3.5, assuming the realistic FOV of THESEUS.
From [210].

While in itself this would be a remarkable accuracy, still it is not significantly better
than that reached with a single ET detector, as we see comparing with Tables 3.5 and
3.6. This result can be understood by looking at the number of events in our cata-
logs, shown in Table 3.3. Despite the fact that the ET+CE+CE network has a number
of GW detections higher by a factor O(10) compared to a single ET, when we look
at joint GW-GRB detections the increase in the number of events is less than a factor
of 2. In other worlds, the bottleneck here is on the GRB side. It is crucial to observe,
however, that a three detector network such as ET+CE+CE will have excellent local-
ization capabilities. Thus, at least for the events at z<∼ 0.5, the follow-up with optical
and IR telescope will be possible, and will probably lead to a significant increase in
the number of standard sirens with electromagnetic counterpart. As we discussed
in Section 3.2.1, realistic estimates are currently difficult because they also depend
on choices such as the amount of telescope time that will be devoted by the vari-
ous facilities to the follow-up of GW events, and here we have not attempted such
an estimate. However, it should be borne in mind that, for a ET+CE+CE network,
the joint GW-GRB detections that we are considering in this analysis might provide
just a fraction of the whole sample of GW signals with electromagnetic counterpart.
Correspondingly, the accuracies that can be obtained on H0 and ΩM at ET+CE+CE
could be significantly better, compared to the figures that we find.

CMB+BAO+SNe ET+CE+CE, ET+CE+CE, combined, combined,
flat gaussian flat gaussian

∆H0/H0 0.72% 0.20% 0.22% 0.07% 0.07%
∆ΩM/ΩM 2.11% 1.43% 1.31% 0.43% 0.42%

TABLE 3.7: Accuracy (1σ level) in the reconstruction of H0 and ΩM
with only CMB+BAO+SNe, with only standard sirens (with the flat
and gaussian mass distributions, respectively) and the combined re-
sults CMB+BAO+SNe+standard sirens, using ET+CE+CE and THE-
SEUS, and assuming the optimistic FOV of THESEUS. From [210].
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CMB+BAO+SNe ET+CE+CE, ET+CE+CE, combined, combined,
flat gaussian flat gaussian

∆H0/H0 0.72% 0.24% 0.23% 0.12% 0.11%
∆ΩM/ΩM 2.11% 2.12% 2.09% 0.51% 0.52%

TABLE 3.8: As in Table 3.5, assuming the realistic FOV of THESEUS.
From [210].
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FIGURE 3.16: As in Fig. 3.14, for the ET+CE+CE network and opti-
mistic FOV of THESEUS. From [210].
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FIGURE 3.17: As in Fig. 3.15, for the ET+CE+CE network and realistic
estimate for the FOV of THESEUS. From [210].
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FIGURE 3.18: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (ΩM, w0) plane, in wCDM, from CMB+BAO+SNe (red),
and the result obtained by combining standard sirens at the HLVKI
network with CMB+BAO+SNe (blue). Left: in the case of flat neutron
star mass distribution. Right: in the case of gaussian neutron star

mass distribution. From [210].

3.2.3 Constraints on dark energy

Results for the HLVKI network

We begin by presenting the constraints that can be obtained on the DE sector by
combining standard sirens at the HLVKI network with the CMB+BAO+SNe dataset
described in Section 3.2.2.

Fig. 3.18 shows the likelihood in the (ΩM, w0) plane in wCDM, i.e. when we
introduce w0 as the only new parameter that describes the DE sector, while setting
wa = 0 and excluding also modified GW propagation, i.e setting Ξ0 = 1, while Ta-
ble 3.9 shows the error on w0 (at 1σ, as in all our tables) from the corresponding
one-dimensional likelihood. We give the result from CMB+BAO+SNe only, and that
obtained by combining CMB+BAO+SNe with standard sirens with flat mass distri-
bution or with the gaussian mass distribution.

The results for the (w0, wa) parametrization are shown in Fig. 3.19 and Table 3.10.
Of course, enlarging the parameter space with one more parameter wa results in a
larger error on w0, compared to the results in Table 3.9.

We finally consider the (Ξ0, w0) extension of the DE sector. The results are shown
in Fig. 3.20 and Table 3.11. The most interesting result is the one for Ξ0, which (with
our rather extreme assumption of 10 yr of data taking) can be measured to an ac-
curacy of order ∆Ξ0 ' 0.1, i.e. (given that our fiducial value has been taken to be
the ΛCDM value Ξ0 = 1), a relative accuracy ∆Ξ0/Ξ0 ' 10%, which is already in
the ballpark of the predictions of interesting modified gravity models [200]. With a
shorter but more realistic time of data taking, say 3-4 yr, we still expect to get ∆Ξ0/Ξ0
at the level of about 20%.

Of course, CMB, BAO and SNe are blind to modified GW propagation, and the
corresponding contour is flat in the Ξ0 direction. Standard sirens lift this flat direc-
tion. In contrast, we see that the improvement on w0 or wa from the inclusion of
standard sirens is quite modest.
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CMB+BAO+SNe combined, flat combined, gaussian
∆w0 0.045 0.033 0.035

TABLE 3.9: Accuracy (1σ level) in the reconstruction of
w0 with CMB+BAO+SNe only, and the combined result
CMB+BAO+SNe+standard sirens, using the HLVKI detector

network and the flat and gaussian mass distributions. From [210].
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FIGURE 3.19: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (w0, wa) plane, in the (w0, wa) extension of the DE sector,
from CMB+BAO+SNe (red), and the result obtained by combining
standard sirens at the HLVKI network with CMB+BAO+SNe (blue).
Left: in the case of flat neutron star mass distribution. Right: in the

case of gaussian neutron star mass distribution. From [210].

Results for ET

We next consider a single ET in coincidence with a GRB detector with the characteris-
tics of THESEUS. Proceeding as before, we show first the results of the w0 extension,
in Tables 3.12 and 3.13 and Figs. 3.21 and 3.22, displaying separately the results for
the optimistic and realistic FOV of THESEUS. Observe that, contrary to the HLVKI
case, now we can obtain some bounds already using standard sirens alone. How-
ever, we see from the figures that the central value of the contour of the standard
sirens can happen to be displaced with respect to that from CMB+BAO+SNe. As
we already discussed in Section 3.2.2, this is a statistical effect due to the random
scattering of the mock GW data according to the error estimate that, depending on
the specific realization, can induce a more or less significant displacement between
the two contours.

We see that, adding the joint GW-GRB events to the CMB+BAO+SNe dataset, we
can improve the accuracy on w0 by about a factor of 2. This is interesting, although
certainly not spectacular. We will see below that the most interesting contribution
of a 3G detector such as ET to the exploration of the DE sector rather comes from
modified GW propagation.
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CMB+BAO+SNe combined, flat combined, gaussian
∆w0 0.140 0.113 0.106
∆wa 0.483 0.406 0.380

TABLE 3.10: Accuracy (1σ level) in the reconstruction of w0
and wa with CMB+BAO+SNe only, and the combined result
CMB+BAO+SNe+standard sirens, using the HLVKI detector network

and the flat and gaussian mass distributions. From [210].
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FIGURE 3.20: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (Ξ0, w0) plane, in the (Ξ0, w0) extension of the DE sector,
from CMB+BAO+SNe (red), and the result obtained by combining
standard sirens at the HLVKI network with CMB+BAO+SNe (blue).
Left: in the case of flat neutron star mass distribution. Right: in the

case of gaussian neutron star mass distribution. From [210].

We next include (w0, wa) as extra parameters. The results are shown in Ta-
bles 3.14 and 3.15 and in Figs. 3.23 and 3.24. In this case, with one extra parameter
wa, for some scenarios the MCMC does not converge well with standard sirens only,
and we just show the combined result for CMB+BAO+SNe+standard sirens, for all
scenarios.

We finally include modified GW propagation, adding to the baseline ΛCDM
model the parameters (Ξ0, w0), and writing the GW luminosity distance as in eq. (3.1.30).
We set for simplicity n = 5/2, which is of the order of the value predicted by the RT
and RR nonlocal gravity model. However, the precise value of n is of limited rel-
evance for the analysis. Note that, since our catalog of sources has been generated
assuming ΛCDM as our fiducial model, our fiducial values for these parameters are
Ξ0 = 1 and w0 = −1, and we compute the accuracy ∆Ξ0 and ∆w0 to which we can
find back these values. The results are shown in Tables 3.16 and 3.17 and in Figs. 3.25
and 3.26.
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CMB+BAO+SNe combined, flat combined, gaussian
∆w0 0.045 0.042 0.042
∆Ξ0 – 0.130 0.125

TABLE 3.11: Accuracy (1σ level) in the reconstruction of w0
and Ξ0 with CMB+BAO+SNe only, and the combined result
CMB+BAO+SNe+standard sirens, using the HLVKI detector network

and the flat and gaussian mass distributions. From [210].
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FIGURE 3.21: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (ΩM, w0) plane, in wCDM, from CMB+BAO+SNe (red),
joint detection of standard sirens at ET and THESEUS (gray) and the
result obtained by combining standard sirens with CMB+BAO+SNe
(blue). Left: in the case of flat neutron star mass distribution. Right:
in the case of gaussian neutron star mass distribution. We use the

optimistic estimate for the FOV of THESEUS. From [210].

It is quite remarkable that, by combining the joint GW-GRB detections from a
single ET detector and a GRB detector such as THESEUS, with the current CMB +
BAO + SNe dataset, we can reach an accuracy on Ξ0 that, depending on the scenario,
is between 0.7% and 1.1%. By comparison, the ‘minimal’ RT nonlocal model predicts
a deviation from Ξ0 = 1 at the level of 6.6%, almost an order of magnitude larger
than this observational sensitivity (and much large values can be obtained with ini-
tial conditions set during inflation). This shows that, while the sensitivity of a single
ET detector to w0 will not allow us to obtain a dramatic improvement on the current
knowledge of w0, the sensitivity to Ξ0 is extremely interesting and well within the
prediction of viable modified gravity models. Furthermore, modified GW propaga-
tion, as encoded for instance in the Ξ0 parameter [or, more generally, in the (Ξ0, n)
parameters] is an observable specific to GW detectors, to which electromagnetic ob-
servations are blind.

CMB+BAO+SNe ET, ET, combined, combined,
flat gaussian flat gaussian

∆w0 0.045 0.109 0.116 0.020 0.021

TABLE 3.12: Accuracy (1σ level) in the reconstruction of w0 with
only CMB+BAO+SNe, with only standard sirens (with the flat and
gaussian mass distributions, respectively) and the combined results
CMB+BAO+SNe+standard sirens, using ET and THESEUS and as-

suming the optimistic FOV of THESEUS. From [210].



3.2. Cosmology at 2G and 3G detectors 93

0.21 0.24 0.27 0.30 0.33 0.36 0.39

M

1.3

1.2

1.1

1.0

0.9

0.8

0.7

w
0

ET_flat_real
CMB+BAO+SNe
CMB+BAO+SNe+ET_flat_real

0.21 0.24 0.27 0.30 0.33 0.36 0.39

M

1.3

1.2

1.1

1.0

0.9

0.8

0.7

w
0

ET_gaussian_real
CMB+BAO+SNe
CMB+BAO+SNe+ET_gaussian_real

FIGURE 3.22: As in Fig. 3.21, with the realistic estimate for the FOV
of THESEUS. From [210].

The results of this section can be compared to those in [171], which, following
[180, 181, 187], were obtained under the working hypothesis that ET, over a few
years of data taking, will eventually be able to collect O(103) BNS with counter-
part (without specifying how the counterpart is actually detected), and assuming a
redshift distribution proportional to a simple model for the star formation rate (and
neglecting the effect of the delay between binary formation and merger). For the
(w0, Ξ0) extension of the DE sector, the analysis of ref. [171] then led to the forecast
∆Ξ0 = 0.008 and ∆w0 = 0.032, which happens to be very close to the results in
Table 3.16.

