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Abstract

Weyl nodes are band degeneracy points with relativistic dispersion and topological properties arising
in certain three-dimensional periodic systems with broken parity-time symmetry. Despite their
fundamental importance, the intrinsic accidental nature of Weyl nodes makes the general endeavor of
finding them a challenging task. In this work, we show how Weyl nodes can be generated in cubic
crystal structures with a single orbital per site based on a systematic approach that combines a tight-
binding analysis with general principles which can be applied to both fermionic and bosonic systems.
The cubic Weyl systems generated here preserve time-reversal symmetry but break inversion
symmetry hosting the minimum four Weyl points allowed. Laser assisted hopping techniques on
cubic optical lattices can allow the artificial generation of such Weyl semimetals. Magnetic oscillation
experiments can be used to probe the Weyl orbits along the Fermi arcs on opposite sides of the sample
connected through the bulk Weyl nodes.

1. Introduction

Weyl fermions—predicted around 90 years ago by H. Weyl [1]—are a fundamental building block of the
standard model displaying their characteristic chiralities above the extremely high temperatures, T > 10'°K,
reached at the early stages of the Universe after the Big Bang when the SU (2) x U (1) symmetry of the
electroweak interaction was present. Despite their relevance, Weyl fermions have not yet been observed as
individual particles in high-energy physics experiments. However, Weyl quasiparticles and the chiral anomaly
have been found to be relevant to *He-A superfluids [2], whose fermionic quasiparticle energy spectrum has
point nodes, and more recently to solid-state systems. These provide a number of versatile platforms to observe
and study Weyl physics, based on both fermionic [3, 4] and bosonic [5] systems. In the case of Weyl semimetals,
despite the non-relativistic velocities of electrons, the crystal lattice potential leads to linear dispersions at the so-
called Weyl points [6]. The associated non-trivial topological properties of Weyl semimetals have led to a variety
of unusual physical phenomena such as the Adler-Bell-Jackiw chiral anomaly on a lattice [7—10] and the
anomalous quantum Hall effect [11-13]. Similarly, artificially created bosonic platforms, such as nanophotonic
systems [14—29] and cold atoms in optical lattices [30—33], can be tailored to host Weyl excitations and display
unique phenomena such as robust photonic surface states, tunable axial gauge fields or long-range interactions
between quantum emitters. Remarkably, fermionic and bosonic Weyl systems can often be described with a
common physical picture, which has lead to a significant cross-fertilization between the two areas. A
paradigmatic example of this common physical description are the characteristic Fermi arcs[3,
34-36]connecting the projection of Weyl points at the surfaces of both fermionic and bosonic Weyl systems,
which reflect the topological origin of the corresponding surface bands.

Although symmetry conditions for finding band touching points in solids have been studied thoroughly
[37, 38], these studies have focused on band touchings at high symmetry points in the Brillouin Zone (BZ) i.e.
symmetry enforced energy level degeneracies, rather than the special accidental degeneracies [39] we are
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interested here which typically lead to Weyl nodes in the complex band structure [36] of certain materials. The
uncertainity of finding accidental band touching points implies a cumbersome search to identify materials in
which such Weyl nodes could be realized. The alternative route we take here is the generation of Weyl nodes in
artificially designed cubic crystal structures with desired properties. In this work, we show that Weyl nodes can
be generated in three-dimensional (3D) cubic crystal structures by following a systematic approach which can be
applied to both fermionic and bosonic systems. The proposed approach is based on the following two-step
strategy: (i) First, a non-trivial in-plane nearest-neighbor (n.n.) hopping pattern is artificially tailored in certain
2D planes of the cubic crystal, respecting both parity (P) and time-reversal (T) symmetries which leads to Dirac
nodes. (ii) Second, non-trivial next-nearest-neighbor (n.n.n.) hoppings are introduced which break parity (P)
and induce the Weyl nodes. Our hopping construction is intended to produce the necessary accidental two-level
degeneracies at certain k-points in the BZ zone so that Weyl fermions can emerge. Our work provides tight-
binding hamiltonians which lead to Weyl points in cubic crystal structures. The actual form of these
hamiltonians would be difficult to guess solely based on a symmetry group analysis.

Dirac[40,41] and Weyl nodes [14, 30-32, 42] have been found in simple cubic lattices, AA-stacked
honeycomb layers [43], and face-centered cubic (FCC) lattices [ 19], assuming that hoppings beyond n.n. sites
can be neglected. In most of these constructions, Weyl nodes are generated by artificially imprinting phases on
the original tight-binding hopping amplitudes: #;; — t;¢*%, leading to either broken T-symmetry
[19,31,32,42,43] or broken P-symmetry [30] of the original lattice depending on the actual phases, ¢;;,
implemented. Cold atoms in optical lattices under shaking or laser assisted tunneling are proposed as ideal
platforms to generate and analyze such Weyl points.

