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Abstract

Effective Field Theory (EFT) is a useful approach in situations where the physical system

in question exhibits a separation of scales that can be used to form a perturbative expansion

in a ratio of elementary parameters of the system. In a low-energy EFT such as the so-

called pionless EFT, such an expansion may be carried out in the ratio of the effective

range to the scattering length. It is referred to as pionless EFT because of its origins in

nuclear physics, where it is used to describe nuclear interactions with effective degrees of

freedom without explicitly including the strong nuclear force, which is mediated by pion

exchange. However, it may also be referred to as short-range EFT in non-nuclear contexts.

In atomic physics, this theory is applicable when the scattering length between atoms is

much larger than the underlying range of the interaction, such as in a cold atomic gas of

4He. Nuclear physics applications range from describing the properties of weakly bound

nuclei like deuterium to halo nuclei such as 11Be. In this dissertation, we have applied

pionless EFT to a homogeneous, balanced fermionic gas to determine universal relations

that describe various parameters for any such system regardless of the short-range details

of the underlying interaction. Additionally, we have studied a heteronuclear cold-atomic

mixture and the interesting phenomena that occur when the interspecies scattering length is

large compared to either the short range interaction distance, or any intraspecies scattering

lengths. We calculated three-body recombination and relaxation rates at finite temperatures

and compared our results with available experimental data. In nuclear physics, we have

calculated the polarization corrections to the Lamb shift in muonic deuterium to next-to-

leading order in the deuteron effective range, ρd. These examples comprise a small sample

of the possible range of applications of pionless EFT, and another goal of this dissertation

is to make accessible the basic principles of the theory for its further use.
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Chapter 1

Background

This document is intended to detail the work that I have completed as a Ph. D. student

at the University of Tennessee, Knoxville, and it is also intended as a helpful tool for those

interested in these topics and in the further use of the field theoretical methods explained

herein. We have applied the pionless effective field theory (/πEFT) to a selection of problems

in low-energy atomic and nuclear physics.

1.1 Universality and Low Energy Scattering

In low-energy scattering processes, the quantum mechanical scattering length a is a

fundamental parameter. It is the location at which a line matching the slope of the radial

wavefunction of the scattered particle at the boundary of the interaction potential first

crosses the r-axis in a plot of the radial wavefunction φ(r). This relates it to the scattering

phase-shift, or the phase-angle by which the scattered wavefunction is shifted from a free

wavefunction emanating from the origin. At very low energies, the two-body scattering

amplitude is directly proportional to a, which means that the scattering cross section is

proportional to πa2. So, the scattering length may roughly be understood as the size of

one particle from the perspective of another one incident upon it. This scattering length is

often on the order of the interaction length scale `. However, when |a| � `, the observable

properties of the system at hand display behavior that is independent of the interaction

potential [1]. This is described as universality since the formulas that describe one system
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apply equally well to others that have a large scattering length. The deeper reasons why

such a large scattering length arises are irrelevant for the purposes of calculating observables.

Universality and its ramifications in two- and three-body physics phenomena have been

described at length, for example, in Ref. [2].

Universality occurs in both the two- and three-body scattering and bound state sectors.

In the two-body system, parameters such as the atom-atom scattering cross section may

be expressed as a function of two-body energy E and a. Additionally, if a > 0, a shallow

two-body bound state exists with binding energy B = ~2/ma2, and all other low-energy

observables similarly depend only upon a. In the three-body scattering sector Vitaly Efimov

discovered that there are unique universal properties when the two-body scattering length

is large [3]. If ` � |a|, these properties can be expressed in terms of a and one additional

parameter. Determining this parameter requires the use of one three-body observable. The

beauty of universality in three-body physics is that once one has determined the necessary

parameter, one may use it to predict all other low-energy three-body observables [1].

Further, Efimov discovered [3] that when the two-body scattering length between any two

of the three particles is larger than the length scale of the underlying interaction potential,

there is a geometric sequence of three-body bound states that are shallowly bound compared

to ~2/m`2. It is important to note that not all three-body systems meet such criterion. In the

universal, or unitary, limit, where a→ ±∞, the sequence is infinite, and there are infinitely

many three-body bound states to be found as you approach the three-particle threshold from

below. The exact ratio, or scaling factor (squared scaling factor by convention), between

these states changes depending on if the system is composed of identical bosons, fermions in

three distinguishable states, or a heteronuclear system consisting of more than one particle

species [4, 5]. One specific example of a system exhibiting universality in its observables is

a gas of 4He. The 4He system is interesting because it is a case provided by nature wherein

the scattering length is much larger than the underlying range of the interaction [1].

Additionally, if one includes a finite effective range in the problem, it is possible to

introduce systematic corrections to universal results, as shown in Ref. [6]. The effective range

is introduced in the low-energy expansion of k cot δ in the two-body scattering amplitude and

can be included perturbatively in an Effective Field Theory (EFT) approach. Additional
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corrections can arise in heteronuclear systems in which both inter- and intraspecies scattering

lengths are large. If the intraspecies scattering length, or the scattering length for two

identical atoms in the heteronuclear mixture, is not too large it can be included perturbatively

[7].

1.2 Pionless Effective Field Theory

Effective quantum field theories have become a standard tool for the description of the

physics of strongly interacting systems in a nonperturbative regime. For such a theory,

the most general possible Lagrangian consistent with the underlying physical symmetries

is developed using quantum fields that create or annihilate the relevant degrees of freedom

under consideration, such as quarks or atoms. These theories gain predictive power when

they are expanded such that only a finite number of interaction terms is needed to aptly

describe the physical system. In /πEFT, an expansion in terms of `/|a| serves this purpose

[8, 9]. Each higher order in such an expansion contributes a portion to the total result

of a given calculation that is smaller than the previous order’s contribution by a factor of

`/|a|. It is this EFT that we use throughout this work, and the degrees of freedom, or

particles, allowed in the theory are numerous. When we apply /πEFT to cold atomic physics,

the quantum fields correspond to entire atoms, and individual electrons and nuclei do not

enter the picture explicitly. In nuclear systems, we apply the theory to cases such as the

deuteron, in which it is unnecessary to consider pion-exchange between nucleons. Instead,

the physics is dominated by the nucleon-nucleon (NN) scattering length, which is several

times larger than the range of the nuclear interaction potential. In this case, the quantum

fields correspond to individual nucleons.

Pionless EFT is very general and, broadly speaking, allows for the calculation of various

amplitudes for low-energy processes in which pions are not a necessary degree of freedom

in the description of the physics. We prefer it for the systems considered here because

the development of Feynman diagrams renders this approach visually and mathematically

simpler than a purely quantum mechanical method, and external currents are straightforward

to include. Additionally, the number of free parameters that must be fit to experimental data
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is small at low orders in the EFT expansion, and the uncertainty of a calculation decreases

as higher orders in the expansion are included. Beyond the applications of the theory we

consider, it is widely applicable to systems consisting of bosons and/or fermions, so long as

they fit the criterion already outlined above for physics at or near the universal limit. For

example, in addition to atoms and light nuclei, /πEFT has been applied to halo nuclei, in

which the weakly bound nucleon and the core to which it is bound are the effective degrees

of freedom with corresponding fields in the theory [10].

One issue from quantum field theory (QFT) that is also present in the EFT formalism we

consider is that divergences arise in loop integrals over intermediate states. These divergences

must be rendered finite to obtain physical results, and this is done via regularization

of the integrals. Once the integrals are regulated, or made finite, a process known as

renormalization [11] is carried out to match the theory onto a particular observable. It is at

this point where the theory gains predictive power for other properties of whatever system

is being considered. The most relevant regularization and renormalization methods for the

work that follows utilize a finite momentum space cutoff (often denoted Λ in loop integrals) or

dimensional regularization with either minimal subtraction a partial divergence subtraction

(PDS) scheme [12]. In the two-body sector, when the scattering length is large compared

to the range of the interaction, the EFT contact interaction becomes non-perturbative, and

an ultraviolet divergence arises in the integral over the intermediate states. But, this cutoff

dependence can be absorbed into the leading-order interaction coefficients themselves. The

lack of detail about the short-distance physics in this low-energy theory is folded into these

coefficients, or low-energy constants (LECs) [13].

1.3 Cold Fermionic Gases

Systems of strongly-interacting ultracold two-component fermions have been studied for

many years. An example from nuclear physics is an ultracold gas of neutrons. In atomic

physics, such a system is very interesting because as one crosses the unitary limit from large

positive scattering lengths to large negative scattering lengths, the system transitions from

a Bose-Einstein condensate (BEC) to a system displaying Bardeen-Cooper-Schrieffer (BCS)
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superfluidity. Such systems in the unitary limit in particular have received a large amount

of attention from the cold-atom physics community [14]. In this limit, one may apply the

zero-range model, in which the range of the atom-atom interaction is taken to zero while

the two-body binding energy is kept constant by adjustment of the coupling strength. The

first topic we explore in this work applies /πEFT in a cold atomic setting, specifically to a

balanced, homogeneous gas of fermions in two spin states interacting strongly through a

large scattering length.

Perhaps the most interesting theoretical development in recent years applicable to the

cold-fermionic systems we consider was the introduction of universal relations by Shina Tan

[15, 16, 17]. The expressions he first developed are remarkable in that they parameterize

many of the bulk properties of the system in terms of the scattering length and a factor C

referred to as the contact, which is a system-dependent measure of the average number of

fermions that may be found at large momentum if the momentum distribution of the gas is

measured. The methods used by Tan in his pioneering works involved rather complicated

mathematical techniques in a quantum-mechanical framework.

We find that /πEFT is very useful in this system, as is a field-theoretical tool called

the operator product expansion (OPE). This field theory is useful because it is fully

renormalizable when the effective range is zero, and order by order renormalizable when the

range is included perturbatively. This makes it adept at handling the strongly interacting

system of fermions with a large scattering length we consider and allows us to obtain physical

results. And even with its own challenges, this field-theoretical approach is simpler than the

methods used by Shina Tan in his 2008 works. The OPE, developed for the purpose of

describing strongly interacting systems during the late 1960’s by both Kenneth Wilson and

Leo Kadanoff [18, 19], is the tool we use to develop the universal relations of Tan from a field

theoretical perspective. It enables us to write the universal relations in terms of expectation

values of interaction terms from the field-theoretical Lagrangian. The first work examining

such systems using this approach is found in Refs. [20, 21]. These studies utilized the zero-

range model as well as the resonance model [21], of which the effective range model is a special

case. In each of these studies, including the work presented here, bulk properties of the gas
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were derived from two-body interaction physics. This allows one to describe these cold-

atomic many-body systems in a simpler manner than traditional many-body approaches.

We have introduced corrections to universal relations describing a homogeneous, balanced

gas of fermions in two spin states due to a finite effective range rs in our work in Ref. [22],

and the results are presented in this dissertation in Ch. 2.

1.4 The Efimov Effect in Heteronuclear Three-body

Systems

When the scattering length between two particles is large, interesting physics is not confined

to the two-body sector. For the system of two-component fermions interacting through a

large scattering length considered above, two-body physics effects were dominant, and three-

body interactions were not considered because of the Pauli exclusion principle. However,

low-energy systems need not have this exclusive composition. Several types of systems

displaying universal physics in the three-body scattering and bound-state sectors must also

be considered, such as identical bosons, fermions in three distinguishable spin states, or

heteronuclear mixtures of various bosonic and/or fermionic species. In 4He, the scattering

length is by nature much larger than the effective range rs, and two universal three-body

bound states are present [1]. But for systems with a still larger value of |a|, more trimers

are allowed. The volume of the associated trimers is proportional to a3, and the two bound

state binding energies are separated by a factor which is the same for all systems of identical

bosons displaying such universality.

In some cold-atomic systems that do not have a naturally small value of rs/a, such as a

gas of 87Rb, the scattering length between two particles may be made large by tuning the

magnetic field the gas resides in to a Feshbach resonance. These resonances are defined as

the location of the magnetic field at which the magnitude of the scattering length diverges.

Some literature demonstrating these resonances in systems of identical bosons is found in

Refs. [23, 24, 25]. With a large two-body scattering length present in the three-body system,

discrete scaling arises in which features in three-body observables take on a log-periodicity.
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Bosonic systems all have the same value of the scaling factor associated with this discrete

scaling, which we label λ. This number is a separation factor between universal features in

various three-body observables, and the value is λB ≈ 22.694 for identical bosons.

One specific way of defining the scaling factor λ is as a spacing factor between binding-

momentum values of universal three-body bound states. For example,

E(n) = −λ2(n∗−n)κ
2
∗
m
, n = n∗, n∗ ± 1, n∗ ± 2 . . . . (1.1)

Here, m has dimensions of mass and κ∗ is a system-dependent three-body parameter which

we obtain in our work from either experiments or ab-initio calculations. The three-body

parameter in Eq. (1.1) is the binding momentum of a selected three-body bound state, but

there are other parameters that may be used and fulfill the same purpose of matching our

results onto results known from experiments.

The size of the scaling factor for identical bosons, λB ≈ 22.694, turns out to make it

challenging to observe multiple Efimov features because of the change required in the external

magnetic field the atoms are immersed in to alter the scattering length by this magnitude.

This makes it difficult to test Efimov universality in an experimental system. Because of

this, many have turned to heteronuclear mixtures consisting of two or more atomic species

to study universal three-body physics. This is because in a gas with two distinguishable

atomic species, the possibility still exists to make the interspecies scattering length large via

a Feshbach resonance while keeping the intraspecies scattering length small, and the scaling

factor is dependent upon the mass ratio of the two atomic species. This means that you can

drive the scaling factor λ away from the bosonic scaling factor λB ≈ 22.694 and towards a

smaller value which allows for the experimental viewing of additional Efimov features. A

smaller scaling factor is nice because only a small change in the magnetic field is required to

observe additional universal features in scattering-length-dependent observables.

One such interesting feature in systems which exhibit universal behavior is that, in the

case of ultracold atomic gases, atoms are found to leave the trap through a process called

three-body recombination. Experiments have confirmed this in systems of identical bosons

[26, 27, 28, 29], and experiments and theory have also confirmed this in three distinguishable
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states of fermionic 6Li [30, 31, 32, 33, 34, 35, 36, 37]. This effect and the related event known

as atom-dimer relaxation have also been looked for in heteronuclear systems [38], and this

is the case which we study.

This dissertation contains an effective-field-theory analysis of the heteronuclear atomic

system at finite temperature with an interspecies scattering length that is positive and

large compared to all other length scales in the system. For the light atom we choose

a fermionic species that has been prepared in one spin state, and the heavy species is

bosonic. Experiments in a variety of systems demonstrate the applicability of these working

assumptions. We explore the contributions from the first several higher-partial-wave (in

orbital angular momentum) scattering channels to the three-body recombination rate and

atom-dimer relaxation rate at finite temperatures for several systems.

One of the main messages from this work on universal physics in heteronuclear mixtures

[5] was that, while highly mass-imbalanced systems have advantageously small scaling factors

for the purposes of observing universal physics features, finite temperature effects largely

obscure the otherwise more accessible universal physics, rendering these systems less desirable

for the study of Efimov physics than previously thought. Much of the theoretical work our

study is based on is contained in a 2008 paper by Eric Braaten, Hans-Werner Hammer,

Daekyoung Kang, and Lucas Platter describing three-body physics in identical bosons [39].

It very much informed the approach taken here, in addition to papers by Helfrich, Hammer,

and Petrov [40, 41].

1.5 Nuclear Polarization Corrections in Muonic Deu-

terium

As an electron or muon orbits a nucleus, it can excite the nucleus, and these excited

nuclear states in turn affect the atomic states of the lepton-nucleus system. The resulting

nuclear polarization corrections to the Lamb shift can be large and very difficult to calculate

accurately. In this work, we have begun calculating these corrections in muonic deuterium in

order to address their important impact on the measured finite size of the deuteron, which is
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relevant to the proton radius puzzle and a range of measurements taken at institutions such

as the Paul Scherrer Institute (PSI). The proton radius puzzle is highlighted in Ref. [42]

and consists of the fact that, at present, disagreement larger than experimental uncertainties

exists in the value of the proton radius extracted from experiments using electronic hydrogen

versus the radius value taken from muonic hydrogen experiments. No satisfactory answer

has been found to date that resolves this puzzle, though the proton radius calculated from a

2S-4P spectroscopic measurement in regular hydrogen by Axel Beyer et al. in Ref. [43] was

found to be in agreement with the smaller value obtained from µ-p experiments. Yet, this

does not fully resolve the puzzles, and more experimental and theoretical work is necessary

to fully understand where the discrepancy arises in the bulk of other experimental data.

Nuclei of larger atomic mass number have been examined to determine if the radius puzzle

has any mass-number dependence. In the deuteron, the radius extracted from the 2S-2P

Lamb shift in µ-D differs from that extracted in e-D by an amount larger than 2σ. One

of the most recent experimental determinations of the deuteron charge radius was obtained

by Randolph Pohl et al. from electronic deuterium spectroscopy in Ref. [44] is 3.5σ larger

than the radius obtained with µ-D. This is an improvement over previous results in that

the difference between muonic and electronic results is closer to being within 2σ. This

discrepancy is referred to as the deuteron radius puzzle and is currently unresolved [45].

One of the most significant sources of theoretical uncertainty relevant to the extraction of

the deuteron charge radius comes from the contribution due to two-photon exchange (TPE)

between the orbiting lepton and the nucleus. This is the so-called nuclear polarization

correction to the Lamb shift. This TPE energy correction is one component of the 2S-

2P Lamb shift and must be derived from theory, since it is not separable from the other

components of the energy shift in the experiments used to determine the Lamb shift. Other

contributions to the Lamb shift come from quantum-electrodynamic (QED) effects and from

the finite radius of the deuteron ground state. Thus, once the TPE and QED contributions

to the Lamb shift are known from theoretical calculations, the deuteron charge radius may

be extracted from the experimental data for the Lamb shift.

To approach the problem, we again utilize /πEFT, while including finite deuteron-effective-

range corrections up to next-to-leading order. Within the theory, we include electromagnetic

9



interactions through minimal coupling in the Lagrangian density. Muonic deuterium lends

itself well to this approach because the muon wave function does not change much across

the physical volume of the nucleus and is approximately free. This enables the calculation of

the polarization correction to the Lamb shift using the forward virtual Compton amplitude,

which we then relate to the shift of the 2S energy state due to two-photon-exchange (TPE)

between the muon and the nucleus. In the calculation of the forward virtual Compton

amplitude, we follow the method of Refs. [46, 47] and replace it with the inelastic deuteron

structure function. Further, we extract the component of the TPE energy shift due to

inelastic electric dipole excitation of the nucleus, and the results compare favorably to those

of Friar in Ref. [48]. This work is contained in Ch. 4.

1.6 Organization of this Work

Chapter 2 contains a detailed description of the work describing finite-effective-range-

corrected universal relations in an ultracold two-component Fermi gas. Chapter 3 presents

the details of our study about three-body recombination processes in heteronuclear atomic

mixtures at finite temperatures. After this, Ch. 4 spells out progress made in the calculation

of nuclear polarization corrections to the 2S-2P Lamb shift in µ-D. There are concluding

remarks and discussion in Ch. 5.
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Chapter 2

Balanced Two-Component Fermi

Gases

In this chapter, we consider a homogeneous, balanced gas of fermions in two spin states

interacting strongly through a large scattering length at low temperatures, of which various

studies are ongoing [49, 50]. In order to move towards a more quantitative description

of data that experiments and numerical simulations have provided, finite-interaction-range

corrections must be included in the formalism. The most readily examined parts of the theory

of such a system in our approach are known as universal relations. They are referred to as

such because of their total lack of system dependence in the unitary, or |a| → ∞, limit. Such

universal relations were first derived in the zero-range limit by Shina Tan in 2005 [15, 16, 17]

using a particular quantum-mechanical approach and apply to both few- and many-body

systems at zero or non-zero temperatures. In the universal relations of those references,

Tan introduced what has become known as the contact, C, defined by the large-momentum

asymptote of the 1/k4 tail of the momentum distribution. Initially, this quantity was known

as the integrated contact intensity. This is a state-dependent quantity that depends on such

quantities as the scattering length, density, and temperature of the system. The leading-

order expression for the large-momentum tail of the momentum distribution is an example

of a universal relation involving Tan’s contact:

ρσ(k)→ C

k4
, (2.1)
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where k is the magnitude of the relative momentum of two fermions interacting through a

large scattering length. One additional example is the adiabatic relation giving the change

in total energy E of the gas due to an adiabatic change in the scattering length. It is

dE

da
=

C

4πma2
, (2.2)

as seen in Refs. [17, 20], where additional universal relations are also studied in the zero-range

limit.

The contact and related universal relations can also be derived in pionless EFT using a

formal tool called the operator product expansion (OPE) [18, 19, 51], which is a quantum

field-theoretical expansion of a nonlocal operator in a small spatial or time separation. It

was first used to rederive Tan’s universal relations and show that the contact is related to

the leading two-body interaction term in the EFT in Ref. [20]. In this work, universal

relations improved by the inclusion of the finite effective range of the two-body interaction

are calculated. And just as the contact played an important role in the zero-range limit,

two additional important quantities enter into the universal relations valid beyond the zero-

range limit. One of these measures the sensitivity of the energy of the system to the effective

range and is referred to as the derivative contact. The other new term gives a measure of

the averaged kinetic energy of opposite-spin fermion pairs at zero relative distance. Of the

universal relations we derived in this work, some were previously derived in a quantum-

mechanical framework by Werner and Castin in Ref. [52]. In the zero-range limit, the OPE

has also been applied to the problem previously [20, 21, 53]. In this work, we used the OPE

in an EFT setting to derive additional universal relations including a finite interaction range

perturbatively. This approach makes no assumptions regarding the microscopic details of

the interaction which causes the large scattering length, so it is model independent.

The first portion of this chapter contains a review of the EFT used to describe the

short-range interactions relevant to this work, as well as the renormalization of the theory

using a hard momentum-space cutoff on the integrals over intermediate states up to next-

to-leading order (NLO) in the EFT expansion in `/a, where ` is the range of the atom-atom

interaction and a is the two-body scattering length. Renormalization is often necessary in
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field-theoretical approaches in order to eliminate divergences appearing in the calculations

and obtain physical results. Following the presentation of the renormalization of the theory,

we give the universal relations up to NLO in Sec. 2.2. That section also demonstrates how

the renormalized two-body operators in the OPE form the contact and derivative contact

operators of the presented universal relations. Next, Sec. 2.3 contains a numerical comparison

between the field-theoretical results given here and provided Quantum Monte Carlo (QMC)

data for the momentum distribution of the gas. This comparison is best made in the present

case of two equally-populated spin states. Otherwise, the QMC method is complicated by

the fermion sign problem. Finally, the detailed derivations of several universal relations are

provided in Sec. 2.4. Integrals and definitions useful for the derivation of the following results

are contained in Appendix A.