Comparing with our present results, first of all we see from Table 3.3 that the
assumption of 103 standard sirens with counterpart, while optimistic, was not un-
realistic; in particular, for a gaussian neutron-star mass distribution (and with the
optimistic estimate for the FOV of THESEUS), in 10 yr of data we could haveO(500)
joint GW-GRB events. Furthermore, as we have already mentioned in Section 3.2.1,
in [181] was used a threshold for the network SNR obtained combining the three
arms of ET given by ρthreshold = 8 while we use ρthreshold = 12. Lowering the thresh-
old would lead to an increase in the number of GW events. Still, at first it could be
surprising that the result for ∆Ξ0 that we find in this analysis happens to be practi-
cally identical to that of ref. [171], given that the number of sources that we are using
here is smaller by a factor ' 2 compared to the 103 sources used in ref. [171]. How-
ever, this can be traced to the fact that also the redshift distribution of the sources
is different. Indeed, we see from the right-panel in Fig. 3.7 that most of the joint
GW-GRB detections are at z < 0.5, while in ref. [171] it was assumed that the catalog
of sources followed a distribution in redshift determined by the star formation rate;
that catalog was peaked at z ' 1, with long tails at larger z, see Fig. 8 of ref. [171].
On the other hand, it was also found in ref. [171] that the main contribution to the
determination of Ξ0 was given by the sources at z < 0.7, that were about one half of
the total, so in the end it is not surprising that our catalog, with about a factor of 2

CMB+BAO+SNe ET, ET, combined, combined,
flat gaussian flat gaussian

∆w0 0.045 0.301 0.158 0.023 0.024

TABLE 3.13: As in Table 3.12, assuming the realistic FOV of THE-
SEUS. From [210].
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FIGURE 3.23: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (w0, wa) plane from CMB+BAO+SNe (red) and the result
obtained by combining standard sirens at ET with CMB+BAO+SNe
(blue). Left: in the case of flat neutron star mass distribution. Right:
in the case of gaussian neutron star mass distribution. We use the

optimistic estimate for the FOV of THESEUS. From [210].

less sources, but almost all concentrated at z < 0.7, gives basically the same results
as the catalog used in ref. [171].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.140 0.050 0.058
∆wa 0.483 0.193 0.224

TABLE 3.14: Accuracy (1σ level) in the reconstruction of
(w0, wa) with only CMB+BAO+SNe and the combined results
CMB+BAO+SNe+standard sirens, using ET and THESEUS and as-

suming the optimistic FOV of THESEUS. From [210].
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CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.140 0.073 0.072
∆wa 0.483 0.246 0.260

TABLE 3.15: As in Table 3.14, assuming the realistic FOV of THE-
SEUS. From [210].
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FIGURE 3.24: As in Fig. 3.23, with the realistic estimate for the FOV
of THESEUS. From [210].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.045 0.026 0.024
∆Ξ0 – 0.008 0.007

TABLE 3.16: Accuracy (1σ level) in the reconstruction of
(w0, Ξ0) with only CMB+BAO+SNe and the combined results
CMB+BAO+SNe+standard sirens, using ET and THESEUS and as-

suming the optimistic FOV of THESEUS. From [210].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.045 0.026 0.026
∆Ξ0 – 0.011 0.010

TABLE 3.17: As in Table 3.16, assuming the realistic FOV of THE-
SEUS. From [210].
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FIGURE 3.25: The 1σ and 2σ contours of the two-dimensional likeli-
hood in the (Ξ0, w0) plane from CMB+BAO+SNe (red) and the result
obtained by combining joint detections of standard sirens at ET and
THESEUS with CMB+BAO+SNe (blue). Left: in the case of flat neu-
tron star mass distribution. Right: in the case of gaussian neutron
star mass distribution. We use the optimistic estimate for the FOV of

THESEUS. From [210].

0.80 0.88 0.96 1.04 1.12 1.20

0

1.20

1.12

1.04

0.96

0.88

0.80

w
0

CMB+BAO+SNe
CMB+BAO+SNe+ET_flat_real

0.80 0.88 0.96 1.04 1.12 1.20

0

1.20

1.12

1.04

0.96

0.88

0.80

w
0

CMB+BAO+SNe
CMB+BAO+SNe+ET_gaussian_real

FIGURE 3.26: As in Fig. 3.25, with the realistic estimate for the FOV
of THESEUS. From [210].
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Results for ET+CE+CE

We finally give the corresponding results for the ET+CE+CE network. For wCDM
the results are shown in Figs. 3.27 and 3.28 and Tables 3.18 and 3.19. For the (w0, wa)
extension the results are shown in Figs. 3.29 and 3.30 and Tables 3.20 and 3.21. For
the (Ξ0, w0) extension the results are shown in Figs. 3.31 and 3.32 and Tables 3.22
and 3.23.

As we already observed in section 3.2.2 when discussing parameter estimation
in ΛCDM, the improvement in the accuracy of the cosmological parameters, com-
pared to the ET-only case, is not very large, because, despite the fact that a network
ET+CE+CE detects a number of source larger by an order of magnitude compared to
a single ET (and to much larger redshift, see Table 3.3 and Fig. 3.7), the correspond-
ing joint GW-GRB detections do not follow the same increase, because of intrinsic
limitations in the GRB detections. In particular, as we discussed in section 3.2.1,
despite the fact that the ET+CE+CE network can detect BNS up to z ' 10 (in our
catalog the source with the largest redshift has z ' 9.66), the joint detections with
GRB only reach, in our catalog, z ' 3.38; all higher redshift sources are lost because
their GRB is beyond the flux limit for detection.

To fully exploit the potential of a ET+CE+CE network for standard sirens it is
therefore crucial either to have a more powerful network of multi-messenger ob-
servations, for instance with IR/optical telescopes (that, guided by the localization
capability of the ET+CE+CE network, could provide many more counterparts, at
least the region z < 0.5− 0.7 corresponding to their reach), or else one should re-
sort to statistical methods for the determination of the host galaxy of standard sirens
without electromagnetic counterpart. This is also an important message of our anal-
ysis.

CMB+BAO+SNe ET+CE+CE, ET+CE+CE, combined, combined,
flat gaussian flat gaussian

∆w0 0.045 0.041 0.034 0.014 0.013

TABLE 3.18: Accuracy (1σ level) in the reconstruction of w0 with
only CMB+BAO+SNe, with only standard sirens (with the flat and
gaussian mass distributions, respectively) and the combined results
CMB+BAO+SNe+standard sirens, using ET+CE+CE and THESEUS

and assuming the optimistic FOV of THESEUS. From [210].

CMB+BAO+SNe ET+CE+CE, ET+CE+CE, combined, combined,
flat gaussian flat gaussian

∆w0 0.045 0.074 0.063 0.020 0.018

TABLE 3.19: As in Table 3.18, assuming the realistic FOV of THE-
SEUS. From [210].
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CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.140 0.027 0.025
∆wa 0.483 0.139 0.137

TABLE 3.20: Accuracy (1σ level) in the reconstruction of
(w0, wa) with only CMB+BAO+SNe and the combined results
CMB+BAO+SNe+standard sirens, using ET+CE+CE and THESEUS

and assuming the optimistic FOV of THESEUS. From [210].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.140 0.041 0.037
∆wa 0.483 0.160 0.145

TABLE 3.21: As in Table 3.20, assuming the realistic FOV of THE-
SEUS. From [210].
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FIGURE 3.27: The 1σ and 2σ contours of the two-dimensional like-
lihood in the (ΩM, w0) plane, in wCDM, from CMB+BAO+SNe
(red), joint detection of standard sirens at ET+CE+CE and THESEUS
(gray) and the result obtained by combining standard sirens with
CMB+BAO+SNe (blue). Left: in the case of flat neutron star mass
distribution. Right: in the case of gaussian neutron star mass dis-
tribution. We use the optimistic estimate for the FOV of THESEUS.

From [210].
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FIGURE 3.28: As in Fig. 3.27, with the realistic estimate for the FOV
of THESEUS. From [210].
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FIGURE 3.29: The 1σ and 2σ contours of the two-dimensional like-
lihood in the (w0, wa) plane from CMB+BAO+SNe (red) and the
result obtained by combining standard sirens at ET+CE+CE with
CMB+BAO+SNe (blue). Left: in the case of flat neutron star mass
distribution. Right: in the case of gaussian neutron star mass dis-
tribution. We use the optimistic estimate for the FOV of THESEUS.

From [210].
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FIGURE 3.30: As in Fig. 3.29, with the realistic estimate for the FOV
of THESEUS. From [210].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.045 0.038 0.042
∆Ξ0 – 0.007 0.007

TABLE 3.22: Accuracy (1σ level) in the reconstruction of
(w0, Ξ0) with only CMB+BAO+SNe and the combined results
CMB+BAO+SNe+standard sirens, using ET+CE+CE and THESEUS

and assuming the optimistic FOV of THESEUS. From [210].

CMB+BAO+SNe combined, combined,
flat gaussian

∆w0 0.045 0.030 0.033
∆Ξ0 – 0.006 0.007

TABLE 3.23: As in Table 3.22, assuming the realistic FOV of THE-
SEUS. From [210].
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FIGURE 3.31: The 1σ and 2σ contours of the two-dimensional like-
lihood in the (Ξ0, w0) plane from CMB+BAO+SNe (red) and the
result obtained by combining standard sirens at ET+CE+CE with
CMB+BAO+SNe (blue). Left: in the case of flat neutron star mass
distribution. Right: in the case of gaussian neutron star mass dis-
tribution. We use the optimistic estimate for the FOV of THESEUS.

From [210].
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FIGURE 3.32: As in Fig. 3.31, with the realistic estimate for the FOV
of THESEUS. From [210].
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3.2.4 Summary of the 2G and 3G analysis

One of the main motivations for developing third-generation GW detectors, such as
the Einstein Telescope in Europe and Cosmic Explorer in the US, is the possibility of
using them for cosmology studies, in a way that will be complementary to what is
done with electromagnetic probes such as the CMB, type Ia SNe, BAO, or large-scale
structures. In particular, the measurement of the luminosity distance to coalescing
binaries through the observation of their GWs, combined with an electromagnetic
measurement of the redshift (or with statistical methods), gives access to the Hubble
parameter H0 and, for sources at sufficiently large redshift, also to the dark-energy
equation of state. On top of this, a very interesting example of the potential contribu-
tions of advanced GW detectors to cosmology is given by the possibility of studying
modified GW propagation.

The analysis of this Section improves on the results of ref. [171] for ET by using
a more realistic catalog of sources, in the context of a current effort for building
the Science Case for ET and, more generally, for 3G detectors. Indeed, in ref. [171]
the sensitivity of ET to Ξ0 was computed assuming that, over a few years of data
taking, ET will be able to collect 103 standard sirens with observed electromagnetic
counterpart [out of the O(105) BNS/yr that ET is expected to detect]. This is the
assumption that has been usually made in the literature in this context but, in the
absence of a concrete study of how to detect the counterpart, it is nothing more than
a reasonable working hypothesis. Furthermore, the actual redshift distribution of
the joint GW-electromagnetic detections depends not only on the specifications of
ET, but also of the detectors used to observe the electromagnetic counterpart.

To go beyond these simple assumptions one needs a concrete scenario for the
detection of the electromagnetic counterpart. Here we have focused on the possibil-
ity of a joint GW-GRB detection using, as an electromagnetic partner to 3G detector,
the proposed THESEUS mission. As we have repeatedly stressed, this represents
only a subset of the possible electromagnetic counterparts that could be observed,
particularly for a network with significant localization capabilities such as HLVKI
or ET+CE+CE (in which case it will probably not even provide the dominant con-
tribution). However, given the large field of view of GRB satellites, in this case it
is possible to give at least some estimates based uniquely on the characteristics of
the detector. In contrast, the estimate for the number of counterparts detected at op-
tical/IR telescope also strongly depend on issues, such as the fraction of telescope
time that will be devoted to GW follow up, that are currently more difficult to pre-
dict.

Our main results are as follows. For the HLVKI network, the number of joint
GW-GRB detections (computed assuming that the Fermi-GBM can make a coinci-
dent detection and that Swift can identify an X-ray counterpart) is quite small, of
order 1.5/yr, and is not sufficient to obtains significant cosmological results using
standard sirens only. Even when combined with the CMB+BAO+SNe dataset that
we have used, it only provides a modest improvement in the accuracy on H0. In-
deed, to get interesting accuracy on H0 with standard sirens, say of order 1% or
better, as needed to solve the discrepancy between Planck-ΛCDM value and the lo-
cal measurement of H0, a much higher number of events with counterparts are in-
deed needed, O(50− 100) [241, 251]. However, a 2G network such as HLVKI (or,
indeed, already HLV) has significant localization accuracy. This number of sources
with counterpart could therefore in principle be obtained through optical/IR follow
up. Similarly, joint GW-GRB detections at the HLVKI network cannot be expected to
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improve significantly the accuracy on the DE equation of state, compared to what al-
ready know from electromagnetic observation, see Tables 3.9 and 3.10. The situation
is however very different for what concern modified GW propagation, as encoded in
the parameter Ξ0. Since electromagnetic observations are blind to it, any result from
2G detectors will be potentially interesting, and we have found that (after combin-
ing with CMB+BAO+SNe to reduce the degeneracy with H0 and ΩM), the HLVKI
network can measure Ξ0 to about 13%. This results assumes 10 yr of data, which is
probably a very optimistic assumption; however, taking e.g. 5 yr of data the result
should be approximately worse by about a factor

√
2, so that a measurement at the

20% level should still be possible. This is already in the range of the predictions
from some modified gravity models [200] and is therefore already a very interesting
sensitivity.

