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Abstract
Weyl nodes are band degeneracy points with relativistic dispersion and topological properties arising
in certain three-dimensional periodic systemswith broken parity-time symmetry. Despite their
fundamental importance, the intrinsic accidental nature ofWeyl nodesmakes the general endeavor of
finding them a challenging task. In this work, we showhowWeyl nodes can be generated in cubic
crystal structures with a single orbital per site based on a systematic approach that combines a tight-
binding analysis with general principles which can be applied to both fermionic and bosonic systems.
The cubicWeyl systems generated here preserve time-reversal symmetry but break inversion
symmetry hosting theminimum fourWeyl points allowed. Laser assisted hopping techniques on
cubic optical lattices can allow the artificial generation of suchWeyl semimetals.Magnetic oscillation
experiments can be used to probe theWeyl orbits along the Fermi arcs on opposite sides of the sample
connected through the bulkWeyl nodes.

1. Introduction

Weyl fermions—predicted around 90 years ago byH.Weyl [1]—are a fundamental building block of the
standardmodel displaying their characteristic chiralities above the extremely high temperatures,T>1016 K,
reached at the early stages of theUniverse after the Big Bangwhen the ´SU U2 1( ) ( ) symmetry of the
electroweak interactionwas present. Despite their relevance,Weyl fermions have not yet been observed as
individual particles in high-energy physics experiments. However,Weyl quasiparticles and the chiral anomaly
have been found to be relevant to 3He-A superfluids [2], whose fermionic quasiparticle energy spectrumhas
point nodes, andmore recently to solid-state systems. These provide a number of versatile platforms to observe
and studyWeyl physics, based on both fermionic [3, 4] and bosonic [5] systems. In the case ofWeyl semimetals,
despite the non-relativistic velocities of electrons, the crystal lattice potential leads to linear dispersions at the so-
calledWeyl points [6]. The associated non-trivial topological properties ofWeyl semimetals have led to a variety
of unusual physical phenomena such as the Adler-Bell-Jackiw chiral anomaly on a lattice [7–10] and the
anomalous quantumHall effect [11–13]. Similarly, artificially created bosonic platforms, such as nanophotonic
systems [14–29] and cold atoms in optical lattices [30–33], can be tailored to hostWeyl excitations and display
unique phenomena such as robust photonic surface states, tunable axial gaugefields or long-range interactions
between quantum emitters. Remarkably, fermionic and bosonicWeyl systems can often be describedwith a
commonphysical picture, which has lead to a significant cross-fertilization between the two areas. A
paradigmatic example of this commonphysical description are the characteristicFermi arcs [3,
34–36]connecting the projection ofWeyl points at the surfaces of both fermionic and bosonicWeyl systems,
which reflect the topological origin of the corresponding surface bands.

Although symmetry conditions forfinding band touching points in solids have been studied thoroughly
[37, 38], these studies have focused on band touchings at high symmetry points in the Brillouin Zone (BZ) i.e.
symmetry enforced energy level degeneracies, rather than the special accidental degeneracies [39]we are
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interested herewhich typically lead toWeyl nodes in the complex band structure [36] of certainmaterials. The
uncertainity offinding accidental band touching points implies a cumbersome search to identifymaterials in
which suchWeyl nodes could be realized. The alternative route we take here is the generation ofWeyl nodes in
artificially designed cubic crystal structures with desired properties. In this work, we show thatWeyl nodes can
be generated in three-dimensional (3D) cubic crystal structures by following a systematic approachwhich can be
applied to both fermionic and bosonic systems. The proposed approach is based on the following two-step
strategy: (i) First, a non-trivial in-plane nearest-neighbor (n.n.) hopping pattern is artificially tailored in certain
2Dplanes of the cubic crystal, respecting both parity (P) and time-reversal (T) symmetries which leads toDirac
nodes. (ii) Second, non-trivial next-nearest-neighbor (n.n.n.) hoppings are introducedwhich break parity (P)
and induce theWeyl nodes. Our hopping construction is intended to produce the necessary accidental two-level
degeneracies at certain k-points in the BZ zone so thatWeyl fermions can emerge. Ourwork provides tight-
binding hamiltonians which lead toWeyl points in cubic crystal structures. The actual formof these
hamiltonians would be difficult to guess solely based on a symmetry group analysis.

Dirac [40, 41] andWeyl nodes [14, 30–32, 42] have been found in simple cubic lattices,AA-stacked
honeycomb layers [43], and face-centered cubic (FCC) lattices [19], assuming that hoppings beyond n.n. sites
can be neglected. Inmost of these constructions,Weyl nodes are generated by artificially imprinting phases on
the original tight-binding hopping amplitudes:  ft t eij ij

i ij, leading to either brokenT-symmetry
[19, 31, 32, 42, 43] or broken P-symmetry [30] of the original lattice depending on the actual phases,fij,
implemented. Cold atoms in optical lattices under shaking or laser assisted tunneling are proposed as ideal
platforms to generate and analyze suchWeyl points.

