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Abstract It is well known that the muon magnetic dipole
moment (MDM) has close relation with the new physics (NP)
in the development of the Standard Model (SM). Combined
with the Fermilab National Accelerator Laboratory (FNAL)
and the Brookhaven National Laboratory (BNL) E821 result,
the departure from the SM prediction is about 5.0 σ. We
study the electroweak corrections from several type two-
loop SUSY diagrams and the virtual SUSY particles include
chargino, neutralino, scalar lepton and scalar neutrino. Based
on the latest experimental constraints, we study the muon
anomalous MDM under the next to the minimal supersym-
metric extension of the SM with local B-L gauge symme-
try (N-B-LSSM). The abundant numerical results verify that
tan β, Te22, M2

L , M2
e , MBB′ play an important role in muon

anomalous MDM. M2
e , tan β and Te22 are sensitive param-

eters to muon anomalous MDM. From the data obtained in
all the figures of the numerical results, most of the values of
aN BL
μ are in 2σ interval, which can compensate the departure

between the experiment data and the SM prediction.

1 Introduction

In order to further study the properties and interactions of par-
ticles, the Standard Model (SM) theory of particle physics has
been gradually established and developed by Glashow, Wein-
berg, Salam and others [1–4]. It contains three basic inter-
actions of strong, weak, and electromagnetic. However, the
SM still cannot explain some physical phenomena, such as
the dark energy, the dark matter, the problem of gauge hierar-
chy and the absence of gravity, etc. Physicists have extended

a e-mail: hanxingyu223@163.com
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the SM based on the new symmetry of the supersymmetry
(SUSY), resulting in the Minimal Supersymmetric Standard
Model (MSSM) [5–7]. Although the MSSM can provide a
dark matter candidate and alleviate hierarchy problem, it has
not yet solved the μ problem and neutrino mass problem.

Based on the MSSM, next to the minimal supersym-
metric extension of the SM with local B-L gauge sym-
metry (N-B-LSSM) extends the gauge symmetry group to
SU (3)C × SU (2)L × U (1)Y × U (1)B−L , where B repre-
sents the baryon number and L stands for the lepton number.
In N-B-LSSM, there are three Higgs singlets and three gen-
eration right-handed neutrinos beyond MSSM. It can pro-
duce tiny mass to light neutrinos through see-saw mech-
anism, and provide new dark matter candidate(light sneu-
trino). As the Higgs singlet Ŝ obtains a non-zero VEV (

vS√
2
),

the term λŜ Ĥu Ĥd can produce λ
vS√

2
Ĥu Ĥd . This model does

not include the μ term μĤu Ĥd , and λ
vS√

2
Ĥu Ĥd can play this

role, which relieves the μ problem. Because of the introduc-
tion of three Higgs singlets, the neutral CP-even Higgs mass
squared matrix is 5×5. This can not only explain the 125GeV
Higgs mass easily, but also enrich the Higgs physics. Further-
more, lepton number violation and baryon number violation
processes can take place in this model, which is beneficial
to explain the asymmetry of matter-antimatter in the uni-
verse. With the added superfields, N-B-LSSM relieves the
little hierarchy problem appearing in the MSSM. Assuming
a high scale for vη, vη̄ and vS will suppress the corrections
from some new particles. However, their super partners are
components of neutralino, which can give considerable con-
tributions with not very heavy mass(That is to say MBL and
κ are not large parameters).

It is well known that the muon magnetic dipole moment
(MDM) has close relation with the new physics (NP) in
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the development of the SM. The SM contributions to muon
anomalous MDM have the following parts: 1. the QED
loop contributions [8–20]; 2. the electroweak contributions
[21,22]; 3. the hadronic vacuum polarization contributions
[8,11,23]; 4. the hadronic light-by-light contributions [17–
19]. The muon anomalous MDM is denoted by aμ ≡
(gμ − 2)/2. A new result on the muon anomalous MDM
was reported by the E989 collaboration at Fermilab [24]:
aFN AL
μ = 116592055(24) × 10−11(0.20 ppm). The new

averaged experiment value of muon anomaly is aexpμ =
116592059(22)×10−11(0.35 ppm). Combining all available
measurements, the SM prediction is more than 5σ smaller
than the updated world average [25] : �aμ = aexpμ −aSMμ =
249(48) × 10−11.

The lattice Quantum Chromodynamics (QCD) method
has been playing an increasingly important role in the precise
calculation of non-perturbative low-energy hadron contribu-
tions to muon g-2, which is an important quantity in precision
tests of the SM. In this context, the lattice QCD approach
provides a first-principles framework to compute these con-
tributions from the underlying theory of strong interactions.
The lattice QCD method has the potential to reduce this devi-
ation by providing more precise calculations of the hadronic
vacuum polarization (HVP) contribution, which is a major
source of uncertainty in the SM prediction for muon g-2.
The data �a(HV P) = 105(59) × 10−11 indicates that the
deviation between theoretical predictions and experimental
measurements will be greatly reduced. Due to the numer-
ous experimental results, we refer to the central value of
�a(HV P) results, which is approximately 85(56) × 10−11

[8]. Considering the influence of QCD, it is possible to reduce
the deviation between SM predictions and experiment data
to 2.3 sigma. The one-loop correction of muon anomalous
MDM has been well studied [26], but the study of two-loop
correction is more complex and not deep enough. Using the
effective Lagrangian method, the authors [27] calculate and
derive the leading-logarithm two-loop contributions to the
muon anomalous MDM. The authors research corrections
to muon anomalous MDM from the two-loop rainbow dia-
grams and Barr-Zee diagrams with heavy fermion sub-loop
in Refs. [28,29]. The two-loop Barr-Zee type diagrams with
fermion-sub-loop and scalar-sub-loop between vector boson
and Higgs are studied in BLMSSM [30]. The muon anoma-
lous MDM of two loop is also studied in the B-LSSM [31]. In
this work, we study the electroweak corrections from several
type two-loop SUSY diagrams and the virtual SUSY par-
ticles include chargino, neutralino, scalar lepton and scalar
neutrino.

