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Abstract

At high temperature in the early universe or at high density inside neutron stars,
matter has quite different properties from those in our everyday lives. If the system
has the same energy scale as the binding energy of constituent particles, it cannot
retain the structure any more, and consequently more fundamental degrees of freedom
appear. This requires us to understand matter from more microscopic viewpoint.

Nucleus is a bound state of interacting protons and neutrons. The dynamics is
described by quantum chromodynamics (QCD) as the fundamental theory of quarks
and gluons. The QCD vacuum is quite nontrivial because of its nonperturbative na-
ture and has interesting properties such as color confinement and spontaneously chiral
symmetry breaking. Color confinement is the phenomenon that color charged particles
such as quarks and gluons do not explicitly appear in the low-energy QCD spectrum,
whereas colorless particles such as proton, neutron and pion emerge. Spontaneously
chiral symmetry breaking is the phenomenon that chiral symmetry is spontaneously
broken in the QCD vacuum and hence in nature. It is an origin of mass generation;
for example, more than 90 % of nucleon mass is generated by this mechanism. Mean-
while, Ux (1) symmetry is anomalous and is related to topological structure of the
QCD vacuum.

Since the strong interaction becomes weak at high energy, QCD matter has phase
transitions at high temperature (T) or high baryon chemical potential (ug). A chart
of QCD matter in the T -up plane is called the QCD phase diagram. Although
the Lagrangian of QCD is well known, the dynamics is still unknown in most of the
diagram because of nonperturbative nature of QCD. Hence understanding of the QCD

phase diagram is an important subject in nuclear physics and the related fields such
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as elementary particle physics, astronomical physics and condensed matter physics.

The first-principle lattice QCD (LQCD) simulations are feasible at finite 7' and
zero g, so that the dynamics is well understood there. In other words, the LQCD
simulations are not feasible at finite g because of the so-called sign problem, so that
our understanding of QCD dynamics is far from perfection there.

As a complementary approach to LQCD simulations, one can consider effective
models. In fact, the QCD phase diagram has often been analyzed with effective mod-
els. Although the effective models have large ambiguity coming from approximations
taken, it can cover a large area in the phase diagram including the finite up region.
The Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is designed to treat
chiral symmetry and color confinement simultaneously, but it cannot reproduce ex-
isting LQCD data perfectly.

In this thesis we improve the PNJL model so that the effective model can reproduce
existing LQCD data and explain existing neutron-star observations. The improved
model is referred to as the entanglement PNJL (EPNJL) model in this thesis. We
analyze the following three subjects with the EPNJL model:

(1) Quark mass dependence of the Roberge-Weiss (RW) endpoint
(2) f-parameter dependence of the QCD phase diagram
(3) Mass-Radius (MR) relation of neutron stars

In subject (1), we compare the EPNJL model results with the LQCD ones, since
LQCD simulations are feasible at imaginary chemical potential where the RW phase
transition takes place. The RW endpoint is a critical endpoint of the RW phase
transition appearing at up = 7/3 and finite 7. Very recently, the order of the RW
endpoint was analyzed by LQCD simulations. The order is the first order at small
and large quark masses, but the second order at intermediate mass. The EPNL model
is successful in reproducing the mass dependence of the order of the RW endpoint,
whereas the PNJL model is not. The extension of the PNJL model to the EPNJL
model is thus essential. In this thesis, we then predict the phase diagram for the order
of the RW endpoint as a function of light quark mass m; ad strange quark mass my.

In subjects (2) and (3), meanwhile, we make model predictions, since LQCD simu-
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lations are not feasible at finite  discussed in subject (2) and finite chemical potential
considered in subject (3).

In subject (2), we consider nontrivial structure of the QCD vacuum called the 6
vacuum. This topological structure is quite interesting from the theoretical point of
view and is related to heavy ion collision measurements and the cosmic evolution. In
principle, the # vacuum can be analyzed by adding the 6 term to the QCD action.
However, LQCD simulations are not feasible at finite 6, and consequently properties
of the QCD vacuum are unknown when the 6 term is present or generated effectively
at finite 7. In this thesis, we explore the phase structure for finite 6 and suggest a
new method of making LQCD simulations feasible for finite 6.

In subject (3), we consider the MR relation of neutron stars as a new constraint
on the phase diagram at finite ug and zero T. Recently, a heavy neutron star (NS)
with 2 M, mass was observed with great accuracy. The accurate observation should
be used as a constraint on the QCD phase diagram at finite ug and zero T'. In this
thesis, we determine the QCD phase transition in the entire region of ug and T by
using LQCD results at large 1" and zero up and NS-observation results at zero 7' and
large ugp.

Throughout the three subjects, we clarify QCD dynamics and phase transitions
under the three extreme conditions. The EPNJL model used is successful in repro-
ducing the results of both first- principle LQCD simulations at large T" and imaginary
and zero up and NS observations at large up and zero 7. This indicates that the
model prediction is reliable even in the unknown region of the phase diagram.

This thesis is mainly based on the following four thesis. Three of the four were

already published in the international journals and one is in preparation:

e “Quark-mass dependence of three-flavor QCD phase diagram at zero
and imaginary chemical potential: Model prediction”
T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro,
Physical Review D 84 (2011) 091901.

e “Theta vacuum and entanglement interaction in the three-flavor

Polyakov-loop extended Nambu-Jona-Lasinio model”
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T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro

Physical Review D 85 (2012) 0560009.

“Practical approach to the sign problem at finite theta-vacuum an-
gle”

T. Sasaki, H. Kouno, M. Yahiro

Physical Review D 87 (2013) 056003.

“Determination of quark-hadron transition from lattice QCD and
neutron-star observation”

T. Sasaki, N. Yasutake, M. Kohno, H. Kouno, and M. Yahiro
arXiv:hep-ph/1307.0681.
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Chapter 1

INTRODUCTION TO QCD PHASE
DIAGRAM

Hot and dense matter is interesting from two viewpoints. First, one can see various
phenomena characteristic in many body systems. Second, if the energy scale of system
becomes the same order as the binding energy of constituent particles, the system
cannot retain the structure any more and more fundamental degrees of freedoms
appear. This requires us to understand matter from more microscopic viewpoint.

In this thesis, we concentrate on the energy scale of strong interaction described by
Quantum Chromodynamics (QCD) with quark and gluon fields. Since hadrons consist
of quarks and gluons, the fundamental degrees of freedom change from hadrons to
quarks and gluons in this energy scale. In addition, since QCD has nontrivial vacuum
structure, one can expect phase transitions of the vacuum at finite temperatures and
densities.

In Secs. 1.1 and 1.2, we will briefly review QCD and its phase diagram. In Sec.
1.3, we explain the first principle lattice QCD and their difficulty for finite density.
In Sec. 1.4, we recapitulate general properties of the Polyakov-loop extended Nambu-

Jona-Lasinio (PNJL) model. Section 1.5 is devoted to the strategy of our analysis.
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1.1 Quantum Chromodynamics

Strong interaction is described by Quantum Chromodynamics (QCD), which is the
SU(3) gauge theory with Ni-flavor fermion fields. The classical QCD Lagrangian is
given by

2

_ ~ 1 . g ra a
‘CQCD = Q(’YMDM + mo)q + ZFMVFMV - ZH@EHVUPF;U/FUW (1'1)

in Euclidean spacetime [1], where D, = 0,, +iA,, is the covariant derivative and F},,
is the field strength of gauge field,

F/j,l/ - 8/,LAII - auAu + g[A;u Au]a (12)

where g is the dimensionless coupling constant. The field ¢ and A, represent quark
and gluon, respectively. The Lagrangian is invariant under the SU(3) gauge trans-

formation,

q(z) = ¢ (x) = V(x)q(x), (1.3)
Au(x) = A (z) = V(z) (Au(z) +i0,) V(z), (1.4)

with V(z) € SU(3).

The N¢-flavor quark fields are defined as ¢ = *(u, d, s, ¢, b,t) and their masses 7o =
diag(my, mq, ms, me, mp, my) are summarized in Table 1.1 [2]. Since we are interested
in physics with the energy scales around Agcp =~ 200 MeV, heavy flavors (c, b, t)
are negligible. The system with u, d, and s quarks with isospin symmetry in the u-d
quark sector is called “2 + 1 flavor”, and the system with only 2 light flavors is named
“2 flavor”.

The last term of Lagrangian (1.1) is called the 6 term that violates P and CP
conservations [3-5]. The vacuum angle 6 is a periodic variable with period 27. It
was known to be an observable parameter [6,7]. Theoretically, we can take any
arbitrary value between —7 and 7 for . Nevertheless, it is found from the measured

neutron electric dipole moment [8] that [#] < 107° [9-13]. Why is € so small in



1.1 Quantum Chromodynamics

my mq msg me mp my

23 MeV 4.8 MeV 95 MeV 1.275 GeV  4.18 GeV 160 GeV

Table. 1.1 Summary of the current quark mass in QCD [2]. The u-, d-, and
s-quark masses are estimates of current quark masses in a mass-independent
subtraction scheme such as MS at a scale u ~ 2 GeV. The c-, b- and t-quark

masses are the running masses in the MS scheme.

zero temperature (7)7 This long-standing puzzle is called the strong CP problem.
According to the experimental result, the QCD Lagrangian is simply reduced to

_ R 1
Lqep = Q(VMDM + mo)q + ZFHVFIW' (1.5)

1.1.1 Confinement and Zs3 symmetry

In the QCD spectrum, one cannot find color charged particles such as quarks and
gluons explicitly but see colorless particles such as pions, proton, and neutron. This
phenomenon is called color confinement. This is a representative feature of the non-
perturbative QCD vacuum.

To describe the confinement-deconfinement transition at finite T', we first introduce
an order parameter in the pure Yang-Mills (YM) limit [1,14]. The YM action for finite
T is

B 1
Sym = /O dr / d*x 2 FurFruw (1.6)

where 8 = 1/T and the A, (7, %) satisfy the periodic boundary condition,
4,(0,7) = A8, 7). (1.7)

This boundary condition compactifies the imaginary time direction and plays an im-
portant role in the thermal system.

Since the SU(3) gauge field is defined in the compactified spacetime, the configura-
tion space is classified with homotopy classes. This topologically nontrivial structure

is related to confinement and is visualized as follows. The YM action is invariant
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under the periodic gauge transformation by definition. Additionally, one can consider

the following aperiodic gauge transformation,

Ay — Al (x) =V(x)(Au(z) + i0,)V1(z), (1.8)
where
V(r+5,2) = 2,V(1,2), (1.9)
V(r,Z) € SU(3), (1.10)
zn € Zs C SU(3). (1.11)

The symbol Zs denotes the center group of SU(3). It is the discrete subgroup of
SU(3) and its elements commute with any element of SU(3). The explicit form of z,
is

2
Zp = €Xp [zgn] (1.12)

with n = 0, 1,2. The transformation (1.8) is called the Z3 transformation. Since the
Zs transformation is a part of the gauge transformation, it is one of the symmetry
transformations of the YM Lagrangian density. Moreover the YM partition function
is also invariant under the Zjs transformation, because it preserves the boundary
condition for the gauge field (1.7). This symmetry is called Z3 symmetry. The
thermal YM theory has thus the periodic gauge symmetry and Zs symmetry.

It is known that Zz symmetry is spontaneously broken at high temperature [15].
The order parameter is the Polyakov loop *!,

o= étrC(L) (1.13)

1/T
L = exp [@/ Aydr
0

with
(1.14)

)

*1 Formally, L is called “Polyakov loop” and ® is “traced Polyakov loop”. However we call ® as

Polyakov loop for simplicity.
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This is nothing but the Wilson line in the imaginary-time direction. The ® is trans-

formed under the Zs3 transformation as

D — 2,P. (1.15)

One can show that ® can be interpreted as a partition function when an infinitely

heavy quark is placed in the system;
d = e Pl (1.16)

where Fq is the free energy of heavy quark. If Fig = oo, one cannot put any quark i.e.,
color charge. This means that the system is in the confined phase. In the pure YM
theory the conferment-deconfinement transition is thus understood by Zs symmetry,

and the order parameter is the Polyakov loop (®). This is summarized as

Confined phase : ® = 0, Fg = oo, Z3z symmetric

Deconfined phase : ® # 0, Fg # 0o, Zsz symmetry is spontaneously broken

Z3 symmetry is not exact in realistic QCD with dynamical quarks, since the quarks
breaks the symmetry explicitly. Since the exact order parameter of confinement is

not discovered yet, and ® is commonly used as the approximate order parameter.

1.1.2 Spontaneously chiral symmetry breaking

Low-energy QCD phenomena are governed by nearly massless bosons, i.e., pions. The
origin of pion is well understood as a Goldstone boson generated by spontaneously
chiral symmetry breaking.

In this section, we consider 2-flavor QCD in the chiral limit:

1
“FuFL, (1.17)

Lqcp = qvuDug — 1

with massless 2-flavor quarks

q= . (1.18)
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Performing the chiral decomposition,

L—s _ 1+

= = 1.19
qu 54 R 54 (1.19)
One can decompose QCD Lagrangian (1.17) into the ¢r, and gr parts;
1
EQCD = Q17MDMQL + Qi{PYuDMQR - ZFIWF;W- (1'20)

Hence one can perform a phase transformation for each of ¢r, and qr independently.
Combined with isospin symmetry, Lagrangian (1.17) is invariant under the U(2);, ®

U(2)r global transformation,

g — e T g, qr — e 7 PRgp, (1.21)

where 179 and 7 = (11, 72, 73) are the 2 X 2 unit and Pauli matrices, respectively, and
the 0f p are spacetime-independent parameters. The transformation (1.21) is called
chiral transformation. Since the gr, r are eigenstates of the chirality operator s, it is

also convenient to define the vector and axial-vector transformations as

—i7%0Y,

qg—e Vg, q— e_”agg75q, (1.22)

where 0, = 0f = 0% and 04 = —0f = 0. In particular, the transformation with
6%, oc 62 and 6% = 0 is called U(1)y transformation, and 6% = 0 and 0% o 60 is
called U(1)4 transformation. The symmetry group is denoted by U(2), ® U(2)r =~
Ul)y@U(1)a®SU(2), ® SU(2)r. Since the U(1)a symmetry is not spontaneously
broken but anomalous, we simply omit this symmetry here.

In the QCD vacuum, the chiral condensate,

(q9) = (qrar) + (qrar) (1.23)

becomes finite by the spontaneously breaking of chiral symmetry with finite 6%. The

chiral symmetry breaking pattern is
Ul)yy @SU2)L®SU2)g — U(l)y ® SU(2)y. (1.24)

According to the Nambu-Goldstone (NG) theorem, there are massless NG bosons
induced by the symmetry breaking. In the present case the massless bosons are

pions.
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In nature, the chiral symmetry is explicitly broken by small Higgs masses of quarks.
However, u- and d-quark masses are negligible compared with the energy scale of chiral
symmetry breaking. Although strange quark is much heavier than u and d quarks,
one can apply chiral symmetry approximately. Actually, pions are nearly massless

bosons and form meson octet with kaons as expected from the NG theorem.

1.1.3 6 vacuum and Ux(1) anomaly

In this subsection, we briefly review the so-called # vacuum of QCD. It is a topolog-
ically nontrivial feature of gauge field and closely related to the U(1) anomaly of
fermion field; see, for example, Ref. [16-21] for detailed discussion.

We consider the path-integral quantization of the pure YM theory in Euclidean

space. The partition function is given by

7 = / DA exp {—i / d%FﬁVFgV] : (1.25)

The SU(3) gauge field A, with the proper boundary condition has nontrivial topology;
arbitrary configurations Af}) and Af?) can belong to different homotopy classes [3]. In
other words, they cannot be continuously deformed from each other. The homotopy
group is Z and hence the configuration space is divided into an infinite number of

homotopy classes labeled by the winding number,

1
3272

n =

/ d*x e PTr[E,, Fop). (1.26)

It leads to an infinite number of vacua |n). However the instanton solution allows
transitions among them and hence the true vacuum is realized as a superposition of
|n):

0) =) e |n). (1.27)

This is called § vacuum [6]. Even though the winding number and |n) are gauge-
dependent concepts, |0) is gauge-invariant eigenstate. This structure requires that
the 0 term is included in the classical QCD Lagrangian (1.1).