2.1 Effective Field Theory

The two-body t-matrix for a system of two fermions in opposite spin states interacting

through a large scattering length a can be written as

t(k) =
4π

m

1

k cot δ0 − ik
, (2.3)

where k is the relative momentum of the two interacting particles, m is the mass per particle

(we assume the two particles are of equal mass), and the scattering phase shift is denoted

δ0. The subscript indicates total orbital angular momentum L = 0, or S-wave scattering.

This t-matrix may be expanded when k is smaller than the inverse of the interaction

range R of the underlying potential, i.e. at low energies, using the effective range expansion.

While one may expand about any k-value in the radius of convergence of the theory, such as

the location of the deuteron binding momentum, the expansion about k = 0 is useful here

and is given by

k cot δ0 = −1

a
+
rs
2
k2 + · · · , (2.4)

where a is the S-wave scattering length, and the S-wave effective range is denoted rs and

is O(1/Λ) or smaller, where Λ is the momentum-space cutoff of the renormalization scheme
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used in this work and Λ ∼ 1/R. Systems with such properties can be described by an EFT in

which particles interact only through contact interactions as long as the short-range details

of the system are not resolved by the momentum scales in the system, i.e. when k < 1/R.

The Lagrangian for an EFT applicable to this system is given order-by-order as

L = L0 + L1 + · · · , (2.5)

where L0,1 are the Lagrangians which are leading order (LO) and next-to-leading order

(NLO) in the effective range rs. The dots denote operators that contribute at higher orders

in the EFT expansion and contain more derivatives and/or fields. The components of the

Lagrangian that we are interested in are the LO and NLO terms. These are given by

L0 =
∑
σ=1,2

ψ†σ

(
i∂t +

∇2

2m

)
ψσ −

λ0

m
ψ†1ψ

†
2ψ2ψ1 (2.6)

L1 =
ρ0

4

(
ψ†1ψ

†
2ψ2
←→∇ 2ψ1 + H.c.

)
+ δL1 , (2.7)

δL1 = −δλ0

m
ψ†1ψ

†
2ψ2ψ1 . (2.8)

In these expressions, Planck’s constant is set to ~ = 1. The leading order Lagrangian given

in Eq. (2.6) corresponds to the zero-range model [20]. The first term of that equation is the

Lagrangian density for a free, non-relativistic particle, and the second is the LO interaction

term with a bare coupling constant λ0 related to the scattering length and the UV cutoff

through renormalization. The term L1 consists of the effective-range term and contains ρ0

and also δL1, which is present to subtract a divergence arising in the scattering amplitude

calculation with this Lagrangian. This is a feature of the particular regularization scheme

used in this chapter, in which all field-theoretic loop integrals are regulated using a finite UV

cutoff. The LO and NLO expressions are renormalized below, and the coupling constants

of the theory, λ0, ρ0 and counterterm δλ0, are calculated in order to reproduce the LO and

NLO t-matrix.
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ALO= +ALO

Fig. 2.1 – Leading order scattering amplitude.

2.1.1 Leading-order amplitude

The leading order vertex must be iterated to all orders in the expansion of the field-theoretical

action e−i
∫
dtHI , where HI = −

∫
d3RLI(R), and the quantity R is in bold font to indicate

that it is a vector quantity. This gives the nonperturbative properties of the system, which

are LO in the effective range expansion [8, 9]. The diagrams whose sum gives the two-body

scattering amplitude form an integral equation equivalent to the Lippmann–Schwinger (LS)

equation,

iALO(E) = −iλ0

m
− iλ0

m
I0(E,Λ)iALO(E) , (2.9)

where E is the total energy of the two-body system. The diagrams corresponding to Eq. (2.9)

are given in Fig. 2.1 and come from iterating the non-perturbative contact interaction to

all orders on the right-hand side (RHS) of the figure. I0(E,Λ) is the loop integral in that

figure and depends on the energy E and the ultraviolet cutoff Λ imposed on the integral.

This integral in Eq. (2.9) is given in detail by Eq. (A.2) in Appendix A.

The low-energy constant (LEC) λ0 depends on the cutoff and is determined by the

requirement that Eq. (2.9) reproduces the t-matrix given in Eq. (2.3) in the zero-range

limit. If we isolate the amplitude on one side of Eq. (2.9), the other side may be expressed

as − iλ0
m
/(1+ iλ0

m
I0(E,Λ)). This can also be obtained by iterating the interaction to all orders

as described above and realizing that this sum must form a geometric series if it is to remain

finite. In other words, we can rewrite the LO amplitude of Fig. 2.1 as

iALO =
∞∑
j=0

(
−iλ0

m

)j+1

I j0 (E,Λ) = −iλ0

m

1

(1 + iλ0
m
I0(E,Λ))

. (2.10)

This expression for the amplitude in Eq. (2.10) may then be directly compared to the leading

order amplitude of Eq. (2.3) with k cot δ0 = −1/a using the known form of I0(E,Λ). In that
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Fig. 2.2 – Scattering amplitude through NLO. Solid dots denote the λ0 vertex, squares
represent an insertion of the ρ0 vertex, and the crossed circle vertices represent the
counterterm vertex δλ0.

comparison, λ0 is the only unknown. Thus, we write it as an explicit function of Λ and

scattering length a as

λ0 =
4πa

1− 2aΛ/π
. (2.11)

2.1.2 Next-to-leading-order amplitude

In this section, we detail the renormalization of the EFT at NLO in the short-range

interaction. Renormalization to this order was explained using a technique known as

dimensional regularization with partial divergence subtraction (PDS), for example, in

Ref. [8]. However, because we use an explicit momentum-space cutoff, an additional

subtraction term is introduced below in addition to the NLO coupling constant ρ0.

The NLO effective-range expansion of the t matrix of Eq. (2.3) is given by

t(k) =
4π

m

1

− 1
a

+ 1
2
rsk2 − ik ≈

4π

m

1

− 1
a
− ik

(
1− rsk

2/2

− 1
a
− ik +O(r2

s)

)
, (2.12)

where the leading factor of 1 in parentheses of the final expression corresponds to the LO

t-matrix and the second term is its NLO correction. Higher-order terms are encapsulated

in O(r2
s). Note that this final expression in Eq. (2.12) is the result of expanding in a small

finite effective range. The NLO part of this expression is reproduced below by a calculation
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of the scattering amplitude with one perturbative insertion of the interaction Hamiltonian

density given by H1 = −L1. This is simply the same procedure used in the LO case, only

with the addition of the NLO vertex insertions.

Figure 2.2 shows the scattering amplitude up to NLO. The second row includes the sum

of diagrams containing only one insertion of the ρ0 vertex, and the third row of the figure

gives the diagrams with one insertion of the δλ0 vertex. The vertex factors present in the

second and third lines of Fig. 2.2 are inserted only once because they are each directly

proportional to the effective range rs, which gives the desired form of the range contribution

to the NLO t matrix. In addition to these two terms, the subleading part of the factor λ0 on

the order of 1/Λ ∼ rs arising from the chosen regularization method must also be included.

Summing all of the aforementioned contributions to the NLO scattering amplitude, we

obtain

iANLO = −iA2
LO

mk2

2π2Λ
− i2ρ0

mA2
LO

λ0

(
mk2

λ0

− mΛ3

6π2

)
− iδλ0

m

(
mALO

λ0

)2

. (2.13)

Each of the terms in Eq. (2.13) gives the NLO contribution from each of the three rows of

diagrams in Fig. 2.2. The first comes from the first row of diagrams in the figure when we

include only the NLO contribution proportional to k2/Λ after summing over all diagrams

in that row. The next contribution is the sum of diagrams containing a single effective-

range vertex, and it contains a Λ3 divergence. It is necessary that the term ∝ δλ0 subtracts

the divergence of O(Λ3). Then, comparing Eq. (2.13) to the NLO part of Eq. (2.12), we

calculate the constants ρ0 and δλ0 as

ρ0 =
λ2

0

16πm

(
rs −

4

πΛ

)
, (2.14)

δλ0 =
(λ0Λ)3

48π3

(
rs −

4

πΛ

)
. (2.15)

In Eq. (2.15), δλ0 is a counterterm needed for proper renormalization. This is in distinction

to the PDS renormalization scheme used in Chapter 4 below on polarization effects in the

deuteron. In that case there is an NLO contribution to λ0 (alternatively written mC0) that

is proportional to the deuteron effective range present in order to obtain the phase shift
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expanded about the deuteron binding momentum γ, rather than to eliminate a spurious

divergence from a loop integral.

2.2 Universal Relations at Next-to-Leading Order

In conjunction with the field-theoretical approach applied in this work, we use a tool

called the operator product expansion (OPE) to calculate the momentum distribution

of the system, as well as the contact C and the two new parameters associated with

the NLO effective-range correction. The other universal relations addressed are then

expressed in terms of expectation values of the operators associated with these three

parameters. We present the detailed derivation of these universal relations in Sec. 2.4. In this

section, universal relations including the 1/k6 correction to the 1/k4 tail of the momentum

distribution and range corrections to the energy relation, adiabatic relation, pressure relation,

and the virial theorem for a harmonic potential are given.

Through use of the OPE, we find the momentum distribution at momentum, or wave

number, k large compared to the fermi momentum for atoms in a spin state σ to be

ρσ(k)→ C

k4
+
C ′ +D

k6
+O

(
1

k8

)
, (2.16)

where C is the previously discussed contact, which may be understood as the asymptote of

the scaled momentum distribution given in Fig. 2.3. It is also a measure of the sensitivity

of the properties of the system to the inverse scattering length. D is referred to as the

derivative contact since it is associated with the second derivative of the contact operator

in the leading Lagrangian L0. It is a measure of the sensitivity of the system’s properties

to the finite effective range rs and is calculable from QMC simulations. Further, C ′ in Eq.

(2.16) comes about by incorporating the averaged pair kinetic energy in the system. In the

two-body system, for example, C ′ = C K2/2, where K is the momentum of the center of

mass of the particles. Since a value for C ′ is not known at this time, it is not included in

Fig. 2.3. However, it is possible that a value could be obtained via a fit to the 1/k6 tail of

more precise data from QMC simulations. Equation (2.16) for the momentum distribution
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Fig. 2.3 – Dimensionless contact density C/k4
F , represented by the triangles on the graph,

and the derivative contact density D/k6
F as a function of 1/(kFa) at zero temperature from

QMC simulation in Refs. [56] and [57]. The point 1/(kFa) = 0 corresponds to the unitary
limit.

is valid in the zero-effective-range limit, and the form of the equation remains the same

after taking range corrections into account because those corrections are contained in the

coefficients C, C ′, and D. The derivation of this equation is contained in Sec. 2.4, where it

is also demonstrated that the contact and derivative contact are the respective expectation

values 〈
∫
d3ROC〉 and 〈

∫
d3ROD〉. OC is proportional to the contact term in L0 and thus

the coupling constant λ0, while OD is similarly related to L1. Additionally, as discussed by

Z. Yu et al. and P. Zhang et al. in Refs. [54, 55], the 1/k4 term in the tail of the momentum

distribution receives contributions with similar interpretations to C ′ and D near p- or d-wave

resonances.

After deriving the momentum distribution and understanding the three coefficients

contained therein, the energy relation may be written. This relation rewrites the sum of

the individually UV-cutoff-sensitive kinetic and interaction energies into pieces that are
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individually finite and insensitive to the UV cutoff. This is

〈H〉 =
C

4πma
+ rs

D

16πm
+ 〈T (sub)〉, (2.17)

in which 〈H〉 is the expectation value of the Hamiltonian for a generic mixture of energy

eigenstates. The contribution to the energy of the system from an external potential has

not been included in Eq. (2.17). T (sub) is the renormalized (divergence-subtracted) kinetic

energy defined below. The derivation of this equation is also given in Sec. 2.4, and the result

is

〈T (sub)〉 =
∑
σ

∫ ∞
0

dk

4π2m

[
k4ρσ(k)− C − θ(k − k0)

k2
(C ′ +D) + · · ·

]
+
C ′ +D

2π2mk0

− rs
C ′ + 3D

16πm
. (2.18)

In order to obtain this equation, we wrote the kinetic energy operator T defined in Sec. 2.4

in terms of the renormalized operator given in Eq. (2.53). Next, the momentum distribution

ρσ(k) was substituted in for this using the OPE result of Eq. (2.69). The momentum lower

limit k0 < k was imposed in order to avoid an IR divergence in Eq. (2.18), and the second

to last term in the same equation removes the dependence on this IR cutoff. Equation

(2.17) was derived via the method shown following the momentum distribution derivation

at the end of Sec. 2.4. While this energy relation is valid for a generic mixture of states, the

relations given in the remainder of this section only hold for a pure eigenstate. If the state

of the system is a generic mixture of eigenstates, the relations only approximately hold, and

only so long as the off-diagonal terms in the matrices are negligible [15, 16, 17].

As in Ref. [16], the adiabatic relation is defined as the change in the energy of the system

due to an adiabatic change in the scattering length a. For the effective range, rs, a similar

adiabatic relation can be determined by taking the derivative of the energy with respect to

rs. The relation involving the derivative with respect to the scattering length is

dE

da
=

〈
dH

da

〉
=

C

4πma2
, (2.19)
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where we used the Feynman–Hellmann theorem to obtain the first equality. For the second

equality in Eq. (2.19),
dH

da
=

∫
d3R

OC
(4πma2)

+O

(
1

Λ2

)
(2.20)

was obtained through the use of dλ0/da = λ2
0/(4πa

2) and dρ0/da = ρ0λ0/(2πa
2).

Equation (2.19) remains identical to the form it had in the zero-range limit in Eq. (2.2)

because the finite-range correction is contained within the expectation value C.

We find that the adiabatic relation involving the effective-range derivative is given by

dE

drs
=

〈
dH

drs

〉
=

D

16πm
, (2.21)

where the Feynman–Hellmann theorem was again used to move past the first equality of Eq.

(2.21), and
dH

drs
=

∫
d3R

OD
(16πm)

+O(ρ0) (2.22)

was obtained using dρ0/drs = λ2
0/(16πm) and da/drs = dλ0/drs = dΛ/drs = 0. Terms

that are proportional to ρ0 are dropped, since they are of higher order than NLO when

incorporated into H. Thus, D is independent of rs up to NLO in rs, i.e. dE/drs is well

behaved as rs → 0. This was discussed in Refs. [52, 56, 57].

The next effective-range corrected formulas produced here are the pressure relation [17]

and the virial theorem [58]. Further, as the energy of a homogeneous gas scales linearly

with the volume, the energy density is expressible as a function of variables that are volume-

independent. An example of this is the Helmholtz free-energy density F , which depends

only on intensive thermodynamic quantities of the system such as chemical potential µσ,

the temperature T , and parameters such as the scattering length and effective range. The

following equality may be derived from dimensional analysis:

[
T
∂

∂T
+ µσ

∂

∂µσ
− a

2

∂

∂a
− rs

2

∂

∂rs

]
F =

5

2
F , (2.23)

where on the left-hand side (LHS) the sum of the logarithmic derivative of each parameter of

the system multiplied by its dimension is taken. This reduces to the RHS, which is the free

energy multiplied by its energy dimension of 5/2. Then, using the relation between entropy
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density s, temperature T , energy density E , and Helmholtz free energy density F = E − Ts
and the relation F = −P + µσnσ we obtain the pressure relation

P =
2

3
E +

C
12πma

+ rs
D

48πm
. (2.24)

In Eq. (2.24), E , C, and D are E, C, and D, respectively, divided by the volume of the

system.

The next relation we write here is the energy relation. It comes again from dimensional

analysis for a gas trapped in a harmonic potential V (R) with trap frequency ω. The result

is [∑
i

ωi
∂

∂ωi
− a

2

∂

∂a
− rs

2

∂

∂rs

]
E = E. (2.25)

Then, by using that Σiωi∂V (R)/∂ωi = 2V (R) and Eqs. (2.19) and (2.21) the virial theorem

for a trapped atomic gas was obtained as

E = 2V − C

8πma
− rs

D

32πm
, (2.26)

where the average of the harmonic potential is denoted by V for the system.

The subleading 1/k6 tail of the momentum distribution developed here and given in Eq.

(2.16) and the relation of the associated derivative contact to the energy given in Eq. (2.21)

were first derived through an analysis of the many-body wave function in systems of two-

component fermions with a large scattering length in Ref. [52]. It is interesting that these

very general results are reproduced here through the use of the OPE for two-body states.

Two universal relations that have not been extended here to include range corrections are

the local pair density and the inelastic two-body loss rate. These were studied at leading

order in this EFT framework in Refs. [20, 21].

2.3 Ground-state Results for a Homogeneous Gas

Obtaining a numerical value for the derivative contact is necessary if it is to be of meaningful

use. In this section, we extract the value of D from recent QMC calculations and compare it
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to the value of the contact C in the zero-range limit. The momentum distribution is plotted

here with QMC simulation data for comparison.

The energy density of a balanced, homogeneous Fermi gas in its ground state can be

expanded about the unitary limit where 1/a→ 0 and expressed as

E =

(
ξ − ζ

kFa
+ SkF rs + · · ·

)
EF . (2.27)

Here, EF = 1
10π2k

5
F/m is the Fermi energy density and kF = (3π2n)1/3 is the Fermi momentum

for a system of total number density n. At unitarity, the only scales in the expression for

the energy density are the Fermi momentum and the mass. The other parameters in Eq.

(2.27) are the so-called Bertsch parameter ξ and slope parameters ζ and S with respect to

the 1/kFa and kF rs axes, respectively. These parameters approach constant values in the

unitary limit. At the same time, the energy density still contains a correction proportional

to kF rs. Additionally, the slope S becomes a function of kFa.

For a Fermi gas, the contact density C can be calculated in various limits through the use

of the expression for the energy of the gas in each limit. The energy density in the unitary

limit as given in Eq. (2.27) is an example of this, and by using Eq. (2.19) the contact density

can be expressed as

C/k4
F →

4

9π2
(kFa)2, a→ 0− (BCS limit), (2.28)

→2ζ

5π
, a→ ±∞ (unitary limit), (2.29)

→ 4

3π
(kFa)−1, a→ 0+ (BEC limit), (2.30)

where ζ is again the constant found in Eq. (2.27) determined from either experimental

results or by theoretical means. In the BCS and BEC limits, the energy density expressions

are found in Ref. [59]. The dimensionless contact density C/k4
F is parametrically suppressed

by (kFa)2 in the BCS limit and enhanced by 1/kFa in the BEC limit. It increases as one

moves through unitarity from the BCS to the BEC limit.

The value of the contact has been obtained by various experimental groups through

several observables. The contact across the BCS-BEC crossover was first determined via
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Fig. 2.4 – Scaled momentum distribution close to unitarity, or (k/kF )4nσ(k/kF ). The index
σ indicates either of two possible spin states. It is given as a function of k/kF and compared
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2). We use the values near unitarity of C/k4
F = 0.115 and D/k6

F = 0.061.

photo association in Refs. [60] and [61]. Precise values of the constant ζ were obtained

in the unitary limit as ζ = 0.93(5) from a thermodynamic measurement [62] and as ζ =

0.91(4) from the static structure factor [63]. The dependence on temperature was determined

from the structure factor using Bragg spectroscopy [63, 64], as well as from rf spectroscopy

[65]. Several of the universal relations have been verified via testing the consistency of

the numerically determined values of the contact obtained from various observables and

properties of the system such as the momentum distribution, the rf lineshape, photoemission

spectra, the adiabatic theorem, and the virial theorem [66].

The contact has also been calculated using QMC simulations [67, 68, 69, 70, 71, 72] and

other methods [73, 74, 75]. At the time of this study, the most accurate theoretical value

for ζ is given as ζ = 0.901(3) in Ref. [76]. This results in a value for the dimensionless

contact density of C/k4
F ≈ 0.115. Further, the slope S from Eq. (2.27) was calculated in
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Refs. [56, 57]. The expression for the derivative contact density for the ground state is

D =
8k6

F

5π
S(kFa) . (2.31)

We find some of the asymptotic behavior of the derivative contact density to be

D/k6
F →

8S

5π
, a→ ±∞ (unitary limit),

→− 0.9(1)(kFa)−3 , a→ 0+ (BEC limit), (2.32)

where S = 0.12(1) was obtained in Ref. [57]. This gives a resulting value of D/k6
F = 0.061

in the unitary limit. Equation (2.32) may be derived with the use of Eq. (2.27), and the

relationship between D and the derivative of the energy with respect to the effective range

given in Eq. (2.21). The result obtained in this study for D/k6
F in the BEC limit, or

1/kFa > 0, resulted from fitting D to the QMC data for S [57] shown in Fig. 2.4. Note that

the data in this figure are rescaled by the leading factor found in Eq. (2.31). The expression

for the dimer binding energy, given by Edimer = 1/(ma2)[1 + rs/a+ · · · ], gives the derivative

contact for the dimer as Ddimer = 16π/a3. This is consistent with the power law in the BEC

limit. A power law in the BCS limit was not known at the time of this work.

Figure 2.3 displays the scaled contact density C/k4
F and derivative contact density D/k6

F

as a function of 1/kFa. C is roughly twice as large as D in the unitary limit. However,

in the BEC limit, the magnitude of D increases at a faster rate than that of C, which

follows from the fact that in this limit, the effective-range correction is more important as

the approximation of universal physics deteriorates. Figure 2.4 shows the scaled momentum

distribution near the unitary limit. The OPE results in Eq. (2.16) describe the QMC data

of Ref. [57] well when k & 1.5kF . The as-yet unknown contribution from C ′, originating

from the center of mass kinetic energy, is not included in this study.
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2.4 Operator Product Expansion and Related Calcu-

lations

This section contains a detailed description of the methods used in this work. Included is a

description of the nonlocal coordinate space operator that gives the momentum distribution

in the large-k, or short-distance limit, which is used in the derivation of the above universal

relations. The OPE was developed separately by Wilson [18], Kadanoff [19], and Polyakov

[51] in 1969. It was developed in the field of high-energy physics and has been used, for

example, to describe certain properties of deep inelastic scattering of an electron off of a

hadron [77], but its range of applicability is broader than just the high-energy regime. It

provides an expansion of a spatially nonlocal operator into a series of local operators with

coefficients that are functions of the relative spatial separation r, as long as r is small. The

resulting expansion of the product of operators OA and OB separated in space by nonlocal

distance r is given by

OA
(
R− r

2

)
OB
(
R +

r

2

)
=
∑
n

Wn(r)On(R), (2.33)

where, in general, this is an infinite sum over all possible local operators and Wn denotes the

Wilson coefficient corresponding to each local operator On(r). Using the OPE, we derive

expressions for the two-body contact and derivative contact in terms of expectation values of

field-theoretical operators. The Hamiltonian is then expressed in terms of those operators.