Dirac particles in simple cubic lattices [42] and Weyl points in T-symmetry broken FCC lattices have been
also generated by applying tilted magnetic fields (real or synthetic) [44]. Weyl points occur in a model for BCC
iron in which T-symmetry [45, 46] is broken. Our procedure is similar in spirit to previous proposals in which
Weyl points have been generated from stacking 2D Chern insulators [43], 2D FCClattices [31], 2D square
lattices with Dirac cones or 1D chains with non-trivial topology [44]. The common denominator of these
approaches is to first construct lower dimensional building blocks with topological properties which are then
coupled through non-trivial hoppings which break either P or T'symmetries. Our approach tries to channel
these efforts into a unified framework which consists on singling out 2D building blocks of the original cubic
lattice structure in which topological properties are artificially induced and couple them through non-trivial
hoppings which generate 3D Weyl systems. Hence, our work tries to provide a generalization of previous
approaches which is exemplified in the generation of a BCC Weyl semimetal with broken P-symmetry.

To illustrate the general character and relevance of the proposed approach, we apply it to a BCC lattice to
show that it is possible to generate a T-symmetric BCC Weyl system featuring four Weyl points (the minimum
number imposed by time reversal symmetry), as well as the intricate Fermi arcs connecting the projection of the
Weyl points on different crystal faces. Our analysis also shows that the obtained Weyl system occurs as an
intermediate state between a band insulator and a three-dimensional topological insulator. Finally, we discuss a
possible experimental implementation of the proposed BCC Weyl system with cold atoms in an optical lattice
using laser-assisted tunneling.

2. Generating Weyl nodes in cubic lattices

Our main aim is to generate Weyl nodes in a cubic crystal structure. We assume that the cubic crystal structure is
adequately described by a tight-binding model with a single localized orbital per site. In principle, such tight-
binding model not only includes n.n but also n.n.n hoppings extending the simple cubic lattice structure
considered previously [30]. We would like to imprint a hopping pattern in the model which can lead to Weyl
nodes in the band structure of the system. Hence, we assume that our unmodified crystal structure can be
adequately described by a tight-binding Hamiltonian on a cubic crystal lattice [47, 48]:

Hy= —ty (c/¢j + c]Tc,-) — 1> (cf e + c]Tc,-), 1
(i) (i)

where (ij) are pairs of nearest-neighbor (n.n.) lattice sites whereas ((ij)) are pairs of next-nearest-neighbor (n.n.
n.) sites. The Hamiltonian H,, can be used to model either a naturally-occurring non-interacting electronic
material system featuring a single-s orbital per site (such an alkali metal), or an artificially created bosonic lattice
(such a photonic crystal or cold atoms in an optical lattice, with a single bosonic mode per site). The operator c;'
(c;) represents the corresponding fermionic or bosonic creation (anihilation) operator associated to the i-th site
of the lattice (satisfying the corresponding commutation and anticommutation relations, respectively).

Since the hoppings are considered to be real and the crystal respects inversion symmetry, Hy respects PT'
symmetry. We consider modifications of the original hopping amplitudes from: #, #; to +¢, &¢'i.e. which only
involve 0, +7 (mod 27) hopping phases, that can be achieved by using laser assisted hopping techniques on
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Figure 1. The crystal structure and modified hoppings leading to our T-invariant Weyl system on a BCC lattice. Both the nearest-
neighbor hoppings (£, solid lines), and next-nearest neighbor hoppings (&# dashed lines) are shown. Red and green lines
correspond to negative and positive hoppings, respectively. Four unit cells of the lattice are displayed for illustration. The top-left unit
cell indicates the sites belonging to each of the sublattices characterizing the system (sublattices A and B). Thick black and gray dashed
lines in the center and bottom-right of the panel correspond to instances of elementary plaquetes connecting nearest-neighbour and
next-nearest-neighbour sites, respectively. (b) Elementary placquettes and corresponding flux-per-plaquette along the (0 1 1) plane of
the lattice (marked in yellow (a)). The dashed rectangle marks the in-plane unit cell. (c) Sketch of the stacking of (0 1 1) planes forming
the considered BCC structure. The pink-shadowed plaquettes correspond to the same color ones included in (a). For clarity, panels (b)
and (c) only include nearest neighbor hoppings, and panel (c) only includes the lines associated to the interlayer hopping of one of the
sites. Miller’s indices convention has been used for labeling planes and directions.

optical lattices (see section 5). Since the modified hoppings are real, the final modified hamiltonian, H, will
preserve T-symmetry but the modified hopping pattern will be chosen to break P-symmetry allowing for a Weyl
system to emerge. Hence, the approach presented here differs somewhat from previous proposals such as the
FCC Weyl system with T-breaking [44—46] but is similar in spirit to the approach performed in the simple cubic
lattice [30] although the construction was restricted to n.n. hopping amplitudes only. In the present work we
generalize this idea to any cubic lattice (SC, BCC, FCC) described by n.n. and n.n.n. hopping amplitudes going
beyond approaches which consider n.n. hopping amplitudes only.