In the path-integral representation, the U(1)s anomaly is understood through the
U(1)a transformation of integral measure [22,23]. The Noether current for the U(1)a
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transformation is

[2 o7 9 e
(%JK = — M?Nf@éu ﬁTr[F;u/Fa,B] (128)

for massless Ny flavors. Although the right hand side is a total derivative, the instan-
ton solution yields a non-vanishing value for the integral (1.26) and violate the U(1)a

symmetry explicitly. Hence 7" meson is not a NG boson but a massive boson.

1.2 QCD at finite temperature and density

QCD is a theory that has the asymptotic freedom, i.e., the coupling becomes weak
as the energy scale increases. This changes the QCD vacuum between low- and high-
energy scales [24]. Such a transition was first conjectured as a function of temperature
(T') and baryon-number density (ng) by Cabibbo and Parisi in 1975 [25], although it
was motivated by not the asymptotic freedom but by the so-called Hagedorn limiting
temperature [26,27]. Figure 1.1 is a schematic plot of QCD phase diagram in the up-
T plane where pp is the baryon-number chemical potential. Since QCD is established
theory, the QCD phase diagram should be derived from the QCD partition function
analytically nor numerically. However, LQCD simulations cannot be applied to finite
density in the current stage because of the so-called sign problem. We will make detail
discussions on this point in Sec.1.3. In this section, we briefly review the current status
of the phase diagram; see, for example, Refs. [1,28-38] for the review.

At T = pug = 0, properties of the QCD vacuum are investigated experimentally.
Quarks and gluons are confined in hadrons, whereas chiral symmetry is broken sponta-
neously there. Since pion is the lightest hadron and is well understood as a NG boson,
QCD matter is well described by the chiral perturbation theory. Nucleus also gives in-
formation on QCD matter at T' = 0 and the normal-nuclear density (po = 0.17 fm™?).
Also in this situation, quarks and gluons are confined and chiral symmetry is broken.

At high temperature, quarks and gluons behave as free particles because of the
weak coupling, that is, they are deconfined and chiral symmetry is restored. This
state is called the quark-gluon plasma (QGP) phase. At high density, quarks should

form Cooper pairs through the color anti-triplet channel of quark-quark interaction



1.2 QCD at finite temperature and density

T Tx Quark-Gluon

Plasma

sQGP

~150 MeV prunnns

Hadron Gas
Color
) Nuclear Superconductors
Pion Gas Matter
-
Liquid-Gas ( (
transition Hp

Fig. 1.1 A schematic plot of QCD phase diagram on ug-T plane.

that makes baryons at T'= ug = 0 and is considered to keep attractive even at high
up. The state is called the color superconductor (CSC) phase [39,40]. Hence QCD

matter is in difficult phases under the following three limits:

e Hadron phase at T' = g =0
e QGP phase in the T'— oo limit

e CSC phase in the pupg — oo limit

LQCD is a powerful tool to investigate QCD matter at ug = 0, even though it has
the sign problem at finite ug. QCD phase structure with vanishing chemical poten-
tial is then well understood nowadays. Two big groups, Hot QCD and Wuppertal-
Budapest collaborations, performed 2 + 1 flavor LQCD simulations with the improved
staggered fermion for nearly physical quark masses. The LQCD simulations showed
that a phase transition from the hadron phase to the QGP phase is crossover [41]. The
pseudo-critical temperature (T¢) is around 155 MeV, and temperature dependence of
the order parameters and the equation of state (EoS) are given qualitatively [42-44].
Charm quark is also considered in the simulations, but the effect is negligible around

T. [45,46]. The realistic EoS of QCD matter is thus obtained at ug = 0 by the
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simulations. Below T¢, the EoS is well simulated by the hadron resonance gas (HRG)
model [42-44]. Just above T, meanwhile, the EoS is still far from that predicted by
perturbative QCD. This behavior is now called strongly-coupled QGP (sQGP). This
was first discovered in heavy-ion collision measurement in the Relativistic Heavy Ion
Collider (RHIC) [47] ; see, for example, Refs. [48,49] for the review. Although pertur-
bation does not work just above T; [50], the behavior of QCD matter at 7' 2 27, can
be understood by the next-to-next-to-leading order hard-thermal-loop perturbation
theory [51].

On the pp axis where T'= 0 and pp is finite, the phase structure is still unknown,
since LQCD simulations are not feasible there. The EoS around the normal nuclear
density is investigated by nuclear experiments. The saturation property of nuclear
matter indicates that there exists a first-order liquid-gas transition driven by the
instability of homogeneous matter [52-54]. Although high-density QCD matter is
realized in the inner core of neutron stars (NSs), observations of NSs on mass, radius
and cooling curve give only indirect information on high-density QCD matter through.
Hence it is not confirmed yet whether the CSC phase and/or the deconfinement phase

transition takes place or not in NSs.

1.3 Lattice QCD simulation

LQCD simulation is the most widely used method as the first-principle calculation of
QCD. In this section, we briefly review the method and its difficulty at finite density;
see, for example, Refs. [55-59] for the review.

LQCD is a regularization scheme in quantum field theories [60], in which fermion
fields are defined on each lattice site and gauge fields are on each lattice link to
preserve local gauge invariance. In LQCD simulations, the path integral is evaluated
by the Monte Carlo (MC) method. In the present stage, LQCD simulation is only a
method to confirm QCD in its nonperturbative regime. Actually, LQCD simulations
successfully reproduce existing experimental values on hadron masses and their decay
constants [61] and the qualitative behavior of nuclear force [62].

At finite quark chemical potential (yq), however, LQCD simulations have the so-
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called sign problem. For simplicity, we use the notation of continuum QCD without

loss of generality. The QCD partition function is give by

Z(p) = | DADGDY exp[-(S, + 5,). (1.29)
Sq = /dT/d3f YDy + 1o — Yapq)4; (1.30)

hvd 1 a a
Se E/dT/dSLL‘ ZFWFW. (1.31)

The path integration is evaluated by the MC method. Practically, one can use the
important sampling method for the gluon-field configuration after integrating the

quark field:

Zlsg) = [ DAdet M) exp[-5,]. (1.3

M(piq) = YuDp + 1o — Yapty- (1.33)

The det M(pq) is called the fermion determinant and should be a real number to
use the important sampling method. At pq = 0, reality of det M(uq = 0) is easily

derived. For finite yq, the determinant is not real but satisfies the relation,
(det M(pq))” = det M(—p). (1.34)

Hence the important sampling method is not feasible at finite pq. This is so-called
“sign-problem”.

In some parameter choices, one can make LQCD simulations without sign problem.
Equation (1.34) shows that the fermion determinant is real for pure imaginary chemi-
cal potential [63-69]. Moreover, LQCD simulations are feasible for real and imaginary
isospin chemical potential uy that is related to u- and d-quark chemical potentials, u,

and pq, as py = pr and pg = —prp [70].

1.4 Effective model of QCD

The Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is one of the most
practical effective models for low energy QCD [71-116]. The PNJL model is the
Nambu-Jona-Lasinio (NJL) type model [117,118] in which the quark field is coupled
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with the back-ground gauge field [75]; see for example Refs. [119-121] for the NJL
model. Using the PNJL model, one can analyze spontaneous chiral symmetry break-
ing and confinement simultaneously. In this section, basic properties of the model are

briefly reviewed.

1.4.1 Polyakov-loop extended Nambu-Jona-Lasinio model

The N¢-flavor PNJL Lagrangian is obtained as

Lot = q(wDy + 1o — yaf)g — Gr Y [(qTaq)* + (GivsTaq)?]

a

<Gy [det 1+ 95)0; + det (L~ 15)05 | + UDLAL 8 4] T), (139

where D, = 0, — i0,4A$\s/2 with the Gell-Mann matrices \,. The N¢-flavor quark
fields ¢ have masses o = diag(my, mgq, - -+ ), where the matrix i = diag(py, pd, )
denotes the quark-number chemical potential matrix in the flavor space. The G is a
coupling constant of SUy (N¢)®@SUa (N¢)@Uv (1)@Ua (1) symmetric quark interaction.
The G is a coupling constant of the Kobayashi-Maskawa-"t Hooft (KMT) determinant
interaction which breaks Ua (1) symmetry explicitly, where the determinant runs in
the flavor space [4,5,122,123].

The gauge field A, is treated as a homogeneous and static background field in the
PNJL model. The Polyakov-loop ® and its conjugate ®* are determined in Euclidean

spacetime by

1 1
= gtre(L), @ = tre(D), (1.36)

where L = exp(id4/T) with Ay/T = diag(ér, ¢y, ¢») in the Polyakov-gauge; note
that the A, are traceless and hence ¢, + ¢4 + ¢, = 0. We, therefore, obtain

(e—id)r + 6—i¢g + ei(¢r+¢g)). (137)

o %(eim et 4 gitn)
= Ligior 4 givg 4 gmitor+ay))
3 b
1. . .
(P* — g(e_ld)r + e_“z)g _|_ €_Z¢b)
1
3
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ao a1 a9 b3

3.51 —2.47 15.2 —1.75

Table. 1.2 Summary of the parameter set in the Polyakov-loop potential sector

determined in Ref. [94]. All parameters are dimensionless.

We use the Polyakov-loop potential U of Ref. [94]:

z4:1“{—9%2¢%b+bunhm1—6@@*+4«&%+®”)—3@@%?4 (1.38)

wm:awuucg)+@<%>i b@»:%(%)é (1.39)

There are five parameters, (ag, a1, a2,bs,Tp), and they are determined to reproduce

with

LQCD results at finite 7" in the pure gauge limit. The i is constructed to reach the
Stefan-Boltzmann (SB) limit at large 7"

1472
lim U = ——1

4

leading to ag = 3.51. LQCD results show that a first-order deconfinement phase tran-

sition occurs at T' = Tj in the pure gauge limit. This leads to an another constraint,

bg = —0.108(CLO —|— a1 + ag). (141)

The parameters except Ty are summarized in Table 1.2. The original value of T} is
270 MeV determined from the pure gauge LQCD data, but the PNJL model with
this value of T yields a larger value of the pseudocritical temperature T, of the
deconfinement transition at zero chemical potential than T, ~ 173 +£8 MeV predicted
by full LQCD [124-126]. We, therefore, rescale Ty to 212 MeV so that the PNJL
model can reproduce T, = 174 MeV [100].
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1.4.2 Two-flavor PNJL model

The two-flavor PNJL Lagrangian is obtained in Euclidean spacetime as

3
L =q(wDy + 1o — yaft)g — G1 Y [(q7a0) + (@iv57aq)’]
a=0
—Ga |det Gi(1 4 75)q; + det Gi(1 —75)q } +U(T, B, D*). (1.42)

The two-flavor quark fields ¢ = (qu, qq) have masses my = diag(my, mq), the quark-
number chemical potential matrix i is defined by i = diag(py,pa), and 79 and
7 = (71,72, 73) are the 2 x 2 unit and Pauli matrices in the flavor space, respectively.
In this section, we take G; = G2 = GG/2. This reduces Lagrangian (1.42) to a simpler

form,

L = q(v Dy +1ho — vap)q — G [(3q)° + (qivs7q)?] + U(T, @, @*). (1.43)

Although this choice overestimates the anomaly term, the effect does not affect our
discussion particularly under the meanfield approximation. In Chap. 3. we will take
more realistic values for GG; and Gs.

Performing the mean-field approximation and the path integral over the quark field,

one can obtain the thermodynamic potential {2 (per volume) as

0 d3
V—GU +U — 2N, Z /

f*d

—B(Er—ns) 4 3p*e26(Er—ns) 4 o—3B(Es—ns)

+In [1 + 3(1)*6—[3(Ef+uf) + 3De 28(Estus) 4 6—3/3(Ef+uf)] } (1.44)

with

Ef=.\/p2+M? M;=my—2Go, oc=(qq). (1.45)

The three-dimensional cutoff is introduced for the momentum integration, since this
model is nonrenormalizable; this regularization is denoted by [, in Eq. (1.44). For

simplicity, we assume isospin symmetry for u and d quarks by setting m; = m, = mq.
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my(MeV) A(MeV) G(GeV™?)
5.5 631.5 5.498

Table. 1.3 Summary of the parameter set in the 2 flavor NJL model taken from

Ref. [127].

The present model thus has three parameters of mg, A, and G. A typical parameter
set is shown in Table 1.3 [127]. Assuming mg = 5.5 MeV, we determined A and G
from the pion decay constant f, = 93 MeV and the pion mass m, = 138 MeV.

The classical variables X = &, ®* and ¢ are determined by the stationary conditions

o)

— =0. 1.46
X (1.46)
The solutions to the stationary conditions do not give the global minimum of €2
necessarily. They may yield a local minimum or even a maximum. We then have

checked that the solutions yield the global minimum when the solutions X (7, pty, ttd)
are inserted into Eq. (1.44).

1.4.3 Two-flavor EPNJL model

The original PNJL model cannot reproduce LQCD data at imaginary p quantita-
tively [100]. This shortcoming seems to be originated in the fact that the correlation
between the chiral condensate o and the Polyakov loop ® is too weak. In Ref. [101],
therefore, we extended the two-flavor PNJL model by introducing the effective four-
quark vertex depending on ®. This effective vertex includes additional mixing effects
between o and ®. The new model is called the entanglement PNJL (EPNJL) model.
The two-flavor EPNJL model reproduces LQCD data at zero and imaginary pu, par-
ticularly on strong correlations between the chiral and deconfinement transitions and
also on quark-mass dependence of the order of the RW endpoint [128]. The two-flavor
EPNJL model reproduces all LQCD data, without changing the parameters, at small
real p without [101] and with strong magnetic field [81] and at finite isospin chemical
potential [101].

The four-quark vertex originates from the one-gluon exchange between quarks and
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its higher-order diagrams. If the gluon field A, has a vacuum expectation value (Ag)
in its time component, A, is coupled to (Ap) and then to ® through L. Hence the
effective four-quark vertex can depend on ® [129]. In this thesis, we use the following

form for G(®) [101]:
G(®) = Gs[l — a1 PP* — (P> + &*3)]. (1.47)

This form preserves chiral symmetry, charge conjugation (C') symmetry and extended
Zsz symmetry [97]. We take the parameters (o, as) = (0.2,0.2) to reproduce LQCD
data at imaginary pq [101]. It is expected that ® dependence of G(®) will be de-
termined in future by the accurate method such as the exact renormalization group

method [129-132].

1.4.4 Three-flavor PNJL model

The three-flavor PNJL Lagrangian is obtained in Euclidean spacetime as

8

L = q(yDy + 1o — yf)g — Gs Y _[(Graq) + (G5 a0)’]
a=0

+Gip [det (1 = 95)g; + det (1 +75)g; | + U(BLA], @°[ALT).  (1.48)

The three-flavor quark fields ¢ = (qu,q4,qs) have masses mg = diag(m,, mq, ms),
and the chemical potential matrix [ is defined by i = diag(p., pa, fts). Parameters
Gs and Gp denote coupling constants of the scalar-type four-quark and the KMT
determinant interaction, respectively.

Making the mean-field approximation, one can obtain the mean-field Lagrangian

as
Lyvr = @Dy + My — yafi)q + Unr + U(P[A], @*[A], T), (1.49)
where
M, = my, — 4Gsoy, + 2Gpoqos, (1.50)
Mg = mq — 4Gsoq + 2Gposoy, (1.51)

M, = mg — 4Ggos + 2Gpoyog (1.52)
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ml(MeV) mg (MGV) A(MGV) G3A2 GDA5
2.5 140.7 602.3 1.835 12.36

Table. 1.4 Summary of the parameter set in the 2 4+ 1 flavor NJL model taken
from Ref. [133].

with oy = (grqy) and
Uy = 2Gs(0% + 03 + 02) — 4Gpo,040,. (1.53)

Performing the path integral over the quark field, one can obtain the thermodynamic

potential Q (per volume) :

Y U+ U(@,9°,T) -2 3 / ’p (V.
Vv - YM 3 3 A (271')3 clyf
+% In [1+ 3P A Er—1s) 4 38* e 28(Fr—rs) 4 G—Sﬁ(Ef—Mf)]
+% In [14 30*e P Er+rs) 4 3pe=28(Ertnrs) 4 6_35(Ef+uf)]] (1.54)

with By =, /2 + M3,

The three-dimensional cutoff for the momentum integration is introduced. We
assume isospin symmetry for the u-d sector: m; = m, = my. This three-flavor PNJL
model has five parameters Gg, Gp, m;, ms and A. A typical parameter set is shown
in Table 1.4 [133]. These parameters are fitted to empirical values of pion decay

constant and 7, K, ' meson masses at vacuum.

