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Abstract

At high temperature in the early universe or at high density inside neutron stars,

matter has quite different properties from those in our everyday lives. If the system

has the same energy scale as the binding energy of constituent particles, it cannot

retain the structure any more, and consequently more fundamental degrees of freedom

appear. This requires us to understand matter from more microscopic viewpoint.

Nucleus is a bound state of interacting protons and neutrons. The dynamics is

described by quantum chromodynamics (QCD) as the fundamental theory of quarks

and gluons. The QCD vacuum is quite nontrivial because of its nonperturbative na-

ture and has interesting properties such as color confinement and spontaneously chiral

symmetry breaking. Color confinement is the phenomenon that color charged particles

such as quarks and gluons do not explicitly appear in the low-energy QCD spectrum,

whereas colorless particles such as proton, neutron and pion emerge. Spontaneously

chiral symmetry breaking is the phenomenon that chiral symmetry is spontaneously

broken in the QCD vacuum and hence in nature. It is an origin of mass generation;

for example, more than 90 % of nucleon mass is generated by this mechanism. Mean-

while, UA(1) symmetry is anomalous and is related to topological structure of the

QCD vacuum.

Since the strong interaction becomes weak at high energy, QCD matter has phase

transitions at high temperature (T) or high baryon chemical potential (µB). A chart

of QCD matter in the T -µB plane is called the QCD phase diagram. Although

the Lagrangian of QCD is well known, the dynamics is still unknown in most of the

diagram because of nonperturbative nature of QCD. Hence understanding of the QCD

phase diagram is an important subject in nuclear physics and the related fields such
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as elementary particle physics, astronomical physics and condensed matter physics.

The first-principle lattice QCD (LQCD) simulations are feasible at finite T and

zero µB, so that the dynamics is well understood there. In other words, the LQCD

simulations are not feasible at finite µB because of the so-called sign problem, so that

our understanding of QCD dynamics is far from perfection there.

As a complementary approach to LQCD simulations, one can consider effective

models. In fact, the QCD phase diagram has often been analyzed with effective mod-

els. Although the effective models have large ambiguity coming from approximations

taken, it can cover a large area in the phase diagram including the finite µB region.

The Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is designed to treat

chiral symmetry and color confinement simultaneously, but it cannot reproduce ex-

isting LQCD data perfectly.

In this thesis we improve the PNJL model so that the effective model can reproduce

existing LQCD data and explain existing neutron-star observations. The improved

model is referred to as the entanglement PNJL (EPNJL) model in this thesis. We

analyze the following three subjects with the EPNJL model:

(1) Quark mass dependence of the Roberge-Weiss (RW) endpoint

(2) θ-parameter dependence of the QCD phase diagram

(3) Mass-Radius (MR) relation of neutron stars

In subject (1), we compare the EPNJL model results with the LQCD ones, since

LQCD simulations are feasible at imaginary chemical potential where the RW phase

transition takes place. The RW endpoint is a critical endpoint of the RW phase

transition appearing at µB = π/3 and finite T . Very recently, the order of the RW

endpoint was analyzed by LQCD simulations. The order is the first order at small

and large quark masses, but the second order at intermediate mass. The EPNL model

is successful in reproducing the mass dependence of the order of the RW endpoint,

whereas the PNJL model is not. The extension of the PNJL model to the EPNJL

model is thus essential. In this thesis, we then predict the phase diagram for the order

of the RW endpoint as a function of light quark mass ml ad strange quark mass ms.

In subjects (2) and (3), meanwhile, we make model predictions, since LQCD simu-
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lations are not feasible at finite θ discussed in subject (2) and finite chemical potential

considered in subject (3).

In subject (2), we consider nontrivial structure of the QCD vacuum called the θ

vacuum. This topological structure is quite interesting from the theoretical point of

view and is related to heavy ion collision measurements and the cosmic evolution. In

principle, the θ vacuum can be analyzed by adding the θ term to the QCD action.

However, LQCD simulations are not feasible at finite θ, and consequently properties

of the QCD vacuum are unknown when the θ term is present or generated effectively

at finite T . In this thesis, we explore the phase structure for finite θ and suggest a

new method of making LQCD simulations feasible for finite θ.

In subject (3), we consider the MR relation of neutron stars as a new constraint

on the phase diagram at finite µB and zero T . Recently, a heavy neutron star (NS)

with 2 M⊙ mass was observed with great accuracy. The accurate observation should

be used as a constraint on the QCD phase diagram at finite µB and zero T . In this

thesis, we determine the QCD phase transition in the entire region of µB and T by

using LQCD results at large T and zero µB and NS-observation results at zero T and

large µB.

Throughout the three subjects, we clarify QCD dynamics and phase transitions

under the three extreme conditions. The EPNJL model used is successful in repro-

ducing the results of both first- principle LQCD simulations at large T and imaginary

and zero µB and NS observations at large µB and zero T . This indicates that the

model prediction is reliable even in the unknown region of the phase diagram.

This thesis is mainly based on the following four thesis. Three of the four were

already published in the international journals and one is in preparation:

• “Quark-mass dependence of three-flavor QCD phase diagram at zero

and imaginary chemical potential: Model prediction”

T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro,

Physical Review D 84 (2011) 091901.

• “Theta vacuum and entanglement interaction in the three-flavor

Polyakov-loop extended Nambu-Jona-Lasinio model”
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T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro

Physical Review D 85 (2012) 056009.

• “Practical approach to the sign problem at finite theta-vacuum an-

gle”

T. Sasaki, H. Kouno, M. Yahiro

Physical Review D 87 (2013) 056003.

• “Determination of quark-hadron transition from lattice QCD and

neutron-star observation”

T. Sasaki, N. Yasutake, M. Kohno, H. Kouno, and M. Yahiro

arXiv:hep-ph/1307.0681.
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Chapter 1

INTRODUCTION TO QCD PHASE

DIAGRAM

Hot and dense matter is interesting from two viewpoints. First, one can see various

phenomena characteristic in many body systems. Second, if the energy scale of system

becomes the same order as the binding energy of constituent particles, the system

cannot retain the structure any more and more fundamental degrees of freedoms

appear. This requires us to understand matter from more microscopic viewpoint.

In this thesis, we concentrate on the energy scale of strong interaction described by

Quantum Chromodynamics (QCD) with quark and gluon fields. Since hadrons consist

of quarks and gluons, the fundamental degrees of freedom change from hadrons to

quarks and gluons in this energy scale. In addition, since QCD has nontrivial vacuum

structure, one can expect phase transitions of the vacuum at finite temperatures and

densities.

In Secs. 1.1 and 1.2, we will briefly review QCD and its phase diagram. In Sec.

1.3, we explain the first principle lattice QCD and their difficulty for finite density.

In Sec. 1.4, we recapitulate general properties of the Polyakov-loop extended Nambu-

Jona-Lasinio (PNJL) model. Section 1.5 is devoted to the strategy of our analysis.
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1.1 Quantum Chromodynamics

Strong interaction is described by Quantum Chromodynamics (QCD), which is the

SU(3) gauge theory with Nf -flavor fermion fields. The classical QCD Lagrangian is

given by

LQCD = q̄(γµDµ + m̂0)q +
1

4
FµνFµν − iθ

g2

64π2
ϵµνσρF̃

a
µνF

a
σρ, (1.1)

in Euclidean spacetime [1], where Dµ = ∂µ + iAµ is the covariant derivative and Fµν

is the field strength of gauge field,

Fµν = ∂µAν − ∂νAµ +
i

g
[Aµ, Aν ], (1.2)

where g is the dimensionless coupling constant. The field q and Aµ represent quark

and gluon, respectively. The Lagrangian is invariant under the SU(3) gauge trans-

formation,

q(x) → q′(x) = V (x)q(x), (1.3)

Aµ(x) → A′
µ(x) = V (x) (Aµ(x) + i∂µ)V

†(x), (1.4)

with V (x) ∈ SU(3).

The Nf -flavor quark fields are defined as q = t(u, d, s, c, b, t) and their masses m̂0 =

diag(mu,md,ms,mc,mb,mt) are summarized in Table 1.1 [2]. Since we are interested

in physics with the energy scales around ΛQCD ≈ 200 MeV, heavy flavors (c, b, t)

are negligible. The system with u, d, and s quarks with isospin symmetry in the u-d

quark sector is called “2 + 1 flavor”, and the system with only 2 light flavors is named

“2 flavor”.

The last term of Lagrangian (1.1) is called the θ term that violates P and CP

conservations [3–5]. The vacuum angle θ is a periodic variable with period 2π. It

was known to be an observable parameter [6, 7]. Theoretically, we can take any

arbitrary value between −π and π for θ. Nevertheless, it is found from the measured

neutron electric dipole moment [8] that |θ| < 10−9 [9–13]. Why is θ so small in
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mu md ms mc mb mt

2.3 MeV 4.8 MeV 95 MeV 1.275 GeV 4.18 GeV 160 GeV

Table. 1.1 Summary of the current quark mass in QCD [2]. The u-, d-, and

s-quark masses are estimates of current quark masses in a mass-independent

subtraction scheme such as MS at a scale µ ≈ 2 GeV. The c-, b- and t-quark

masses are the running masses in the MS scheme.

zero temperature (T )? This long-standing puzzle is called the strong CP problem.

According to the experimental result, the QCD Lagrangian is simply reduced to

LQCD = q̄(γµDµ + m̂0)q +
1

4
FµνFµν . (1.5)

1.1.1 Confinement and Z3 symmetry

In the QCD spectrum, one cannot find color charged particles such as quarks and

gluons explicitly but see colorless particles such as pions, proton, and neutron. This

phenomenon is called color confinement. This is a representative feature of the non-

perturbative QCD vacuum.

To describe the confinement-deconfinement transition at finite T , we first introduce

an order parameter in the pure Yang-Mills (YM) limit [1,14]. The YM action for finite

T is

SYM =

∫ β

0

dτ

∫
d3x

1

4
FµνFµν (1.6)

where β = 1/T and the Aµ(τ, x⃗) satisfy the periodic boundary condition,

Aµ(0, x⃗) = Aµ(β, x⃗). (1.7)

This boundary condition compactifies the imaginary time direction and plays an im-

portant role in the thermal system.

Since the SU(3) gauge field is defined in the compactified spacetime, the configura-

tion space is classified with homotopy classes. This topologically nontrivial structure

is related to confinement and is visualized as follows. The YM action is invariant
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under the periodic gauge transformation by definition. Additionally, one can consider

the following aperiodic gauge transformation,

Aµ → A′
µ(x) = V (x)(Aµ(x) + i∂µ)V

†(x), (1.8)

where

V (τ + β, x⃗) = znV (τ, x⃗), (1.9)

V (τ, x⃗) ∈ SU(3), (1.10)

zn ∈ Z3 ⊂ SU(3). (1.11)

The symbol Z3 denotes the center group of SU(3). It is the discrete subgroup of

SU(3) and its elements commute with any element of SU(3). The explicit form of zn

is

zn = exp

[
i
2π

3
n

]
(1.12)

with n = 0, 1, 2. The transformation (1.8) is called the Z3 transformation. Since the

Z3 transformation is a part of the gauge transformation, it is one of the symmetry

transformations of the YM Lagrangian density. Moreover the YM partition function

is also invariant under the Z3 transformation, because it preserves the boundary

condition for the gauge field (1.7). This symmetry is called Z3 symmetry. The

thermal YM theory has thus the periodic gauge symmetry and Z3 symmetry.

It is known that Z3 symmetry is spontaneously broken at high temperature [15].

The order parameter is the Polyakov loop *1,

Φ =
1

3
trc(L) (1.13)

with

L = exp

[
i

∫ 1/T

0

A4dτ

]
. (1.14)

*1 Formally, L is called “Polyakov loop” and Φ is “traced Polyakov loop”. However we call Φ as

Polyakov loop for simplicity.
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This is nothing but the Wilson line in the imaginary-time direction. The Φ is trans-

formed under the Z3 transformation as

Φ → znΦ. (1.15)

One can show that Φ can be interpreted as a partition function when an infinitely

heavy quark is placed in the system;

Φ = e−βFQ , (1.16)

where FQ is the free energy of heavy quark. If FQ = ∞, one cannot put any quark i.e.,

color charge. This means that the system is in the confined phase. In the pure YM

theory the conferment-deconfinement transition is thus understood by Z3 symmetry,

and the order parameter is the Polyakov loop (Φ). This is summarized as

Confined phase : Φ = 0, FQ = ∞, Z3 symmetric

Deconfined phase : Φ ̸= 0, FQ ̸= ∞, Z3 symmetry is spontaneously broken

Z3 symmetry is not exact in realistic QCD with dynamical quarks, since the quarks

breaks the symmetry explicitly. Since the exact order parameter of confinement is

not discovered yet, and Φ is commonly used as the approximate order parameter.

1.1.2 Spontaneously chiral symmetry breaking

Low-energy QCD phenomena are governed by nearly massless bosons, i.e., pions. The

origin of pion is well understood as a Goldstone boson generated by spontaneously

chiral symmetry breaking.

In this section, we consider 2-flavor QCD in the chiral limit:

LQCD = q̄γµDµq −
1

4
FµνFµν (1.17)

with massless 2-flavor quarks

q =

 u

d

 . (1.18)
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Performing the chiral decomposition,

qL ≡ 1− γ5
2

q, qR ≡ 1 + γ5
2

q, (1.19)

One can decompose QCD Lagrangian (1.17) into the qL and qR parts;

LQCD = q̄LγµDµqL + q̄RγµDµqR − 1

4
FµνFµν . (1.20)

Hence one can perform a phase transformation for each of qL and qR independently.

Combined with isospin symmetry, Lagrangian (1.17) is invariant under the U(2)L ⊗

U(2)R global transformation,

qL → e−iτaθa
LqL, qR → e−iτaθa

RqR, (1.21)

where τ0 and τ⃗ = (τ1, τ2, τ3) are the 2× 2 unit and Pauli matrices, respectively, and

the θaL,R are spacetime-independent parameters. The transformation (1.21) is called

chiral transformation. Since the qL,R are eigenstates of the chirality operator γ5, it is

also convenient to define the vector and axial-vector transformations as

q → e−iτaθa
Vq, q → e−iτaθa

Aγ5q, (1.22)

where θaV = θaL = θaR and θaA = −θaL = θaR. In particular, the transformation with

θaV ∝ δ0a and θaA = 0 is called U(1)V transformation, and θaV = 0 and θaA ∝ δ0a is

called U(1)A transformation. The symmetry group is denoted by U(2)L ⊗ U(2)R ≃

U(1)V ⊗U(1)A ⊗SU(2)L ⊗SU(2)R. Since the U(1)A symmetry is not spontaneously

broken but anomalous, we simply omit this symmetry here.

In the QCD vacuum, the chiral condensate,

⟨q̄q⟩ = ⟨q̄LqR⟩+ ⟨q̄RqL⟩ , (1.23)

becomes finite by the spontaneously breaking of chiral symmetry with finite θaA. The

chiral symmetry breaking pattern is

U(1)V ⊗ SU(2)L ⊗ SU(2)R → U(1)V ⊗ SU(2)V. (1.24)

According to the Nambu-Goldstone (NG) theorem, there are massless NG bosons

induced by the symmetry breaking. In the present case the massless bosons are

pions.
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In nature, the chiral symmetry is explicitly broken by small Higgs masses of quarks.

However, u- and d-quark masses are negligible compared with the energy scale of chiral

symmetry breaking. Although strange quark is much heavier than u and d quarks,

one can apply chiral symmetry approximately. Actually, pions are nearly massless

bosons and form meson octet with kaons as expected from the NG theorem.

1.1.3 θ vacuum and UA(1) anomaly

In this subsection, we briefly review the so-called θ vacuum of QCD. It is a topolog-

ically nontrivial feature of gauge field and closely related to the U(1)A anomaly of

fermion field; see, for example, Ref. [16–21] for detailed discussion.

We consider the path-integral quantization of the pure YM theory in Euclidean

space. The partition function is given by

Z =

∫
DA exp

[
−1

4

∫
d4xF a

µνF
µν
a

]
. (1.25)

The SU(3) gauge field Aµ with the proper boundary condition has nontrivial topology;

arbitrary configurations A
(1)
µ and A

(2)
µ can belong to different homotopy classes [3]. In

other words, they cannot be continuously deformed from each other. The homotopy

group is Z and hence the configuration space is divided into an infinite number of

homotopy classes labeled by the winding number,

n = − 1

32π2

∫
d4x ϵµναβTr[FµνFαβ ]. (1.26)

It leads to an infinite number of vacua |n⟩. However the instanton solution allows

transitions among them and hence the true vacuum is realized as a superposition of

|n⟩:

|θ⟩ =
∑
n

einθ |n⟩ . (1.27)

This is called θ vacuum [6]. Even though the winding number and |n⟩ are gauge-

dependent concepts, |θ⟩ is gauge-invariant eigenstate. This structure requires that

the θ term is included in the classical QCD Lagrangian (1.1).

In the path-integral representation, the U(1)A anomaly is understood through the

U(1)A transformation of integral measure [22,23]. The Noether current for the U(1)A
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transformation is

∂µJ
µ
A = −

√
2

Nf
2Nf

g2

32π2
ϵµναβTr[FµνFαβ ] (1.28)

for massless Nf flavors. Although the right hand side is a total derivative, the instan-

ton solution yields a non-vanishing value for the integral (1.26) and violate the U(1)A

symmetry explicitly. Hence η′ meson is not a NG boson but a massive boson.