In Sect. 2, we mainly introduce the N-B-LSSM includ-
ing its superpotential, the general soft breaking terms, the
mass matrices and couplings. In Sect. 3, we give the analyt-
ical formulae of the one-loop and two-loop results of muon

Table 1 The superfields in N-B-LSSM

Superfields U (1)Y SU (2)L SU (3)C U (1)B−L

q̂ 1/6 2 3 1/6

l̂ −1/2 2 1 −1/2

Ĥd −1/2 2 1 0

Ĥu 1/2 2 1 0

d̂ 1/3 1 3̄ −1/6

û −2/3 1 3̄ −1/6

ê 1 1 1 1/2

ν̂ 0 1 1 1/2

χ̂1 0 1 1 −1

χ̂2 0 1 1 1

Ŝ 0 1 1 0

anomalous MDM in N-B-LSSM. The corresponding param-
eters and numerical analysis are shown in Sect. 4. The last
section presents our conclusions. Finally, the Appendix A
shows some coupling vertices, mass matrixes and formulae
that we need for this work. The Appendix B shows the one
loop results in mass insertion approximation(MIA).

2 The relevant content of N-B-LSSM

Using the local gauge group U (1)B−L , we extend the
MSSM to obtain the N-B-LSSM with the local gauge group
SU (3)C × SU (2)L × U (1)Y × U (1)B−L . N-B-LSSM has
new superfields beyond MSSM, including three Higgs sin-
glets χ̂1, χ̂2, Ŝ (Table 1).

In the chiral superfields, Ĥu =
(
Ĥ+
u , Ĥ0

u

)
and Ĥd =(

Ĥ0
d , Ĥ−

d

)
represent the MSSM-like doublet Higgs super-

fields. q̂ and l̂ are the doublets of quark and lepton. û, d̂, ê and
ν̂ are the singlet up-type quark, down-type quark, charged
lepton and neutrino superfields, respectively. We show the
concrete forms of the two Higgs doublets and three Higgs
singlets

H0
d = 1√

2
φd + 1√

2
vd + i

1√
2
σd ,

H0
u = 1√

2
φu + 1√

2
vu + i

1√
2
σu,

χ1 = 1√
2
φ1 + 1√

2
vη + i

1√
2
σ1,

χ2 = 1√
2
φ2 + 1√

2
vη̄ + i

1√
2
σ2,

S = 1√
2
φS + 1√

2
vS + i

1√
2
σS . (1)
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The vacuum expectation values(VEVs) of the Higgs super-
fields Hu, Hd , χ1, χ2 and S are presented by vu, vd , vη, vη̄

and vS respectively. Two angles are defined as tan β = vu/vd
and tan βη = vη̄/vη.

W = −Yd d̂q̂ Ĥd − Yeêl̂ Ĥd − λ2 Ŝχ̂1χ̂2 + λŜ Ĥu Ĥd

+κ

3
Ŝ Ŝ Ŝ + Yuûq̂ Ĥu + Yχ ν̂χ̂1ν̂ + Yν ν̂l̂ Ĥu . (2)

In the superpotential for this model, Yu,d,e,ν,χ are the
Yukawa couplings. λ, λ2 and κ are dimensionless couplings.

χ̂1, χ̂2, Ŝ are three Higgs singlets. Y ′
ν ν̂l̂ Ŝ does not exist,

because the sum of U (1)Y charges of ν̂, l̂, Ŝ is not zero.
The soft SUSY breaking terms are

Lso f t = LMSSM
sof t − Tκ

3
S3 + εi j TλSH

i
d H

j
u + T2Sχ1χ2

−Tχ,ikχ1ν̃
∗
R,i ν̃

∗
R,k + εi j Tν,i j H

i
u ν̃

∗
R,i ẽL , j

−m2
η|χ1|2 − m2

η̄|χ2|2 − m2
S|S|2 − m2

ν,i j ν̃
∗
R,i ν̃R, j

−1

2
(2MBB′λB̃ B̃

′ + δi j MBL B̃ ′2) + h.c. (3)

LMSSM
sof t represent the soft breaking terms in the MSSM. Tκ ,

Tλ, T2, Tχ and Tν are all trilinear coupling coefficients.
U (1)Y andU (1)B−L have the gauge kinetic mixing effect,

which can also be induced through RGEs even with zero
value at MGUT . The two Abelian gauge groups are unbroken,
then the basis conversion can occur with the rotation matrix
R (RT R = 1) [32–35]. gB is used to represent the gauge
coupling constant of the U (1)B−L group. gY B is used to
represent the mixing gauge coupling constant of U (1)B−L

group and U (1)Y group. The covariant derivatives of this
model can be written as

Dμ = ∂μ − i
(
Y, B − L

) (
gY , g′

Y B

g′
BY , g′

B−L

) (
B ′Y

μ

B ′BL
μ

)
, (4)

where Y and B − L represent the hypercharge and B − L
charge, respectively. The two Abelian gauge groups are

unbroken, we can perform a change of basis
(

gY , g′
Y B

g′
BY , g′

B−L

)
RT =

(
g1, gY B

0, gB

)
. (5)

As a result, the U (1) gauge fields are redefined as

R

(
B ′Y

μ

B ′BL
μ

)
=

(
BY

μ

BBL
μ

)
. (6)

