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Abstract

We consider a two-dimensional Ising field theory on a space with boundary in
the presence of a piecewise constant boundary magnetic field which is allowed
to change value discontinuously along the boundary. We assume zero magnetic
field in the bulk. The positions of discontinuities are averaged over as in the
annealed disorder. This model is described by a boundary field theory in which
a superposition of the free spin boundary condition is perturbed by a collec-
tion of boundary condition changing operators. The corresponding boundary
couplings give the allowed constant values of the magnetic field as well as the
fugacities for the transitions between them. We show that when the value of
the magnetic field is allowed to take only two different values which are the
same in magnitude but have different signs the model can be described by a
quadratic Lagrangian. We calculate and analyse the exact reflection matrix for
this model. We also calculate the boundary entropy and study in detail the space
of RG flows in a three-parameter space and with four different infrared fixed
points. We discuss the likely breakdown of integrability in the extended model
which allows for two generic values of the boundary magnetic field, backing it
by some calculations.
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1. Introduction

The two-dimensional Ising model on a half-plane with a boundary magnetic field was consid-
ered in [1] and later in [2]. In the continuum limit this model was first studied in [3] where
it was written as a free fermion field theory with a particular boundary interaction term. As
the boundary term is also quadratic in the bulk and the boundary fermion fields many quanti-
ties can be calculated exactly. Various aspects of this boundary field theory were subsequently
studied in [4-19].

The critical Ising model with a boundary magnetic field can be described as a perturbed
boundary conformal field theory (BCFT). The critical Ising model is described as the Virasoro
minimal model M (3, 4) and it has three conformal boundary conditions corresponding to the
free or fixed boundary spins in the underlying lattice model. The free boundary condition has a
relevant boundary operator o of dimension 1/2 that describes the boundary spin. Let Sgcpr be
the Euclidean action that describes the critical Ising model with free spin boundary condition
on the upper half plane and let z = x + iy, Z = x — iy be the complex coordinates. Switching
on the boundary magnetic field amounts to deforming the action as

o0

1= Sucrr +1 [ oncod (L.1)
Here £ stands for the value of the boundary magnetic field and is a relevant coupling. The RG
flow interpolates between the free and fixed spin boundary conditions.

The model (1.1) can be generalised to a perturbation of a superposition of N > 1 free bound-

ary conditions. Let i = 1, ..., N be the index labelling a copy of the free boundary condition.
The boundary primaries on the superposition are dimension 1/2 fields ag’] and dimension zero
fields x'/! with i, j = 1, ..., N. Our conventions are such that the field insertion 01[3’” (x) has the

ith copy of the boundary condition to the right of x and the jth copy to the left, and similarly
for x[/!. We can then consider the most general relevant deformation

N (o] (o]
Shijﬂmij = Spcrr + Z {hij/ Ugﬂ(x)dx + mij/ Xlijj(x)dx:| . (1.2)
i,j=1 i e
Here the coupling constants are arranged into two N X N matrices: h;; and m;;. For the perturbed
theory to be unitary these matrices have to be Hermitian.

The physical interpretation of the fields ag’] and Y/ may not be immediately clear. By
taking the N copies of the free boundary condition we have now endowed the boundary with
additional degrees of freedom. As in the Kondo model we could try to interpret these degrees
of freedom as those of an impurity particle located at the boundary. Thus in the BCFT approach
to Kondo model (see e.g. [20]) the fields x!/! describe the impurity spin degrees of freedom.
As far as we can see this interpretation does not help with giving a physical meaning to (1.2).
Instead we are offering a different kind of physical interpretation in terms of a non-constant
boundary magnetic field with a fluctuating profile. As we will explain below the eigenvalues
of h;; give possible values of the boundary magnetic field while the values of the couplings m;;
are related to statistical weights of different profiles.

Let us consider a deformed correlation function corresponding to (1.2) with some local
insertions and some choice of vacua at x — +00

<. .. >h,m;IJ = <exp(—S;,,.j,m,.j) e >0;1]. (13)
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Here the ellipsis stands for some local operator insertions and { )o.;; denotes the correlator
in the unperturbed BCFT with the /th copy of the boundary condition at x — oo and the Jth
copy at x — —oo. We can expand the exponential to obtain a series of boundary conformal
perturbation theory. For boundary condition changing operators it was considered in [21]. We
choose the normalisations of the x!"/! fields so that they satisfy the OPEs

XUH(M)XM”(M) _ 5ijliIJ(xl)’

o) M (xy) = Gjolil(x)),

X0y (1) = djof ) (1.4
where x; < x,. We also have a selection rule

oy (o (x1) = dplostropCal™,  xi < x (1.5)

where the expression on the right-hand side means that we should take the OPE in a single
copy of the free spin boundary condition and then add the Chan—Paton indices i/ to every term.
The above OPEs considered inside the conformal perturbation expansion imply that the series
can be rewritten as a path-ordered exponential

<. .. >h,m;IJ = <Pexp<—SBCFT — |:/ H(x)ag(x)dx + / M(x)dx]) N >0 (16)
-0 -0 1
where H(x) and M(x) stand for the h;; and m;; matrices inserted at x and the path ordering
applies to these insertions. The correlator on the right-hand side: (.. .)o now refers to the VEV
in a single copy of the free spin boundary condition.

The unperturbed BCFT possesses the U(NV) Chan—Paton symmetry generated by the charges
x/1. This symmetry is explicitly broken by the perturbation (1.2) that results in emergence of
some redundant boundary operators J, X[/ (see e.g. appendix A in [22] for a more detailed
discussion). Perturbations related by unitary rotations of the coupling matrices are related by
adding redundant operators to the action and are thus equivalent. We can use this symmetry of
the coupling space to diagonalise one of the coupling matrices. Note that the operator »_,_; x!*!
commutes with all operators so that without loss of generality we can assume that m;; is trace-
less. One useful choice is to diagonalise /;; in which case m;; is generically some non-diagonal
traceless Hermitian matrix. Suppose the eigenvalues of #;; are the numbers Ay, hy, . . ., hy and
the index is the same as the index labelling the copies of the boundary condition. Then it is
not hard to see that the perturbed theory (1.2) describes the critical Ising model on a half plane
in the presence of a fluctuating piece-wise constant boundary magnetic field. To get a precise
picture consider the perturbed correlation function (1.3). Expanding in the powers of the m;;
couplings we can consider terms with insertions

H X[im+1,im](xm) o X[i3’i2](X2)X[i2’il](xl) (1.7)

i=1

where x; < x, < -+ < x,,. The terms with boundary magnetic fields in the perturbation
expansion are then selected according to OPEs (1.4), (1.5) so that, after summing up the
series in h;, we obtain the boundary magnetic field with the value h; between x;_; and x;
for 2 < k < m, and with the values h; and h for x < x; and x > x,, respectively. A sample
profile of this kind is depicted on figure 1.