1.2 QCD at finite temperature and density

QCD is a theory that has the asymptotic freedom, i.e., the coupling becomes weak

as the energy scale increases. This changes the QCD vacuum between low- and high-

energy scales [24]. Such a transition was first conjectured as a function of temperature

(T ) and baryon-number density (nB) by Cabibbo and Parisi in 1975 [25], although it

was motivated by not the asymptotic freedom but by the so-called Hagedorn limiting

temperature [26,27]. Figure 1.1 is a schematic plot of QCD phase diagram in the µB-

T plane where µB is the baryon-number chemical potential. Since QCD is established

theory, the QCD phase diagram should be derived from the QCD partition function

analytically nor numerically. However, LQCD simulations cannot be applied to finite

density in the current stage because of the so-called sign problem. We will make detail

discussions on this point in Sec.1.3. In this section, we briefly review the current status

of the phase diagram; see, for example, Refs. [1, 28–38] for the review.

At T = µB = 0, properties of the QCD vacuum are investigated experimentally.

Quarks and gluons are confined in hadrons, whereas chiral symmetry is broken sponta-

neously there. Since pion is the lightest hadron and is well understood as a NG boson,

QCD matter is well described by the chiral perturbation theory. Nucleus also gives in-

formation on QCD matter at T = 0 and the normal-nuclear density (ρ0 = 0.17 fm−3).

Also in this situation, quarks and gluons are confined and chiral symmetry is broken.

At high temperature, quarks and gluons behave as free particles because of the

weak coupling, that is, they are deconfined and chiral symmetry is restored. This

state is called the quark-gluon plasma (QGP) phase. At high density, quarks should

form Cooper pairs through the color anti-triplet channel of quark-quark interaction
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～～～～150 MeVT Color Superconductors
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Fig. 1.1 A schematic plot of QCD phase diagram on µB-T plane.

that makes baryons at T = µB = 0 and is considered to keep attractive even at high

µB. The state is called the color superconductor (CSC) phase [39, 40]. Hence QCD

matter is in difficult phases under the following three limits:

• Hadron phase at T = µq = 0

• QGP phase in the T → ∞ limit

• CSC phase in the µB → ∞ limit

LQCD is a powerful tool to investigate QCD matter at µB = 0, even though it has

the sign problem at finite µB. QCD phase structure with vanishing chemical poten-

tial is then well understood nowadays. Two big groups, Hot QCD and Wuppertal-

Budapest collaborations, performed 2 + 1 flavor LQCD simulations with the improved

staggered fermion for nearly physical quark masses. The LQCD simulations showed

that a phase transition from the hadron phase to the QGP phase is crossover [41]. The

pseudo-critical temperature (Tc) is around 155 MeV, and temperature dependence of

the order parameters and the equation of state (EoS) are given qualitatively [42–44].

Charm quark is also considered in the simulations, but the effect is negligible around

Tc [45, 46]. The realistic EoS of QCD matter is thus obtained at µB = 0 by the
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simulations. Below Tc, the EoS is well simulated by the hadron resonance gas (HRG)

model [42–44]. Just above Tc, meanwhile, the EoS is still far from that predicted by

perturbative QCD. This behavior is now called strongly-coupled QGP (sQGP). This

was first discovered in heavy-ion collision measurement in the Relativistic Heavy Ion

Collider (RHIC) [47] ; see, for example, Refs. [48,49] for the review. Although pertur-

bation does not work just above Tc [50], the behavior of QCD matter at T ≳ 2Tc can

be understood by the next-to-next-to-leading order hard-thermal-loop perturbation

theory [51].

On the µB axis where T = 0 and µB is finite, the phase structure is still unknown,

since LQCD simulations are not feasible there. The EoS around the normal nuclear

density is investigated by nuclear experiments. The saturation property of nuclear

matter indicates that there exists a first-order liquid-gas transition driven by the

instability of homogeneous matter [52–54]. Although high-density QCD matter is

realized in the inner core of neutron stars (NSs), observations of NSs on mass, radius

and cooling curve give only indirect information on high-density QCD matter through.

Hence it is not confirmed yet whether the CSC phase and/or the deconfinement phase

transition takes place or not in NSs.

1.3 Lattice QCD simulation

LQCD simulation is the most widely used method as the first-principle calculation of

QCD. In this section, we briefly review the method and its difficulty at finite density;

see, for example, Refs. [55–59] for the review.

LQCD is a regularization scheme in quantum field theories [60], in which fermion

fields are defined on each lattice site and gauge fields are on each lattice link to

preserve local gauge invariance. In LQCD simulations, the path integral is evaluated

by the Monte Carlo (MC) method. In the present stage, LQCD simulation is only a

method to confirm QCD in its nonperturbative regime. Actually, LQCD simulations

successfully reproduce existing experimental values on hadron masses and their decay

constants [61] and the qualitative behavior of nuclear force [62].

At finite quark chemical potential (µq), however, LQCD simulations have the so-
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called sign problem. For simplicity, we use the notation of continuum QCD without

loss of generality. The QCD partition function is give by

Z(µq) =

∫
DADq̄Dq exp [−(Sq + Sg)] , (1.29)

Sq ≡
∫

dτ

∫
d3x⃗ q̄(γµDµ + m̂0 − γ4µq)q, (1.30)

Sg ≡
∫

dτ

∫
d3x⃗

1

4
F a
µνF

a
µν . (1.31)

The path integration is evaluated by the MC method. Practically, one can use the

important sampling method for the gluon-field configuration after integrating the

quark field:

Z(µq) =

∫
DAdetM(µq) exp [−Sg] , (1.32)

M(µq) ≡ γµDµ + m̂0 − γ4µq. (1.33)

The detM(µq) is called the fermion determinant and should be a real number to

use the important sampling method. At µq = 0, reality of detM(µq = 0) is easily

derived. For finite µq, the determinant is not real but satisfies the relation,

(detM(µq))
∗
= detM(−µ∗

q). (1.34)

Hence the important sampling method is not feasible at finite µq. This is so-called

“sign-problem”.

In some parameter choices, one can make LQCD simulations without sign problem.

Equation (1.34) shows that the fermion determinant is real for pure imaginary chemi-

cal potential [63–69]. Moreover, LQCD simulations are feasible for real and imaginary

isospin chemical potential µI that is related to u- and d-quark chemical potentials, µu

and µd, as µu = µI and µd = −µI [70].

1.4 Effective model of QCD

The Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is one of the most

practical effective models for low energy QCD [71–116]. The PNJL model is the

Nambu-Jona-Lasinio (NJL) type model [117,118] in which the quark field is coupled
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with the back-ground gauge field [75]; see for example Refs. [119–121] for the NJL

model. Using the PNJL model, one can analyze spontaneous chiral symmetry break-

ing and confinement simultaneously. In this section, basic properties of the model are

briefly reviewed.

1.4.1 Polyakov-loop extended Nambu-Jona-Lasinio model

The Nf -flavor PNJL Lagrangian is obtained as

LPNJL = q̄(γνDν + m̂0 − γ4µ̂)q −G1

∑
a

[
(q̄Taq)

2 + (q̄iγ5Taq)
2
]

−G2

[
det
ij

q̄i(1 + γ5)qj + det
ij

q̄i(1− γ5)qj

]
+ U(Φ[A],Φ∗[A], T ), (1.35)

where Dν = ∂ν − iδν4A
a
4λa/2 with the Gell-Mann matrices λa. The Nf -flavor quark

fields q have masses m̂0 ≡ diag(mu,md, · · · ), where the matrix µ̂ ≡ diag(µu, µd, · · · )

denotes the quark-number chemical potential matrix in the flavor space. The G1 is a

coupling constant of SUV(Nf)⊗SUA(Nf)⊗UV(1)⊗UA(1) symmetric quark interaction.

TheG2 is a coupling constant of the Kobayashi-Maskawa-’t Hooft (KMT) determinant

interaction which breaks UA(1) symmetry explicitly, where the determinant runs in

the flavor space [4, 5, 122,123].

The gauge field Aµ is treated as a homogeneous and static background field in the

PNJL model. The Polyakov-loop Φ and its conjugate Φ∗ are determined in Euclidean

spacetime by

Φ =
1

3
trc(L), Φ∗ =

1

3
trc(L̄), (1.36)

where L = exp(iA4/T ) with A4/T = diag(ϕr, ϕg, ϕb) in the Polyakov-gauge; note

that the λa are traceless and hence ϕr + ϕg + ϕb = 0. We, therefore, obtain

Φ =
1

3
(eiϕr + eiϕg + eiϕb)

=
1

3
(eiϕr + eiϕg + e−i(ϕr+ϕg)),

Φ∗ =
1

3
(e−iϕr + e−iϕg + e−iϕb)

=
1

3
(e−iϕr + e−iϕg + ei(ϕr+ϕg)). (1.37)
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a0 a1 a2 b3

3.51 −2.47 15.2 −1.75

Table. 1.2 Summary of the parameter set in the Polyakov-loop potential sector

determined in Ref. [94]. All parameters are dimensionless.

We use the Polyakov-loop potential U of Ref. [94]:

U = T 4

[
−a(T )

2
Φ∗Φ+ b(T ) ln(1− 6ΦΦ∗ + 4(Φ3 +Φ∗3)− 3(ΦΦ∗)2)

]
(1.38)

with

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

. (1.39)

There are five parameters, (a0, a1, a2, b3, T0), and they are determined to reproduce

LQCD results at finite T in the pure gauge limit. The U is constructed to reach the

Stefan-Boltzmann (SB) limit at large T :

lim
T→∞

U = −14π2

90
T 4 (1.40)

leading to a0 = 3.51. LQCD results show that a first-order deconfinement phase tran-

sition occurs at T = T0 in the pure gauge limit. This leads to an another constraint,

b3 = −0.108(a0 + a1 + a2). (1.41)

The parameters except T0 are summarized in Table 1.2. The original value of T0 is

270 MeV determined from the pure gauge LQCD data, but the PNJL model with

this value of T0 yields a larger value of the pseudocritical temperature Tc of the

deconfinement transition at zero chemical potential than Tc ≈ 173±8 MeV predicted

by full LQCD [124–126]. We, therefore, rescale T0 to 212 MeV so that the PNJL

model can reproduce Tc = 174 MeV [100].
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1.4.2 Two-flavor PNJL model

The two-flavor PNJL Lagrangian is obtained in Euclidean spacetime as

L = q̄(γνDν + m̂0 − γ4µ̂)q −G1

3∑
a=0

[
(q̄τaq)

2 + (q̄iγ5τaq)
2
]

−G2

[
det
ij

q̄i(1 + γ5)qj + det
ij

q̄i(1− γ5)qj

]
+ U(T,Φ,Φ∗). (1.42)

The two-flavor quark fields q = (qu, qd) have masses m̂0 = diag(mu,md), the quark-

number chemical potential matrix µ̂ is defined by µ̂ = diag(µu, µd), and τ0 and

τ⃗ = (τ1, τ2, τ3) are the 2× 2 unit and Pauli matrices in the flavor space, respectively.

In this section, we take G1 = G2 ≡ G/2. This reduces Lagrangian (1.42) to a simpler

form,

L = q̄(γνDν + m̂0 − γ4µ̂)q −G
[
(q̄q)2 + (q̄iγ5τ⃗ q)

2
]
+ U(T,Φ,Φ∗). (1.43)

Although this choice overestimates the anomaly term, the effect does not affect our

discussion particularly under the meanfield approximation. In Chap. 3. we will take

more realistic values for G1 and G2.

Performing the mean-field approximation and the path integral over the quark field,

one can obtain the thermodynamic potential Ω (per volume) as

Ω

V
= Gσ2 + U − 2Nc

∑
f=u,d

∫
Λ

d3p

(2π)3
Ef

−2Nc

β

∑
f=u,d

∫
d3p

(2π)3

{
ln
[
1 + 3Φe−β(Ef−µf ) + 3Φ∗e−2β(Ef−µf ) + e−3β(Ef−µf )

]
+ ln

[
1 + 3Φ∗e−β(Ef+µf ) + 3Φe−2β(Ef+µf ) + e−3β(Ef+µf )

]}
(1.44)

with

Ef =
√

p⃗ 2 +M2
f , Mf = m0 − 2Gσ, σ ≡ ⟨q̄q⟩ . (1.45)

The three-dimensional cutoff is introduced for the momentum integration, since this

model is nonrenormalizable; this regularization is denoted by
∫
Λ
in Eq. (1.44). For

simplicity, we assume isospin symmetry for u and d quarks by setting ml ≡ mu = md.
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ml(MeV) Λ(MeV) G(GeV−2)

5.5 631.5 5.498

Table. 1.3 Summary of the parameter set in the 2 flavor NJL model taken from

Ref. [127].

The present model thus has three parameters of m0, Λ, and G. A typical parameter

set is shown in Table 1.3 [127]. Assuming m0 = 5.5 MeV, we determined Λ and G

from the pion decay constant fπ = 93 MeV and the pion mass mπ = 138 MeV.

The classical variablesX = Φ, Φ∗ and σ are determined by the stationary conditions

∂Ω

∂X
= 0. (1.46)

The solutions to the stationary conditions do not give the global minimum of Ω

necessarily. They may yield a local minimum or even a maximum. We then have

checked that the solutions yield the global minimum when the solutions X(T, µu, µd)

are inserted into Eq. (1.44).

1.4.3 Two-flavor EPNJL model

The original PNJL model cannot reproduce LQCD data at imaginary µ quantita-

tively [100]. This shortcoming seems to be originated in the fact that the correlation

between the chiral condensate σ and the Polyakov loop Φ is too weak. In Ref. [101],

therefore, we extended the two-flavor PNJL model by introducing the effective four-

quark vertex depending on Φ. This effective vertex includes additional mixing effects

between σ and Φ. The new model is called the entanglement PNJL (EPNJL) model.

The two-flavor EPNJL model reproduces LQCD data at zero and imaginary µ, par-

ticularly on strong correlations between the chiral and deconfinement transitions and

also on quark-mass dependence of the order of the RW endpoint [128]. The two-flavor

EPNJL model reproduces all LQCD data, without changing the parameters, at small

real µ without [101] and with strong magnetic field [81] and at finite isospin chemical

potential [101].

The four-quark vertex originates from the one-gluon exchange between quarks and
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its higher-order diagrams. If the gluon field Aν has a vacuum expectation value ⟨A0⟩

in its time component, Aν is coupled to ⟨A0⟩ and then to Φ through L. Hence the

effective four-quark vertex can depend on Φ [129]. In this thesis, we use the following

form for G(Φ) [101]:

G(Φ) = GS[1− α1ΦΦ
∗ − α2(Φ

3 +Φ∗3)]. (1.47)

This form preserves chiral symmetry, charge conjugation (C) symmetry and extended

Z3 symmetry [97]. We take the parameters (α1, α2) = (0.2, 0.2) to reproduce LQCD

data at imaginary µq [101]. It is expected that Φ dependence of G(Φ) will be de-

termined in future by the accurate method such as the exact renormalization group

method [129–132].

1.4.4 Three-flavor PNJL model

The three-flavor PNJL Lagrangian is obtained in Euclidean spacetime as

L = q̄(γνDν + m̂0 − γ4µ̂)q −GS

8∑
a=0

[(q̄λaq)
2 + (q̄iγ5λaq)

2]

+GD

[
det
ij

q̄i(1− γ5)qj + det
ij

q̄i(1 + γ5)qj

]
+ U(Φ[A],Φ∗[A], T ). (1.48)

The three-flavor quark fields q = (qu, qd, qs) have masses m̂0 = diag(mu,md,ms),

and the chemical potential matrix µ̂ is defined by µ̂ = diag(µu, µd, µs). Parameters

GS and GD denote coupling constants of the scalar-type four-quark and the KMT

determinant interaction, respectively.

Making the mean-field approximation, one can obtain the mean-field Lagrangian

as

LMF = q̄(γνDν +Mf − γ4µ̂)q + UM + U(Φ[A],Φ∗[A], T ), (1.49)

where

Mu = mu − 4GSσu + 2GDσdσs, (1.50)

Md = md − 4GSσd + 2GDσsσu, (1.51)

Ms = ms − 4GSσs + 2GDσuσd (1.52)
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ml(MeV) ms(MeV) Λ(MeV) GSΛ
2 GDΛ

5

5.5 140.7 602.3 1.835 12.36

Table. 1.4 Summary of the parameter set in the 2 + 1 flavor NJL model taken

from Ref. [133].

with σf ≡ ⟨q̄fqf ⟩ and

UM = 2GS(σ
2
u + σ2

d + σ2
s )− 4GDσuσdσs. (1.53)

Performing the path integral over the quark field, one can obtain the thermodynamic

potential Ω (per volume) :

Ω

V
= UM + U(Φ,Φ∗, T )− 2

∑
f=u,d,s

∫
d3p⃗

(2π)3

[
NcEf

+
1

β
ln [1 + 3Φe−β(Ef−µf ) + 3Φ∗e−2β(Ef−µf ) + e−3β(Ef−µf )]

+
1

β
ln [1 + 3Φ∗e−β(Ef+µf ) + 3Φe−2β(Ef+µf ) + e−3β(Ef+µf )]

]
(1.54)

with Ef =
√
p⃗ 2 +M2

f .

The three-dimensional cutoff for the momentum integration is introduced. We

assume isospin symmetry for the u-d sector: ml ≡ mu = md. This three-flavor PNJL

model has five parameters GS, GD, ml, ms and Λ. A typical parameter set is shown

in Table 1.4 [133]. These parameters are fitted to empirical values of pion decay

constant and π, K, η′ meson masses at vacuum.