The mass matrix for neutralino in the basis (λB̃ , W̃ 0, H̃0
d , H̃0

u ,

B̃ ′, χ̃1, χ̃2, S) is

mχ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 − 1
2g1vd

1
2g1vu MBB′ 0 0 0

0 M2
1
2g2vd − 1

2g2vu 0 0 0 0

− 1
2g1vd

1
2g2vd 0 − 1√

2
λvS − 1

2gY Bvd 0 0 − 1√
2
λvu

1
2g1vu − 1

2g2vu − 1√
2
λvS 0 1

2gY Bvu 0 0 − 1√
2
λvd

MBB′ 0 − 1
2gY Bvd

1
2gY Bvu MBL −gBvη gBvη̄ 0

0 0 0 0 −gBvη 0 − 1√
2
λ2vS − 1√

2
λ2vη̄

0 0 0 0 gBvη̄ − 1√
2
λ2vS 0 − 1√

2
λ2vη

0 0 − 1√
2
λvu − 1√

2
λvd 0 − 1√

2
λ2vη̄ − 1√

2
λ2vη

√
2κvS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

This matrix is diagonalized by the rotation matrix N ,

N∗mχ0 N † = mdiag
χ0 . (8)

One can find other mass matrixes in the Appendix A.

3 Analytical formula

3.1 One loop results

With the effective Lagrangian method, the muon anomalous
MDM can actually be expressed as

LMDM = e

4ml
al l̄σ

μνl Fμν, (9)

here, σμν = i[γμ, γν]/2. ml is the lepton mass, e and l
denote the electric charge and the lepton fermion, and Fμν is
the electromagnetic field strength. al is lepton MDM (Fig. 1).

For the process l I → l I + γ, in calculating the Feyn-
man amplitude, we use some operators defined in 6 dimen-
sional space to describe the properties of the results. Since
the higher-dimensional operators, such as the 8-dimensional
operators, are tiny, we ignore them. Their specific forms are

OL ,R
1 = 1

(4π)2 l̄(iD/)3PL ,Rl,

OL ,R
2 = eQ f

(4π)2 (iDμl)γ
μF · σ PL ,Rl,

OL ,R
3 = eQ f

(4π)2 l̄ F · σγ μPL ,R(iDμl),

123
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Fig. 1 The one-loop self-energy diagrams

OL ,R
4 = eQ f

(4π)2 l̄(∂
μFμν)γ

ν PL ,Rl,

OL ,R
5 = ml

(4π)2 l̄(iD/)2PL ,Rl,

OL ,R
6 = eQ f ml

(4π)2 l̄ F · σ PL ,Rl, (10)

with Dμ = ∂μ + ieAμ and PL ,R = 1∓γ5
2 . The one loop

contributions to the muon anomalous MDM are given by

a1L
μ = a1L , L̃χ0

μ + a1L , ν̃Rχ±
μ + a1L , ν̃ Iχ±

μ . (11)

The analytic form of a1L , L̃χ0

μ , a1L , ν̃Rχ±
μ , a1L , ν̃ Iχ±

μ are
as follows

a1L , L̃χ0

μ = −
6∑

k=1

8∑
i=1

[
�(A∗

L AR)
√
xχ0

i
xμxL̃k

∂2G(xχ0
i
, xL̃k

)

∂x2
L̃k

+ 1

3
(|AL |2 + |AR |2)xL̃k

xμ

∂G1(xχ0
i
, xL̃k

)

∂xL̃k

]
,

a1L , ν̃ Iχ±
μ =

2∑
i=1

6∑
k=1

[
− 2�(B∗

L BR)
√
xχ−

i
xμG1(xν̃ I

k
, xχ−

i
)

+ 1

3
(|BL |2 + |BR |2)xμxχ−

i

∂G1(xν̃ I
k
, xχ−

i
)

∂xχ−
i

]
,

a1L , ν̃Rχ±
μ =

2∑
i=1

6∑
k=1

[
− 2�(C∗

LCR)
√
xχ−

i
xμG1(xν̃R

k
, xχ−

i
)

+ 1

3
(|CL |2 + |CR |2)xμxχ−

i

∂G1(xν̃R
k
, xχ−

i
)

∂xχ−
i

]
. (12)

Here, x = m2

�2 , m is the particle mass. � represents the real
part. To save space in the text, the concrete forms of AR, AL ,

BR, BL , CR, CL can be found in the Appendix A. G(x, y)
and G1(x, y) are defined as [36]

G(x, y) = 1

16π2

(
x ln x

y − x
+ y ln y

x − y

)
,

G1(x, y) =
(

∂

∂y
+ y

2

∂2

∂y2

)
G(x, y). (13)

The one loop contributions are dominant. So, using
mass insertion approximation method, we calculate the one

loop contribution to muon anomalous MDM in the N-B-
LSSM. The specific derivation process is presented in the
Appendix B. Supposing all the masses of the superparticles
are almost degenerate, we also use the following relation to
obtain simplified results

M1 = M2 = mH = mμ̃L = mμ̃R = m
ν̃
R,I
L

= mR,I
ν̃R

= |MBB′ | = |MB̃′ | = MSUSY .

The simplified one loop results in N-B-LSSM are shown as

a1L
μ 	 1

192π2

m2
μ

M2
SUSY

tan β(5g2
2 + g2

1) + 1

192π2

m2
μ

M2
SUSY

× tan βsign[MB̃′ ](g2
B + 3gY BgB + g2

Y B) + 1

960π2

× m2
μ

M2
SUSY

tan βg1(4gY B + 3gB)sign[MBB′ ]

×
(

1 − 4sign[MB̃′ ]
)
. (14)

The first line in Eq. (15) is the MSSM one loop results, which
increase with the enlarging tan β. It indicates that large tan β

leads to large muon anomalous MDM in MSSM.
The results in the second and third lines of Eq. (15) cor-

respond to the N-B-LSSM contribution beyond MSSM, and
the values of the parameters MB̃′ , MBB′ , gY B can be positive
or negative. gB is always positive. Therefore, the sum of the
second and third lines of Eq. (15) can be negative. It implies
that large tan β can lead to small MDM results. When MB̃′
is negative and MBB′ is also negative, the results decreases
with increasing tan β. This characteristic can be embodied
clearly by the following formula

a1L
μ 	 1

192π2

m2
μ

M2
SUSY

tan β(5g2
2 + g2

1)