We note that the generation of the cubic lattice Weyl semimetals proposed here implies imprinting a desired
hopping pattern with specially selected hopping signs. This seems in general very difficult to achieve in solid state
materials through the application of anisotropic strain/elongations to the material. Although straightforward
external irradiation can, in principle, be used to modify hoppings, the complex network of hopping signs in
figure 1(a) implies a rather complicated laser setup which seems difficult to achieve in practice. However, laser
assisted tunneling techniques can allow imprinting the desired hopping patterns in artificially generated cubic
optical lattices as discussed in section 5. The laser setup and tilting potentials needed to generate the hopping
pattern of figure 1(a) in a BCClattice is summarized in table 2.

2.1.BCClattice

To illustrate our systematic approach we now explain how to convert the original BCC lattice with say a single s-
orbitals per site (so all the hoppings would have the same sign in the unmodified lattice) into a Weyl semimetal.
Although our approach is not restricted to a particular lattice geometry, for definiteness, and due to its ubiquity
in both electronic and bosonic platforms, we focus on the case of a BCC lattice (of lattice constant g, see

figure 1(a)). It can be shown that in the case of a BCC lattice, the Bloch Hamiltonian associated to H, produces a
smooth single band with quadratic band edges. In the following, we show how that Hamiltonian can be
systematically modified using a two-step strategy that allows transforming the original single band structure into
atwo-band structure with Weyl node degeneracies. In step (i) of our approach, we first inspect the original BCC
crystal structure and realize that the set of (011) planes (marked in yellow in figures 1(a)—(c)) feature an in-plane
n.n. hopping pattern that can be tailored to induce in-plane Dirac nodes. As seen in figure 1, each of these planes
comprises a periodic lattice of square-shaped elementary plaquettes of side /3 /2 a (see figure 1(a)). The in-
plane hopping pattern shown in figure 1(b), introduces two different sublattices in the structure (sublattices A
and B, see figure 1(a)) allowing for the presence of two bands in the system. On the other hand, the fact that the
2D lattice features a unit cell formed by two plaquettes (dashed line in figure 1(b)), with a flux-per-plaquette of
and —, enables a Dirac point degeneracy between these two bands—note that this hopping pattern preserves
parity and time reversal (PT) symmetry of the lattice. Explicitly, the Hamiltonian of the n.n. modified hopping
pattern of the BCC crystal structure of figure 1(a) (neglecting by now n.n.n. hoppings) reads:

H=> Cih®Cy )
k
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Table 1. Weyl points generated in cubic crystal lattices based on our proposal.
The position of the Weyl points in k-space (kyy) and their chirality (x) is
independent of ¢'/t. Note that the chiralities of the Weyl points are related by T-
symmetry retaining their chirality when ky — kyy.

ky(BCC) Ky (FCC) ki (SC) X
(g, > }) (2.5897, —1.0751, —1.9568) (—g, 0, g) 4
(f}, - f}) (—2.5897, 1.0751, 1.9568) (g 0, 75) +
(Sf -3 %) (1.0751, —2.5897, 1.9568) (g, 0, g) -
(-2, -2)  (-10751,25897, -19568)  (=5,0,-5) -

where: CJ = (Cix C};,k) and with the n.n. Bloch hamiltonian:

hap(k) = —2t(cos(k - ag) — cos(k - a;) + cos(k - ay)) — i2t sin(k - a3), 3)
with hgs (k) = hip(k), where the relative positions between the n. n. sites read: a; = %(1, 1, —1),
a, = %(— 1,1, 1),a3 = %(1, —1, 1),and ay = %(1, 1, 1). This hamiltonian can be re-expressed in terms of the
Pauli matrices describing the pseudospin associated with the two inequivalent sites arising from the modified n.
n. hopping patternas: h(k) = f, (k)o, + fy(k) ay, with: f (k) = —2t(cos(k - a5) — cos(k - a;) + cos(k - ay)),
fy (k) = 2t sin(k - as). The resulting dispersions: € (k) = +/f, (k)? + fy (k)? touch at four 3D Dirac points.

Thus, step (i7) adds a term proportional to o, to h(k) of equation (3):

haa (k) = —2t'(cos(ky) + cos(k,) — cos(k,)),
hpp (k) = —haa (k). 4)
leading to the hamiltomnian:
hk) = f,(K)ox + f, K)o, + f, (K)o, (5)

where: f, (k) = —2t'(cos(k,) + cos(k,) — cos(k,)),leading to the final band dispersions:

etk = + \/ f.&)?* + £, (k)? + f,(k)?, plotted in figure 3, which touch at four Weyl points in the 3D
momentum space. The two bands are non-degenerate since PT is not respected anymore due to breaking P-
symmetry [49] but can still have accidental degeneracies [39] since: f_(k) = fy (k) = f,(k) = Ocanbe
simultaneously satisfied in three dimensions [6]. This actually occurs in our BCC semimetal at the Weyl points
given in table 1. Note that we have intentionally constructed the modified Hamiltonian (equation (5)) ona BCC
lattice that preserves T-symmetry (h(k) = h*(—k)), but breaks spatial inversion symmetry (P)

(0, h(—k)o, = h(k)). Hence, it is an example of a P-breaking Weyl semimetal [35, 49—51] in a BCC lattice
which is in contrast to T-breaking BCC Weyl semimetals discussed previously [45, 46]. Regarding point group
symmetries, although our BCC Weyl structure does not peserve the Oy, point group symmetry of the cubic
crystal structure, we find that the Bloch hamiltonian is invariant under reflection in the [011] direction

(h(ky, —k, —k) = h(k,, k, k)). Hence, our BCC Weyl system is a T-symmetry topological crystalline semimetal
[52, 53] protected by the mirror (M) symmetry discussed.