Dirac particles in simple cubic lattices [42] andWeyl points inT-symmetry broken FCC lattices have been
also generated by applying tiltedmagnetic fields (real or synthetic) [44].Weyl points occur in amodel for BCC
iron inwhichT-symmetry [45, 46] is broken.Our procedure is similar in spirit to previous proposals inwhich
Weyl points have been generated from stacking 2DChern insulators [43], 2D FCC lattices [31], 2D square
lattices withDirac cones or 1D chains with non-trivial topology [44]. The commondenominator of these
approaches is tofirst construct lower dimensional building blocks with topological properties which are then
coupled through non-trivial hoppings which break either P orT symmetries. Our approach tries to channel
these efforts into a unified frameworkwhich consists on singling out 2Dbuilding blocks of the original cubic
lattice structure inwhich topological properties are artificially induced and couple them through non-trivial
hoppings which generate 3DWeyl systems.Hence, our work tries to provide a generalization of previous
approaches which is exemplified in the generation of a BCCWeyl semimetal with broken P-symmetry.

To illustrate the general character and relevance of the proposed approach, we apply it to a BCC lattice to
show that it is possible to generate aT-symmetric BCCWeyl system featuring fourWeyl points (theminimum
number imposed by time reversal symmetry), as well as the intricate Fermi arcs connecting the projection of the
Weyl points on different crystal faces. Our analysis also shows that the obtainedWeyl systemoccurs as an
intermediate state between a band insulator and a three-dimensional topological insulator. Finally, we discuss a
possible experimental implementation of the proposed BCCWeyl systemwith cold atoms in an optical lattice
using laser-assisted tunneling.

2.GeneratingWeyl nodes in cubic lattices

Ourmain aim is to generateWeyl nodes in a cubic crystal structure.We assume that the cubic crystal structure is
adequately described by a tight-bindingmodel with a single localized orbital per site. In principle, such tight-
bindingmodel not only includes n.n but also n.n.n hoppings extending the simple cubic lattice structure
considered previously [30].Wewould like to imprint a hopping pattern in themodel which can lead toWeyl
nodes in the band structure of the system.Hence, we assume that our unmodified crystal structure can be
adequately described by a tight-bindingHamiltonian on a cubic crystal lattice [47, 48]:

å å= - + - ¢ +
á ñ

H t c c c c t c c c c , 1
ij

i j j i
ij

i j j i0 0 0( ) ( ) ( )† †

⟪ ⟫

† †

where á ñij are pairs of nearest-neighbor (n.n.) lattice sites whereas ij⟪ ⟫ are pairs of next-nearest-neighbor (n.n.
n.) sites. TheHamiltonianH0 can be used tomodel either a naturally-occurring non-interacting electronic
material system featuring a single-s orbital per site (such an alkalimetal), or an artificially created bosonic lattice
(such a photonic crystal or cold atoms in an optical lattice, with a single bosonicmode per site). The operator ci

†

(ci) represents the corresponding fermionic or bosonic creation (anihilation) operator associated to the i-th site
of the lattice (satisfying the corresponding commutation and anticommutation relations, respectively).

Since the hoppings are considered to be real and the crystal respects inversion symmetry,H0 respects PT
symmetry.We considermodifications of the original hopping amplitudes from: ¢t t,0 0 to  ¢t t, i. e. which only
involve p0, (mod 2π) hopping phases, that can be achieved by using laser assisted hopping techniques on
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optical lattices (see section 5). Since themodified hoppings are real, the finalmodified hamiltonian,H, will
preserveT-symmetry but themodified hopping patternwill be chosen to breakP-symmetry allowing for aWeyl
system to emerge.Hence, the approach presented here differs somewhat fromprevious proposals such as the
FCCWeyl systemwithT-breaking [44–46] but is similar in spirit to the approach performed in the simple cubic
lattice [30] although the constructionwas restricted to n.n. hopping amplitudes only. In the present workwe
generalize this idea to any cubic lattice (SC, BCC, FCC) described by n.n. and n.n.n. hopping amplitudes going
beyond approaches which consider n.n. hopping amplitudes only.

We note that the generation of the cubic latticeWeyl semimetals proposed here implies imprinting a desired
hopping patternwith specially selected hopping signs. This seems in general very difficult to achieve in solid state
materials through the application of anisotropic strain/elongations to thematerial. Although straightforward
external irradiation can, in principle, be used tomodify hoppings, the complex network of hopping signs in
figure 1(a) implies a rather complicated laser setupwhich seems difficult to achieve in practice. However, laser
assisted tunneling techniques can allow imprinting the desired hopping patterns in artificially generated cubic
optical lattices as discussed in section 5. The laser setup and tilting potentials needed to generate the hopping
pattern offigure 1(a) in a BCC lattice is summarized in table 2.