For a single ET detector, our results for H0 are given in Tables 3.5 and 3.6 and
show that, already using only standard sirens, and limiting ourselves to the coinci-
dences with GRBs (estimated using a detector with the characteristic of THESEUS),
ET can reach an extremely interesting accuracy, with ∆H0/H0 between 0.2% and
0.4%, depending on the assumptions on the event rate (gaussian vs. flat neutron
star mass distribution) and on the FOV of the GRB detector. For the dark energy
sector, including both w0 and Ξ0, the results are given in Table 3.16. In particular
(again, upon combining with CMB+BAO+SNe to reduce the degeneracies), Ξ0 can
be measured to better than 1%, more precisely to (0.7− 0.8)%. This is an exciting re-
sult, since several modified gravity models give predictions significantly higher than
this. This result also strengthens the science case for THESEUS. The corresponding
result on w0 is still valuable but less exciting, since it just brings the error down from
4.5% to 2.5%.

We have finally studied the configuration ET+CE+CE. In this case, despite the
huge increase in GW detections, by a factor O(10) compared to a single ET, the
final results on the cosmological parameters, limiting ourselves to GW-GRB coinci-
dences, are not significantly better than with a single ET. For instance Ξ0 can now be
measured to (0.6− 0.7)%. This is due to the fact that the number of joint GW-GRB
detections does not increase correspondingly; in fact, from Table 3.3 we see that it
does not even increase by a factor of 2. In other words, there is a bottleneck, due to
the fact that a single GRB detector cannot keep the pace, and does not have the reach,
of GW detections from a ET+CE+CE network. However, this network would have
remarkable localization accuracy, and therefore could benefit from the detection of
counterparts from optical/IR/radio telescopes. It is clear from our analysis that a
strong effort in the follow up of GW signals would be necessary to really exploit
the remarkable potential for cosmology of a network of 3G detectors, whether in the
ET+CE+CE configuration that we have studied, or in intermediate configurations
involving e.g. the planned Voyager upgrade of the advanced LIGO detectors.
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3.3 Reconstructing modified gravitational-wave propagation

In Section 3.1.1 we have seen that the parametrizations (3.1.30) and (3.1.34) fit re-
markably well the predictions of a large class of models (various Horndeski theories
with different choices of the functions that characterize them, or several variant of
nonlocal gravity), with two notable exceptions. One is bigravity, where the coupling
between the two metrics gives rise to a series of oscillations in d gw

L (z)/d em
L (z). The

second are DHOST theories, where the parametrization (3.1.34) misses a bump in
δ(z). Nevertheless, in the latter case eq. (3.1.30) still reproduces reasonably well the
behavior of d gw

L (z)/d em
L (z). This is due to the fact that the effect of the bump in δ(z)

is smoothed out by the integration in eq. (3.1.13), so that d gw
L (z)/d em

L (z) maintains
the monotonic behavior described by eq. (3.1.30). This shows that the parametriza-
tion (3.1.30) for d gw

L (z)/d em
L (z) is more solid than the corresponding parametrization

for δ(z). From some point of view this is good news, since it shows that eq. (3.1.30) is
a good starting point for searching for modified GW propagation in the data, given
that d gw

L (z) and d em
L (z) are the directly observable quantities. On the other hand,

this might not be sufficient to reconstruct detailed features of δ(z), which might carry
distinct imprints of the cosmological model.

This fact, together with the existence of at least one example, bigravity, where
eq. (3.1.30) is not appropriate, stimulates the development of a complementary ap-
proach, not based on the use of a specific parametrization. A natural possibility is
provided by the method of Gaussian processes (GP). GP is a nonparametric tech-
nique which can reconstruct the distribution of a function from the training of the
dataset, without assuming any parametrization for it. The GP method is very suit-
able for reconstructing the functions d gw

L (z) and d em
L (z) and their derivatives directly

from the data. Having the distributions and covariances of these distance functions
from GP, the reconstruction of δ(z) can be obtained. Many applications of GP in
cosmology can be found in [252, 253, 254, 255, 256, 257, 258, 259, 187, 260]. In par-
ticular, in [187] this technique has been applied to the reconstruction of the dark
energy equation of state to simulated data from the Einstein Telescope, in combina-
tion with other cosmological informations. In this Section we follow [261] to discuss
the reconstruction of modified gravitational wave propagation (i.e. the functions
d gw

L (z)/d em
L (z) and δ(z)) with Gaussian processes.

3.3.1 Mock datasets

To perform our analysis, we considered simulated measurements of the electromag-
netic luminosity distance from DES supernovae. The generation of the mock data
follows Section III B of [257], where a redshift range from z(DES)

min =0.05 to z(DES)
max =1.2

is considered and the errors on luminosity distance are estimated by using Table
14 of [262]. We assume a fiducial ΛCDM cosmology with Hubble parameter H0 =
67.64 km s−1Mpc−1 and present fraction of matter energy density ΩM = 0.3087, cor-
responding to the mean values obtained from the CMB+SNe+BAO dataset described
in Section 3 of [210]. For each SN at given z, the ‘measured’ value of the luminosity
distance is then obtained by randomly scattering the corresponding value of dL(z)
in the fiducial model, according to a Gaussian distribution centered around it and
with a standard deviation given by the estimated DES error on luminosity distance.
Fig. 3.33 shows the redshift distribution of the resulting catalog, containing 3443
SNe Ia whose light curves are obtained in a time period of five years. Table 3.24
gives a simplified description of the mock data, using the same redshift bins as in
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FIGURE 3.33: The redshift distribution of mock DES supernovae.
From [261].
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FIGURE 3.34: The relative error ∆dL/dL for the catalog of DES super-
novae shown in Fig. 3.33 and Table 3.24. The cyan shaded area cor-
responds to the single supernovae, while the coordinates of the blue
points are given by the mean values of the redshift and of ∆dL/dL in
each redshift bin, with the bins chosen as in Fig. 3.33. The blue er-
ror bars are the standard deviations of ∆dL/dL in each redshift bin.

From [261].

the histogram of Fig. 3.33. The table shows the mean value and the standard devia-
tion of the relative error on luminosity distance ∆dL/dL for each redshift bin and the
same quantities are plotted in Fig. 3.34. The drop in the relative error on luminos-
ity distance beyond redshift z = 1 is due to selection effects at high redshift and is
explained in Section 5.1 of [262].

For the reconstruction of the GW luminosity distance, we consider the two cases
already presented in Section 3.2: the 2G network made by advanced LIGO, advanced
Virgo, Kagra and LIGO India (HLVKI) at target sensitivity, or a 3G detector such as
the Einstein Telescope. We summarize the main points for the resulting GW events.
In both the 2G and 3G cases, we consider GW events from binary neutron star merg-
ers with a redshift determined through the joint observation of a gamma-ray burst
(GRB), using the mock catalogs of joint GW-GRB events generated in [210]. The
generation of those catalogs uses a state-of-the-art treatment of the merger of binary
neutron stars, that takes into account both the star formation rate and models of the
time delay between the formation of the binary and the merger. The binary forma-
tion is assumed to follow the cosmic star formation rate modeled as in [263], while
for the time delay distribution we use a power law with a minimum allowed time
to coalescence of 20 Myr. Following Section 2.1 of [210], the overall normalization
of the merger rate is fixed by matching with the local rate estimated from the O1
LIGO and O2 LIGO/Virgo observation runs [216]. We assume a Gaussian distri-
bution for the neutron star masses and we consider 10 yr of data and an 80% duty
cycle for each of the detectors included in the analysis, with a SNR=12 threshold
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redshift number of mean mean standard deviation
bin DES SNe redshift ∆dL/dL of ∆dL/dL

(0.05 , 0.1) 23 0.07500 0.07837 0.00552
(0.1 , 0.15) 58 0.12478 0.06913 0.00530
(0.15 , 0.2) 57 0.17478 0.06963 0.00553
(0.2 , 0.25) 146 0.22491 0.06461 0.00418
(0.25 , 0.3) 145 0.27491 0.06514 0.00398
(0.3 , 0.35) 240 0.32490 0.07345 0.00533
(0.35 , 0.4) 240 0.37490 0.07401 0.00542
(0.4 , 0.45) 313 0.42496 0.07878 0.00623
(0.45 , 0.5) 312 0.47496 0.07882 0.00676
(0.5 , 0.55) 288 0.52491 0.08453 0.00725
(0.55 , 0.6) 288 0.57491 0.08404 0.00788
(0.6 , 0.65) 219 0.62489 0.08434 0.00729
(0.65 , 0.7) 219 0.67489 0.08239 0.00679
(0.7 , 0.75) 153 0.72484 0.09729 0.01058
(0.75 , 0.8) 153 0.77484 0.09683 0.00916
(0.8 , 0.85) 118 0.82490 0.10683 0.01139
(0.85 , 0.9) 117 0.87490 0.10603 0.01003
(0.9 , 0.95) 97 0.92487 0.11714 0.01506
(0.95 , 1) 96 0.97487 0.12033 0.01603
(1 , 1.05) 55 1.02455 0.05602 0.00964

(1.05 , 1.1) 55 1.07455 0.05565 0.00283
(1.1 , 1.15) 25 1.12400 0.07794 0.00936
(1.15 , 1.2) 26 1.17500 0.07842 0.00579

TABLE 3.24: Table from [261]. The mean value and the variance of
the relative error on luminosity distance ∆dL/dL, averaging over the
events in the given redshift bin, for the catalog of DES supernovae

shown in Fig. 3.33.
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for the total signal-to-noise ratio of a detection (the reader is referred to Section 2.1
of [210] for further details about the SNR calculation). The instrumental contribu-
tion to the error on luminosity distance has been estimated as ∆dL/dL=1/SNR. In
principle, a further contribution to ∆dL/dL comes from weak lensing. In [180, 181] it
was modeled as (∆dL(z)/dL(z))lensing = 0.05z, while the more recent study in [240]
gives a significantly smaller effect. In any case, even with the pessimistic estimate
(∆dL(z)/dL(z))lensing = 0.05z, the lensing contribution is negligible for GW detec-
tions at HLVKI and it is also subdominant for sources detected at the Einstein Tele-
scope with z < 1.5, which constitute 99% of all the events with a detected GRB
counterpart in the final ET catalog that we will consider. On the other hand, for low-
redshift sources the contribution due to the peculiar Hubble flow is important and, if
not corrected for, gives an error on the redshift that can be modeled as due to an un-
known peculiar velocity of order±200 km/s [241]. Here we assume, conservatively,
that this error is not corrected for, and we then propagate it to determine its contribu-
tion to the error on luminosity distance. The gravitational wave luminosity distance
for the events of the mock catalog is drawn from a Gaussian distribution centered
around the value from a fiducial cosmology and with standard deviation given by
the sum in quadrature of the errors on luminosity distance described before. In this
work we consider two different fiducial cosmologies for GW detections:

• the ΛCDM model with H0 = 67.64 km s−1Mpc−1 and ΩM = 0.3087 already
used for the DES mock catalog;

• the RT nonlocal model with initial conditions set at ∆N = 64 e-folds before the
end of inflation, introduced in Section 3.3.