1.4.5 Typical behavior of two flavor PNJL model

In this subsection, we overview some results of the 2-flavor PNJL model. Figure
1.2(a) shows T' dependence of the order parameters o and ® at p, = pqg = 0. The
solid (dashed) line describes o (®). The o is normalized by the value o9 = o(T =
fy = pa = 0) = —0.0302 (GeV?). At lower temperature, |o| is large, whereas ®
is nearly zero. QCD matter is hence in the hadron phase where chiral symmetry is
spontaneously broken and quarks are confined. Meanwhile, the fact 0 ~ 0 and ® # 0

at higher temperature means that QCD matter is in the QGP phase where chiral
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symmetry is restored and quarks are deconfined. Since the KMT coupling G5 has a
constant value, Ua (1) symmetry is broken in both the phases in the PNJL model.
One can see this effect in meson spectrum [95,96].

Since the transitions are crossover, one cannot see any critical behavior and need
a prescription to define the pseudo-critical temperature (7). In this thesis, T, is
defined by a peak point of susceptibility, and the definition is consistent with LQCD
analyses. The susceptibility matrix () is given by

x=C"1 (1.55)

with the dimensionless curvature matrix

Coo Cod Cod
C= Cos Cod Cod

Cos C3a Cod

20,, T 'Qve T 0.z

= | T7'Q¢y T *Qps T *Qus (1.56)
T3, T Qe T *Qss

with Q,,, = 8%Q/020y for x,y = o, 7, ®, ® [76].

Figure 1.2(b) shows T dependence of susceptibilities for the order parameters o and
®. Here, x, and xs are shorthand notations of x,, and xgs~, respectively, and x, is
multiplied by 1072. The chiral and deconfinement transitions have slightly different
pseudo-critical temperatures, T7 = 212 MeV and T2 = 174 MeV, in the PNJL model.
The T, are inconsistent with the LQCD results quantitatively, but this is improved
by EPNJL model [101].

Once the order parameters are determined, the thermodynamic potential (1.44) is

fixed. The resultant Q) leads to various thermodynamic quantities. Pressure (P) of

po_ (% - %) , (1.57)

where () is the thermodynamic potential at 7" = p = 0. In the grand canonical

the system is obtained by

ensemble, entropy density (s), number densities (ny with f = u, d), and energy density
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Fig. 1.2 T dependence of order parameter and susceptibility at pu, = pq obtained
by the 2-flavor PNJL model. The o is normalized by oo = —0.0302(GeV?), and
Xo is multiplied by 1072

(¢) are obtained as

P

oP
ng=——, (f=u,d), 1.59
I (1.59)
e=—P+Ts+ pyng + pang. (1.60)

For later convenience, quark number density (ny) and isospin number density (np)

are defined as

Ng = Ny + N4, (1.61)

Ny = Ny — Nq- (1.62)

The corresponding chemical potential ;14 and pr are then obtained by

Hu +/~Ld
o= =5 (1.63)
py = %, (1.64)

which satisfy the thermodynamic relations, 02/0uq = ngq and 02/0u; = n;. Trace
anomaly (A) is defined by
A=¢e¢—-3P. (1.65)
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Fig. 1.3 T dependence of P, s, €, and A at uy, = pug = 0 obtained by the 2-flavor
PNJL model

Figure 1.3 shows T" dependence of (a) pressure, (b) entropy density, (c) energy density,
and (d) trace anomaly at i, = ptqa = 0. Note that ny =0 (f = u,d) there. P, s, and

e are normalized by the values in the Stephan-Boltzmann (SB) limit,

2
s
Psp = dQGP%T4 (1.66)

at py = pa = 0, for the degrees of freedom (dgap)

7
dQGP = dg + gdq (1.67)

with

dg = 2pin X (N2 — 1), (1.68)

dq = 4Dirac X NC X Nf. (169)
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Fig. 1.4 T dependence of the Polyakov loop at uq = 300 MeV obtained by the
2-flavor PNJL model

For real pq, ®* is not complex conjugate to ®, but they becomes different real
numbers [59]. However one can take the approximation ® = ®* [102]. This approx-
imation reduces numerical tasks. Figure 1.4 shows the validity of the approximation
for pq = 300 MeV and p; = 0. The solid and dashed lines denote ® and ®* before
the approximation, respectively, and the dotted line stands for both ® and ®* after
the approximation. Even at large chemical potential, the approximation & = &* thus
works well.

Figure 1.5 and 1.6 represent contour plots of ¢ and ® in T-puq plane at py = 0,
respectively. One can see smooth crossovers at jiq = 0, but they becomes steep at
large j1q. Eventually, they become the first order transitions at 7" = 0. Hence there
is a critical endpoint (CEP) of the first order transition.

Figure 1.7 shows the phase diagram of the PNJL model in T-14 plane at py. The
solid line denotes the first-order transition line, while the dashed (dotted) line is
the chiral (deconfinement) crossover. The closed circle shows the CEP at (T, uq) =
(106 MeV, 320 MeV). The first order transition is defined by the discontinuity of the

order parameters, o and ®.
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Fig. 1.5 T and puq dependence of chiral condensate (o) obtained by the 2-flavor

PNJL model.
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Fig. 1.6 T and puq dependence of Polyakov loop (®) obtained by the 2-flavor
PNJL model.
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Fig. 1.7 Phase diagram of T-uq plane obtained by the 2-flavor PNJL model
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1.5 Strategy

Our aim is to understand phase structure of QCD matter for finite 7" and pq, that is
QCD phase diagram. At present, the phase structure for finite yq is almost unknown
because first-principle LQCD simulations have the sign problem. Hence, we inves-
tigate phase structure with the PNJL model that is one of effective models of low
energy QCD and treat confinement and spontaneously breaking of chiral symmetry
simultaneously.

Even though LQCD is time consuming and difficult to apply for finite density, it
is a only successful and promised method to analyze the QCD phase transition. The

mission of the effective model approach is as follows:

(1) Constructing an effective model which can reproduce LQCD data,

(2) Applying the effective model in a broad region and giving a guideline for the
future plan of LQCD simulations,

(3) Understanding the regions where LQCD is not feasible.

Theoretically, one can put QCD matter in the presence of external fields to amplify
some nonperturbative features of QCD vacuum. If LQCD is applicable, one can
observe behaviors of QCD itself. We accomplish the subjects (1), (2), and (3) under
such conditions in this thesis.

In chapter 2, we will analyze mass dependence of QCD phase structure for pure-
imaginary quark chemical potential, and accomplish the subjects (1) and (2). At finite
imaginary chemical potential, Z3 symmetry as an underlying property of confinement
appears as a periodicity of the phase structure. As quark mass varies, the phase
transition becomes from crossover to first order. This enables us to describe the
phase transition clearly. We will compare the EPNJL and LQCD results to improve
reliability of EPNJL model and yield a bird’s-eye view analysis for mass dependence
of phase transition.

In chapter 3, we will analyze QCD phase transitions at finite 6, and accomplish

subjects (2) and (3). The 6 parameter can be considered as a external field which



1.5 Strategy

25

amplify the topological properties of QCD vacuum. Unfortunately, LQCD is not
applicable for finite 6 because of the sign problem. We first analyze the phase structure
for finite # with the 2 + 1 flavor EPNJL model which is confirmed in Chap.2 to be
consistent with LQCD simulations. Finally, we will discuss applicability of LQCD
method to finite 6.

LQCD is the most successful method but its reliability is limited for u,/T < 1
because of the sign problem. Alternatively, neutron star observations can give infor-
mation on the phase structure for large 114. In chapter 4, we will analyze QCD phase
transition for large p1q and 7' = 0 by using the observations, and accomplish subjects
(1) and (3). We will try to construct the effective model that is consistent with LQCD
for p1q/T = 0 and neutron star observation for pq/7T = oo, and investigate the whole

structure of phase diagram including is intermediate pq /7
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Quark mass dependence of RW

transition

We draw the three-flavor phase diagram as a function of light- and
strange-quark masses for both zero and imaginary quark-number chemical
potentials using the PNJL and the EPNJL models. The model prediction
is qualitatively consistent with 2 + 1 flavor LQCD results at zero chemi-
cal potential and with degenerate three-flavor LQCD results at imaginary

chemical potential.

2.1 Columbia plot and imaginary chemical potential

2.1.1 Columbia plot

It is important to determine the order of phase transitions appearing in QCD. The
result affects the cosmic evolution or the inner core of NSs. The chiral and decon-
finement transitions are believed to be crossover at zero chemical potential, when
light and strange quark masses, m; and mg, have physical values [41]. This crossover
nature makes it more difficult to investigate critical behavior and universality of the

phase transitions. The order of the transitions is sensitive to the number of flavors,
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Fig. 2.1 Sketch of the three-flavor phase diagram in the m;-ms plane for the chi-
ral transition at u = 0. The solid line denotes the second-order chiral transition

line.

Ny, and the values of m; and m,. A sketch of the three-flavor phase diagram is
plotted in Fig. 2.1 as a function of m; and m for the case of zero chemical potential
() [134], and it is sometimes called the Columbia plot. The physical point lies near
the second-order transition line (solid line), where the term “physical point” means
that one can reproduce the experimental values of m, and mg with this parameter
set. In some regions of this plot, one can give clear statement by using exact symmetry
and universality class of phase transition.

In the heavy quark limit, i.e. in the pure gauge limit, the system has Z3 symmetry
exactly, and the confinement-deconfinement transition is governed by the symmetry
and then described by the order parameter of the symmetry [15]. As a conclusive result
in the limit, it is found by LQCD simulations that the transition is the first-order
[124,135-138]. Since the order is rather stable against symmetry-breaking sources
such as the quark-mass term, there is the first order transition region at large values
of m; and mg. The transition becomes crossover at moderate quark masses , and the

transition line is investigated by LQCD simulation [139] and the PNJL model [84,86].
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In the case of finite quark mass, one can expect that there exists a phase tran-
sition governed by chiral symmetry. The chiral transition was investigated by the
renormalization group method for massless two-flavor quarks [140-142]. For the case
of massless two quarks, i.e. at (m;,ms) = (0,00), the transition becomes the sec-
ond order if it belongs to the same universality class as O(4) Heisenberg model and
becomes the first order if the U(1)s anomaly is weak around the transition tempera-
ture. In Fig. 2.1, we show the second-order case. For massless three-flavor quarks.i.e.
at (my,mg) = (0,0), the renormalization group method shows that the transition
should be the first order, because one cannot identify the case with any model having
second-order transition. Hence, there is the first-order transition region in the vicinity
of the massless three-flavor limit, and the boundary of this region is expected to be
the second order. The second order transition line is investigate by LQCD simula-
tions [143], the renormalization group method [140-142], and effective models such as
NJL [144-146] and PNJL models [76,78,90,106].

As p increases from zero, the chiral crossover at the physical point is expected
to become the first order. In the case, there appears a critical endpoint (CEP) of
the first-order transition line, and the transition becomes the second order on the
CEP [127,147-150]. However, clear evidence of the behavior is not shown yet by
LQCD because of the sign problem at real p. Since current quark masses are not
observable, careful attention should be paid for quantitative discussion. In this thesis,

we compare the PNJL results with the LQCD ones qualitatively.

2.1.2 QCD with imaginary chemical potential

As shown in Sec. 1.5, LQCD is feasible for pure-imaginary quark chemical potential
tq = 04T, where 0, represents the dimensionless chemical potential. QCD has a
periodicity of 27 /3 in 6. This is now called the Roberge-Weiss (RW) periodicity [151].
Again, we consider the Z3 transformation defined in Sec. 1.1.1 for dynamical quarks.

The QCD partition function at finite 7" and 6, is written by

~ . 1 a a
Z(0q) = /Dq‘DqDA exp {—/d4x ((j(’yuDu —mo — 174041 q — ZFWFW>} (2.1)
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with the periodic (anti-periodic) boundary condition for gluon (quark) field. Under
the Zs transformation (1.8),

Ay = Al () = V(@)(Au(@) +i0,)V (@), (2.2)
V(r+8,%) = z,V(7,2), (2.3)
Zy = '3, (2.4)

the partition function (2.1) becomes
— 1 a a
/ Dq'Dq /DA exp{ /d4 ( "(vuDy — 110 — 17404T) ¢’ 4FWFW)} .
(2.5)

In the functional integral f ' DqDgq, the boundary condition for quark fields are not

anti-periodic but

¢ (1,%) = —2,"¢'(0,7). (2.6)

To change this boundary condition, we perform the transformation,

q(r, %) = ¢"'(7,%) = (zn)_TTq/(T, ), (2.7)

this changes the partition function (2.5) into

Z(0q)

. 2 1 0 +ra
_ /ch”'Dq"DA' exp |:_ /d4x (q//(%Du — Mgy — 174(9 — ?n)T) — ZFMVFHV):|
— Z(0y — 27n/3) (2.8)

for n =0,1,2. We thus conclude that Z(6,) is periodic with period 27 /3.
The QCD partition function (2.1) is invariant under the sequential transformations,

(2.4) and (2.7), and the shift of

2
Oy — 0, = 6, — gn (2.9)

This series of transformation are referred as the extended Zs transformation [97].
QCD and its effective models should have this extended Z3 symmetry.

At 6 = 7/3 mod 27/3, there appears a first-order transition at 7" higher than some
temperature Try. The transition is now called the RW transition [151]. On the RW
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Fig. 2.2 A schematic phase diagram on 64-1" plane. The solid line denotes
the firs-order RW transition line and the dashed line stands for the crossover
deconfinement transition line. The arrows indicate the corresponding phases of

the Polyakov loop.

transition line starting from the endpoint (6,7) = (7, Trw ), the spontaneous breaking
of C symmetry occurs [87,88]. Figure 2.2 shows a schematic phase diagram on 6,-17'
plane. The solid line denotes the firs-order RW transition line, and the dashed line
corresponds to the crossover deconfinement transition line. On the RW transition
line, the Polyakov loop changes the phase, indicating a transition from a Zs sector to

another sector.

2.1.3 Columbia plot of RW endpoint

Very recently, the order of C' symmetry breaking at the RW endpoint was analyzed
by two-flavor LQCD simulations [128] and degenerate three-flavor LQCD simulations
[152]. For both the cases, the order is the first order at small and large quark masses,
but the second order for intermediate masses. Figure 2.3 shows a schematic graph for

quark-mass dependence of the phase diagram. For light or heavy quark masses, the
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Fig. 2.3 A schematic graph for quark-mass dependence of the phase diagram
in 64-T plane. The solid line denotes the firs-order RW transition line, whereas
the dashed line corresponds to the crossover deconfinement transition line. The

arrows indicate the corresponding phases of the Polyakov loop.

RW endpoint is a triple point. This means that there is a critical endpoint somewhere
in the region 0 < 6, < /3, and the crossover at 6, = 0 is changed into the first order
above the point. At intermediate quark masses, the RW endpoint is the second order.
The deconfinement transition is then always crossover in the region 0 < 6, < /3,
whereas it becomes the second order at 6, = 7/3. Figure 2.4 is a sketch based on
LQCD results for the RW phase transition at the endpoint. Most of the region is

unknown at the present stage.

2.2 Model setting

We start with the three-flavor PNJL model mentioned in Sec. 1.4 with imaginary

quark chemical potential puq = 04T,

8

Lo = q(wDy + 1o — i104T)q — Gs > [(@haq)” + (@5 a0)’]
a=0

+Gp dgt 3i(1+75)q; + d;;t gi(1— 75)%} —U(D[A], ®[A],T), (2.10)
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1st / 1st

m, 2nd I

Fig. 2.4 A sketch of the three-flavor phase diagram in the m;-ms plane for the
RW transition at the endpoint (7,0) = (Trw,7/3). The solid line means the
boundary between the first- and second-order transition regions. The figure is
based on two-flavor [128] and degenerate three-flavor [152] LQCD results that
the RW transition at the endpoint is the first order for light and heavy quark

masses, but the second order for intermediate masses.

where D¥ = 0¥ +iAY = 0" + i65gA% )\, /2 with the gauge coupling g and the Gell-
Mann matrices A,. Three-flavor quark fields ¢ = (qu, g4, ¢s) have current quark masses
mo = diag(m,,, mq, ms).