2.1. BCC lattice
To illustrate our systematic approachwe now explain how to convert the original BCC lattice with say a single s-
orbitals per site (so all the hoppings would have the same sign in the unmodified lattice) into aWeyl semimetal.
Although our approach is not restricted to a particular lattice geometry, for definiteness, and due to its ubiquity
in both electronic and bosonic platforms, we focus on the case of a BCC lattice (of lattice constant a, see
figure 1(a)). It can be shown that in the case of a BCC lattice, the BlochHamiltonian associated toH0 produces a
smooth single bandwith quadratic band edges. In the following, we showhow thatHamiltonian can be
systematicallymodified using a two-step strategy that allows transforming the original single band structure into
a two-band structure withWeyl node degeneracies. In step (i) of our approach, we first inspect the original BCC
crystal structure and realize that the set of (011) planes (marked in yellow infigures 1(a)–(c)) feature an in-plane
n.n.hopping pattern that can be tailored to induce in-planeDirac nodes. As seen infigure 1, each of these planes
comprises a periodic lattice of square-shaped elementary plaquettes of side a3 2 (see figure 1(a)). The in-
plane hopping pattern shown infigure 1(b), introduces two different sublattices in the structure (sublatticesA
andB, seefigure 1(a)) allowing for the presence of two bands in the system.On the other hand, the fact that the
2D lattice features a unit cell formed by two plaquettes (dashed line infigure 1(b)), with aflux-per-plaquette ofπ
and−π, enables aDirac point degeneracy between these two bands—note that this hopping pattern preserves
parity and time reversal (PT) symmetry of the lattice. Explicitly, theHamiltonian of the n.n.modified hopping
pattern of the BCC crystal structure offigure 1(a) (neglecting by nown.n.n. hoppings) reads:

å=H C h Ck , 2
k

k k( ) ( )†

Figure 1.The crystal structure andmodified hoppings leading to ourT-invariantWeyl system on aBCC lattice. Both the nearest-
neighbor hoppings (t , solid lines), and next-nearest neighbor hoppings ( ¢t dashed lines) are shown. Red and green lines
correspond to negative and positive hoppings, respectively. Four unit cells of the lattice are displayed for illustration. The top-left unit
cell indicates the sites belonging to each of the sublattices characterizing the system (sublatticesA andB). Thick black and gray dashed
lines in the center and bottom-right of the panel correspond to instances of elementary plaquetes connecting nearest-neighbour and
next-nearest-neighbour sites, respectively. (b)Elementary placquettes and corresponding flux-per-plaquette along the (0 1 1) plane of
the lattice (marked in yellow (a)). The dashed rectanglemarks the in-plane unit cell. (c) Sketch of the stacking of (0 1 1) planes forming
the considered BCC structure. The pink-shadowed plaquettes correspond to the same color ones included in (a). For clarity, panels (b)
and (c) only include nearest neighbor hoppings, and panel (c) only includes the lines associated to the interlayer hopping of one of the
sites.Miller’s indices convention has been used for labeling planes and directions.
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where: =C c cA Bk k k, ,( )† † † andwith the n.n. Bloch hamiltonian:

= - - + -h t i tk k a k a k a k a2 cos cos cos 2 sin , 3AB 34 1 2( ) ( ( · ) ( · ) ( · )) ( · ) ( )
with =h hk kBA AB*( ) ( ), where the relative positions between the n. n. sites read: = -a 1, 1, 11

1

2
( ),

= -a 1, 1, 12
1

2
( ), = -a 1, 1, 13

1

2
( ), and =a 1, 1, 14

1

2
( ). This hamiltonian can be re-expressed in terms of the

Paulimatrices describing the pseudospin associatedwith the two inequivalent sites arising from themodified n.
n.hopping pattern as: s s= +h f fk k kx x y y( ) ( ) ( ) , with: = - - +f tk k a k a k a2 cos cos cosx 4 1 2( ) ( ( · ) ( · ) ( · )),

=f tk k a2 siny 3( ) ( · ). The resulting dispersions: =  + f fk k kx y
2 2( ) ( ) ( ) touch at four 3DDirac points.

Thus, step (ii) adds a termproportional toσz to h(k) of equation (3):

=- ¢ + -
=-

h t k k k

h h

k

k k

2 cos cos cos ,

. 4

AA x y z

BB AA

( ) ( ( ) ( ) ( ))
( ) ( ) ( )

leading to the hamiltomnian:

s s s= + +h f f fk k k k , 5x x y y z z( ) ( ) ( ) ( ) ( )

where: = - ¢ + -f t k k kk 2 cos cos cosz x y z( ) ( ( ) ( ) ( )), leading to thefinal band dispersions:
=  + + f f fk k k kx y z

2 2 2( ) ( ) ( ) ( ) , plotted infigure 3, which touch at fourWeyl points in the 3D

momentum space. The two bands are non-degenerate since PT is not respected anymore due to breaking P-
symmetry [49] but can still have accidental degeneracies [39] since: = = =f f fk k k 0x y z( ) ( ) ( ) can be
simultaneously satisfied in three dimensions [6]. This actually occurs in our BCC semimetal at theWeyl points
given in table 1.Note that we have intentionally constructed themodifiedHamiltonian (equation (5)) on a BCC
lattice that preservesT-symmetry ( = -h hk k*( ) ( )), but breaks spatial inversion symmetry (P)
(s s- ¹- h hk kx x

1 ( ) ( )). Hence, it is an example of aP-breakingWeyl semimetal [35, 49–51] in a BCC lattice
which is in contrast toT-breaking BCCWeyl semimetals discussed previously [45, 46]. Regarding point group
symmetries, although our BCCWeyl structure does not peserve theOh point group symmetry of the cubic
crystal structure, we find that the Bloch hamiltonian is invariant under reflection in the [011] direction
( - - =h k k k h k k k, , , ,x x( ) ( )). Hence, our BCCWeyl system is aT-symmetry topological crystalline semimetal
[52, 53]protected by themirror (M) symmetry discussed.