The summation over the indices iy, . . ., i+ and integration over the positions of the discon-
tinuities xi, . .., x,, describes an annealed disorder ensemble in which each coupling m;; with

imt-1
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Figure 1. Sample profile of the boundary magnetic field.

i # plays the role of a fugacity variable for the discontinuity of the boundary magnetic field
allowed to jump from the value 4; to the value h;. The couplings m;;, i = 1,..., N correspond
to shifts of the vacuum energy density in the corresponding sectors of the undeformed theory.
They are additional simple deformations of the constant boundary magnetic field model. For
N = 1 such a perturbation drops out as it is proportional to the identity field but for N > 1 and
m; # mj, i # j they lead to some non-trivial effects. We note that the quenched disorder case
of the boundary magnetic field model was previously considered in [9, 23, 24].

To fully specify the model on a half plane we need to fix the boundary conditions at infinity
that can be done for instance as in (1.3) and (1.6) i.e. by fixing the boundary components in each
limit. This does not treat all of the values %; on equal footing. Alternatively we can consider
averaging over the different values of 7/ and J in (1.3) and (1.6). One natural way to do it is by
putting the classical theory on a cylinder that is equivalent to considering the quantum theory
at finite temperature 7. Allowing all values A; to appear on a circle corresponds to taking a trace
over the vacua labels 7, J so that the thermal partition function has the form

B B
Zumeated = Cv Tr (Pexp (—SBCFT— / H(P)oa(r)dr — / M(T)d7'>>o (1.8)
0 0

which is similar to a Wilson line. Here 7 is the Euclidean time coordinate that parameterises a
circle of circumference 5 = 1/T, Cy is a normalisation constant. If we choose Cy = 1/N the
partition function (1.8) describes a single copy of the free boundary condition perturbed by a
non-constant boundary magnetic field whose profile fluctuates along the boundary according
to figure 1 (adopted to a circle). The same model can be still described as a superposition of
N copies of the boundary perturbed by a collection of boundary fields with constant couplings
as in (1.2). The g-theorem for boundary RG flows [25, 26] was proven for boundary theories
with constant couplings and thus applies to the latter kind of description. In that description
the g-factors are given by the boundary partition functions which are canonically normalised
by the Cardy condition [27] applied to the irreducible components so that the normalisation
constant Cy = 1. In sections 4 and 5 when discussing the boundary RG flows we will choose
this normalisation.

As shown in [3] the model described by (1.1) is integrable. Moreover one can deform the
bulk theory by the energy density operator which corresponds to shifting the temperature away
from critical value in the classical lattice model. The corresponding two-coupling model is

4
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still integrable. In the present paper we focus on the model described by (1.2) with N = 2.
In addition to the critical case we will also consider (1.2) with an additional bulk deforma-
tion by the energy density. In section 2 we will show that the model can be described by
a Lagrangian theory containing the usual Majorana field and three real boundary fermions.
Generically this Lagrangian contains a four-Fermi interaction term but when h; = +h; it is
Gaussian. The case h; = —h, is non-trivial and to the best of our knowledge has not been
studied before (see however [11, 12] for a closely related work on the lattice). In section 3
we derive and study the exact boundary reflection amplitudes describing the corresponding
boundary integrable model that contains four parameters. In section 4 we calculate the disc
partition function for the same model in the bulk critical case. In section 5 we use the disc
partition function to study the details of the three-coupling family of the RG boundary flows
described by the #; = —h; model critical in the bulk. In particular we elucidate the IR asymp-
totics of these flows. In section 6 we work out the all orders infrared effective action. We
finish the paper with some discussion in section 7. The appendix contains details of cal-
culations demonstrating the absence of conserved currents of spins 2 and 4 in the generic
N = 2 classical model.

2. Free fermion description

Let us consider the Ising field theory with zero magnetic field on a complex plane with coor-
dinates 7 = x + iy, Z = x — iy. In the free fermion description the bulk action is'

1 _ o _
Stulk = E/ [0V + 10 + imib]dx dy 2.1

0 1/0 0 = 0 1/0 0
= 7_'7, o= —=—| — '—, 2.2
oz z(ax ’ay> oz 2<3x+13y> 2.2)
and the coupling m is proportional to 7, — 7. We will assume that m > 0 and the system is in
the low temperature phase with two degenerate ground states.

Suppose now that we have a simply connected region 5 on the complex plane with boundary

D = OB that is connected and is described as a curve z = Z(1), z = Z(t). Following [4] we
assume that the parameterisation is chosen in such a way that

where

0

e(e(t) =1, where e(f) = i—f(z), e(t) = %(z) (2.3)

and the unit normal vector (ie, —ie) points inside B. With these conventions a suitably nor-
malised boundary spin operator can be introduced as [4]

op(t) = ia(D)(e (D) + &' *P(1) (24)

where (1) = (Z(1)), ¥(f) = ¥(Z(f)) and a(f) is the boundary fermion that is a real fermionic
boundary field with the two-point function

1
{(a(Da(t')) = 3 sign(t — ). (2.5)

' We use the conventions of [28] in which € = i @, Cppe = 1 /2 andm > 0 corresponds to the low temperature ordered
phase.
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The Ising field theory on 5 with a boundary magnetic field on D is then described by the action

S = 1 / / [0 + 1O + imp]ldx dy + / [laa — sz/)(t)} dr+n / op(f)dt (2.6)
27 2 47
B

where a = ‘;—‘;. For the upper half plane we can choose Z(f) = t, Z(t) = t and e(f) = e(t) = 1.
The action (2.6) then gives the standard bulk equations of motion and the boundary conditions

V(1) — Y(1) = 4mha(1),

- 2.7)
a = —ih(ip(@) + P(1).

Combining the two equations we can obtain a closed boundary condition on the ) and
fields:

Ap(t) + iAp(t) = Opp(t) — iM(t) (2.8
where
\ = 47k (2.9)

As first noticed in [4] this boundary condition means that the field x(z) = (0 + i\)(z) can be
extended to a holomorphic field on the entire complex plane. The fact that x(z) depends only
on the square of the coupling means that the gluing condition remains the same in the presence
of discontinuities in the boundary magnetic field at which it changes the sign. It is not hard to
show that in this case the field x(z) is meromorphic on the plane with simple poles at the dis-
continuities. This singles out this type of discontinuity and suggests integrability of the theory
with such a fixed profile. On the lattice such models have been worked out in terms of free
fermionsin [11, 12]. In this paper we are mainly interested in the case when the discontinuities
are dynamic in the sense of an annealed ensemble in which the discontinuities are governed
by a fugacity coupling. We proceed next to a free fermion description of perturbations of the
form (1.2) defined on superpositions.