In the following, we will simply refer to those choices as the “ΛCDM" and the “RT"
fiducial cosmologies, without repeating again the specifications. In the case of the RT
fiducial, the modifications in the cosmological background with respect to ΛCDM
are so small that the electromagnetic luminosity distances in the two models differ
by just a few parts per thousand. That contribution is utterly negligible when com-
pared to the modified gravitational wave propagation effect in eq. (3.1.13) for the
RT model, which amounts to a deviation from GR by more than 60%. As a con-
sequence the fiducial values of the gravitational wave luminosity distance can be
simply obtained by multiplicating those from ΛCDM by the factor d gw

L (z)/d em
L (z)

in eq. (3.1.30) with Ξ0 = 1.67 and n = 1.94. For the error on luminosity distance,
we reasonably assume the relative error to be the same as in the case of the ΛCDM
fiducial cosmology, so we also multiply the ΛCDM absolute error by the same factor
in eq. (3.1.30). Beside the intrinsic interest of the model, the use of the RT nonlocal
model as a fiducial cosmological model can be seen as a case study for exploring
the results of Gaussian processes reconstruction when the reference theory has a
non-trivial GW propagation equation, despite being fully compatible with electro-
magnetic observations. Once the mock catalog of GW detections is built, we extract
the events whose GRB emission is actually detected. A full explanation for this final
stage in the construction of mock data can be found in Section 2.2 of [210], where
the criterion for retaining a GW event in the GW-GRB catalog requires the peak flux
of the GRB emission to be above the flux limit of the satellite considered for detec-
tion, which is Fermi-GBM for GW events at the HLVKI 2G network, and the pro-
posed THESEUS mission [232] for GW events detected at the Einstein Telescope. In
the ET/THESEUS catalog we only consider a fraction 1/3 of the events selected by
the procedure above, since only the central part of the XGIS spectrometer on board
THESEUS will be capable of arcmin localization of sources (this corresponds to the
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z dL (Mpc) ∆dL (Mpc)
0.029271 134.815 4.000
0.035195 157.475 5.636
0.060585 283.567 18.706
0.066283 316.373 14.509
0.071053 327.381 20.085
0.071730 342.952 16.957
0.076180 341.595 22.360
0.081819 418.469 30.238
0.088698 396.734 25.757
0.091869 402.590 34.170
0.094237 406.423 31.472
0.095288 432.996 36.423
0.099956 491.071 31.721
0.102531 461.627 36.858
0.114869 626.939 43.010

TABLE 3.25: The events in a realization of joint GW-GRB mock
sources, with gravitational wave and gamma-ray burst detections at
the HLVKI network and Fermi-GBM respectively. From [210, 261].
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FIGURE 3.35: The redshift distribution of joint GW-GRB mock
sources, with GW detections at the Einstein Telescope and gamma-

ray burst detections at THESEUS. From [261].

“realistic" assumption for the FOV of THESEUS in Section 2.2.2 of [210]). Table 3.25
shows a realization (containing 15 sources) for the catalog of joint GW-GRB events at
the second-generation network HLVKI, assuming ΛCDM as fiducial cosmology. For
the case of Einstein Telescope we present the redshift distribution of the sources in
Fig. 3.35 and the corresponding description of the instrumental error on luminosity
distance in Table 3.26, with the same meaning of columns as in Table 3.24. Fig. 3.36 is
a plot for the error on luminosity distance of the 169 events in the catalog realization
considered in Table 3.26.

3.3.2 Results

We use the Gaussian processes method to reconstruct the functions d em
L (z) and d gw

L (z),
as well as their derivatives with respect to redshift d′em

L (z) and d′gw
L (z), with the

mock datasets of electromagnetic and gravitational-wave observations described in
Section 3.3.1. Fig. 3.37 shows the result of the reconstruction for the electromagnetic
luminosity distance and its derivative with respect to redshift, by using the DES
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redshift number of mean mean standard deviation
bin GW-GRB redshift ∆dL/dL of ∆dL/dL

(0 , 0.1) 4 0.07108 0.00868 0.00244
(0.1 , 0.2) 24 0.15001 0.01784 0.00692
(0.2 , 0.3) 24 0.24043 0.02558 0.00680
(0.3 , 0.4) 27 0.35355 0.03529 0.01004
(0.4 , 0.5) 28 0.44966 0.04843 0.01528
(0.5 , 0.6) 9 0.53785 0.05646 0.01807
(0.6 , 0.7) 14 0.64540 0.05329 0.01318
(0.7 , 0.8) 13 0.73793 0.05493 0.01368
(0.8 , 0.9) 8 0.85497 0.06413 0.00746
(0.9 , 1.0) 4 0.93702 0.06257 0.01228
(1.0 , 1.1) 6 1.05334 0.06494 0.00651
(1.1 , 1.2) 3 1.15162 0.06749 0.00246
(1.2 , 1.3) 1 1.25943 0.07373 0
(1.3 , 1.4) – – – –
(1.4 , 1.5) 2 1.45375 0.07851 0.00398
(1.5 , 1.6) 1 1.58407 0.07577 0
(1.6 , 1.7) 1 1.62843 0.07947 0

TABLE 3.26: The mean value and the variance of the ET instrumental
contribution to ∆dL/dL, averaging over the events in the given red-
shift bin, for the specific realization of the catalog of joint GW-GRB

detections shown in Fig. 3.35. From [210, 261].
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FIGURE 3.37: Reconstruction of the EM luminosity distance from the
simulated DES catalog. In all panels, the blue and light blue regions
correspond to 68% and 95% confidence levels respectively, while the
red curve is the fiducial to be reconstructed. Upper left panel: d em

L (z)
and the mock DES supernovae used. Lower left: the difference be-
tween the reconstructed d em

L (z) and the fiducial one. Upper right:
the derivative d′em

L (z). Lower right: the difference between the recon-
structed d′em

L (z)) and its fiducial curve. From [261].

mock dataset5. For the GW luminosity distance, we show the results in two separate
subsections for each mock dataset used (HLVKI or ET). Given a reconstruction of the
functions d gw

L (z) and d em
L (z), we can then reconstruct the luminosity distance ratio

D(z) ≡ d gw
L (z)/d em

L (z) (3.3.1)

as well as the function δ(z) that is given by

δ(z) = (1 + z)

(
d′em

L (z)
dem

L (z)
− d′gw

L (z)
dgw

L (z)

)
. (3.3.2)

For each dataset used (HLVKI or ET) we will show the result both with ΛCDM
as fiducial, and with RT as fiducial. More precisely, when we take the RT model
(with ∆N = 64) as fiducial, we will assume that its prediction is exactly given by
eq. (3.1.30) with Ξ0 = 1.67 and n = 1.94. Actually, for the RT model with large
∆N, eq. (3.1.30) fits extremely well the prediction of the model for d gw

L (z)/d em
L (z)

(obtained from the numerical integration of the relevant equations, that involve the
numerical evolution of the auxiliary fields of the model, see [264]). In contrast, at
very small z the numerical result for δ(z) differs somewhat from that obtained by
the parametrization (3.1.34); the correct numerical result for δ(z) is shown in Fig. 2 of
[172]. Again, the difference is due to the fact that small details in δ(z) gets smoothed

5We recall from Section 3.3.1 that, contrary to d gw
L (z), the difference in d em

L (z) between ΛCDM and
the RT model is very small (a few parts per thousand). Therefore we can safely neglect it and consider
the same mock catalog of supernovae for both fiducial cosmological models.
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FIGURE 3.38: Reconstruction of the GW luminosity distance from
mock detections at HLVKI with electromagnetic counterpart, for the
ΛCDM fiducial cosmology. The panels are organized as in Fig. 3.37
and the green points in the upper left panel are the mock data in the
HLVKI catalog. Note the difference in vertical scale between the two

lower panels. From [261].

out when performing the integration in eq. (3.1.13), as we already discussed above.
Here, in order to illustrate the methodology, we simply assume that the result for
d gw

L (z)/d em
L (z) is exactly given by eq. (3.1.30), so that the result for δ(z) would also

be given by the corresponding equation (3.1.34).

Results for the HLVKI network

In Fig. 3.38 we plot the reconstructed GW luminosity distance obtained from the
mock catalog of standard sirens at the second-generation network HLVKI, assuming
ΛCDM as fiducial cosmology, while Fig. 3.39 is the analogous plot in the case of the
RT fiducial. In the case of ΛCDM fiducial, the reconstructions of the ratio D(z) =
d gw

L (z)/d em
L (z) and of δ(z) [using eq. (3.3.2)] from the HLVKI and DES mock catalogs

are plotted in Fig. 3.40. Similarly, Fig. 3.41 shows the results assuming the RT fiducial
cosmology. We provide the reconstructions up to the maximum redshift reached in
the HLVKI mock catalog z(HLVKI)

max ' 0.12 (see Table 3.25), which is smaller than the
maximum redshift z(DES)

max =1.2 in the simulated DES catalog of supernovae.
It is interesting to compare the results on modified GW propagation from Gaus-

sian processes reconstruction with those obtained by using the (Ξ0, n) parametriza-
tion for the function D(z) = d gw

L (z)/d em
L (z) in eq. (3.1.30). In this case our strategy is

to implement the parametrization in the CLASS Boltzmann code and run a MCMC.
The parameter n plays a much less important role than Ξ0 for D(z) because it just
regulates the precise interpolation between the value D(z = 0) = 1 and the asymp-
totic D(z � 1) = Ξ0. Furthermore, chains with both Ξ0 and n as free parameters
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FIGURE 3.39: Reconstruction of the GW luminosity distance from
mock detections at HLVKI with electromagnetic counterpart, for the

RT fiducial cosmology. Panels as in Fig. 3.38. From [261].
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fail to converge and for these reasons we just keep n fixed and look at the precision
reached by the MCMC in obtaining the Ξ0 value of the fiducial cosmological model.
For the RT fiducial cosmology we set n to the actual fiducial value n(RT) = 1.94 and
we want the MCMC to recover the fiducial Ξ(RT)

0 = 1.67. In the ΛCDM case, n(ΛCDM)

is not determined and when running the MCMC we choose to set it to n = 2.5, which
is in the ballpark of typical values predicted in modified gravity theories (for exam-
ple in some of the nonlocal gravity models). We then want to recover Ξ(ΛCDM)

0 = 1.

DES+HLVKI CMB+BAO+DES+HLVKI
∆Ξ0 0.127 (12.7%) 0.127 (12.7%)

∆H0/H0 0.38% 0.21%
∆ΩM/ΩM 3.30% 0.71%

TABLE 3.27: Accuracy (1σ level) in the reconstruction of Ξ0, H0
and ΩM with DES+HLVKI and CMB+BAO+DES+HLVKI, assuming
ΛCDM as the fiducial cosmology for the HLVKI dataset. The relative
error on Ξ0 is the same as the absolute error, because of the fiducial

value Ξ(ΛCDM)
0 = 1. From [261].

DES+HLVKI CMB+BAO+DES+HLVKI
∆Ξ0/Ξ0 8.32% 8.32%
∆H0/H0 0.38% 0.21%

∆ΩM/ΩM 3.30% 0.74%

TABLE 3.28: As in Table 3.27, assuming the RT model as the fiducial
cosmology for the HLVKI dataset. The absolute error on Ξ0 can be

easily found recalling the fiducial value Ξ(RT)
0 = 1.67. From [261].

For each fiducial cosmology we run MCMCs with two choices of combined datasets:

1. the simulated DES supernovae and the mock catalog of GW detections at HLVKI
(with electromagnetic counterpart) described in Section 3.3.1;

2. to reduce the degeneracies between cosmological parameters, in addition to
the DES and HLVKI mock catalogs, we also consider the same CMB and BAO
data that we used in Section 3.2.

The two combined datasets will be denoted as “DES + HLVKI" and “CMB +
BAO + DES + HLVKI", respectively. In the first case the MonteCarlo is sensitive to
the set of parameters {H0, ΩM, Ξ0}, while in the second case the parameters that
come into play are H0, ωb, ωc, As, ns, τre, Ξ0, while the total matter fraction ΩM is
a derived parameter. The quantities ωb = Ωbh2 and ωc = Ωch2 are the physical
baryon and cold dark matter density fractions today, respectively (where h is defined
by the relation H0 = 100h km s−1Mpc−1). As and ns are the amplitude and tilt of the
primordial scalar perturbations, and τre is the reionization optical depth. We keep
the sum of neutrino masses fixed, at the value ∑ν mν = 0.06 eV, as in the Planck
baseline analysis [135].