2.2. FCC lattice
Wenowdescribe the generation of a FCCWeyl semimetal by firstmodifying the n.n. hopping network of the
(100), (010) and (001)planes of the unmodified FCC crystal structure in the sameway aswe did for the (011)
planes in the BCC lattice. The n.n. Bloch hamiltonianwould read:

= - + + - + +h t i tk k a k a k a k a k a k a2 cos cos cos 2 sin sin sin , 6AB 1 2 36 4 5( ) ( ( · ) ( · ) ( · )) ( ( · ) ( · ) ( · )) ( )

where the relative positions between n.n. sites are: =a 0, 1, 11
1

2
( ), =a 1, 1, 02

1

2
( ),

= = -a a1, 0, 1 , 0, 1, 13
1

2 4
1

2
( ) ( ), = -a 1, 0, 15

1

2
( ) and = -a 1, 1, 06

1

2
( ). This hamiltonian respecting PT-

symmetry leads to 3DDirac points. In order to obtainWeyl points we introduce the n.n.n. hopping amplitudes
defined in equation (4). Figure 2(a) shows the resulting hopping pattern in real space for the considered crystal
structure, including both n.n.andn.n.n. hopping amplitudes. The corresponding full hamiltonian, h(k) can be
expressed in terms of the Paulimatrices (5) using: = - + +f tk k a k a k a2 cos cos cosx 6 4 5( ) ( ( · ) ( · ) ( · )),

= + +f tk k a k a k a2 sin sin siny 1 2 3( ) ( ( · ) ( · ) ( · )) and = - ¢ + -f t k k kk 2 cos cos cosz x y z( ) ( ( ) ( ) ( )). The new
hamiltonian, h(k), generated in this way breaking P-symmetry leads to the fourWeyl points in table 1.

2.3. SC lattice
Weyl semimetals in SC lattices have been explored previously [30, 32]. Here, we propose a closely related
implementation [30] butwhich now includes both n.n. and n.n.n. hoppings in a SC lattice (seefigure 2(b)). First

Table 1.Weyl points generated in cubic crystal lattices based on our proposal.
The position of theWeyl points in k-space (kW ) and their chirality (χ) is
independent of ¢t t . Note that the chiralities of theWeyl points are related byT-
symmetry retaining their chirality when k kW W .

BCCkW ( ) FCCkW ( ) SCkW ( ) χ

p p p, ,
4 2 4( ) - -2.5897, 1.0751, 1.9568( ) -p p, 0,

2 2( ) +

- - -p p p, ,
4 2 4( ) -2.5897, 1.0751, 1.9568( ) -p p, 0,

2 2( ) +

-p p p, ,3

4 2

3

4( ) -1.0751, 2.5897, 1.9568( ) p p, 0,
2 2( ) −

- -p p p, ,3

4 2

3

4( ) - -1.0751, 2.5897, 1.9568( ) - -p p, 0,
2 2( ) −

4
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the n.n. hopping patterns of the (001) planes aremodified to induce alternating±πfluxes which leads to the n.n.
Bloch hamiltonian:

= - + -h t k k i t kk 2 cos cos 2 sin , 7AB x z y( ) ( ( ) ( )) ( ) ( )

which leads to four 3DDirac points. The n.n.n. hoppings aremodified to give the Bloch hamiltonian:

=- ¢ - + +
=-

h t k k k k k k

h h

k

k k

2 cos cos cos cos cos cos ,

. 8

AA x y x z y z

BB AA

( ) ( ( ) ( ) ( ) ( ) ( ) ( ))
( ) ( ) ( )

Hence, the full hamiltonian, h(k) can be expressed in terms of the Paulimatrices through:
= - + =f t k k f t kk k2 cos cos , 2 sinx x z y y( ) ( ( ) ( )) ( ) ( ) and
= - ¢ - + +f t k k k k k kk 2 cos cos cos cos cos cosz x y x z y z( ) ( ( ) ( ) ( ) ( ) ( ) ( )). This SC cubic lattice hosts the fourWeyl

points tabulated in table 1 related, as expected, by TRS symmetry.

3. Bulk topological properties:Weyl nodes, chiralities andBerry curvatures

The generatedWeyl systemhas characteristic topological properties associatedwithWeyl nodes [2, 6, 36]. The
Nielsen-Nimoniya theorem [54] imposes thatWeyl points in a lattice should always occur in pairs of opposite

charges. In aT-symmetric system, the chiralities, c n= absign∣ ∣, where n =ab
¶

¶
b

a

f

k
, (α,β=x, y, z), of theWeyl

points at kW and-kW are equal. This is becauseT-symmetry implies:
- = - = - - =f f f f f fk k k k k k, ,x x y y z z( ) ( ) ( ) ( ) ( ) ( ), leaving the products n n na b gx y z entering the chirality

invariant under the interchange  -k kW W . Hence, we find theminimum fourWeyl points [6] allowed in aT-
symmetry system (see table 1)whose location is independent of ¢t t .