The use of boundary fermions to describe Chan—Paton interactions and Wilson loops in
string theory is a well known trick [29, 30]. From the point of view of the conformal field
theory both the bulk fermionic fields ¢(z) and (z) and the boundary fermion a(f) can be
described in terms of topological defects [31, 32]. The critical Ising model has three topo-
logical defects labeled by the primary fields. They can end on the conformal boundary con-
ditions. The e-defect is the spin reversal symmetry defect. The bulk free fermion fields
and 1) are located at the tip of the e defect. This defect can also end on the free bound-
ary condition forming either a topological junction that (with an appropriate choice of nor-
malisation) corresponds to the boundary fermion field a or via a non-topological junction
given by a weight 1/2 fermionic field that (up to normalisation) is given by the v (or 1)
field inserted on the boundary?. Given two such junctions: one topological and one non-
topological, we can merge them together. In the bulk this results in fusing the e-defect with
itself that gives the identity defect and on the boundary that gives a (bosonic) ‘ordinary’
boundary field of dimension 1/2. This boundary field is proportional to the boundary spin
field o p. This process depicted on figure 2 explains formula (2.4). Such a relation along with

2 Recall that any holomorphic or anti-holomorphic field cannot have singularities at the boundary, with a conformal
boundary condition, and thus can be put on the boundary. That gives a boundary field of the same conformal weight.

6
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Figure 2. Merger of two defect junctions producing a boundary magnetic field operator.
« # 0 is a normalisation related constant.

other bulk-to-boundary and boundary OPEs involving fermionic fields has been worked out
in [32] from first principles.

Let us consider now a superposition of N > 1 copies of the free spin boundary conditions.
The e-defect has a topological and a non-topological junction between any pair of copies.
This gives rise to the junction fields al’/l and ¥!/! which have dimension 0 and dimension 1/2
respectively. Like for boundary fields our notation is such that a'/! when inserted at a boundary
point of the upper half plane has the jth copy of the boundary condition to the left and the ith
copy to the right, and similarly for )!/!. Choosing an appropriate normalisation of the 1"/
fields we now have

N

im @) =) o) (2.10)

i=1

so that only the combination on the right-hand side of this equation can be moved from the
boundary into the bulk. We choose the normalisations of the al’/! fields so that merging of the
topological junctions between themselves is given by the following (product) OPE rule

i gtk — 5ijlilJ. (2.11)

Furthermore we choose the normalisations of the ogﬂ fields in such a way that

o\ (1) = ia™ ()" * (" (1) + &% (1)) for any k. (2.12)

This allows us to write

o (1) = i)' () + &' Ph0) = —ile! 0w + & P)a o
(2.13)
where the 1(f) and /() fields on the right-hand side are given by (2.10). To obtain a func-
tional integral representation for the theory described by (1.2) we need a set of anti-commuting

boundary fields. Although one can choose such a set for any value of N from now on we will
specialise to the N = 2 case on which the present paper is focused. Consider the combinations

a=a— g2
b= i(a?" — g, (2.14)

c=a® +a"%,
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Using (2.11) we check that these fields satisfy
{a,b} ={a,c} = {b,c} =0, a=b == "4 y#2 =1 (.15

We also find the following relations

[22]

[12] _ . [21]

iab = 1 4 B2 jpe = M — ac=x X
abe = —i(a" + a2 (2.16)
and
[11] 1 ; [22] 1 ;
a’ = E(a + iabc), a“" = E(—a + iabc). 2.17)

We note that the fields a, b, ¢ are Hermitian that follows from the conjugation relations

O = i, (2.18)
The above relations mean that in the gauge in which h;; = diag(h;, h,) we can represent the

N = 2 theory (1.2) as a functional integral

/ ¢ *DY1D[41D[alD[b]D[c] (2.19)

with the action functional

o0

S % / / @B + PO + impdydx dy + / 2
B

[o¢]

S R N
{—;ﬁw + jai+ Jbb+ e

+ (ih—a + hpabe)(e' ) + &'*) + myiab + mzibc] dr (2.20)
Here
h+=—h‘“2Lh2, h_:hl;hz (2.21)
and?
(mij) = (Z? _mn‘Q) (2.22)

We immediately observe that when 4. = 0 the theory (2.20) is Gaussian. From now on we will
assume that 4 = 0 postponing the discussion of the general 4_h # 0 case until section 7.
When A = 0, considering the model on the upper half plane we obtain the following bulk
equations of motion and boundary conditions

R 223)

3 Here without loss of generality we assume that 1, is real as that can be achieved by a residual unitary transformation
that preserves the diagonal matrix /;;.
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(1) — (1) = 4mh_a(?),
a(r) = —ih_ (1) + (1)) — myib(r),
b(t) = myia(t) — myic(t),
() = maib(r).

(2.24)

By taking more derivatives of the equations in (2.24) we can obtain a closed boundary condition
on the ¢ and 1 fields that looks as follows

O} + N — (i + m3)Op — im3 N
= O2p — iINOPp — (m] 4+ m3)O) + imINY (2.25)
where

A=A =4nh’. (2.26)

3. Exact boundary reflection amplitudes

To find the boundary reflection amplitude corresponding to (2.20) we put the model onto a left
half-plane: Re z < 0, and parameterise the boundary by t = y = Im z. This givese = w,e = &
where

w=¢l 3.1

and the boundary conditions are given by equations (2.24) and (2.25) in which ¢ and W) are
replaced by w) and Wi respectively. The canonical quantisation expansion of the fields ¢ and
1) corresponding to (2.23) has the form

w(x’y) _ / do |:w€9/2A(9)€_my cosh -+imx sinh 0+ @eﬂ/ZAT(e)emy cosh @—imx sinh 9} ,

o0

,l/’}(x,y) _ /ocde {we’e/zA(G)e’my cosh O+imx sinh 0 __ (Def(?/ZAT(e)emy cosh §—imx sinh 6} (3.2)

[o¢]

where y is the Euclidean time, @ is the rapidity variable and A(), A'(6) are the creation and
annihilation operators satisfying

{A0),AT(0)} =66 — 0'). (3.3)