Fig. 3.42 and Fig. 3.43 show the results for the two-dimensional likelihoods of
cosmological parameters, in the case where ΛCDM or RT are assumed as fiducial
cosmologies for the mock catalog of GW detections at the HLVKI network. Ta-
bles 3.27 and 3.28 contain the errors obtained from the corresponding one-dimensional
marginalized likelihoods.
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FIGURE 3.42: The 1σ and 2σ contours of two-dimensional likeli-
hoods, from DES+HLVKI (red) and CMB+BAO+DES+HLVKI (blue).
The fiducial cosmology for the HLVKI dataset is ΛCDM. Left: in the

(Ξ0, H0) plane. Right: in the (Ξ0, ΩM) plane. From [261].
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fiducial cosmology for the HLVKI dataset. From [261].
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FIGURE 3.44: Reconstruction of the GW luminosity distance from
mock detections at the Einstein Telescope with electromagnetic coun-
terpart, assuming ΛCDM as the fiducial cosmological model, again
with the same meaning of the panels as in Fig. 3.37. The green points
in the upper left panel are the mock data in the ET catalog. From [261].

Results for the Einstein Telescope

Fig. 3.44 and Fig. 3.45 show the reconstruction of the GW luminosity distance from
mock detections at the Einstein Telescope, obtained by Gaussian processes, for the
ΛCDM and the RT fiducial cosmologies respectively. The final results for the lu-
minosity distance ratio D(z) = d gw

L (z)/d em
L (z) and the funcion δ(z) are given in

Fig. 3.46 assuming the ΛCDM fiducial and in Fig. 3.47 for the RT fiducial. We pro-
vide the reconstructions up to the maximum redshift reached in the DES mock cat-
alog of supernovae z(DES)

max =1.2, which is smaller than the maximum redshift z(ET)
max '

1.63 in the simulated catalog of GWs from binary neutron stars detected at ET (see
Table 3.26).

As we did or the HLVKI network, we also show the results obtained by run-
ning MCMCs with the parametrization given by eq. (3.1.30). The two-dimensional
likelihoods for the cosmological parameters are shown in Fig. 3.48 and Fig. 3.49,
assuming ΛCDM or RT, respectively, as fiducial cosmologies for the mock catalog of
GW detections at the ET network. The errors on cosmological parameters are listed
in Tables 3.29 and 3.30.
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FIGURE 3.45: As in Fig. 3.44, assuming the RT fiducial cosmology.
From [261].
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DES+ET CMB+BAO+DES+ET
∆Ξ0 0.008 (0.8%) 0.007 (0.7%)

∆H0/H0 0.31% 0.19%
∆ΩM/ΩM 2.78% 0.68%

TABLE 3.29: Accuracy (1σ level) in the reconstruction of Ξ0, H0 and
ΩM with DES+ET and CMB+BAO+DES+ET, assuming ΛCDM as the

fiducial cosmology for the ET dataset. From [261].

DES+ET CMB+BAO+DES+ET
∆Ξ0/Ξ0 0.66% 0.66%
∆H0/H0 0.31% 0.20%

∆ΩM/ΩM 2.76% 0.74%

TABLE 3.30: As in Table 3.29, assuming the RT model as the fiducial
cosmology for the ET dataset. From [261].

3.3.3 Summary on the reconstruction of modified GW propagation

Modified GW propagation can play a crucial role in telling apart modified grav-
ity models from ΛCDM. We have explored two very convenient ways of extract-
ing the information from the observations, either using the parametrization (3.1.30),
or using a parametrization-independent reconstruction method based on Gaussian
processes. The first conclusion is that the two methods are quite complementary.
The parametrization (3.1.30) of the ratio d gw

L (z)/d em
L (z) has been shown to fit ex-

tremely well the predictions of most of the best studied modified gravity models;
this, together with its simplicity, makes it an extremely convenient tool. On the
other hand, the study in [200] has also identified one model, bigravity, where this
parametrization is not adequate since it does not catch a series of oscillations that
take place in that model; this already makes it worthwhile to test the data also
against a parametrization-independent technique. For the function δ(z) the use of
Gaussian processes is even more informative; indeed, the directly observable quan-
tity is d gw

L (z)/d em
L (z), which is related to δ(z) by eq. (3.1.13). Features of the function

δ(z), such as bumps, can be smoothed out by the integration in eq. (3.1.13), so that
eventually the parametrization (3.1.30) could still fit the data relatively well even
when some features of the function δ(z) are not correctly reproduced by the corre-
sponding parametrization (3.1.34). As we already mentioned, this happens indeed
in DHOST theories [200]. In this case, a parametrization-independent reconstruc-
tion of the function δ(z) using Gaussian processes might put in evidence structures
in δ(z), and therefore signatures of the underlying model, that would be lost using
the parametrization (3.1.30).

The complementarity between the two methods can also be seen in the informa-
tions that we get from them. In particular, the parametrization (3.1.30) allows us to
get in a very direct manner the asymptotic value of the ratio d gw

L (z)/d em
L (z) for large

redshift, which is given by the parameter Ξ0. In contrast, the Gaussian processes re-
construction can identify the correct functional form at moderate redshift without
making any assumptions, but becomes less and less accurate with increasing red-
shift, as we see from all figures showing the result of such reconstructions.

Beside testing the accuracy to which one could confirm the validity of ΛCDM,
assuming it as fiducial model, we have also tested the accuracy to which one could
validate a modified gravity model. We have focused in particular on a nonlocal
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modification of gravity, the so-called RT model [77], for which recent work [172] has
shown that Ξ0 can reach values as large as 1.6. The model therefore gives a 60% devi-
ation from ΛCDM in the tensor sector, despite the fact that, both in the background
evolution and in scalar perturbations it is very close to ΛCDM, and indeed it fits the
existing cosmological datasets at a level statistically indistinguishable from ΛCDM.
The result are very interesting, since they show that already with 15 binary neutron
stars with counterpart, the second-generation detector network LIGO/Virgo/Kagra
(HVLKI) could very clearly detect this effect. Indeed, using the parametrization
(3.1.30), the results in Table 3.28 show that Ξ0 can be determined by HVLKI (com-
bining the results with CMB, BAO and DES SNe) to about 8% level accuracy, well
below the 60% deviation predicted by the RT model in the more optimistic case. This
is fully consistent with the results obtained in [210] where, using the current JLA SN
dataset rather than the mock DES SNe used here, it was found that HVLKI combined
with CMB, BAO and JLA can measure Ξ0 to about 10%. In the present analysis we
see that a similar conclusion can be obtained from Gaussian process reconstruction.
We see indeed from Fig. 3.41 that, with 15 binary neutron stars with counterpart at
HVLKI, it is possible to perform a parametrization-independent reconstruction of
the ratio d gw

L (z)/d em
L (z) to a few percent, across the whole range of redshifts con-

sidered. For instance, this implies that the prediction of the RT model with ∆N = 64
and the prediction of ΛCDM would be very clearly distinguished.

For third-generation detectors, such as the Einstein Telescope, the situation will
be even more exciting: in terms of Ξ0, ET combined with the CMB+BAO+DES will
reach an accuracy on Ξ0 better than 1%, see Table 3.29, while Fig. 3.47 shows the
remarkable accuracy of the Gaussian-processes reconstruction.
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3.4 Cosmology with LISA standard sirens

In [200] modified gravitational-wave propagation was extensively discussed for Horn-
deski theories ( f (R) theories, galileon cosmology, etc.), Degenerate Higher Order
Scalar-Tensor (DHOST) theories, bigravity and nonlocal cosmological models. Here
we discuss the methods and results of the analysis in [200] about the constraints
on cosmological parameters, dark energy and modified GW propagation, obtained
within the LISA Cosmology Working Group.

3.4.1 Mock catalogs of standard sirens at LISA

The sources that LISA will be able to detect at cosmological distances are massive
(and supermassive) binary black holes (MBHB) at high reshift (z & 1) [265], extreme
mass ratio inspirals (EMRIs) at intermediate redshift (0.1 . z . 2 − 3) [266] and
stellar mass binary black holes at low redshift (0.01 . z . 0.1) [267]. However, we
expect only MBHBs to have powerful EM counterparts, because of the gas rich envi-
ronment where they merge. In particular EM counterparts are expected in the optical
and radio bands as produced by jets or accretion and can enable us to determine pre-
cisely the position of the source in the sky. Therefore, as in [200], we focus on mock
catalogs of MBHBs. Their construction is explained in detail in Section 4 of [200]
elaborating on [188], and here we just summarize the main aspects that finally led
to three choices for the scenario of MBHBs formation. The two main ingredients are
the initial mass function of the massive black hole seeds, and the inclusion (or not)
of delays between galaxy and massive black hole mergers. We distinguish between
heavy seeds (bar instabilities of protogalactic disks, with seed masses∼ 105M�) and
light seeds (population III stars with remnant masses ∼ 100M�). The three models
that we use are: heavy seeds and no delays (“hnd” for short), heavy seeds with a
delay included and the Toomre parameter for the initial bar instability (see [188])
set to Q = 3 (“hQ3”), and light seeds due to pop III stars with inclusion of delays
(“popIII”). For each LISA detection (using the threshold SNR> 8), the error on the
luminosity distance is estimated with a Fisher matrix method and added to the error
due to weak lensing and peculiar velocities (see [200] and references therein).

Then, for the EM counterpart detection, first of all only the GW events with a sky
localization ∆Ω < 10 deg2 are selected and then, following [188], one can determine
the number of counterparts detected by future EM facilities, like LSST, SKA and
ELT. The determination of the EM counterpart will enable us to determine the host
galaxy of the MBHB and to obtain the redshift of the GW event using either spec-
troscopic or photometric techniques. Two different scenarios for the redshift errors
were considered in [200] and here we just summarize the errors:

• Scenario 1 (realistic), with relative error on redshift given by (∆z/z)photo =
0.05(1+ z) for photometric measurements (as suggested by Euclid related works
[268]), while (∆z/z)spect = 0.01(1 + z)2 for spectroscopic measurement.

• Scenario 2 (optimistic), with photometric measurements having a relative er-
ror on redshift given by (∆z/z)photo = 0.03(1 + z), while spectroscopic mea-
surements have (∆z/z)spect = 0.01.

Then the redshift errors are simply propagated to the luminosity distance using the
fiducial ΛCDM cosmology. As a final result we end up with 3× 2 mock catalogs of
MBHB events at LISA with EM counterpart (considering 4 years of data taking), with
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FIGURE 3.50: Luminosity distance as a function of redshift for the
sources in the three catalogs “hnd",“hQ3" and “pop III" (see the text
for their definitions) with errors computed in the two scenarios for
the error on redshift: scenario 1 (realistic, left) and scenario 2 (opti-
mistic, right). Bottom: relative error on luminosity distance. Figure

from [200].

values of the luminosity distance, redshift and total error on luminosity distance6.
Fig. 3.50 is a plot of the six final catalogs considered (figure from [200]).

3.4.2 Cosmological parameters and dark energy with LISA

We now use the mock catalogs discussed in the previous section to study the effect
of LISA standard sirens on the estimate of the cosmological parameters, with partic-
ular emphasis on the DE sector, as described by the parameters (w0, wa) for the DE
equation of state, eq. (3.1.29), and by the parameters (Ξ0, n) that enter eq. (3.1.30) for
modified GW propagation.

As discussed in section 3.4.1, we provide our results for three models for the
formation of MBHBs that we called “hnd”, “hQ3” and “popIII”. For each formation
model, we use the two scenarios (1) and (2) of section 3.4.1 for estimating the error in
the redshift measurement, that we propagate to luminosity distance. Thus, overall,
we consider six different possibilities.

From the point of view of the cosmological model, we consider different cases.
We will start with ΛCDM, to investigate how LISA standard sirens help to constrain
its parameters. We will then study the extension of the DE sector obtained introduc-
ing a non-trivial DE equation of state, parametrized by w0 only (without modified
GW propagation, i.e. setting Ξ0 = 1); finally, we will introduce modified GW prop-
agation, extending the DE sector through the parameters (w0, Ξ0) and fixing wa = 0
and n to a reference value.7 For each of these three cosmological models we run
MCMCs for the six scenarios describing the formation model and the estimate of the
redshift error, as discussed above.

Furthermore, for each of these 3× 6 cases we run separate MCMCs to compute
the constraints that can be obtained with standard sirens only, and those obtained by

6To obtain representative catalogs for each of the six scenarios, a number of simulated catalogs were
ranked according to their errors on ΛCDM cosmological parameters, as obtained from a quick Fisher
matrix estimate (more details are available at the end of Section 4 in [200]); then the median catalog for
each scenario was selected.