− 1

192π2

m2
μ

M2
SUSY

tan β(g2
B + 3gY BgB + g2

Y B)

− 1

192π2

m2
μ

M2
SUSY

tan βg1(4gY B + 3gB). (15)

We ignore the contributions of neutral Higgs-lepton and
charged Higgs-neutrino, which are suppressed by the square

of the Higgs-lepton coupling
m2

μ

m2
W

∼ 10−6. We neglect the

123
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Fig. 2 The two-loop self-energy diagrams

one-loop contribution of MZ ′ -muon. Since the mass of the
new vector boson MZ ′ is greater than 5.1 TeV [37,38], the
one-loop contribution of MZ ′ -muon is suppressed by the fac-

tor
m2

Z
m2

Z ′
∼ 4 × 10−4.

3.2 Two loop results

The main contributions of two-loop graphs to muon anoma-
lous MDM come from the following

1. The two-loop Barr-Zee type diagrams (Fig. 2a, b and c)
with fermion sub-loop. In the work, the authors focus on
their contributions to muon anomalous MDM [29]. On
the supposition χ± ∼ χ0 ∼ M, we can get approximate

results with the factor xμ

x1/2
M x1/2

V

= m2
μ

MmV
. mV represents

the mass of heavy vector bosons mZ ∼ mW ∼ mV . This
analysis is in the mass eigenstate, and overall the rota-
tion matrices to diagonalize the particle mass matrices
should be taken into account. Then the order analysis in
the mass insertion approximation is more appreciated,

which shows the order as
m2

μ

M2 tan β.

2. Figure 2d and e are the two-loop rainbow diagrams with
fermion sub-loop and the vector bosons (γ, Z , W ). They
have important contributions to muon anomalous MDM
[39,40].

3. The two-loop self-energy diagrams (Fig. 2f-j) belong
to the diamond type. The diamond type diagrams in
Refs. [41,42] possess large factors. This type two-loop
diagrams studied in this work contains five virtual par-
ticles including: one vector boson, two scalars and two
fermions.

With the assumption mF1 = mF2 � mW , the results [39]
for the Fig. 2a–c can be simplified as

a2L , WH
μ = eCL

μ̄Hν

512
√

2π4sW

∑
F1=χ±

∑

F2=χ0

x1/2
μ

x1/2
F1

×
{

199

36
�(CL

H F̄1F2
CL
W F̄2F1

+ HR
C F̄1F2

CR
W F̄2F1

)

+
[

13

3
+ 2(ln xF1 − �1,1(xW , xH±))

]

× �(CL
H F̄1F2

CR
W F̄2F1

+ CR
H F̄1F2

CL
W F̄2F1

)

+
[

4

3
(ln xF1 − �1,1(xW , xH±)) − 16

9

]

× �(CL
H F̄1F2

CL
W F̄2F1

− CR
H F̄1F2

CR
W F̄2F1

)

+
[

2

9
− 8

3
(ln xF1 − �1,1(xW , xH±))

]

× �(CL
H F̄1F2

CR
W F̄2F1

− CR
H F̄1F2

CL
W F̄2F1

)

}
, (16)

a2L , WG
μ s = eCL

μ̄Gν

512
√

2π4sW

∑
F1=χ±

∑

F2=χ0

x1/2
μ

x1/2
F1

×
{

199

36
�(CL

GF̄1F2
CL
W F̄2F1

+ CR
GF̄1F2

CR
W F̄2F1

)

+
[

7

3
+ 2(ln xF1 − ln xW )

]
�(CL

GF̄1F2
CR
W F̄2F1

+ CR
GF̄1F2

CL
W F̄2F1

) +
[

4

3
(ln xF1 − ln xW ) − 28

9

]

× �(CL
GF̄1F2

CL
W F̄2F1

− CR
GF̄1F2

CR
W F̄2F1

)

123
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+
[

26

9
− 8

3
(ln xF1 − ln xW )

]

× �(CL
GF̄1F2

CR
W F̄2F1

− CR
GF̄1F2

CL
W F̄2F1

)

}
. (17)

a2L , γ h0

μ = e2

64
√

2π4
Ch0μ̄μ

∑
F1=F2=χ±

x1/2
μ

x1/2
F1

�(CL
h0 F̄1F2

)

×
[

1 + ln
xF1

xh0

]
, (18)

a2L , Zh0

μ =
√

2

512π4

∑

F1=F2=χ±,χ0

Ch0μ̄μ

x1/2
μ

x1/2
F1

[
�1,1(xZ , xh0)

− ln xF1 − 1
]

× (CL
Z μ̄μ + CR

Z μ̄μ)

× �(CL
h0 F̄1F2

CL
Z F̄2F1

+ CR
h0 F̄1F2

CR
Z F̄2F1

). (19)

To save space in the text, the complete calculation process
and the results of other two-loop diagrams can be found in
our previous work [36]. The corrections to muon anomalous
MDM from the studied two-loop diagrams are

a2L
μ = a2L , BZ

μ + a2L , RB
μ + a2L , DI A

μ ,

a2L , BZ
μ = a2L , WH

μ + a2L , WG
μ + a2L , γ h0

μ + a2L , γG0
μ

+a2L , γ A0
μ + a2L , Zh0

μ + a2L , ZG0
μ + a2L , Z A0

μ ,

a2L , RB
μ = a2L , WW

μ + a2L , Z Z
μ + a2L , Zγ

μ + a2L , γ γ
μ ,

a2L , DI A
μ = a2L , Z ν̃χ±

μ + a2L , Z L̃χ0

μ + a2L , γ L̃χ0

μ

+a2L , W L̃ ν̃χ0

μ + a2L , W L̃ ν̃χ−
μ . (20)

The concrete expressions can be found in Appendix A.
At two-loop level, including the one-loop results and two-

loop results, the muon anomalous MDM is given by

aN BL
μ = a1L

μ + a2L
μ . (21)

4 Numerical analysis

To take the numerical calculation, some restrictions should
be taken into account.