Same as the 2-flavor PNJL model, we introduce the entanglement interaction to

the 2+1 flavor PNJL model (2.10),

8

Lepnit = (v Dy + Mo — i7404T)q — Gs(P) Z [(@Xaq)® + (Giv5Xaq)?]
a=0

+Gp dgt ai(1+5)q + dgt ai(1 - ’75)le —U(®[A], ®[A],T), (2.11)
Gs(®) = Gs[1 — a1 PP* — ay(P? + &*3)]. (2.12)
In principle, Gp can depend on ®, too. However, we found that ®-dependence of

Gp yields qualitatively the same effect on the phase diagram as that of Gs. As a

simple setup, we then neglect ®-dependence of Gp. In the present analysis, therefore,
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®-dependence of Gp is renormalized in that of Gg.
Using the mean field approximation to the quark-quark interactions in (2.11), one

can get the thermodynamic potential (per volume):

3—»
O =U— 4Gpoyoq0s + Z 2Gs(P 2N/ dp
f=u,d,s

/6 / ln + 3@619q6—ﬁEf + 3@* 219q6—26Ef + 6319q6—3,3Ef]

+In[1 + 3@*6_26q6_BEf + 3Pe20a 28B4 e_3i0qe_3BEf]] (2.13)

where oy = (qrqy) and Ef =4/p'? + Mf2 for f = u,d,s. The dynamical quark mass
My is defined by

M, = my — 4Gg(P)oy, + 2Gpogos, (2.14)
My =mg — 4Gs((I))O'd + 2Gposoy, (2.15)
My = mg — 4Gs(P®)os + 2Gpoywoq. (2.16)

The variables ®, ®*, 0;(= 0, = 04) and oy are determined by the stationary condition.
Although the chemical potential are pure imaginary, one can prove that the thermo-
dynamic potential is real and thermodynamics is well defined. The thermodynamics

potential (2.13) can be rewritten into the form that is real explicitly,

d3p
QO =U—-4Gpoyoq0s + Z QGso'f 2N/ Ef

f=u,d,s
1 [ d&p

&)
Y B(e~2PBr 4 o~1PE;) +C€—3ﬁEf]]

(2.17)

with
A = 6Re(®e'v), (2.18)
B = 9|®|? + 6Re(Pe2%%), (2.19)

C = 2cos(36,) + 18Re(P%e ™). (2.20)
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The three-flavor PNJL model has five parameters Gg, Gp, m;, ms and A. We use
the parameter set of Table 1.4. Parameters of U are determined to reproduce LQCD
data at finite 7" in the pure gauge limit [94], and they are summarized in Table 1.2. The
original value of Tj is 270 MeV, but the deconfinement temperature T, determined by
the EPNJL model with this value of Ty is much larger than T, ~ 160 MeV predicted
by full LQCD [44,153-155]. Therefore, we rescale Ty to 150 MeV so that the EPNJL
model can reproduce 7. = 160 MeV.

The parameters a1 and asg in (2.12) are so determined as to reproduce two results
of LQCD at finite 7. The first is a result of 2+1 flavor LQCD at p = 0 [41] that the
chiral transition is crossover at the physical point. The second is a result of degenerate
three-flavor LQCD at 6, = /3 [143] that the order of the RW endpoint is first order
for small and large quark masses but second-order for intermediate quark masses.

The parameter set (a1, ay) satisfying these conditions is located in the triangle region

{=1.5a1 + 0.3 < ay < —0.86a; + 0.32, as > 0}. (2.21)

Here, we take a; = 0.25, as = 0.1 as a typical example.

2.3  Numerical results

Figure 2.5 shows T' dependence of light- and strange-quark condensates, o; and oy,
and the Polyakov loop @ at juq = 0. In the PNJL model of panel (a), o; and o rapidly
decrease at T' ~ 180 MeV as T increases, after ® rapidly increases at T' ~ 130 MeV
as T increases. Thus, the pseudo-critical temperature of the chiral crossover is much
higher than that of the deconfinement crossover. The same property is also seen in
the two-flavor case [100]. In the EPNJL model of panel (b), meanwhile, the pseudo-
critical temperatures of the chiral and the deconfinement crossover almost coincide
at T' ~ 160 MeV.

Figure 2.6 shows the order of the chiral-transition in the m;-mg plane at p = 0.
This figure corresponds to the small m; and mg part of Fig.2.1(a). The second-order
chiral-transition line is drawn for three cases, the PNJL result (dotted line) and the

EPNJL result (solid line) and LQCD data (4 symbols) [143]. For each of the three
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Fig. 2.5 T dependence of the light- and strange-quark condensates and the
Polyakov loop at 4 = 0. The quark condensates are normalized by o; =
—0.0142 [GeV?®] at T = p = 0. Panels (a) and (b) represent results of the
PNJL and EPNJL models, respectively.

cases, there are the first-order region below the second-order line and the crossover
region above the line. The second-order line predicted by the EPNJL model is close
to that by LQCD data particularly near the physical point. Meanwhile, the first-
order region predicted by the PNJL model is much smaller than that by LQCD data.
Thus, the EPNJL model yields much better agreement with LQCD prediction than
the PNJL model.

The deconfinement transitions predicted by the PNJL and EPNJL models are
crossover in the whole region shown in Fig. 2.6. In the EPNJL model, the crossover
deconfinement transition almost coincides with the chiral transition, even if the chiral
transition is crossover.

Now we consider the C' symmetry breaking at 6, = m/3 for the case of three
degenerate flavors (ms = m;). Figure 2.7 represents the imaginary part of ¥ as a
function of m; and T predicted by the three-flavor EPNJL model. When m; is large,
the system is close to the pure gauge limit and hence the C-symmetry breaking is

first-order. When m; is small, meanwhile, the system is nearly chirally-symmetric and
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Fig. 2.6 The order of the chiral transition in the m;-ms plane at up = 0. Solid
and dotted lines and + symbols represent the second-order chiral-transition lines

predicted by the PNJL and EPNJL models and LQCD [143]), respectively.
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Fig. 2.7 The imaginary part of the modified Polyakov loop at 64 = 7/3 in the
my-T plane predicted by the EPNJL model with m = m; = ms.

therefore the transition is first-order. In the intermediate mass region, the transition
is second order. The result is consistent with the LQCD data [152].

Figure 2.8 shows the phase diagram for the C-symmetry breaking at the RW end-
point predicted by the EPNJL model. The diagram is plotted as a function of my
and mg up to A, the upper limit for the present model to be applicable. The two
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Fig. 2.8 The order of C symmetry breaking at the RW endpoint predicted by
the EPNJL model. The transition is first-order below (above) the lower (upper)
line, while it is second-order between the two lines. The dotted line stands for
a line of m; = ms, that is, the case of three degenerate flavors, whereas the x

symbol means the physical mass.

solid lines represent boundaries between the first- and second-order transition regions.
Below (above) the lower (upper) boundary, the transition is first-order. The dotted
line of m; = my corresponds to the case of Ny = 3. On the dotted line, the order
is first-order for small and large masses but second-order for intermediate masses, as
expected. At the physical point, the order is second-order for the present parameter
set. However, the order can become first-order at the physical point, if we take other
parameter sets belonging to the region (2.21). In the PNJL model, meanwhile, the
transition is always first-order in the entire region of the m;-mg plane.

In Figs. 2.7 and 2.8, the EPNJL prediction is shown for small and large current
quark masses m, (¢ = [, s). The applicability of the NJL-type model to large m,g,
however, is an open question. In fact it was pointed out that m,-dependence of
the chiral transition temperature is not consistent with the corresponding LQCD
results [156,157]; as m, increases, the chiral transition temperature goes up sizably

in the NJL-type model but hardly changes in the LQCD results. In the EPNJL
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model, the chiral transition temperature almost coincides with the deconfinement one
that hardly depends on mg, so that the EPNJL result is consistent with the LQCD
result for the transition temperature. It was also pointed out that for large m, the
pion mass m, calculated with the NJL-type model is larger than the corresponding
LQCD result [82]. In the NJL-type model the hadron mass calculation is questionable
for large m,, particularly when the calculated hadron mass is bigger than the cutoff
A. Therefore, the EPNJL predictions shown in Fig. 2.7 and 2.8 should be regarded
as qualitative ones for the m, > 100MeV region where the calculated pion mass is
bigger than A. However, the fact that there is the second-order region at intermediate
mg (< 100MeV) shows that there exists a boundary between the first- and second-
order regions at large m,. In this qualitative sense, the phase diagram of Fig. 2.8 is
reasonable for large m,.

Figure 2.9 presents the phase diagram in the 6,-T" plane predicted by the PNJL
and EPNJL models, where m; and ms have physical values. In the PNJL model of
panel (a), a first-order RW transition (solid) line is connected at the RW endpoint
to two first-order deconfinement (dashed) lines. Hence, the RW endpoint is a triple
point. In the EPNJL model of panel (b), the RW transition is second-order at the
endpoint, so that there is no first-order deconfinement line connected to the first-order
RW transition line. For other parameter sets in the parameter region (2.21), the
transition is weak first-order at the endpoint and hence the first-order RW transition

line is connected at the RW endpoint to two very-short first-order deconfinement lines.

2.4 Short summary

The imaginary chemical potential region and the Columbia plot are good testing
grounds to confirm reliability of effective models with comparing its result with that
of LQCD. In addition to that, the two regions have important information an re-
alistic QCD. On the Columbia plot, one can give clear statement for exact phase
transitions, and realistic crossover transition may be considered as a remnant of it.
For finite chemical potential, QCD has remarkable feature called the RW periodic-

ity. Moreover, the canonical partition function of realistic QCD is obtained by the
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Fig. 2.9 The phase diagram in the #-T plane predicted by (a) the PNJL model
and (b) the EPNJL model. Here, physical values of m; and m, are taken. The
solid line stands for the first-order RW transition line, while the dashed line

corresponds to the first-order deconfinement line.

Fourier transformation of grand canonical partition function for imaginary chemical
potential.

We have extended the three-flavor PNJL model by introducing an entanglement
vertex G's(®). The entanglement PNJL (EPNJL) model is consistent with 241 flavor
LQCD data for the chiral transition at u = 0 and degenerate three-flavor LQCD data
for the RW endpoint calculated very lately. The three-flavor phase diagram for the
RW endpoint is first drawn in the m;-mg plane by the EPNJL model justified above.
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Theta vacuum and QCD phase
diagram

We investigate theta-vacuum effects on the QCD phase diagram for the
realistic 2 4+ 1 flavor system, using the three-flavor PNJL and EPNJL mod-
els. The theta-vacuum effects make the chiral transition sharper. For large
theta-vacuum angle the chiral transition becomes first order even if the
quark number chemical potential is zero, when the entanglement coupling
between the chiral condensate and the Polyakov loop is taken into account.
Moreover, we propose a way of circumventing the sign problem on lattice
QCD with finite theta, and investigate its availability. We consider the
reweighting method for the QCD Lagrangian after the U(1), transforma-
tion. In the Lagrangian, the P-odd mass term as a cause of the sign problem
is minimized. In order to find a good reference system in the reweighting
method, we estimate the average reweighting factor by using the two-flavor

PNJL model and eventually find a good reference system.



3.1 Introduction: Theta vacuum and its appearance

41

3.1 Introduction: Theta vacuum and its appearance

For T higher than the QCD scale Aqcp, there is a possibility that 6 is effectively
varied to finite values depending on spacetime coordinates (¢, x), since sphalerons are
so activated as to jump over the potential barrier between the different degenerate
ground states [158]. If this happens, P and C'P symmetries can be violated locally
in high-energy heavy-ion collisions or the early universe at 7'~ Aqcp. Actually, it is
argued in Refs. [159-161] that # may be of order one at the epoch of the QCD phase
transition in the early universe, whereas it vanishes at the present epoch [162-166].
This finite value of 6 could be a new source of large C'P violation in the early universe
and may be a crucial missing element for solving the puzzle of baryogenesis.

In the early stage of heavy-ion collision, the magnetic field is formed, while the
effective 0(t,x) deviates the total number of particles plus antiparticles with right-
handed helicity from those with left-handed helicity. As a consequence of this fact,
an electromagnetic current is generated along the magnetic field, since particles with
right-handed helicity move opposite to antiparticles with right-handed helicity. This
is the so-called chiral magnetic effect [77,79,159,167]. The chiral magnetic effect may
explain the charge separations observed in the recent STAR results [168,169]. The
thermal system with nonzero 6 is thus quite interesting.

For vacuum with no temperature (7)) and no quark-number chemical potential
(1), parity P is preserved when 6 = 0 [170], but is spontaneously broken when
6 = 7 [171,172]. The P violation, called the Dashen mechanism, is essentially nonper-
turbative, but the first-principle lattice QCD (LQCD) is not applicable for the case of
finite @ because of the sign problem. Temperature (T') and/or quark-number chem-
ical potential () dependence of the mechanism has then been analyzed by effective
models such as the chiral perturbation theory [160,173-177], the Nambu-Jona-Lasinio
(NJL) model [178-181] and the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL)
model [88,104].

Using the two-flavor NJL model [117, 118,127,147, 150], Fujihara, Inagaki and

Kimura made a pioneering work on the P violation at § = 7 [181] and Boer and
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Boomsma studied this issue extensively [178,179]. In the previous works [88,104], we
extended the formalism to the two-flavor PNJL and EPNJL models and investigated
effects of the theta vacuum on the QCD phase diagram. Very recently similar analyses
were made for the realistic case of 2+1 flavors by using the NJL model [180]. It is
then highly expected that the finite-0 effect is investigated in the 241 flavor case by
using the PNJL and EPNJL models that are more reliable than the NJL model.

In this chapter, we investigate the QCD phase structure for finite 6. In Secs. 3.2
and 3.3, the phase structure is investigated by the realistic 2 + 1 flavor PNJL and
EPNJL models discussed in Chap. 2. In Secs. 3.4 and 3.5, we propose a reweighting
method for LQCD simulations with finite § and analyze its availability by calculating
the average reweighting factor with the 2-flavor PNJL model. Section 3.5 is devoted

to short summary.

3.2 Model setting

The three-flavor PNJL Lagrangian with the #-dependent anomaly term is obtained
in Euclidean spacetime by

8

L = (v Dy + 1o — i) — Gs(®) Y _[(7haq)* + (TivsAaq)’]
a=0

+Gp |e” det gi(1 —5)q; + e detgi(1+ 75)(1;} +U(P[A], @7 [A],T). (3.1)

Since the § parameter is related to the Ux (1) anomaly, it appears in the KMT deter-

minant interaction [182]. With the chiral transformation,

q = g q (3.2)

s = s, (3.3)

for | = u,d, Lagrangian (3.1) can be rewritten into

8

L =q (WD, + oy +imo-vs —1ai)d — Gs Y _[(@Aaq)? + (Tiv5)ad")’]
a=0

+Gp |det @;(1 — 5)q; + det (1 + 75)613} +U(P[A], @ [A], T) (3.4)
17 %]
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with

o+ = diag(mu+, Mat, ms4)

= diag (cos (g)mu, CoS (g)md, ms) , (3.5)
mo— = diag(mqy—, mg—, ms_)
= diag (sin (g)mu, sin (g)md, 0) ) (3.6)

In this form, 6 dependence does not appear in the determinant interaction, but ap-
pears in the mass term.

The present three-flavor PNJL model has eighteen scalar and pseudoscalar con-
densates of quark-antiquark pair, but flavor off-diagonal condensates vanish for the
system with flavor symmetric chemical potentials only [88,104,178,179]. Since the
quark-number chemical potential considered in this thesis is flavor-diagonal, we can
concentrate our discussion on flavor-diagonal condensates. Under the chiral transfor-
mation (3.2) and (3.3), the flavor-diagonal quark-antiquark condensates, o = (Grqy)
and 1y = (qrivsqy), are transformed into o'y = (¢}q}) and 7} = (q}ivsq}) as

oy = cos (§)o7 + sin (§)n], (3.7)
m = —sin (§)o] + cos (§)n], (3.8)
oy =0, (3.9)
s = M- (3.10)

Making the mean-field approximation, one can obtain the mean-field Lagrangian

as

Lyr = G (VwDy + My 4 ivs Ny — yai)q + Unr +U(R[A], @7 [A], T), (3.11)
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where
M. = my, — 4Gsol + 2Gp(chol — ninl), (3.12)
M}y =mgy — 4Gsoly + 2Gp (ool — ninl), (3.13)
M! = mgy — 4Gsol + 2Gp (ol o — ninh), (3.14)
N! = m,_ —4Gsn,, — 2Gp(aoin. + ndal), (3.15)
Ng = ma- — 4Gsny — 2Gp (o, + nioy,), (3.16)
N = ms— — 4Gsn; — 2Gp(oyn; +1,04); (3.17)

and

Uy =2Gs Y (0f +n}") —4Gpol,oho, +4Gp (o,nim, +1,0m, +nynjol). (3.18)
f=u,d,s

Performing the path integral over the quark field, one can obtain the thermodynamic

potential 2 (per volume) for finite 7" and pq:

3—»
Q= U +U(®,&",T) - 2N, 3. / d’p
f=u,d,s
3 =
-2 Z / d 1n [1—{—3(13 —B(Ef— M)_|_3(p>k —2B(E¢— ,u)+ —38(E;— ,u)]
f=u,d,s B
—f—%ln 1 —|—3(I)*e—6(Ef+u) +3(I)€—25(Ef+u) + 6—36(Ef+u)] (3.19)

with By = /52 + M}* + N}*.