1.4.5 Typical behavior of two flavor PNJL model

In this subsection, we overview some results of the 2-flavor PNJL model. Figure

1.2(a) shows T dependence of the order parameters σ and Φ at µu = µd = 0. The

solid (dashed) line describes σ (Φ). The σ is normalized by the value σ0 ≡ σ(T =

µu = µd = 0) = −0.0302 (GeV3). At lower temperature, |σ| is large, whereas Φ

is nearly zero. QCD matter is hence in the hadron phase where chiral symmetry is

spontaneously broken and quarks are confined. Meanwhile, the fact σ ≈ 0 and Φ ̸= 0

at higher temperature means that QCD matter is in the QGP phase where chiral
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symmetry is restored and quarks are deconfined. Since the KMT coupling G2 has a

constant value, UA(1) symmetry is broken in both the phases in the PNJL model.

One can see this effect in meson spectrum [95,96].

Since the transitions are crossover, one cannot see any critical behavior and need

a prescription to define the pseudo-critical temperature (Tc). In this thesis, Tc is

defined by a peak point of susceptibility, and the definition is consistent with LQCD

analyses. The susceptibility matrix (χ) is given by

χ = C−1 (1.55)

with the dimensionless curvature matrix

C =


cσσ cσΦ cσΦ̄

cΦσ cΦΦ cΦΦ̄

cΦ̄σ cΦ̄Φ cΦ̄Φ̄



=


T 2Ωσσ T−1ΩσΦ T−1ΩσΦ̄

T−1ΩΦσ T−4ΩΦΦ T−4ΩΦΦ̄

T−1ΩΦ̄σ T−4ΩΦ̄Φ T−4ΩΦ̄Φ̄

 (1.56)

with Ωxy = ∂2Ω/∂x∂y for x, y = σ, π,Φ, Φ̄ [76].

Figure 1.2(b) shows T dependence of susceptibilities for the order parameters σ and

Φ. Here, χσ and χΦ are shorthand notations of χσσ and χΦΦ∗ , respectively, and χσ is

multiplied by 10−2. The chiral and deconfinement transitions have slightly different

pseudo-critical temperatures, T σ
c = 212 MeV and TΦ

c = 174 MeV, in the PNJL model.

The Tc are inconsistent with the LQCD results quantitatively, but this is improved

by EPNJL model [101].

Once the order parameters are determined, the thermodynamic potential (1.44) is

fixed. The resultant Ω leads to various thermodynamic quantities. Pressure (P ) of

the system is obtained by

P = −
(
Ω

V
− Ω0

V

)
, (1.57)

where Ω0 is the thermodynamic potential at T = µ = 0. In the grand canonical

ensemble, entropy density (s), number densities (nf with f = u, d), and energy density
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Fig. 1.2 T dependence of order parameter and susceptibility at µu = µd obtained

by the 2-flavor PNJL model. The σ is normalized by σ0 = −0.0302(GeV3), and

χσ is multiplied by 10−2.

(ε) are obtained as

s =
∂P

∂T
, (1.58)

nf =
∂P

∂µf
, (f = u,d), (1.59)

ε = −P + Ts+ µunu + µdnd. (1.60)

For later convenience, quark number density (nq) and isospin number density (nI)

are defined as

nq = nu + nd, (1.61)

nI = nu − nd. (1.62)

The corresponding chemical potential µq and µI are then obtained by

µq =
µu + µd

2
, (1.63)

µI =
µu − µd

2
, (1.64)

which satisfy the thermodynamic relations, ∂Ω/∂µq = nq and ∂Ω/∂µI = nI. Trace

anomaly (∆) is defined by

∆ = ε− 3P. (1.65)
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Fig. 1.3 T dependence of P , s, ε, and ∆ at µu = µd = 0 obtained by the 2-flavor

PNJL model

Figure 1.3 shows T dependence of (a) pressure, (b) entropy density, (c) energy density,

and (d) trace anomaly at µu = µd = 0. Note that nf = 0 (f = u,d) there. P , s, and

ε are normalized by the values in the Stephan-Boltzmann (SB) limit,

PSB = dQGP
π2

90
T 4 (1.66)

at µu = µd = 0, for the degrees of freedom (dQGP)

dQGP = dg +
7

8
dq (1.67)

with

dg = 2spin × (N2
c − 1), (1.68)

dq = 4Dirac ×Nc ×Nf . (1.69)
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Fig. 1.4 T dependence of the Polyakov loop at µq = 300 MeV obtained by the

2-flavor PNJL model

For real µq, Φ∗ is not complex conjugate to Φ, but they becomes different real

numbers [59]. However one can take the approximation Φ = Φ∗ [102]. This approx-

imation reduces numerical tasks. Figure 1.4 shows the validity of the approximation

for µq = 300 MeV and µI = 0. The solid and dashed lines denote Φ and Φ∗ before

the approximation, respectively, and the dotted line stands for both Φ and Φ∗ after

the approximation. Even at large chemical potential, the approximation Φ = Φ∗ thus

works well.

Figure 1.5 and 1.6 represent contour plots of σ and Φ in T -µq plane at µI = 0,

respectively. One can see smooth crossovers at µq = 0, but they becomes steep at

large µq. Eventually, they become the first order transitions at T = 0. Hence there

is a critical endpoint (CEP) of the first order transition.

Figure 1.7 shows the phase diagram of the PNJL model in T -µq plane at µI. The

solid line denotes the first-order transition line, while the dashed (dotted) line is

the chiral (deconfinement) crossover. The closed circle shows the CEP at (T, µq) =

(106 MeV, 320 MeV). The first order transition is defined by the discontinuity of the

order parameters, σ and Φ.
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Fig. 1.5 T and µq dependence of chiral condensate (σ) obtained by the 2-flavor

PNJL model.
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Fig. 1.6 T and µq dependence of Polyakov loop (Φ) obtained by the 2-flavor

PNJL model.
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1.5 Strategy

Our aim is to understand phase structure of QCD matter for finite T and µq, that is

QCD phase diagram. At present, the phase structure for finite µq is almost unknown

because first-principle LQCD simulations have the sign problem. Hence, we inves-

tigate phase structure with the PNJL model that is one of effective models of low

energy QCD and treat confinement and spontaneously breaking of chiral symmetry

simultaneously.

Even though LQCD is time consuming and difficult to apply for finite density, it

is a only successful and promised method to analyze the QCD phase transition. The

mission of the effective model approach is as follows:

(1) Constructing an effective model which can reproduce LQCD data,

(2) Applying the effective model in a broad region and giving a guideline for the

future plan of LQCD simulations,

(3) Understanding the regions where LQCD is not feasible.

Theoretically, one can put QCD matter in the presence of external fields to amplify

some nonperturbative features of QCD vacuum. If LQCD is applicable, one can

observe behaviors of QCD itself. We accomplish the subjects (1), (2), and (3) under

such conditions in this thesis.

In chapter 2, we will analyze mass dependence of QCD phase structure for pure-

imaginary quark chemical potential, and accomplish the subjects (1) and (2). At finite

imaginary chemical potential, Z3 symmetry as an underlying property of confinement

appears as a periodicity of the phase structure. As quark mass varies, the phase

transition becomes from crossover to first order. This enables us to describe the

phase transition clearly. We will compare the EPNJL and LQCD results to improve

reliability of EPNJL model and yield a bird’s-eye view analysis for mass dependence

of phase transition.

In chapter 3, we will analyze QCD phase transitions at finite θ, and accomplish

subjects (2) and (3). The θ parameter can be considered as a external field which
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amplify the topological properties of QCD vacuum. Unfortunately, LQCD is not

applicable for finite θ because of the sign problem. We first analyze the phase structure

for finite θ with the 2 + 1 flavor EPNJL model which is confirmed in Chap.2 to be

consistent with LQCD simulations. Finally, we will discuss applicability of LQCD

method to finite θ.

LQCD is the most successful method but its reliability is limited for µq/T < 1

because of the sign problem. Alternatively, neutron star observations can give infor-

mation on the phase structure for large µq. In chapter 4, we will analyze QCD phase

transition for large µq and T = 0 by using the observations, and accomplish subjects

(1) and (3). We will try to construct the effective model that is consistent with LQCD

for µq/T = 0 and neutron star observation for µq/T = ∞, and investigate the whole

structure of phase diagram including is intermediate µq/T .
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Chapter 2

Quark mass dependence of RW

transition

We draw the three-flavor phase diagram as a function of light- and

strange-quark masses for both zero and imaginary quark-number chemical

potentials using the PNJL and the EPNJL models. The model prediction

is qualitatively consistent with 2 + 1 flavor LQCD results at zero chemi-

cal potential and with degenerate three-flavor LQCD results at imaginary

chemical potential.

2.1 Columbia plot and imaginary chemical potential

2.1.1 Columbia plot

It is important to determine the order of phase transitions appearing in QCD. The

result affects the cosmic evolution or the inner core of NSs. The chiral and decon-

finement transitions are believed to be crossover at zero chemical potential, when

light and strange quark masses, ml and ms, have physical values [41]. This crossover

nature makes it more difficult to investigate critical behavior and universality of the

phase transitions. The order of the transitions is sensitive to the number of flavors,
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Fig. 2.1 Sketch of the three-flavor phase diagram in the ml-ms plane for the chi-

ral transition at µ = 0. The solid line denotes the second-order chiral transition

line.

Nf , and the values of ml and ms. A sketch of the three-flavor phase diagram is

plotted in Fig. 2.1 as a function of ml and ms for the case of zero chemical potential

(µ) [134], and it is sometimes called the Columbia plot. The physical point lies near

the second-order transition line (solid line), where the term “physical point” means

that one can reproduce the experimental values of mπ and mK with this parameter

set. In some regions of this plot, one can give clear statement by using exact symmetry

and universality class of phase transition.

In the heavy quark limit, i.e. in the pure gauge limit, the system has Z3 symmetry

exactly, and the confinement-deconfinement transition is governed by the symmetry

and then described by the order parameter of the symmetry [15]. As a conclusive result

in the limit, it is found by LQCD simulations that the transition is the first-order

[124, 135–138]. Since the order is rather stable against symmetry-breaking sources

such as the quark-mass term, there is the first order transition region at large values

of ml and ms. The transition becomes crossover at moderate quark masses , and the

transition line is investigated by LQCD simulation [139] and the PNJL model [84,86].
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In the case of finite quark mass, one can expect that there exists a phase tran-

sition governed by chiral symmetry. The chiral transition was investigated by the

renormalization group method for massless two-flavor quarks [140–142]. For the case

of massless two quarks, i.e. at (ml,ms) = (0,∞), the transition becomes the sec-

ond order if it belongs to the same universality class as O(4) Heisenberg model and

becomes the first order if the U(1)A anomaly is weak around the transition tempera-

ture. In Fig. 2.1, we show the second-order case. For massless three-flavor quarks,i.e.

at (ml,ms) = (0, 0), the renormalization group method shows that the transition

should be the first order, because one cannot identify the case with any model having

second-order transition. Hence, there is the first-order transition region in the vicinity

of the massless three-flavor limit, and the boundary of this region is expected to be

the second order. The second order transition line is investigate by LQCD simula-

tions [143], the renormalization group method [140–142], and effective models such as

NJL [144–146] and PNJL models [76,78,90,106].

As µ increases from zero, the chiral crossover at the physical point is expected

to become the first order. In the case, there appears a critical endpoint (CEP) of

the first-order transition line, and the transition becomes the second order on the

CEP [127, 147–150]. However, clear evidence of the behavior is not shown yet by

LQCD because of the sign problem at real µ. Since current quark masses are not

observable, careful attention should be paid for quantitative discussion. In this thesis,

we compare the PNJL results with the LQCD ones qualitatively.

2.1.2 QCD with imaginary chemical potential

As shown in Sec. 1.5, LQCD is feasible for pure-imaginary quark chemical potential

µq = iθqT , where θq represents the dimensionless chemical potential. QCD has a

periodicity of 2π/3 in θq. This is now called the Roberge-Weiss (RW) periodicity [151].

Again, we consider the Z3 transformation defined in Sec. 1.1.1 for dynamical quarks.

The QCD partition function at finite T and θq is written by

Z(θq) =

∫
Dq̄DqDA exp

[
−
∫

d4x

(
q̄(γµDµ − m̂0 − iγ4θqT )q −

1

4
F a
µνF

a
µν

)]
(2.1)
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with the periodic (anti-periodic) boundary condition for gluon (quark) field. Under

the Z3 transformation (1.8),

Aµ → A′
µ(x) = V (x)(Aµ(x) + i∂µ)V

†(x), (2.2)

V (τ + β, x⃗) = znV (τ, x⃗), (2.3)

zn = ei
2π
3 n, (2.4)

the partition function (2.1) becomes

Z(θq) =

∫ ′
Dq̄′Dq′

∫
DA′ exp

[
−
∫

d4x

(
q̄′(γµDµ − m̂0 − iγ4θqT )q

′ − 1

4
F a
µνF

a
µν

)]
.

(2.5)

In the functional integral
∫ ′ Dq̄Dq, the boundary condition for quark fields are not

anti-periodic but

q′(τ, x⃗) = −z−1
n q′(0, x⃗). (2.6)

To change this boundary condition, we perform the transformation,

q(τ, x⃗)′ → q′′(τ, x⃗) = (zn)
−τT q′(τ, x⃗), (2.7)

this changes the partition function (2.5) into

Z(θq)

=

∫
Dq̄′′Dq′′DA′ exp

[
−
∫

d4x

(
q̄′′(γµDµ − m̂0 − iγ4(θq −

2π

3
n)T )q′′ − 1

4
F a
µνF

a
µν

)]
= Z(θq − 2πn/3) (2.8)

for n = 0, 1, 2. We thus conclude that Z(θq) is periodic with period 2π/3.

The QCD partition function (2.1) is invariant under the sequential transformations,

(2.4) and (2.7), and the shift of

θq → θ′q = θq −
2π

3
n, (2.9)

This series of transformation are referred as the extended Z3 transformation [97].

QCD and its effective models should have this extended Z3 symmetry.

At θ = π/3 mod 2π/3, there appears a first-order transition at T higher than some

temperature TRW. The transition is now called the RW transition [151]. On the RW
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first order
crossoverRW endpoint

Fig. 2.2 A schematic phase diagram on θq-T plane. The solid line denotes

the firs-order RW transition line and the dashed line stands for the crossover

deconfinement transition line. The arrows indicate the corresponding phases of

the Polyakov loop.

transition line starting from the endpoint (θ, T ) = (π, TRW), the spontaneous breaking

of C symmetry occurs [87, 88]. Figure 2.2 shows a schematic phase diagram on θq-T

plane. The solid line denotes the firs-order RW transition line, and the dashed line

corresponds to the crossover deconfinement transition line. On the RW transition

line, the Polyakov loop changes the phase, indicating a transition from a Z3 sector to

another sector.

2.1.3 Columbia plot of RW endpoint

Very recently, the order of C symmetry breaking at the RW endpoint was analyzed

by two-flavor LQCD simulations [128] and degenerate three-flavor LQCD simulations

[152]. For both the cases, the order is the first order at small and large quark masses,

but the second order for intermediate masses. Figure 2.3 shows a schematic graph for

quark-mass dependence of the phase diagram. For light or heavy quark masses, the
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Fig. 2.3 A schematic graph for quark-mass dependence of the phase diagram

in θq-T plane. The solid line denotes the firs-order RW transition line, whereas

the dashed line corresponds to the crossover deconfinement transition line. The

arrows indicate the corresponding phases of the Polyakov loop.

RW endpoint is a triple point. This means that there is a critical endpoint somewhere

in the region 0 < θq < π/3, and the crossover at θq = 0 is changed into the first order

above the point. At intermediate quark masses, the RW endpoint is the second order.

The deconfinement transition is then always crossover in the region 0 ≤ θq < π/3,

whereas it becomes the second order at θq = π/3. Figure 2.4 is a sketch based on

LQCD results for the RW phase transition at the endpoint. Most of the region is

unknown at the present stage.

2.2 Model setting

We start with the three-flavor PNJL model mentioned in Sec. 1.4 with imaginary

quark chemical potential µq = iθqT ,

LPNJL = q̄(γνDν + m̂0 − iγ4θqT )q −GS

8∑
a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]

+GD

[
det
ij

q̄i(1 + γ5)qj + det
ij

q̄i(1− γ5)qj

]
− U(Φ[A], Φ̄[A], T ), (2.10)
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Fig. 2.4 A sketch of the three-flavor phase diagram in the ml-ms plane for the

RW transition at the endpoint (T, θ) = (TRW, π/3). The solid line means the

boundary between the first- and second-order transition regions. The figure is

based on two-flavor [128] and degenerate three-flavor [152] LQCD results that

the RW transition at the endpoint is the first order for light and heavy quark

masses, but the second order for intermediate masses.

where Dν = ∂ν + iAν = ∂ν + iδν0gA
0
aλa/2 with the gauge coupling g and the Gell-

Mann matrices λa. Three-flavor quark fields q = (qu, qd, qs) have current quark masses

m̂0 = diag(mu,md,ms).

Same as the 2-flavor PNJL model, we introduce the entanglement interaction to

the 2+1 flavor PNJL model (2.10),

LEPNJL = q̄(γνDν + m̂0 − iγ4θqT )q −GS(Φ)
8∑

a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]

+GD

[
det
ij

q̄i(1 + γ5)qj + det
ij

q̄i(1− γ5)qj

]
− U(Φ[A], Φ̄[A], T ), (2.11)

GS(Φ) = GS[1− α1ΦΦ
∗ − α2(Φ

3 +Φ∗3)]. (2.12)

In principle, GD can depend on Φ, too. However, we found that Φ-dependence of

GD yields qualitatively the same effect on the phase diagram as that of GS. As a

simple setup, we then neglect Φ-dependence of GD. In the present analysis, therefore,
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Φ-dependence of GD is renormalized in that of GS.