Following [3] the boundary can be treated as an infinitely heavy particle located at x = 0.
The vacuum state for the #-quantisation is formally given by the action of a boundary creation
operator B on the bulk theory vacuum:

|0)s = B0). (3.4
The reflection coefficient R(0) is then defined by the relation

AT(0)B = R(O)AT(—0)B. (3.5)
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Substituting the expansions (3.2) into the boundary condition (2.25) we obtain the reflection
matrix

k(@) — @Y = mi = md)cosh(3 — if) — iX(P")? —m)sinh(5 — i) e
PP~ —md)sinh(§ — i5) + M) — m)cosh(§ — i5) '
where

p° = m cosh(). (3.7)

Another useful form for this amplitude is

200N _ 200y _
R() = i tanh Q T (cosh2(9) ai — a»)(sinh(0) + i) zb(coshz(ﬁ) a») (3.8)
(cosh”™(0) — a; — a»)(sinh(0) — i) + ib(cosh”(6) — a,)
where we introduced dimensionless parameters
2 2
a="10 ="y (3.9)
m m m

It is straightforward to check that the reflection amplitude given in (3.6), (3.8) satisfies the
unitarity and boundary crossing symmetry:

ROR(—6) = 1, R(ig . 9) - —R(ig n 9). (3.10)

Of particular interest are poles of R(#) located in the physical region: 8 = i€, £ € [0, w]. They
correspond to boundary bound states. To find them it is convenient to set sinh(f) = ix then the
denominator in (3.8) up to a factor of —i is given by the polynomial

gx)=x>+x*b-1)—x(0 —ay —a)+ab+1—a, —a, —b. (3.11)
This polynomial vanishes when we have
(x—14+b)(* =1 +a) =a(l —x). (3.12)

From this representation we see that, assuming a; > 0, a, > 0, b > 0, we always have a sin-
gle bound state, that is a pole in the physical interval x € [0, 1], when a; > (1 — a)(1 — b).
Also when a; < (1 —az)(1 —b) and a, < 1 we have two distinct bound states and when
a; < (1 —ay)(1 —b) and a, > 1 we have no bound states. When a; = (1 — ax)(1 —b) >0
there is no bound state unless @, < 1and b < 1 in which case there is a single bound state (note
that the zero of the denominator of R at x = 0 is cancelled by the zero of the numerator). As
argued in [3] (see also discussions in [8, 15]) the boundary bound states which are present for
sufficiently small boundary couplings correspond to the deformed degenerate ground states.
In the undeformed model we are considering the vacuum state on a half-plane is four times
degenerate. It is interesting to note then that we can only have at most two boundary bound
states rather than three expected naively (plus the vacuum). It would be interesting to obtain
an intuitive physical picture explaining this.

The remaining special cases when one of the three couplings vanishes can be described as
follows. When b = 0 the reflection coefficient (3.8) reduces to the one for the free boundary
condition:

. 6 .
Riree(0) = i coth<2 - zD. (3.13)

10
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This is because in this case we only have the boundary identity fields switched on which decou-
ple from the bulk fermion field. When a; = 0 the model factorises into two decoupled boundary
conditions with the boundary magnetic field given by /2 and —/A_ and additional shifts of vac-
uum energy given by m, and —m;,. The vacuum energy shifts decouple from the bulk fermion
and we have the reflection amplitude of the usual boundary magnetic field model [3]

Ru(0) = —i tanh(g _ '”) 1 — b — i sinh(9) (3.14)

2 "4 )T b +isinhd)

When a; = 0 we obtain a two coupling model with reflection amplitude that can be written as

o g —
.7r>s1nh (@) —ib sinh() +1—a; —b (3.15)

0

Rap() =1 COth(z " '4 ) sinh2@) + ib sinh(@) + 1 —ay — b
For a; # 0 this amplitude has a pole at & = i7. This pole is absent when all three couplings
are switched on (we actually get a zero at § = i7 in that case). As discussed in [3] such a
pole, which is present for the free spin boundary condition, means that the boundary state
has a contribution proportional to the momentum zero one-particle state. For the free spin
boundary condition this is interpreted as the spin reversal symmetry defect attached to the
boundary. In our case we can interpret this one-particle state as a superposition of two spin-
reversal symmetry defects attached to two copies of the free boundary condition as described
by the junction field

¢ =a" + a?l, (3.16)

As can be seen from (2.15) this junction field commutes with the perturbation when m, = 0.
In addition to the above pole, the reflection amplitude R, has another pole* at § = i¢. with

I3 :arcsin<—§ + %\/b2+4(1 —b—a1)> (3.17)

which is located on the physical interval £ € [0, 1] provided a; + b < 1. We plan to discuss
correlation functions and the physical interpretation of the boundary bound states we found in
this section in a separate publication.

4. Exact disc partition functions in the critical case

In this section we calculate the disc partition function for the three-coupling model (2.20) in the
case of conformal bulk that is when m = 0. We aim to find the boundary entropy and investigate
the boundary RG flows.

We start by putting the model (2.20) on a cylinder with complex coordinate z = x + iT
where x > 0 is the coordinate along the cylinder, 7 € [0, 5] is the Euclidean time, [ is the
inverse temperature. To calculate the partition function on a disc we assume that on the cylin-
der the boundary condition at x — oo corresponds to the bulk theory conformal vacuum and
thus we take all fermionic fields: 1), z/;, a, b, c in the NS sector that is antiperiodic in 7. At the
beginning we will treat the functional integral formally introducing a regularization and renor-
malisation later. The integral over 1) and 1) with fixed boundary values is Gaussian and hence

4 As usual there is also the crossing symmetric pole at § = i(m — £.).
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localises on the solutions to the bulk equations of motion decaying in the bulk. We can write
these solutions as the following mode expansions
Py - - _2mz
PR = Y b P = Y ke T8 (4.1)

kE1/24Z:k<0 kel/24+Z:k>0

When restricted to the boundary x = 0 these solutions give anti-periodic functions

(1) = (), Pp(T) = p(—iT). 4.2)
We further use the Fourier expansions
am = 3 @l bm= Y bFh 43)
kel/2+Z kel/2+7
() = Z Cr T 4.4)
kel/247

Integrating over the fermions v and v with the fixed values on the boundary we obtain up to
the divergent determinant factor the following fermionic path integral

Zgise = /D[wh]D['&b]D[Q]D[b]D[C]e_S“-b-C

X exp (‘i%Z bk +ihBY  (wiba + Mﬁk“k)) (4.5
k<0 k<0
where
r. 1. 1, . .
Sabe = /dT [Eaa + Ebb + Ecc + +myiab + mzlbc] . (4.6)

Removing the determinant factor here amounts to subtracting the bulk CFT vacuum energy
density so that what remains corresponds to the disc partition function. Integrating out the
boundary functions ,(7) and 1, (7) gives