3.3 Numerical results

In this section we show numerical results for the original condensates (o, ns, ®), since
this makes our discussion transparent. Under the parity transformation, o, ny and ®
are transformed into oy, —ny and @, respectively. This means that ny is 0-odd while
o¢ and ® are f-even, since the Lagrangian is invariant under the combination of the
parity transformation and the transformation 6 — —60. Thus 7y is an order parameter
of the spontaneous parity breaking, while oy and ® are approximate order parameters
of the chiral and the deconfinement transitions, respectively. As an approximate order

parameter of the chiral transition, o; is more proper than o, since m; < my.
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Fig. 3.1 6 dependence of (a) Q2 and (b) the order parameters at 7' = pq = 0 in
the EPNJL model. In panel (a), Qo = Q(6 = 0) is subtracted from Q. See the

legend for the definition of lines.

3.3.1 Thermodynamics at i =0

In this subsection, we consider the case of y1; = 0 where charge conjugation symmetry
(C) is exact. Meanwhile, parity symmetry (P) is exact only at § = 0, =4 7, since %
agrees with e in (3.1) when § =0, + .

Figure 3.1 shows 6 dependence of {2 and the order parameters at T' = iy = 0 in the
EPNJL model; note that the EPNJL model agrees with the PNJL model at T' = 0,
since Gs(®) = Ggs there because of ® = 0. As shown in panel (a), Q is f-even and
has a cusp at § = 7. This indicates that a first-order phase transition takes place at
T = pq =0 and § = 7. As shown in panel (b), meanwhile, the n¢ are §-odd, while
oy and ® are f-even. The condensate 7; and 7, have jumps at 6 = 7, indicating that
the first-order transition mentioned above is the spontaneous parity breaking. This
is nothing but the Dashen phenomena [171].

Figure 3.2 shows 6 dependence of the order parameters and the effective quark mass

;= /M}* + N}* at T = 163 MeV and j1q = 0 in the EPNJL model. For this higher

temperature, the Dashen phenomena do not take place at § = w. Actually 7; and 7;



46

Chapter 3 Theta vacuum and QCD phase diagram
0.005 | | o —- o
' (a) o ( )
........ Ny==-- 0.8€
Ng —- '
0'; '''''''''' " ‘—'—-—-—-S—:‘—";
/\\ Q.G T |
-0.005
0.4} 1
-0.01}
0.2 MMy —|
ng/Me
-0.015 : : : 0 : : :
0 0.5 1 15 2 0 0.5 1 15 2
e/t a/m

Fig. 3.2 6 dependence of (a) the order parameters and (b) the effective quark
mass IIy at T'= 163 MeV and pq = 0 in the EPNJL model. In panel (b), Iy is
normalized by the value at T'= p = 6 = 0 and the normalized Il is compared

with the Polyakov loop ®. See the legend for the definition of lines.

vanish there, although they become finite at 8 # 0, 7w, 27 where P is not an exact
symmetry. The other order parameters, oy and ®, are smooth periodic functions of
0. The Polyakov loop ® becomes maximum at # = 7, since the effective quark mass
II; becomes minimum and the thermal factor exp(—FEy) is maximized in (3.19).
Figure 3.3 shows T dependence of the order parameters at 0 = 7 and pugq = 0.
Comparing this figure with Fig. 2.5, one can also see € dependence of the order
parameters. In the PNJL model of panel (a), |n;| and |n,| are finite below the critical
temperature Tp = 194 MeV and vanish above Tp. Thus the P symmetry is broken at
smaller T', but restored at higher T'. In the two-flavor PNJL model, this P restoration
is second order [104]. This is the case also for the present 2+1 flavor PNJL model.
The second order P restoration induces cusps in |o;| and |o| when T' = Tp, although
the cusp is weak in |og|. This propagation of the cusp can be understood by the
extended discontinuity theorem of Ref. [83]. In the EPNJL model of panel (b), the P
restoration occurs at Tp = 158 MeV as the first-order transition. The same property
is seen in the two-flavor EPNJL model [104]. The first-order P restoration generates
gaps in |oy| and |os| when T' = Tp, although the gap is tiny in |os|. This propagation
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Fig. 3.3 T dependence of the order parameters at § = m and puq = 0 in (a) the
PNJL model and (b) the EPNJL model. See the legend for the definition of lines.

Model =0 0=m

NJL 177 (crossover) 0 (2nd order)
PNJL 200 (crossover) 194 (2nd order)
EPNJL 162 (crossover) 8 (1st order)

Table. 3.1 Theoretical prediction on the critical temperature of the chiral tran-
sition at & = 0 and pq = 0 and the P restoration at § = m and puq = 0. The

values are shown in units of MeV.

of the gap can be understood by the discontinuity theorem by Barducci, Casalbuoni,
Pettini and Gatto [183]. Thus the Dashen phenomena are seen only at lower 7', and
the order of the P violation at the critical temperature Tp depends on the effective
model taken.

Theoretical prediction on the critical temperature of the chiral transition at § =0
and g = 0 and the P restoration at § = m and pq = 0 is tabulated in Table 3.1. At
f = 0, the chiral transition is crossover in all of the NJL, PNJL, and EPNJL models
At 0 = 7, the order of the P restoration is first order in the EPNJL model, but it is
second order in the PNJL and NJL models.

Figure 3.4 shows 6 dependence of transition temperatures at p1q = 0. The dashed



48

Chapter 3 Theta vacuum and QCD phase diagram

0.18
0.17+¢
%“ .....................................
0 0.16 .
- \
0.15} Lattice — |
Deconfinement
Chiral =---
0.14 : : : :
0 01 02 03 04 05
/Tt

Fig. 3.4 6 dependence of the critical temperature at ;g = 0 calculated by EPNJL
model and pure-gauge LQCD simulation [184].

and dotted lines show EPNJL model results for the deconfinement and the chiral
transition temperature, respectively. Solid line shows a result of lattice simulations

[184]:

?Egi =1— Re6* + O(6), (3.20)
Ry = 0.0175(7). (3.21)

The coefficient Ry has been determined from lattice simulations of pure Yang-Mills
theory with imaginary 6 parameter, and the constant 7,(0) is fixed to that of the
EPNJL model. Compared with the lattice result, the model result has weaker 6
dependence . This result shows that lattice simulations with dynamical quarks are

crucial to investigate theta vacuum effects.

3.3.2 Thermodynamics at ji, > 0

In this subsection, we consider the case of g > 0 where C' symmetry is not exact.
In general, the relation ® = ®* is not satisfied for finite p, although ® and ®* are

real [59]. This situation makes numerical calculations quite time-consuming. How-
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Fig. 3.5 T dependence of the order parameters at 8 = m and pq = 300 MeV in
(a) the PNJL model and (b) the EPNJL model. See the legend for the definition

of lines.

ever, the deviation ® — ®* is known to be very small [102]. For this reason, the
assumption ® = ®* has been used in many papers. Therefore we use the assumption
also in this thesis.

Figure 3.5 represents 7' dependence of the order parameters at 6 = m and pg =
300 MeV in the PNJL and EPNJL models. The P restoration takes place at high
T, since n; and 7, are zero there. The critical temperature of the P restoration is
Tp = 110 MeV for the PNJL model and Tp = 99 MeV for the EPNJL model. For
ttq = 300 MeV, the order of the P restoration at 7' = T’p is first order in both the
PNJL and EPNJL models. Thus the quark-number chemical potential ;1q lowers Tp
and makes the P restoration sharper.

Figure 3.6 shows the phase diagram of the chiral transition in the p4-8-7 space. The
diagram is mirror symmetric with respect to the pq-7T" plane at 6 = 0, so the diagram
is plotted only at & > 0. Panels (a) and (b) correspond to results of the PNJL and
EPNJL models, respectively. In the uq-7 plane at 0 < 6 < 7, the solid line stands for
the first-order chiral transition, while the dashed line represents the chiral crossover.
The meeting point between the solid and dashed lines is a critical endpoint (CEP) of
second order. Point C is a CEP in the uq-T plane at 6 = 0 [147-149]. For both the



50 Chapter 3 Theta vacuum and QCD phase diagram
1st order —

T(Gev) (@ T (Gev) (b) . Crossover

Critical line «« ..

0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
0 0

H u

Fig. 3.6 Phase diagram of the chiral transition in the pq-6-T space. Panel (a)
shows a result of the PNJL model and panel (b) corresponds to a result of the

EPNJL model.

PNJL and EPNJL models, the location of CEP in the p4-T" plane moves to higher T'
and lower pq as 6 increases from 0 to .

In the py-T" plane at 6 = m, P symmetry is exact and hence we can consider the
spontaneous breaking of P symmetry in addition to the chiral transition. For the
PNJL model of panel (a), both the first-order chiral transition and the first-order
P restoration take place simultaneously, and the second-order P restoration and the
chiral crossover coincide with each other. The first-order and the second-order P
transition line are depicted by the solid and dashed lines, respectively. The meeting
point A is a tricritical point (TCP) of the P-restoration transition. For the EPNJL
model of panel (b), the chiral and the P restoration transition are always first order
and hence there is no TCP.

In the PNJL model of panel (a), the dotted line from point C to point A is a
trajectory of CEP as 6 increases from 0 to 7. Thus the second-order chiral transition
line ends up with point A. This means that the CEP (point C) at § = 0 is a remnant
of the TCP (point A) of P restoration at § = 7. In the EPNJL model of panel (b),
no TCP and then no CEP appears in the pq-7" plane at ¢ = 7. The second-order
chiral-transition line (dashed line) starting from point C never reaches the yq-1" plane
at 0 = .

Figure 3.7 snows the projection of the second-order chiral-transition line in the pq-
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Fig. 3.7 The projection of the second-order chiral-transition line in the puq-60-T7
space on the uq-0 plane. See the legend for the definition of line.

6-T space on the pq-6 plane. The solid (dashed) line stands for the projected line in
the EPNJL (PNJL) model. The first-order transition region exists on the right-hand
side of the line, while the left-hand side corresponds to the chiral crossover region.
The first-order transition region is much wider in the EPNJL model than in the PNJL
model. In the EPNJL model, eventually, the chiral transition becomes first order even

at g = 0 when 6 is large.

3.3.3 The sign problem on LQCD with finite

In the PNJL Lagrangian (3.4) after the transformation (3.2) and (3.3), # dependence
appears only at the light quark mass terms, m;cos(6/2) and m;sin(6/2). These
terms are much smaller than Agcp as a typical scale of QCD. This means that the
condensates, o}, 0., 7, and 1}, have weak 6 dependence. This statement is supported
by the results of the PNJL calculations shown in Fig. 3.8.

The sign problem is induced by the #-odd my; sin(6/2) term. The #-odd (P-odd)
condensates, 7, and 7., are generated by the #-odd mass term. One can see in Fig. 3.8

that the #-odd condensates are much smaller than the §-even condensates, o] and o%,.
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Fig. 3.8 6 dependence of the order parameters, o], o5, 7, and 1%, at T = pq = 0
calculated with the EPNJL model. See the legend for the definition of lines.

This fact indicates that effects of the #-odd mass term are negligible. Actually, if the
term is neglected, the #-even condensates change only within the thickness of line,
while the 6-odd condensates vanish. The neglect of the #-odd mass is thus a good
approximation.

The validity of the approximation can be shown more explicitly in the following
way. The 6-odd (P-odd) condensates, 7, and 7., are zero at § = 0, since the #-odd
mass vanishes there. The weak 6 dependence of 1] and 7! guarantees that 7, and 7,

are small for any 6. Setting n; = n, = 0 in M| and N/ leads to
M| = cos (§)m; — 4Gso] + 2Gpoa], (3.22)
N| = sin (§)my, (3.23)

where M| ~ Aqcp and N| ~ m,. Since the thermodynamic potential is a function of
M/? + N/?, the term N,? is negligible compared with M;?.

In LQCD, the vacuum expectation value of operator O is obtained by
(0) = / DAO (det My (6))? det Mye—So (3.24)

= /DAO' (det M} (6))” det M e~ S0 (3.25)
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with the gluon part S, of the QCD action and

o= Ow, (3.26)
(detMy(0))

where detM;(f) is the Fermion determinant in which the #-odd mass is neglected

and hence has no sign problem. As mentioned above, one can assume that

detMl(Q) N
—detMg(H) ~ 1. (3.27)

Thus the reweighting method defined by (3.25) may work well. In the #-even mass,
my cos(0/2), the limit of § = 7 corresponds to the limit of m; = 0 with m, fixed.
Although the limit is hard to reach, one can analyze the dynamics at least at small

and intermediate 0.

3.4 Introduction: Lattice QCD simulation with theta term

In the previous section, we proposed a way of minimizing the sign problem on LQCD
with finite §. The proposal is as follows. For simplicity, we consider two-flavor QCD.

The QCD Lagrangian (1.1) is transformed into

~ 1 a a
Loop = ¢ M(0)q + @FWFW (3.28)
with
M(0) =~,D, +mcos (0/2) + mivs sin (6/2) (3.29)

by using the U (1) transformation
q= em"’%q', (3.30)

where the quark field ¢ = (qy, ¢q4) has been redefined by the new one ¢’. The deter-
minant M () satisfies

det M(0) = [det M(—0)]", (3.31)

indicating that the sign problem is induced by the P-odd (#-odd) term, mivys sin (6/2).

The difficulty of the sign problem is minimized in (3.28), since the P-odd term with
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the light quark mass m is much smaller than the dynamical quark mass of order Aqcp.
Actually, it was found that the P-even condensates a} = ((j}q}> is much larger than
the P-odd condensates n; = (¢}iv5q}). The P-even condensates little change even if
the 6-odd mass term is neglected.

We then proposed the following reweighting method. The vacuum expectation

value of operator O is calculated by
(0) = / DAOdet M (0)e™ s (3.32)
= / DAO'det Mop (0)e 5 (3.33)

with the gluon part S, of the QCD action and

O’ = R(H)O, (3.34)
R(0) = %, (3.35)

where R(0) is the reweighting factor and det M,.¢(#) is the Fermion determinant of
the reference theory that has no sign problem. The simplest candidate of the reference
theory is the theory in which the #-odd mass is neglected. We refer this reference
theory to as reference A in this thesis. As discussed in Sec. 3.3, reference A may be
a good reference theory for small and intermediate €, but not for large 6 near 7. In
reference A, the limit of § = 7 corresponds to the chiral limit that is hard for LQCD
simulations to reach.