The nonlocal operator that is considered in this work is the one-body density operator

corresponding to the coordinate-space representation of the momentum distribution given

by ψ†σ(R − r/2)ψσ(R + r/2). The Fourier transform of this leads to the momentum-space

distribution ρσ(k) for particles of spin σ. This can be better understood by first writing the

momentum distribution as

ρσ(k) = 〈ψ̃†σ(k)ψ̃σ(k)〉 , (2.34)

where ψ̃†σ(k) is the Fourier transform of the coordinate-space quantum field ψσ(r). Thus it

can be seen that in terms of the coordinate-space representation, the momentum distribution
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in Eq. (2.34) is

ρσ(k) =

∫
R

∫
r

eik·r
〈
ψ†σ(R− r/2)ψσ(R + r/2)

〉
, (2.35)

=
∑
n

∫
r

eik·rWn(r)

∫
R

〈On(R)〉 , (2.36)

where
∫
R

=
∫
d3R and

∫
r

=
∫
d3r, the Wn are two-body Wilson coefficients. Equation (2.33)

was used to rewrite the RHS of Eq. (2.35) with the OPE to form Eq. (2.36).

Operators on the RHS of Eq. (2.36) have been constructed out of the EFT fields and their

coordinate-space derivatives. The field ψσ has dimension ∆ = 3/2 in the EFT expansion,

the dimension of the Galilean invariant derivative

←→
∂i =

−→
∂i −
←−
∂i (2.37)

is ∆ = 1, and the derivative with respect to time has ∆ = 2. The direction of the arrows

indicate whether the field to the left or to the right has its derivative taken when Eq. (2.37)

is inserted between two fields. Operators up to dimension ∆ = 6 which are relevant for this

problem are listed here:

∆ O1,∆ O2,∆

3 ψ†σψσ

4 ψ†σ
←→
∂iψσ ψ†1ψ

†
2ψ2ψ1

5 ψ†σ
←→
∂i
←→
∂jψσ ψ†1ψ

†
2ψ2

←→
∂iψ1 + h.c.

6 ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ ψ†1ψ

†
2ψ2

←→
∂i
←→
∂jψ1 + h.c.

(2.38)

The importance of each of these field-theoretical operators is indicated by its dimension. A

lower dimension signifies greater importance in the momentum distribution.

The unit operator is not listed here because it does not enter the problem, as the

momentum distribution for the vacuum is zero. Additionally, the time derivative ∂t is omitted

here because it can be eliminated and replaced with momentum-dependent operators using

the equations of motion one may obtain from Eqs. (2.6) and (2.7) [53]. In the first column

in the list of operators, the numbers given correspond to the dimension of operators in each
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respective row. The second and third columns give the one- and two-body operators, as

indicated by the subscript of O1,∆ and O2,∆ at the top of the table. It was discussed in

Ref. [20] that the dimension of ψ†1ψ
†
2ψ2ψ1 is lowered to ∆ = 4 from ∆ = 6 due to the

strong interaction. A similar effect takes place for the operator ψ†1ψ
†
2ψ2

←→
∂i
←→
∂jψ1 such that its

dimension is ∆ = 6 rather than ∆ = 8.

Equation (2.33) may be rewritten more suitably for the problem at hand as

ψ†σ(R− r/2)ψσ(R + r/2) =
∑

∆

(W1,∆(r)O1,∆(R) +W2,∆(r)O2,∆(R) + · · · ) , (2.39)

where the index n of each Wn,∆ is indicative of whether the coefficient corresponds to a one-

or two-body operator, and the second index ∆ gives the scaling dimension of the operator.

Wilson coefficients were determined in this study for one- and two-body operators through

dimension ∆ = 6. At leading order, only operators through dimension ∆ = 4 were needed

and the result was comparatively simple. At LO, the nonlocal matrix element and the one-

and two-body matrix elements may be calculated using Figs. 2.5, 2.6, and 2.7 below with

the LO amplitude inserted wherever A is written in the figures. The OPE at leading order

allowed the nonlocal matrix element to be expressed as found in Ref. [20], namely

〈
ψ†σ(R− r/2)ψσ(R + r/2)

〉
=W1,3(r)〈O1,3(R)〉+W1,4〈O1,4(R)〉+W2,4〈O2,4(R)〉 , (2.40)

=〈ψ†σψσ(R)〉+
1

2
ri〈ψ†σ

←→
∂iψσ(R)〉 − r

8π
〈λ2

0ψ
†
1ψ
†
2ψ2ψ1(R)〉 ,

(2.41)

where an Einstein summation convention is assumed over like-indices. Matching the RHS of

Eq. (2.40) onto the evaluated LHS nonlocal matrix element in the same equation facilitated

the calculation of the coefficients leading the operator matrix elements in Eq. (2.41). And, as

the Fourier transform of r gives 1/k4, it was discovered [20] that the LO contact is given by

C =
∫
R
〈λ2

0ψ
†
1ψ
†
2ψ2ψ1(R)〉, as this operator corresponds to the large-k tail of the momentum

distribution. Greater detail is presented in the NLO calculations below on the method of

doing this matching.
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To compute the NLO momentum distribution and other universal relations, we must

introduce the off-shell (or ‘off of the mass shell’ in energy-momentum space) scattering

amplitudeA(E,p,k), in which the ingoing and outgoing momenta p and k are not necessarily

the same and can have magnitudes p 6= k 6=
√
mE, prior to detailing the calculation of the

needed matrix elements forming the RHS of the OPE. This off-shell amplitude must be

known in order to correctly obtain the various Wilson coefficients. When we considered the

renormalization of the theory in Sec. 2.1, the on-shell amplitude depending upon relative

momentum k, with k2 = mE, was included. Here, the off-shell amplitude must be used in

order to match the operators in Eq. (2.39) to the corresponding terms in the nonlocal matrix

element. This is because it explicitly contains a momentum dependence that contributes to

the loop integral results in the calculation. Generally, the off-shell amplitude with incoming

momenta (E/2,±p) and outgoing momenta (E/2,±k) ought to be a function of three

variables, namely E, p, and k. But, the leading order amplitude, ALO(E) is dependent

only on the total energy and not on external momenta. So, the calculation of a loop diagram

containing ALO(E) is simplified by factorization into a product of the amplitude and the

loop integral, as shown in the last term of Eq. (2.9).

But, at NLO this is no longer true because the diagrammatic ρ0 vertex is momentum-

dependent. Thus, an expansion of the off-shell amplitude in powers of 1/Λ gives

ALO −A2
LO

m(mE)

2π2Λ
−A2

LO

2m2ρ0mE

λ2
0

+ALO
mρ0

λ0

(p2 + k2 − 2mE) + · · · , (2.42)

where the LO amplitude is proportional to 1/E and the two following terms are NLO in 1/Λ

and reduce to Eq. (2.13) in the on-shell limit. The last term in Eq. (2.42) is proportional to

p2/Λ2, and terms beyond this are power suppressed. The parameters a−1, p, k, and
√
mE

are of the same size or much smaller than Λ, but λ0 ∼ 1/Λ and ρ0 ∼ 1/Λ3. Terms that are of

order 1/Λ2 may be dropped when the task at hand is computing the NLO amplitude, in which

case ANLO is only a function of E. On the other hand, when calculating matrix elements

necessary in the OPE, the term that is proportional to p2 + k2 contributes loop momentum

factors in the diagrams containing the amplitude and can lead to a UV divergence. The
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+++ A A A A

Fig. 2.5 – Diagrams for the operator 〈ψ†σ(R− r/2)ψσ(R + r/2)〉 for the 2 atom scattering
state. The empty dots imply locations ±r/2 where an atom is annihilated and created at
an equal time.

important implication is that terms of order 1/Λ2 may be dropped only at the end of a

calculation, or NLO terms will be missed.

We keep terms of size ∼ 1/Λ in the final NLO results and renormalize the operators either

by a multiplying renormalization factor or the addition of different operators as counterterms

that subtract both divergences and any Λ-dependence. The complete off-shell amplitude

A(E,p,k) is rewritten here in terms of the amplitude Aλ(E) containing diagrams with

only the λ0 coupling constant, as well as Aρ(E) and Aρ′(E). The latter two amplitudes

contain one power of the coupling constant ρ0 but scale as 1/Λ and 1/Λ2, respectively. In all

three aforementioned amplitudes, any power suppressed terms ∼ (
√
mE/Λ)n in loop integral

I0(E,Λ) are kept. The off-shell amplitude is

A(E,p,k) = A(E) + (p2 + k2 − 2mE)Aρ′(E) ,

A(E) = Aλ(E) +Aρ(E) ,

Aλ = − 1

m/λ0 + iI0(E,Λ)
,

Aρ = −2ρ0m
2

λ2
0

mEA2
λ ,

Aρ′ =
ρ0m

λ0

Aλ , (2.43)

where I0(E,Λ) is given in the Appendix in Eq. (A.2). Additionally, Aλ still fulfills the LS

equation given by Eq. (2.9) with Aλ in place of ALO:

Aλ = −λ0/m(1 + I0 iAλ) . (2.44)
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Figure 2.5 shows the diagrams which contribute to the matrix element for the two-atom

scattering state of incoming four-momenta (p0,±p) and outgoing momenta (k0,±k), as well

as a total energy equal to E = 2p0 = 2k0. In this study, this is generalized to a system with

nonzero CM momentum, and the results are shown below. The nonlocal operator matrix

element is

〈ψ†σ(R− r
2
)ψσ(R + r

2
)〉 = δpke

ip·r +

[
ieip·r

p0 − p2

2m

iA(E) + (p→ k)

]
− Iρ,0A2(E)

− 2
[
(p

2+k2

2
− 2mE)Iρ,0 + Iρ,2

]
AλAρ′ , (2.45)

where we use the shorthand notation δpk = (2π)3δ(3)(p − k). The loop integral Iρ,2n is in

Appendix A in Eq. (A.10). The symbol (p → k) indicates the presence of a term identical

to the previous one in braces in which p has been replaced by k.

Through the insertion of Iρ,0 and Iρ,2 from Eq. (A.10) into Eq. (2.45) and the expansion

in powers of r (not to be mistaken for rs) through r3, we then obtain

〈ψ†σ(R− r
2
)ψσ(R + r

2
)〉 = δpk −

[
A(E)

p0 − p2

2m

+ (p→ k)

]
+
iA2(E)m2

8π
√
mE

+ iripiδpk − iri
[
piA(E)

p0 − p2

2m

+ (p→ k)

]
− r A

2(E)m2

8π

− rirj
pipj

2
δpk +

rirj
2

[
pipjA(E)

p0 − p2

2m

+ (p→ k)

]
− ir2 A2(E)m2

√
mE

16π

− irirjrk
pipjpk

6
δpk + i

rirjrk
6

[
pipjpkA(E)

p0 − p2

2m

+ (p→ k)

]
+ r3 A2(E)m3E

48π

+O(r4) , (2.46)

where the Einstein summation convention for like indices is assumed. Further, we drop terms

of O(1/Λ2) at this point, following the previously described prescription. In Eq. (2.46),

there are
√
mE-dependent terms that are distinguished from |p|-dependent terms because

the atoms are kept off-shell in the calculations, i.e. E 6= p2/m. Each of the terms in this

equation must be matched to the matrix elements of the related local operators, and it is

by this process that the Wilson coefficients of the local operators are determined. A2(E)
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Fig. 2.6 – Diagrams for one-body operator. Empty dots imply an insertion of the one-body
operator given in Eq. (2.38) and A(E,p,k) represents the off-shell amplitude of Eq. (2.43).

gives the renormalized square amplitude with the first effective-range correction. However,

Eq. (2.46) remains valid in the zero-range limit, as alluded to previously, where A(E) is

replaced by ALO. As the r3 term is still present, it is evident that the 1/k6 correction to the

momentum distribution at large momentum is still present even if rs → 0.

In the following subsection, we calculate the matrix elements of local operators for the

two-body scattering state. As noted in the calculation of the nonlocal operator, the power-

suppressed terms in Eq. (2.43) are not dropped during intermediate steps. Terms up to

NLO in the EFT expansion are kept only after the renormalization process.

2.4.1 One-body local operators

We present the detailed calculation of matrix elements for one-body operators of various

scaling dimensions in this subsection. These correspond to the operators labeled O1,∆ in

Eq. (2.38). The Feynman diagrams in Fig. 2.6 show all contributions of operators of the

form O1,∆ to the two-atom scattering state. The first diagram is the only one present in the

absence of two-body interactions. Because Fig. 2.6 holds for any one-body operator, the

matrix element for a one-body operator has the general form

〈O1,∆〉 = v1,∆(p) δpk −
[
v1,∆(p) A(E)

p0 − p2/(2m)
+ (p→ k)

]
− I(1,∆)

0 A2(E)− 2
[
(p

2+k2

2
− 2mE)I(1,∆)

0 + I(1,∆)
2

]
AλAρ′ , (2.47)

in which v1,∆(p) is the vertex factor corresponding to operator O1,∆. These factors up

through dimension ∆ = 6 are tabulated in Table A.1 of Appendix A. The loop integrals

I(1,∆)
2n are given in the same appendix in Eq. (A.4).
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For operator O1,3 = ψ†σψσ, the matrix element for a two-body state of ingoing relative

momentum p and outgoing momentum k is

〈O1,3〉 =δpk −
[

A(E)

p0 − p2/(2m)
+ (p→ k)

]

+
im2A2(E)

8π
√
mE

(
1 + irs

√
mE

)
+O(Λ−2) . (2.48)

In this equation rsA2(E) = rsA2
λ up to NLO in the effective range. We then match Eq. (2.48)

to the second line of Eq. (2.46), other than the term proportional to rs. The Wilson

coefficient so obtained is

W1,3 = 1 . (2.49)

The term proportional to the range is subtracted later through the inclusion of the

appropriate term in the Wilson coefficient of the two-body operator of Eq. (2.59), below.

The next term needed for the OPE matching process is O1,4 = ψ†σ
←→
∂iψσ, and it gives the

matrix element

〈O1,4〉 = 2ipiδpk −
[

2ipiA(E)

p0 − p2/(2m)
+ (p→ k)

]
. (2.50)

Making a comparison of this term to ones containing one power of pi in Eq. (2.46), we find

that the Wilson coefficient multiplying O1,4 is

W1,4 =
1

2
ri . (2.51)

The next operator to consider is O1,5 = ψ†σ
←→
∂i
←→
∂jψσ, and we calculate the related matrix

element as

〈O1,5〉 =− 4pipj δpk +

[
4pipjA(E)

p0 − p2/(2m)
+ (p→ k)

]
− 4δij

3

[
i
d I2

dE

]
A2(E)

− 4mδij
3

[
mΛ3

3π2
+
(

p2+k2

m
− 2E

)
i
d I2

dE
+ 2imEI0

]
AλAρ′ . (2.52)
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Table 2.1 – One-body Operators

∆ O1,∆ W1,∆

3 ψ†σψσ 1

4 ψ†σ
←→
∂iψσ

1
2
ri

5 ψ†σ
←→
∂i
←→
∂jψ

(ren)
σ

1
8
rirj

6 ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ

1
48
rirjrk

One-body operators up to scaling dimension 6 and their Wilson coefficients W1,∆, where the
subscript ‘1’ indicates a one-body operator and ∆ corresponds to the dimensionality of that
operator.

This matrix element contains a linear divergence coming from the fact that Λ3Aρ′ ∼ Λ,

and this and other cutoff dependent terms are renormalized through the addition of the

two-body operators ψ†1ψ
†
2ψ2ψ1 and ψ†1ψ

†
2ψ2
←→∇ 2ψ1 with the appropriate factors. The one-

body operator ψ†σ
←→
∂i
←→
∂jψσ becomes the kinetic energy term in the Hamiltonian when i and

j are contracted, and the cutoff dependence of the corresponding matrix element implies

that the kinetic energy is sensitive to the short-distance region of an underlying potential

of a size smaller than the length scale a ∼ 1/
√
mE, beyond which the effective theory of

this work loses predictive power. However, through this renormalization procedure, we find

combinations of operators that are insensitive to this short-distance behavior.

Using the two-body operators from Sec. 2.1 in their renormalized forms shown below in

Eqs. (2.59) and (2.64), we calculate the result for the renormalized one-body operator of

dimension ∆ = 5 as

〈O(ren)
1,5 〉 =

〈
O1,5 +

2δij
3π2

[
Λ
(
1 + 2z

3

)
O(ren)

2,4 +
1− 3z

4Λ
O(ren)

2,6

]〉

= −4pipjδpk +

[
4pipjA(E)

p0 − p2/(2m)
+ (p→ k)

]
− iδij

√
mE

2π
m2A2(E) +O(Λ−2) . (2.53)

In Eq. (2.53), z = mρ0Λ2

λ0
, and the superscript (ren) indicates a renormalized operator whose

UV behavior is properly regularized. Comparing Eq. (2.53) to the O(r2) terms of Eq. (2.46),
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Fig. 2.7 – Diagrams for 2-body operators. The empty dots indicate the insertion of a two-
body operator.

this operator’s Wilson coefficient is calculated to be

W1,5 =
1

8
rirj. (2.54)

The last one-body matrix element considered here is for the operatorO1,6 = ψ†σ
←→
∂i
←→
∂j
←→
∂kψσ

and is given by

〈O1,6〉 = −i8pipjpkδpk +

[
i8pipjpkA(E)

p0 − p2/(2m)
+ (p→ k)

]
. (2.55)

It is not necessary to conduct any renormalization process for this operator because its results

are already finite and cutoff-independent. And, comparing it to the terms of O(r3) found in

Eq. (2.46), the corresponding Wilson coefficient is

W1,6 =
1

48
rirjrk . (2.56)

Table 2.1 provides a summary of Wilson coefficients corresponding to the relevant one-body

operators in this study.

2.4.2 Two-body local operators

In this section, we calculate matrix elements for operators of the form O2,∆ in detail for

two-atom scattering states, and each operator’s Wilson coefficient is determined. Figure 2.7

contains the relevant diagrams. Two-body operators of dimensions 4 and 6 are the only ones

for which matrix elements need to be calculated for the momentum distribution and other

universal relations.
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Since Fig. 2.7 is the complete set of diagrams for any two-body operator, the general

matrix element of a two-body operator is written

〈O2,∆〉 =(1 + iI0A(E))
[
v2,∆(p, k) + 2iI(2,∆)

0 A(E)
]

+ iAρ′
{

2I(2,∆)
2 (1 + iI0Aλ) + I2

[
v2,∆(p, k) + 2iI(2,∆)

0 Aλ
]

+ (p2 + k2 − 4mE)(1 + 2iI0Aλ)I(2,∆)
0

+
[
v2,∆(p)(k2 − 2mE) + v2,∆(k)(p2 − 2mE)

]
I0

}
, (2.57)

where v2,∆(p, k) = v2,∆(p)+v2,∆(k) is the vertex factor for the two-body operator of dimension

∆. These factors are presented in Table A.2 of Appendix A up to scaling dimension 6. As

a matter of convenience, we break the vertex factors into terms depending on a vertex’s

ingoing and outgoing momenta. These factors can depend either on the external or loop

momentum of the particles. Terms that are loop-momentum dependent are included in the

integrals I0 and I2 defined in Eq. (A.1). It is important to note here that O2,4 has a

momentum-independent vertex factor given by v2,4(p, k) = 1. The way this is broken up is

by assigning v2,4(p) = 1/2 and v2,4(k) = 1/2 in order to follow the prescription of Eq. (2.57).

Further, one may not directly use the LS equation to simplify (1 + iI0A) in the equation

above because of the fact that A(E) = Aλ +Aρ in this case. The LS equation includes only

Aλ. Further, any factors of the energy-dependent amplitude that multiply Aρ′ must be Aλ
and not Aρ because only terms that are NLO in ρ0, and thereby NLO in the effective range

rs, should be kept.

The leading two-body operator O2,4 = ψ†1ψ
†
2ψ2ψ1 has been calculated in the zero-range

model in Ref. [20] and in the field-theoretical two-channel model at a narrow Feshbach

resonance [59]. The matrix element for this operator in this approach is

〈O2,4〉 = (1 + iI0A(E))2 + iAρ′(1 + iI0Aλ)
[
2I2 + (p2 + k2 − 4mE)I0

]
. (2.58)

Multiplying by a factor of λ2
0, the operator giving renormalized results λ2

0ψ
†
1ψ
†
2ψ2ψ1 was

obtained, as in Refs. [20, 59]. We also obtain the NLO renormalized operator in this study,
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and it is given by

〈O(ren)
2,4 〉 =

〈
λ2

0

(
1 +

mρ0Λ3

3π2

)
O2,4

〉
= m2A2(E) + 2mλ0Aρ − i(p2 + k2 − 2mE)m2ρ0I0A2

λ

= m2A2(E) +O(Λ−2) , (2.59)

where the LS equation of Eq. (2.44) was used to eliminate 1 + iI0Aλ in favor of −mAλ/λ0.

In Eq. (2.59), the terms ∼ 1/Λ2 are dropped. Note also that the operator O(ren)
2,4 is in fact

OC , the operator associated with the contact density.

This can then be compared with the third term proportional to r of Eq. (2.46), and by

doing so we find that the Wilson coefficient for this operator is

W2,4 = − r

8π
+
rs
8π

, (2.60)

where the term proportional to the effective range rs is necessary to cancel the term

proportional to rs in Eq. (2.48), as mentioned above. For O1,3, note that the renormalization

was not written as O(ren)
1,3 = O1,3 + rs

8π
λ2

0O2,4 because the matrix element 〈O1,3〉 is finite and

contains no explicit cutoff dependence. Thus, renormalization is not the proper method to

eliminate the spurious rs-dependent term in 〈O1,3〉. And yet, this term must be canceled

because the nonlocal matrix element on the LHS of the OPE has no such rs-dependence, so

we use the Wilson coefficient W2,4 to accomplish this through adding the term in Eq. (2.60)

with rs in its numerator.