Using the mean field approximation to the quark-quark interactions in (2.11), one

can get the thermodynamic potential (per volume):

Ω = U − 4GDσuσdσs +
∑

f=u,d,s

2GS(Φ)σ
2
f − 2Nc

∫
Λ

d3p⃗

(2π)3
Ef

+
1

β

∫
d3p⃗

(2π)3

[
ln[1 + 3Φeiθqe−βEf + 3Φ∗e2iθqe−2βEf + e3iθqe−3βEf ]

+ ln[1 + 3Φ∗e−iθqe−βEf + 3Φe−2iθqe−2βEf + e−3iθqe−3βEf ]
]

(2.13)

where σf ≡ ⟨q̄fqf ⟩ and Ef ≡
√

p⃗ 2 +Mf
2 for f = u, d, s. The dynamical quark mass

Mf is defined by

Mu = mu − 4GS(Φ)σu + 2GDσdσs, (2.14)

Md = md − 4GS(Φ)σd + 2GDσsσu, (2.15)

Ms = ms − 4GS(Φ)σs + 2GDσuσd. (2.16)

The variables Φ, Φ∗, σl(≡ σu = σd) and σs are determined by the stationary condition.

Although the chemical potential are pure imaginary, one can prove that the thermo-

dynamic potential is real and thermodynamics is well defined. The thermodynamics

potential (2.13) can be rewritten into the form that is real explicitly,

Ω = U − 4GDσuσdσs +
∑

f=u,d,s

2GSσ
2
f − 2Nc

∫
Λ

d3p⃗

(2π)3
Ef

+
1

β

∫
d3p⃗

(2π)3

[
ln[1 + e−6βEf +A(e−βEf + e−5βEf )

+B(e−2βEf + e−4βEf ) + Ce−3βEf ]
]

(2.17)

with

A = 6Re(Φeiθq), (2.18)

B = 9|Φ|2 + 6Re(Φe−2iθq), (2.19)

C = 2cos(3θq) + 18Re(Φ2e−iθq). (2.20)
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The three-flavor PNJL model has five parameters GS, GD, ml, ms and Λ. We use

the parameter set of Table 1.4. Parameters of U are determined to reproduce LQCD

data at finite T in the pure gauge limit [94], and they are summarized in Table 1.2. The

original value of T0 is 270 MeV, but the deconfinement temperature Tc determined by

the EPNJL model with this value of T0 is much larger than Tc ≈ 160 MeV predicted

by full LQCD [44,153–155]. Therefore, we rescale T0 to 150 MeV so that the EPNJL

model can reproduce Tc = 160 MeV.

The parameters α1 and α2 in (2.12) are so determined as to reproduce two results

of LQCD at finite T . The first is a result of 2+1 flavor LQCD at µ = 0 [41] that the

chiral transition is crossover at the physical point. The second is a result of degenerate

three-flavor LQCD at θq = π/3 [143] that the order of the RW endpoint is first order

for small and large quark masses but second-order for intermediate quark masses.

The parameter set (α1, α2) satisfying these conditions is located in the triangle region

{−1.5α1 + 0.3 < α2 < −0.86α1 + 0.32, α2 > 0}. (2.21)

Here, we take α1 = 0.25, α2 = 0.1 as a typical example.

2.3 Numerical results

Figure 2.5 shows T dependence of light- and strange-quark condensates, σl and σs,

and the Polyakov loop Φ at µq = 0. In the PNJL model of panel (a), σl and σs rapidly

decrease at T ≈ 180 MeV as T increases, after Φ rapidly increases at T ≈ 130 MeV

as T increases. Thus, the pseudo-critical temperature of the chiral crossover is much

higher than that of the deconfinement crossover. The same property is also seen in

the two-flavor case [100]. In the EPNJL model of panel (b), meanwhile, the pseudo-

critical temperatures of the chiral and the deconfinement crossover almost coincide

at T ≈ 160 MeV.

Figure 2.6 shows the order of the chiral-transition in the ml-ms plane at µ = 0.

This figure corresponds to the small ml and ms part of Fig.2.1(a). The second-order

chiral-transition line is drawn for three cases, the PNJL result (dotted line) and the

EPNJL result (solid line) and LQCD data (+ symbols) [143]. For each of the three
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Fig. 2.5 T dependence of the light- and strange-quark condensates and the

Polyakov loop at µ = 0. The quark condensates are normalized by σl =

−0.0142 [GeV3] at T = µ = 0. Panels (a) and (b) represent results of the

PNJL and EPNJL models, respectively.

cases, there are the first-order region below the second-order line and the crossover

region above the line. The second-order line predicted by the EPNJL model is close

to that by LQCD data particularly near the physical point. Meanwhile, the first-

order region predicted by the PNJL model is much smaller than that by LQCD data.

Thus, the EPNJL model yields much better agreement with LQCD prediction than

the PNJL model.

The deconfinement transitions predicted by the PNJL and EPNJL models are

crossover in the whole region shown in Fig. 2.6. In the EPNJL model, the crossover

deconfinement transition almost coincides with the chiral transition, even if the chiral

transition is crossover.

Now we consider the C symmetry breaking at θq = π/3 for the case of three

degenerate flavors (ms = ml). Figure 2.7 represents the imaginary part of Ψ as a

function of ml and T predicted by the three-flavor EPNJL model. When ml is large,

the system is close to the pure gauge limit and hence the C-symmetry breaking is

first-order. When ml is small, meanwhile, the system is nearly chirally-symmetric and



36 Chapter 2 Quark mass dependence of RW transition

 0

 0.05

 0.1

 0.15

 0.2

 0  0.02  0.04  0.06  0.08  0.1

m
s 

(G
eV

)

ml (GeV)

EPNJL
PNJL

Lattice
Physical mass

Fig. 2.6 The order of the chiral transition in the ml-ms plane at µ = 0. Solid

and dotted lines and + symbols represent the second-order chiral-transition lines

predicted by the PNJL and EPNJL models and LQCD [143]), respectively.
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Fig. 2.7 The imaginary part of the modified Polyakov loop at θq = π/3 in the

ml-T plane predicted by the EPNJL model with m = ml = ms.

therefore the transition is first-order. In the intermediate mass region, the transition

is second order. The result is consistent with the LQCD data [152].

Figure 2.8 shows the phase diagram for the C-symmetry breaking at the RW end-

point predicted by the EPNJL model. The diagram is plotted as a function of ml

and ms up to Λ, the upper limit for the present model to be applicable. The two
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Fig. 2.8 The order of C symmetry breaking at the RW endpoint predicted by

the EPNJL model. The transition is first-order below (above) the lower (upper)

line, while it is second-order between the two lines. The dotted line stands for

a line of ml = ms, that is, the case of three degenerate flavors, whereas the ×

symbol means the physical mass.

solid lines represent boundaries between the first- and second-order transition regions.

Below (above) the lower (upper) boundary, the transition is first-order. The dotted

line of ml = ms corresponds to the case of Nf = 3. On the dotted line, the order

is first-order for small and large masses but second-order for intermediate masses, as

expected. At the physical point, the order is second-order for the present parameter

set. However, the order can become first-order at the physical point, if we take other

parameter sets belonging to the region (2.21). In the PNJL model, meanwhile, the

transition is always first-order in the entire region of the ml-ms plane.

In Figs. 2.7 and 2.8, the EPNJL prediction is shown for small and large current

quark masses mq (q = l, s). The applicability of the NJL-type model to large mq,

however, is an open question. In fact it was pointed out that mq-dependence of

the chiral transition temperature is not consistent with the corresponding LQCD

results [156, 157]; as mq increases, the chiral transition temperature goes up sizably

in the NJL-type model but hardly changes in the LQCD results. In the EPNJL
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model, the chiral transition temperature almost coincides with the deconfinement one

that hardly depends on mq, so that the EPNJL result is consistent with the LQCD

result for the transition temperature. It was also pointed out that for large mq the

pion mass mπ calculated with the NJL-type model is larger than the corresponding

LQCD result [82]. In the NJL-type model the hadron mass calculation is questionable

for large mq, particularly when the calculated hadron mass is bigger than the cutoff

Λ. Therefore, the EPNJL predictions shown in Fig. 2.7 and 2.8 should be regarded

as qualitative ones for the mq > 100MeV region where the calculated pion mass is

bigger than Λ. However, the fact that there is the second-order region at intermediate

mq (< 100MeV) shows that there exists a boundary between the first- and second-

order regions at large mq. In this qualitative sense, the phase diagram of Fig. 2.8 is

reasonable for large mq.

Figure 2.9 presents the phase diagram in the θq-T plane predicted by the PNJL

and EPNJL models, where ml and ms have physical values. In the PNJL model of

panel (a), a first-order RW transition (solid) line is connected at the RW endpoint

to two first-order deconfinement (dashed) lines. Hence, the RW endpoint is a triple

point. In the EPNJL model of panel (b), the RW transition is second-order at the

endpoint, so that there is no first-order deconfinement line connected to the first-order

RW transition line. For other parameter sets in the parameter region (2.21), the

transition is weak first-order at the endpoint and hence the first-order RW transition

line is connected at the RW endpoint to two very-short first-order deconfinement lines.

2.4 Short summary

The imaginary chemical potential region and the Columbia plot are good testing

grounds to confirm reliability of effective models with comparing its result with that

of LQCD. In addition to that, the two regions have important information an re-

alistic QCD. On the Columbia plot, one can give clear statement for exact phase

transitions, and realistic crossover transition may be considered as a remnant of it.

For finite chemical potential, QCD has remarkable feature called the RW periodic-

ity. Moreover, the canonical partition function of realistic QCD is obtained by the
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Fig. 2.9 The phase diagram in the θ-T plane predicted by (a) the PNJL model

and (b) the EPNJL model. Here, physical values of ml and ms are taken. The

solid line stands for the first-order RW transition line, while the dashed line

corresponds to the first-order deconfinement line.

Fourier transformation of grand canonical partition function for imaginary chemical

potential.

We have extended the three-flavor PNJL model by introducing an entanglement

vertex GS(Φ). The entanglement PNJL (EPNJL) model is consistent with 2+1 flavor

LQCD data for the chiral transition at µ = 0 and degenerate three-flavor LQCD data

for the RW endpoint calculated very lately. The three-flavor phase diagram for the

RW endpoint is first drawn in the ml-ms plane by the EPNJL model justified above.
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Chapter 3

Theta vacuum and QCD phase

diagram

We investigate theta-vacuum effects on the QCD phase diagram for the

realistic 2 + 1 flavor system, using the three-flavor PNJL and EPNJL mod-

els. The theta-vacuum effects make the chiral transition sharper. For large

theta-vacuum angle the chiral transition becomes first order even if the

quark number chemical potential is zero, when the entanglement coupling

between the chiral condensate and the Polyakov loop is taken into account.

Moreover, we propose a way of circumventing the sign problem on lattice

QCD with finite theta, and investigate its availability. We consider the

reweighting method for the QCD Lagrangian after the U(1)A transforma-

tion. In the Lagrangian, the P-odd mass term as a cause of the sign problem

is minimized. In order to find a good reference system in the reweighting

method, we estimate the average reweighting factor by using the two-flavor

PNJL model and eventually find a good reference system.
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3.1 Introduction: Theta vacuum and its appearance

For T higher than the QCD scale ΛQCD, there is a possibility that θ is effectively

varied to finite values depending on spacetime coordinates (t, x), since sphalerons are

so activated as to jump over the potential barrier between the different degenerate

ground states [158]. If this happens, P and CP symmetries can be violated locally

in high-energy heavy-ion collisions or the early universe at T ≈ ΛQCD. Actually, it is

argued in Refs. [159–161] that θ may be of order one at the epoch of the QCD phase

transition in the early universe, whereas it vanishes at the present epoch [162–166].

This finite value of θ could be a new source of large CP violation in the early universe

and may be a crucial missing element for solving the puzzle of baryogenesis.

In the early stage of heavy-ion collision, the magnetic field is formed, while the

effective θ(t, x) deviates the total number of particles plus antiparticles with right-

handed helicity from those with left-handed helicity. As a consequence of this fact,

an electromagnetic current is generated along the magnetic field, since particles with

right-handed helicity move opposite to antiparticles with right-handed helicity. This

is the so-called chiral magnetic effect [77,79,159,167]. The chiral magnetic effect may

explain the charge separations observed in the recent STAR results [168, 169]. The

thermal system with nonzero θ is thus quite interesting.

For vacuum with no temperature (T ) and no quark-number chemical potential

(µ), parity P is preserved when θ = 0 [170], but is spontaneously broken when

θ = π [171,172]. The P violation, called the Dashen mechanism, is essentially nonper-

turbative, but the first-principle lattice QCD (LQCD) is not applicable for the case of

finite θ because of the sign problem. Temperature (T ) and/or quark-number chem-

ical potential (µ) dependence of the mechanism has then been analyzed by effective

models such as the chiral perturbation theory [160,173–177], the Nambu-Jona-Lasinio

(NJL) model [178–181] and the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL)

model [88,104].

Using the two-flavor NJL model [117, 118, 127, 147, 150], Fujihara, Inagaki and

Kimura made a pioneering work on the P violation at θ = π [181] and Boer and
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Boomsma studied this issue extensively [178,179]. In the previous works [88,104], we

extended the formalism to the two-flavor PNJL and EPNJL models and investigated

effects of the theta vacuum on the QCD phase diagram. Very recently similar analyses

were made for the realistic case of 2+1 flavors by using the NJL model [180]. It is

then highly expected that the finite-θ effect is investigated in the 2+1 flavor case by

using the PNJL and EPNJL models that are more reliable than the NJL model.

In this chapter, we investigate the QCD phase structure for finite θ. In Secs. 3.2

and 3.3, the phase structure is investigated by the realistic 2 + 1 flavor PNJL and

EPNJL models discussed in Chap. 2. In Secs. 3.4 and 3.5, we propose a reweighting

method for LQCD simulations with finite θ and analyze its availability by calculating

the average reweighting factor with the 2-flavor PNJL model. Section 3.5 is devoted

to short summary.

3.2 Model setting

The three-flavor PNJL Lagrangian with the θ-dependent anomaly term is obtained

in Euclidean spacetime by

L = q̄(γνDν + m̂0 − γ4µ̂)q −GS(Φ)
8∑

a=0

[(q̄λaq)
2 + (q̄iγ5λaq)

2]

+GD

[
eiθ det

ij
q̄i(1− γ5)qj + e−iθ det

ij
q̄i(1 + γ5)qj

]
+ U(Φ[A],Φ∗[A], T ). (3.1)

Since the θ parameter is related to the UA(1) anomaly, it appears in the KMT deter-

minant interaction [182]. With the chiral transformation,

ql = q′le
iγ5(θ/4)ql, , (3.2)

qs = q′s, (3.3)

for l = u, d, Lagrangian (3.1) can be rewritten into

L = q̄′(γνDν + m̂0+ + im̂0−γ5 − γ4µ̂)q
′ −GS

8∑
a=0

[(q̄′λaq
′)2 + (q̄′iγ5λaq

′)2]

+GD

[
det
ij

q̄′i(1− γ5)q
′
j + det

ij
q̄′i(1 + γ5)q

′
j

]
+ U(Φ[A],Φ∗[A], T ) (3.4)
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with

m̂0+ = diag(mu+,md+,ms+)

= diag
(
cos

(
θ
2

)
mu, cos

(
θ
2

)
md, ms

)
, (3.5)

m̂0− = diag(mu−,md−,ms−)

= diag
(
sin

(
θ
2

)
mu, sin

(
θ
2

)
md, 0

)
. (3.6)

In this form, θ dependence does not appear in the determinant interaction, but ap-

pears in the mass term.

The present three-flavor PNJL model has eighteen scalar and pseudoscalar con-

densates of quark-antiquark pair, but flavor off-diagonal condensates vanish for the

system with flavor symmetric chemical potentials only [88, 104, 178, 179]. Since the

quark-number chemical potential considered in this thesis is flavor-diagonal, we can

concentrate our discussion on flavor-diagonal condensates. Under the chiral transfor-

mation (3.2) and (3.3), the flavor-diagonal quark-antiquark condensates, σf ≡ ⟨q̄fqf ⟩

and ηf ≡ ⟨q̄f iγ5qf ⟩, are transformed into σ′
f = ⟨q̄′fq′f ⟩ and η′f ≡ ⟨q̄′f iγ5q′f ⟩ as

σl = cos
(
θ
2

)
σ′
l + sin

(
θ
2

)
η′l, (3.7)

ηl = − sin
(
θ
2

)
σ′
l + cos

(
θ
2

)
η′l, (3.8)

σs = σ′
s, (3.9)

ηs = η′s. (3.10)

Making the mean-field approximation, one can obtain the mean-field Lagrangian

as

LMF = q̄′(γνDν +M ′
f + iγ5N

′
f − γ4µ̂)q

′ + UM + U(Φ[A],Φ∗[A], T ), (3.11)
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where

M ′
u = mu+ − 4GSσ

′
u + 2GD(σ

′
dσ

′
s − η′dη

′
s), (3.12)

M ′
d = md+ − 4GSσ

′
d + 2GD(σ

′
sσ

′
u − η′sη

′
u), (3.13)

M ′
s = ms+ − 4GSσ

′
s + 2GD(σ

′
uσ

′
d − η′uη

′
d), (3.14)

N ′
u = mu− − 4GSη

′
u − 2GD(σ

′
dη

′
s + η′dσ

′
s), (3.15)

N ′
d = md− − 4GSη

′
d − 2GD(σ

′
sη

′
u + η′sσ

′
u), (3.16)

N ′
s = ms− − 4GSη

′
s − 2GD(σ

′
uη

′
d + η′uσ

′
d), (3.17)

and

UM = 2GS

∑
f=u,d,s

(σ′
f
2
+η′f

2
)−4GDσ

′
uσ

′
dσ

′
s+4GD(σ

′
uη

′
dη

′
s+η′uσ

′
dη

′
s+η′uη

′
dσ

′
s). (3.18)

Performing the path integral over the quark field, one can obtain the thermodynamic

potential Ω (per volume) for finite T and µq:

Ω = UM + U(Φ,Φ∗, T )− 2Nc

∑
f=u,d,s

∫
Λ

d3p⃗

(2π)3
Ef

−2
∑

f=u,d,s

∫
d3p⃗

(2π)3

[ 1
β
ln [1 + 3Φe−β(Ef−µ) + 3Φ∗e−2β(Ef−µ) + e−3β(Ef−µ)]

+
1

β
ln [1 + 3Φ∗e−β(Ef+µ) + 3Φe−2β(Ef+µ) + e−3β(Ef+µ)]

]
(3.19)

with Ef =
√

p⃗ 2 +M ′
f
2 +N ′

f
2.