The expectation value of R(f) in the reference theory is obtained by

(R(6)) = - (3.36)

where Z (Z,cf) is the partition function of the original (reference) theory. The average
reweighting factor (R(#)) is a good index for the reference theory to be good; the
reference theory is good when (R(0)) = 1.
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3.5 Model setting

The two-flavor PNJL Lagrangian with the #-dependent anomaly term is obtained in
Euclidean spacetime by

3

L =q(wDy +mo)g— G1 Y _ [(qma0)* + (7iV57aq)’]
a=0

—8G> [e"detqrar, + e~ “detqrgr] + U(T, @, ). (3.37)

Under the Ua(1) transformation (3.30), the quark-antiquark condensates are trans-

formed as

o = (Gq) = cos(0/2)c” + sin(6/2)n/, (3.38)
0= (Girsq) = —sin(8/2)0’ + cos(8/2)n, (3.39)
a; = (qriq) = cos(0)2)a] + sin(0/2)x, (3.40)
7 = (GisTiq) = —sin(0/2)al + cos(6/2)!, (3.41)

where the condensates {o’,7n', a}, .} are defined by the same form as {o,n, a;, m;} but
q is replaced by ¢’. The Lagrangian density is then rewritten with ¢’ as

3
L=7(wDy+m0)d =G> [(q7q) + (Ti757aq)]

a=0
—8G3 [detgpqy, + detqr gr] + U (3.42)
= (j/(’YVDV + m(@))q’ -Gy [((j'q')2 + ((j’i757_"q/)2]
~G_[(77d)* + (@is4)?] + U, (3.43)
where G4 = G; £ G5 and

m(0) = mocos(0/2) + myiyssin(0/2). (3.44)
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Making the mean field approximation and the path integral over the quark field, one

can obtain the thermodynamic potential Q (per volume) for finite 7":

d3p
Q:U-I-LI—QNCZ )y
7T

—2 Z/ {T In [1 4 30e PF= 4 3p*e 2B 4 o~ 30Fx]
+T1In [1+ 30%e PP+ 4 3@e 2P+ 4 o730F=] | (3.45)
with

E, = \/ﬁ2+0i2\/5, (3.46)
C =M?+ N?+ A? + P, (3.47)
D= (MA+NP)?+ (Ax P)? >0, (3.48)
M = mqcos(0/2) — 2G40’ (3.49)
N = mgsin(6/2) — 2G_1, (3.50)
A=-2G_a, P=-2G,# (3.51)
A=VA.-A P=VP.P, (3.52)
U=G(c?+7H+G_(n*+d?), (3.53)

where the momentum integral is regularized by the three-dimensional momentum
cutoff A. Following Refs. [178,179], we introduce a parameter ¢ as G; = (1 — ¢)G+
and G2 = ¢G4, where 0 < ¢ < 0.5 and G4 > 0. The present model thus has four
parameters of mg, A, G4 and ¢. Assuming mo = 5.5 MeV, we have determined A and
G from the pion decay constant f, = 93 MeV and the pion mass M, = 138 MeV at
vacuum. Although c is an unknown parameter, we set ¢ = 0.2 here, since it is known
from the model analysis on the n — n’ splitting that ¢ ~ 0.2 is favorable [185].

For finite 0, parity is broken explicitly, so it is not a good quantum number anymore.
Hence P-even and P-odd modes are mixed with each other for each meson. The “pion”
mass M, is defined by the lowest pole mass of the inverse propagator in the isovector

channel. It agrees with the ordinary pion mass when 8 = 0. Under the random phase
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approximation [186], the inverse propagator is described by

det[1 — 2GII(M2)] = 0, (3.54)
where
G_ 0
G = : (3.55)
0 Gy
HSS 2 HSP 2
(w?) = %) %) (3.56)
HPS(CL)2) HPP(w2)
with
PP = ANy N I} — 2Ny N.(¢* — AN?)I5(w?), (3.57)
I1°% = AN N.I; — 2N N.(¢* — 4M*)I5(w?), (3.58)
7 =117 = —8N; N M NT,(w?), (3.59)
dp 1— fi(E,) — f3(E
A (27)3 2B,
d°p 1— fg(Ep) — fo (Ep)
2\ __ ) p ) p
L") = /A 2r)3 B,(w?—4E2) (3:61)
and

(®* + 2®e PEr)e=BEr 4 ¢—3PEs

+
- 3.62
Jo 1+ 3(®* + PeBEr)e=BEr 4 ¢=3PEp’ (3.62)
) 2p* —BEp\,—BEp —3B8E,
fo = (@ + 207”7 )e T + e . (3.63)
14 3(® + ®*e PEr)e=PEp 4 e=3Fp

In this form, we can set @ = 7@ = 0, since we do not consider the isospin chemical
potential.

Applying the saddle-point approximation to the path integral in the partition func-

detHref _ _
(R(O)) =\ oy e Vo) (3.64)

where 5 = 1/T, Q (Qqef) is the thermodynamic potential of the original (reference)

tion, one can get

theory in the mean-field level, and H (H,ef) is the Hessian matrix in the original
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(reference) theory defined by [102,187]

%0
Hij = 277 (3.65)
T 004
{¢i} = {0\, a}, 7}, @, @7} (3.66)

For later convenience, the average reweighting factor (R(0)) is divided into two factors

RH and RQZ

(R(0)) = Ru Ra (3.67)
with
detHref
Ry = \/m, (3.68)
Rg = e AV (0= Chet), (3.69)

For an N2 x N, lattice, the four-dimensional volume BV is obtained by

3
BV = (%) % (3.70)

Here we consider N, /N, = 4 as a typical example, following Refs. [102, 187].

We consider the following reference theory that has no sign problem:
L =70 +muet(0))q' — G+ [(T'd)? + (Tivs7d)?] — G- [(T7¢)* + (T'ivsq)?] +U.
Here myet(0) is G-even mass defined below. We consider three examples as myet(6).
A. The first example is reference A defined by
Mot (0) = ma(0) = mocos(6/2). (3.71)

In this case, the P-odd mass is simply neglected from the original Lagrangian
(3.43).

B. The second example is reference B defined by

mref(H) = mB(H)
= mgcos(0/2) + é {mosin(6/2)}” . (3.72)
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In this case, we have added the mZ-order correction due to the P-odd quark
mass. Here « is a parameter with mass dimension, so we simply choose ao = M.
The coefficient of the correction term is mg/M, = 0.129 MeV.

C. The third case is reference C defined by

Myret(0) = me(6)

= mgcos(0/2) + m]\o/[]\jﬁ sin?(6/2), (3.73)

,’7/

This case also has the m3-order correction, but « is different from reference B.

The coefficient of the correction term is moM2 /Mg, = 0.114 MeV.

Reference C is justified as follows. The pion mass M, (6) at finite 6 is estimated

from the chiral Lagrangian as [160, 161]:

~ 2 2 2
M2(9) = % %sin%@/%, (3.74)

- |cos(0/2)] +
where oy is the chiral condensate at T' = 6 = 0 and the coefficient [; is evaluated by

the 1/N, expansion as

f2
l7 ~ 7r2 . (375)
2M
The right-hand side of (3.74) is reduced to
~ M2
MZ2(0) = |;—2| mo|cos(0/2)] + mﬂ(}QWSiHQ(O/Q) : (3.76)
i n’

Equation (3.76) supports (3.73).

3.6 Numerical results

3.6.1 Mean field approximation

If some reference system satisfies the condition that (R(#)) ~ 1, one can say that
the reference system is good. As a typical example of the condition, we consider the
case of 0.5 < (R(#)) < 2. This condition seems to be the minimum requirement.
The discussion made below is not changed qualitatively, even if one takes a stronger

condition.
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Fig. 3.9 6 dependence of (a) the average reweighting factor and (b) M. at
T =100 MeV for the case of reference A.
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Fig. 3.10 0 dependence of (a) the average reweighting factor and (b) M, at
T =100 MeV for the case of reference B.

First we consider reference A. Figure 3.9(a) shows 6 dependence of (R(0)) at T =
100 MeV. The solid line stands for (R(#)), while the dashed (dotted) line corresponds
to Ry (Rq). This temperature is lower than the chiral transition temperature in the
original theory that is 212 MeV at § = 0 and 204 MeV at 6§ = 7. As 6 increases from
zero, (R(0)) also increases and exceeds 2 at § ~ 1.2. Reference A is thus good for

6 < 1.2. The increase of (R()) stems from that of Rq that depends on 7. This means
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Fig. 3.11 6 dependence of (a) the average reweighting factor and (b) M, at
T = 100 MeV for the case of reference C.

that the reliable 6 region in which 0.5 < (R(0)) < 2 becomes large as T increases.

Figure 3.9(b) shows 6 dependence of M, at T = 100 MeV. The solid (dashed) line
denotes M, in the original (reference A) system. At 0 = T, M, is finite in the original
system, but zero in reference A. As a consequence of this property, Ry and (R(9))
vanish at 0 = m; see Fig. 3.9(a). This indicates that reference A breaks down at
0 = m, independently of T

The same analysis is made for reference B in Fig. 3.10. M, in reference B well
reproduces that in the original theory for any 6, and (R()) satisfies the condition
0.5 < (R(0)) < 2forall 6. Since Ry ~ 1 in the most region of §, (R(0)) is governed by
Rq. Around 0 = m, Ry becomes small but still has a nonzero value because M, # 0
even at § = 7 in reference B. Therefore, the simple estimation for myes(0) (3.72) gives
available reference.

Finally we consider reference C through Fig. 3.11. M, in reference C well simulates
that in the original theory, and (R(6)) satisfies the condition 0.5 < (R(0)) < 2 for all
. This result is better than that in reference B. Therefore we can think that reference
C is a good reference system for any 6. This is true for any temperature larger than

100 MeV.
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Fig. 3.12 0 dependence of the average reweighting factor at T" = 100 MeV for
the case of reference C. Solid and dashed lines correspond to the result with and

without dynamical pion fluctuation respectively.

3.6.2 Effect of mesonic fluctuation

Beyond the mean field approximation, we estimate an effect of dynamical pion fluc-

tuations by modifying the thermodynamic potential to

where Qyp is the thermodynamic potential (3.45) with the mean-field level. Qpy is
the potential due to dynamical pion fluctuations [102],
Qpr = 3 / P 1y (1— e FPr) (3.78)
(2m)? ’ '
where E, = \/p 2 + M2, with M, determined by solving (3.54).

Figure 3.12 shows 6 dependence of (R(6)) at T'= 100 MeV for the case of reference
C. The solid and dashed lines correspond to results with and without dynamical pion
fluctuations, respectively. The effect makes (R) a little smaller and hence the reference
C becomes slightly worse. However, the modification is small , indicating that (R) is

well evaluated by the mean-field approximation
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3.7 Short summary

The 6 term in the QCD Lagrangian is an interesting subject, because it is related to
topologically nontrivial structure of QCD vacuum. Although 6 is small from experi-
ments, the topological structure itself is important from U(1)s anomaly. The 6 term
has been investigated as an external field to QCD, because it can be a useful probe to
observe non-perturbative properties of QCD vacuum. However, QCD phase structure
with finite 6 parameter is still unknown because the first-principle LQCD simulation
is not feasible. Hence, we have performed the following two kinds of analyses with
effective models.

First, we have investigated effects of the theta vacuum on the QCD phase diagram
for the realistic 2+1 flavor system, using the three-flavor PNJL and EPNJL models.
The effects can be easily understood by the SUa(3) ® Ua(1) transformation, (3.2)
and (3.3). After the transformation, the #-odd mass, m;sin(6/2), little affects the
dynamics, so that the dynamics is mainly governed by the 0-even mass, m; cos(6/2).
In the f-even mass, the increase of 6 corresponds to the decrease of m; with m fixed.
This means that the chiral transition becomes strong as € increases. This is true in
the results of both PNJL and EPNJL calculations. Particularly in the EPNJL model
that is more reliable than the PNJL model, the transition becomes first-order even at
1 =0 when 6 is large. This result is important. If the chiral transition becomes first
order at p = 0, it will change the scenario of cosmological evolution. For example, the
first-order transition allows us to think the inhomogeneous Big-Bang nucleosynthesis
model or a new scenario of baryogenesis.

Secondary, we have investigated a way of circumventing the sign problem in LQCD
simulations with finite 6, using the PNJL model. We have considered the reweighting
method for the transformed Lagrangian (3.28). In the Lagrangian, the sign problem
is minimized, since the P-odd mass is much smaller than the dynamical quark mass
of order Agcp. Another key is which kind of reference system satisfies the condition
(R(0)) ~ 1. We have then estimated (R()) by using the two-flavor PNJL model

and have found that reference C may be a good reference system in the reweighting
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method. We have performed a similar analysis with a more simplified model, the
NJL model [188]. The analysis gave qualitatively similar results, and it shows that
the dynamics is mostly dominated by chiral dynamics.

Since the present proposal is based on the model analysis, it is then not obvious
whether the proposal really works in lattice simulations. Therefore the proposal
should be directly tested by lattice simulations. A similar test was made for two-
flavor QCD with finite quark chemical potential p [102,189] where lattice simulations
have the sign problem. The average reweighting factor, i.e., the average phase factor
was evaluated by lattice simulations at ©/T" < 1 for T" around the critical temperature
of the deconfinement transition [189]. The PNJL model well reproduces the lattice
result, when the dynamical correction due to mesonic fluctuations is made to the
mean-field model calculation [102]. It is thus interesting that the present proposal is

directly tested by lattice simulations.



Chapter 4

QCD phase diagram based on LQCD

and NS measurement

We determine the quark-hadron transition line in the whole region of the
T-pp plane from LQCD results and neutron-star (NS) mass measurements,
making the quark-hadron hybrid model that is consistent with the two solid
constraints. The quark part of the hybrid model is the EPNJL model that
reproduces LQCD results at up /7 = 0, while the hadron part is the hadron
resonance gas model with volume-exclusion effects that reproduces NS mass
measurements and the neutron-matter equation of state calculated from the
two- and three-nucleon forces based on the chiral effective field theory. The
lower bound of the critical up of the quark-hadron transition at zero 7T is
up ~ 1.6 GeV for the isospin symmetric matter. The interplay between
the heavy-ion collision physics around pp/7T = 6 and the NS physics at
pup/T =1 is discussed.

65
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4.1 Introduction: Neutron star and equation of state

The phase diagram of QCD is a key to understanding not only natural phenomena
such as compact stars and the early Universe but also laboratory experiments such
as relativistic heavy-ion collisions [35, 36, 38,41, 56, 125]. The first-principle LQCD
simulation as a quantitative analysis of the phase diagram [41,56,125], however, has
the severe sign problem at middle and large ug/7T, where T' is temperature and up
is baryon-number chemical potential. Therefore the QCD phase diagram is still un-
known particularly at ug/T = 1, although many possibilities are proposed by effective
models there. A steady way of approaching the middle and large pup/T regions is
gathering solid information from different regions and extracting a consistent picture
from the information.

LQCD simulations are quite successful at ug/7 <1 [41-43,56,125,190-192]. They
are providing high-precision results for the realistic 2+1 flavor system at the present
day, for example the transition temperature, the equation of state (EoS), and fluctua-
tions of conserved charges [42,43,191,192]. As a way of extending the understanding
to the ug/T 2 1 region, we can consider effective models such as the PNJL model.
Actually, some improved versions of the PNJL model yield desirable results consistent
with LQCD simulations at ug/7 <1 [36,71,72,74,101,106]. However, the model
approach has still various ambiguity at large ug/T.

A key issue in the large pp /7T limit, i.e. at finite ug but vanishing 7', is the EoS
of nuclear matter. It is one of the most important subjects in nuclear physics to
understand properties of symmetric nuclear matter and neutron matter microscopi-
cally from realistic baryon-baryon interactions. Various theoretical frameworks have
been developed to study the subject. The results seem to be reliable because most of
them are now converging a common result, but the common result cannot reproduce
empirical saturation properties properly if one starts with realistic two-nucleon forces
(2NF). This insufficiency is probably due to the lack of including three-nucleon forces
(3NF). Recent development of the chiral effective field theory (Ch-EFT) [193,194]

provides a way of determining 2NF and 3NF systematically from symmetries of un-
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derlying QCD. Although the Ch-EFT interaction is, by construction, to be applied
at low and normal nuclear densities, the standard many-nucleon calculation using
the Ch-EFT 2NF and 3NF at these densities should provide the predictive base for
considering the neutron-matter EoS at higher densities. The combination of this new
constraint and the experimental constraint [195] evaluated from the heavy-ion colli-
sion measurements is considered to be useful to determine the nuclear-matter EoS
solidly.

The mass-radius (MR) relation of neutron star (NS) is sensitive to the nuclear-
matter EoS [196]. In this sense, astrophysical observations are another valuable source
of information to provide a strong constraint on the EoS. Recent observations suggest
the existence of massive NSs (~ 2M)), which seems to exclude the possibility of soft
EoS [197,198]. However, there exists uncertainties on the radius of NSs from various
observations. Steiner et al. have adopted the statistical approach to constrain this
uncertainty, and have provided the best fitting against various observations on the
MR relation [199].