2.2.FCClattice

We now describe the generation of a FCC Weyl semimetal by first modifying the n.n. hopping network of the
(100), (010) and (001) planes of the unmodified FCC crystal structure in the same way as we did for the (011)
planes in the BCClattice. The n.n. Bloch hamiltonian would read:

hag(k) = —2t(cos(k - ag) + cos(k - a,) + cos(k - as)) — i2t(sin(k - a;) + sin(k - ap) + sin(k - a3)), (6)
where the relative positions between n.n. sites are: a; = %(0, 1, 1),a, = %(1, 1, 0),

a3 = %(1, 0, 1), a4 = %(0, 1, —1),a; = %(1, 0, —1)and ag = %(1, —1, 0). This hamiltonian respecting PT-
symmetry leads to 3D Dirac points. In order to obtain Weyl points we introduce the n.n.n. hopping amplitudes
defined in equation (4). Figure 2(a) shows the resulting hopping pattern in real space for the considered crystal
structure, including both n.n. and n.n.n. hopping amplitudes. The corresponding full hamiltonian, h(k) can be
expressed in terms of the Pauli matrices (5) using: f, (k) = —2t(cos(k - ag) + cos(k - a4) + cos(k - as)),

fy (k) = 2t (sin(k - a)) + sin(k - @) + sin(k - a3)) and f, (k) = —2t/(cos(k,) + cos(k,) — cos(k;)). The new
hamiltonian, h(k), generated in this way breaking P-symmetry leads to the four Weyl points in table 1.

2.3.SClattice
Weyl semimetals in SC lattices have been explored previously [30, 32]. Here, we propose a closely related
implementation [30] but which now includes both n.n. and n.n.n. hoppings in a SClattice (see figure 2(b)). First
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Figure 2. Crystal structures and modified hopping patterns of the studied (a) FCC, and, (b) SC T-invariant Weyl lattices. Solid lines
correspond to nearest-neighbor hoppings (£¢), whereas dashed lines display next-nearest neighbor hoppings (). Red and green
lines represent negative and positive hoppings, respectively. For clarity in the visualization, the thickness of lines, as well as the color of
the spheres marking the lattice positions, are different at the front and back of the displayed unit cell.

the n.n. hopping patterns of the (001) planes are modified to induce alternating £ fluxes which leads to the n.n.
Bloch hamiltonian:

hap(k) = —2t(cos(ky) + cos(k;)) — i2tsin(k,), 7)
which leads to four 3D Dirac points. The n.n.n. hoppings are modified to give the Bloch hamiltonian:
haa(k) = —2t'(—cos(ky)cos(k,) + cos(ky)cos(k;) + cos(k,)cos(k;)),
hpp (k) = —haa (k). (3)
Hence, the full hamiltonian, h(k) can be expressed in terms of the Pauli matrices through:
f,(k) = —2t(cos(ky) + cos(k,)), fy (k) = 2t sin(k,) and

f,(k) = —2t'(—cos(ky)cos(k,) + cos(ky)cos(k,) + cos(k,)cos(k,)). This SC cubic lattice hosts the four Weyl
points tabulated in table 1 related, as expected, by TRS symmetry.

3. Bulk topological properties: Weyl nodes, chiralities and Berry curvatures

The generated Weyl system has characteristic topological properties associated with Weyl nodes [2, 6, 36]. The
Nielsen-Nimoniya theorem [54] imposes that Weyl points in a lattice should always occur in pairs of opposite
charges. In a T-symmetric system, the chiralities, x = sign|u,gl, where 1,5 = 37]2’ (o, B = x,y,2), of the Weyl
points at kyy and —kyy are equal. This is because T-symmetry implies:
f.(=k) = f. (&), fy (-k) = — fy k), f,(=k) = £, (k), leaving the products 1,1/, entering the chirality
invariant under the interchange kyy — —ky . Hence, we find the minimum four Weyl points [6] allowed ina T-
symmetry system (see table 1) whose location is independent of ¢/ /t.

Weyl points can be considered hedgehogs of Berry curvature in momentum space [2, 55], behaving

analogously to magnetic monopoles in real space. This is evident from calculations of the Berry curvature [56]:
Qk) = Vi x (u(k)|i Vi|lu(k)), where |u(k)) is the eigenfunction of the occupied band. Figure 3 shows how

5



J. Phys. Commun. 4 (2020) 065006 ] Goikoetxea et al

= \"\\“:'{
N e AR

N | (\Qi\\\Q\\\\: 1
E‘\ \\ i/ ;f /%ﬁ/} | \ \\§§§;\\\'
NI MGZ7Z2Z27/INSNNRN
N/ ZZZNNY
D NI
A DO | (7
-3-2-10 1 2 3

k.