Zaise = Dy / D[alD[bID[cle Sabe exp (lz a_rar(\B8 — 27Tk)> 4.7

k<0

where

D, = H (—ifﬂ) (4.8)

is a formal expression for the functional determinant. As this factor does not depend on any
coupling constants we remove it from the renormalised partition function. What remains now is
a path integral over the boundary fermions: a, b, c. We normalise this path integral in such a way
that in the Hamiltonian quantisation it amounts to taking the trace over the degenerate vacuum
space. The remaining Gaussian integrations now produce the following formal expression

B 00 a 123 141
Ziise = CEO Kl o 1/2> (1 + ot 1/2)2> + (m+ 1/2)2} 4.9)

12




J. Phys. A: Math. Theor. 55 (2022) 435401 A Konechny

where
_ AB _ 2 - Bzm% o 52”1%
a = Py 2ph~, vy = A V) = o) (4.10)
and the factor
. 3
C =[] 2mixk+1/2) @.11)
k=0

comes from the kinetic terms of the boundary fermions. As this factor should give the trace of
the identity in the vacuum space we set it equal to 2:

Cren = 2. (4.12)

The remaining infinite product in (4.9) we regularise as follows

s

ZE = 20(1 + 2a)(1 + 41,) + 4]

m=1

« 1% 141 %(875'”—1)
. KHmH/z) <1+<m+1/2)2) +<m+1/2>2}e 19

where € > 0 is a regulator. The regulated expression can be written in a manifestly finite form

3/2 ,—a In(l1—e €
zZ9 = 2ne e (4.14)
dise = T(1/2 — k)I'(1/2 — k)T'(1/2 — k3)

where ki, k, and k3 are roots of the polynomial
PR =2 +a + (1 + 1)z + avs = (2 — k) — k)(z — k) (4.15)

and are thus radical functions of the couplings. The regularised expression (4.14) has a loga-
rithmic divergence in the exponential in the limit e — 0. In perturbation theory this divergence
emerges at the second order when we integrate the two-point function {(og(7)og(7")) of the
boundary spin operator. Subtracting this divergence we obtain a renormalised value of the
partition function

2703/2 o In(Bp)
T(1/2 — k)D(1/2 — kD(1/2 — k3)

Zdisc,ren = (4 16)
where o is the subtraction scale which has dimension of mass. When the couplings «, vy, v/,
are all zero we have k; = k, = k3 = 0 and Zgjs ren = 2 that is the correct g-factor of two copies
of the free spin boundary condition. The subtraction scale y is in principle arbitrary but can
be fixed by requiring that the partition function tends to a finite limit in the far infrared where
B — oo. For example when v, = v = 0 this requirement fixes the subtraction point to be

«
pB=—.
e

(4.17)

In this case the model essentially reduces to the boundary magnetic field model. Up to a factor
of 2 the partition function is the same as the one computed in [5]

V% javye
L= i 1/2)(?) . (4.18)

13
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In the generic case the infrared asymptotic of (4.16) is

1
Zaiseren ~ Const exp la In(Bp) + o+ Y ki Log<2 - ki)] (4.19)

and we can set

ki
wB = exp (—1 -3 - Log(—k,-)> . (4.20)

i

Here Log(z) stands for the principal branch of the complex natural logarithm function. The
above expressions are real as the roots k; are either all real and negative or are comprised of a
complex pair and one real negative root.

In the following we will be interested in the boundary entropy rather than the partition
function itself. In the boundary entropy the subtraction scale x drops out so we do not need to
assume it is fixed as in (4.20) or otherwise.

5. RG flows

The model (2.20) describes a relevant perturbation of the superposition of two copies of the
free spin boundary condition (f). Its g-factor [25] equals 2. The fixed spin conformal boundary
conditions (+) and (—) each have the g-factorgy = g_ = % The g theorem [25, 26] implies
that the boundary entropy monotonically decreases and thus the RG flow starting with 2(f)
can end up in any of the 8 fixed points: (f) ® (+), (f) @ (), (+) B (—), 2(+), 2(—), (f), (+),
(—). We show below that the three parameter subspace of flows with 4, = 0 ends on half of
these possible fixed points: (4) @ (—), (f), (), (—).
The boundary entropy of (2.20) with 2, = 0 is given by

0
§ = (1 ﬂaﬁ>lnzdlscren (5.1)
where Zgisc.ren 18 given in (4.16). The large £ asymptotic of s depends on the values of the cou-
plings. Since k1 ko k3 = —aw,, when av, # 0 the roots k; are all non-vanishing. It also follows
from (4.15) that

Ok;

= 5.2

B a7 (5.2)

and hence in the case at hand each k; tends to infinity homogeneously in /3. Using the asymptotic
expansion’

In I(1/2 4 2) = z In(z) +11n(2)+zw (5.3)
7)=2zlIn(z) —z T 22— 1) .
where B,, denotes the Bernoulli numbers, we obtain the asymptotic expansion
B " 1 — 21 —2n
:——ln2+zz Bu(122"7) (5.4)

zn)an 1

5 This expansion can be obtained by combining formulae (1.18.12), (1.13.14), (1.12.2) and (1.12.21) from [33].
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This gives the infrared fixed point g-factor to be

1
glR—ﬁ

that is the value of the (+) or (—) boundary condition. On physical grounds, which of the two
fixed points the flow approaches depends on the sign of the product i_m,. (The coupling m;
shifts the ground energy density by —m; for the portion of the boundary with the magnetic
field #_ and by the opposite value the portion perturbed by —4_. This favours the value for
which the shift is negative.)

We next consider the cases when av,; = 0. When v, = 0, a # 0, v # 0 the polynomial
(4.15) takes the form

(5.5)

p(2) =2 +az+1p) (5.6)

and we can set

1 1
ki =0, k2:—%+§ o2 — 4, k3:_%_§ o — 4. (5.7)

The boundary entropy in this case has the small temperature asymptotic expansion

By, (1 =272
= e 5.8
§ ZZ (11— 2n)kl~2" 1 5-8)
that corresponds to

gr =1 (5.9

and hence the boundary condition flows to the (single copy of) free spin boundary condition.