For the two-body operator of dimension ∆ = 5 given by O2,5 = ψ†1ψ
†
2ψ2

←→
∂iψ1 + H.c., the

matrix element is simplified by the fact that I(2,5)
2n = 0 and is

〈O2,5〉 =2i(pi + ki)[1 + iI0A(E)]

− 2Aρ′
{

(pi + ki)I2 + [pi(k
2 − 2mE) + ki(p

2 − 2mE)]I0

}
. (2.61)
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Table 2.2 – Two-body Operators

∆ O2,∆ W2,∆

4 ψ†1ψ
†
2ψ2ψ

(ren)
1 − r−rs

8π

5 ψ†1ψ
†
2ψ2

←→
∂iψ

(ren)
1 + h.c. 0

6 ψ†1ψ
†
2ψ2

←→∇ 2ψ
(ren)
1 + h.c. − r3

384π

Two-body operators O2,∆ up to scaling dimension 6 and their Wilson coefficients.

The renormalization of the operator is accomplished through the inclusion of a multiplicative

factor:

〈O(ren)
2,5 〉 = 〈λ0

(
1 +

mρ0Λ3

6π2

)
O2,5〉 ,

= −2i(pi + ki)mA(E) +O(Λ−2) . (2.62)

Because this matrix element does not correspond to any part of the RHS of Eq. (2.46), its

Wilson coefficient is W2,5 = 0.

Next, we define the operator ψ†1ψ
†
2ψ2

←→
∂i
←→
∂jψ1 +H.c. as O2,6 when contracted with δij such

that it can be matched to the terms in the nonlocal operator matrix element of Eq. (2.46).

The result obtained is

〈O2,6〉 = −4(1 + iI0A(E))(p2 + k2 + 2iI2A(E))

− 4iAρ′
{

2(1 + iI0Aλ)I4 + (p2 + k2 + 2iI2Aλ)I2

+ (p2 + k2 − 4mE)(1 + 2iI0Aλ)I2

+ [p2(k2 − 2mE) + k2(p2 − 2mE)]I0

}
. (2.63)

For the renormalization of the operatorO2,6, we use momentum-dependent operators, and

this dimension ∆ = 6 operator is considered in the on-shell limit in which p2 = k2 = mE.
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This allows us to avoid energy-dependent operators in the renormalization process.

〈O(ren)
2,6 〉 =

〈
λ2

0

(
1 + 3

2
x
)
O2,6 −

[
4λ3

0Λ3

3π2
(1 + 2x) +

12λ2
0Λ2x

5

]
O2,4

〉
(2.64)

=− 8mEm2A2(E) +O(Λ−2) , (2.65)

where x = ρ0mΛ3

3π2 . The operators C and D corresponding to the contact and derivative

contact in Eq. (2.16) are related to the renormalized two-body operators as follows:

O(ren)
2,4 = OC , (2.66)

O(ren)
2,6 = −4OD . (2.67)

These equalities are valid when the factors of ρ0 are dropped in Eq. (2.64). This is possible

in this case because there is already a factor of this coupling constant in the Hamiltonian,

and here the problem is only treated to NLO in the range rs, which ρ0 is proportional to.

Next, Eq. (2.64) is compared to the final term ∝ r3 found in Eq. (2.46), and the Wilson

coefficient corresponding to this operator to be

W2,6 = − r3

384π
. (2.68)

A summary of the two-body Wilson coefficients for operators of dimension ∆ = 4..6 is

contained in Table 2.2.

These results are generalizable to a two-body system with center-of-mass momentum K.

The relative momentum of the two particles remains ±p, and the single particle momentum

can therefore be expressed as K/2 ± p. In addition to this shift of K/2 in the single-

particle momentum, the total energy E must be replaced by the Galilean invariant energy

E−K2/4m. This momentum boost results in a multiplicative factor of eiK·r/2 in Eq. (2.45)

and is reproduced in the OPE by the appropriate factors. The results in Table 2.1 may be

written in a compact form using ψ†σe
r·
←→
∂ /2ψσ to reproduce this boost-related factor. Results

can be adjusted in the two-body sector to account for a finite center-of-mass momentum

by including the two-body operator ψ†1ψ
†
2ψ2e

r·
←→
∂ ′/2ψ1 instead of O2,4. In this new two-body
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operator,
←→
∂ ′i =

−→
∂i +
←−
∂i. The exponential of the new operator can be expanded in small r,

and the two resulting new operators up to scaling dimension ∆ = 6 are defined as

O′2,5 = 2i ψ†1ψ
†
2ψ2

←→
∂ ′iψ

(ren)
1 ,

O′2,6 = −1
2
ψ†1ψ

†
2ψ2

←→
∂ ′i
←→
∂ ′jψ

(ren)
1 .

Here, the Wilson coefficients are in a sense trivial to determine, since once the correct factors

from the definitions of O′2,5 and O′2,6 are included, the coefficient W2,4 is used.

2.4.3 Momentum distribution and Hamiltonian

Once all of the results from matching the one- and two-body matrix elements to the nonlocal

matrix element given in Eq. (2.46) are obtained, we write the momentum-space momentum

distribution as

ρσ(k) =

∫
R

∫
r

eik·r〈ψ†σ(R− r/2)ψσ(R + r/2)〉

=

∫
R

{
δk 〈O1,3(R)〉 − i∇kiδk

2
〈O1,4(R)〉 − ∇ki∇kjδk

8
〈O(ren)

1,5 (R)〉

+ i
∇ki∇ki∇kkδk

48
〈O1,6(R)〉+

(
1

k4
+ rs

δk
8π

)
〈OC(R)〉+

1

k6
〈OD(R)〉

+

(
k̂i
k5
− rs
∇kiδk
32π

)
〈O′2,5(R)〉+

(
6k̂ik̂j − δij

k6
+ rs
∇ki∇kjδk

32π

)
〈O′2,6(R)〉

}
,

(2.69)

where δk = (2π)3δ(3)(k), and the unit vector k̂i = ki/k. In Eq. (2.69), the second and third

terms in the second line within the braces correspond to the contact C and derivative contact

D of Eq. (2.16). In the last line, the term proportional to 1/k6 is related to the center of

mass parameter C ′ =
∫
R
δij〈O′2,6(R)〉 in Eq. (2.16) once the angular average is taken over

the vector k. The term in the last line that is proportional to 1/k5 vanishes after the same

angular averaging takes place.
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Then, in order to derive the energy relation given by Eq. (2.17), the Hamiltonian in the

absence of any external potential is rewritten using terms in the Lagrangian seen in Eqs.

(2.6) and (2.7) and given as H = H0 +HI . These are given by

H0 =

∫
R

[
T (R) +

λ0

m
O2,4(R)

]
,

H1 =

∫
R

[−ρ0

4
O2,6(R) +

δλ0

m
O2,4(R)

]
. (2.70)

The operators in these two parts of the Hamiltonian must then be rewritten in terms of the

operators appearing in Eq. (2.16), and the result is

H0 =

∫
R

[
T +

OC
4πma

−
(

Λ

2π2m
+

ρ0Λ3

3π2λ0

)
OC
]

; (2.71)

H1 =

∫
R

ρ0

λ2
0

OD =

∫
R

1

16πm

(
rs −

4

πΛ

)
OD . (2.72)

The three different operators appearing in Eq. (2.71) are

T (R) ≡ 1

2m

∑
σ

∇ψ†σ · ∇ψσ , (2.73)

OC(R) ≡ O(ren)
2,4 = λ2

0

(
1 +

mρ0Λ3

3π2

)
O2,4 , (2.74)

OD(R) ≡ −O
(ren)
2,6

4
= −λ

2
0

4

[
O2,6 −

4λ0Λ3

3π2
O2,4

]
+O(ρ0) . (2.75)

Here, λ0 and ρ0 are the bare coupling constants appearing in the Lagrangian and are related

to the scattering length and effective range as shown in Eqs. (2.11) and (2.14). In Eq. (2.75),

we drop the terms proportional to ρ0 appearing in the definition of O(ren)
2,6 because a factor

of ρ0 already multiplies the derivative contact operator found in the finite range part of the

Hamiltonian of Eq. (2.72), and terms proportional to ρ2
0 ought to be dropped in the NLO

calculation as mentioned previously. Using Eq. (2.14), the portion of the Hamiltonian given

by H1 is broken up into a term proportional to rsOD and another proportional to 1
Λ
OD.

The last term in the square brackets of Eq. (2.75) is present to subtract the divergent

part of the matrix element 〈OD〉 to yield a finite, physical result. This fulfills the same
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purpose as the δλ0 in the Lagrangian of Sec. 2.1. Comparison of OD and O(ren)
2,6 reveals that

ρ0
λ20
OD and −ρ0

4λ20
O(ren)

2,6 give the same result in the Hamiltonian.

The subtracted term corresponding to the kinetic energy of the gas, T (sub), in Eq. (2.17)

is defined by absorbing the explicit cutoff dependence found in H0 and H1 into this kinetic

term as

〈T (sub)〉 =

∫
R

〈
T − 1

2π2m

[
Λ
(

1 + 2mρ0Λ2

3λ0

)
OC +

OD
2Λ

]〉
. (2.76)

T (sub) contains terms that are proportional to the contact operator multiplied by Λ and also

by Λ3 in order to subtract the divergent parts of
∫
R
〈T 〉. The term proportional to 1

Λ
OD is

present in order to remove the remaining cutoff dependence.

2.5 Conclusion and outlook for the OPE in systems of

two-component fermions

In this chapter, we considered the operator product expansion of the nonlocal coordinate-

space expression of the momentum distribution in terms of local operators of the effective

field theory describing a two-component, homogeneous Fermi gas characterized by a large

interparticle scattering length and small S-wave effective range. By making use of the results

for the momentum distribution of a two-particle scattering state, the operators up to scaling

dimension ∆ = 6 were matched to the nonlocal matrix element and the corresponding

Wilson coefficients were obtained. A sharp UV cutoff was used in the EFT calculations, and

corrections to the results due to a finite effective range were included.

The principal results of this study are extended universal relations containing the

previously known contact C and the two quantities C ′ and D. In particular, it is the sum of

these two new quantities that appears as the asymptote of the subleading (C ′ + D)/k6 tail

of the momentum distribution. The latter of these two quantities, the derivative contact D,

appears in other universal relations characterizing the total energy and its derivative with

respect to the range rs, the pressure of the gas, and the virial theorem as an effective-range

correction of the form rsD. This subleading tail was first discussed by Werner and Castin in
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Ref. [52], as was the relation of this quantity to the energy. These results were reproduced

by utilizing the OPE in this study.

Interestingly, while effective-range corrections to various observables are typically reduced

by a factor of rs/a, the size of D is not itself suppressed in this manner in comparison to

the size of C. As an example, the QMC simulation of Ref. [57] obtained a value for the

derivative contact density D/k6
F ≈ 0.06 in the unitary limit, whereas the value for the contact

density in the same limit is C/k4
F ≈ 0.11. In the BEC limit, in which the scattering length

approaches zero from positive infinity, the derivative contact becomes more important than

the contact because the former scales as 1/(kFa)3, while the latter scales as 1/(kFa) in this

limit. The result for the tail of the momentum distribution given in this work, even in the

absence of a known value for C ′, gives a noticeable improvement in the theoretical description

of the numerical many-body data for the same quantity in the region where k & 1.5kF as

demonstrated in Fig. 2.4. The NLO contribution D/k6 gives a correction to the momentum

distribution of around 20% near 1.5kF in the unitary limit.

These various results are the first step in a broader effort to calculate range-corrected

universal relations for other observables such as the single-particle dispersion relation,

structure factors, and rf spectroscopy. An interesting further application of this work would

be to a system of fermions in three distinguishable states, in which a three-body operator

leads to the Efimov effect and a 1/k5 tail is present in the momentum distribution for the

large, imbalanced mass ratio m1/m2 > 13.6 [78]. Further, range-corrected universal relations

in a system of three identical bosons [79] would be interesting to examine. We have not

discussed the pair density or inelastic two-body scattering [20] here, but these topics would

constitute interesting further applications of the work we have presented in this chapter.
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Chapter 3

Efimov Effect in Heteronuclear

Three-body Systems

In the balanced, homogeneous gas of fermions in two spin states considered above, three

particles were not allowed to come into contact because of the Pauli exclusion principle.

However, if the statistics of the system are changed such that it contains fermions in three

spin states, or one bosonic species, or more than one species of bosons or fermions or a

mixture of the two interacting through a large scattering length, three-body interactions can

occur which lead to very interesting universal physics. The resulting system-independent

phenomena have been considered in nuclei [3] and in gaseous mixtures of atoms [80, 81].

This field has generally come to be described as Efimov physics [3, 82], in which there is a

discrete scaling of observables referred to as the Efimov effect. An example of this discrete

scaling is that there exists an infinite sequence of three-body bound states in the unitary

limit separated by a scaling factor which we denote λ as one approaches the three-atom

binding threshold at zero energy from negative infinity. The observables we consider in this

chapter also exhibit such a discrete scaling.

Such discrete scaling is of interest in nuclear physics, but it is often studied in the

context of ultracold atoms because there it is possible to utilize a Feshbach resonance [83]

to tune an inter-atomic scattering length to an unnaturally large value in order to access

universal physics, in which the range of the underlying inter-atomic potential and the detailed

substructure of the interacting particles are not important. Occasionally, such universal
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behavior results from an accidental fine-tuning of the scattering length by nature, such as in

a gas of 4He atoms [1]. In this work, we explore universal physics in a system consisting of a

heteronuclear mixture of small-mass-number fermions and heavier bosonic particles in which

the interspecies scattering length between a light fermion and a heavy boson has been tuned

to be much larger than either of the intraspecies scattering lengths and any of the underlying

interaction ranges. The fermionic particles, for the purposes of this study, are assumed to be

prepared in one spin state, which is an experimentally realizable assumption. Such systems,

as well as those in which the light atom is a boson, have been of recent experimental interest

[38, 80, 84, 85].

One of the universal features of the system we consider is the three-body recombination

process whereby two heavy bosonic atoms and one light fermionic atom scatter into a recoiling

heavy atom and a shallow-bound diatomic molecule consisting of one fermion and one boson.

This is possible when the interspecies scattering length is large and positive. The rate

at which this recombination process occurs is calculated below and generalized for finite-

temperature gases. The temperature dependence of the recombination rates were calculated

using universal functions of dimensionless scaling variables, which parameterize the energy

dependence of the scattering matrix. We compared the results of this study to experimental

data for the 40K-87Rb system [38] and made a prediction for the 6Li-87Rb mixture. The

method presented may be readily applied to heteronuclear systems of atoms of masses not

included here. An additional process known as atom-diatomic molecule relaxation occurs

when the three-body energy is between the atom-diatomic molecule threshold and the three-

atom threshold for a positive interspecies scattering length, and we calculate the rate at

which this occurs at finite temperature and again compare with the data of Ref. [38].

In order to study three-body recombination in heteronuclear mixtures, we have made use

of the Skorniakov–Ter-Martirosian (STM) integral equation [86] originally used to describe

neutron-deuteron scattering, but which has more recently been applied to low-energy atom-

diatomic molecule (AD) scattering [87, 88]. This allows the calculation of AD scattering

amplitudes and phase shifts for a given value of orbital angular momentum L. These

phase shifts are then related to universal scaling functions that parameterize the energy-

dependent three-body recombination rates in Sec. 3.3. In the orbital angular momentum
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L = 0 scattering channel, the relationship between the phase shifts and the scaling functions

and three-body parameters of the system is known as Efimov’s radial law. Once the

recombination rate is known for each L, they are summed, and we calculate the temperature-

dependent rate constant as a function of the scattering length by taking a Boltzmann average

over the energy-dependent recombination rates at each value of the scattering length. Lastly,

we compare our results with experimental data in Sec. 3.4.

3.1 The STM Equation

The Lagrangian density that has been given earlier in Eq. (2.5) may also be applied to the

three-body scattering sector. To do so, Bedaque, Hammer, and van Kolck discovered that

it is necessary to include a single three-body interaction counterterm in the Lagrangian in

order to properly renormalize the scattering amplitude [13]. The corresponding Lagrangian

density for a system of two distinguishable species is

L =ψ†1

(
i∂t +

∇2

2m1

)
ψ1 + ψ†2

(
i∂t +

∇2

2m2

)
ψ2

+ g2d
†d− g2

(
d†ψ1ψ2 + ψ†1ψ

†
2d
)
− g3

4
d†dψ†2ψ1 + · · · , (3.1)

where subscripts 1 and 2 indicate particles of species 1 and 2 and g2 and g3 are the bare

two- and three-body coupling constants. In Eq. (3.1), d is an auxiliary field for a diatomic

molecule consisting of one particle of species 1 and one of species 2. The approach including

this auxiliary field is often referred to as the “dibaryon” formalism and is more useful in

developing the STM equation in this EFT framework [13] than writing the theory only in

terms of fields corresponding to individual atoms. The first two terms of this Lagrangian

density are the kinetic terms for the atoms of each species. The third term corresponds to

the kinetic energy of the non-dynamical auxiliary field d. The last two terms generate the

S-wave contact interactions between two dissimilar particles and the three-body interaction.

Higher order terms containing more fields and their derivatives are indicated by the dots.

Though the systems of atoms in experiments relevant to this work are, in fact, many-

body systems, many properties may be described by the physics of two and three interacting
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= +AL AL

Fig. 3.1 – This diagram gives the integral equation for the elastic A2D scattering amplitude
for orbital angular momentum L. The solid black line indicates a particle of species 2, the
dashed line a particle of species 1, and the thick line is a diatomic molecule composed of one
particle of each species. Note that we have not included a three-body force.

bodies. The particular three-atom system considered here is labeled as (A1A2A2). The two

atoms A1 and A2 have masses m1 and m2, respectively, with m1 < m2. The interspecies

S-wave scattering length is labeled a and is large and positive, but the scattering length

between any identical atoms is negligible. The two atoms A1 and A2 can form a weakly

bound diatomic molecule D which has binding energy ED = 1/2µa2, where the reduced

mass µ = m1m2/(m1 + m2). For three-body energy E and orbital angular momentum L,

the elastic scattering phase shift δ
(L)
A2D

(kE) is given by

AL(kE, kE;E,Λ) =
2π

µA2D

1

kE cot δ
(L)
A2D

(kE)− ikE
, (3.2)

where µA2D = m2(m1+m2)/(2m2+m1) is theA2D reduced mass and kE =
√

2µA2D(E + ED).

In Eq. (3.2), Λ is the ultraviolet cutoff imposed on the problem. The on-shell scattering

amplitude AJ(kE, kE;E,Λ) can be determined by solving the STM equation in a modified

form applicable to heteronuclear mixtures [41, 40].

In general, the amplitude is a function of the ingoing and outgoing relative momenta

p and k, as well as the three-body energy E. The dependence of the amplitude on the

UV cutoff Λ arises from the regularization of the integral term in the inhomogeneous STM

equation

AL(p, k;E,Λ) =
2πm1

aµ2
(−1)nML(p, k;E) +

m1

πµ

∫ Λ

0

dq q2ML(p, q;E)

× (−1)nAL(q, k;E,Λ)

−1/a+
√
−2µ(E − q2/2µA2D)− iε

. (3.3)
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As we discuss below, the cutoff dependence of the amplitude does not disappear for L = 0 as

one increases Λ even though the amplitude remains finite, but it does disappear for L ≥ 1.

The integer n in Eq. (3.3) is equal to L when the heavy particle A2 is a boson and L+ 1 if

the heavy particle is a fermion. This work examines the case wherein the heavy particles are

bosonic, which is more relevant for current experiments. Equation (3.3) is also applicable to

the three-body bound-state problem, albeit without the inhomogeneous term. In either case,

the STM equation does not have a unique solution as the cutoff is taken to infinity for L = 0.

This comes from the fact that we have approximated the interactions as pointlike. Further

details on the derivation of the equivalent of Eq. (3.3) for the case of three identical bosons

are given in Ref. [2]. We give the diagrammatic representation of Eq. (3.3) in Fig. 3.1.

In Eq. (3.3), the kernel function ML(p, q;E) can be interpreted as the potential mediating

the exchange of the light atom in partial wave L from one of the two heavy atoms to the

other. Its detailed form is given in momentum space by

ML(p, q;E) =
1

pq
QL

(
p2 + q2 − 2µE − iε

2pqµ/m1

)
. (3.4)

For a complex argument z, QL(z) is the Legendre function of the second kind for partial

wave L. These functions can be written in terms of Legendre polynomials as

QL(z) =
1

2

∫ 1

−1

dx
PL(x)

z − x . (3.5)

Note that the kernel given by Eq. (3.4) does not contain a three-body force, unlike that

of Ref. [13]. This is because we carry out the renormalization in a different way, which we

detail below.

A few further clarifications about this theoretical framework are important to make at

this time. First, it is notable that when L ≥ 1, the solutions for the amplitude in Eq. (3.3)

are independent of the cutoff Λ, and therefore so are the phase shifts obtained from Eq. (3.2).

This is true as long as m2/m1 < 38.63, beyond which the D-wave Efimov effect enters [82, 89],

and as long as p, k, 1/a� Λ so that the theory is applicable. The results presented here are

restricted by both of these assumptions.
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As mentioned above, for L = 0, the amplitude in Eq. (3.3) does not converge as Λ→∞,

though it does remain finite. To resolve this issue, one must take a three-body parameter

as an input from experiments or first-principles calculations. It turns out that there is a

linear relationship between the three-body parameter κ∗ mentioned in the introduction and

the UV cutoff. Alternatively, one may take the inverse of the location of a three-body

recombination minimum a∗0 as an input parameter. The recombination minimum may take

any value of the scattering length for which there is a local minimum in the three-body loss

rate. Experimentally, this can be found in atomic physics by tuning the magnetic field that

the atoms are immersed in until a minimum in the three-body loss rate is observed. The

relationship between the UV cutoff and three-body paramter results in a log-periodicity of the

amplitude in the cutoff with a period equal to the system-dependent scaling factor λ shown

in Eq. (1.1) [87, 13, 90]. The cutoff dependence of the amplitude emerges from the behavior

of the amplitude in the region at and above the cutoff, where the EFT Lagrangian cannot be

expected to be sufficient to describe the system reliably. In this work, by solving the STM

equation for a variety of cutoff values Λ in the range 1/a � Λ0 < Λ < λΛ0 for a chosen

Λ0, we obtained a set of phase shifts δ
(0)
A2D

(kE) corresponding to a set of a∗0 values. Then,

the Efimov radial law we define below is fit to these phase shifts to obtain universal scaling

functions that are independent of the cutoff Λ and scale with
√
E/ED following the method

of Ref. [39]. This is our alternative to the use of a three-body counterterm as described

by Bedaque, Hammer, and van Kolck in Ref. [13] for the purpose of renormalization in the

three-body problem. In either method of renormalizing the problem, a three-body input

parameter is necessarily taken from experiments or a microscopic model.