7We do not introduce more than two extra parameters at the same time in the DE sector, since the
constraining power would decrease and the convergence time of the MCMC chains would become
very long. Indeed, already with the two parameters (w0, wa), we found that, because of the limited
number of sources in the LISA catalogs, the MCMC chains do not resolve the degeneracy between
these parameters and do not reach a good convergence.
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combining them with CMB, BAO and SNe data. In that case we use the Planck 2015
temperature and polarization power spectra [209], the JLA SNe dataset [140] and a
set of isotropic and anisotropic BAO data (these are the same datasets that we used,
for example, in the analysis for the RR nonlocal model; see Section 3.3.1 of [30] for
details on those datasets).

To generate the catalogs discussed in section 3.4.1 we assume a fiducial cosmo-
logical model, that we always take to be ΛCDM with H0 = 67.64 and ΩM = 0.3087,
which are the fiducial values obtained from the CMB+BAO+SNe dataset that we
use. So, in particular, our fiducial values for the extra parameters in the DE sector
are w0 = −1 and Ξ0 = 1, and we use ΛCDM and standard perturbation theory
within GR as fiducial theoretical framework for treating and analyzing our dataset.
Our aim is to evaluate to what accuracy LISA, alone or in combination with other
datasets, can reconstruct these fiducial values. We then generate our simulated cat-
alog of events by assuming that, for a source at redshift zi, the actual luminosity
distance will be dΛCDM

L (zi; H0, ΩM), with the above values of H0 and ΩM. The “mea-
sured" value of the luminosity distance is then randomly extracted from a Gaussian
distribution centered on this fiducial value, and with a width obtained from the es-
timate of the error on the luminosity distance discussed in Section 3.4.1.

The relevant cosmological parameters for evaluating the theoretical values of
the GW luminosity distance d gw

L (z) are ΩM and H0 in the ΛCDM case, with the
addition of w0 in wCDM and the further addition of Ξ0 in the (Ξ0, w0) case. Apart
from a constant addend coming from normalization, the logarithm of the likelihood
assigned to a given set of values (H0, ΩM, w0, Ξ0) is given by

ln(L(H0, ΩM, w0, Ξ0)) = −
1
2

Ns

∑
i=1

[
d gw

L (zi; H0, ΩM, w0, Ξ0)− di
]2

σ2
i

, (3.4.1)

where Ns is the number of mock sources in the catalog, d gw
L (zi; H0, ΩM, w0, Ξ0) is

the theoretical value of the GW luminosity distance for the i-th source and di is the
“measured" value of its luminosity distance contained in the catalog. The quantity
σi is the error on luminosity distance and it also takes into account the error on red-
shift determination, which is simply propagated to the luminosity distance using the
fiducial ΛCDM cosmology. The MCMC code used explores the cosmological param-
eters space, accepting or rejecting the points according to a Metropolis-Hastings al-
gorithm based on the likelihood specified above. The priors assumed on cosmolog-
ical parameters are Gaussian (or truncated Gaussian) distributions with mean and
standard deviation, in this order, given by: 67.8 and 1.2 for H0 (in km s−1Mpc−1),
0.02225 and 0.00028 for ωb=Ωbh2 (baryon density fraction), 0.1192 and 0.0027 for
ωc = Ωch2 (cold dark matter density fraction), −1.0 and 1.0 for w0 (restricted from
−3.0 to −0.3), 1.0 and 0.5 for Ξ0 (restricted to positive values).

The cosmological evolution is studied by using the CLASS Boltzmann code. The
modified version of CLASS implementing the GW luminosity distance parametriza-
tion in Equation eq. (3.1.30) is available at [132]. The MCMC code obtained by in-
cluding in MontePython the LISA mock catalogs of sources and implementing the
LISA likelihood described in eq. (3.4.1) is available at [269] (it needs the aforemen-
tioned modifed version of CLASS).

As we see from Fig. 3.50, the number of total available standard sirens in our
sample is quite limited. For instance, in the specific realization of the catalogs that
we use there are 32, 12 and 9 sources in the “hnd”, “hQ3” and “popIII” scenarios,
respectively. It is important to realize that, since these numbers are relatively small,
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the scatter of the mock data around their fiducial values unavoidably induces fluc-
tuations in the reconstruction of the mean value of the cosmological parameters in-
ferred from standard sirens alone, so that the reconstructed mean values in general
will not coincide with those obtained from other cosmological observations such as
CMB, BAO and SNe. Thus, depending on the specific realization of the catalog, the
contours in parameter space of the likelihood obtained from standard sirens could
show mild tensions with those obtained from other datasets. This is unavoidable,
and will also happen in the actual experimental situation. Thus, in the plots shown
below, the overlap (or lack of it) between different contours has little meaning, as it
depends on the specific random realization of the catalog. What carries the impor-
tant information is the relative size of the contours, that will tell us to what extent the
addition of standard sirens to other datasets can improve our knowledge of the cos-
mological parameters. However, when combining contours from different datasets
to obtain a combined estimate on the error on a parameter, one must be careful not
to use a specific realization where the separate contours are in mild tension among
each other.

ΛCDM

We begin by studying the effect of standard sirens on cosmological parameter esti-
mation in ΛCDM, as a benchmark for our subsequent generalizations, and we will
then introduce different extensions of the dark energy sector. As baseline ΛCDM
model we use the standard set of six independent cosmological parameters: the
Hubble parameter today H0 = 100h km s−1Mpc−1, the baryon density fraction to-
day ωb = Ωbh2 , the cold dark matter density fraction today ωc = Ωch2, the am-
plitude As and tilt ns of the spectrum of primordial scalar perturbations, and the
reionization optical depth τre. We keep the sum of neutrino masses fixed, at the
value ∑ν mν = 0.06 eV, as in the Planck baseline analysis. We then run a series of
MCMC, using the CLASS Boltzmann code [131] (or our modification of it, in the
case of non-trivial GW propagation).

In ΛCDM, assuming flatness, dL(z) depends only on H0 and ΩM, so these are
the parameters for which the inclusion of standard sirens has the most significant
impact. Fig. 3.51 shows the two-dimensional likelihood in the (ΩM, H0) plane in
ΛCDM, comparing the contribution from CMB+BAO+SNe (red) to the contribution
from LISA standard sirens (gray), and the overall combined contours, for the three
formation scenarios and the scenario (1) for the determination of the error on the
luminosity distance, while Fig. 3.52 shows the results for the scenario (2).

In particular in the most favorable scenario (“hnd" seeds and optimistic errors on
dL), from the corresponding one-dimensional marginalized likelihood we find that,
with standard sirens only, the relative error on H0 is

∆H0

H0
= 3.8% , (3.4.2)

(which raises to 7.7% in the “realistic" scenario with “hnd" seeds) and the one on ΩM
is ∆ΩM/ΩM = 14.7%; using our CMB+BAO+SNe dataset we get instead ∆H0/H0 =
0.7% and ∆ΩM/ΩM = 2.1%; combining CMB+BAO+SNe+standard sirens we get

∆H0

H0
= 0.7% ,

∆ΩM

ΩM
= 2.0% . (3.4.3)
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FIGURE 3.51: The 1σ and 2σ contours of the two-dimensional like-
lihood in the (ΩM, H0) plane in ΛCDM, with the contribution from
CMB+BAO+SNe (red), the contribution from LISA standard sirens
(gray) and the overall combined contours (blue), in the scenario (1)
(“realistic") for the error on the luminosity distance. Upper left: heavy
no-delay (“hnd") scenario; Upper right: “hQ3" scenario; lower panel:
“pop III" scenario. H0 is given in the usual units km s−1Mpc−1. No-
tice that the red contours are almost superimposed to the blue ones.

From [200].

Therefore, from MBH binaries at LISA, we do not find a significant improvement on
the accuracy on H0, compared to current results from CMB+BAO+SNe. It should
however be observed that the measurement from standard sirens is still useful be-
cause it has completely different systematic errors from that obtained with CMB,
BAO and SNe.

These results, obtained within the LISA Cosmology Working Group in [200],
should be compared with those found a few years ago (2016) in [188]. To perform the
comparison, we should however note that the best results quoted in [188] referred
to a LISA configuration with 5 Gm arms, and with all other design specifications to
their most optimistic possible choices, while our results use the current LISA config-
uration with 2.5 Gm arms, given in [221]. The corresponding LISA sensitivity curve
used in our study is quite different and generally gives worse results. For example
the number of standard sirens used in our analysis is roughly half the number used
in [188].

Furthermore, at the methodological level there are some differences between our
analysis and that in [188]. First, as discussed above, to generate our catalogs we
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FIGURE 3.52: As in Fig. 3.51, for the scenario (2) (“optimistic") for the
error on the luminosity distance. From [200].

have scattered the values dΛCDM
L (zi; H0, ΩM), extracting the “measured" values of

the luminosity distance from a Gaussian distribution centered on this fiducial value,
and with a width ∆dL determined by the projected error estimate. Ref. [188] did
not consider scattered data, thus the statistical error due to scatter was not included
in the analysis. The Fisher matrix analysis performed in [188] was performed on
non-scattered data, while our MCMC analysis takes also into account the statisti-
cal uncertainty due to the scattering and thus gives more realistic results. Second, in
our MCMC analysis the degeneracies between the cosmological parameters are fully
taken into account by freely varying all cosmological parameters of ΛCDM (and, in
the following subsections, of its extensions), while in the Fisher matrix analysis of
[188] the most stringent results (that eventually, together with all other assumptions
mentioned above, led to the estimate that H0 could be measured to 0.5% with stan-
dard sirens only) where obtained by varying only H0 and assuming a fixed prior
on ΩM. The procedure of the present analysis therefore gives a larger estimate of
the error on the cosmological parameters that can be obtained with LISA standard
sirens.

On the other hand, one should also be aware of the fact that, before drawing fi-
nal conclusions on the sensitivity of LISA to H0, as well as to the DE parameters that
will be discussed below, much more work is needed. For instance, the counterpart
model used in [188] makes a number of assumptions, which will only be validated
when (if) LISA electromagnetic counterparts are actually observed. Another caveat
is that the error on the localization used in our analysis is based on the use of the in-
spiral waveform only, with corrections based on phenomenological waveforms, and
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FIGURE 3.53: The 1σ and 2σ contours of the two-dimensional like-
lihood in the (ΩM, w0) plane in wCDM, with the contribution from
CMB+BAO+SNe (red), the contribution from LISA standard sirens
(gray) and the overall combined contours (blue), in the scenario (1)
(“realistic") for the error on the luminosity distance. Upper left: heavy
no-delay (“hnd") scenario; Upper right: “hQ3" scenario; lower panel:

“pop III" scenario. From [200].

it is still an open issue how this will change when including a full description of the
merger and ringdown phases. The estimate of the redshift error also involves other
factors, with respect to those that we have discussed, such as the exposure time, that
will depend on the availability of telescope time and the pointing accuracy, which
are currently difficult to estimate, as well as on the duration of the electromagnetic
transient, whose estimation in turn involves the modeling of the counterpart. It
should also be observed that the number of sources observed depends strongly on
the sensitivity curve at low frequency, where there is potential room for improve-
ment with respect to the sensitivity curve that we have adopted. Finally, we are
only using MBHBs with counterpart as standard sirens, and we are not considering
stellar mass BHBs and EMRIs, that are not expected to have an EM counterpart, but
can still be treated with statistical methods (like correlation with galaxy catalogs) to
obtain partial redshift information.

wCDM

We next add the parameter w0, corresponding to the so-called wCDM model, where
the DE equation of state is taken to be constant, i.e. wa = 0 in eq. (3.1.29). A fur-
ther natural extension would be to the (w0, wa) set of parameters. However we have
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FIGURE 3.54: As in Fig. 3.53, for the scenario (2) (“optimistic") for the
error on the luminosity distance. From [200].

found that, with the limited number of sources in the LISA catalogs, it is not pos-
sible to disentangle the degeneracy between these two parameters, and the MCMC
chains do not reach a good convergence; so we keep wa = 0. Since the model used
to generate the catalog of sources is still ΛCDM, we are actually asking to what ac-
curacy we can find back the fiducial value w0 = −1. Figs. 3.53 and 3.54 show the
two-dimensional likelihood in the (ΩM, w0) plane, displaying the combined contri-
bution from CMB + BAO + SNe (red), and the total combined result (blue), for the
six scenarios considered.