When v; = v, = 0, a # 0 we have two factorised boundary magnetic field flows from free
to fixed spin and the endpoint of the flow is the superposition (4) & (—). The corresponding
boundary entropy asymptotic expansion is

Boy(1 =2
=2 2+Z e (5.10)

When a = 0 we have a perturbation by dimension zero operators only and the partition
function reduces to

Zml,mz - 2 COSh(ﬂ-V 141 + V2))~ (511)

The boundary entropy is

s=1In2+ ln[cosh(ﬂ'\/yl + 1/2))] — T+ 1 tanh(m/ul + 1/2)) (5.12)

that asymptotically decreases as
s & 2m\/U] + e VIt (5.13)

This means that the model approaches a single copy of the free spin boundary condition along
an infinitely irrelevant direction. This is always the case for boundary perturbations by dimen-
sion zero operators. The corresponding flow can be called component flows as the end point is
always some component in the original superposition. The approach to the infrared fixed point

15
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e

Figure 3. The diagram of flows for the m; = 0 slice. The red flow line (vertical,
upwards) depicts the 42— = 0 flow. The blue flow line (vertical, downwards) depicts the
my = 0 flow. The solid lines correspond to generic &_m; # 0 flows. The dashed lines
depict the asymptotic flows from the fixed point (f) generated by op while the dotted
lines show the asymptotic flows from the fixed point (4) & (—) generated by the identity
fields (the component flows).

via an infinitely irrelevant direction is similar to bulk perturbations generating a mass gap for
some of the fields.

The above flows act throughout a three-dimensional space and it is hard to depict them all
on a single diagram. On figures 3 and 4 we show diagrams representing the m; = 0 and m, = 0
slices. These diagrams include special lines along which the theory flows to intermediate fixed
points as well as the asymptotic flow lines that start at those intermediate fixed points and
which lie on the boundary of the space of flows from the original UV fixed point.

6. Infrared effective action

Using the asymptotic expansions of the boundary entropy we can also obtain the irrelevant
operators along which the flows arrive at the infrared fixed points. Thus, for the pure boundary
magnetic field flow (v} = v, = 0) we get from (5.10)

1 1 7
s:Ean—i——

- 6.1
12« 720a3+ ©.1)

As the leading correction in this expansion scales as 1/ this means that the leading irrelevant
perturbation near the infrared fixed point has dimension 2 and thus must be proportional to the
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- -

e

Figure 4. The diagram of flows for the m, = 0 slice. The blue flow line (vertical, down-
wards) depicts the m; = 0 flow. The solid lines correspond to generic m; # 0 flows
(that include the vertical upward flow with 4_ = 0). The dotted lines show the asymp-
totic ﬂ([)r/s]from the fixed point (4) & (—) generated by the boundary condition changing
field o" .

stress—energy tensor 7. Comparing the expectation value

2
M= -125 6.2)

with the coefficient in (6.1) we see that the leading term in the infrared effective action is
1 B

The same leading term was obtained in [13, 18] by other methods. Such a perturbation would
normally be expected to contribute to the free energy (and thus to the boundary entropy) at
higher orders in the effective coupling via the integrated connected n-point functions. For a
perturbing operator O of dimension A the second order correction is proportional to the integral

ooyt o T(1/2-4)
/0 drl/o dn(O(m)O(12)e:p = (25) IV A) (6.4)

defined via analytic continuation in dimension (see e.g. [34]). Here (.. .).3 stands for a con-
nected correlator on a cylinder of circumference 3. The integral (6.4) vanishes for any positive
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integer valued A. This explains the absence of a term of order 1/a? in (6.1). Furthermore, an
integrated correlator of three primary fields is given by [34]

B B B
/dTl/de/ d73(O1(11)O2(12) O3(73)) 28
0 0 0

1
= E(Cm + Cop3)(2B)* 1A

F(Z—AﬁzﬁzfA3)F< 1+A1+2A2—A3)F< 1+A1+2A3—A2)F<1+A3+2A2—A1)
4m)32T (1 — AN — AT — A3)

X

(6.5)

We see that in the absence of a resonance 1 + A; + A; = Ay this quantity vanishes when
at least one of the fields O; has an integer dimension. In particular this implies that for the
perturbation (6.3) there is no contribution of order 1/a? to the boundary entropy. (Although 7
is only a quasiprimary it mixes under general conformal transformations only with the identity
field that drops out in the connected correlators.) This means that the third term in the expansion
(6.1) must come from an additional perturbation by an operator of dimension 4. The only
operator available is the fermion bilinear

Tu(r) = 902y:| _, (6.6)
for which the expectation value on a cylinder is
4
(Ty) = —67—0 (%) - 6.7)
This implies that the next to leading term in the effective action is
1 8 1 8
SR = m/o dr T(r) — 24(27T)4h6_/0 dr Ty(T) + - - - (6.8)

Using formulae® (6.4), (6.5) we can show that the two terms in (6.8) do not generate a correction
of order 1/a” to the boundary entropy and hence a new term with dimension 6 operator has to be
added which has to be” proportional to Ts =: 19>¢:. Given that the theory at hand is Gaussian
it is natural to assume that all higher order operators in the effective action are fermion bilinears

Tou(r) = 02" 1| (6.9)
and that the complete effective action has the form
B o0 B
Sk = X\ / dr T(r) + ) Ao / d7 To,(7) (6.10)
0 0

n=2

6 The connected three point function (T T T,) on the boundary of a half-cylinder can be obtained via a mapping to the
plane. The operator 7} is represented on the plane by a combination containing the identity, 7 and OT. Nevertheless the
desired three-point function can be represented as a linear combination of three-point functions of the type standing
in the integrand of (6.5).

7Note that the lowest dimension operator quartic in the free fermion field is 20, 10?491z that has dimension 8.
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where Ay, = Ay, (h_) are the effective couplings with

1 1

) VU VA ———
27 42 T 2400 e

(6.11)
The expectation values of the fermion bilinears on a cylinder can be obtained in a closed form
using point splitting regularisation

o\ 9! 1 1 o\ Q» 1)
(Ton) = —<E) }gg W(m - E) = (B) TBQ,«,. (6.12)

The same answer was obtained by other methods in [35, 36]. To make a complete analysis
of the infrared effective action we need to have the integrals of higher order correlators under
control. We present now a general argument that shows that all such integrals vanish. The
integrands in the integrals of interest are connected correlation functions of the operators 7'
and 7T,,, n > 2 taken on the cylinder and restricted to a circle. They are thus restrictions of
meromorphic functions defined on the entire cylinder. Using this we regularise the integrals by
shifting the integration contours away from this circle for example by considering®

B8 B8
/ dTl .. / di<T2nl(Tl)T2n2(Tz — i€)T2n3(T3 — 2i€) e Tnk(Tk — (k — 1)i6)>c;5. (613)
0 0

Clearly in the limit ¢ — 0 we recover the original integrand. On the other hand the outer con-
tour of integration parameterised by 7, can now be deformed to infinity. Since at infinity the
connected correlation function decays exponentially the integral vanishes. This extends to all
orders the vanishing of the second and cubic order corrections observed above. Therefore the
boundary entropy corresponding to (6.10) can be obtained entirely from the expectation values
(6.12). Matching the resulting expression with the complete expansion (5.10) we obtain