The kernel given by Eq. (3.4) contains a branch cut in the complex q plane for energies

higher than E = 0, namely the three-atom threshold. To avoid this problem we rotate the

integration path clockwise into the fourth quadrant of the complex plane by an angle φ and

integrate along a straight line from q = 0→ Λe−iφ [91]. It is necessary to then integrate from

that endpoint in the complex plane along an arc of length Λ back to the positive, real q axis

in order to obtain correct amplitudes. In the solution of the STM equation, we first solve for

the half-on-shell amplitude A(p, kE;E,Λ), but must then iterate the integral equation one

more time to obtain the fully on-shell amplitude needed for the phase shifts.
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3.2 Recombination Rates and Scaling Functions

The three-atom system (A1A2A2) with two atoms of species 2 with atomic number density

n2 and one atom of species 1 with number density n1 can leave a shallow trap as an A2D

pair via a process called three-body recombination. This occurs when a heavy and light

atom form a diatomic molecule and the third atom recoils, as energy must be conserved in

the process. As such events happen in a gas, it is possible to measure a loss rate as atoms

leave the trap they are contained in. The rate constant α is defined for this process as [41]

d

dt
n2 = 2

d

dt
n1 = −2αn1n

2
2. (3.6)

When the three body energy is zero, the rate constant for recombination into a shallow

diatomic molecular state of binding energy ED can be obtained from the A2D S-wave

scattering amplitude [41, 92] and is given by

αs = 4µA2D

√
µA2D

µ
a2

∣∣∣∣A0

(
0,

1

a

√
µA2D

µ
; 0

) ∣∣∣∣2 . (3.7)

The dependence of Eq. (3.7) on the interspecies scattering length a can be written

analytically [41] as

αs = C(δ)
sin2 θ∗0 + sinh2 η∗

sinh2(πs0 + η∗) + cos2 θ∗0

a4

m1

, (3.8)

where the dependence on the mass ratio δ = m1/m2 is contained in the coefficient

C(δ) = 64π2
[
(1 + δ2)φ(δ)−

√
δ(2 + δ)

]
. (3.9)

In Eq. (3.9), the phase φ(δ) = arcsin[(1 + δ)−1]. The scaling factor s0 is the solution of the

transcendental equation explained for identical bosons in Ref. [13]. For the heteronuclear

case a modified equation is necessary, though its origins are similar to the bosonic case, and

we take this from Ref. [41]:

s0 cosh[πs0/2] sin[2φ(δ)]− 2 sinh[s0φ(δ)] = 0 . (3.10)
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κ

1/a12

κ = κ∗

κ = κ∗/λ

a12 = a∗

a12 = a−

atom 1

atom 2

shallow bound state

deep bound state

three-body bound/scattering state

a12 = a+

Fig. 3.2 – This plot provides a visualization of various universal features of the heteronuclear
system. The solid lines represent universal three-body bound states at various values of the
interspecies scattering length, and the solid dots in the figure represent the location of three-
body parameter values. κ is the binding momentum of a universal three-body bound state
and λ is the scaling factor separating such states, a− is the location where the three-body
state arrives at the three-atom threshold (E = 0), a∗ is the location where the bound state
intersects the atom-diatomic molecule threshold, and a+ is written a∗0 in this dissertation and
indicates the location of a three-body recombination minimum. We thank Bijaya Acharya
for providing this figure.

In Eq. (3.8), the angle θ∗0 is given by

θ∗0 = s0 ln(a/a∗0), (3.11)

where a∗0 is the value of the scattering length a at the location of a local minimum in the

three-body recombination rate, or a recombination minimum. A visualization of this three-

body parameter and others is given in Fig. 3.2. The a-dependence in Eq. (3.11) results in

a log-periodicity with respect to a in Eq. (3.8), with a period equal to the scaling factor

λ = eπ/s0 . An additional parameter, η∗, is introduced in Eq. (3.8) and amounts to the

introduction of an anti-Hermitian interaction term in the three-body Hamiltonian [93, 94],
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allowing for an additional loss channel. This parameter modifies αs to account for the

formation of deeply bound diatomic molecular states occurring in experimental systems.

These deeply bound states are characterized by binding energy ∼ 1/2µ`2, where ` is the

underlying interaction length, as opposed to the much more shallow bound state energy

1/2µa2 characterizing the shallow diatomic molecules.

The value of a∗0 associated with a particular cutoff Λ is determined by fitting the

expression in Eq. (3.8) to numerical results arrived at for a particular cutoff value using

Eq. (3.7) for a range of a values after setting η∗ = 0. This provides a value of a∗0 for each

Λ. Because a∗0 is multivalued, our process amounts to tracking the location of a specific

minimum as the cutoff is varied. By doing this, we get the proportional relationship we need

between Λ and 1/a∗0 in order to use a Λ-value in Eq. (3.3) that gives the scattering amplitude

corresponding to three-body parameter a∗0. This is important because once we have a value

of the three-body parameter, say from first principles calculations or from an experiment,

we can use that to obtain the cutoff value we need to calculate the A2D amplitude of Eq.

(3.3), and thus the phase shift of Eq. (3.2) for L = 0. As we will see below, this will allow

for the calculation of the three-body recombination rate.

While the introduction of the parameter η∗ serves to lower the effect of recombination

into a shallow diatomic molecule and recoiling atom, it leads to additional three-atom losses

due to the formation of deeply bound diatomic molecules in the final state. The analytical

expression for this rate contribution at the three-atom threshold is given by [41]

αd = C(δ)
coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗) + cos2 θ∗0

a4

m1

. (3.12)

This means that to calculate the maximum threshold recombination rate αmax
th , we must sum

the maxima of both the shallow and deep molecule rate constants. These maxima occur at

θ∗0 = π/2, and their sum is

αmax
th = C(δ)

1 + sinh2 η∗ + coth(πs0) cosh(η∗) sinh(η∗)

sinh2(πs0 + η∗)

a4

m1

. (3.13)

A helpful check of our S-wave three-body recombination rate at nonzero energy obtained

from the amplitude we calculated for a particular value of the three-body parameter a∗0 in
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Eq. (3.3) can be performed using Eqs. (3.8), (3.12), and (3.13). The comparison is made

when we take the limit E → 0 of our recombination rate, where we ought to obtain the same

result, up to a known factor, that Eq. (3.13) gives when we allow for the formation of both

shallowly and deeply bound diatomic molecules.

An additional process may be observed if one prepares the cold-atomic system to only

contain free atoms of species A2 and diatomic molecules D. This is known as atom-diatomic

molecule relaxation, in which an atom A2 interacts with the shallowly-bound molecule D in

such a way that the molecule relaxes into a deeply bound state and the atom and molecule

recoil, enabling them to leave a shallow trap. A local maximum in the relaxation rate occurs

where a three-body bound state contacts the A2D threshold at scattering length a = a∗

(not to be taken as a∗0). This location is shown in Fig. 3.2 and corresponds to a resonant

enhancement of the relaxation rate. This enhancement is present because there is a resonant

connection of the atom and diatomic molecule with a trimer state at a = a∗ leading to a

strong loss channel where the trimer decays into a free atom and deeply bound molecule.

Helfrich, Hammer, and Petrov have developed an analytical expression describing the rate

at which this relaxation occurs in heteronuclear mixtures [41], and at E = 0 the expression

for the relaxation rate constant is

β0(E = −0) =
2πµ3/2

µ
3/2
A2D

sinh(2πs0) sinh(2η∗)

sinh2(πs0 + η∗) + cos2[s0 ln(a/a∗0)]

a

2µ
. (3.14)

In general, this S-wave relaxation rate for a particular value of a is given by

β(E) =
kE
µA2D

σ
(inel)
A2D

(E) , (3.15)

where the inelastic cross section in Eq. (3.15) is given in Appendix B by Eq. (B.3). This

process only occurs when the inelasticity parameter is non-zero since it requires the formation

of deep diatomic molecules. In order to obtain correct results, one must integrate in the STM

equation along the same integration path described previously, but one must analytically

continue the cutoff as Λ→ Λeiη∗/s0 [41].
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3.3 Three-body recombination and universal scaling

functions

The three-body recombination rate is given by K
(L)
3 (E) at energy E, and it is related to the

inelastic A1A2A2 → A2D S matrix. Equation (3.3) only involves the amplitude for elastic

A2D → A2D scattering, but this problem may be circumvented using the unitarity of the

total S matrix to access this inelastic part, and in this work the recombination rate will

therefore be written purely in terms of the S matrix for elastic A2D scattering. This can be

written S
(L)
A2D,A2D

(E) = exp[2iδ
(L)
A2D

(E)] [39]. Further, we found that the recombination rate

for the heteronuclear mixture addressed here is given as

K
(L)
3 (E) =

128π2µ3/2

µ
3/2
A2D

2L+ 1

x4

[
1−

∣∣S(L)
A2D,A2D

(E)
∣∣2] a4

2µ
, (3.16)

where the scaling variable x =
√
E/ED is dimensionless. This describes the process fully

in the absence of deeply bound molecules, but these are taken into account later in this

section. A detailed derivation of Eq. (3.16) is given in Appendix B. The differences between

three-body recombination when L = 0 and when L ≥ 1 can now be made plain.

3.3.1 Orbital Angular Momentum L ≥ 1

There is a real-valued scaling function of the dimensionless scaling variable x corresponding

to each total orbital angular momentum L ≥ 1 given by

fL(x) = 1− e−4Im δ
(L)
A2D

(E) . (3.17)

Once the phase shifts for A2D scattering in partial wave L have been obtained using Eqs. (3.2)

and (3.3) above, we are ready to incorporate Eq. (3.17) into the formula for the recombination

rate and obtain the contribution from the Lth partial wave to the total rate. In general, only

the first few partial waves contribute to the recombination rate, and for identical bosons

the L = 0 channel dominates the higher partial waves. However, in heteronuclear mixtures,

the amplitudes from higher partial waves can dominate the total recombination rate for
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Fig. 3.3 – We reproduce one of the curves in Fig. 4 of Ref. [40] when the heavy particle
species is fermionic and E = −0.91BD, where BD is the diatomic molecular binding energy.
This value is chosen because it approaches the A2D threshold, where the two peaks visible in
the curve become more pronounced. The two peaks in the plot indicate the presence of two
three-body P -wave bound states. These states do not exhibit the universal scaling discussed
in this section. However, Efimov physics is observed in the L = 1 channel when the mass
ratio is above δ−1

c ≈ 13.61.

experimentally relevant temperatures, especially as the mass ratio δ = m1/m2 decreases.

Further, as we calculate the phase shifts for higher partial waves, it becomes increasingly

difficult to achieve numerical accuracy in fL(x) at small values of x, so it is necessary to use

the approximate form

fL(x) ≈ aLx
2λL+4 + bLx

2λL+6 (3.18)

for small x, where λL = L [39, 95]. The coefficients aL and bL are obtained by fitting

Eq. (3.18) to data for fL(x) at the lowest x values that still have small numerical

uncertainties. We then incorporate these L ≥ 1 partial wave scaling functions into the
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following equation for the energy-dependent three-body recombination rate K
(L≥1)
3 :

K
(L≥1)
3 (E) =

128π2µ3/2

µ
3/2
A2D

(2L+ 1)fL(x)

x4

a4

2µ
. (3.19)

We note that this equation contains no dependence on the three-body parameter a∗0 because

the STM equation of Eq. (3.3) has a unique solution for each L ≥ 1. Thus, there is no discrete

scaling to be observed in three-body recombination in these higher-partial-wave scattering

channels.

As an additional test of our method for L ≥ 1, we calculate the elastic atom-diatomic

molecule scattering cross section σ
(el)
A2D,L

at zero energy as a function of m2/m1 for the case

when species 2 is bosonic and reproduce the corresponding solid curve in Fig. 3 of Ref. [40].

We also exactly reproduce the behavior of the P -wave cross section of Fig. 4 in the same

reference below the critical mass ratio δ−1
c ≈ 13.61 for the case in which the heavy particles

are fermions. That plot indicates there are two universal three-body bound states in this

region of mass ratios [40], and we reproduce the curve at energy E = −0.91BD in Fig. 3.3.

3.3.2 Angular momentum L = 0

The L = 0 scattering channel has some additional properties that make it more interesting

than the L ≥ 1 channels, and these properties are detailed in this section. It is this scattering

channel in which the solution to the heteronuclear STM equation of Eq. (3.3) is non-unique,

but is instead log-periodic as the cutoff is varied for a given interspecies scattering length.

Proceeding to eliminate this log-periodicity and obtain L = 0 phase-shifts related to a known

three-body parameter correctly, we note that in addition to being related to scattering phase

shifts as seen above Eq. (3.16), S matrix elements for elastic A2D scattering are related to

universal functions sij of the dimensionless scaling variable x via Efimov’s radial law [2].

This gives

S
(L=0)
A2D,A2D

(E) = s22(x) +
s21(x)2e2iθ∗0−2η∗

1− s11(x)e2iθ∗0−2η∗
. (3.20)

We obtain complex-valued scaling functions sij(x) by first setting η∗ to zero for the purposes

of a fit and then fitting the RHS of Eq. (3.20) for each x to the numerical S matrix
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Fig. 3.4 – S-wave universal functions for 40K-87Rb, 6Li-87Rb, 40K-133Cs, and 6Li-133Cs. We
present them as functions of universal scaling variable x =

√
E/ED, and they parameterize

all of the non-universal physics of their respective heteronuclear system. They are valid
regardless of the details of the underlying interaction potential in the system.

element related to phase shift values acquired with Eqs. (3.2) and (3.3) for the range of

a∗0 values corresponding to a varied set of Λ-values as discussed in Sec. 3.1. The three-

body parameter values thereby inserted into the RHS of Eq. (3.20) correspond to the Λ

values used to obtain the S matrix element on the LHS. For the four systems 40K-87Rb,

6Li-87Rb, 40K-133Cs, and 6Li-133Cs, we plot the S-wave scaling functions of the form |sij|eiθij

in Fig. 3.4. We observe apparent trends in each tile of the figure as the mass ratio is varied.

Then, values for η∗ have been determined, or estimated, in either experiments or theoretical

calculations for these systems [41, 4, 38, 96] and are included in the S-wave recombination

rate for shallow and deep diatomic molecules. Equation (3.20) is helpful because it separates

the S matrix expression into terms that depend on the three-body parameters a∗0 and η∗

and those that depend on non-universal three-body physics or universal two-body physics,

i.e. scaling variable x =
√
E/ED.
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Fig. 3.5 – On the left, we show the L = 0 recombination rate and Kdeep each divided by the
maximum threshold value Kmax

th for a variety of values of θ∗0 in the 40K-87Rb system with
η∗ = 0.05 and on the right we give the L = 0 recombination rate and Kdeep each divided by
Kmax
th for a variety of values of θ∗0 in the 6Li-87Rb system with η∗ = 0.2.

With the universal functions sij in hand, we calculate the S-wave heteronuclear three-

body recombination rate K
(0)
3 (E) as

K
(0)
3 (E) =

128π2µ3/2

µ
3/2
A2D

1

x4

(
1−

∣∣∣∣s22(x) +
s12(x)2e2iθ∗0−2η∗

1− s11(x)e2iθ∗0−2η∗

∣∣∣∣2 − (1− e−4η∗)|s12(x)|2
|1− s11(x)e2iθ∗0−2η∗|2

)
a4

2µ
,

(3.21)

where the third term in the parenthesis of Eq. (3.21) is from the incorporation of possible

transitions from an A2D scattering state or three atoms into an atom and a deeply bound

diatomic molecule in the intermediate state. The need for this term is discussed at length in

Ref. [39]. With the possession of one of the recombination minima and the inelasticity

parameter as experimental or theoretical inputs, this equation then yields the energy-

dependent S-wave recombination rate.

We give the rate for recombination into an atom and a shallow diatomic molecule in

Eq. (3.21), but an additional contribution must be added to this because of the formation

of deeply bound molecules in the final state. The significance of this contribution depends

on the size of η∗ for a given system. In the L ≥ 1 scattering channels this contribution is

subleading in the zero-range limit [39]. But, when L = 0 there is a leading order term

Kdeep
3 (E) =

128π2µ3/2(1− e−4η∗)[1− |s11(x)|2 − |s12(x)|2]

µ
3/2
A2D

x4|1− s11(x)e2iθ∗0−2η∗|2
a4

2µ
(3.22)
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Fig. 3.6 – On the left, we show K
(L)
3 (E)/Kmax

th for 40K-87Rb, and on the right we show

K
(L)
3 (E)/Kmax

th for 6Li-87Rb. J is used in place of L in the vertical plot axes and follows the
labeling convention of Ref. [5]. However, in this dissertation we consistently label orbital
angular momentum with L.

that must be added to the rate due to recombination into shallow molecules in order to

obtain the total recombination rate.

We verify the E → 0 limits of K
(0)
3 (E) and Kdeep

3 (E) in Eqs. (3.21) and (3.22) in this

study by comparing them with the analytical threshold expressions of Eqs. (3.8) and (3.12)

multiplied by a factor of 2 from the statistics of the system. The S-wave three-atom threshold

expression for the recombination into both shallow and deep states has a maximum value

Kmax
th at θ∗0 = π/2. This value is proportional to αmax

th defined in Eq. (3.13) by a factor of 2,

or Kmax
th = 2αmax

th .

In Fig. 3.5, we show the energy dependence of K
(0)
3 (E) and Kdeep

3 (E) at various values

of θ∗0 for the 40K-87Rb and 6Li-87Rb. Theoretical results for these or similar systems can be

provided by the author upon request. The rates are displayed in the units of Kmax
th . The

variations in the shape of the K
(0)
3 curves as θ∗0 for these systems show that the energy

dependence of S-wave recombination into a shallow state has a detailed dependence on the

scattering length and the scaling parameter s0.

The energy dependence of the recombination rate K
(L≥1)
3 for higher partial waves is shown

in Fig. 3.6 for 40K-87Rb and 6Li-87Rb. These are also expressed in the units of the S-wave

rate maximum Kmax
th in order to facilitate a comparison of the magnitude of the L ≥ 1

rate contributions to the L = 0 contribution. In the 40K-87Rb system, the contributions of
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successively higher partial waves get smaller, and this is different behavior than that exhibited

by a system of identical bosons, in which the contribution from the L = 4 partial wave was

comparable to that of the L = 1 partial wave [39]. Such behavior is only observable in the

6Li-87Rb system at very low energies. Additionally, we found that while the recombination

rates K
(L)
3 (E) in Figs. 3.5 and 3.6 have similar energy dependence near the three-atom

threshold to those found in Ref. [97], we do not reproduce the dependence on the mass ratio

δ suggested therein. Instead, we find a more complicated mass-ratio dependence for general

values of three-body energy E. We only expect the results of Ref. [97] at zero temperature.

In order to ascertain the experimental temperature scale around and above which

recombination minima are unlikely to be measured due to large L ≥ 1 scattering channel

contributions, Figs. 3.5 and 3.6 can be compared. For example, in 40K-87Rb, the L = 1

partial-wave contribution becomes larger than the S wave around ED, which corresponds to

a temperature TKRb = 0.3ED/kB ≈ 0.1(a/a0)−2K, where a0 is the Bohr radius. But, in 6Li-

87Rb higher partial waves obscure at a very low temperature ∼ 10−3ED, which corresponds

to a temperature TLiRb = 10−3ED/kB ≈ 0.015(a/a0)−2K. These relations provide some

constraints on the observation of Efimov physics and can be viewed as either setting a

maximum scattering length below which minima can be observed, so long as a � ` still

holds, or giving a temperature below which one may begin to observe known minima located

at a given value of a and lower.

3.4 Comparison with Experiment

In order to compare the results of this study with experiments we need values for the two

three-body parameters a∗0 and η∗. Then, we calculate the contributions from all necessary

scattering sectors and combine them into a total expression for the recombination rate as

K3(E) =
∞∑
L=0

K
(L)
3 (E) +Kdeep

3 (E) . (3.23)

Next, we take a Boltzmann average over K3(E) in order to arrive at the recombination rate

constant at a given scattering length and finite temperature used in relevant experiments [39].
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Fig. 3.7 – Recombination rate constant αT as a function of the scattering length a for 40K-
87Rb with η∗ = 0.05 ± 0.02 [41] and the three-body parameter adjusted to reproduce a
recombination minimum at a∗0 ≈ 5000a0. The dashed red line at 450 nK corresponds to the
temperature at which the large-a data of Bloom et al. given by the blue dots with error bars
in this plot was taken [38].

This thermal-averaged rate constant is

αT ≈
∫∞

0
dE E2e−E/kBTK3(E)

2
∫∞

0
dE E2e−E/kBT

, (3.24)

where the leading factor of 2 in the denominator is the symmetry factor 2!1!. The lower

limit on the integral is E = 0 because we start the integration at the three-atom threshold,

which is appropriate for a gas of initially free atoms.

Bloom et al. estimated the inelasticity parameter η∗ to be η∗ = 0.26 for a 40K-

87Rb mixture [38] by matching a threshold formula for the atom-molecule relaxation loss

rate coefficient β to experimental data. On the other hand, they later gave a value

η∗ = 0.02 as a good match for their measurements of the rate constant α. However,

in each of those determinations of the inelasticity parameter, a zero-temperature formula
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was compared to finite temperature data, so neither value of η∗ may be strictly reliable.

Further, the data published in that work is restricted to values of a that are smaller than

the thermal wavelength of the atoms set by the experimental temperature of the gas.

Meanwhile, in Ref. [41] Helfrich et al. found a value of η∗ = 0.05 ± 0.02 by fitting their

Eq. (20) to corresponding data in Ref. [98]. For this study, we use the experimental value

a∗ = 230a0 ± 30a0 obtained in Ref. [38] for 40K-87Rb to determine the position of the

recombination minimum a∗0 ≈ 5000a0. We determine the value of a∗0 through the use of

the universal relation a∗/a∗0 = 0.51 exp(π/2s0) for 40K-87Rb [41], which is an exact relation

in the zero-range limit employed in this work. In this universal relation, a∗ is the scattering

length value at which the Efimov trimer state contacts the A2D threshold. On the other

hand, a theoretical calculation by Wang et al. [99] predicted a value of a∗0 = 2800a0. In their

procedure they used a background Rb-Rb scattering length of a22 = 100a0. The relatively

large temperatures ∼ 300 nK used in the experiment of Bloom et al. do not allow for the

observation of this feature. This discrepancy between the result of Ref. [99] and the universal

prediction obtained from the a∗ value of Ref. [38] thus cannot be addressed. To resolve the

issue, a challenging-to-achieve experimental temperature of roughly 10 nK would be needed

in order to clearly observe the recombination minima in this system.