3.3 Numerical results

In this section we show numerical results for the original condensates (σf , ηf ,Φ), since

this makes our discussion transparent. Under the parity transformation, σf , ηf and Φ

are transformed into σf , −ηf and Φ, respectively. This means that ηf is θ-odd while

σf and Φ are θ-even, since the Lagrangian is invariant under the combination of the

parity transformation and the transformation θ → −θ. Thus ηf is an order parameter

of the spontaneous parity breaking, while σf and Φ are approximate order parameters

of the chiral and the deconfinement transitions, respectively. As an approximate order

parameter of the chiral transition, σl is more proper than σs since ml ≪ ms.
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Fig. 3.1 θ dependence of (a) Ω and (b) the order parameters at T = µq = 0 in

the EPNJL model. In panel (a), Ω0 ≡ Ω(θ = 0) is subtracted from Ω. See the

legend for the definition of lines.

3.3.1 Thermodynamics at µq = 0

In this subsection, we consider the case of µq = 0 where charge conjugation symmetry

(C) is exact. Meanwhile, parity symmetry (P ) is exact only at θ = 0, ± π, since eiθ

agrees with e−iθ in (3.1) when θ = 0, ± π.

Figure 3.1 shows θ dependence of Ω and the order parameters at T = µq = 0 in the

EPNJL model; note that the EPNJL model agrees with the PNJL model at T = 0,

since GS(Φ) = GS there because of Φ = 0. As shown in panel (a), Ω is θ-even and

has a cusp at θ = π. This indicates that a first-order phase transition takes place at

T = µq = 0 and θ = π. As shown in panel (b), meanwhile, the ηf are θ-odd, while

σf and Φ are θ-even. The condensate ηl and ηs have jumps at θ = π, indicating that

the first-order transition mentioned above is the spontaneous parity breaking. This

is nothing but the Dashen phenomena [171].

Figure 3.2 shows θ dependence of the order parameters and the effective quark mass

Πf ≡
√
M ′

f
2 +N ′

f
2 at T = 163 MeV and µq = 0 in the EPNJL model. For this higher

temperature, the Dashen phenomena do not take place at θ = π. Actually ηl and ηs
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Fig. 3.2 θ dependence of (a) the order parameters and (b) the effective quark

mass Πf at T = 163 MeV and µq = 0 in the EPNJL model. In panel (b), Πf is

normalized by the value at T = µ = θ = 0 and the normalized Πf is compared

with the Polyakov loop Φ. See the legend for the definition of lines.

vanish there, although they become finite at θ ̸= 0, π, 2π where P is not an exact

symmetry. The other order parameters, σf and Φ, are smooth periodic functions of

θ. The Polyakov loop Φ becomes maximum at θ = π, since the effective quark mass

Πf becomes minimum and the thermal factor exp(−βEf ) is maximized in (3.19).

Figure 3.3 shows T dependence of the order parameters at θ = π and µq = 0.

Comparing this figure with Fig. 2.5, one can also see θ dependence of the order

parameters. In the PNJL model of panel (a), |ηl| and |ηs| are finite below the critical

temperature TP = 194 MeV and vanish above TP . Thus the P symmetry is broken at

smaller T , but restored at higher T . In the two-flavor PNJL model, this P restoration

is second order [104]. This is the case also for the present 2+1 flavor PNJL model.

The second order P restoration induces cusps in |σl| and |σs| when T = TP , although

the cusp is weak in |σs|. This propagation of the cusp can be understood by the

extended discontinuity theorem of Ref. [83]. In the EPNJL model of panel (b), the P

restoration occurs at TP = 158 MeV as the first-order transition. The same property

is seen in the two-flavor EPNJL model [104]. The first-order P restoration generates

gaps in |σl| and |σs| when T = TP , although the gap is tiny in |σs|. This propagation
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Fig. 3.3 T dependence of the order parameters at θ = π and µq = 0 in (a) the

PNJL model and (b) the EPNJL model. See the legend for the definition of lines.

Model θ = 0 θ = π

NJL 177 (crossover) 170 (2nd order)

PNJL 200 (crossover) 194 (2nd order)

EPNJL 162 (crossover) 158 (1st order)

Table. 3.1 Theoretical prediction on the critical temperature of the chiral tran-

sition at θ = 0 and µq = 0 and the P restoration at θ = π and µq = 0. The

values are shown in units of MeV.

of the gap can be understood by the discontinuity theorem by Barducci, Casalbuoni,

Pettini and Gatto [183]. Thus the Dashen phenomena are seen only at lower T , and

the order of the P violation at the critical temperature TP depends on the effective

model taken.

Theoretical prediction on the critical temperature of the chiral transition at θ = 0

and µq = 0 and the P restoration at θ = π and µq = 0 is tabulated in Table 3.1. At

θ = 0, the chiral transition is crossover in all of the NJL, PNJL, and EPNJL models

At θ = π, the order of the P restoration is first order in the EPNJL model, but it is

second order in the PNJL and NJL models.

Figure 3.4 shows θ dependence of transition temperatures at µq = 0. The dashed
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Fig. 3.4 θ dependence of the critical temperature at µq = 0 calculated by EPNJL

model and pure-gauge LQCD simulation [184].

and dotted lines show EPNJL model results for the deconfinement and the chiral

transition temperature, respectively. Solid line shows a result of lattice simulations

[184]:

Tc(θ)

Tc(0)
= 1−Rθθ

2 +O(θ4), (3.20)

Rθ = 0.0175(7). (3.21)

The coefficient Rθ has been determined from lattice simulations of pure Yang-Mills

theory with imaginary θ parameter, and the constant Tc(0) is fixed to that of the

EPNJL model. Compared with the lattice result, the model result has weaker θ

dependence . This result shows that lattice simulations with dynamical quarks are

crucial to investigate theta vacuum effects.

3.3.2 Thermodynamics at µq > 0

In this subsection, we consider the case of µq > 0 where C symmetry is not exact.

In general, the relation Φ = Φ∗ is not satisfied for finite µq, although Φ and Φ∗ are

real [59]. This situation makes numerical calculations quite time-consuming. How-
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Fig. 3.5 T dependence of the order parameters at θ = π and µq = 300 MeV in

(a) the PNJL model and (b) the EPNJL model. See the legend for the definition

of lines.

ever, the deviation Φ − Φ∗ is known to be very small [102]. For this reason, the

assumption Φ = Φ∗ has been used in many papers. Therefore we use the assumption

also in this thesis.

Figure 3.5 represents T dependence of the order parameters at θ = π and µq =

300 MeV in the PNJL and EPNJL models. The P restoration takes place at high

T , since ηl and ηs are zero there. The critical temperature of the P restoration is

TP = 110 MeV for the PNJL model and TP = 99 MeV for the EPNJL model. For

µq = 300 MeV, the order of the P restoration at T = TP is first order in both the

PNJL and EPNJL models. Thus the quark-number chemical potential µq lowers TP

and makes the P restoration sharper.

Figure 3.6 shows the phase diagram of the chiral transition in the µq-θ-T space. The

diagram is mirror symmetric with respect to the µq-T plane at θ = 0, so the diagram

is plotted only at θ ≥ 0. Panels (a) and (b) correspond to results of the PNJL and

EPNJL models, respectively. In the µq-T plane at 0 ≤ θ < π, the solid line stands for

the first-order chiral transition, while the dashed line represents the chiral crossover.

The meeting point between the solid and dashed lines is a critical endpoint (CEP) of

second order. Point C is a CEP in the µq-T plane at θ = 0 [147–149]. For both the
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Fig. 3.6 Phase diagram of the chiral transition in the µq-θ-T space. Panel (a)

shows a result of the PNJL model and panel (b) corresponds to a result of the

EPNJL model.

PNJL and EPNJL models, the location of CEP in the µq-T plane moves to higher T

and lower µq as θ increases from 0 to π.

In the µq-T plane at θ = π, P symmetry is exact and hence we can consider the

spontaneous breaking of P symmetry in addition to the chiral transition. For the

PNJL model of panel (a), both the first-order chiral transition and the first-order

P restoration take place simultaneously, and the second-order P restoration and the

chiral crossover coincide with each other. The first-order and the second-order P

transition line are depicted by the solid and dashed lines, respectively. The meeting

point A is a tricritical point (TCP) of the P -restoration transition. For the EPNJL

model of panel (b), the chiral and the P restoration transition are always first order

and hence there is no TCP.

In the PNJL model of panel (a), the dotted line from point C to point A is a

trajectory of CEP as θ increases from 0 to π. Thus the second-order chiral transition

line ends up with point A. This means that the CEP (point C) at θ = 0 is a remnant

of the TCP (point A) of P restoration at θ = π. In the EPNJL model of panel (b),

no TCP and then no CEP appears in the µq-T plane at θ = π. The second-order

chiral-transition line (dashed line) starting from point C never reaches the µq-T plane

at θ = π.

Figure 3.7 snows the projection of the second-order chiral-transition line in the µq-
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Fig. 3.7 The projection of the second-order chiral-transition line in the µq-θ-T

space on the µq-θ plane. See the legend for the definition of line.

θ-T space on the µq-θ plane. The solid (dashed) line stands for the projected line in

the EPNJL (PNJL) model. The first-order transition region exists on the right-hand

side of the line, while the left-hand side corresponds to the chiral crossover region.

The first-order transition region is much wider in the EPNJL model than in the PNJL

model. In the EPNJL model, eventually, the chiral transition becomes first order even

at µq = 0 when θ is large.

3.3.3 The sign problem on LQCD with finite θ

In the PNJL Lagrangian (3.4) after the transformation (3.2) and (3.3), θ dependence

appears only at the light quark mass terms, ml cos(θ/2) and ml sin(θ/2). These

terms are much smaller than ΛQCD as a typical scale of QCD. This means that the

condensates, σ′
l, σ

′
s, η

′
l and η′s, have weak θ dependence. This statement is supported

by the results of the PNJL calculations shown in Fig. 3.8.

The sign problem is induced by the θ-odd ml sin(θ/2) term. The θ-odd (P -odd)

condensates, η′l and η′s, are generated by the θ-odd mass term. One can see in Fig. 3.8

that the θ-odd condensates are much smaller than the θ-even condensates, σ′
l and σ′

s.
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s, at T = µq = 0

calculated with the EPNJL model. See the legend for the definition of lines.

This fact indicates that effects of the θ-odd mass term are negligible. Actually, if the

term is neglected, the θ-even condensates change only within the thickness of line,

while the θ-odd condensates vanish. The neglect of the θ-odd mass is thus a good

approximation.

The validity of the approximation can be shown more explicitly in the following

way. The θ-odd (P -odd) condensates, η′l and η′s, are zero at θ = 0, since the θ-odd

mass vanishes there. The weak θ dependence of η′l and η′s guarantees that η′l and η′s

are small for any θ. Setting η′l = η′s = 0 in M ′
l and N ′

l leads to

M ′
l = cos

(
θ
2

)
ml − 4GSσ

′
l + 2GDσ

′
sσ

′
l, (3.22)

N ′
l = sin

(
θ
2

)
ml, (3.23)

where M ′
l ≈ ΛQCD and N ′

l ≈ ml. Since the thermodynamic potential is a function of

M ′2
l +N ′2

l , the term N ′2
l is negligible compared with M ′2

l .

In LQCD, the vacuum expectation value of operator O is obtained by

⟨O⟩ =
∫

DAO (detMl(θ))
2
detMse

−Sg (3.24)

=

∫
DAO′ (detM′

l(θ))
2
detMse

−Sg (3.25)
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with the gluon part Sg of the QCD action and

O′ ≡ O (detMl(θ))
2

(detM′
l(θ))

2 , (3.26)

where detM′
l(θ) is the Fermion determinant in which the θ-odd mass is neglected

and hence has no sign problem. As mentioned above, one can assume that

detMl(θ)

detM′
l(θ)

≈ 1. (3.27)

Thus the reweighting method defined by (3.25) may work well. In the θ-even mass,

ml cos(θ/2), the limit of θ = π corresponds to the limit of ml = 0 with ms fixed.

Although the limit is hard to reach, one can analyze the dynamics at least at small

and intermediate θ.

3.4 Introduction: Lattice QCD simulation with theta term

In the previous section, we proposed a way of minimizing the sign problem on LQCD

with finite θ. The proposal is as follows. For simplicity, we consider two-flavor QCD.

The QCD Lagrangian (1.1) is transformed into

LQCD = q̄′M(θ)q′ +
1

4g2
F a
µνF

a
µν (3.28)

with

M(θ) ≡ γνDν +m cos (θ/2) +miγ5 sin (θ/2) (3.29)

by using the UA(1) transformation

q = eiγ5
θ
4 q′, (3.30)

where the quark field q = (qu, qd) has been redefined by the new one q′. The deter-

minant M(θ) satisfies

detM(θ) = [detM(−θ)]
∗
, (3.31)

indicating that the sign problem is induced by the P -odd (θ-odd) term, miγ5 sin (θ/2).

The difficulty of the sign problem is minimized in (3.28), since the P -odd term with
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the light quark massm is much smaller than the dynamical quark mass of order ΛQCD.

Actually, it was found that the P -even condensates σ′
f = ⟨q̄′fq′f ⟩ is much larger than

the P -odd condensates η′f = ⟨q̄′f iγ5q′f ⟩. The P -even condensates little change even if

the θ-odd mass term is neglected.

We then proposed the following reweighting method. The vacuum expectation

value of operator O is calculated by

⟨O⟩ =
∫

DAOdetM(θ)e−Sg (3.32)

=

∫
DAO′detMref(θ)e

−Sg (3.33)

with the gluon part Sg of the QCD action and

O′ ≡ R(θ)O, (3.34)

R(θ) ≡ detM(θ)

detMref(θ)
, (3.35)

where R(θ) is the reweighting factor and detMref(θ) is the Fermion determinant of

the reference theory that has no sign problem. The simplest candidate of the reference

theory is the theory in which the θ-odd mass is neglected. We refer this reference

theory to as reference A in this thesis. As discussed in Sec. 3.3, reference A may be

a good reference theory for small and intermediate θ, but not for large θ near π. In

reference A, the limit of θ = π corresponds to the chiral limit that is hard for LQCD

simulations to reach.

The expectation value of R(θ) in the reference theory is obtained by

⟨R(θ)⟩ = Z

Zref
(3.36)

where Z (Zref) is the partition function of the original (reference) theory. The average

reweighting factor ⟨R(θ)⟩ is a good index for the reference theory to be good; the

reference theory is good when ⟨R(θ)⟩ = 1.
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3.5 Model setting

The two-flavor PNJL Lagrangian with the θ-dependent anomaly term is obtained in

Euclidean spacetime by

L = q̄(γνDν +m0)q −G1

3∑
a=0

[
(q̄τaq)

2 + (q̄iγ5τaq)
2
]

−8G2

[
eiθdetq̄RqL + e−iθdetq̄LqR

]
+ U(T,Φ,Φ∗). (3.37)

Under the UA(1) transformation (3.30), the quark-antiquark condensates are trans-

formed as

σ ≡ ⟨q̄q⟩ = cos(θ/2)σ′ + sin(θ/2)η′, (3.38)

η ≡ ⟨q̄iγ5q⟩ = −sin(θ/2)σ′ + cos(θ/2)η′, (3.39)

ai ≡ ⟨q̄τiq⟩ = cos(θ/2)a′i + sin(θ/2)π′
i, (3.40)

πi ≡ ⟨q̄iγ5τiq⟩ = −sin(θ/2)a′i + cos(θ/2)π′
i, (3.41)

where the condensates {σ′, η′, a′i, π
′
i} are defined by the same form as {σ, η, ai, πi} but

q is replaced by q′. The Lagrangian density is then rewritten with q′ as

L = q̄′(γνDν +m(θ))q′ −G1

3∑
a=0

[
(q̄′τaq

′)2 + (q̄′iγ5τaq
′)2

]
−8G2 [detq̄

′
Rq

′
L + detq̄′Lq

′
R] + U (3.42)

= q̄′(γνDν +m(θ))q′ −G+

[
(q̄′q′)2 + (q̄′iγ5τ⃗ q

′)2
]

−G−
[
(q̄′τ⃗ q′)2 + (q̄′iγ5q

′)2
]
+ U , (3.43)

where G± = G1 ±G2 and

m(θ) = m0cos(θ/2) +m0iγ5sin(θ/2). (3.44)
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Making the mean field approximation and the path integral over the quark field, one

can obtain the thermodynamic potential Ω (per volume) for finite T :

Ω = U + U − 2Nc

∑
±

∫
Λ

d3p

(2π)3
E±

−2
∑
±

∫
d3p

(2π)3

[
T ln

[
1 + 3Φe−βE± + 3Φ∗e−2βE± + e−3βE±

]
+T ln

[
1 + 3Φ∗e−βE± + 3Φe−2βE± + e−3βE±

]]
. (3.45)

with

E± =

√
p⃗ 2 + C ± 2

√
D, (3.46)

C = M2 +N2 +A2 + P 2, (3.47)

D = (MA⃗+NP⃗ )2 + (A⃗× P⃗ )2 ≥ 0, (3.48)

M = m0cos(θ/2)− 2G+σ
′, (3.49)

N = m0sin(θ/2)− 2G−η
′, (3.50)

A⃗ = −2G−a⃗
′, P⃗ = −2G+π⃗

′, (3.51)

A =
√
A⃗ · A⃗, P =

√
P⃗ · P⃗ , (3.52)

U = G+(σ
′2 + π⃗′2) +G−(η

′2 + a⃗′2), (3.53)

where the momentum integral is regularized by the three-dimensional momentum

cutoff Λ. Following Refs. [178, 179], we introduce a parameter c as G1 = (1 − c)G+

and G2 = cG+, where 0 ≤ c ≤ 0.5 and G+ > 0. The present model thus has four

parameters of m0, λ, G+ and c. Assuming m0 = 5.5 MeV, we have determined Λ and

G+ from the pion decay constant fπ = 93 MeV and the pion mass Mπ = 138 MeV at

vacuum. Although c is an unknown parameter, we set c = 0.2 here, since it is known

from the model analysis on the η − η′ splitting that c ≈ 0.2 is favorable [185].