Weyl points can be considered hedgehogs of Berry curvature inmomentum space [2, 55], behaving
analogously tomagneticmonopoles in real space. This is evident from calculations of the Berry curvature [56]:
W  = ´ á ñu i uk k kk k( ) ( )∣ ∣ ( ) , where ñu k∣ ( ) is the eigenfunction of the occupied band. Figure 3 shows how

Figure 2.Crystal structures andmodified hopping patterns of the studied (a) FCC, and, (b) SCT-invariantWeyl lattices. Solid lines
correspond to nearest-neighbor hoppings (t ), whereas dashed lines display next-nearest neighbor hoppings ( ¢t ). Red and green
lines represent negative and positive hoppings, respectively. For clarity in the visualization, the thickness of lines, as well as the color of
the spheresmarking the lattice positions, are different at the front and back of the displayed unit cell.
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Weyl points act as sources and drains of Berry curvature projected on the kx-kzplane in analogywith the
magnetic field aroundmagneticmonopoles in real space.Weyl points have a quantized Berry flux [57] given by:

cW =
p

dk k
S

1

2 2∬ ( ) , so the chirality can be interpreted as a topological Chern number of theWeyl node. The

expected chiralities ofχ=±1 of the fourWeyl nodes found in our BCCWeyl semimetal are shown in table 1.
Due to TRS the Berry curvature satisfies [57, 58]:W W- = -k k( ) ( ) implying that there is no anomalous
quantumHall contribution to theHall conductivity. However, an anomalous contribution to the electron

velocity would arise under aweak uniform electricfield [57]: W= - ´¶
¶


 
v k E kn

ek

k
n( ) ( )( ) .

AWeyl semimetal with broken P-symmetry can be viewed as an intermediate state between a trivial and a
topological insulator [6, 49–51, 59–61]. Based on this fact, we explore the topological properties of our BCC
Weyl semimetal by adding an external staggeredmass term,mσz, to theHamiltonian of equation (equation (5)).
By tuningm from large negative to positive values we can drive the system from a band insulator to a topological
insulator through an intermediateWeyl semimetallic phase. TheWeyl nodes in this phasemove around in k-
space until at a criticalmass,m, pairs of opposite chiralitiesmeet at certainmomenta anihilating each other as
shown infigure 4 and opening a gap. For = - ¢m t t4( ), theWeyl points at (π/4,π/2,π/4) and (3π/4,−π/2,
3π/4) anihilate at p p p2 3, , 3( )whereas theWeyl points at p p p- - -4, 2, 4( ) and

p p p- -3 4, 2, 3 4( ) anihilate at p p p- - -2 3, , 3( ). Similarly, for » ¢m t t2.83( ) theWeyl points at
p p p4, 2, 4( ) and p p p- -3 4, 2, 3 4( ) anihilate at (−1.1938, 0.7495, 1.943)whereas theWeyl points at
p p p- - -4, 2, 4( ) and p p p-3 4, 2, 3 4( ) anihilate at - -1.1938, 0.7495, 1.943( ). The observed

Figure 3.Weyl points and Berry curvatures of the BCCWeyl semimetal proposed. TwoWeyl points with opposite chiralities in the kx-
kz plane are shown in the top row for p= -k 2y (left) and ky=π/2 (right). The corresponding projected Berry curvatures are shown
in the bottom row. Inward and outwardflows of Berry curvature indicate the presence ofWeyl points with negative (black dot) and
positive (grey dot) chiralities, respectively.

Figure 4.Effect of a staggeredmass termon the location ofWeyl points. A view along the x-direction of thefirst Brillouin zone of the
BCCWeyl semimetal is shown. Them=0Weyl points with negative chirality are representedwith a black dot while theWeyl points
with positive chirality are representedwith gray dots. The orange dots represent themomenta at which theWeyl nodes with opposite
chiralities anihilate each other when the staggeredmass term = - ¢m t t4( ) or » ¢m t t2.83( ) as described in the text.
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robustness of theWeyl points to the staggeredmass term is due to the breaking of spatial inversion symmetry of
ourHamiltonian. In particular, the BCCWeyl systemwith fourWeyl nodes is stable for a staggeredmass in the
range:- ¢ < ¢t t m t t4 2.83( ) ( ).

4. Topological surface bands and Fermi arcs

In gapped topologicalmatter such as topological insulators [62] the bulk-boundary correspondence gives rise to
gapless fermions on the surface of the system [55]. Similarly, in topological gaplessmaterials such asWeyl
semimetals, a crucial signature ofWeyl fermions is the presence of gapless topological surface states. These
surface states lead to exotic unclosed Fermi arcs [3, 36] in the surface Brillouin zone.We have computed the
surface states on slabs which are cut along different crystal directions of the BCCWeyl semimetal. Infigure 5we
show the Fermi arcs and surface bands on the (100) and (010) surfaces.Wefind Fermi arcs connecting theWeyl
points with opposite chiralities at the surfaces of both sides of the slab. The Fermi arc shapes change depending
on the termination of the surface i.e.whether the number of layers in the slab direction is even or odd.