Evidence is given by Bloom et al. that the 87Rb-87Rb-87Rb recombination channel due

to a small scattering length a22 can be neglected. Namely, they observed a ratio of 87Rb

loss to 40K loss of 2.1(1), indicating that the dominant loss channel is that of 40K-87Rb-87Rb

recombination. In our effective-field-theory approach the uncertainty in the recombination

rate calculation introduced by neglecting a small valued a22 is of the order of a22/a. The

perturbative approach of Ref. [92] could be employed to account for any such corrections so

long as a22 < a.

Even for the recombination minimum value we choose at a∗0 ≈ 5000a0, the experimental

work in Ref. [38] cannot rule for or against it as the correct location of the minimum because

the average experimental temperature ∼ 300nK imposes the limit a . 3000a0 on the range of

validity for the data. Near and above that point the experimental uncertainties become rather

large. Thus, for 40K-87Rb no Efimov features for a ≥ 0 have been definitively observed for

currently accessed scattering lengths and temperatures. From additional numerical studies
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Fig. 3.8 – Recombination rate constant αT as a function of the scattering length a for
6Li-87Rb for η∗ = 0.2 with a recombination minimum at a∗0 ≈ 610a0. The higher partial
wave contributions to the rate constant increase the total result by more than an order
of magnitude above the L = 0 (J = 0) rate constant. We do not know of any relevant
experimental data for this system at the time of this writing.

we determine that a minimum at a∗0 ≈ 5000a0 would only be observed at temperatures well

below 10 nK. In Fig. 3.7, we show the data of Ref. [38] along side our curves obtained

numerically using Eq. (3.24). One curve shows the L = 0 contribution to the rate constant

at 450 nK, another shows the total rate at 450 nK after summing over L, and we include the

zero-temperature result obtained by summing Eqs. (3.8) and (3.12) comparison to the finite

temperature L = 0 contribution. In each of the three curves shown in the plot, which we

label in the plot legend, we use the values a∗0 = 5000a0 and η∗ = 0.05. The 450-nK curve

and the experimental data are in excellent agreement except in the region a . 200a0, below

which contributions from the intraspecies bosonic scattering length and the finite range of

the interaction may be important. The size of the discrepancy in this region may indicate

that the correction from the a22 scattering length is the most important of the two because
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the quoted van der Waals range for 40K-87Rb is RvdW = 72a0 [38], which gives a range

correction of only around 35%-70% in this region, while the actual difference observed there

in Fig. 3.7 is much larger.

Some similar systems, namely the 39K-87Rb and 41K-87Rb mixtures, were studied by

Wacker et al. [100]. For a > 0, no evidence for Efimov resonances was observed in

the accessed range of scattering lengths and temperatures. This further demonstrates the

difficulty that a large scaling factor imposes on the problem and makes the use of systems

with a larger mass imbalance, such as 6Li-87Rb or 6Li-133Cs, attractive. Therefore, we explore

finite-temperature effects on the recombination rate for the 6Li-87Rb mixture and give our

results in Fig. 3.8. To obtain the necessary input parameters for a∗0 and η∗, we examined a

couple of sources. The 7Li-87 Rb system was studied by Maier et al. in Ref. [101], and they

found a value of |a−| = 1870a0±121a0. Based on this, they suggested a value of a− of−1600a0

for 6Li-87Rb. With the relation |a−|/a∗0 = exp(π/2s0), this gives a recombination minimum

position of a∗0 ≈ 610a0. For η∗ we turned to the estimate of Petrov and Werner in Ref. [4] of

η∗ = 0.20 in the absence of any known experimental results. In Fig. 3.8 we use η∗ = 0.20 and

a∗0 = 610a0 as our three-body parameters. We find that finite-temperature effects drastically

obscure the features of Efimov universality, specifically recombination minima, because of

the large size of the L ≥ 1 rate contributions at experimentally relevant temperatures. At the

same time, even if there were no higher-partial-wave contributions to the overall rate, we find

that finite-temperature effects in the L = 0 channel hide the second minimum at a ≈ 4000a0

seen in the dotted line of Fig. 3.8. The non-universal rate contributions from L ≥ 1 scattering

channels begin to be suppressed relative to the L = 0 contribution at temperatures below

∼ 10 nK, and the minimum at 610a0 becomes experimentally accessible.

In order to better understand the mass-ratio dependence of the relative size of higher-

partial-wave rate contributions, partial-wave analyses like that shown in Fig. 3.6 were

performed for several additional systems. It was found that L ≥ 1 partial wave contributions

to the recombination rate become increasingly dominant as m1/m2 decreased. Thus, to see

detailed universal behavior occurring from the L = 0 scattering channel, it seems that an

experiment must be performed at very low temperatures for small mass ratios.

64



Fig. 3.9 – The atom-diatomic molecule relaxation rate as a function of the scattering length
a at finite temperature for orbital angular momentum L = 0. The temperature 300 nK
corresponding to the dashed red line is the average temperature that the experimental data
presented in the plot by the blue dots with error bars was taken at. This data is from Bloom
et al. in Ref. [38]. The value we use for η∗ is also from that reference.

This observed trend is in disagreement with the suggestion of D’Incao and Esry [97] that

in systems in which A2 is bosonic the dominant recombination rate contribution comes from

the L = 0 channel. Though this is certainly true at zero and very low temperatures, it does

not seem to be true at all values of E and T , especially when the mass ratio m1/m2 is small.

The additional observable we address, namely the atom-diatomic molecule relaxation

rate, were also calculated at finite temperatures and compared to the experimental data of

Ref. [38] for the 40K-87Rb system. We express this rate for a particular scattering length as

βT =

∫∞
−BD

dE(E +BD)2e−(E+BD)/kBTβ(E)∫∞
−BD

dE(E +BD)2e−(E+BD)/kBT
(3.25)
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where β(E) is only a function of the three-body energy and is given by Eq. (3.15). We

integrate in Eq. (3.25) from the A2D threshold, namely E = −BD, and we add BD in the

necessary places in this equation to ensure that the distribution starts at this threshold.

Our thermally averaged relaxation rate βT (a) is presented in Fig. 3.9. Using the value of

a∗0 ≈ 5000a0 derived from the data of Bloom et al. used above, we observe the relaxation

maximum at a∗ = 230a0, as expected. The relaxation rate has also been experimental

observed at finite temperature in a system of identical bosons by Knoop et al. in Ref. [102].

One of the primary benefits of such experiments is the direct observation of one three-body

parameter of the system, from which the full spectrum of universal three-body bound states

may be obtained.

3.5 Concluding Remarks on the Heteronuclear System

In this chapter, we studied three-body recombination at finite temperatures in heteronuclear

mixtures wherein the interspecies scattering length is large and positive. Universal scaling

functions useful to the calculation of the temperature-dependent recombination rate were

calculated using the STM equation for arbitrary values of η∗ and the chosen three-body

parameter a∗0. In this study, each mass ratio δ necessitates a new set of scaling functions,

which were calculated for several systems of interest. Also, universal scaling functions for

the L ≥ 1 scattering channels were calculated. Although they do not display the Efimov

effect, these loss channels contribute to the total loss rate. We showed in this chapter that the

observation of the Efimov effect seems increasingly difficult as the mass ratio decreases. This

is due to the relatively large L ≥ 1 rate contributions at experimentally feasible temperatures.

Thus, systems with small values of δ are in fact less favorable for the experimental observation

of Efimov features at scattering lengths a > 0 than initially postulated [82]. Additionally, we

calculated the L = 0 A2D relaxation rate at finite temperature as a function of the scattering

length. The results of this work were compared with experimental data for three-body

recombination and atom-diatomic molecule relaxation in an ultracold mixture of 40K-87Rb

atoms and good agreement with the data was found.
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Additional studies assessing the impact of finite range corrections to the recombination

rate at relatively small values of a could be carried out in a relatively straight forward way

in the future. These effects were studied in an EFT framework for identical bosons in Refs.

[88, 6] and for heteronuclear mixtures in Ref. [92]. The inclusion of finite range effects would

provide an understanding of Efimov physics even in the case in which a is not particularly

large. This could be useful for the experimental avoidance of large a values, at which the

higher partial-wave contributions dominate the total recombination rate. A perturbative

inclusion of a finite intraspecies scattering length a22 has been done in Ref. [92] at T = 0 K

for |a22| � |a|, and a nonperturbative calculation [4] was performed for |a22| ∼ |a| at finite

temperatures for a < 0. But, this has not yet been done for finite temperatures when a > 0,

and major changes to the existing formalism would be necessary to accommodate additional

scattering channels if a22 > 0.
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Chapter 4

Nuclear Polarization Effects in

Muonic Deuterium

Muonic deuterium is an important nucleus to study because of its relative simplicity

compared to any larger nucleus. It is therefore an important testing ground for various

theoretical approaches in few body physics [103]. One of these approaches is /πEFT. Several

papers have been published in which the properties of the deuteron are addressed using this

EFT [104, 105, 106]. The deuteron is a suitable system to study with /πEFT because it has

an expansion parameter γρd ∼ 1/3, where γ is the deuteron binding momentum and ρd the

deuteron effective range.

The theoretical problem we address in this study is directly connected to the proton

and deuteron radius puzzles recently highlighted by Krauth et al. and Hernandez et al. in

Refs. [42, 45] and earlier by Mohr et al. in Refs. [107, 108]. For the proton, this puzzle is

characterized by differences of at least 5.6σ between the proton radius values extracted from

e-H versus µ-H measurements, as noted in Refs. [107, 108], where σ is the standard deviation

of the measurements in µ-H. Some recent results such as Ref. [44] narrow the gap between the

disparate radii values, but do not erase it altogether, and the problem still has not been fully

understood. A similar discrepancy has also been observed between muonic deuterium (µ-D)

and electronic deuterium (e-D) [109], and the dependence of this discrepancy on atomic mass

A and charge number Z has been examined in various studies. Some explanations of this
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discrepant behavior include but are not limited to beyond-the-standard-model theories, but

we do not address them here.

We approach the radius problem in µ-D by performing a /πEFT calculation of the

correction to the 2S-2P Lamb shift in muonic deuterium due to nuclear polarization effects

of two-photon-exchange (TPE) between the muon and the nucleus. This is possible because

the nuclear polarization correction to the atomic spectrum is related to the deuteron charge

radius by the equation [110]

∆ELS = δQED + δpol + δZem +
m3
rα

4

12
〈r2
ch〉d , (4.1)

where α is the fine-structure constant, mr is the reduced muon mass, and the sum δpol +

δZem gives the total TPE correction, δTPE. Krauth et al. provide a similar formula in

Ref. [103]. This equation allows for the extraction of the deuteron charge radius once the

other contributions on the RHS of Eq. (4.1) are known from theoretical calculations and

the LHS is taken from experiments. The charge radius rch in Eq. (4.1) is defined in the

subleading contribution to the electric form factor of the deuteron, as in the hydrogenic

case [111].

Of the terms that must be calculated theoretically, the QED corrections represented by

δQED are very accurately known [112, 113]. So, for the determination of the charge radius,

it is the theoretical uncertainty of the two-photon-exchange parts that contribute the most

to the uncertainty of the extracted radius. The expression in Eq. (4.1) breaks up δTPE into

δpol + δZem. We follow this approach and calculate the inelastic and elastic TPE terms

separately. Several sources, such as Hernandez et al. in Ref. [114], make a further separation

of the TPE correction into terms depending on few-nucleon dynamics and those depending

on the properties of individual nucleons. We only consider the first case in this dissertation

and do not examine corrections from the structure of individual nucleons.

We study µ-D rather than e-D because the nearly non-relativistic velocity of the muon

renders the calculation simpler, but also renders the TPE part of the Lamb shift as a larger

percentage of the total than in the electronic case due to the heavier muon mass, making

high precision estimates of the nuclear charge radius possible. We study the Lamb shift
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because S-level shifts are well understood, and the orbiting muon does not penetrate the

physical volume of the nucleus at these energies, greatly simplifying the calculation.

In addition to the nuclear radius puzzle, polarization corrections to the atomic structure

of light nuclei are one of the largest sources of uncertainties in shifts in atomic spectra, so

these corrections are interesting beyond calculating nuclear radii and were studied long before

the proton radius puzzle was unearthed. In Ref. [115], nuclear polarization corrections were

studied in the context of the isotope shift of the 1S − 2S transition in electronic hydrogen

and deuterium. At the experimental accuracy of the early 1990s, the virtual excitations of

the deuteron became necessary to take into account [116, 117] for this calculation and for

the extraction of nuclear sizes. By the mid 1990s, there was ongoing discussion about the

precise value of the deuteron charge radius, as there is to this day [45].

Many recent studies for a system such as µ-D use state-of-the-art potentials such as AV18

or the latest chiral EFT potentials [114]. Uncertainty estimates have also been reduced to

the level of a few percent in modern calculations. Previous calculations mark the progress

that has been made on this topic over the last few decades. For example, Lu and Rosenfelder

used a simple separable potential in Ref. [115] to determine the inelastic structure functions

of the nucleus. While that is not very realistic, it allowed for a fair description of light

nuclei, for which the low-energy parts of the interaction are dominant. At the same time,

the separable potential of Yamaguchi used in Ref. [115] gives smaller values of the dipole

polarizabilities than those given by the realistic potentials of the early to mid 1990s. At the

same time, they still have reasonable and realistic numbers for the results. An alternative

early calculation of the µ-D polarization shift is given by Fukushima et al. in Ref. [118].

We use the approach that is detailed by Leidemann and Rosenfelder in Ref. [47] and based

on an earlier paper by Rosenfelder [46]. In the earlier paper, Rosenfelder first expressed the

shift in terms of the forward virtual Compton amplitude, which may also be understood as

the part of the full Compton amplitude in which the nucleus is in an excited intermediate

state [115]. However, instead of using state-of-the-art chiral potentials, we apply /πEFT in

an approach which is related to the zero-range methods of Friar in Ref. [48] and similar to

the techniques of Chen et al. in Ref. [104].
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In Sec. 4.1, we detail the formalism that we use from Refs. [46, 47]. Then, in Sec. 4.2 we

detail the theoretical techniques that we use and give the NLO renormalization of the two-

body t-matrix. Section 4.3 contains our /πEFT calculation of the leading-order longitudinal

inelastic structure function and an extraction of the part due to electric-dipole excitation of

the nucleus. Sections 4.4 and 4.5 provide the electric-dipole contribution to the longitudinal

structure function at NLO and the determination of the NLO wavefunction renormalization

factor Z, respectively. Information on additional corrections to the polarization correction

is provided in Sec. 4.6, and in Sec. 4.7, the results for our calculation of the energy shift

are presented and compared to previous literature. Section 4.8 discusses uncertainty in our

calculation and compares it to uncertainties in previous calculations.

4.1 Energy Shift

The equation for the energy shift due to two-photon-exchange between the muon and the

nucleus that we set out to use was derived by Rosenfelder in Ref. [46]. The relevant amplitude

is also known as forward virtual Compton scattering. This gives the TPE correction to the

2S-2P Lamb shift as

∆εn0 = (4πα)2|φn0(0)|2Im

∫
d4q

(2π)4

2m

(q2 + iε)2 − 4m2q2
0

{
1

q2
TL +

q2
0

(q2 + iε)2
TT

}
(4.2)

for the nth S-state, where m is the lepton mass, qµ is the photon four-momentum, and TL

and TT are the longitudinal and transverse forward virtual Compton amplitudes, respectively.

The value of |φn0(0)|2 is (Zαmr/n)3/π, where α ≈ 1/137 is the fine structure constant, Z

is the proton number, and mr is the muon-deuteron reduced mass. Thus, the leading TPE

contributions to the energy shift are O(α5). The portions of the forward virtual Compton

amplitudes related to the nucleus are given by

TL =T00 ,

TT =

(
δij −

qiqj
q2

)
T ij , (4.3)
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where qi are components of the photon three-momentum and T µν is the nuclear tensor which

couples to two photons [46].

Because of the two 1/q2 factors from the two inclusions of the instantaneous Coulomb

potential in the longitudinal part of the forward virtual Compton amplitude, an IR divergence

arises in the Feynman diagram calculation that is difficult to resolve. However, in Ref. [46],

Rosenfelder noted that one may rewrite the forward virtual Compton amplitude in terms

of the longitudinal and transverse inelastic structure functions SL/T (q, ω). In that case, an

IR divergence is contained in the transverse part of the amplitude and exactly canceled by

the seagull term, which is also necessary to preserve gauge invariance, and no IR divergence

appears in the longitudinal part.

The longitudinal part in terms of the inelastic structure function is given in Ref. [46] as

TL(q0,q) =

∫ ∞
0

dω SL(q, ω)

{
1

q0 − ω + iε
− 1

q0 + ω − iε

}
, (4.4)

and the transverse part is

TT(q0,q) = seagull +

∫ ∞
0

dω ST(q, ω)

{
1

q0 − ω + iε
− 1

q0 + ω − iε

}
, (4.5)

where ω is the energy transferred to the nucleus via a virtual photon and

SL/T(q, ω) =
∑
n6=0

δ(ω − (En − E0))|〈n|OL/T(q)|0|2 , (4.6)

where OL(q) = ρ(q) is the charge density operator and OT is the current operator. In our

field-theoretical approach, the charge operator corresponds to a photon-nucleon vertex factor

proportional to −ie, where e = −|e| is the electron charge.

The nuclear polarization correction to the 2S energy level is obtained in Ref. [47] by

integrating over the inelastic structure functions SL/T (q, ω) with the appropriate integration

kernels obtained from the detailed leptonic and photonic Feynman rules. In the Coulomb

gauge, the inelastic longitudinal structure function is related to the square amplitude for the

disintegration of the deuteron by a Coulomb photon with energy ω and three-momentum q.

The inelastic transverse structure function fills the same role, albeit with a transverse vector
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photon exchanged between the muon and nucleus. The equation we use for the total energy

shift due to TPE is found in Ref. [47] and is

∆εn0 =− 8α2Rn0|φn0(0)|2
∫ ∞

0

dq

∫ ∞
0

dω
[
KL(q, ω)SL(q, ω) +KT (q, ω)ST (q, ω)

+KS(q, ω)ST (0, ω)
]
, (4.7)

where it should be stated that for the structure functions there are more subtle restrictions

placed on the limits of integration, which we describe below. The factor Rn0 is a correction

factor determined to be R(µ) = 0.9778 [47] for muonic deuterium and is given in general to

first order in the ratio of the nuclear radius to the Bohr radius aB by

Rn0 ' R = 1− 3.06
〈r2〉1/2
aB

. (4.8)

The purpose of this correction factor in Eq. (4.7) is to account for the slight variation of the

muon wavefunction over the physical volume of the nucleus.

Reference [47] also provides the integration kernels derived with fully relativistic lepton

kinematics for the various contributions to the energy shift. It is most important to maintain

these relativistic kinematics in the electronic case, as these effects are small in the muonic

case. However, these effects are not negligible, so we include both a relativistic and non-

relativistic result in Sec. 4.7 below. As a side note, our approach allows for relativistic

corrections in the nucleon kinematics, but we do not keep these very small corrections. For

longitudinal inelastic excitations of the nucleus, the fully relativistic kernel is given by

KL(q, ω) =
1

2Eq

[
1

(Eq −m)(ω + Eq −m)
− 1

(Eq +m)(ω + Eq +m)

]
. (4.9)

The non-relativistic (NR) reduction of Eq. (4.9) is

K
(NR)
L (q, ω) =

1

q2

1

ω + q2

2m

, (4.10)
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where m is the lepton mass. For transverse excitations, the contribution from the leptonic

and photonic propagators is given by

KT (q, ω) = − 1

4m|q|
ω + 2|q|

(ω + |q|)2
+

q2

4m2
KL(q, ω) ., (4.11)

where m is again the lepton mass and Eq =
√

q2 +m2. Lastly, the seagull term has a kernel

given by

KS(q, ω) =
1

4mω

(
1

|q| −
1

Eq

)
, (4.12)

which is given in Ref. [47].

The transverse part of the structure function is much larger in e-D than in µ-D [115] in the

Coulomb gauge. This is because while they are each suppressed by a factor of 1/m`, where

the m` is the relevant lepton mass, the muon is much heavier than the electron, which leads

to a greater suppression of the transverse term in the muonic case. As found in Table II of

Ref. [47], in the Coulomb gauge, the transverse part of the energy shift contributes less than

1% of the total shift in µ-D. The seagull term was included in the transverse contribution

of that reference. At the same time, it is important to note that it is the total energy shift

including the longitudinal, transverse, and seagull components that is the meaningful, gauge

invariant physical quantity, and that the components thereof are dependent on the gauge

choice. Nevertheless, as we are working in the Coulomb gauge and studying µ-D, we restrict

ourselves for the present to studying only the part of the energy shift due to longitudinal

excitations.
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4.2 Renormalization at NLO with PDS

In the /πEFT framework we use, the Lagrangian in the Coulomb gauge, in which ∇ ·A = 0,

is given by

L =ψ†σ

[
i∂0 +

∇2

2M

]
ψσ − eψ†σQA0ψσ +

ie

2M

[
−ψ†σQA · ∇ψσ

]
− e2

2M
ψ†σQA ·AQψσ − C0

(
ψTPiψ

)†
ψTPiψ

+
C2

8

[(
ψTPiψ

)† (
ψT
[
Pi
−→
∂ 2 +

←−
∂ 2Pi − 2

←−
∂Pi
−→
∂
]
ψ
)]

, (4.13)

where M is the nucleon mass M = 2µ, µ = mpmn/(mp + mn), and Q acts in isospin space

to couple the photon to the proton and is (1 + τ3)/2. The 2 × 2 matrix τ3 is the usual

Pauli matrix, and 1 is the 2 × 2 identity matrix. In µ, mp and mn are the proton and

neutron masses, respectively. The photon field A corresponds to the three-vector part of

the quantum-field-theoretical photon field with the fully relativistic integration measure, and

A0 is the instantaneous momentum-space Coulomb potential rather than a quantized field.