Figure 3. Weyl points and Berry curvatures of the BCC Weyl semimetal proposed. Two Weyl points with opposite chiralities in the k-
k. plane are shown in the top row for k, = —/2 (left) and k, = 7/2 (right). The corresponding projected Berry curvatures are shown
in the bottom row. Inward and outward flows of Berry curvature indicate the presence of Weyl points with negative (black dot) and
positive (grey dot) chiralities, respectively.
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Figure 4. Effect of a staggered mass term on the location of Weyl points. A view along the x-direction of the first Brillouin zone of the
BCC Weyl semimetal is shown. The m = 0 Weyl points with negative chirality are represented with a black dot while the Weyl points
with positive chirality are represented with gray dots. The orange dots represent the momenta at which the Weyl nodes with opposite
chiralities anihilate each other when the staggered mass term m = —4(t'/t) or m ~ 2.83(t'/t) as described in the text.

Weyl points act as sources and drains of Berry curvature projected on the k,-k, plane in analogy with the
magnetic field around magnetic monopoles in real space. Weyl points have a quantized Berry flux [57] given by:
% //5 , Q(k)dk = yx, so the chirality can be interpreted as a topological Chern number of the Weyl node. The
expected chiralities of y = £1 of the four Weyl nodes found in our BCC Weyl semimetal are shown in table 1.
Due to TRS the Berry curvature satisfies [57, 58]: Q(—k) = —Q(k) implying that there is no anomalous
quantum Hall contribution to the Hall conductivity. However, an anomalous contribution to the electron
velocity would arise under a weak uniform electric field [57]: v, (k) = 8;:9(11:) — %E x Q(k).

A Weyl semimetal with broken P-symmetry can be viewed as an intermediate state between a trivial and a
topological insulator [6,49-51, 59—61]. Based on this fact, we explore the topological properties of our BCC
Weyl semimetal by adding an external staggered mass term, mo, to the Hamiltonian of equation (equation (5)).
By tuning m from large negative to positive values we can drive the system from a band insulator to a topological
insulator through an intermediate Weyl semimetallic phase. The Weyl nodes in this phase move around in k-
space until at a critical mass, m, pairs of opposite chiralities meet at certain momenta anihilating each other as
shown in figure 4 and opening a gap. For m = —4(t'/t), the Weyl points at (7/4, /2, 7/4) and (37/4, —7/2,
3m/4) anihilate at 27 /3, +7, 7/3) whereas the Weyl pointsat (—7 /4, —7/2, —7n/4) and
(=3w/4, ©/2, —37/4) anihilate at (—27/3, —m, —7/3). Similarly, for m ~ 2.83(¢' /t) the Weyl points at
(n/4, n/2, 7/4)and (—37/4, 7/2, —3mw/4) anihilate at (—1.1938, 0.7495, 1.943) whereas the Weyl points at
(—7/4, —7/2, —m/4)and (37 /4, —7/2, 37/4) anihilate at (1.1938, —0.7495, —1.943). The observed
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-3

Figure 5. Topological surface bands and Fermi arcs in a Weyl system on the BCC lattice. (a) Calculated Fermi arcs on the front (blue
line) and back (red line) (100) surfaces of a slab with an odd number of layers. (b) Bulk (gray continuum) and surface band dispersions
(red line) projected along the k, direction at k, = /2 for the (100) slab of (a). (c), (d) same as (a), (b) respectively, but for a slab with an
even number of layers. (e) Calculated Fermi arcs connecting Weyl points projected on the (010) surface of a slab with an even number
oflayers. (f) Bulk and surface band dispersions along the k, = k. direction for the (010) slab of (e). Note that the Fermi arcs on
opposite sides of the slab coincide in the cases (¢) and (e) for an even number of layers but not in (a) with an odd number of layers. The
black (gray) dots represent the projection of the Weyl points on the different surface orientations with negative (positive) chiralities.
The gray circle describes the edge of a cylinder along the x-direction cutting the (100) surfaces of the Brillouin zone which encloses a
single Weyl point with positive chirality. Each edge of the cylinder sustains a topologically protected one-dimensional edge state
contributing a state to the Fermi arc. The surface bands connecting the valence and conduction bulk bands lead to gapless metallic
surfaces corroborating their topological nature.

robustness of the Weyl points to the staggered mass term is due to the breaking of spatial inversion symmetry of
our Hamiltonian. In particular, the BCC Weyl system with four Weyl nodes is stable for a staggered mass in the
range: —4(t'/t) < m < 2.83(¢'/1).

4. Topological surface bands and Fermi arcs

In gapped topological matter such as topological insulators [62] the bulk-boundary correspondence gives rise to
gapless fermions on the surface of the system [55]. Similarly, in topological gapless materials such as Weyl
semimetals, a crucial signature of Weyl fermions is the presence of gapless topological surface states. These
surface states lead to exotic unclosed Fermi arcs [3, 36] in the surface Brillouin zone. We have computed the
surface states on slabs which are cut along different crystal directions of the BCC Weyl semimetal. In figure 5 we
show the Fermi arcs and surface bands on the (100) and (010) surfaces. We find Fermi arcs connecting the Weyl
points with opposite chiralities at the surfaces of both sides of the slab. The Fermi arc shapes change depending
on the termination of the surface i.e. whether the number of layers in the slab direction is even or odd.