1
QR Q)220 — 1)

Aoy = n>=2. (6.14)

The same kind of analysis of the infrared effective action can be repeated in the presence of
other couplings. Thus, in the generic case ar; # 0 the two leading terms in the expansion of
s are

1 v+ 1 3vima? — (v + 1)’
=——1In2 e 6.15
ST o, 7200313 * (6.15)
that gives the first two couplings in the effective action (6.10)
m? + m3 1 6mm? 1 m?\ >
=172 N=—|F33-(1+—=2]) | 6.16
2T amiimd T e\ el gt T (6.16)

We clearly see that this couplings are singular when av/; tends to zero. This reflects the obvious
fact that the 5 — oo limit does not commute with the o, — 0 limit in the coupling space. It
would be interesting to investigate further this singularity in particular in conjunction with
the RG operators discussed in [39]. It is straightforward to obtain all other couplings in the
effective action. They can be expressed in terms of symmetrised sums of odd inverse powers
of the roots k;. We discuss the effective action (6.10) a bit more in the last section of the paper.

8 This regularisation was considered in [37, 38] for perturbations by marginal operators. One can make it more
symmetric by symmetrising over permutations of the operator insertions as well as over ¢ — —e.
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7. Concluding remarks

In this section we would like to point some directions in which the present work can be
extended. Firstly we would like to note that the three-coupling model (2.20) with 7, = 0 can
be further investigated. It would be interesting to calculate some local correlation functions, in
particular the local magnetisation that would further elucidate the boundary bound states and
the phase structure of the model. Secondly, this model presents a nice toy model of RG flows in
a multi-coupling space with several fixed points present. It would be interesting to investigate
the singularities in the space of flows further by finding the RG operators and investigating
the transport of local operators along the flows as discussed in [39]. The complete infrared
effective action (6.10) that we obtained should be a useful tool here. It is interesting to note
its much greater simplicity in comparison to the infrared expansion obtained in [18] using the
mode truncation regularisation and the Schriffer—Wolf method.

Furthermore, there are several directions in which the present work could go beyond the
three-coupling Gaussian model. Integrable boundary conditions in the presence of bulk four-
fermion interactions were found in [40] at the classical level. It is foreseeable then that for some
restricted values of the couplings the four-coupling model (2.20) is integrable in the presence
of the boundary four-fermion interaction governed by /. To study this question systemati-
cally we searched for classically integrable boundary conditions in the model (2.20). We found
that the dimension 4 current (7, T,) and the dimension 6 current (7g, T's) are each classically
conserved if and only if mihh_ = 0. Some details of these calculations are presented in the
appendix. This suggests that if the discontinuities are present at all the four coupling model is
integrable only if #; = %h,. It may be possible to analyse the generic N = 2 model approx-
imately using the Hubbard—Stratonovich transformation. We plan to pursue this direction in
future work.

For N > 3 we can represent the boundary perturbation (1.2) in terms of a larger number
of boundary fermions similar to (2.20). The quadratic models do not seem to contain any
new interesting cases. It would be interesting to extend the integrability analysis done in the
appendix to this case to see whether there are any new integrable models with non-trivial
four-fermion boundary interaction.

Although we relied heavily on the free fermion representation we find our results suggestive
that there may be interesting integrable boundary theories which are obtained by deforming a
superposition of boundary conditions in a minimal model by a collection of boundary condition
changing operators with weights zero and 4, 3 that are known to give integrable deformations
for irreducible Cardy boundary conditions. As the exact partition function (4.16) we obtained in
the present model satisfies non-trivial factorisation conditions, one way to search for new inte-
grable deformations could be using the results of [41] and generalising them to deformations
in superpositions.

One of the motivations for the present work was the problem of obtaining some descrip-
tion of a complete set of boundary RG flows in the Ising model. This space includes all flows
generated by relevant boundary fields starting from an arbitrary superposition of the free and
fixed spin conformal boundary conditions. Unlike any space of bulk RG flows, in which there
always could be flows from an arbitrary UV fixed point with a high enough central charge
ending in a given IR CFT, a space of boundary flows in a fixed bulk CFT is much more con-
tained. The bulk CFT does not change and all conformal boundary conditions may be known
as is the case in the Ising model or more generally in any Virasoro minimal model. With these
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observations in mind we could try a bottom-up approach to describing the space of such flows.
An irrelevant boundary deformation in a theory where all conformal boundary conditions are
known, in the deep UV region would either lead to a known conformal boundary condition
or not to lead to any local boundary condition at all. Starting with [42] an investigation into
the structure of the space of TT and more general irrelevant integrable deformations has been
going on. In [43, 44] the question of finding additions of higher dimension irrelevant operators
that ensure a UV completion was considered. A similar question can be posed for boundary
deformations—find integrable deformations by irrelevant operators that have a UV comple-
tion. Note that the boundary deformation by the stress—energy operator 7 has many similarities
to the 77T bulk deformation. As the stress-tensor operator is universal the deformation can be
unambiguously defined at any value of the coupling. It is in some sense topological as the per-
turbation contour of integration can be moved away from the boundary using holomorphy. The
perturbation’s behaviour depends on the sign of the coupling with one direction being singu-
lar. This singularity is signified by the divergence of a cylinder partition function at a critical
cylinder length that is similar to the Hagedorn behaviour of the partition function in the 7T
deformation case. The effective action (6.10) with the couplings (6.14) give an explicit example
of how adding an infinite sequence of irrelevant boundary interactions to a 7-deformation leads
to a UV-complete theory. The perturbing terms in (6.10) are the KdV charges and the cylinder
partition function can be built from the chiral traces which were recently considered in [36] in
connection with generalised Gibbs ensembles. We believe this connection needs to be investi-
gated further and may lead to interesting results on the space of all boundary flows in the Ising
model. We leave this to future work.
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Appendix A. Classical integrability of the generic four coupling model

In this appendix we investigate classical integrability of the theory defined in (2.20). For
simplicity we consider the conformal point m = 0. The boundary conditions in the generic
hyh_ # 0 case read

Y — 1 = 4rh_a — 4wih, abc,
a = —ih_( + ) — hybe(Y) + 1) — myib,
b= hyac(p + ) + imya — imac,
¢ = —hyab( + ) + imyb

(A.1)

9 This singularity of the boundary 7-perturbation has been discussed in detail in [45].
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where for brevity we suppress the argument ¢ in all functions.
The bulk currents whose conservation we investigate are

TQ = g, To =0 'y n>2 (A2)

and their anti-holomorphic counterparts in which 0, is replaced by 0:. For the stress energy
tensor the boundary conservation equation on a half plane is

(T—T)| _._, = —2mid0(r) (A3)

where (1) is the boundary part of the stress—energy tensor in standard normalisation (see e.g.
[26]). A higher spin current 75, is conserved if

(T2 — TZn)|z:z:t = 01024() (A4)

for some boundary operator 6,,(f). As a warm up we first derive 6 and then investigate the
conservation of T, and 7. We will be using the classical boundary conditions (2.24) in which
all fermionic fields are considered to be anti-commuting.