Fermi arcs can be detected not only by ARPES experiments but also through standard quantumoscillation
experiments in spite of the arcs being open. This is because under amagnetic field perpendicular to the surface of
interest, electrons circulating along a Fermi arc on one side of the slab can traverse the bulk via theWeyl points to
the Fermi arc on the opposite side of the slab leading to closedmagnetic orbits [63]. These unusual closed orbits
involving the bulkWeyl nodes can be detected in quantumoscillatory phenomena [64, 65]. At sufficiently strong
magnetic fields, a quantumHall effect occurs different from the standard 2DquantumHall effect, involving
chiral edge states along the direction of the appliedmagnetic fieldwhich intersect both the top and bottom
surfaces. The dependence of the quantumHall plateauswith the thickness of the samples indicates the existence
of bulk chiral edgemodes in contrast to the conventional 2D quantumHall effect in layered semiconducting
structures [66].Wemay expect that the application of amagnetic field along the x-direction of our BCCWeyl

Figure 5.Topological surface bands and Fermi arcs in aWeyl system on the BCC lattice. (a)Calculated Fermi arcs on the front (blue
line) and back (red line) (100) surfaces of a slabwith an odd number of layers. (b)Bulk (gray continuum) and surface band dispersions
(red line) projected along the ky direction at kz=π/2 for the (100) slab of (a). (c), (d) same as (a), (b) respectively, but for a slabwith an
even number of layers. (e)Calculated Fermi arcs connectingWeyl points projected on the (010) surface of a slabwith an even number
of layers. (f)Bulk and surface band dispersions along the ky=kx direction for the (010) slab of (e). Note that the Fermi arcs on
opposite sides of the slab coincide in the cases (c) and (e) for an even number of layers but not in (a)with an odd number of layers. The
black (gray) dots represent the projection of theWeyl points on the different surface orientationswith negative (positive) chiralities.
The gray circle describes the edge of a cylinder along the x-direction cutting the (100) surfaces of the Brillouin zonewhich encloses a
singleWeyl pointwith positive chirality. Each edge of the cylinder sustains a topologically protected one-dimensional edge state
contributing a state to the Fermi arc. The surface bands connecting the valence and conduction bulk bands lead to gaplessmetallic
surfaces corroborating their topological nature.
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semimetal lead to such sample thickness quantumHall effect as a result of quantized orbits involving the top and
bottomFermi arcs infigure 5(a) connected through the bulkWeyl nodes. Fromour calculations we expect that
for thicknesses of the sample larger than about 40 layers clear bulk-surface differentiation occurs and Fermi arcs
on opposite surfaces would be only connected through the bulkWeyl nodes leading to the unusualWeyl orbits
and associatedmagnetic oscillations aswell as quantumhall effect phenomena.

We focus first on the results for the (100) surfaces shown in figures 5(a)–(d). The structure of the BCC crystal
structure shown infigure 2 contains two types of atomsA andB. For a cut of the crystal with an even number of
layers both surfaces contain atoms of the same type. On the other hand, for a cut involving an odd number of
layers in the x-directionwe have that one of the surfaces is formed byA(B)-sublattice atomswhereas the opposite
side is formed by atoms of theB(A)-sublattice. Infigures 5(a)–(b)we show the Fermi arcs and surface bands of
the (100) surfaces of a slabwith an odd number of layers along the x-direction. The Fermi arcs at the front and at
the back surfaces are found to have very different shapes as shown infigure 5(a). This is in contrast to even
number terminations inwhich the Fermi arcs on opposite surfaces coincide. The surface bands connect the
valence and conduction bands closing the bulk gap leading tometallic surfaces.

Recent work suggests the possibility of realizing nontrivial knotting cyclotron orbits in a certainmicroscopic
latticemodel of aWeyl semimetal which breaksT-symmetry [67]. The band structure of such systemhosts six
Weyl nodes and the Fermi arcs on the two opposite surfaces cross without interference forming a trefoil knot
togetherwith theWeyl nodes. Under amagnetic field perpendicular to the surface electronswould circulate
along the trefoil knotted orbit leading to observable topological effects not found in the unknotted orbits found
in conventionalWeyl semimetals. In ourwork, the Fermi arcs shown infigure 5(a)would lead to ‘conventional’
closed orbits formed by connecting the different Fermi arc shapes at the bottom and top surfaces, which do not
cross, through the bulkWeyl nodes. Although our present BCCWeyl semimetal does not sustain knotted
cyclotron orbits, other hopping patternsmay be implemented along the lines proposed [67]. However, such
hopping patterns previously considered in layered hexagonal structures [67] involve purely imaginary hoppings
of alternating signs breakingT-symmetry. Hence,finding topologically non-trivial objects inP-breakingWeyl
semimetals as discussed herewill eventually require alternative proposals beyond the scope of the present work.

On the other hand, our calculations for the (010) surface offigure 5(e) showhow two straight lines connect
the two pairs ofWeyl points with opposite chiralities along the diagonal (kz=kx direction) of the kx-kz surface.
These open and disjoint Fermi lines result from theflat surface band located right at the Fermi energy shown in
figure 5(f). Note that this flat band is similar to the one-dimensional surface band connecting twoDirac points in
spinless graphene nanoribbons [52].

The topological protection of the surface states is guaranteed by the bulk-boundary correspondence. This
can be explicitly illustrated by considering, for example, the (100) face by taking a cylinder which extends along
the x-direction of thewhole Brillouin zone and encloses a singleWeyl point [36]. For example, the cylinder taken
infigure 5(a) has aChern number of+1 (since it contains aWeyl point with c = +1) giving rise to topologically
protected edge states at the one-dimensional edges of the tube.Hence, this two-dimensional slice of the Brillouin
zone behaves as a quantumHall insulatorwith chiral states protected by a non-zeroChern number. The two
edge states of the cylindermake slices of the Fermi arcs on the two (100) surfaces of the slab. By varying the radius
of the cylinder the full Fermi arcs can be reconstructed.