Fermi arcs can be detected not only by ARPES experiments but also through standard quantum oscillation
experiments in spite of the arcs being open. This is because under a magnetic field perpendicular to the surface of
interest, electrons circulating along a Fermi arc on one side of the slab can traverse the bulk via the Weyl points to
the Fermi arc on the opposite side of the slab leading to closed magnetic orbits [63]. These unusual closed orbits
involving the bulk Weyl nodes can be detected in quantum oscillatory phenomena [64, 65]. At sufficiently strong
magnetic fields, a quantum Hall effect occurs different from the standard 2D quantum Hall effect, involving
chiral edge states along the direction of the applied magnetic field which intersect both the top and bottom
surfaces. The dependence of the quantum Hall plateaus with the thickness of the samples indicates the existence
of bulk chiral edge modes in contrast to the conventional 2D quantum Hall effect in layered semiconducting
structures [66]. We may expect that the application of a magnetic field along the x-direction of our BCC Weyl
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semimetal lead to such sample thickness quantum Hall effect as a result of quantized orbits involving the top and
bottom Fermi arcs in figure 5(a) connected through the bulk Weyl nodes. From our calculations we expect that
for thicknesses of the sample larger than about 40 layers clear bulk-surface differentiation occurs and Fermi arcs
on opposite surfaces would be only connected through the bulk Weyl nodes leading to the unusual Weyl orbits
and associated magnetic oscillations as well as quantum hall effect phenomena.

We focus first on the results for the (100) surfaces shown in figures 5(a)—(d). The structure of the BCC crystal
structure shown in figure 2 contains two types of atoms A and B. For a cut of the crystal with an even number of
layers both surfaces contain atoms of the same type. On the other hand, for a cut involving an odd number of
layers in the x-direction we have that one of the surfaces is formed by A(B)-sublattice atoms whereas the opposite
side is formed by atoms of the B(A)-sublattice. In figures 5(a)—(b) we show the Fermi arcs and surface bands of
the (100) surfaces of a slab with an odd number of layers along the x-direction. The Fermi arcs at the front and at
the back surfaces are found to have very different shapes as shown in figure 5(a). This is in contrast to even
number terminations in which the Fermi arcs on opposite surfaces coincide. The surface bands connect the
valence and conduction bands closing the bulk gap leading to metallic surfaces.

Recent work suggests the possibility of realizing nontrivial knotting cyclotron orbits in a certain microscopic
lattice model of a Weyl semimetal which breaks T-symmetry [67]. The band structure of such system hosts six
Weyl nodes and the Fermi arcs on the two opposite surfaces cross without interference forming a trefoil knot
together with the Weyl nodes. Under a magnetic field perpendicular to the surface electrons would circulate
along the trefoil knotted orbit leading to observable topological effects not found in the unknotted orbits found
in conventional Weyl semimetals. In our work, the Fermi arcs shown in figure 5(a) would lead to ‘conventional’
closed orbits formed by connecting the different Fermi arc shapes at the bottom and top surfaces, which do not
cross, through the bulk Weyl nodes. Although our present BCC Weyl semimetal does not sustain knotted
cyclotron orbits, other hopping patterns may be implemented along the lines proposed [67]. However, such
hopping patterns previously considered in layered hexagonal structures [67] involve purely imaginary hoppings
of alternating signs breaking T-symmetry. Hence, finding topologically non-trivial objects in P-breaking Weyl
semimetals as discussed here will eventually require alternative proposals beyond the scope of the present work.

On the other hand, our calculations for the (010) surface of figure 5(e) show how two straight lines connect
the two pairs of Weyl points with opposite chiralities along the diagonal (k, = k, direction) of the k,-k, surface.
These open and disjoint Fermi lines result from the flat surface band located right at the Fermi energy shown in
figure 5(f). Note that this flat band is similar to the one-dimensional surface band connecting two Dirac points in
spinless graphene nanoribbons [52].

The topological protection of the surface states is guaranteed by the bulk-boundary correspondence. This
can be explicitly illustrated by considering, for example, the (100) face by taking a cylinder which extends along
the x-direction of the whole Brillouin zone and encloses a single Weyl point [36]. For example, the cylinder taken
in figure 5(a) has a Chern number of +1 (since it contains a Weyl point with xy = +1) giving rise to topologically
protected edge states at the one-dimensional edges of the tube. Hence, this two-dimensional slice of the Brillouin
zone behaves as a quantum Hall insulator with chiral states protected by a non-zero Chern number. The two
edge states of the cylinder make slices of the Fermi arcs on the two (100) surfaces of the slab. By varying the radius
of the cylinder the full Fermi arcs can be reconstructed.