These two parts of the photon are coupled to nucleons through minimal coupling, which

makes the replacements ∂0 → D0 = ∂0 + ieQA0 and ∇ → D = ∇− ieQA in the first term of

Eq. (4.13). This replacement leads to the second and third terms on line one of the RHS and

the first term on the second line containing two factors of A. D0 and D may be compressed

into the four-vector Dµ [104]. The field ψ is a nucleon field which we define as

ψy,σ =

∫
d3p

(2π)3
e−iEpteip·yησap,σ , (4.14)

where σ is the index containing spin and isospin information, ap,σ annihilates an ingoing

nucleon with momentum p and spin/isospin index σ, and ησ is a spinor doublet containing

the spin and isospin information of the nucleon. The most important Feynman rule involving

the photon from the above Lagrangian density for our purposes is the vertex factor for a

Coulomb photon coupling to a nucleon, which gives (−ie)Q. The vector photon propagators

and instantaneous Coulomb potential are incorporated in the definitions of the integral

kernels of Eq. (4.7) above, so for our purposes we do not explicitly define those here.
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We once again must address the renormalization of the two-body t matrix of Chapter 2.

However, for the purposes of this chapter, it is more convenient to take a different expansion

of k cot δ0 than was made in Eq. (2.4). Following the method of Ref. [104], we instead

expand around the deuteron pole, |k|2 = −γ2
t , to obtain

|k| cot δ0 = −γt +
1

2
ρd(|k|2 + γ2

t ) + · · · , (4.15)

where the deuteron binding momentum for the spin triplet and isospin singlet deuteron

ground state is γ−1
t = 4.318946 fm and the deuteron effective range ρd = 1.764 fm.

Figures resembling Figs. 2.1 and 2.2 once again describe the scattering up to NLO.

However, instead of the NLO amplitude containing a counterterm, used for eliminating a

divergence, it contains instead an NLO correction to the coupling constant C0 corresponding

to the two-body contact interaction. We are using couplings C0 and C2 instead of λ0 and ρ0

in this chapter. We write C0 as an expansion in the power counting scheme of [104] given

by C0 = C0,−1 +C0,0 + · · · , where the second index indicates the order of the term in power

counting parameter Q explained below. We confirm the results

C0,−1 = − 4π

M

1

(µ− γ)
, (4.16)

C0, 0 =
2π

M

ρdγ
2

(µ− γ)2
, (4.17)

C2,−2 =
2π

M

ρd
(µ− γ)2

. (4.18)

These coupling constants were determined in the partial divergence subtraction (PDS)

renormalization scheme introduced by Kaplan, Savage, and Wise in Ref. [12]. In PDS, poles

in D dimensions arising in the ultraviolet region of momentum-space loop-diagrammatic

calculations (recall that our renormalization scheme in previous chapters included a UV

cutoff Λ) are subtracted with a counterterm and a renormalization scale µ is introduced.

From this, we can develop a power-counting scheme whereby we track the significance of a

contribution based on the number of powers of Q it contains, where Q ∼ p/µ and p is the

scale of the external momentum. Relativistic corrections in the nucleus enter at N2LO in

the power counting, where there are also new contributions to C0 and C2 proportional to ρ2
d.
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+

(E′ + ω, p + q/2)

(E, −p + q/2)

(E′ + ω, p + q/2)

(E′′, −p + q/2)

(ω, q) (ω, q)

(−B, 0) (−B, 0)

Fig. 4.1 – Diagrams for the longitudinal structure function SL(ω, q). The shaded oval in the
second diagram indicates the inclusion of the two-nucleon scattering amplitude. The dashed
line corresponds to an incoming A0 photon, though the related propagator does not enter
the calculation of the structure function, and we also leave off the factor (−ie) from the
photon-nucleon vertex rule until the end of the calculation. The crossed circle corresponds
to the interpolating field Di = NTPiN .

4.3 Longitudinal Structure Function at LO

In this section we calculate the inelastic longitudinal structure function SL(q, ω) in pionless

EFT at LO in the deuteron effective range ρd. We assume that the nucleus is approximately

static, i.e. has zero three-momentum, and has energy E = −B = −γ2/M prior to its

excitation by the photon. This is reasonable because the time scale for TPE is much shorter

than any other relevant time scales in the problem. We give the amplitude needed for the

calculation of the structure function in Fig. 4.1 we label as sL,a(p,q, θ), and we calculate

two distinct amplitudes arising from the first diagram in the figure:

sL,a1(p,q, θ) =
δji
√
Z

2

[
S(−p− q/2) + S(p− q/2)

]
, (4.19)

sL,a2(p,q, θ) =
δki
√
Z

2

[
S(−p− q/2)− S(p− q/2)

]
, (4.20)

where Z is the LO renormalization factor given by Z = −8πγ/M2 at LO in Q and S(±p−
q/2) is given by

S(±p− q/2) =
iM

−MB − p2 ± pq cos θ − q2/4 + iε
. (4.21)
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Here, θ is the angle between p and q, and MB = γ2
t . The two distinct nucleon propagators

of Eq. (4.21) arise when we consider all possible field-theoretical contractions in the matrix

element corresponding to the first diagram. Note that we have left off the vertex factor

(−ie) in Eqs. (4.19) and (4.20) coming from the photon-nucleon vertex, and we place it

back in at the end of the calculation. Note also that the photon-propagators do not enter

here. Rather, they enter the kernels given by Eqs. (4.9) and (4.10) in addition to the lepton

propagator. The Kroenecker delta functions in Eqs. (4.19) and (4.20) come from traces

over projectors arising from projecting the outgoing state onto one of two possible spin and

isospin configurations.

The first projector ensures that the outgoing state is in a spin triplet and an isospin

singlet, and we used it to obtain Eq. (4.19). It is given by Pi = 1√
8
σ2σi ⊗ τ2. We introduce

the second projector needed to project the outgoing NN-state onto a spin triplet and the

isospin triplet state corresponding to 1√
2
(np+ pn) as P ′i = 1√

8
σ2σi ⊗ τ2τ3, and we used it to

obtain Eq. (4.20). The σi and τi matrices are the Pauli matrices, where a matrix σ acts in

spin-space and τ acts in isospin-space. A typical matrix element in which the outgoing states

are well defined by the projectors will have a form such as ηTs Pjηs′η
T
s′Qηs′η

T
s′P
†
i ηs, where the

2 × 2 matrix Q ensures that the photon only couples to the outgoing proton, superscript

T indicates the transpose, and † gives the complex-transpose. Since the outer spin/isospin

indices are the same (s), and the inner spin/isospin indices are all s′ in the matrix element,

we obtain a trace over the projectors and Q as Tr
[
PjQP

†
i

]
. Matrix elements in which the

spinors are not immediately in an ordering allowing for a trace, such as ηTs′Pjηsη
T
s′Qηs′η

T
s′P
†
i ηs,

also arise in the equation. We form a matrix element over which the trace may be taken by

rewriting this example matrix element as ηTs P
T
j ηs′η

T
s′Qηs′η

T
s′P
†
i ηs, where we have transposed

the first projection matrix and moved the spinors accordingly. The difference in the signs in

Eqs. (4.19) and (4.20) comes from the differing properties of the two projectors Pi and P ′i .

Some of these properties are

Tr
[
PjP

†
i

]
= Tr

[
P ′jP

′ †
i

]
=

δji
2
, (4.22)

Tr
[
P ′jP

†
i

]
= 0 , (4.23)
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Tr
[
PjQP

†
i

]
= Tr

[
P ′jQP

′ †
i

]
= Tr

[
PjQP

′ †
i

]
=

δji
4
. (4.24)

Further properties of the trace that we need are

Tr
[
P T
j QP

†
i

]
= − Tr

[
PjQP

†
i

]
, (4.25)

Tr
[
P ′Tj QP †i

]
= + Tr

[
P ′jQP

†
i

]
, (4.26)

where these last two equations are responsible for the sign difference present between Eqs.

(4.19) and (4.20). One must also be careful to keep track of sign changes in a matrix element

when nucleon Wick contraction lines cross to obtain the right results.

The LO contribution to the amplitude due to the electric-dipole excitation of the nucleus

comes from the case where the outgoing unbound nucleons are in a spin triplet and the one

allowed isospin triplet state. The overall antisymmetry of the wavefunction is preserved by

the fact that the outgoing NN state will have odd orbital angular momentum. The first term

in the small-q expansion of the amplitude in Eq. (4.20) corresponds to a P -wave between

outgoing nucleons and is

sLO
D (p, q, θ) =

√
Z
iM p q cos θ

(p2 + γ2)2
, (4.27)

where the subscript D indicates that it is the amplitude due to the inelastic electric-dipole

excitation of the nucleus. This is in agreement with Friar’s result in Ref. [48]. While a

full electric multipole decomposition of the result was performed in Refs. [48, 114], this

was not done in Ref. [115]. Instead, an integration was performed over the complete

inelastic structure functions of the nucleus. Here, our structure function calculation implicitly

includes all inelastic electric multipole contributions, and the only individual contribution

we explicitly extract at present is that of the inelastic electric dipole excitation of the nucleus

given in Eq. (4.27). On the other hand, if one only includes dipole excitations, Ref. [47] found

that for muonic deuterium these excitations constitute roughly 91% of the total energy shift

from inelastic TPE.
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For the second diagram in Fig. 4.1, which we label sL,b, we find

sL,b(ω, q) =δji
√
Z

∫
d4l

(2π)4

i

−l0 + E − l2

2M
+ iε

i

−l0 + ω + E − (l+q)2

2M
+ iε

× i

l0 − l2

2M
+ iε

−iC0

1 + iC0I0

, (4.28)

where instead of using the finite cutoff scheme to determine the form of C0 and I0 as was

used in the previous two chapters, it is convenient instead to proceed with the PDS method

described above. The integral I0 in the PDS scheme is given in Eq. (C.4) in Appendix C.

Additionally, we see from the diagrams that E = −B. The bubble representing final state

interactions in the second diagram of Fig. 4.1 is

iA =
−iC0

1 + iC0I0

=
4π

M

i

−1/at − i
√
Mω − q2

4
−MB

;

[
Mω − q2

4
−MB ≥ 0

]
. (4.29)

where at = 5.4030 fm is the np spin triplet scattering length [119]. For the NLO amplitude

we also use rt = 1.7495 fm. For amplitude insertions after the disintegration of the deuteron,

it is appropriate to expand |k| cot δ0 about |k| = 0 rather than about the deuteron pole [104].

Next, the integral I2, which contains the integral over d4l and the three associated

propagators, is given by

I2 =
i2M2

8π

∫ 1

0

dy
1[

MB − iε+ y
(

q2

2
−Mω

)
− y2 q2

4

]1/2
, (4.30)

where we first integrated over dl0 with a complex contour integral in Eq. (4.28). Next,

in order to obtain Eq. (4.30), we used Feynman parameterization and the dimensional

regularization integral form

∫
dd`E
(2π)d

1

(`2
E + ∆)n

=
1

(4π)d/2
Γ(n− d/2)

Γ(n)

(
1

∆

)n− d
2

. (4.31)

80



Fig. 4.2 – Comparison of SD(q = 50MeV, ω) to SL(q = 50MeV, ω). The units of ω are MeV
and those of SL are MeV−1. The form of these structure functions at fixed |q| compares
well with Fig. 2 of Ref. [120]. The wave-function renormalization factor from effective range
theory was used in the creation of this plot. From the plot, we see that the effect of implicitly
including all electric-multipole contributions serves to reduce the dipole part.

Integrating over dy in Eq. (4.30), we find that the final result for I2 is given by

I2 =

(−M2

8π

)(
1

q

)[
2i
(

ln
[
− 2iMω + q

√
4MB + q2 − 4Mω − iε

]
− ln

[
2q
√
MB + i(q2 − 2Mω)

] )]
. (4.32)

This integral result is finite, so no regularization method was needed in its evaluation. Thus,

for the second diagram in Fig. 4.1, we arrive at

sL,b(ω, q) = δji
√
ZiAI2 , (4.33)

The structure function of Eq. (4.6) is then given by the sum of the squared amplitude

over outgoing states (an integral in the present case) restricted by the energy-conserving

81



delta function and is

SL(q, ω) =|Z|
∫
dp p2 sin θ dθ dφ

(2π)3
δ

(
p2

M
− (ω −B − q2/4M)

)
×
[
|sL,a2(p, q, θ)|2 + |sL,a1(p, q, θ) + sL,b(p, q, θ)|2

]
. (4.34)

The square-amplitude in Eq. (4.34) is written in such a way because there is no overlap

between the part of the amplitude in the outgoing spin-triplet and isospin-triplet state with

that in the outgoing spin-triplet and isospin-singlet state. Thus, sL,a1 is summed with

sL,b and this sum has its square magnitude taken. But, the square magnitude of sL,a2 is

taken directly and added to the total square amplitude. The delta function imposed on the

integral, δ(p2/M − (ω−B−q2/4M)), ensures energy conservation in the process. A further

requirement is that the outgoing particles are on-shell, forcing p to be real. This imposes the

relation that Mω ≥ MB + q2/4 for all q. At LO, Eq. (4.34) may be evaluated analytically

in its entirety. Further, the energy-conserving delta function in Eq. (4.34) can be rewritten

in a more useful form with the relation

δ(g(p)) =
∑
i

δ(p− pi)
|g′(pi)|

, (4.35)

where g′(pi) = dg(p)/dp evaluated at p = pi. The integral over dp is then quite simple, as

we replace the energy-conserving delta function with a momentum-conserving one using Eq.

(4.35) and obtain

δ

(
p2

M
− (ω −B − q2/4M)

)
=
M δ

(
|p| −

√
M(ω −B − q2/4M)

)
2
√
M(ω −B − q2/4M)

. (4.36)

Equation (4.36) then allows us to replace each instance of |p| in Eq. (4.34) with√
M(ω −B)− q2/4.

To check the form of our results, we compare our longitudinal structure function as a

function of ω at fixed |q| in Fig. 4.2 to Fig. 2 of Ref [120], and the comparison is favorable.

Note that the plot does not begin at ω = 0, as we once again impose the restriction that

ω ≥ B + q2/4M to ensure that the outgoing NN-state is a continuum state. Further, Ref.
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+

(ω, q) (ω, q)

(−B, 0) (−B, 0)

Fig. 4.3 – Diagrams for the NLO longitudinal dipole structure function S
(NLO)
D (ω, q). The

square vertex in the first diagram corresponds to an insertion of the C2 vertex, and the solid
vertex in the second gives an insertion of the NLO C0,0 vertex. The dashed line corresponds
to an incoming A0 photon, and we leave off the vertex rule (−ie) for the small solid vertex
on the outgoing nucleon legs until the end of the calculation. The crossed circle corresponds
to the interpolating field Di = NTPiN and the LO renormalization factor Z.

[115] gives perhaps one important check that we can use, which is their Eq. (26). This is a

sum rule that the longitudinal structure function obeys.

Figure 4.2 includes both the inelastic longitudinal structure function due to all electric-

multipoles and the part of the structure function due to dipole excitations. The latter may

be found by inserting the amplitude sLO
D (p, q, θ) given in Eq. (4.27) into Eq. (4.34) as

|sD(p, q, θ)|2 in place of the terms in brackets in the second line of the equation. We obtain

the following LO analytical result for the corresponding dipole structure function, SLO
D (q, ω):

SLO
D (q, ω) =

|Z|M3

12π2

(Mω −MB − q2/4)3/2

(Mω − q2/4)4
q2 . (4.37)

4.4 Dipole Structure Function at NLO

We perform the NLO calculation of the inelastic longitudinal dipole structure function in

this section. For this calculation, we include the interaction term with coupling constant C2

in Eq. (4.13) and the NLO contact coupling C0,0 as in Fig. 4.3 and make use of the loop

integrals in Eq. (C.1). Allowing for the same possible outgoing-state projections as we did for
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the LO structure function, we find for the diagram with the square C2 vertex the amplitude

sNLO
L,C2

(p,q, θ) =
1

2
δji
√
ZLO

(
C2M

8π
(µ− γ)

)[
(γ2 − p2 − p · q− q2/4)S(−p− q/2)

− (γ2 − p2 + p · q− q2/4)S(p− q/2)
]
, (4.38)

where S(±p−q/2) are again given by Eq. (4.21), δji is from a trace over projectors, and C2

is given in Eq. (4.18). It is the first term in a series expansion of Eq. (4.38) that gives the

dipole contribution at NLO from the C2 vertex. We find that this is

sNLO
D,C2

=
1

2
δji
√
ZLO

C2M

8π
(µ− γ)

[
4iMγ2pq cos θ

(p2 + γ2)2

]
. (4.39)

This is only one of three terms we must consider to obtain the NLO inelastic structure

function from electric dipole excitations.

One of the two additional terms we consider is the first diagram in Fig. 4.3 corresponding

to one insertion of the NLO C0,0 vertex. For this diagram we obtain

sNLO
L,C0,0

(p,q, θ) =
1

2
δji
√
ZLO

(
−C0,0

M

4π
(µ− γ)

)
[S(−p− q/2)− S(p− q/2)] , (4.40)

where C0,0 is given in Eq. (4.17). We take the first term from the small-q expansion of this

result as the dipole contribution from C0,0 and obtain

sNLO
D,C0,0

(p,q, θ) = δji
√
ZLO

(
−C0,0

M

4π
(µ− γ)

)[
iM pq cos θ

(p2 + γ2)2

]
. (4.41)

The third NLO contribution to the dipolar correction multiplies the LO dipole result by
√
ZNLO. We then take this and the contributions of Eqs. (4.39) and (4.41) and include them

in the square amplitude. Apart from squaring the term with
√
ZNLO, we only take the cross

terms in the NLO couplings, since terms O(ρ2
d) is N2LO. The squared amplitude that we

insert into Eq. (4.34) is then

|sNLO
D |2 =|ZNLO|

∣∣sLO
D (p,q, θ)

∣∣2 + 2|ZLO|
(
sLO ∗
D (p,q, θ)sNLO

D,C2
(p,q, θ)

)
+ 2|ZLO|

(
sLO ∗
D (p,q, θ)sNLO

D,C0,0
(p,q, θ)

)
, (4.42)
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Σ = + + + · · ·

Fig. 4.4 – Diagrams for the irreducible bubble Σ up to NLO in ρd. The first diagram on the
RHS of the equality is the LO bubble, and the second and third diagrams on the RHS are
NLO in ρd. The square vertex corresponds to the insertion of the C2 operator, and the solid
dot corresponds to C0, 0. The crossed circle represents the interpolating field Di = ψTPiψ.

where the factors of 2 arise from the fact that there are two of each of those cross terms.

For the final NLO dipole result, we find that it is only the LO dipole part sLO
D (p,q, θ)

multiplied by ZNLO that contributes, and the C2 and C0,0 terms cancel. This exactly

matches the NLO term in a small-ρd expansion of the effective range theory wavefunction

renormalization, which is very reasonable because at this order we include no physics that

is not present in the effective range expansion. At N2LO this will no longer be the case, as

SD-mixing in the deuteron enters the calculation. The final NLO portion of the inelastic

electric dipole structure function we therefore find as

SNLO
D (q, ω) = ρdγ|ZLO|

M3

12π2

(Mω − γ2 − q2/4)3/2

(Mω − q2/4)4
q2 . (4.43)

This result looks like Eq. (4.37) apart from a new multiplicative factor of ρdγ. Thus, the

total result up to NLO we write SLO
D (q, ω)[1+ρdγ], which matches the small-ρd expansion of

the wavefunction renormalization factor from effective range theory as previously mentioned.

The result in Eq. (4.43) requires knowledge of the wavefunction renormalization factor up

to NLO in Q ∼ ρdγ.

4.5 Wavefunction Renormalization

The two-point function Σ related to the two-point irreducible Green’s function G(E) is

necessary for the determination of the wave-function renormalization factor and is given in

Fig. 4.4. The renormalization factor ensures that the ingoing wave-function in an amplitude

calculation has the same normalization as an ingoing deuteron wave-function. Chen, Rupak
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and Savage [104] give the renormalization factor in general as

Z = i

[
1 +

Epole

2M

dΣ
(
E
)
/dE

]
E→−B

, (4.44)

where Epole = −B + p2/4M and E = E − p2/4M , and Σ(E) =
∑∞

n=1 Σn(E) is an order-

by-order expansion of Σ in the parameter Q ∼ ρd/µ. The first bubble on the RHS of the

equality in Fig. 4.4 gives

Σ1(E) = −iM
4π

(µ−
√
−ME − iε) . (4.45)

We have used a notation similar to that of Ref. [121], but the convention we use in Eq.

(4.44) for the renormalization factor differs from that reference.

At NLO, there are two contributions. In Fig. 4.4, these are given by the second and

third diagrams on the RHS of the equality. The square vertex in the second diagram on the

RHS corresponds to an insertion of the C2 vertex, while the solid dot in the third diagram

corresponds to an insertion of the NLO part of C0, or C0, 0. The dots indicate higher order

corrections to the irreducible two-point function. The Feynman rule for the square vertex is

−iC2

8
[p2 + k2], where p is the relative momentum of the ingoing nucleons and k that of the

outgoing nucleons. For the solid dot, the vertex rule is −iC0, 0. Using the general integral

form of Eq. (C.4), we obtain the total NLO contribution

Σ2(E) =
iC2M

2

16π2

(
ME

) (
µ−

√
−ME − iε

)2

+
iC0, 0M

2

16π2

(
µ−

√
−ME − iε

)2

. (4.46)

We calculate the derivative of the sum of Eqs. (4.45) and (4.46) with respect to E and take

E → −B for use in Eq. (4.44). This yields

dΣ(E)

dE

∣∣∣∣
E→−B

=− iM2

8πγ
+
iρdM

2

8π

[
1− γ

µ− γ

]
+

iρdM
2γ

8π(µ− γ)
,

=− iM2

8πγ
+
iρdM

2

8π
, (4.47)
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where Σ(E) = Σ1(E) + Σ2(E). Inserting Eq. (4.47) into Eq. (4.44) and dropping Epole/2M

since γ2/2M2 ≈ 0.0011, we find that up to NLO in ρd

Z =
i

− iM2

8πγ
+ iρdM2

8π

, (4.48)

≈− 8πγ

M2

[
1 + ρdγ + ρ2

dγ
2 + · · ·

]
, (4.49)

where we expanded Eq. (4.48) in small ρd to obtain Eq. (4.49). In the EFT calculation,

this result for the wave-function renormalization factor is plugged into |Z| in Eq. (4.34). For

now, we only include the leading term in Eq. (4.49) to obtain the LO result for the energy

shift in EFT.

4.6 Additional Contributions

We next look at a few additional contributions beyond those from inelastic electric multipole

parts of the structure function, after which we present the numerical results of our study.