For finite θ, parity is broken explicitly, so it is not a good quantum number anymore.

Hence P -even and P -odd modes are mixed with each other for each meson. The “pion”

mass M̃π is defined by the lowest pole mass of the inverse propagator in the isovector

channel. It agrees with the ordinary pion mass when θ = 0. Under the random phase
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approximation [186], the inverse propagator is described by

det[1− 2GΠ(M̃2
π)] = 0, (3.54)

where

G =

 G− 0

0 G+

 , (3.55)

Π(ω2) =

 ΠSS(ω2) ΠSP (ω2)

ΠPS(ω2) ΠPP (ω2)

 (3.56)

with

ΠPP = 4NfNcI1 − 2NfNc(q
2 − 4N2)I2(ω

2), (3.57)

ΠSS = 4NfNcI1 − 2NfNc(q
2 − 4M2)I2(ω

2), (3.58)

ΠSP = ΠPS = −8NfNcMNI2(ω
2), (3.59)

I1 =

∫
Λ

d3p

(2π)3
1− f+

Φ (Ep)− f−
Φ (Ep)

2Ep
, (3.60)

I2(ω
2) =

∫
Λ

d3p

(2π)3
1− f+

Φ (Ep)− f−
Φ (Ep)

Ep(ω2 − 4E2
p)

, (3.61)

and

f+
Φ =

(Φ∗ + 2Φe−βEp)e−βEp + e−3βEp

1 + 3(Φ∗ +Φe−βEp)e−βEp + e−3βEp
, (3.62)

f−
Φ =

(Φ + 2Φ∗e−βEp)e−βEp + e−3βEp

1 + 3(Φ + Φ∗e−βEp)e−βEp + e−3βEp
. (3.63)

In this form, we can set a⃗′ = π⃗′ = 0, since we do not consider the isospin chemical

potential.

Applying the saddle-point approximation to the path integral in the partition func-

tion, one can get

⟨R(θ)⟩ ≈
√

detHref

detH
e−βV (Ω−Ωref) (3.64)

where β = 1/T , Ω (Ωref) is the thermodynamic potential of the original (reference)

theory in the mean-field level, and H (Href) is the Hessian matrix in the original
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(reference) theory defined by [102,187]

Hij =
∂2Ω

∂ϕ′
i∂ϕ

′
j

, (3.65)

{ϕi} = {σ′, η′, a′i, π
′
i,Φ,Φ

∗}. (3.66)

For later convenience, the average reweighting factor ⟨R(θ)⟩ is divided into two factors

RH and RΩ:

⟨R(θ)⟩ = RHRΩ (3.67)

with

RH =

√
detHref

detH
, (3.68)

RΩ = e−βV (Ω−Ωref ). (3.69)

For an N3
x ×Nτ lattice, the four-dimensional volume βV is obtained by

βV =

(
Nx

Nτ

)3
1

T 4
. (3.70)

Here we consider Nx/Nτ = 4 as a typical example, following Refs. [102,187].

We consider the following reference theory that has no sign problem:

L = q̄′(γν∂ν +mref(θ))q
′−G+

[
(q̄′q′)2 + (q̄′iγ5τ⃗ q

′)2
]
−G−

[
(q̄′τ⃗ q′)2 + (q̄′iγ5q

′)2
]
+U .

Here mref(θ) is θ-even mass defined below. We consider three examples as mref(θ).

A. The first example is reference A defined by

mref(θ) ≡ mA(θ) = m0cos(θ/2). (3.71)

In this case, the P -odd mass is simply neglected from the original Lagrangian

(3.43).

B. The second example is reference B defined by

mref(θ) ≡ mB(θ)

= m0cos(θ/2) +
1

α
{m0sin(θ/2)}2 . (3.72)
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In this case, we have added the m2
0-order correction due to the P -odd quark

mass. Here α is a parameter with mass dimension, so we simply choose α = Mπ.

The coefficient of the correction term is m2
0/Mπ = 0.129 MeV.

C. The third case is reference C defined by

mref(θ) ≡ mC(θ)

= m0cos(θ/2) +
m0M

2
π

M2
η′

sin2(θ/2), (3.73)

This case also has the m2
0-order correction, but α is different from reference B.

The coefficient of the correction term is m0M
2
π/M

2
η′ = 0.114 MeV.

Reference C is justified as follows. The pion mass M̃π(θ) at finite θ is estimated

from the chiral Lagrangian as [160,161]:

M̃2
π(θ) =

m0|σ0|
f2
π

|cos(θ/2)|+ 2l7m
2
0σ

2
0

f6
π

sin2(θ/2), (3.74)

where σ0 is the chiral condensate at T = θ = 0 and the coefficient l7 is evaluated by

the 1/Nc expansion as

l7 ≈ f2
π

2M2
η′
. (3.75)

The right-hand side of (3.74) is reduced to

M̃2
π(θ) =

|σ0|
f2
π

[
m0|cos(θ/2)|+

m0M
2
π

M2
η′

sin2(θ/2)

]
. (3.76)

Equation (3.76) supports (3.73).

3.6 Numerical results

3.6.1 Mean field approximation

If some reference system satisfies the condition that ⟨R(θ)⟩ ≈ 1, one can say that

the reference system is good. As a typical example of the condition, we consider the

case of 0.5 ≲ ⟨R(θ)⟩ ≲ 2. This condition seems to be the minimum requirement.

The discussion made below is not changed qualitatively, even if one takes a stronger

condition.
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Fig. 3.9 θ dependence of (a) the average reweighting factor and (b) M̃π at

T = 100 MeV for the case of reference A.
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Fig. 3.10 θ dependence of (a) the average reweighting factor and (b) M̃π at

T = 100 MeV for the case of reference B.

First we consider reference A. Figure 3.9(a) shows θ dependence of ⟨R(θ)⟩ at T =

100 MeV. The solid line stands for ⟨R(θ)⟩, while the dashed (dotted) line corresponds

to RH (RΩ). This temperature is lower than the chiral transition temperature in the

original theory that is 212 MeV at θ = 0 and 204 MeV at θ = π. As θ increases from

zero, ⟨R(θ)⟩ also increases and exceeds 2 at θ ≈ 1.2. Reference A is thus good for

θ ≲ 1.2. The increase of ⟨R(θ)⟩ stems from that of RΩ that depends on T . This means
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Fig. 3.11 θ dependence of (a) the average reweighting factor and (b) M̃π at

T = 100 MeV for the case of reference C.

that the reliable θ region in which 0.5 ≲ ⟨R(θ)⟩ ≲ 2 becomes large as T increases.

Figure 3.9(b) shows θ dependence of M̃π at T = 100 MeV. The solid (dashed) line

denotes M̃π in the original (reference A) system. At θ = π, M̃π is finite in the original

system, but zero in reference A. As a consequence of this property, RH and ⟨R(θ)⟩

vanish at θ = π; see Fig. 3.9(a). This indicates that reference A breaks down at

θ = π, independently of T .

The same analysis is made for reference B in Fig. 3.10. M̃π in reference B well

reproduces that in the original theory for any θ, and ⟨R(θ)⟩ satisfies the condition

0.5 ≲ ⟨R(θ)⟩ ≲ 2 for all θ. Since RH ∼ 1 in the most region of θ, ⟨R(θ)⟩ is governed by

RΩ. Around θ = π, RH becomes small but still has a nonzero value because M̃π ̸= 0

even at θ = π in reference B. Therefore, the simple estimation for mref(θ) (3.72) gives

available reference.

Finally we consider reference C through Fig. 3.11. M̃π in reference C well simulates

that in the original theory, and ⟨R(θ)⟩ satisfies the condition 0.5 ≲ ⟨R(θ)⟩ ≲ 2 for all

θ. This result is better than that in reference B. Therefore we can think that reference

C is a good reference system for any θ. This is true for any temperature larger than

100 MeV.
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Fig. 3.12 θ dependence of the average reweighting factor at T = 100 MeV for

the case of reference C. Solid and dashed lines correspond to the result with and

without dynamical pion fluctuation respectively.

3.6.2 Effect of mesonic fluctuation

Beyond the mean field approximation, we estimate an effect of dynamical pion fluc-

tuations by modifying the thermodynamic potential to

Ω = ΩMF +ΩDF, (3.77)

where ΩMF is the thermodynamic potential (3.45) with the mean-field level. ΩDF is

the potential due to dynamical pion fluctuations [102],

ΩDF = 3

∫
d3p

(2π)3
T ln

(
1− e−βEπ

)
, (3.78)

where Eπ =
√

p⃗ 2 + M̃2
π , with M̃π determined by solving (3.54).

Figure 3.12 shows θ dependence of ⟨R(θ)⟩ at T = 100 MeV for the case of reference

C. The solid and dashed lines correspond to results with and without dynamical pion

fluctuations, respectively. The effect makes ⟨R⟩ a little smaller and hence the reference

C becomes slightly worse. However, the modification is small , indicating that ⟨R⟩ is

well evaluated by the mean-field approximation
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3.7 Short summary

The θ term in the QCD Lagrangian is an interesting subject, because it is related to

topologically nontrivial structure of QCD vacuum. Although θ is small from experi-

ments, the topological structure itself is important from U(1)A anomaly. The θ term

has been investigated as an external field to QCD, because it can be a useful probe to

observe non-perturbative properties of QCD vacuum. However, QCD phase structure

with finite θ parameter is still unknown because the first-principle LQCD simulation

is not feasible. Hence, we have performed the following two kinds of analyses with

effective models.

First, we have investigated effects of the theta vacuum on the QCD phase diagram

for the realistic 2+1 flavor system, using the three-flavor PNJL and EPNJL models.

The effects can be easily understood by the SUA(3) ⊗ UA(1) transformation, (3.2)

and (3.3). After the transformation, the θ-odd mass, ml sin(θ/2), little affects the

dynamics, so that the dynamics is mainly governed by the θ-even mass, ml cos(θ/2).

In the θ-even mass, the increase of θ corresponds to the decrease of ml with ms fixed.

This means that the chiral transition becomes strong as θ increases. This is true in

the results of both PNJL and EPNJL calculations. Particularly in the EPNJL model

that is more reliable than the PNJL model, the transition becomes first-order even at

µ = 0 when θ is large. This result is important. If the chiral transition becomes first

order at µ = 0, it will change the scenario of cosmological evolution. For example, the

first-order transition allows us to think the inhomogeneous Big-Bang nucleosynthesis

model or a new scenario of baryogenesis.

Secondary, we have investigated a way of circumventing the sign problem in LQCD

simulations with finite θ, using the PNJL model. We have considered the reweighting

method for the transformed Lagrangian (3.28). In the Lagrangian, the sign problem

is minimized, since the P -odd mass is much smaller than the dynamical quark mass

of order ΛQCD. Another key is which kind of reference system satisfies the condition

⟨R(θ)⟩ ≈ 1. We have then estimated ⟨R(θ)⟩ by using the two-flavor PNJL model

and have found that reference C may be a good reference system in the reweighting
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method. We have performed a similar analysis with a more simplified model, the

NJL model [188]. The analysis gave qualitatively similar results, and it shows that

the dynamics is mostly dominated by chiral dynamics.

Since the present proposal is based on the model analysis, it is then not obvious

whether the proposal really works in lattice simulations. Therefore the proposal

should be directly tested by lattice simulations. A similar test was made for two-

flavor QCD with finite quark chemical potential µ [102,189] where lattice simulations

have the sign problem. The average reweighting factor, i.e., the average phase factor

was evaluated by lattice simulations at µ/T < 1 for T around the critical temperature

of the deconfinement transition [189]. The PNJL model well reproduces the lattice

result, when the dynamical correction due to mesonic fluctuations is made to the

mean-field model calculation [102]. It is thus interesting that the present proposal is

directly tested by lattice simulations.
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Chapter 4

QCD phase diagram based on LQCD

and NS measurement

We determine the quark-hadron transition line in the whole region of the

T -µB plane from LQCD results and neutron-star (NS) mass measurements,

making the quark-hadron hybrid model that is consistent with the two solid

constraints. The quark part of the hybrid model is the EPNJL model that

reproduces LQCD results at µB/T = 0, while the hadron part is the hadron

resonance gas model with volume-exclusion effects that reproduces NS mass

measurements and the neutron-matter equation of state calculated from the

two- and three-nucleon forces based on the chiral effective field theory. The

lower bound of the critical µB of the quark-hadron transition at zero T is

µB ∼ 1.6 GeV for the isospin symmetric matter. The interplay between

the heavy-ion collision physics around µB/T = 6 and the NS physics at

µB/T = 1 is discussed.
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4.1 Introduction: Neutron star and equation of state

The phase diagram of QCD is a key to understanding not only natural phenomena

such as compact stars and the early Universe but also laboratory experiments such

as relativistic heavy-ion collisions [35, 36, 38, 41, 56, 125]. The first-principle LQCD

simulation as a quantitative analysis of the phase diagram [41, 56, 125], however, has

the severe sign problem at middle and large µB/T , where T is temperature and µB

is baryon-number chemical potential. Therefore the QCD phase diagram is still un-

known particularly at µB/T >˜ 1, although many possibilities are proposed by effective

models there. A steady way of approaching the middle and large µB/T regions is

gathering solid information from different regions and extracting a consistent picture

from the information.

LQCD simulations are quite successful at µB/T <˜ 1 [41–43,56,125,190–192]. They

are providing high-precision results for the realistic 2+1 flavor system at the present

day, for example the transition temperature, the equation of state (EoS), and fluctua-

tions of conserved charges [42,43,191,192]. As a way of extending the understanding

to the µB/T >˜ 1 region, we can consider effective models such as the PNJL model.

Actually, some improved versions of the PNJL model yield desirable results consistent

with LQCD simulations at µB/T <˜ 1 [36, 71, 72, 74, 101, 106]. However, the model

approach has still various ambiguity at large µB/T .

A key issue in the large µB/T limit, i.e. at finite µB but vanishing T , is the EoS

of nuclear matter. It is one of the most important subjects in nuclear physics to

understand properties of symmetric nuclear matter and neutron matter microscopi-

cally from realistic baryon-baryon interactions. Various theoretical frameworks have

been developed to study the subject. The results seem to be reliable because most of

them are now converging a common result, but the common result cannot reproduce

empirical saturation properties properly if one starts with realistic two-nucleon forces

(2NF). This insufficiency is probably due to the lack of including three-nucleon forces

(3NF). Recent development of the chiral effective field theory (Ch-EFT) [193, 194]

provides a way of determining 2NF and 3NF systematically from symmetries of un-
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derlying QCD. Although the Ch-EFT interaction is, by construction, to be applied

at low and normal nuclear densities, the standard many-nucleon calculation using

the Ch-EFT 2NF and 3NF at these densities should provide the predictive base for

considering the neutron-matter EoS at higher densities. The combination of this new

constraint and the experimental constraint [195] evaluated from the heavy-ion colli-

sion measurements is considered to be useful to determine the nuclear-matter EoS

solidly.

The mass-radius (MR) relation of neutron star (NS) is sensitive to the nuclear-

matter EoS [196]. In this sense, astrophysical observations are another valuable source

of information to provide a strong constraint on the EoS. Recent observations suggest

the existence of massive NSs (∼ 2M⊙), which seems to exclude the possibility of soft

EoS [197,198]. However, there exists uncertainties on the radius of NSs from various

observations. Steiner et al. have adopted the statistical approach to constrain this

uncertainty, and have provided the best fitting against various observations on the

MR relation [199].

There is a possibility that the quark-hadron phase transition occurs in NSs. The

observations on the MR relation yield a strong constraint on both the quark and

hadron phases, while the nuclear-matter EoS determined from the Ch-EFT 2NF and

3NF and the heavy-ion collision measurements does on the hadron phase. Therefore,

the combination of the solid constraints may answer an important question, whether

the quark-hadron phase transition occurs in NSs and further what is the critical

chemical potential of the transition if it occurs. This is nothing but to clarify the

QCD phase diagram in the large µB/T limit.