The character of the different insulating phases arising under the staggered mass term, m1, discussed
previously can be obtained by calculating their surface states [49, 51, 59]. In figure 6 we show the evolution of the
Fermi arcs as the staggered mass 1 is changed from negative to positive values. For m < —4(t'/t) the Weyl
points anihilate and a gap opens up with no surface states so both the bulk and surface are gapped consistent with
a conventional band insulator. In contrast, as m is increased with m > 0, the Fermi arcs change their shape until
the Weyl points anihilate at m =~ 2.83(t'/t) giving way to a closed Fermi surface for m > 2.83(¢'/t). The
surface bands leading to such Fermi surface have cone-like dispersions between the valence and conduction
bands indicating the presence of a 3D topological insulator.

5. Implementation in optical lattices

In this section we describe a possible experimental implementation of the proposed Weyl lattices using ultracold
atoms in optical lattices. In particular, we describe how the combination of laser-assisted tunneling and a linear
potential energy gradient enables the realization of the tailored hopping patterns described in section 2. For
concreteness, we focus on the case of the BCC lattice—a similar approach can be applied for the implementation
of the FCC and SC crystal structures.

In the proposed implementation, we first create a canonical BCC optical lattice. We consider the laser
configuration introduced in [68], which employs three pairs of lasers fields (of wavelength \) and that can be
implemented using retroreflected lasers. The electric field associated to each laser field is given by
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Figure 6. Evolution of Fermi arcs on the (010) surface of the BCC Weyl lattice in the presence of a staggered mass term. In the Weyl
semimetal the projected Fermi arcs on opposite sides of the slab with an even number of layers coincide. A band insulator with no
surface states for m < —4(t'/t) becomes a Weyl semimetal between —4(t'/t) < m < 2.83(¢'/t) and finally a topological insulator
for m > 2.83(¢'/t). The Weyl points with negative (positive) chiralities for the corresponding 1 are shown. The orange dots shown
for reference are the projection of the anihilation of two Weyl points with opposite chiralitiesat m = —4(t’/t)and m = 2.83(t'/t).
We have taken t//t = 1inall plots.
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Figure 7. Schematic view of the energy potential distribution created by the tilted potential (described in the main text) on the
considered BCClattice.

Ei(r) = E; e’*i'2; (where E;, k;and Z; are the amplitude, propagation vector and polarization, respectively, of
each field—with i = 1, ...,6 labelling each field). The six fields are counterpropagating in pairs along three
orthogonal directions (k; 534,56 = £(27/\) X/¥/Z), and feature the same field amplitude (E; = E,) but three
different non-orthogonal polarizations: & , = (y + 2) /~/2,84 = (X + 2) /2 and &5 = (X + ¥)/~/2. The
interference between these laser fields yields the following spatial-dependent electric field intensity, I(r):

I(r) = Y |E|* + 2" E;Ej[Re(8;&])cos (Akj; - 1) — Im(Z;&])sin (Ak;; - 1)] 9)

i>]
where Ak;; = k; — k;. The field intensity I(r) field intensity, in turn, leads the following potential [68]:

Vace(r) = Vo {[cos*(x) + cos*(y) + cos*(2)]
+ [cos(x)cos(y) + cos(y)cos(z) + cos(x)cos(z)]} (10)

where V) is the overall potential amplitude of the resulting potential. The real-space primitive vectors describing
the periodicity of Vgcc(r) (d; = 7 (1, 1, —1),d; = 7 (1, —1, 1)and d; = w(—1, 1, 1)) can be shown to
expand a BCClattice.

The second step of the proposed implementation involves placing the system under a tilted potential
Vi (r) (which can be achieved by using gravity or a magnetic field gradient [30, 69]). Specifically, in this case,
we consider Vi (r) = —A, x — Ay y + A, zwith A, A, A, > 0. Figure 7 shows the potential energy
distribution of Vi 7 (r) over the BCC sites (taking as reference the potential energy of an A-sublattice atom, V).
As observed, negative potential jumps of — A, —A, and + A, between consecutive sites are obtained along the
x, y and z direction, respectively. Importantly, these potential jumps suppress completely both the n.n. and n.n.
n. hoppings present in the original BCC lattice.

Finally, to realize the hopping pattern shown in figure 1 we restore and tailor both n.n. and n.n.n. hoppings
of the lattice using laser assisted tunneling. In particular, following the approach of [30, 69], we propose to use
suitably configured pairs of Raman lasers to modify the hopping phases along the relevant directions of the
studied lattice (i.e., the three Cartesian directions and the four diagonals of the unit cell). On the one hand, the
wavevector difference of each laser pair, 0k = k; — ky, introduces a phase <I>flf .1 = 60k - R;inthe hopping
between consecutive lattice sites (R;and R, ;) along the considered lattice direction. On the other hand, the
frequency difference of each laser pair, dw = w; — w; is chosen so that its magnitude matches the potential
energy jump between consecutive sites, with the important consideration that an additional phase @f‘;’ = Tis
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Table 2. Characteristics of the different pairs of Raman lasers used in our

approach.