There is a possibility that the quark-hadron phase transition occurs in NSs. The
observations on the MR relation yield a strong constraint on both the quark and
hadron phases, while the nuclear-matter EoS determined from the Ch-EFT 2NF and
3NF and the heavy-ion collision measurements does on the hadron phase. Therefore,
the combination of the solid constraints may answer an important question, whether
the quark-hadron phase transition occurs in NSs and further what is the critical
chemical potential of the transition if it occurs. This is nothing but to clarify the
QCD phase diagram in the large pp /T limit.

In this chapter, we determine the QCD phase diagram in the whole region from
pup/T = 0 to infinity, constructing a reliable quark-hadron hybrid model. The quark
part of the hybrid model is the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL)
model with entanglement vertex that reproduces LQCD data at finite imaginary ug,
finite real- and imaginary-isospin chemical potentials, small real ug [101, 106], and
strong magnetic field [81]. The hadron part of the hybrid model is the hadron reso-
nance gas (HRG) model with volume-exclusion effect that reproduces the NS observa-

tions and the nuclear-matter EoS evaluated from the Ch-EFT 2NF and 3NF and the
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heavy-ion collision measurements. The volume-exclusion effect is necessary to repro-
duce the repulsive nature of the nuclear-matter EoS. The EoS provided by the hybrid
model preserves the causality even at high pp. In order to construct the nuclear-
matter EoS from the Ch-EFT 2NF and 3NF, we employ the lowest-order Brueckner
theory (LOBT) in pure neutron matter with the Jiilich N®LO interaction [200]. The
lower bound of the critical up of the quark-hadron transition at 7" = 0 is found to
be pup ~ 1.6 GeV for the isospin symmetric matter. We also investigate the inter-

play between the heavy-ion collision physics around pp /T = 6 and the NS physics at
up/T = oo.

4.2 Model setting

We consider a two-phase model to treat the quark-hadron phase transition by as-
suming that the transition is the first order [113,114,201-205]. For the quark phase,
we use the 2-flavor EPNJL model [101, 105, 106] which yields consistent results with
LQCD data for finite imaginary ugp, finite real- and imaginary-isospin chemical po-
tentials, small real pp [101,106], and strong magnetic field [81]. For the hadron phase,
we use the HRG model. The model is successful in reproducing the QCD EoS below
the transition temperature at ug/7T = 0 [42,43,191,192]. This model is extended
for the baryon part to include the volume-exclusion effect. The effect is necessary
to reproduce the repulsive nature of the nuclear-matter EoS. The volume-exclusion
radius is fitted to reproduce the nuclear-matter EoS determined from the Ch-EFT
2NF and 3NF and the heavy-ion collision measurements.

In this work, we consider the 2-flavor system and do not take into account the ex-
istence of hyperons [206]. Even with hyperons, the fraction of hyperons is suppressed
by the existence of quarks in NS [207]. Hence, the possibility of the appearance of
quarks is first discussed in this thesis. The possibility of the appearance of hyperons

will be discussed in a forthcoming paper.
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4.2.1 Quark phase

We first consider the quark phase with the two-flavor EPNJL model. The Lagrangian

density is obtained in Euclidean spacetime by

Lepnit = G(vv Dy +110 — 1) — G(®)[(q9)* + (qivsTq)?] +U(P[A], @*[A], T), (4.1)

where D, = 0, — 6,445\, /2 with the Gell-Mann matrices \,. The two-flavor quark
fields ¢ = (qu,qa) have masses my = diag(my,mq), and the quark-number chemical
potential matrix [ is defined by i = diag(uy, pa). For simplicity, we assume isospin
symmetry for u and d masses: m; = m, = mq.

Performing the mean-field approximation and the path integral over the quark field,

one can obtain the thermodynamic potential Q (per volume):

3
% _ G(®)o? +U — 2N, f;d/A (;iﬁz)??) By
_QT];[C fzd/ %{ln[l + 3De B Er—ns) 4 3p*e=2P(Er—ns) 4 o=38(Er—ny)
+1In [1 + 3;I>*6_B(Ef+“f) + 3P 20 Ertus) 4 e_gﬁ(Eer’“‘f)] } (4.2)
with

Ep =02+ M2, M;=mo—2G(®)o, o=(qq). (4.3)

The quark-number densities n, and nq are obtained by

- (2) "

for f =u,d and pressure P is defined as P = —(Q2 + €y)/V, where g is thermody-
namic potential at T' = pu, = puq = 0.

The classical variables X = ®, ®* and o are determined by the stationary conditions

o0

7% =0 (4.5)

The solutions to the stationary conditions do not give the global minimum of €2

necessarily. They may yield a local minimum or even a maximum. We then have
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checked that the solutions yield the global minimum when the solutions X (7', py, f4d)
are inserted into Eq. (4.2). In this work, we employ an approximation ® = ®* for
numerical simplicity, because the approximation is good and hence sufficient for the
present analysis [102].

Repulsive forces among quarks are crucial to account for the 2M-NS observa-
tion [113,114,208], since they harden the EoS of quark matter. We then introduce
the vector-type four-body interaction to the EPNJL model [99],

Lepnin — Lepnin + Gv(37.9)* (4.6)

The corresponding thermodynamic potential is obtained by the replacement,

frf = prp —2Gyng, (4.7)
G(®)o? = G(P)o? — Gyngl (4.8)

with ng = (q¢"q). Here, nq is determined in a self-consistent manner to satisfy the
thermodynamic relation (4.4). The parameter Gy is treated as a free parameter in
this thesis. Gy dependence of the quark-hadron phase transition will be discussed in

Sec. 4.3.

4.2.2 Hadron phase

Now we consider the hadron phase by using the HRG model and its extension. The

pressure of the HRG model is composed of meson and baryon parts,
Py =Pu+ Ps (49)

where Py, Py and Ppg are pressures of hadronic, mesonic and baryonic matters, re-
spectively.
In the quark phase, the u- and d-quark chemical potentials, u, and uq, are described

by the baryon-number and electric chemical potentials, ug and uq, as

2
Hu = MB/?’ + gluQa (410)

1

fta = pB/3 — 3haQ- (4.11)
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In the hadron phase, meanwhile, the chemical potentials of proton, neutron and the

ith meson with electric charge @); are expressed by pp and pq as

fip = UB + HQ, (4.12)
fin = LB, (4.13)
iy = Quprey (414)

respectively. For the QCD phase diagram, we consider only the case of the symmetric-
nuclear matter with pq = 0. In the NSs at zero 7', meanwhile, there exist protons,
neutrons, mesons and electrons. For simplicity, however, we neglect electrons and the
Bose-Einstein condensation of mesons. This approximation is numerically confirmed
to be valid; further analyses will be made in the forthcoming paper. In this case, the
nuclear matter becomes the neutron matter because of the 3 equilibrium, i.e., p, =0
and pu, = pug > 0.

For the meson sector, we use the HRG model with no extension:
Pa=S"ar [ EP 1y (12 empE-m) 4.15
=D [ gyt (1 ) 9

E;=\/p2+ M2, (4.16)

where the ¢ summation is taken over all meson species constituted by u and d quarks

in the quark model. Here, M;, d; and p; are mass, degeneracy and chemical potential
of the 7th meson, respectively. At T' = 0, this simple formula yields the Bose-Einstein
condensate when ui; > M;. However we neglect the effect by assuming pi; < M; in
order to reproduce the 2M-NS observation. This assumption is justified, if the M;
increase at high densities and keep pui; < M; by the mechanism such as the chiral
symmetry restoration. The assumption leads to Py; = 0 in the NSs at T' = 0, that is,
mesons do not directly contribute to the NS physics under the assumption.

The baryon sector is described by proton and neutron gases with the volume-
exclusion effect [105,209,210] in order to reproduce the repulsive nature of the nuclear-
matter EoS determined from the Ch-EFT 2NF and 3NF and the heavy-ion collision
measurements that will be shown later in Sec. 4.2.3.

We consider the system of protons and neutrons having a finite volume v that is
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characterized by the thermodynamic variables (T, V, yip, ptn). Here, we assume that v
is isospin symmetric; see the next section for the concrete expression of v. Following
Refs. [105,209,210], we approximate the system of the finite-volume particles by the
mimic system of point particles with (T, V, fip, fin) defined by

V =V —vuNg, (4.17)
,&i = W5 — ’UPB, (418)
where Np is the total baryon number. The Pg and Np should be the same between
the original and mimic systems. The chemical potential fi;(i = p,n) of the mimic

system is determined to preserve the thermodynamic consistency. The pressure of

the mimic system is obtained by

Py=7 Z/ n (14 e #E)) o (14 ¢~ | (4.19)

with F = \/p? + M?, M, = 938 MeV, and M,, = 940 MeV [2]. The entropy density
(s) and the number densities (np,n,) in the original system are obtained from those

in the mimic system as

(4.20)

where ng = np + i, and

0Pg
Ofii

(4.21)

n; =

with ¢ =p,n

In the present formalism, the antiparticles have negative volumes, but the effects
are negligible at both low and high densities. At low densities, the baryon number
is small and hence the volume exclusion effect does not become relevant. At high
densities, the particle number is much larger than the antiparticle number, and hence

the net volume of antiparticles is negligibly small compared with that of particles.

423 LOBT calculation with Ch-EFT interactions

The Brueckner theory is a standard framework to describe nuclear matter starting

from realistic 2N interactions. The reaction matrix G, defined by the G-matrix equa-
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tion
Q

Gio, 4.22
w—(t1 + Uy +ta + Us) 2 ( )

Gi2 = v12 + V12

properly deals with short range (high momentum) singularities of the 2N potential
v12. The self-consistent determination of the single-particle (s.p.) potential U,

occupied
WUli) = Y (i|Gaalij — ji) (4.23)
j

corresponds to the inclusion of a certain class of higher-order correlations. In the above
expression, () stands for the Pauli exclusion, t; is a kinetic energy operator, and w
is a sum of the initial two-nucleon s.p. energies. The reliability of the lowest-order
calculation in the Brueckner theory has been demonstrated by the estimation of the
smallness of the contribution of higher-order correlations on the one hand and by the
consistency with the results from other methods such as variational framework [211].
The Ch-EFT provides a systematic determination of 2NF and 3NF. It is pro-
hibitively hard, at present, to do full many-body calculations for infinite matter with
including 3NF. The effects can be estimated by introducing a density-dependent effec-

tive 2N force v;g(3) obtained by folding the third nucleon in infinite matter considered:

/ ! __/ / ! __/!
(k101 11, kYo5Ts|v12(3) k10171, k202T2) A

§ : !/ It
= < 1O'1T1,k20'272,kgO’ng’UlgglklUlTl,k20'27'2,kgO’ng)A, (424)

ksosrs

where o and 7 stand for the spin and isospin indices, and two-remaining nucleons are
assumed to be in the center-of-mass frame, namely k} + k5 = ki + ko. The suffix
A denotes an antisymmetrized matrix element. The G-matrix equation is set up for
the two-body interaction vio + %012(3). The factor % is necessary for properly taking
into account the combinatorial factor in evaluating the total energy. The LOBT G-
matrix calculation in this approximation turns out to give quantitatively satisfactory
description for the fundamental properties of nucleon many-body systems, namely
saturation and strong spin-orbit field: the latter is essential for accounting for nuclear
shell structure. These results were briefly reported in Ref. [212].

In neutron matter, the contact cg term of the Ch-EFT 3NF vanishes and the cp

term contributes negligibly. This means that the 3NF contributions in neutron matter
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are determined by the parameters that are fixed in the 2NF sector. Thus ambiguities
concerning the 3NF contributions are minimal with the use of the Ch-EF T, in contrast
to past studies in which phenomenological regulations were often applied. Because
many-body correlation effects are expected not to be large because of the absence
of strong tensor-force correlations in the *E channel, the LOBT energies should be
reliable in neutron matter.

Calculated energies of neutron matter with and without 3NF are shown in Fig. 4.1,
where the cutoff energy Agpr of the Ch-EFT 2NF and 3NF is 550 MeV. The solid
and dashed curves are results using the Ch-EFT interactions with and without 3NF,
respectively. The energy curve without 3NF is very close to that of the standard
modern 2NF, AV18 [213]. For comparison, energies from the variational calculation
by Illinois group [214] are included, which are frequently referred to as the standard
EoS for discussing NS properties although their 3NF is phenomenological to some
extent. It is interesting that the present prediction based on the Ch-EFT shows good
correspondence to those energies.

In the application of the Ch-EFT, an estimation of theoretical uncertainties due
to the uncertainties of the low-energy constants is customarily presented. As for the
neutron-matter EoS, it is instructive to consult the estimation by Kriiger et al. [215].
They show, in their Hatree-Fock type calculations, that the neutron-matter energy
at saturation density is in a range of 14 ~ 17 MeV for the Ch-EFT potential of the
Jidlich group [200] with the cutoff parameter of 450 ~ 700 MeV from uncertainties of
coupling constants and cutoff parameters as well as many-body theoretical treatment.
Following this estimation, we add the shaded are to indicate possible uncertainties,
simply assuming the +8 % of the potential contribution, which is —18.6 MeV at

saturation density.
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Fig. 4.1 Neutron-matter energies as a function of the density ng. The solid
and dashed curves are results of the Ch-EFT interactions with and without 3NF,
respectively. The shaded area shows possible uncertainties mentioned in the text.
The dotted curve shows results of the AV18 2NF [213]. The typical result of the
variational method by the Illinois group [214] is included by a dot-dashed curve,
in which the Urbana 3NF is used together with the AV18.

4.3 Numerical results

4.3.1 Zero temperature

At zero temperature, the present hybrid model becomes simpler. Mesons do not
contribute to the pressure, and the quark phase is described by the NJL model, since
the EPNJL model is reduced to the NJL model there. In this section, we discuss the
MR relation of NS, assuming that the hadron phase is a neutron-matter system.

The NJL model for the quark phase is solved under the condition

2ny = Ng, (4.25)

and the neutron-number density (n,) and its chemical potential (u,) are given by

2ng4 — Nu

M = =2, = f + 2uq. (4.26)
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In the HRG model for the hadron phase, neutrons are assumed to have the exclusion

volume v which depends on jig = ji,,. The dependence is parameterized as

4 3

V=TT

3 excl’ (4 27)

Texcl(ﬁB) =T0 + 7’1/1]3 + 7’2/]28. (4.28)

Figure 4.2 shows ng dependence of the neutron-matter pressure; note that ng = n,
in neutron matter and it is normalized by the normal nuclear density py = 0.17
(fm™*). Closed squares denote the results of LOBT calculations with the Ch-EFT
2NF and 3NF. The results are plotted in the region of ng < 2pg, since the Fermi
energy becomes larger than the cutoff energy Aggrr beyond ng = 2pg. As shown in
panel (a), the result (solid line) of the HRG model with the volume-exclusion effect

well reproduces the results of LOBT calculations at pg < np < 2pg, when

ro = 0.50(fm), (4.29)
r1 = 0.50(fm/GeV), (4.30)
ry = —0.34(fm/GeV?). (4.31)

More precisely, the model result needs the small correction P — P —2(MeV /fm?), but
the error is smaller than the theoretical uncertainty of the Ch-EFT EoS estimated in
Sec. 4.2.3. For npg < pg, the agreement of the extended HRG model with the Ch-EFT
EoS is not perfect, so the Ch-EFT EoS itself is used there whenever the MR relation
is evaluated.

In panel (b), the neutron-matter pressure is plotted at higher ng. The hatching
area shows the empirical EoS [195] evaluated from heavy-ion collisions in which the
uncertainty coming from the symmetry energy is taken into account. The present
HRG model is also consistent with this empirical result.

The speed of sound (cg) relative to the speed of light (¢) is obtained by

Cs . dP
— = \/ = (4.32)

with the energy density €. The ratio cg/c should be smaller than 1 to preserve the
causality. As shown in Fig. 4.3 that shows ng dependence of c¢g/c, the present HRG

model satisfies the causality even in the high-density region.



4.3 Numerical results 77

25
200 @
mf\
E 15} A
>
[¢D)
210}
[ |
a
5, i
Neutron model —
. an " ChEFT =
025 05 0.5 1 125 15 1.75 2
Ng/Po
100, ®)
(Y')A
S
S 10¢
(]
2
o |
1p = Exp.+Asy_soft
iy Exp.+Asy_stiff
. Neutrorcl:rrWnCé?:(_eI] e
- | |
0.1 : : : :
0 1 2 3 4 5
Ng/Po

Fig. 4.2 Baryon-number density (ng) dependence of pressure (P) for neutron
matter. np is normalized by the normal nuclear density po = 0.17 (fm~?). In

the panel (b), experimental data is taken from Ref. [195].