1. The experimental value of tan βη should be less than 1.5
in order to meet the LHC experimental data [43–45].

2. We consider the experimental constraints from the lightest
CP-even Higgs h0 mass is around 125.25 GeV [46,47].

3. The Z ′ boson mass is larger than 5.1 TeV. The ratio
between MZ ′ and its gauge MZ ′/gB ≥ 6 TeV [37,38].

4. For particles that exceed the SM, the mass limits consid-
ered are: the slepton mass is greater than 700 GeV, and
the chargino mass is greater than 1100 GeV [46].

5. The limitation of Charge and Color Breaking(CCB) [48,
49] is considered.

Considering these limitations, we adopt the following
parameters:

κ = 0.1, tan βη = 0.9, gB = 0.3, vB−L = 17 TeV,

vS = 4 TeV,

Tλ = Tλ2 = 1 TeV, Tuii = 1 TeV,

Te11 = Te33 = 10 GeV,

λ = 0.4, M1 = 0.1 TeV, M2 = 1.2 TeV,

λ2 = −0.25, Tκ = −2.5 TeV,

Yν11 = 1.09285 × 10−6, Yν22 = 1.4 × 10−6,

Yν33 = 1.35242 × 10−6,

Yν12 = 7.6042 × 10−8, Yν13 = 4.51693 × 10−8,

Yν23 = 2.80323 × 10−7. (22)

We generally take the values of new particle masses(MBB′ ,
MBL) near the order of 103 GeV, which is around the energy
scale of new physics. Tλ and T2 etc. are trilinear coupling
coefficients, which are roughly in the order of magnitude
of the mass, and can be varied up or down to the order of
102 ∼ 104 GeV. M2

L , M2
e are all of mass square dimension,

and can be up to the order of 106 GeV2. The dimensionless
parameters λ and λ2 etc. are generally taken as numbers less
than 1.

In the following numerical analysis process, the parame-
ters that need to be studied are:

tan β, M2
li i = M2

L , M2
eii = M2

e ,

MBB′ , Te22, MBL , gY B (i = 1, 2, 3). (23)

In addition to the above parameters, non diagonal elements
are defined as zero.

4.1 The one-dimensional graphs

We use the simplified expression of χ2
N BL as

χ2
N BL = e

−
(

�aμ−aN BL
μ

δaμ

)2

, (24)

with �aμ = 249 × 10−11, δaμ = 48 × 10−11. This for-
mula clearly indicates the deviation of aN BL

μ and �aμ. When
aN BL
μ approaches �aμ, χ2

N BL approaches 1.
The light gray and light orange regions in all figures rep-

resent the experimental limits of �aμ, where the light gray
region represents the 1σ range of �aμ, and the light orange
region represents the 2σ range of �aμ. In Figs. 3, 4, 5, the
orange line represents that aN BL

μ corresponds to the left ordi-
nate axis, and the blue line represents that χ2

N BL corresponds
to the right ordinate axis.

With the parameters tan β = 10,Te22 = 2.4 TeV, MBB′ =
0.1 TeV and gY B = 0.1 in Fig. 3a, we plot M2

e versus
aN BL
μ and χ2

N BL . The aN BL
μ is decreasing function as M2

e

turns large in the range of 1 TeV2 < M2
e < 2 TeV2. When
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Fig. 3 aN BL
μ and χ2

NBL in M2
e plane (a) and M2

L plane (b)

Fig. 4 aN BL
μ and χ2

NBL in Te22 plane (a) and MBB′ plane (b)

Fig. 5 aN BL
μ and χ2

NBL in tan β plane (a) and gY B plane (b)

M2
e is in the range of 1.09 TeV2 to 1.29 TeV2, aN BL

μ is
in the 1σ interval. When M2

e is in the range of 1 TeV2 to
1.09 TeV2 and 1.29 TeV2 to 2 TeV2, aN BL

μ is in the 2σ inter-
val or larger interval. The expression of χ2

N BL indicates that
as the value of aN BL

μ deviates from �aμ, χ2
N BL becomes

smaller. When aN BL
μ approaches �aμ, χ2

N BL approaches 1.
The image meanings of χ2

N BL and aN BL
μ in the figure are con-

sistent. We plot M2
L versus aN BL

μ and χ2
N BL in the Fig. 3b.

aN BL
μ and χ2

N BL show a downward trend with the increase
of M2

L . aN BL
μ is mostly in the range of 1σ, and the trend of

χ2
N BL is consistent with aN BL

μ .

M2
L is the parameter appearing in the mass matrices of

the CP-odd sneutrino, the CP-even sneutrino, and the slep-
ton. M2

e just appears in the mass matrix of the slepton. The
increase of M2

e and M2
L makes sneutrino and slepton heavy,

which suppresses the contributions from the CP-odd sneu-
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trino, the CP-even sneutrino, and the slepton. Thereby aN BL
μ

decreases with the increase of M2
e and M2

L .