As discussed previously, Refs. [114, 122] perform a multipole decomposition of the structure

function and from that include the leading electric dipole term, the Zemach related

(inelastic) term, monopole term, quadrupole term and what they call an interference term

δD1D3. Additionally, Coulomb distortion corrections, relativistic longitudinal and transverse

corrections, and three different finite-nucleon-size corrections are detailed in Ref. [122]. The

expressions in that source only have energy dependence in their structure function because

of the particular nature of their approach, in which they have discretized the continuum

such that all of the states are eigenstates of their Hamiltonian expressed in the harmonic

oscillator basis.

Additionally, Ref. [115] includes what they call the spin-current interaction, which is

related to the proton and neutron magnetic moments and allows for the spin-flip of the

nucleons. They found that it does not contribute significantly in their approach, though in

Ref. [48], Friar found that it was important to include these effects. Similarly, the authors

of Ref. [114] calculated the contribution from spin-flip and found that this term, which they

label δM1, is important for µ-D since the deuteron is a nucleus with total angular momentum
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J = 1 in the ground state. This contribution was found to be less important in µ-4He+ than

in µ-D [122]. The energy shift δM1 is expressed in terms of the magnetic response function

as

δM =
1

3
m3
rα

5

(
gp − gn

4mp

)2 ∫ ∞
ωth

dω

√
ω

2mr

SM1(ω) , (4.50)

where mp is the proton mass, gp = 5.586, and gn = −3.826. The magnetic dipole operator

M1 is given by Pachucki in Ref. [123].

Another basic formula of interest in Ref. [114] is for the Coulomb distortion correction,

which they label as δC .

δC = −2π

9
m3
rα

6

∫ ∞
ωth

dω
mr

ω
ln

2mrα
2

ω
SD1(ω) . (4.51)

This equation incorporates the electric-dipole response function. This is also the only term

that does not contribute at O(α5), and is instead proportional to α6 lnα. Coulomb distortion

is especially important at low photon momentum.

One other significant contribution to the TPE part of the nuclear polarization correction

to the Lamb shift is due to the third elastic Zemach moment and Ref. [124] gives this Zemach

term as

δAZem = −m
4
r(Zα)5

24
〈r3〉(2) , (4.52)

where 〈r3〉(2) is the 3rd nuclear Zemach moment. Then, from Ref. [125] we find the third

nuclear Zemach moment in muonic Hydrogen expressed as

〈r3〉(2) =
48

π

∫ ∞
0

dq

q4

(
G2

E(q2)− 1 + q2〈r2〉p /3
)
. (4.53)

This is somewhat of a simplified form developed by Pachucki [126]. In Eq. (4.53), the factor

of 1 cancels against GE(0), and the q2〈r2〉p /3 term cancels the first q2-dependent term in a

low q expansion of GE(q). One must take 〈r2〉p, or for our purposes 〈r2〉d, from experiments.

This third Zemach moment is calculable in and provides a very significant correction to the

Lamb shift in muonic atoms. This elastic Zemach term largely cancels against the inelastic

one implicitly contained in our structure function calculation, and the cancellation is exact

when point nucleons are assumed.
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Some minor contributions also enter into the calculation of the total TPE contribution

to the Lamb shift in muonic deuterium. One is SD mixing in the deuteron, and Ref. [115]

found that including the D-wave part only adds a correction to the longitudinal part of the

energy shift of around 1%. Another very small contribution comes from pion exchange in

the deuteron. However, Ref. [47] found that the inclusion of meson exchange currents in

the Paris potential only adds about a 1.3% correction to the very small transverse part of

the energy shift in the Coulomb gauge, meaning that such effects would constitute a roughly

0.01% correction to our results. Thus, we do not take them into consideration.

4.7 Numerical Results

Here, we present our results for various nuclear polarization corrections to the 2S-2P energy

shift due to TPE. In the results section of Ref. [114], the authors reproduce the experimental

binding energy of the deuteron with their two different approaches (AV18 and χEFT). We

use this same value for the deuteron binding energy here, which is 2.224573(2) MeV.

Here we provide our results for the energy shift in muonic deuterium up to NLO in

Q ∼ ρdγ
2/µ, where µ is the renormalization scale in our problem, which we choose to be the

pion mass mπ. In the Coulomb gauge, the transverse and seagull terms do not yet contribute

at this order and so are not included here. Terms that are calculable in our framework, but

have not yet been calculated, are δM1, the elastic third Zemach moment contribution, that

from SD-mixing in the deuteron, and the contributions from the transverse and seagull terms

in Eq. (4.7).

The first two results we present are the shift due to dipole excitations and the shift due

to all inelastic electric multipole excitations. We first plug the dipole structure function in

Eq. (4.37) into Eq. (4.54) to obtain the contribution to the 2S-2P Lamb shift from dipole

excitations. Then, to extract the full inelastic longitudinal contribution to the energy shift

in the Coulomb gauge, we isolate the longitudinal part of Eq. (4.7):

∆εn0,L = −8α2Rn0|φn0(0)|2
∫ ∞

0

dq

∫ ∞
ωth

dω [KL(ω, q)SL(ω, q)] , (4.54)
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Table 4.1 – Energy Shift Results

energy shifts /πEFT Ref. [48] /πEFT Total

δ
(ERE,NR)
D -1.925 -1.925 –

δ
(ERE,REL)
D -1.857 -1.888 –

δ
(EFT,NR)
D,LO -1.139 – -1.139

δ
(EFT,NR)
D,NLO -0.465 – -1.604

δ
(EFT,NR)
L,LO -0.962 – -0.962

All values in the table are given in units of meV. The top portion of the table compares our
LO dipole contribution with the results of Ref. in the non-relativistic (NR) and relativistic
case. Below that, we present the EFT results for the dipole contribution up to NLO. The
bottom portion of the table contains the inelastic longitudinal contribution to the shift from
all electric multipoles at LO.

We perform the integration of Eq. (4.54) numerically. If the dq-integral is carried out from

0 → ∞, this places a lower limit on the dω-integral coming from the requirement that the

outgoing nucleons from the disintegrated deuteron in the structure function calculation have

energy E ≥ 0, i.e. are in the continuum. We find that ωth = B + q2/4M .

To compare our results for the energy shift due to an inelastic dipole transition from

the deuteron ground state to a continuum state to previous zero-range literature, we set

|Z| = 8πγ/M2(1 − γρd), which is from effective range theory, to compare our results with

the zero-range result of Ref. [48]. In that paper, Friar obtained a magnitude of the energy

shift he labels ∆EC1
pol of 1.925meV. To compare to this result, we set Rn0 = 1 and use the

non-relativistic kernel of Eq. (4.10) to obtain

∆ε
(NR)
n0,D = −1.925 meV, (4.55)

which is identical to the corresponding result of Friar in Ref. [48] and is listed as δ
(ERE,NR)
D

in Table 4.1. Next, using the kernel of Eq. (4.9) for a fully relativistic muon, we obtain a

value

δn0,D = −1.857 meV. (4.56)

This compares favorably with the result in Ref. [48], where Friar found, after including only

one correction of relativistic origin, which he labels ∆Esub-C1
pol , the corrected energy shift from
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a dipole transition to be of magnitude 1.888 meV. The difference in signs of the two results

is purely a matter of convention.

If we return to our EFT expansion and use the LO wavefunction renormalization in the

calculation of the shift due to all inelastic electric multipole contributions, we find

δ
(NR)
L,LO = −0.9622 meV , (4.57)

where this is the result of inserting the longitudinal structure function in Eq. (4.34) into

Eq. (4.7) and integrating it with the non-relativistic kernel of Eq. (4.10). This does not

include the elastic Zemach contribution. Further, the result in Eq. (4.57) cannot yet be

compared to the result for δApol in Ref. [114] because we have not added the other necessary

corrections to it at present.

As an additional comparison, we note that a list of all contributions considered in

Ref. [114] is given in their Table 3, and the dipole part therein is δ
(0)
D1 = −1.907 for the

AV18 potential and δ
(0)
D1 = −1.912 for the chiral EFT potential N3LO-EM, also using a

fully relativistic integration kernel. Their result is larger than ours or Friar’s for the dipole

term with relativistic corrections. They give a total value for the polarization corrections as

follows, including the value of δNpol for nucleon structure corrections from Ref. [127]:

δApol = −1.239± 0.005 meV , (4.58)

δZem = −0.424± 0.003 meV , (4.59)

δNpol = −0.027± 0.002 meV , (4.60)

giving a total two-photon exchange polarization contribution to the µD Lamb shift of [114]

δTPE = −1.690± 0.020 meV . (4.61)

Hernandez et al. take a quadrature sum of errors and include a ∼ 1% uncertainty from

atomic physics, as well as the spread in results from the nuclear potentials of ∼ 0.5% and

a 0.3% portion from the convergence of χEFT. Their results benefit the calculation of the

deuteron charge radius from ongoing µD Lamb shift experiments. They have agreement to
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about 0.6% with Pachucki in Ref. [123], but that agreement is partially accidental, since

several of the individual terms differ by percentages larger than this.

4.8 Uncertainty Estimates

A major reason the /πEFT method we use is helpful for this problem is that, in addition

to having far fewer parameters than many other related polarization correction studies, it

provides an excellent way to track uncertainties in the problem. However, at the time of

writing, we have not yet analyzed the uncertainties in the calculations above. We would

expect an error estimate on our LO results of approximately 70% based on a comparison of

our LO EFT result for the dipole part to the non-relativistic ERE result for the same part

of the energy shift and less than 20% at NLO.

The error estimates in Ref. [47] seem somewhat non-rigorous compared to what an EFT

approach provides. It consists of accounting for the spread in the results of the various

models used in this work, rather than a fundamental look at the uncertainties, like that of

Hernandez et al. in Ref. [114]. Another recent estimate of the nuclear structure corrections

given by Carlson et al. [127] has a rather large uncertainty compared to other modern results

of ∼ 35%.

Leidemann and Rosenfelder [47] gave an early attempt to estimate the theoretical error

in nuclear polarization of the deuteron by the muon using several of the NN potentials

available at the time of their study. They found a potential dependence of less than 2%, but

that may not be quite right, as this work did not include Coulomb distortion contributions.

Uncertainty estimates were considered from a variety of sources in Ref. [114], which used

modern potentials from chiral effective field theory (χEFT) [128, 129]. Additionally, Pachucki

noted that the atomic physics contributions to uncertainty in the TPE calculations are ∼ 1%

[123]. After completing our calculations to N2LO, this is at the order of precision which we

hope to achieve.

92



4.9 Conclusion of Nuclear Polarization Section

In this chapter, we have calculated the nuclear polarization corrections to the Lamb shift in

muonic deuterium arising from two-photon exchange at LO in /πEFT. We accomplished this

by replacing the expression for the forward virtual Compton amplitude in Eq. (4.2) with the

inelastic structure functions of the deuteron following the method of Ref. [46]. Working in

the Coulomb gauge, we calculated the most significant of these contributions, which come

from the longitudinal structure function. We compared our results for the energy shift due to

inelastic electric dipole excitations of the deuteron to those of Ref. [48] and found excellent

agreement.

In the future, we plan to extend these results to N2LO in the power counting parameter

Q ∼ ρdγ
2/µ. This will include relativistic corrections, S-D mixing in the deuteron,

corrections due to a finite deuteron effective range ρd, and contributions from the transverse

and seagull portions of the inelastic structure function. Additionally, this approach can be

extended to the three-body problem, for example polarization corrections in muonic tritium

and 3He.
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Chapter 5

Discussion

In this dissertation, we applied the /πEFT to a homogeneous, balanced gas of ultracold

fermions in two spin states, to the study of universal physics in the heteronuclear three-body

problem, and to obtain nuclear polarization corrections to the 2S-2P Lamb shift in muonic

deuterium. In each case, a separation of scales in the problem allows for a systematic

expansion of the EFT to give results that increase in precision as higher orders in the EFT

expansion are included.

For the ultracold Fermi gas in Ch. 2 the resulting finite range corrections are found

to be important in the description of the large-momentum behavior of the momentum

distribution of the gas. Range corrections and a finite intraspecies scattering length were not

included in the heteronuclear system studied in Ch. 3, though this would be an interesting

pursuit shedding light on the low-a region of experimental data. In that system, it was

discovered that finite temperature effects obscure the S-wave universal physics severely in

extremely mass-imbalanced gases, rendering them less suitable for the observation of Efimov

features than previously thought. And in Ch. 4, previous results for the inelastic electric

dipole portion of the structure function and the resulting two-photon-exchange correction

to the Lamb shift were reproduced. Further, LO /πEFT results for all electric-multipole

contributions implicitly contained in our EFT structure function and the electric dipole part

up to NLO in the deuteron effective range are provided. N2LO calculations are a necessary

further application of this work and will provide additional insight into the yet-unsolved

proton and deuteron radius puzzles.
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A Vertex Factors and Loop Integrals for the OPE

When calculating the two-body scattering amplitude in Ch. 2, one encounters the loop

diagrams shown in Fig. 2.2 leading to the integrals labeled I2n(E,Λ) given as

I2n(E,Λ) =

∫
q

iq2n

q0 − q2

2m
+ iε

i

E − q0 − q2

2m
+ iε

= − imΛ2n+1

2(2n+ 1)π2
+mE I2n−2(E,Λ) , (A.1)

I0(E,Λ) = − im
2π2

(
Λ +

√
mE

2

[
iπ + ln

(
Λ−
√
mE

Λ+
√
mE

)])
≈ − im

2π2

(
Λ +

iπ

2

√
mE − mE

Λ
+ · · ·

)
, (A.2)

I2(E,Λ) ≈ − im
2π2

(Λ3

3
+mEΛ +

iπ

2
(mE)3/2 − (mE)2

Λ
+ · · ·

)
, (A.3)

where the integral symbol
∫
q

=
∫

d4q
(2π)4

. The energy E is assumed to be greater than zero

because the OPE matching is carried out above the two-body binding threshold . The result,

which is valid above and below the threshold, is contained in Ref. [130]. Even powers of

q arise in the numerator of I2n(E,Λ) because of the attachment of part of the momentum-

dependent, off-shell amplitude to a loop diagram.

One-body operator loop diagrams are also explained in this Appendix. Depending upon

the operator at hand in a calculation, a different vertex factor in the loop integral must be

used. Table A.1 contains the one-body vertex factors needed in this work. Each of these

factors and each of the two-body-operator vertex factors may be derived by placing the

definition of the nonrelativistic fermion field in the operators listed in Eq. (2.38) and taking

any given spatial derivatives for a given operator.

Table A.1 – One-body Vertex Factors

∆ 3 4 5 6
v1,∆(p) 1 2ipi −4pipj −8ipipjpk
Vertex factors for 1-body operators of ∆ = 3..6.
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Table A.2 – Two-body Vertex Factors

∆ 4 5 6
v2,∆(p) 1/2 2ipi −4δijpipj
Vertex factors for two-body operators of dimensions ∆ = 4..6. For the total vertex factor,
one must use v2,∆(q, l) = v2,∆(q)+v2,∆(l), where q and l are the vertex’s ingoing and outgoing
momentum, respectively. The δij comes from the use of ∇2 rather than ∂i∂j in O2,6.

The integral I(1,∆)
2n containing the vertext factors of Table A.1 is from the last diagram

in Fig. 2.6 and is given by

I(1,∆)
2n (E) =

∫
q

i2q2n v1,∆(q)

[E − q0 − q2

2m
+ iε]2

i

q0 − q2

2m
+ iε

= −i d
dE

[∫
q

iq2n v1,∆(q)

E − q0 − q2

2m
+ iε

i

q0 − q2

2m
+ iε

]
. (A.4)

The subscript 2n in I(1,∆)
2n denotes the number of powers of q contained in the integrand’s

numerator due to the attachment of the off-shell amplitude. The superscript (1,∆) indicates

that the integral corresponds to the insertion of a one-body operator with dimension ∆ into

the relevant loop diagram. A couple of useful examples are obtained by inserting the vertex

factors of Table A.1 into Eq. (A.4), and these are

I(1,3)
2n (E) = −id I2n(E)

dE
, (A.5)

I(1,5)
2n (E) = i

4δij
3

d I2n+2(E)

dE
, (A.6)

where I(1,∆)
2n (E) = 0 for ∆ = 4, 6 since the integrand for those two dimensions is odd in q.

Through the use of I2n written in Eq. (A.1), explicit expressions for the various I(1,∆)
2n are

obtained.

The integrals I(2,∆)
2n for two-body operator insertions are useful in the diagrammatic

calculations of Fig. 2.7. These are

I(2,∆)
2n (E) =

∫
q

iq2n v2,∆(q)

q0 − q2

2m
+ iε

i

E − q0 − q2

2m
+ iε

. (A.7)
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Plugging in the vertex factors seen in Table A.2 into Eq. (A.7) gives the following results:

I(2,4)
2n (E) =

I2n(E)

2
, (A.8)

I(2,6)
2n (E) = −4δij

3
I2n+2(E) , (A.9)

where the odd powers of ∆ ≥ 5 don’t contribute here for similar reasons as even dimensions

did not contribute for one-body operators. The even loop-momentum powers in the integrals

come once again from the attachment of the part of the off-shell amplitude with momentum-

dependence to the loop diagrams. Further powers of momentum enter into the numerator

of Eq. (A.7) from the inclusion of the vertex factors of Table A.2.

Some additional integrals which are needed for the nonlocal operator diagrammatic

calculations composing the LHS of the momentum distribution are

Iρ,2n(E) =

∫
q

i2q2neiq·r

[q0 − q2

2m
+ iε]2

i

E − q0 − q2

2m
+ iε

, (A.10)

Iρ,0(E) = − im2

8π
√
mE

ei
√
mE r +O(1/Λ3) ,

Iρ,2(E) = −im
2[
√
mE − 2i/r]

8π
ei
√
mE r +O(1/Λ) .
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B Phase Space Factors

In this work, we calculated the three-body recombination rate by relating it to the inelastic

A2D scattering cross section σ
(inelastic)
A2D

defined as

σ
(inelastic)
A2D

=
1

2vA2D

|AA2D,A1A2A2|2 Φ3 , (B.1)

where AA2D,A1A2A2 denotes the amplitude for a transition from an A2D state to three

unbound atoms. The relative velocity of the atom A2 relative to the diatomic molecule

is given by vA2D = kE/µA2D, where kE is again
√

2µA2D(E + ED), and Φ3 is the flux factor

corresponding to the three-body phase space. We have included a symmetry factor of 2 in

the total cross section expression of Eq. (B.1) because there are two identical particles in

the final state.

The recombination rate can K3 can then be written as

K3 = |AA2D,A1A2A2|Φ2 = 2vA2D
Φ2

Φ3

σ
(inelastic)
A2D

. (B.2)

We then rewrite the inelastic cross section in terms of the total and elastic cross sections:

σ
(inelastic)
A2D

=σ
(tot)
A2D
− σ(elastic)

A2D
,

=(2L+ 1)

[
2µA2D

kE
ImAL(kE, kE;E)− |AL(kE, kE;E)|2

]
,

=(2L+ 1)
π

k2
E

[
1−

∣∣∣e2iδ
(L)
A2D

(E)
∣∣∣2] , (B.3)

where Eq. (3.2) was utilized in order to arrive at the final expression here for scattering

in a particular partial wave of orbital angular momentum L. We have thus related the

recombination rate to the phase shift (i.e. the S matrix element) of Eq. (3.16) up to a

normalization factor determined by Φ2/Φ3.
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The relevant two-body phase space factor Φ2 is

Φ2 =

∫
d3pA
(2π)3

d3pD
(2π)3

(2π)3δ(3)(pA + pD)2πδ

(
E − p2

A

2m2

− p2
D

2(m1 +m2)
+ ED

)
,

=
µA2DkE

π
. (B.4)

The three-atom phase-space factor for the outgoing three-atom state is

Φ3 =

∫ 3∏
i=1

d3pi
(2π)3

δ(3)(p1 + p2 + p3)2πδ

(
E − p2

1

2m1

− p2
2

2m2

− p2
3

2m2

)
,

=
(µµA2D)3/2

8π2
E2 , (B.5)

where the pi, with i = 1, 2, 3, denote the momenta of each of the three final-state atoms.

Combining these phase-space factors in Eq. (B.2) gives the final result

K
(L)
3 =

16π2

(µµA2D)3/2E2
(2L+ 1)

[
1− |e2iδ

(L)
A2D |2

]
. (B.6)

The substitution E = x2/2µa2 then leads to Eq. (3.16) in Ch. 3.
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C Integrals with PDS

In this Appendix we compile the necessary loop integrals carried out using the power

divergence subtraction (PDS) renormalization scheme for use in Ch. 4. This method

for integral regularization, or the rendering finite of otherwise divergent integrals, and

renormalization was first developed in Refs. [12, 131]. A loop integral with two propagators

and 2n powers of loop momentum in the numerator of the integrand is written in this method

as

In =− i
(µ

2

)4−D
∫

dDq

(2π)D
q2n i

E − q0 − q2/2M + iε

i

q0 − q2/2M + iε
, (C.1)

=−M(ME)n(−ME − iε)D−3
2 Γ

(
3−D

2

)
(µ/2)4−D

(4π)(D−1)/2
, (C.2)

where E is the ingoing two-body energy, and µ is the renormalization scale in the problem,

such as the pion mass. The q0 integral in Eq. (C.1) is performed with the usual complex

contour technique. There is a pole at q0 = −q2/2m+ iε, and we carry out the integral using

the formula

∮
f(z)dz = 2πi× 1

(n− 1)!
lim
z→z0

[
∂n−1

∂zn−1

(
(z − z0)nf(z)

)]
, (C.3)

where n gives the order of the complex pole. This integral result has a pole in dimension

D = 3 which would be a linear divergence in a momentum-cutoff regularization scheme as

detailed in App. A. In the PDS method, the pole is subtracted through the introduction of a

counterterm labeled δIn. After adding the counterterm, the resulting set of integrals which

we use in this work is

In →PDS
D→4 −(ME)n

(
M

4π

)(
µ−
√
−ME − iε

)
. (C.4)
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More generally for the n = 0 case, we may write

I0 ∝
(µ

2

)4−D
∫

d(D−1)q

(2π)(D−1)

(
1

q2 + a2

)
=(
√
a2)D−3Γ

(
3−D

2

)
(µ/2)4−D

(4π)(D−1)/2
,

→
(

1

4π

)
(µ−

√
a2) , (C.5)

where a counterterm was added following the PDS prescription to obtain Eq. (C.5) [132]. A

similar equation may be derived for n = 1 in Eq. (C.1).
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