In this chapter, we determine the QCD phase diagram in the whole region from

µB/T = 0 to infinity, constructing a reliable quark-hadron hybrid model. The quark

part of the hybrid model is the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL)

model with entanglement vertex that reproduces LQCD data at finite imaginary µB,

finite real- and imaginary-isospin chemical potentials, small real µB [101, 106], and

strong magnetic field [81]. The hadron part of the hybrid model is the hadron reso-

nance gas (HRG) model with volume-exclusion effect that reproduces the NS observa-

tions and the nuclear-matter EoS evaluated from the Ch-EFT 2NF and 3NF and the
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heavy-ion collision measurements. The volume-exclusion effect is necessary to repro-

duce the repulsive nature of the nuclear-matter EoS. The EoS provided by the hybrid

model preserves the causality even at high µB. In order to construct the nuclear-

matter EoS from the Ch-EFT 2NF and 3NF, we employ the lowest-order Brueckner

theory (LOBT) in pure neutron matter with the Jülich N3LO interaction [200]. The

lower bound of the critical µB of the quark-hadron transition at T = 0 is found to

be µB ∼ 1.6 GeV for the isospin symmetric matter. We also investigate the inter-

play between the heavy-ion collision physics around µB/T = 6 and the NS physics at

µB/T = ∞.

4.2 Model setting

We consider a two-phase model to treat the quark-hadron phase transition by as-

suming that the transition is the first order [113,114,201–205]. For the quark phase,

we use the 2-flavor EPNJL model [101, 105, 106] which yields consistent results with

LQCD data for finite imaginary µB, finite real- and imaginary-isospin chemical po-

tentials, small real µB [101,106], and strong magnetic field [81]. For the hadron phase,

we use the HRG model. The model is successful in reproducing the QCD EoS below

the transition temperature at µB/T = 0 [42, 43, 191, 192]. This model is extended

for the baryon part to include the volume-exclusion effect. The effect is necessary

to reproduce the repulsive nature of the nuclear-matter EoS. The volume-exclusion

radius is fitted to reproduce the nuclear-matter EoS determined from the Ch-EFT

2NF and 3NF and the heavy-ion collision measurements.

In this work, we consider the 2-flavor system and do not take into account the ex-

istence of hyperons [206]. Even with hyperons, the fraction of hyperons is suppressed

by the existence of quarks in NS [207]. Hence, the possibility of the appearance of

quarks is first discussed in this thesis. The possibility of the appearance of hyperons

will be discussed in a forthcoming paper.
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4.2.1 Quark phase

We first consider the quark phase with the two-flavor EPNJL model. The Lagrangian

density is obtained in Euclidean spacetime by

LEPNJL = q̄(γνDν + m̂0−γ4µ̂)q−G(Φ)[(q̄q)2+(q̄iγ5τ⃗ q)
2]+U(Φ[A],Φ∗[A], T ), (4.1)

where Dν = ∂ν − iδν4A
a
4λa/2 with the Gell-Mann matrices λa. The two-flavor quark

fields q = (qu, qd) have masses m̂0 = diag(mu,md), and the quark-number chemical

potential matrix µ̂ is defined by µ̂ = diag(µu, µd). For simplicity, we assume isospin

symmetry for u and d masses: ml ≡ mu = md.

Performing the mean-field approximation and the path integral over the quark field,

one can obtain the thermodynamic potential Ω (per volume):

Ω

V
= G(Φ)σ2 + U − 2Nc

∑
f=u,d

∫
Λ

d3p

(2π)3
Ef

−2Nc

β

∑
f=u,d

∫
d3p

(2π)3

{
ln
[
1 + 3Φe−β(Ef−µf ) + 3Φ∗e−2β(Ef−µf ) + e−3β(Ef−µf )

]
+ ln

[
1 + 3Φ∗e−β(Ef+µf ) + 3Φe−2β(Ef+µf ) + e−3β(Ef+µf )

]}
(4.2)

with

Ef =
√
p⃗ 2 +M2

f , Mf = m0 − 2G(Φ)σ, σ ≡ ⟨q̄q⟩ . (4.3)

The quark-number densities nu and nd are obtained by

nf = − ∂

∂µf

(
Ω

V

)
(4.4)

for f = u, d and pressure P is defined as P = −(Ω + Ω0)/V , where Ω0 is thermody-

namic potential at T = µu = µd = 0.

The classical variablesX = Φ, Φ∗ and σ are determined by the stationary conditions

∂Ω

∂X
= 0. (4.5)

The solutions to the stationary conditions do not give the global minimum of Ω

necessarily. They may yield a local minimum or even a maximum. We then have
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checked that the solutions yield the global minimum when the solutions X(T, µu, µd)

are inserted into Eq. (4.2). In this work, we employ an approximation Φ = Φ∗ for

numerical simplicity, because the approximation is good and hence sufficient for the

present analysis [102].

Repulsive forces among quarks are crucial to account for the 2M⊙-NS observa-

tion [113, 114, 208], since they harden the EoS of quark matter. We then introduce

the vector-type four-body interaction to the EPNJL model [99],

LEPNJL → LEPNJL +GV(q̄γµq)
2. (4.6)

The corresponding thermodynamic potential is obtained by the replacement,

µf → µf − 2GVnq, (4.7)

G(Φ)σ2 → G(Φ)σ2 −GVn
2
q (4.8)

with nq ≡ ⟨q†q⟩. Here, nq is determined in a self-consistent manner to satisfy the

thermodynamic relation (4.4). The parameter GV is treated as a free parameter in

this thesis. GV dependence of the quark-hadron phase transition will be discussed in

Sec. 4.3.

4.2.2 Hadron phase

Now we consider the hadron phase by using the HRG model and its extension. The

pressure of the HRG model is composed of meson and baryon parts,

PH = PM + PB (4.9)

where PH, PM and PB are pressures of hadronic, mesonic and baryonic matters, re-

spectively.

In the quark phase, the u- and d-quark chemical potentials, µu and µd, are described

by the baryon-number and electric chemical potentials, µB and µQ, as

µu = µB/3 +
2

3
µQ, (4.10)

µd = µB/3−
1

3
µQ. (4.11)
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In the hadron phase, meanwhile, the chemical potentials of proton, neutron and the

ith meson with electric charge Qi are expressed by µB and µQ as

µp = µB + µQ, (4.12)

µn = µB, (4.13)

µi
M = QiµQ, (4.14)

respectively. For the QCD phase diagram, we consider only the case of the symmetric-

nuclear matter with µQ = 0. In the NSs at zero T , meanwhile, there exist protons,

neutrons, mesons and electrons. For simplicity, however, we neglect electrons and the

Bose-Einstein condensation of mesons. This approximation is numerically confirmed

to be valid; further analyses will be made in the forthcoming paper. In this case, the

nuclear matter becomes the neutron matter because of the β equilibrium, i.e., µp = 0

and µn = µB > 0.

For the meson sector, we use the HRG model with no extension:

PM =
∑
i

diT

∫
d3p

(2π)3
ln
(
1− e−β(Ei−µi

M )
)
, (4.15)

Ei =
√

p⃗ 2 +M2
i , (4.16)

where the i summation is taken over all meson species constituted by u and d quarks

in the quark model. Here, Mi, di and µi are mass, degeneracy and chemical potential

of the ith meson, respectively. At T = 0, this simple formula yields the Bose-Einstein

condensate when µi
M > Mi. However we neglect the effect by assuming µi

M < Mi in

order to reproduce the 2M⊙-NS observation. This assumption is justified, if the Mi

increase at high densities and keep µi
M < Mi by the mechanism such as the chiral

symmetry restoration. The assumption leads to PM = 0 in the NSs at T = 0, that is,

mesons do not directly contribute to the NS physics under the assumption.

The baryon sector is described by proton and neutron gases with the volume-

exclusion effect [105,209,210] in order to reproduce the repulsive nature of the nuclear-

matter EoS determined from the Ch-EFT 2NF and 3NF and the heavy-ion collision

measurements that will be shown later in Sec. 4.2.3.

We consider the system of protons and neutrons having a finite volume v that is
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characterized by the thermodynamic variables (T, V, µp, µn). Here, we assume that v

is isospin symmetric; see the next section for the concrete expression of v. Following

Refs. [105, 209, 210], we approximate the system of the finite-volume particles by the

mimic system of point particles with (T, Ṽ , µ̃p, µ̃n) defined by

Ṽ = V − vNB, (4.17)

µ̃i = µi − vPB, (4.18)

where NB is the total baryon number. The PB and NB should be the same between

the original and mimic systems. The chemical potential µ̃i(i = p, n) of the mimic

system is determined to preserve the thermodynamic consistency. The pressure of

the mimic system is obtained by

PB =
2

β

∑
i=p,n

∫
d3p

(2π)3

[
ln
(
1 + e−β(Ei−µ̃i)

)
+ ln

(
1 + e−β(Ei+µ̃i)

) ]
(4.19)

with E =
√
p2 +M2

i , Mp = 938 MeV, and Mn = 940 MeV [2]. The entropy density

(s) and the number densities (np, nn) in the original system are obtained from those

in the mimic system as

s =
s̃

1 + vñB
, ni =

ñi

1 + vñB
, (4.20)

where ñB = ñp + ñn and

ñi =
∂PB

∂µ̃i
(4.21)

with i = p, n.

In the present formalism, the antiparticles have negative volumes, but the effects

are negligible at both low and high densities. At low densities, the baryon number

is small and hence the volume exclusion effect does not become relevant. At high

densities, the particle number is much larger than the antiparticle number, and hence

the net volume of antiparticles is negligibly small compared with that of particles.

4.2.3 LOBT calculation with Ch-EFT interactions

The Brueckner theory is a standard framework to describe nuclear matter starting

from realistic 2N interactions. The reaction matrix G, defined by the G-matrix equa-
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tion

G12 = v12 + v12
Q

ω − (t1 + U1 + t2 + U2)
G12, (4.22)

properly deals with short range (high momentum) singularities of the 2N potential

v12. The self-consistent determination of the single-particle (s.p.) potential U ,

⟨i|U |i⟩ ≡
occupied∑

j

⟨ij|G12|ij − ji⟩ (4.23)

corresponds to the inclusion of a certain class of higher-order correlations. In the above

expression, Q stands for the Pauli exclusion, ti is a kinetic energy operator, and ω

is a sum of the initial two-nucleon s.p. energies. The reliability of the lowest-order

calculation in the Brueckner theory has been demonstrated by the estimation of the

smallness of the contribution of higher-order correlations on the one hand and by the

consistency with the results from other methods such as variational framework [211].

The Ch-EFT provides a systematic determination of 2NF and 3NF. It is pro-

hibitively hard, at present, to do full many-body calculations for infinite matter with

including 3NF. The effects can be estimated by introducing a density-dependent effec-

tive 2N force v12(3) obtained by folding the third nucleon in infinite matter considered:

⟨k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2|v12(3)|k1σ1τ1,k2σ2τ2⟩A

=
∑

k3σ3τ3

⟨k′
1σ

′
1τ

′
1,k

′
2σ

′
2τ

′
2,k3σ3τ3|v123|k1σ1τ1,k2σ2τ2,k3σ3τ3⟩A, (4.24)

where σ and τ stand for the spin and isospin indices, and two-remaining nucleons are

assumed to be in the center-of-mass frame, namely k′
1 + k′

2 = k1 + k2. The suffix

A denotes an antisymmetrized matrix element. The G-matrix equation is set up for

the two-body interaction v12 +
1
3v12(3). The factor 1

3 is necessary for properly taking

into account the combinatorial factor in evaluating the total energy. The LOBT G-

matrix calculation in this approximation turns out to give quantitatively satisfactory

description for the fundamental properties of nucleon many-body systems, namely

saturation and strong spin-orbit field: the latter is essential for accounting for nuclear

shell structure. These results were briefly reported in Ref. [212].

In neutron matter, the contact cE term of the Ch-EFT 3NF vanishes and the cD

term contributes negligibly. This means that the 3NF contributions in neutron matter
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are determined by the parameters that are fixed in the 2NF sector. Thus ambiguities

concerning the 3NF contributions are minimal with the use of the Ch-EFT, in contrast

to past studies in which phenomenological regulations were often applied. Because

many-body correlation effects are expected not to be large because of the absence

of strong tensor-force correlations in the 3E channel, the LOBT energies should be

reliable in neutron matter.

Calculated energies of neutron matter with and without 3NF are shown in Fig. 4.1,

where the cutoff energy ΛEFT of the Ch-EFT 2NF and 3NF is 550 MeV. The solid

and dashed curves are results using the Ch-EFT interactions with and without 3NF,

respectively. The energy curve without 3NF is very close to that of the standard

modern 2NF, AV18 [213]. For comparison, energies from the variational calculation

by Illinois group [214] are included, which are frequently referred to as the standard

EoS for discussing NS properties although their 3NF is phenomenological to some

extent. It is interesting that the present prediction based on the Ch-EFT shows good

correspondence to those energies.

In the application of the Ch-EFT, an estimation of theoretical uncertainties due

to the uncertainties of the low-energy constants is customarily presented. As for the

neutron-matter EoS, it is instructive to consult the estimation by Krüger et al. [215].

They show, in their Hatree-Fock type calculations, that the neutron-matter energy

at saturation density is in a range of 14 ∼ 17 MeV for the Ch-EFT potential of the

Jülich group [200] with the cutoff parameter of 450 ∼ 700 MeV from uncertainties of

coupling constants and cutoff parameters as well as many-body theoretical treatment.

Following this estimation, we add the shaded are to indicate possible uncertainties,

simply assuming the ±8 % of the potential contribution, which is −18.6 MeV at

saturation density.
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Fig. 4.1 Neutron-matter energies as a function of the density nB. The solid

and dashed curves are results of the Ch-EFT interactions with and without 3NF,

respectively. The shaded area shows possible uncertainties mentioned in the text.

The dotted curve shows results of the AV18 2NF [213]. The typical result of the

variational method by the Illinois group [214] is included by a dot-dashed curve,

in which the Urbana 3NF is used together with the AV18.

4.3 Numerical results

4.3.1 Zero temperature

At zero temperature, the present hybrid model becomes simpler. Mesons do not

contribute to the pressure, and the quark phase is described by the NJL model, since

the EPNJL model is reduced to the NJL model there. In this section, we discuss the

MR relation of NS, assuming that the hadron phase is a neutron-matter system.

The NJL model for the quark phase is solved under the condition

2nu = nd, (4.25)

and the neutron-number density (nn) and its chemical potential (µn) are given by

nn =
2nd − nu

3
, µn = µu + 2µd. (4.26)
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In the HRG model for the hadron phase, neutrons are assumed to have the exclusion

volume v which depends on µ̃B = µ̃n. The dependence is parameterized as

v =
4

3
πr3excl, (4.27)

rexcl(µ̃B) = r0 + r1µ̃B + r2µ̃
2
B. (4.28)

Figure 4.2 shows nB dependence of the neutron-matter pressure; note that nB = nn

in neutron matter and it is normalized by the normal nuclear density ρ0 = 0.17

(fm−3). Closed squares denote the results of LOBT calculations with the Ch-EFT

2NF and 3NF. The results are plotted in the region of nB < 2ρ0, since the Fermi

energy becomes larger than the cutoff energy ΛERT beyond nB = 2ρ0. As shown in

panel (a), the result (solid line) of the HRG model with the volume-exclusion effect

well reproduces the results of LOBT calculations at ρ0 <˜ nB
<˜ 2ρ0, when

r0 = 0.50(fm), (4.29)

r1 = 0.50(fm/GeV), (4.30)

r2 = −0.34(fm/GeV2). (4.31)

More precisely, the model result needs the small correction P → P−2(MeV/fm3), but

the error is smaller than the theoretical uncertainty of the Ch-EFT EoS estimated in

Sec. 4.2.3. For nB < ρ0, the agreement of the extended HRG model with the Ch-EFT

EoS is not perfect, so the Ch-EFT EoS itself is used there whenever the MR relation

is evaluated.

In panel (b), the neutron-matter pressure is plotted at higher nB. The hatching

area shows the empirical EoS [195] evaluated from heavy-ion collisions in which the

uncertainty coming from the symmetry energy is taken into account. The present

HRG model is also consistent with this empirical result.

The speed of sound (cS) relative to the speed of light (c) is obtained by

cS
c

=

√
dP

dε
(4.32)

with the energy density ε. The ratio cS/c should be smaller than 1 to preserve the

causality. As shown in Fig. 4.3 that shows nB dependence of cS/c, the present HRG

model satisfies the causality even in the high-density region.
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Fig. 4.2 Baryon-number density (nB) dependence of pressure (P ) for neutron

matter. nB is normalized by the normal nuclear density ρ0 = 0.17 (fm−3). In

the panel (b), experimental data is taken from Ref. [195].

Figure 4.4 shows nB dependence of the neutron exclusion radius rexcl. The resulting

rexcl determined from the Ch-EFT and the empirical EoS has weak nB dependence

and the value is around 0.6 fm that is not far from the proton charge radius 0.877

fm [2]. This fact implies that the present model is reasonable as an effective model.

The MR relation of NS is obtained by solving the static and spherically symmetric
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Fig. 4.3 Baryon-number density (nB) dependence of the speed of sound (cS) in

neutron matter.

Einstein equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation,

dP

dr
= −GN

εm

r2

(
1 +

P

ε

)(
1 +

4πPr3

m

)(
1− 2GNm

r

)−1

,

dm

dr
= 4πr2ε (4.33)

with GN being the gravitational constant [216], where

m(r) =

∫ r

0

4πr′2ε(r′)dr′ (4.34)

corresponds to the gravitational mass of the sphere of radius r. The solutions, m(r)

and P (r), can be obtained by integrating the TOV equations numerically, when the

EoS, P = P (ε), is given. The integration stops at r = R where P (R) = 0, and

the maximum value R is the radius of NS and the mass is given by M = m(R).