We suppose tan β = 10, M2
e = 1.5 TeV2, M2

L =
0.16 TeV2, gY B = 0.1. Similarly, we plot Te22 versus
aN BL
μ and χ2

N BL in the Fig. 4a. In this figure, aN BL
μ sig-

nificantly increases with the growth of Te22. When Te22 is
greater than 1.7 TeV, it enters the 2σ range. χ2

N BL is also
showing a growth trend. In addition, we study the parame-
ter MBB′ influences on aN BL

μ and χ2
N BL in Fig. 4b. When

0.2 TeV < MBB′ < 2.45 TeV, both lines decrease with
the increase of MBB′ . When 0.2 TeV < MBB′ < 1.2 TeV,

aN BL
μ is in the 1σ interval. When MBB′ is in the range of

1.2 TeV2 to 2.45 TeV2, aN BL
μ is in the 2σ interval. MBB′

is the mass of the two U(1) gauginos mixing, and appears
as the non-diagonal element of the neutralino mass matrix.
The increase in MBB′ has affected the neutralino mass matrix,
leading to a downward trend in aN BL

μ , and the curve of χ2
N BL

indicates that this effect is relatively strong.
We use the parameters as MBB′ = 0.1 TeV, M2

e =
1.5 TeV2, M2

L = 0.16 TeV2, Te22 = 2.4 TeV in Fig. 5.
Next, we plot tan β versus aN BL

μ and χ2
N BL in the Fig. 5a.

The aN BL
μ is decreasing function as tan β turns large in the

range of 6 < tan β < 50. The downward trend ofaN BL
μ is rel-

atively gentle, when tan β is greater than 20. The downward
trend of χ2

N BL is relatively severe. tan β must be a sensitive
parameter because it appears almost in all mass matrices of
fermions, scalars, and Majoranas, and it can affect the ver-
tex couplings and masses of particles by directly affecting vd
and vu . By influencing these factors, tan β shows a downward
trend.

Finally, we plot gY B versus aN BL
μ and χ2

N BL in the Fig. 5b.
gY B is the gauge kinetic mixing coupling constant which
arises from the existence of two Abelian gauge groups. In
the figure, aN BL

μ increases with the increase of gY B, χ2
N BL

increases first and then decreases with the increase of gY B .
When gY B is greater than 0.02, it enters the 2σ range, and
when gY B is greater than 0.09, it enters the 1σ range. The
gY B might influence the contributions of the slepton and other
particles and the corresponding couplings, thereby causing
aN BL
μ to increase with the increase of gY B .

4.2 The multi-dimensional scatter plots

In this section of the work, we select six parameters tan β,

Te22, M2
L , MBL , MBB′ and M2

e discussed in the one-
dimensional graph to draw the scatter plots (Table 2).

Supposing Te22 = 2.4 TeV, M2
e = 1.5 TeV2, MBB′ =

0.1 TeV, MBL = 1 TeV, we plot aN BL
μ in the tan β ver-

sus M2
L in the Fig. 6a. Within the range of 5 < tan β < 50

and 0.1 TeV2 < M2
L < 1.4 TeV2, the • and � are slightly

tilted and distributed on the left side of the graph. When
5 < tan β < 7, the proportion of • is higher. When

Table 2 The meaning of shape style in Figs. 6 and 7

Shape style Figs. 6 and 7

� 0 < aN BL
μ < 2.01 × 10−9

� 2.01 × 10−9 � aN BL
μ < 2.97 × 10−9

• 2.97 × 10−9 � aN BL
μ

7 < tan β < 13, the proportion of � is higher. When
13 < tan β < 50, there are only �. We can conclude that
aN BL
μ decreases with the increase of tan β, and the trend is

more intense. aN BL
μ also decreases with the increase of M2

L ,

but the trend is relatively gentle. This is consistent with the
decreasing trend of aN BL

μ as tan β and M2
L , which are shown

in Figs. 3b and 5a. And the reduction amplitude is also con-
sistent with the one-dimensional graph.

With M2
L = 0.16 TeV2, M2

e = 1.5 TeV2, MBB′ =
0.1 TeV, MBL = 1 TeV, Fig. 6b displays a plot of aN BL

μ

in the tan β versus Te22 plane. We can clearly see that the
space is roughly divided into three parts. The • present a
triangular shape distributed in the upper left, the � present
a strip close to the green points, and the rest are filled with
�. Both tan β and Te22 are sensitive parameters, and aN BL

μ

decreases with the increase of tan β and increases with the
increase of Te22, which is consistent with the feature of one-
dimensional graph.

In Fig. 6, we all select tan β as the horizontal axis. It can
be seen intuitively that tan β has a strong influence on aN BL

μ .

The vertical axis of Fig. 6a is M2
L , and the vertical axis of

Fig. 6b is Te22. One shows an increasing trend and the other
shows a decreasing trend. We can conclude that all three are
sensitive parameters. When 7 < tan β < 13, 0.1 TeV2 <

M2
L < 0.7 TeV2, 1.5 TeV < Te22 < 2.5 TeV, the value of

aN BL
μ is closest to the range of 1σ.

We suppose the parameters with Te22 = 2.4 TeV, tan β =
10, M2

L = 0.16 TeV2, MBL = 1 TeV in Fig. 7a, and display
a plot of aN BL

μ in the M2
e versus MBB′ plane. The � occupies

most of the space on the right side of the plane, ranging from
1.52 TeV2 to nearly 2.0 TeV2 on the horizontal axis. The �
are located on the left side of the chart, showing a arch, from
1.4 TeV2 to close to 1.52 TeV2 on the horizontal axis. M2

e
is an important parameter affecting aN BL

μ , and M2
e appears

in the mass matrix of the slepton. The increase of M2
e makes

slepton heavy, which suppresses the contributions from the
slepton. Thereby aN BL

μ decreases with the increase of M2
e .

The increase in MBB′ has affected the neutralino mass matrix,
but the effect of MBB′ is weak in the figure.