Figure 4.4 shows ng dependence of the neutron exclusion radius rexc;. The resulting
Texcl determined from the Ch-EFT and the empirical EoS has weak ng dependence
and the value is around 0.6 fm that is not far from the proton charge radius 0.877
fm [2]. This fact implies that the present model is reasonable as an effective model.

The MR relation of NS is obtained by solving the static and spherically symmetric
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Fig. 4.3 Baryon-number density (ng) dependence of the speed of sound (cs) in

neutron matter.

Einstein equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation,

dpP P A Pr3 2 -
—:—GNE—m 1+ 2y (14 mPr 1 Gnm ,
dr r2 € m 7

dm
dr

= 4nrie (4.33)

with Gy being the gravitational constant [216], where

m(r) = / 4" e(r")dr! (4.34)
0

corresponds to the gravitational mass of the sphere of radius r. The solutions, m(r)
and P(r), can be obtained by integrating the TOV equations numerically, when the
EoS, P = P(e), is given. The integration stops at » = R where P(R) = 0, and
the maximum value R is the radius of NS and the mass is given by M = m(R).
Here, we adopt the Baym-Pethick-Sutherland (BPS) EoS for the outer crust [217].
Although, for the inner crust, we should consider the non-uniform structures, namely
the pasta structures [218], we just connect the outer crust EoS to the Ch-EFT EoS at
the subnuclear density smoothly, since this simplification does not affect on the MR

relation. Similarly the Ch-EFT EoS is connected to the HRG-model EoS at ng ~ po.
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Fig. 4.4 Baryon-number density (ng) dependence of neutron exclusion radius (7exci)-

Figure 4.5(a) shows the whole EoS.

Figure 4.5(b) shows the MR relation obtained by the hadron model mentioned
above. The model result (dashed line) is compared with two observation data. The
first one obtained by A. W. Steiner et al. is the best fitting against various obser-
vations on the MR relation [199]. This is not a strong constraint because of the
uncertainty of the analysis particularly on X-ray burst phenomena. The second one
has been obtained by P. B. Demorest et al. from measurements of pulsar J1614-
2230 [198]. This yields the lower bound of maximum NS mass, M = (1.97+0.04) M,
and is a strong constraint. The present hadron model yields a consistent result with
both the observations.

Next, we consider the quark-hadron transition with the Maxwell construction by
assuming that the transition is the first-order. The transition occurs, when the two

phases satisfy the conditions

fiu 2414 = fin, (4.35)

Pq (s pta) = Pr(fin)- (4.36)

Here we do not consider the finite-size effects due to the Coulomb interaction and the



80 Chapter 4 QCD phase diagram based on LQCD and NS measurement

1000+ (a) 1
—
mé 100 ¢
S
(O]
= 10}
o
1 L
Hadron model
| | | | Gv = 0.03Gs —
O 025 05 075 1 125 15 175 2
£ (GeV/fim®)
2.5
(b)
2 S 1
3 15t
=
=
1 L
Steiner ==
Demorest
0.5 Hadron model
Gv = 0.03Gs —

4 6 8 10 12 14 16 18
R (km)

Fig. 4.5 (a) The equation of state and (b) the mass-radius relation obtained
by the neutron matter with and without the quark-hadron transition. The two

observation data are taken from Ref. [198,199].

surface tension [219]. We will study these effects on the EoS in the future.

Once the quark phase appears as a consequence of the quark-hadron phase transi-
tion, it softens the EoS. The quark-matter part of the EoS depends on the strength of
Gv; more precisely, it becomes hard as Gv increases. Hence, the lower bound of Gy

is determined from the 2M-NS observation. The lower bound of such Gv is 0.03Gg,
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as shown below. Figure 4.5 shows (a) the EoS and (b) the MR-relation determined
by the present hybrid model. The solid line shows the result of the hybrid model
with Gy = 0.03Gg, while the dashed line represents the result of the hadron model,
i.e., the hybrid model with Gy = oco. The hybrid model is thus consistent with the
2M-NS observation, when Gy > 0.03Gs.

Strictly speaking, the upg dependence of v breaks the thermodynamic consistency

oPs =
Ojis
np
— B 4.37
T— (4.37)
but the breaking effect is small in the present analysis on the MR relation. At T'=0

of our interest, the left-hand side of Eq. (4.37) can be rewritten into

8PB . 6PB 8#]3
6/1]3 8/,LB 8[1]3
6PB ~ 81}
=—1 —h 4.
8#]3 ( —+ vnp + 8;23 B) ( 38)

in Fig. 4.6, the breaking term A = (0v/Jfp)Ps. is plotted as a function of the

baryon-number density (ng). The term is much smaller than 1 even at high densities

and hence the thermodynamic consistency is satisfied with good accuracy.

4.3.2 Finite temperature

In this section, we consider the symmetric matter by setting u, = pun, = pp and
tu = pa = pup/3. Understanding of the symmetric matter at finite 7" is important to
elucidate early universe or heavy-ion collisions.

Figure 4.7 shows T dependence of (a) the pressure and (b) the energy density
obtained by the hybrid model in comparison with LQCD results at vanishing chemical
potential [190]. Here, T"is normalized by the deconfinement transition temperature 7.
The deconfinement transition is crossover at ug = 0 in both of LQCD simulations and
the EPNJL model. The transition temperature defined by the peak of susceptibility
is T. = 174 MeV for both the results [101]. The hybrid model (solid line) shows the
first-order quark-hadron transition, whereas the LQCD simulations (closed squares)

do the crossover transition. Except for the transition temperature T' ~ 1.17, of the
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Fig. 4.6 Baryon-number density (ng) dependence of the breaking term (A) in
Eq. (4.38) for the neutron matter.

first-order quark-hadron transition, the model results almost reproduce the LQCD
results.

Figure 4.8 is the phase diagram in the pup-7" plane. The thick solid line is the
quark-hadron transition line obtained by the hybrid model with Gy = 0.03Ggs. The
transition is the first order everywhere. In this sense, this is an approximate result
at least at ug/T < 1, since LQCD simulations show that the deconfinement (quark-
hadron) transition is crossover there. As an important result, the first-order quark-
hadron transition line is close to the crossover deconfinement transition line (dot-
dashed line) obtained by the EPNJL model at ug/T" < 1, where the deconfinement
transition line is simply defined as a line satisfying ® = 0.5. Noting that the EPNJL
model well simulates LQCD results at ug /T < 1, one can see that the present hybrid
model is a rather good effective model even at small ug/T. The dashed and dotted
lines correspond to the first-order and crossover chiral transition lines, whereas the
closed square is the critical endpoint (CEP) of the chiral transition.

As already mentioned in Sec. 4.3.1, the present hybrid model is consistent with

the NS observations at T" = 0, when Gy > 0.03Gg. In the hybrid model with
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Fig. 4.7 T dependence of (a) the pressure and (b) the energy density obtained
by the hybrid model at vanishing chemical potential. The results are normalized

by their Stefan-Boltzmann limits. LQCD data is taken from Ref. [190].

Gv = 0.03Gg, the critical baryon-number chemical potential ,u]gc ) of the first-order
quark-hadron transition at 7'= 0 is 1.6 GeV, as shown in Fig. 4.8. This is the lower
bound of M](; ), since Gy can vary from 0.03Gg to oo; actually, /L](; ) is shifted to higher
up as Gy increases, as shown later in Fig. 4.9. This is the primary result of the

present work. In the EPNJL model, meanwhile, the critical baryon-number chemical
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Fig. 4.8 Phase diagram in the pg-7T plane. The solid line represents a quark-
hadron transition line given by the hybrid model. The other lines and symbol
are obtained by the EPNJL model. The dashed (dotted) line correspond to the
first-order (crossover) chiral transition line, and the dot-dashed line is a contour

line corresponds to ® = 0.5. The closed square is the critical endpoint (CEP).

potential of the chiral transition at 7" =0 is 1 GeV. The point belongs to the hadron
phase in the hybrid model. Thus, we do not have any conclusive result on the chiral
transition at 7' = 0. This is an important problem to be solved in future.

In principle one can determine the strength of Gy from LQCD simulations present
at up/T < 3, but in practice the strength thus determined has large ambiguity [73,89].
Figure 4.9 shows the phase diagram in the pug-7T plane predicted by the hybrid model
with different values of Gy. The dashed and solid lines correspond to the cases of
Gv = 0.03Gs and 0.2Gg, respectively. The phase transition line is insensitive to the
variance of Gy at ug/T < 3, but rather sensitive at pup/T =~ 6. Thus the physics at
pus/T = 6 is strongly related to the NS physics at up/T = oco. If the quark-hadron
transition line at pup /T = 6 is determined by LQCD simulations or heavy-ion collision

experiments, it will also determine ,u](3c ) more strictly.
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Fig. 4.9 Phase diagram in the pup-7T" plane. The dashed line is the result of the
hybrid model with Gy = 0.03Gs; the line corresponds to the thick solid line
in Fig. 4.8. The thick-solid line corresponds to the case of Gy = 0.2Gs. Two

thin-solid lines mean lines of ug/T = 3 and 6, respectively.

4.4 Short summary

QCD phase diagram for finite pp is still unknown because the first-principle LQCD
simulation is not feasible there. However, information on this region can be obtained
from by Neutron-star observations with the development of observation technique.
In particular, the 2M-NS measurement should give a strong constraint to the QCD
phase transition at 7" = 0.

We have studied the QCD phase diagram in the whole region from ug/T = 0 to
infinity, constructing the quark-hadron hybrid model that is consistent with LQCD re-
sults at pup /7T = 0 and with NS observations, the neutron-matter EoS evaluated from
the Ch-EFT 2NF and 3NF, and the EoS obtained by the heavy-ion collision measure-
ments at ug/T = oo. The EoS provided by the model preserves the causality even
at high ng. At ng < 2pg the baryon part of the EoS agrees with the neutron-matter
EoS constructed from the Ch-EFT 2NF and 3NF with the lowest-order Brueckner
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theory (LOBT). The Ch-EFT provides a systematic framework of constructing 2NF
and 3NF, and the 3NF yields a significant effect on the EoS at ng > pg. In this sense,
the use of the Ch-EFT, which respects symmetries of QCD, is inevitable to construct
the neutron-matter EoS with no ambiguity.

We have determined the lower bound of the critical chemical potential (,ul(gc )) of the

quark-hadron transition at 7' = 0 for the isospin-symmetric matter:

1) ~ 1.6 GeV. (4.39)

This is the primary result of this work. In the NJL model, the first-order chiral
transition occurs at p](; ) =1 GeV, when T' = 0. The point is located in the hadron
phase in the hybrid model. The critical chemical potential of the chiral transition at
T = 0 is thus unknown. In this sense, the NJL model is not good enough at T' = 0. It
is then highly required to introduce baryon degrees of freedom in the effective model.

We have also shown the interplay between the heavy-ion collision physics at ug /7T =~
6 and the NS physics at up/T = oco. If the vector coupling Gy is determined at
pup/T =~ 6 from heavy-ion collision measurements, the information determines the
critical chemical potential of the quark-hadron transition at 7' = 0 and hence proper-
ties of NS in the inner core. This fact strongly suggests that these two regions should

be studied simultaneously.



Chapter 5

Summary

Elucidation of the QCD phase diagram is an important and interesting subject in
hadron physics. Rich structure of the phase diagram is relevant to the cosmic evolution
and neutron-star structure. Almost all the region of the diagram is still unknown,
since the first-principle LQCD simulations are not feasible for finite density because
of the sign problem. We have analyzed the QCD phase diagram by using the EPNJL
model as a most reliable effective model. The model can treat confinement and
spontaneous chiral-symmetry breaking simultaneously and quantitatively. We have

applied the EPNJL model to three characteristic subjects:

(1) Quark mass dependence of RW endpoint
(2) 6 parameter dependence of QCD phase diagram
(3) QCD phase diagram and NS observations

All the subjects are originated in nonperturbative properties of QCD vacuum.

At pure-imaginary chemical potential discussed in subject (1), LQCD simulations
are feasible, since they have no sign problem there. The RW endpoint is a critical
endpoint of the first-order RW phase transition that appears at 8, = 7/3. Quark-mass
dependence of the order of the RW endpoint is analyzed by LQCD simulations.

In subject (1), we have extended the three-flavor PNJL model by introducing an
entanglement vertex Gg(®). The entanglement PNJL (EPNJL) model reproduces
241 flavor LQCD data for the chiral transition at © = 0 and degenerate three-flavor

87
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LQCD data calculated very lately for the ordeer of the RW endpoint. The EPNJL
model is thus quite reliable. We have then drawn the three-flavor phase diagram for
the RW endpoint in the m;-mg plane by using the EPNJL model. This is the first
prediction for the phase diagram.

0 parameter discussed in subject (2) is a free parameter of QCD and is related to
topological nature of QCD vacuum and U(1)s anomaly. The 6 term can be treated
as an external field to QCD and is a useful probe to investigate nonperturbative prop-
erties of QCD vacuum. However, the QCD phase structure for finite 6 is unknown,
since LQCD simulations have the sign problem there.

In subject (2), we have investigated effects of the theta vacuum on the QCD phase
diagram for the realistic 241 flavor system, using the three-flavor PNJL and EPNJL
models. The effects can be easily understood through the #-dependent mass terms.
The 6-odd mass, m;sin(0/2), little affects the dynamics, since m; is much smaller
than Aqcp as a typical scale of QCD. The dynamics is therefore mainly governed by
the #-even mass, m; cos(0/2). In the f-even mass, the increase of 6 corresponds to the
decrease of m; with mg fixed. This means that the chiral transition becomes strong
as 0 increases. This is realized in the results of the EPNJL model and the transition
becomes the first order even at ;4 = 0 when 6 is large. Moreover, we have proposed a
way of circumventing the sign problem in LQCD simulations with finite 6, using the
PNJL model. We have estimated the average reweighting factor (R(€)) by using the
two-flavor PNJL model and have found a good reference system in the reweighting
method.

For finite pp discussed in subject (3), the QCD phase diagram is not known at
all, because the first-principle LQCD simulations have the sign problem there. How-
ever, information on this region can be obtained from neutron-star (NS) observations
through the development of observation technique. In particular, the 2M4-NS mea-
surement yields a strong constraint on the QCD phase transition at 7" = 0.

In subject (3), we have studied the QCD phase diagram in the whole region from
pup/T = 0 to infinity, constructing the quark-hadron hybrid model that is consistent
with LQCD results at up /7T = 0 and NS observations and heavy-ion collision measure-

ments at up /7T = oo. The EoS determined by the model preserves the causality even
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at high ng. At ng < 2pg, the baryon part of the EoS agrees with the neutron-matter
EoS constructed from the Ch-EFT 2NF and 3NF with the lowest-order Brueckner
theory (LOBT). Here the Ch-EFT is a systematic framework of constructing 2NF
and 3NF, and the 3NF yields a significant effect on the EoS at ng > po. In this sense,
use of the Ch-EFT, which respects symmetries of QCD, is inevitable to construct the
neutron-matter EoS with no ambiguity. We have determined the lower bound of the

critical chemical potential of the quark-hadron transition at 7' = 0:

1) ~ 1.6 GeV. (5.1)

This is the primary result of this thesis. In the NJL model, the first-order chiral
transition occurs at ,u](gc ) =1 GeV, when T' = 0. The point is located in the hadron
phase in the hybrid model. The critical chemical potential of the chiral transition
at T' = 0 is thus unknown. In this sense, the NJL model is not good enough at
pup/T = oo. It is then highly required to introduce baryon degrees of freedom in the
effective model.

Throughout all the studies on subjects (1)-(3), we can understand all the regions of
the QCD phase diagram by using a common low-energy effective model of QCD, that
is the EPNJL model. This indicates that the QCD phase diagram can be described
< 600 MeV. In particular,

Y

by a single effective model for 77 < 600 MeV and fiq
the EPNJL model is quite consistency with LQCD data, as shown in Chap.2. This
means that the model yields a good picture to understand QCD phase structure
at p1q/T < 1. However, as shown in chapter 4, the baryonic degrees of freedom
are crucial to describe high-density QCD matter, but not included in the PNJL-type
models completely. We should improve the EPNJL model along this line. This is with
yield an essential progress to understand QCD dynamics including the confinement

mechanism.
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