We start by noting the following expressions for derivatives of dimension zero operators
that follows from (A.1)

0,(ab) = ih_b(y) + ) — imaac,
Oy(ac) = ih_c(yp + ) — im bc + imaab,

0(bc) = imac, (A5)
di(abc) = —ih_bc( + ).
To find 0 we differentiate the first equation in (A.1) to obtain
Op — Opp = —idmh* (Y + ) — 8mh_hybc(y) + ) — dwh_myib. (A.6)

Multiplying this equation by v and separately by 1 on the left we obtain the following two
equations

VO — YO = —idmh® ) — 8wh_hynpbc — dwh_myib,

YO — pOpp = —idmh* Yip — 8mh_hyappbe — drh_myitb. (A7)
Adding these two equations we obtain

POp — I = () — Amh_myi(y) + p)b. (A.8)
From (A.5) we obtain

m, 0(ba) + my0,(ch) = ih_my () + )b. (A.9)
The last formula allows us to rewrite (A.8) as

o 1 -
Yoy — Yo = 4o, Et/ﬂl) + myab + mybc|. (A.10)

Comparing this with (A.3) we find that
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1 -
0(r) = —iLW + myab + mybc (A.11)
T
that can be also rewritten as
ih_ - h _
0(t) = — [%a(w + )+ %abc(w + 1) + imyab + imybc (A.12)

that has the standard form of the sum of perturbing operators multiplied by their beta functions.
We next take up the dimension 4 currents: T and T4. To find their difference on the boundary
we differentiate (A.6). From that, using (A.1) and (A.5), we obtain

O — 0*p = —4mih® (D) + Opp) — Smh_hybc(d) + D)
+ 247ih_hyca(y) + ) + 4nmih_a — dxmimah ¢ (A.13)
Differentiating one more time we get
Op — BPep = —amih® (02 + 92) — 8mh_hybe(O2) + 9P1))
+ 207h_hymyica(Op) + Opp) 4+ 16mmh_hych(yh + 1)
+ 16mmymah_hyab(p + 1p) — dwmih* i(y + 1))
— drmyh_(m} + m3)ib. (A.14)
Next we multiply both sides of this equation by 1) + ¢ from the left to obtain

(Ty = To))| _._, = 00} — Y8} = X, — 4mih® X, — 8rh_hybcX,

+ 20mh_hymyicaXs — 4wmyh_(m? + m3)i(yh + )b (A.15)
where
X, = 98} — 90 = dODIO) + pIFD — Y, (A.16)
X = () + DO} + 0}P) = OO + PO + ) + O] (A17)
X3 = (¢ + )0 + On). (A.18)
Note that
X, = 0,X5. (A.19)

Since by (A.9) the term containing (1) + )b is also a derivative the problematic terms are
2= —8mh_hybcX; + 20mh_hymjicaXs. (A.20)
We can rewrite this as
E = —8mh_hibcd X3 + 40mh_himiicaXs
= 0(—=8mh_hybcX3) + 8wh_h10:,(bc)X5 4+ 20mh_hymyicaXs
= O(—8mh_hybcX3) + 20T — 8m)h_himicaXs
= O(—8mh_hybcX3) + 12wh_h.mjicaXs (A.21)

23



J. Phys. A: Math. Theor. 55 (2022) 435401 A Konechny

and the obstruction for the difference T, — T4 to be a derivative now looks very compact. If
h_him; # 0 then to show that the dimension 4 current is not conserved we have to prove that

O = caXs = ca(p + ) (O + 0)) = dearpOp) — Swim h_abcr) (A.22)

cannot be written as a derivative of another operator. Although applying the derivative always
rises the dimension by one we cannot use the dimension grading as the couplings also carry the
natural dimension and there could be divisions by the couplings present. Instead we can rely
on the grading provided by the number of v/-fields and their derivatives present in a composite
operator. As no derivative of 1) or ¢ is present in the boundary conditions (A.1) any operator
can be represented as a finite linear combination of operators of the form

fla,b,c)df ... 0, k=0 (A.23)

where f(a, b, c) is a polynomial in boundary fermions. The derivative of such an operator is a
linear combination of operators of the same form. Schematically we have

ALf(a,b,c)df ... 0] = fi(a, b, ) ... 0 + Fala, b, )pd)!
X ah ... O+ fla,b, )OO ... D) (A.24)

where f; and f> are some new polynomials. This means that when we take the derivative
of (A.23) we obtain only operators with either n or n + 1v-fields and the total number of
derivatives acting on them can increase only by one. This immediately implies that there are
only four possible operator types whose derivative could give O. Schematically we can write
them as

P = p(a,b, c)onp, 0 =q(a,b,c)on
R = r(a,b, o)), S =s(a,b,c) (A.25)
where p, g, r, s are some polynomials in boundary fermions whose coefficients can depend on

the couplings. In the notation introduced in (A.24) the derivatives of these operators can be
written as

P = pi(a,b,cypdab + pla, b, c)pdj, (A.26)
8,0 = q1(a.b, )b + qa(a, b, pdab + qla, b, )P, (A27)
AR = ri(a, b, ey + r(a, b, c)dp, (A.28)
S = s1(a, b, ¢) + s2(a, b, ). (A.29)

From these expressions we see that the only way to ensure 10,1 is present is to include at least
one of the operators P and Q. But the first one necessarily generates 19>t while the second
generates 921 which are not present in O. We conclude that the operator O cannot be written
as a derivative and the current (T4, T4) is conserved if and only if A_hm; = 0.

In a similar fashion we also analysed the conservation of the current (T, 7). Omitting the
details, we found that

(To — T¢)|._._, = 20mimyhy b [(mi + m3)O + 4acOpd; ¢
+ 16mih* acpd;p — 8mimyh_abcdjrp] + 0,Y (A.30)
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where Yis some local operator and O is given in (A.22). Analysing the expression in the square
brackets as above we find that it cannot be represented as a derivative. Hence the current (T, T)
is conserved if and only if 4_hm; = 0. Moreover, the conclusion holds even if we take a linear
combination of T4 and T which removes the O field from (A.30). The essential obstruction in
(A.15) and (A.30) for being represented as derivatives is the presence of operators acid,) and
acyd?p which are the operators with the highest number of derivatives in each expression.
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