With Te22 = 2.4 TeV, tan β = 10, MBB′ = 0.1 TeV,

M2
L = 0.16 TeV2, we plot aN BL

μ in the M2
e versus MBL plane

in the Fig. 7b. The plane is clearly divided into two regions.
The left area is �, showing that aN BL

μ has a decreasing trend
from left to right, and changes significantly with M2

e . � is in

123



Eur. Phys. J. C           (2025) 85:163 Page 9 of 13   163 

Fig. 6 aN BL
μ in tan β − M2

L plane (a), tan β − Te22 plane (b)

Fig. 7 aN BL
μ in M2

e − MBB′ plane (a), M2
e − MBL plane (b)

Fig. 8 aN BL
μ in M2

e − M2
L plane

the range of 1.4 TeV2 < M2
e < 1.52 TeV2, � is in the range

of 1.52 TeV2 < M2
e < 2 TeV2.

With Te22 = 2.4 TeV, tan β = 10, MBB′ = 0.1 TeV,

MBL = 1 TeV, we plot aN BL
μ in the M2

e versus M2
L plane in

the Fig. 8. Most of the area of the image are �, and there are
� in the lower left corner, which is probably distributed in
the range of 1.4 TeV2 < M2

e < 1.55 TeV2 and 0.1 TeV2 <

M2
L < 0.5 TeV2. This is consistent with the trend that aN BL

μ

decrease with the increase of M2
e and M2

L in the previous
images.

5 Conclusion

In this paper, we use the effective Lagrangian method to
research the one-loop diagrams and some important two-loop
diagrams. The studied contributions are composed of one-
loop diagrams, the two-loop Barr-Zee type diagrams with
fermion sub-loop, the two-loop rainbow type diagrams with
fermion sub-loop and the vector bosons(γ, Z, W), the dia-
mond type diagrams in Refs. [41,42] possessing large factors

aμ = a1L
μ + a2L , BZ

μ + a2L , RB
μ + a2L , DI A

μ . (25)

We consider the latest experimental constraints and adjust
the sensitive parameters. In the end, we obtain rich numer-
ical results and interesting one-dimensional and multi-
dimensional scatter plots.

In the one-dimensional graph, we select tan β, Te22, M2
L ,

M2
e , MBB′, gY B to study muon anomalous MDM. Through
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the trend of the two lines, we can conclude that these param-
eters play an important role in aN BL

μ , where M2
e and Te22

have a strong influence on aN BL
μ . In the scatter plot, we

select six parameters tan β, Te22, M2
L , M2

e , MBL and MBB′ .
The characteristics of scatter plot is consistent with the one-
dimensional diagram, indicating that M2

e and tan β have a
strong influence on aN BL

μ . Other parameters also have a sig-
nificant impact, but not as strong as the influence of M2

e and
tan β on aN BL

μ . From the data obtained in the figure, most
numerical results of aN BL

μ are in 2σ, which can compen-
sate the departure between the experiment data and the SM
prediction. In the used parameter space, the Barr-Zee type
two loop contribution to muon anomalous MDM is at the
order of 10−12 ∼ 10−11. The rainbow type two loop contri-
bution and the diamond type two loop contribution are both
at the order of 10−11 ∼ 10−10. The ratio of the Barr-Zee
type two loop contribution to one loop contribution is around
0.1% ∼ 0.4%. The ratio of the rainbow type two loop con-
tribution to one loop contribution is around 0.5% ∼ 6%. The
condition of the diamond type two loop contribution is similar
as that of the rainbow type two loop contribution. Utilizing
the parameter space that we have derived to guide exper-
imental design can help optimize experimental conditions
and increase the likelihood of discovering SUSY particles.
After collecting experimental data, we search for data that
is consistent with theoretical predictions. By comparing the
experimental data with theoretical predictions, we can further
refine the parameter space, thereby enhancing the possibility
of detecting SUSY particles.

It is well known that there are many two-loop diagrams
that contribute to muon anomalous MDM. Some two-loop
diagrams that have not been studied can also give important
corrections to muon anomalous MDM, which can further
improve the theoretical value. Since the calculation of two-
loop diagrams are very complicated, we will study other two-
loop diagrams in future work.
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Appendix A: Mass matrix and coupling in N-B-LSSM

The mass matrix for chargino is:

mχ− =
(

M2
1√
2
g2vμ

1√
2
g2vd

1√
2
λvS

)
. (A1)

This matrix is diagonalized by U and V:

U∗mχ−V † = mdia
χ− . (A2)

The mass matrix for neutrino is:

mν =
(

0 1√
2
vuY T

ν

1√
2
vuYν

√
2vηYχ

)
. (A3)

This matrix is diagonalized by UV :

UV,∗mνU
V,† = mdia

ν . (A4)

m2
A0 =

⎛
⎜⎜⎜⎜⎝

mσdσd mσuσd mσ1σd mσ2σd mσsσd

mσdσu mσuσu mσ1σu mσ2σu mσsσu

mσdσ1 mσuσ1 mσ1σ1 mσ2σ1 mσsσ1

mσdσ2 mσuσ2 mσ1σ2 mσ2σ2 mσsσ2

mσdσs mσuσs mσ1σs mσ2σs mσsσs

⎞
⎟⎟⎟⎟⎠

. (A5)

Equation (A5) is the CP-odd Higgs mass squared matrix,
whose elements are

mσdσd = m2
Hd

+ 1

8

(
(g2

1 + g2
2 + g2

Y B)(v2
d − v2

u)

+ 2gY BgB(v2
η − v2

η̄)
)

+ 1

2
(v2

u + v2
S)|λ|2,

mσdσu = 1√
2
vSTλ +

(
1

2
κv2

S − 1

2
λ2vηvη̄

)
λ,

mσuσu = m2
Hu

+ 1

8

(
(g2

1 + g2
Y B + g2

2)(v2
u − v2

d)

+ 2gY BgB(v2
η̄ − v2

η)
)

+ 1

2
(v2

d + v2
S)|λ|2,

mσ1σ1 = m2
η + 1

4

(
gY BgB(v2

d − v2
u) + 2g2

B(v2
η − v2

η̄)
)