Lattice direction Wi &k (in units of 7/a)
[1, 0, 0] Ay 2(2,0,1)

[0, 1, 0] A, 2(0,2,1)

[0, 0, 1] A, 2(1,0,2)
[1,-1,1] (A + A, +A))2 2(, -1,
[-1,-1,1] —(Ac+ A, +A))2 4(-1, -1, 1)

[-1, 1, 1] Ay — A, +A))2 4(-1,1,1)

[1,1, 1] Ay = Ay + D)2 4(-1, L1

added to the hopping amplitude whenever the sign of éw is opposite to the change of potential between R; and
R;;1[69]. Thus, the combination of both @f]f ', 1and <I>i’“,»’ ', 1 allows, for instance, to implement such involved
patterns as the n.n.n. hopping configurations for A and B lattice sites shown in figure 7: A lattice sites feature an
effective hopping of —#’ along x, y directions and ¢’ along the z direction, whereas for B sites we obtain the
complementary distribution of surrounding n.n.n. hoppings (¢ along the x, y directions and —t' along the z
direction). Table 2 summarizes the values of éw and ¢k leading to the complete hopping pattern shown in

figure 1. Finally, we note that in the described approach we assume that the cross-interference between lasers
with different frequencies averages out in the timescales of interest (a condition readily accessible experimentally
by using closely spaced laser wavelengths).

6. Conclusions

In summary, we have introduced a general systematic approach to generate Weyl nodes in cubic crystal
structures which break P-symmetry but preserve T-symmetry. The approach can be applied to both fermionic
and bosonic systems described by a tight-binding model on any cubic crystal (BCC,FCC,SC) with a single orbital
per site. The Weyl semimetals generated have the minimum four Weyl nodes required by time-reversal
symmetry. We have obtained the Fermi arcs on different crystal surfaces of our BCC crystal originating from the
surface states topologically protected by non-zero Chern numbers of +-1. Under applied magnetic fields
electrons could circulate along Weyl orbits traversing from one side to the opposite side of the samples via the
Weyl nodes. Laser assisted hopping techniques applied on cold atoms in optical lattices appear to be a suitable
procedure to experimentally implement our proposal. Our work complements the intense search of Weyl
systems in complex materials providing a route to generate novel Weyl nodes with desired properties in cubic
crystal structures.
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Appendix. T-symmetry breaking Weyl semimetal

Weillustrate here how to generate a Weyl semimetal which breaks T-symmetry for completeness. We now
consider a tight-binding model on a square lattice with Peierls phases in the n.n. hoppings, te~i with phases:
¢; = £ /4 with each square plaquette pierced by alternating 7 fluxes as shown in figure A1. This staggered
flux arrangement can be described by the following n. n. hamiltonian:

_ 2t

hap(k) = 5

(cos(ky) + cos(ky) + i(cos(ky) — cos(ky). (A1)

Since the hopping phases are different from ¢;; = 0,  asin previous cases, the hamiltonian is complex breaking
time-reversal symmetry: h*(—k) = h(k) preserving inversion symmetry h(k) = h(—k). This two-dimensional
model has four Dirac points: (£ /2, +7/2). In order to construct 3D Weyl points we consider a set of layers
described by the hamiltonian above which are coupled through an interlayer hopping amplitude. This interlayer
hopping is chosen to be real and is — ¢ for the hopping between two A sites and + for the hopping amplitude
between two Bsites. Thus, the hopping along the z-axis leads to the diagonal matrix elements:
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Figure Al. Hopping pattern in the (001) planes of the T-breaking 3D Weyl semimetal. A positive (negative) arrow in the x or y
directions when going from site i to a nearest-neighbor site j means te’™* (te~7/4). An alternating flux of £ pierces the square
plaquettes of the lattice.

Table A1. Weyl points in the 3D
cubic lattice with broken time-
reversal symmetry proposed.

kw X

/2, w/2, w/2) +
(n/2, w/2, —mw/2) —

(=7/2, —7/2, ®/2) +
(—m/2, =7/2, —7/2) -
(7/2, —m/2, ™/2) —
(n/2, —/2, —m/2) +
(=m/2, w/2, —7/2) +
(—7/2, 7/2, m/2) —
haa(k) = —hgp(k) = —2¢ cos(k.), (A2)
which effectively adds a o, term to the 2D hamiltonian above leading to the corresponding 3D hamiltonian:
hk) = f.Kox + f, K)o, + f, (K)o, (A3)
with: f, (k) = —Zt(W), fy(k) = Zt(%ﬁm(k’)) and f, (k) = —2t cos(k;,). The analysis of the

model hamiltonian (A3) shows that there are 8 Weyl points with alternating chiralities as described in table A 1.

Hence, we have generated a Weyl semimetal that breaks T'symmetry but preserves the inversion symmetry
of the lattice. We note that the Bloch hamiltonian, h(k) also has a C, rotation point group symmetry since the
Bloch hamiltonian satisfies: o 'l (— ky, kx> k;)ox = h(ky, k,, k). Hence, Weyl nodes in the present T-
symmetry breaking Weyl semimetal are protected by such crystalline symmetry.
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