The character of the different insulating phases arising under the staggeredmass term,m, discussed
previously can be obtained by calculating their surface states [49, 51, 59]. Infigure 6we show the evolution of the
Fermi arcs as the staggeredmassm is changed fromnegative to positive values. For < - ¢m t t4( ) theWeyl
points anihilate and a gap opens upwith no surface states so both the bulk and surface are gapped consistent with
a conventional band insulator. In contrast, asm is increasedwithm>0, the Fermi arcs change their shape until
theWeyl points anihilate at » ¢m t t2.83( ) givingway to a closed Fermi surface for > ¢m t t2.83( ). The
surface bands leading to such Fermi surface have cone-like dispersions between the valence and conduction
bands indicating the presence of a 3D topological insulator.

5. Implementation in optical lattices

In this sectionwe describe a possible experimental implementation of the proposedWeyl lattices using ultracold
atoms in optical lattices. In particular, we describe how the combination of laser-assisted tunneling and a linear
potential energy gradient enables the realization of the tailored hopping patterns described in section 2. For
concreteness, we focus on the case of the BCC lattice—a similar approach can be applied for the implementation
of the FCC and SC crystal structures.

In the proposed implementation, wefirst create a canonical BCCoptical lattice.We consider the laser
configuration introduced in [68], which employs three pairs of lasers fields (ofwavelengthλ) and that can be
implemented using retroreflected lasers. The electric field associated to each laserfield is given by
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e= E eE ri i
i

i
k ri( ) ˆ (where Ei, ki and eiˆ are the amplitude, propagation vector and polarization, respectively, of

eachfield—with i=1,K,6 labelling eachfield). The six fields are counterpropagating in pairs along three
orthogonal directions ( p l= k x y z21,2 3,4 5,6 ( ) ˆ ˆ ˆ), and feature the same field amplitude (Ei=E0) but three
different non-orthogonal polarizations: e = +y z 21,2ˆ (ˆ ˆ) , e = +x z 23,4ˆ (ˆ ˆ) and e = +x y 25,6ˆ (ˆ ˆ ) . The
interference between these laserfields yields the following spatial-dependent electricfield intensity, I(r):

å å e e e e= + D - D
>

I E E Er k r k r2 Re cos Im sin 9
i

i
i j

i j i j ij i j ij
2 * *( ) ∣ ∣ [ (ˆ ˆ ) ( · ) (ˆ ˆ ) ( · )] ( )

whereD = -k k kij i j. Thefield intensity I(r)field intensity, in turn, leads the following potential [68]:

= + +
+ + +

V V x y z

x y y z x z

r cos cos cos

cos cos cos cos cos cos 10
BCC 0

2 2 2( ) {[ ( ) ( ) ( )]
[ ( ) ( ) ( ) ( ) ( ) ( )]} ( )

whereV0 is the overall potential amplitude of the resulting potential. The real-space primitive vectors describing
the periodicity ofV rBCC ( ) ( p= -d 1, 1, 11 ( ), p= -d 1, 1, 12 ( ) and p= -d 1, 1, 13 ( )) can be shown to
expand a BCC lattice.

The second step of the proposed implementation involves placing the systemunder a tilted potential
V rTILT ( ) (which can be achieved by using gravity or amagnetic field gradient [30, 69]). Specifically, in this case,
we consider = -D - D + DV x y zrTILT x y z( ) withΔx,Δy,Δz>0. Figure 7 shows the potential energy
distribution ofV rTILT ( ) over the BCC sites (taking as reference the potential energy of anA-sublattice atom,VA).
As observed, negative potential jumps of-Dx,-Dy and+Dz between consecutive sites are obtained along the
x, y and zdirection, respectively. Importantly, these potential jumps suppress completely both the n.n. and n.n.
n. hoppings present in the original BCC lattice.

Finally, to realize the hopping pattern shown infigure 1we restore and tailor both n.n.and n.n.n.hoppings
of the lattice using laser assisted tunneling. In particular, following the approach of [30, 69], we propose to use
suitably configured pairs of Raman lasers tomodify the hopping phases along the relevant directions of the
studied lattice (i.e., the three Cartesian directions and the four diagonals of the unit cell). On the one hand, the
wavevector difference of each laser pair, d = -k k k1 2, introduces a phase dF =d

+ k Ri i i
k

, 1 · in the hopping
between consecutive lattice sites (Ri and +Ri 1) along the considered lattice direction. On the other hand, the
frequency difference of each laser pair, dw w w= -1 2 is chosen so that itsmagnitudematches the potential
energy jump between consecutive sites, with the important consideration that an additional phase pF =dw

+i i, 1 is

Figure 6.Evolution of Fermi arcs on the (010) surface of the BCCWeyl lattice in the presence of a staggeredmass term. In theWeyl
semimetal the projected Fermi arcs on opposite sides of the slabwith an even number of layers coincide. A band insulator with no
surface states for < - ¢m t t4( ) becomes aWeyl semimetal between- ¢ < < ¢t t m t t4 2.83( ) ( ) andfinally a topological insulator
for > ¢m t t2.83( ). TheWeyl points with negative (positive) chiralities for the correspondingm are shown. The orange dots shown
for reference are the projection of the anihilation of twoWeyl points with opposite chiralities at = - ¢m t t4( ) and = ¢m t t2.83( ).
We have taken ¢ =t t 1 in all plots.