Here, we adopt the Baym-Pethick-Sutherland (BPS) EoS for the outer crust [217].

Although, for the inner crust, we should consider the non-uniform structures, namely

the pasta structures [218], we just connect the outer crust EoS to the Ch-EFT EoS at

the subnuclear density smoothly, since this simplification does not affect on the MR

relation. Similarly the Ch-EFT EoS is connected to the HRG-model EoS at nB ∼ ρ0.
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Fig. 4.4 Baryon-number density (nB) dependence of neutron exclusion radius (rexcl).

Figure 4.5(a) shows the whole EoS.

Figure 4.5(b) shows the MR relation obtained by the hadron model mentioned

above. The model result (dashed line) is compared with two observation data. The

first one obtained by A. W. Steiner et al. is the best fitting against various obser-

vations on the MR relation [199]. This is not a strong constraint because of the

uncertainty of the analysis particularly on X-ray burst phenomena. The second one

has been obtained by P. B. Demorest et al. from measurements of pulsar J1614-

2230 [198]. This yields the lower bound of maximum NS mass, M = (1.97± 0.04)M⊙

and is a strong constraint. The present hadron model yields a consistent result with

both the observations.

Next, we consider the quark-hadron transition with the Maxwell construction by

assuming that the transition is the first-order. The transition occurs, when the two

phases satisfy the conditions

µu + 2µd = µn, (4.35)

PQ(µu, µd) = PH(µn). (4.36)

Here we do not consider the finite-size effects due to the Coulomb interaction and the
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Fig. 4.5 (a) The equation of state and (b) the mass-radius relation obtained

by the neutron matter with and without the quark-hadron transition. The two

observation data are taken from Ref. [198,199].

surface tension [219]. We will study these effects on the EoS in the future.

Once the quark phase appears as a consequence of the quark-hadron phase transi-

tion, it softens the EoS. The quark-matter part of the EoS depends on the strength of

GV; more precisely, it becomes hard as GV increases. Hence, the lower bound of GV

is determined from the 2M⊙-NS observation. The lower bound of such GV is 0.03GS,
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as shown below. Figure 4.5 shows (a) the EoS and (b) the MR-relation determined

by the present hybrid model. The solid line shows the result of the hybrid model

with GV = 0.03GS, while the dashed line represents the result of the hadron model,

i.e., the hybrid model with GV = ∞. The hybrid model is thus consistent with the

2M⊙-NS observation, when GV ≥ 0.03GS.

Strictly speaking, the µB dependence of v breaks the thermodynamic consistency

∂PB

∂µ̃B
= ñB

=
nB

1− vnB
, (4.37)

but the breaking effect is small in the present analysis on the MR relation. At T = 0

of our interest, the left-hand side of Eq. (4.37) can be rewritten into

∂PB

∂µ̃B
=

∂PB

∂µB

∂µB

∂µ̃B

=
∂PB

∂µB

(
1 + vñB +

∂v

∂µ̃B
PB

)
(4.38)

in Fig. 4.6, the breaking term A ≡ (∂v/∂µ̃B)PB. is plotted as a function of the

baryon-number density (nB). The term is much smaller than 1 even at high densities

and hence the thermodynamic consistency is satisfied with good accuracy.

4.3.2 Finite temperature

In this section, we consider the symmetric matter by setting µp = µn = µB and

µu = µd = µB/3. Understanding of the symmetric matter at finite T is important to

elucidate early universe or heavy-ion collisions.

Figure 4.7 shows T dependence of (a) the pressure and (b) the energy density

obtained by the hybrid model in comparison with LQCD results at vanishing chemical

potential [190]. Here, T is normalized by the deconfinement transition temperature Tc.

The deconfinement transition is crossover at µB = 0 in both of LQCD simulations and

the EPNJL model. The transition temperature defined by the peak of susceptibility

is Tc = 174 MeV for both the results [101]. The hybrid model (solid line) shows the

first-order quark-hadron transition, whereas the LQCD simulations (closed squares)

do the crossover transition. Except for the transition temperature T ≈ 1.1Tc of the
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Fig. 4.6 Baryon-number density (nB) dependence of the breaking term (A) in

Eq. (4.38) for the neutron matter.

first-order quark-hadron transition, the model results almost reproduce the LQCD

results.

Figure 4.8 is the phase diagram in the µB-T plane. The thick solid line is the

quark-hadron transition line obtained by the hybrid model with GV = 0.03GS. The

transition is the first order everywhere. In this sense, this is an approximate result

at least at µB/T < 1, since LQCD simulations show that the deconfinement (quark-

hadron) transition is crossover there. As an important result, the first-order quark-

hadron transition line is close to the crossover deconfinement transition line (dot-

dashed line) obtained by the EPNJL model at µB/T < 1, where the deconfinement

transition line is simply defined as a line satisfying Φ = 0.5. Noting that the EPNJL

model well simulates LQCD results at µB/T < 1, one can see that the present hybrid

model is a rather good effective model even at small µB/T . The dashed and dotted

lines correspond to the first-order and crossover chiral transition lines, whereas the

closed square is the critical endpoint (CEP) of the chiral transition.

As already mentioned in Sec. 4.3.1, the present hybrid model is consistent with

the NS observations at T = 0, when GV ≥ 0.03GS. In the hybrid model with
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Fig. 4.7 T dependence of (a) the pressure and (b) the energy density obtained

by the hybrid model at vanishing chemical potential. The results are normalized

by their Stefan-Boltzmann limits. LQCD data is taken from Ref. [190].

GV = 0.03GS, the critical baryon-number chemical potential µ
(c)
B of the first-order

quark-hadron transition at T = 0 is 1.6 GeV, as shown in Fig. 4.8. This is the lower

bound of µ
(c)
B , since GV can vary from 0.03GS to ∞; actually, µ

(c)
B is shifted to higher

µB as GV increases, as shown later in Fig. 4.9. This is the primary result of the

present work. In the EPNJL model, meanwhile, the critical baryon-number chemical
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first-order (crossover) chiral transition line, and the dot-dashed line is a contour

line corresponds to Φ = 0.5. The closed square is the critical endpoint (CEP).

potential of the chiral transition at T = 0 is 1 GeV. The point belongs to the hadron

phase in the hybrid model. Thus, we do not have any conclusive result on the chiral

transition at T = 0. This is an important problem to be solved in future.

In principle one can determine the strength of GV from LQCD simulations present

at µB/T < 3, but in practice the strength thus determined has large ambiguity [73,89].

Figure 4.9 shows the phase diagram in the µB-T plane predicted by the hybrid model

with different values of GV. The dashed and solid lines correspond to the cases of

GV = 0.03GS and 0.2GS, respectively. The phase transition line is insensitive to the

variance of GV at µB/T < 3, but rather sensitive at µB/T ≈ 6. Thus the physics at

µB/T ≈ 6 is strongly related to the NS physics at µB/T = ∞. If the quark-hadron

transition line at µB/T ≈ 6 is determined by LQCD simulations or heavy-ion collision

experiments, it will also determine µ
(c)
B more strictly.
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Fig. 4.9 Phase diagram in the µB-T plane. The dashed line is the result of the

hybrid model with GV = 0.03GS; the line corresponds to the thick solid line

in Fig. 4.8. The thick-solid line corresponds to the case of GV = 0.2GS. Two

thin-solid lines mean lines of µB/T = 3 and 6, respectively.

4.4 Short summary

QCD phase diagram for finite µB is still unknown because the first-principle LQCD

simulation is not feasible there. However, information on this region can be obtained

from by Neutron-star observations with the development of observation technique.

In particular, the 2M⊙-NS measurement should give a strong constraint to the QCD

phase transition at T = 0.

We have studied the QCD phase diagram in the whole region from µB/T = 0 to

infinity, constructing the quark-hadron hybrid model that is consistent with LQCD re-

sults at µB/T = 0 and with NS observations, the neutron-matter EoS evaluated from

the Ch-EFT 2NF and 3NF, and the EoS obtained by the heavy-ion collision measure-

ments at µB/T = ∞. The EoS provided by the model preserves the causality even

at high nB. At nB < 2ρ0 the baryon part of the EoS agrees with the neutron-matter

EoS constructed from the Ch-EFT 2NF and 3NF with the lowest-order Brueckner
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theory (LOBT). The Ch-EFT provides a systematic framework of constructing 2NF

and 3NF, and the 3NF yields a significant effect on the EoS at nB > ρ0. In this sense,

the use of the Ch-EFT, which respects symmetries of QCD, is inevitable to construct

the neutron-matter EoS with no ambiguity.

We have determined the lower bound of the critical chemical potential (µ
(c)
B ) of the

quark-hadron transition at T = 0 for the isospin-symmetric matter:

µ
(c)
B ∼ 1.6 GeV. (4.39)

This is the primary result of this work. In the NJL model, the first-order chiral

transition occurs at µ
(c)
B = 1 GeV, when T = 0. The point is located in the hadron

phase in the hybrid model. The critical chemical potential of the chiral transition at

T = 0 is thus unknown. In this sense, the NJL model is not good enough at T = 0. It

is then highly required to introduce baryon degrees of freedom in the effective model.

We have also shown the interplay between the heavy-ion collision physics at µB/T ≈

6 and the NS physics at µB/T = ∞. If the vector coupling GV is determined at

µB/T ≈ 6 from heavy-ion collision measurements, the information determines the

critical chemical potential of the quark-hadron transition at T = 0 and hence proper-

ties of NS in the inner core. This fact strongly suggests that these two regions should

be studied simultaneously.
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Chapter 5

Summary

Elucidation of the QCD phase diagram is an important and interesting subject in

hadron physics. Rich structure of the phase diagram is relevant to the cosmic evolution

and neutron-star structure. Almost all the region of the diagram is still unknown,

since the first-principle LQCD simulations are not feasible for finite density because

of the sign problem. We have analyzed the QCD phase diagram by using the EPNJL

model as a most reliable effective model. The model can treat confinement and

spontaneous chiral-symmetry breaking simultaneously and quantitatively. We have

applied the EPNJL model to three characteristic subjects:

(1) Quark mass dependence of RW endpoint

(2) θ parameter dependence of QCD phase diagram

(3) QCD phase diagram and NS observations

All the subjects are originated in nonperturbative properties of QCD vacuum.

At pure-imaginary chemical potential discussed in subject (1), LQCD simulations

are feasible, since they have no sign problem there. The RW endpoint is a critical

endpoint of the first-order RW phase transition that appears at θq = π/3. Quark-mass

dependence of the order of the RW endpoint is analyzed by LQCD simulations.

In subject (1), we have extended the three-flavor PNJL model by introducing an

entanglement vertex GS(Φ). The entanglement PNJL (EPNJL) model reproduces

2+1 flavor LQCD data for the chiral transition at µ = 0 and degenerate three-flavor
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LQCD data calculated very lately for the ordeer of the RW endpoint. The EPNJL

model is thus quite reliable. We have then drawn the three-flavor phase diagram for

the RW endpoint in the ml-ms plane by using the EPNJL model. This is the first

prediction for the phase diagram.

θ parameter discussed in subject (2) is a free parameter of QCD and is related to

topological nature of QCD vacuum and U(1)A anomaly. The θ term can be treated

as an external field to QCD and is a useful probe to investigate nonperturbative prop-

erties of QCD vacuum. However, the QCD phase structure for finite θ is unknown,

since LQCD simulations have the sign problem there.

In subject (2), we have investigated effects of the theta vacuum on the QCD phase

diagram for the realistic 2+1 flavor system, using the three-flavor PNJL and EPNJL

models. The effects can be easily understood through the θ-dependent mass terms.

The θ-odd mass, ml sin(θ/2), little affects the dynamics, since ml is much smaller

than ΛQCD as a typical scale of QCD. The dynamics is therefore mainly governed by

the θ-even mass, ml cos(θ/2). In the θ-even mass, the increase of θ corresponds to the

decrease of ml with ms fixed. This means that the chiral transition becomes strong

as θ increases. This is realized in the results of the EPNJL model and the transition

becomes the first order even at µ = 0 when θ is large. Moreover, we have proposed a

way of circumventing the sign problem in LQCD simulations with finite θ, using the

PNJL model. We have estimated the average reweighting factor ⟨R(θ)⟩ by using the

two-flavor PNJL model and have found a good reference system in the reweighting

method.

For finite µB discussed in subject (3), the QCD phase diagram is not known at

all, because the first-principle LQCD simulations have the sign problem there. How-

ever, information on this region can be obtained from neutron-star (NS) observations

through the development of observation technique. In particular, the 2M⊙-NS mea-

surement yields a strong constraint on the QCD phase transition at T = 0.

In subject (3), we have studied the QCD phase diagram in the whole region from

µB/T = 0 to infinity, constructing the quark-hadron hybrid model that is consistent

with LQCD results at µB/T = 0 and NS observations and heavy-ion collision measure-

ments at µB/T = ∞. The EoS determined by the model preserves the causality even
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at high nB. At nB < 2ρ0, the baryon part of the EoS agrees with the neutron-matter

EoS constructed from the Ch-EFT 2NF and 3NF with the lowest-order Brueckner

theory (LOBT). Here the Ch-EFT is a systematic framework of constructing 2NF

and 3NF, and the 3NF yields a significant effect on the EoS at nB > ρ0. In this sense,

use of the Ch-EFT, which respects symmetries of QCD, is inevitable to construct the

neutron-matter EoS with no ambiguity. We have determined the lower bound of the

critical chemical potential of the quark-hadron transition at T = 0:

µ
(c)
B ∼ 1.6 GeV. (5.1)

This is the primary result of this thesis. In the NJL model, the first-order chiral

transition occurs at µ
(c)
B = 1 GeV, when T = 0. The point is located in the hadron

phase in the hybrid model. The critical chemical potential of the chiral transition

at T = 0 is thus unknown. In this sense, the NJL model is not good enough at

µB/T = ∞. It is then highly required to introduce baryon degrees of freedom in the

effective model.

Throughout all the studies on subjects (1)-(3), we can understand all the regions of

the QCD phase diagram by using a common low-energy effective model of QCD, that

is the EPNJL model. This indicates that the QCD phase diagram can be described

by a single effective model for T ≲ 600 MeV and µq ≲ 600 MeV. In particular,

the EPNJL model is quite consistency with LQCD data, as shown in Chap.2. This

means that the model yields a good picture to understand QCD phase structure

at µq/T < 1. However, as shown in chapter 4, the baryonic degrees of freedom

are crucial to describe high-density QCD matter, but not included in the PNJL-type

models completely. We should improve the EPNJL model along this line. This is with

yield an essential progress to understand QCD dynamics including the confinement

mechanism.
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[157] A. Dumitru, D. Röder, and J. Ruppert, Phys. Rev. D 70, 074001 (2004).

[158] L. McLerran, E. Mottola and M. E. Shaposhnikov, Phys. Rev. D 43, 2027



98 Bibliography

(1991).

[159] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007).

[160] M. A. Metlitski and A. R. Zhitnitsky, Nucl. Phys. B 731, 309 (2005).

[161] M. A. Metlitski and A. R. Zhitnitsky, Phys. Lett. B633, 721 (2006).

[162] M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. B 104, 199 (1981).

[163] J. W. Kim, Phys. Rev. Lett. 43, 103 (1979).

[164] R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).

[165] M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Nucl. Phys. B 166, 493

(1980).

[166] A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).

[167] D. Kharzeev, Phys. Lett. B633, 260 (2006).

[168] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009).

[169] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 81, 054908 (2010).

[170] C. Vafa and E. Witten, Phys. Rev. Lett. 53, 535 (1984).

[171] R. Dashen, Phys. Rev. D 3, 1879 (1971).

[172] E. Witten, Ann. Phys. 128, 363 (1980).

[173] G. Akemann, J. T. Lenaghan, and K. Splittorff, Phys. Rev. D 65, 085015 (2002).

[174] M. Creutz, Phys. Rev. Lett.92, 201601 (2004).

[175] A. V. Smilga, Phys. Rev. D 59, 114021 (1999).

[176] M. H. G. Tytgat, Phys. Rev. D 61, 114009 (2000).

[177] P. di Vecchia and G. Veneziano, Nucl. Phys. B 171, 253 (1980).

[178] D. Boer and J. K. Boomsma, Phys. Rev. D 78, 054027 (2008).

[179] J. K. Boomsma and D. Boer, Phys. Rev. D 80, 034019 (2009).

[180] B. Chatteriee, H. Mishra, and A. Mishra, Phys. Rev. D 85 114008 (2012).

[181] T. Fujihara, T. Inagaki, and D. Kimura, Prog. Theor. Phys. 117, 139 (2007).

[182] G. ’t Hooft, Phys. Rept. 142, 357 (1986).

[183] A. Barducci, R. Casalbuoni, G. Pettini, and R. Gatto, Phys. Lett. B 301, 95

(1993).

[184] M. D’Elia and F. Negro, Phys. Rev. Lett. 109, 072001 (2012).

[185] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B 562, 221 (2003).

[186] H. Hansen, W. M. Alberio, A. Beraudo, A. Molinari, M. Nardi, and C. Ratti,



99

Phys. Rev. D 75, 065004 (2007).

[187] J. O. Andersen, L. T. Kyllingstad, and K. Splittroff, J. High Energy Phys. 01,

055 (2010).

[188] T. Sasaki, H. Kouno, and M. Yahiro, J. Phys. Conf. Ser. 432, 012031 (2013).

[189] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502 (2009).

[190] A. Ali Khan et al, Phys. Rev. D 64, 074510 (2001).

[191] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K. Szabó, JHEP
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