Even in the most optimistic scenario that we have considered, we learn from the
plots that LISA standard sirens alone do not give any significant constraint on w0,
and, when combined to CMB + BAO + SNe data, they only induce a very marginal
improvement. From the corresponding one-dimensional likelihoods, from CMB +
BAO + SNe only, we find that w0 can be reconstructed with the accuracy ∆w0 =
0.045. Combining CMB+BAO+SNe with standard sirens, in the “optimistic hnd"
scenario we get

∆w0 = 0.044 , (3.4.4)

so the improvement due to MBHB standard sirens is quite negligible. Basically the
same results are obtained in all other scenarios considered.

As we already did in Section 3.4.2, it is interesting to compare the results of our
analysis to those in [188]. Indeed, our results significantly degrade the estimates
presented in [188]. As discussed in the ΛCDM case, the difference is due to the
use of the updated sensitivity curve of LISA, the more realistic assumptions in the
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construction of the catalogs and estimates of the errors, and the fact that the degen-
eracies between cosmological parameters are now fully taken into account through
a full MCMC. However, as for H0, one should be aware of all the assumptions and
uncertainties that entered in the construction of the source catalogs, and that could
significantly alter the results. In particular these estimates can either be improved
by combining the cosmological data collected with MBHBs with the ones collected
from other LISA sources, such as EMRIs and stellar mass BHBs, or by extending
the observational period of LISA with respect to the four years that we assumed in
our analysis. In the first case the different redshift ranges where EMRIs and stellar
mass BHBs are expected to be observed, will help breaking some degeneracies in
the cosmological parameters, such as for example the degeneracy between H0 and
ΩM in ΛCDM. In the second case instead the estimated errors are expected to im-
prove roughly as ∼

√
N or better, where N is the number of MBHB merger with EM

counterpart observed by LISA, which linearly depends on the observational period.
Both these improvements should reduce the error associated with the statistical scat-
ter of the standard sirens data, which was not considered in [188], while in the our
analysis presented here, which takes into account more realistic SBHB catalogs and
an updated LISA noise sensitivity curve, appears to be the most relevant source of
error. Other improvements can be achieved by a more realistic and detailed charac-
terization of the emission and detection of the EM counterparts of MBHB mergers,
which both here and in [188] has been modeled only with optical and radio EM emis-
sions, but the consideration of other EM signatures (X-rays, γ-rays, ...) could lead to
a higher number of cosmologically useful events.

(Ξ0, w0)

We next extend the DE sector by introducing the parameter Ξ0. In order to keep
under control the number of new parameters, which is necessary to ensure the con-
vergence of the MCMC chains, we only take (Ξ0, w0) as the parameters that describe
the DE sector of the theory, fixing wa = 0 and n = 2.5; the latter value is of the or-
der of n suggested by the RR and RT nonlocal models. However, the precise value
of n is not very important for the forecasts that we present, since the uncertainty
on this quantity is large for |Ξ0 − 1| � 1 [171]. Again, we assume ΛCDM as the
fiducial model used to generate the catalog of sources, so the fiducial values for the
parameters Ξ0 and w0 are Ξ0 = 1 and w0 = −1.

Fig. 3.55 shows the two-dimensional likelihood in (Ξ0, w0) plane, for the realistic
scenario for the error on the luminosity distance, and the three seed scenarios, while
Fig. 3.56 shows the results obtained using the optimistic scenario for the error on
the luminosity distance. We plot the limit from CMB+BAO+SNe and the combined
limit from CMB+BAO+SNe+LISA standard sirens while, as before, using only stan-
dard sirens, with the addition of these new parameters with respect to ΛCDM, the
MCMC chains fail to converge because of the limited number of sources. Note that
CMB, BAO and SNe, as any other electromagnetic probe, are blind to Ξ0, and there-
fore the corresponding contour from CMB+BAO+SNe are flat in the Ξ0 direction.
Standard sirens, however, lift this flat direction. The errors on Ξ0 and w0 from the
corresponding one-dimensional likelihoods are shown in Tables 3.31.

Exactly as in the case of wCDM discussed above, we see that the accuracy that
LISA, combined with CMB+BAO+SNe, can reach on w0 is only of about 4.4% (at least
using only MBHBs with counterpart as standard sirens), which is basically entirely
determined by the current CMB+BAO+SNe observations.
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FIGURE 3.55: The 1σ and 2σ contours of the two-dimensional
likelihood in the (Ξ0, w0) plane, with the combined contribu-
tion from CMB+BAO+SNe (red) and the combined contours from
CMB+BAO+SNe+LISA standard sirens (blue), in the scenario (1) (“re-
alistic") for the error on the luminosity distance. Upper left: heavy
no-delay (“hnd") scenario; Upper right: “hQ3" scenario ; lower panel:

“pop III" scenario. From [200].

In contrast, even under the current set of assumptions (see the discussion in
sect. 3.4.2), that have led to relatively large errors on H0 and on w0 from LISA stan-
dard sirens, Ξ0 still turns out to be an extremely interesting observable for LISA.
First of all it can be observed only with GW experiments, and second, Ξ0 can be
measured more accurately than w0. This is confirmed by the results of our MCMC,
which shows that, in the best case, Ξ0 can be measured to 1% accuracy, and even
in the worst case we still have a 4.4% accuracy, see Table 3.31. By comparison, for
instance, the RT minimal nonlocal model predicts a deviation from the GR value
Ξ0 = 1 at the level of 7% (and much larger, up to 80%, when its initial conditions are
set during inflation). Values of O(few %) can be obtained for scalar-tensor theories
like f (R), Galileon models and DHOST theories (see the plots in Section 3.1 of [200]).
Thus, the accuracy that LISA can reach on modified GW propagation is extremely
interesting for testing modified gravity.



3.4. Cosmology with LISA standard sirens 129

0.80 0.88 0.96 1.04 1.12 1.20

0

1.20

1.12

1.04

0.96

0.88

0.80

w
0

CMB+BAO+SNe
CMB+BAO+SNe+LISA_opt_hnd

0.80 0.88 0.96 1.04 1.12 1.20

0

1.20

1.12

1.04

0.96

0.88

0.80

w
0

CMB+BAO+SNe
CMB+BAO+SNe+LISA_opt_hQ3

0.80 0.88 0.96 1.04 1.12 1.20

0

1.20

1.12

1.04

0.96

0.88

0.80

w
0

CMB+BAO+SNe
CMB+BAO+SNe+LISA_opt_popIII

FIGURE 3.56: As in Fig. 3.55, for the scenario (2) (“optimistic") for the
error on the luminosity distance. From [200].

seeds ∆Ξ0 ∆w0

hnd 0.023 0.045
hQ3 0.036 0.046

popIII 0.044 0.045

seeds ∆Ξ0 ∆w0

hnd 0.011 0.045
hQ3 0.017 0.044

popIII 0.022 0.044

TABLE 3.31: Forecasts for the 1σ errors on Ξ0 and w0 from
CMB+BAO+SNe+LISA standard sirens, for the three seed scenarios.
Left: realistic scenario for the error on the luminosity distance. Right:

optimistic scenario. From [200].
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Chapter 4

Conclusions

Let us summarize the main lessons that can be drawn from the results discussed in
this thesis.

1. We have seen that it is possible to build nonlocal cosmological models which
are theoretically well motivated. One specific model in this class, the RT model,
passes all the currently available tests. A few points can be useful to specify
better these findings and to understand their meaning in relation to the diffi-
culties in constructing a good cosmological alternative to ΛCDM:

• The viability of the RT model at cosmological scales is a highly non-trivial
result, considering that other nonlocal theories have instabilities emerg-
ing at the background level or at the perturbations one (either in the scalar
or tensor sector).

• The same can be said for its success at Solar System scales, where the RT
model smoothly reduces to GR without the need of any screening mech-
anism. Furthermore, the model complies with the constraints on the time
variation of the effective Newton’s constant from Lunar Laser Ranging;
this is again a test that has excluded other nonlocal models.

• The RT model does not simply “survive” the tests against cosmological
data, but it works at the same level of ΛCDM when tested against CMB,
BAO, SNe and structure formation data.

• The RT model passes the GW170817/GRB 170817A test, because it pre-
dicts a speed of propagation of gravitational waves equal to the speed of
light.

2. The predictions of the RT model at the background level and in the scalar per-
turbations sector are close to ΛCDM, but, surprisingly, tensor perturbations
show very large deviations, up to the level of 80%, due to modifications in the
friction term of the tensor propagation equation.

3. For standard sirens, a modification in the friction term implies that it is nec-
essary to introduce a notion of ‘GW luminosity distance’, different from the
usual electromagnetic one.

4. It should be appreciated how, studying the cosmological consequences of spe-
cific models (that could be nonlocal gravity as in this thesis, or scalar-tensor
theories as in other works in the literature), one is led to investigate very gen-
eral features like modified gravitational-wave propagation, which can be used
to test the whole idea of corrections to GR occurring at cosmological scales.

5. For dark energy studies, modified GW propagation can be measured better
than the dark energy equation of state.
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6. We have seen, through a detailed analysis, that the predictions for modified
GW propagation of many modified gravity theories are within the reach of 3G
ground-based detectors and LISA.

7. We expect that the new observation window given by GW detectors can lead to
exciting news for cosmology, and modified GW propagation will be a primary
observable in that context.
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Chapter 5

Appendix: The ∆4 model

5.1 Definition and qualitative properties

Besides the RT and RR model that have beeen the two reference nonlocal models in
this thesis, there is another nonlocal gravity model associated to a mass scale that
we have studied in detail, namely the ∆4 model. In this Appendix we follow the
analysis given in App. A of [30]. The ∆4 model is defined by the quantum effective
action

Γ∆4 =
M2

P
2

∫
d4x

√
−g

[
R− m2

6
R

1
∆4

R
]

, (5.1.1)

where ∆4 is the Paneitz operator,

∆4 ≡ 22 + 2Rµν∇µ∇ν −
2
3

R2+
1
3

gµν∇µR∇ν , (5.1.2)

As we have seen in Section 1.2.4, the Paneitz operator enters in the anomaly-induced
quantum effective action in four dimensions. From the point of view of conformal
invariance, is the natural generalization of the d’Alembertian (which appears in the
2D Polyakov quantum effective action) from two to four dimensions.

The linearization over Minkowski space of this model is the same as the RT or
RR models (so, in the end, it is another covariantization of the same linearized equa-
tions, athough it has a less immediate form).

When studying its cosmology, the ∆4 model shows a distinctive behavior already
at the FRW background level and, as first found in [270], it has a phantom dark
energy equation of state with wDE(0) ' −1.34. Comparison with the Planck limits
on wDE(z) [209] then already suggested that the model would not fit well the data,
although, as was mentioned, a full analysis of the perturbations is necessary to reach
a definite conclusion. We have performed such analysis and we summarize here the
main methods and results.

Actually, we realized in [30] that the ∆4 model is ruled out by the behavior of
tensor perturbations, that do not propagate with the speed of light, but a sensibly
lower space near the present epoch. However, the study of the background and
scalar sectors of this model is also methodologically interesting. In fact, in general,
in modified gravity models, a DE equation of state on the phantom side has the effect
of rising the value of H0 obtained from parameter estimation, and indeed the value
of H0 obtained from local measurements could be obtained in a wCDM model with
w ' −1.3 [271].

So, the study of the scalar sector of the ∆4 model is interesting because its DE
equation of state is expected to be about the most phantom that one can have in
order to fit reasonably the CMB+BAO+SNe data, and then its prediction for H0 will
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give an idea of the maximum value of H0 that could be obtained from models of this
type.

It turns out that, despite the H0 prediction in the ∆4 model is higher than in
the RT model, it is still not large enough to be helpful in the context of the Hub-
ble tension. [Of course, this is just an hypothetical statement, that would make
sense if the ∆4 model had passed all available tests. As we said, the model fails the
GW170817/GRB170817 A test for the speed of propagation of gravitational waves.]

It is also conceptually interesting to observe that the ∆4 model (5.1.1) interpolates
between the RR model and a model with a non-trivial form factor for Newton’s
constant. This can be seen more easily in de Sitter space, where R is constant and
Rµν = (1/4)Rgµν, so eq. (5.1.2) simplifies to

∆4 = 2

(
2− 1

6
R
)

. (5.1.3)

Then, after integrations by parts, the effective action (5.1.1) becomes

Γ∆4 =
M2

P
2

∫
d4x
√
−g

[
R− 1

6
m2
(

1
2

R
) (

1
2− 1

6 R
R

)]
, (deSitter) (5.1.4)

For Fourier modes such that |2| � R/6, this reduces to the RR model. In the oppo-
site limit |2| � R/6, in contrast

Γ∆4 '
M2

P
2

∫
d4x
√
−g

(
1 +

m2

2

)
R (deSitter, |2| � R/6) , (5.1.5)

corresponding to a running Newton’s constant. We next recall the main results on
the background evolution of the model, and we work out its cosmological perturba-
tions.