Figure 7. Schematic view of the energy potential distribution created by the tilted potential (described in themain text) on the
considered BCC lattice.
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added to the hopping amplitudewhenever the sign of dw is opposite to the change of potential between Ri and

+Ri 1 [69]. Thus, the combination of both Fd
+i i

k
, 1 and Fdw

+i i, 1 allows, for instance, to implement such involved
patterns as the n.n.n. hopping configurations forA andB lattice sites shown infigure 7:A lattice sites feature an
effective hopping of- ¢t along x y, directions and ¢t along the z direction, whereas forB sites we obtain the
complementary distribution of surrounding n.n.n. hoppings ( ¢t along the x, y directions and- ¢t along the z
direction). Table 2 summarizes the values of dw and dk leading to the complete hopping pattern shown in
figure 1. Finally, we note that in the described approachwe assume that the cross-interference between lasers
with different frequencies averages out in the timescales of interest (a condition readily accessible experimentally
by using closely spaced laser wavelengths).

6. Conclusions

In summary, we have introduced a general systematic approach to generateWeyl nodes in cubic crystal
structures which breakP-symmetry but preserveT-symmetry. The approach can be applied to both fermionic
and bosonic systems described by a tight-bindingmodel on any cubic crystal (BCC,FCC,SC)with a single orbital
per site. TheWeyl semimetals generated have theminimum fourWeyl nodes required by time-reversal
symmetry.We have obtained the Fermi arcs on different crystal surfaces of our BCC crystal originating from the
surface states topologically protected by non-zero Chern numbers of±1.Under appliedmagnetic fields
electrons could circulate alongWeyl orbits traversing fromone side to the opposite side of the samples via the
Weyl nodes. Laser assisted hopping techniques applied on cold atoms in optical lattices appear to be a suitable
procedure to experimentally implement our proposal. Ourwork complements the intense search ofWeyl
systems in complexmaterials providing a route to generate novelWeyl nodes with desired properties in cubic
crystal structures.
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Appendix.T-symmetry breakingWeyl semimetal

We illustrate here how to generate aWeyl semimetal which breaksT-symmetry for completeness.We now
consider a tight-bindingmodel on a square lattice with Peierls phases in the n.n. hoppings, f-te i ij with phases:
f p=  4ij with each square plaquette pierced by alternating p fluxes as shown infigure A1. This staggered
flux arrangement can be described by the following n. n. hamiltonian:

= - + + -h
t

k k i k kk
2

2
cos cos cos cos . A1AB x y x y( ) ( ( ) ( ) ( ( ) ( ) ( )

Since the hopping phases are different fromfij=0,π as in previous cases, the hamiltonian is complex breaking
time-reversal symmetry: - ¹h hk k*( ) ( ) preserving inversion symmetry = -h hk k( ) ( ). This two-dimensional
model has fourDirac points: p p 2, 2( ). In order to construct 3DWeyl points we consider a set of layers
described by the hamiltonian abovewhich are coupled through an interlayer hopping amplitude. This interlayer
hopping is chosen to be real and is-t for the hopping between twoA sites and+t for the hopping amplitude
between twoB sites. Thus, the hopping along the z-axis leads to the diagonalmatrix elements:

Table 2.Characteristics of the different pairs of Raman lasers used in our
approach.

Lattice direction wd dk (in units of p a)

1, 0, 0[ ] Dx 2 2, 0, 1( )
0, 1, 0[ ] Dy 2 0, 2, 1( )
0, 0, 1[ ] Dz 2 1, 0, 2( )

-1, 1, 1[ ] -D + D + D 2x y z( ) -2 1, 1, 1( )
- -1, 1, 1[ ] - D + D + D 2x y z( ) - -4 1, 1, 1( )
-1, 1, 1[ ] D - D + D 2x y z( ) -4 1, 1, 1( )
1, 1, 1[ ] -D - D + D 2x y z( ) -4 1, 1, 1( )
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= - = -h h t kk k 2 cos , A2AA BB z( ) ( ) ( ) ( )
which effectively adds aσz term to the 2Dhamiltonian above leading to the corresponding 3Dhamiltonian:

s s s= + +h f f fk k k k , A3x x y y z z( ) ( ) ( ) ( ) ( )

with: = - =
+ -

f t f tk k2 , 2x
k k

y
k kcos cos

2

cos cos

2

x y x y( ) ( )( ) ( )( ) ( ) ( ) ( )
and = -f t kk 2 cosz z( ) ( ). The analysis of the

model hamiltonian (A3) shows that there are 8Weyl points with alternating chiralities as described in table A1.
Hence, we have generated aWeyl semimetal that breaksT symmetry but preserves the inversion symmetry

of the lattice.We note that the Bloch hamiltonian, h(k) also has aC4 rotation point group symmetry since the
Bloch hamiltonian satisfies: s s- =- h k k k h k k k, , , ,x y x z x x y z

1 ( ) ( ). Hence,Weyl nodes in the presentT-
symmetry breakingWeyl semimetal are protected by such crystalline symmetry.
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