5.2 Background evolution

The covariant equation of motion derived from (5.1.1) are

Gαβ

[
1− m2

3
S +

m2

9
(∇S)2

]
+

m2

6

{
∇α∇β

[
2S +

1
3
(∇S)2

]
−gαβ

[
22S +

1
2
(2S)2 − Rρσ∇σS∇ρS− 1

6
2 (∇S)2

]
+S
(
∇ρRαβ −∇(αRβ)ρ

)
∇ρS− 4 (∇ρS) Rρ(α∇β)S + 22S∇α∇βS

−2
(
∇ρ∇(αS

)
∇β)∇ρS +

2
3

R∇(αS∇β)S + S
(
∇λRλ(αβ)ρ

)
∇ρS

+2
(
∇λS

)
Rλ(αβ)ρ∇ρS− 2

(
∇(αS

) (
∇β)2S

)}
= 8πGTαβ . (5.2.1)

where S is defined by
S = ∆−1

4 R . (5.2.2)

Specializing to FRW, the background evolution equations are [30, 270]

h2(x) = ΩMe−3x + ΩRe−4x + γY(x) , (5.2.3)
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where again γ = m2/(9H2
0), while

Y =
1
2

W ′(6−U′ − 2U) + W(3− 6ζ + ζU′ + 2ζU) +
1
4

U2 , (5.2.4)

and we have introduced two auxiliary fields

W ≡ H2S , (5.2.5)

U ≡ a−2 ∂2S
∂η2 = H2 [S′′ + (1 + ζ)S′

]
, (5.2.6)

where η is conformal time (and, as in Section 2.1.1 for the RT model, the prime de-
notes d/dx, where x = log a). The introduction of the two fields U, W allows us to
split the fourth-order equation ∆4S = R into a couple of second-order equations,

U′′ + (5 + ζ)U′ + (6 + 2ζ)U = 6(2 + ζ) . (5.2.7)
W ′′ + (1− 3ζ)W ′ + 2(ζ2 − ζ − ζ ′)W = U . (5.2.8)

Setting ζ(x) = ζ0 constant we find that the most general solution of eq. (5.2.7) is

U(x) =
3(2 + ζ0)

3 + ζ0
+ u1e−(3+ζ0)x + u2e−2x . (5.2.9)

Therefore both homogeneous solutions are decaying modes, in all cosmological epochs,
and even the inhomogeneous solution is constant, rather than linearly growing in x
as in eq. (2.1.11) for the RT model. The same holds for W, since the homogeneous
equation W ′′ + (1 − 3ζ0)W ′ + 2(ζ2

0 − ζ0)W = 0 has the solutions W = eβ±x with
β+ = 2ζ0 and β− = −1 + ζ0. The value β− is negative in all three eras, while β+

is negative in RD and MD and vanishes, corresponding to a constant solution, in
dS. Thus, there is no growing mode and the cosmological evolution is stable. Thus,
even if we set the initial conditions of order one for U and W in a earlier inflationary
epoch, U and W still enter the RD era with a value of order one. In RD ζ0 = −2,
so the inhomogeneous term in eq. (5.2.9) vanishes, and for U the de Sitter solution
is matched to the two decaying modes e−x and e−2x. Thus, the solution is quickly
attracted toward the one obtained setting u0 = 0 deep in RD. Similarly, for W the so-
lution that emerges from de Sitter is matched to its two decaying modes in RD. Thus,
the solution obtained setting the initial conditions U = W = U′ = W ′ = 0 at some
initial time deep in RD is an attractor and, in the ∆4 model there is no free parameter
associated to the boundary conditions. This makes the model very predictive.

We can now integrate numerically the equations of motion, with initial condi-
tions U = W = U′ = W ′ = 0 at some initial time deep in RD. The result of the
numerical integration is shown in Fig. 5.1 [30, 270]. We have an effective dark en-
ergy density ρDE = ρ0γY. We see that, once again, the effective DE density vanishes
deep in RD, and begins to grow as we approach radiation-matter equality (around
xeq ' −8.1). In the ∆4 model, during MD ρDE(x) eventually stabilizes to a con-
stant, leading to a long phase where the EoS parameter w(z) ' −1 as in ΛCDM.
However, as the DE density starts to dominate over matter, ρDE finally grows again,
leading near z = 0 to an EoS with wDE(z = 0) ' −1.36 (with the choice ΩM ' 0.29
and h0 ' 0.71 obtained from parameter estimation in this model, see below). Using
again the parametrization (2.1.19) in the region −1 < x < 0, for our best-fit values
ΩM ' 0.29 and h0 ' 0.71 we get w0 ' −1.33 and wa ' 0.53.
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FIGURE 5.1: Figure from [30]. Background evolution of the ∆4 model,
using ΩM ' 0.29 and h0 ' 0.70, see Table 5.1.

5.3 Cosmological perturbations in the scalar sector

At the perturbation level we write the metric in the scalar sector as in eq. (2.1.20). The
auxiliary field S defined in eq. (5.2.2) satisfies the fourth-order equation ∆4S = R. We
find convenient to split this fourth-order equation into a pair of second-order equa-
tion, introducing a second auxiliary field. In a generic space-time, it is not possible
to perform this split covariantly [although this would be possible in de Sitter, see
eq. (5.1.3)], so we simply keep the definitions (5.2.5, 5.2.6) also when performing
perturbations over an FRW background, i.e. we write W(η, x) ≡ H2(η)S(η, x) and
U(η, x) ≡ a−2∂2

ηS(η, x). For studying the perturbations it is convenient to use the
variable V = W/h2 = H2

0 S rather than W. We then expand V = V̄ + δV. As a
second perturbation variable for the auxiliary field, instead of δU, it is convenient to
chose

δZ ≡ h2 [δV ′′ + (1 + ζ) δV ′ + V̄ ′
(
Φ′ −Ψ′

)]
+ 2 (Φ−Ψ) Ū , (5.3.1)

because then higher-derivative terms drop out of the equations. The above equation
can be taken as a dynamical equation for δV, while for δZ one finds

δZ′′ + (5 + ζ) δZ′ +
(

6 + 2ζ + 2k̂2
)

δZ = −h2k̂4δV + 6
[
Φ′′ + (3 + ζ)Φ′

]
(5.3.2)

+

(
Ū′ + 2Ū − 6− k̂2

3
h2V̄ ′

)(
Ψ′ −Φ′

)
+ 2k̂2(1− 2

3
Ū
)
Ψ + 4

[
3
(
ζ + 2

)
+ k̂2

(
1 +

Ū
3

)]
Φ .
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The analogous of eqs. (2.1.26)–(2.1.29) are

(1− 3γV̄)
(

k̂2Φ + 3Φ′ − 3Ψ
)
+

3γ

2

{(
V̄ ′ − Ū

2h2

)
δZ +

1
2

V̄ ′δZ′ (5.3.3)

−
[

3 + k̂2
(

1 +
Ū
2

)]
δV + 6V̄ ′Ψ− 3V̄ ′Φ′ +

Ū2

h2 Φ +

(
Ū′

2
+ Ū − 3 +

5
6

k̂2h2V̄ ′
)

δV ′

−
(
Ū′ + 2Ū

)
V̄ ′ (Φ + Ψ) +

2
3

k̂2h2V̄ ′2 (Φ−Ψ)

}
=

3
2h2

(
ΩRe−4xδR + ΩMe−3xδM

)
,

(1− 3γV̄) k̂2(Φ′ −Ψ) +
γk̂2

2

[
(Ū − 3)

(
δV ′ − V̄ ′Ψ

)
+ ŪV̄ ′Φ (5.3.4)

+
3
2

(
2− Ū′ − 2Ū − k̂2h2V̄ ′

)
δV − 1

2
V̄ ′δZ

]
= − 3

2h2

(
4
3

ΩRe−4x θ̂R + ΩMe−3x θ̂M

)
,

(1− 3γV̄)

[
Φ′′ + (3 + ζ)Φ′ −Ψ′ − (3 + 2ζ)Ψ +

k̂2

3
(Φ + Ψ)

]
= − 1

2h2 ΩRe−4xδR

+
γ

2

{ [
3Φ′ −

(
6 + Ū′ + 2Ū +

2
3

k̂2h2V̄ ′
)

Ψ +

(
2
3

k̂2h2V̄ ′ − Ū′ − 2Ū
)

Φ
]

V̄ ′

+ (Ū − 6)
Ū
h2 Φ +

(
V̄ ′ − Ū

2h2 +
3
h2

)
δZ +

1
2

V̄ ′δZ′ +
[

3(3 + 2ζ) +

(
2− Ū

2

)
k̂2
]

δV

+

(
Ū′ + 2Ū + 6 +

5
3

k̂2h2V̄ ′
)

δV ′

2

}
, (5.3.5)

(1− 3γV̄ + γV̄ ′2h2)Ψ + (1− 3γV̄ − γV̄ ′2h2)Φ− 3γδV(1− Ū) + γh2V̄ ′δV ′ = 0 . (5.3.6)

The results of the numerical integration shows that the cosmological perturbations
are again stable and relatively close to those of ΛCDM.

5.4 Parameter estimation for the ∆4 model

We have then implemented the perturbations in our Boltzmann code and performed
Bayesian parameter estimation. The results are shown in Table 5.1 (using CMB +
BAO + SNe). We also write the results for νΛCDM and we give the difference in
χ2 compared to it. We see that the ∆4 model indeed predicts a higher value of H0,
although not sensibly higher than that in the RT model. On the other hand, its χ2 is
significantly worse than than that of νΛCDM, even including H0 in the dataset, so
the model is already very strongly disfavored by the study of the scalar perturba-
tions.

5.5 Tensor perturbations

On top of this, it was found in [30] that the model is ruled out by the fact that its ten-
sor perturbations do not propagate at the speed of light. This is also interesting from
the methodological point of view since it shows that, for these nonlocal models, it is
not obvious a priori to satisfy this constraint. The equation for tensor perturbations
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CMB+BAO+SNe
Parameter νΛCDM ∆4

H0 67.60+0.66
−0.55 70.27+0.95

−0.94

∑ν mν [eV] < 0.10 (at 1σ) 0.185+0.087
−0.096

ωc 0.1189+0.0011
−0.0011 0.1202+0.0014

−0.0014

100ωb 2.229+0.014
−0.015 2.217+0.017

−0.017

ln(1010As) 3.071+0.026
−0.029 3.080+0.034

−0.036

ns 0.9661+0.0043
−0.0043 0.9637+0.0050

−0.0050

τre 0.06965+0.01393
−0.01549 0.07280+0.01769

−0.01927

ΩM 0.3109+0.0069
−0.0084 0.2925+0.0096

−0.0101

zre 9.150+1.396
−1.355 9.490+1.793

−1.656

σ8 0.8157+0.0135
−0.0104 0.8240+0.0199

−0.0177

χ2
min 13630.78 13649.98

∆χ2
min 0 19.20

TABLE 5.1: Parameter estimation and χ2 values for νΛCDM and the
∆4 model, using the CMB, BAO and SNe datasets. From [30].

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

z

c
g
w(Δ
4
)

FIGURE 5.2: The speed of gravitational waves in the ∆4 model as a
function of the redshift. From [30].

in the ∆4 model is

(1− 3γV̄)
(

∂2
η h̃A + 2H∂η h̃A + k2h̃A

)
+γ

[
(∂ηV̄)2

a2H2
0

(
2∂2

η h̃A − k2h̃A

)
+ (4Ū − 3) ∂ηV̄∂η h̃A

]
= 16πGa2σ̃A , (5.5.1)

and the corresponding speed of gravitational waves in a FRW background is

c(∆4)
gw =

√√√√ 1− 3γV̄ − γ
a2 H2

0
(∂ηV̄)2

1− 3γV̄ + 2 γ
a2 H2

0
(∂ηV̄)2 . (5.5.2)

This quantity is always smaller than one, and in the recent epoch it differs from one
significantly, see Fig. 5.2. Thus, the ∆4 model is ruled out by the GW170817/GRB
170817A test.
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