+ 1

2
(v2

η̄ + v2
S)|λ2|2,
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mσ1σ2 = 1

2

(
− vdvuλλ2 + vS(

√
2T2 + vSλ2κ)

)
,

mσ2σ2 = m2
η̄ + 1

4

(
gY BgB(v2

u − v2
d) − 2g2

B(v2
η − v2

η̄)
)

+ 1

2
(v2

η + v2
S)|λ2|2,

mσdσs = −vu

(
vSκλ − 1√

2
Tλ

)
, mσdσ1 = 1

2
vuvη̄λ2λ,

mσuσs = −vd

(
vSκλ − 1√

2
Tλ

)
, mσuσ1 = 1

2
vdvη̄λ2λ,

mσ1σs = −vη̄

(
vSκλ2 − 1√

2
T2

)
, mσdσ2 = 1

2
vuvηλ2λ,

mσ2σs = −vη

(
vSκλ2 − 1√

2
T2)

)
, mσuσ2 = 1

2
vdvηλ2λ,

mσsσs = m2
S + (κv2

S + λ2vηvη̄ + λvdvu)κ

+ 1

2
|λ|2(v2

d + v2
u) + 1

2
|λ2|2(v2

η + v2
η̄) − √

2vSTκ .

(A6)

In the basis (ẽL , ẽR), the mass matrix for slepton is shown
and diagonalized by Z E through the formula Z Em2

ẽ Z
E,† =

mdiag
2,ẽ ,

m2
ẽ =

(
mẽL ẽ∗

L

1√
2
vdT

†
e − 1

2vuλvsY
†
e

1√
2

√
2vdTe − 1

2vuλ
∗vsYe mẽRẽ∗

R

)
,

(A7)

mẽL ẽ∗
L

= m2
L̃

+ 1

8

(
(g2

1 + g2
Y B + gY BgB − g2

2)(v2
d − v2

u)

+ 2(g2
B + gY BgB)(v2

η − v2
η̄)

)
+ v2

d

2
Y 2
e ,

mẽRẽ∗
R

= m2
Ẽ

− 1

8

(
[2(g2

1 + g2
Y B) + gY BgB](v2

d − v2
u)

+ (4gY X gB + 2g2
B)(v2

η − v2
η̄)

)
+ 1

2
v2
dY

2
e . (A8)

The used vertexes in Eq. (12) are:

AR = 1√
2
Z E
k2(g1N

∗
j1 + g2N

∗
j2 + gY B N

∗
j5) − N∗

j3YμZ E
k5,

AL = − 1√
2
Z E
k5[2g1N j1 + (2gY B + gB)N j5] − Y ∗

μZ E
k2N j3,

BL = − 1√
2
U∗
i2Z

I∗
k2Yμ, BR = 1√

2
g2Z

I∗
k2Vi1,

CL = 1√
2
U∗
i2Z

R∗
k2 Yμ, CR = − 1√

2
g2Z

R∗
k2 Vi1. (A9)

Mν =
(

0 υu√
2
(Y T

ν )I J

υu√
2
(Yν)I J

√
2υη̄(Yχ )I J

)
, with I, J = 1, 2, 3.

(A10)

The effective light neutrino mass matrix is in general given
as mef f = −mM−1mT , with

m = 1√
2
vuY

T
ν , M = √

2vηYχ . (A11)

Appendix B: The one loop results in MIA

Using mass insertion approximation method, we calculate
the one loop contribution to muon anomalous MDM in the
N-B-LSSM.

1. Chargino and sneutrino(CP-even and CP-odd) contri-
butions

aμ(ν̃R
L , H̃−, W̃−) = g2

2

2
xμ

√
x2xH tan β[2I1(xH, xν̃R

L
, x2)

− I2(x2, xH, xν̃R
L
)], (B1)

aμ(ν̃ I
L , H̃−, W̃−) = g2

2

2
xμ

√
x2xH tan β[2I1(xH, xν̃R

L
, x2)

− I2(x2, xH, xν̃R
L
)]. (B2)

Here mH = λH vS√
2

and xH = m2
H

�2 .

The one-loop functions I1(x, y, z) and I2(x, y, z) are
defined as

I1(x, y, z) = y − x

(x − y)2(y − z)
+ y log x

(x − y)2(x − z)

+ y(x − 2y + z) log y

(x − y)2(y − z)2 − y log z

(x − z)(y − z)2 , (B3)

I2(x, y, z) = 2z[z3 − 3xyz + xy(x + y)] log z

(x − z)3(y − z)3

+ 2xz log x

(x − y)(x − z)3 + x(y + z) + z(y − 3z)

(x − z)2(y − z)2

− 2yz log y

(x − y)(y − z)3 . (B4)

2. The one-loop contributions from B̃(B̃ ′)–μ̃L–μ̃R .

aμ(μ̃R, μ̃L , B̃) = g2
1xμ

√
x1xH tan β I3(x1, xμ̃L , xμ̃R ),

(B5)

aμ(μ̃R, μ̃L , B̃ ′) = (gY B + gB
2

)(gY B + gB)xμ

×√
xB̃′xH tan βI3 (xB̃′ , xμ̃L , xμ̃R ). (B6)

The one-loop function I3(x, y, z) is

I3(x, y, z) = 2x[x3 − 3xyz + yz(y + z)] log x

(x − y)3(x − z)3

− 2xy log y

(x − y)3(y − z)
+ x(y + z) − 3x2 + yz

(x − y)2(x − z)2

+ 2xz log z

(x − z)3(y − z)
. (B7)
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3. The one-loop contributions from B̃(B̃ ′)–H̃0–μ̃R .

aμ(μ̃R, B̃, H̃0) = −g2
1xμ

√
x1xH tan β I2(x1, xH, xμ̃R ),

(B8)

aμ(μ̃R, B̃ ′, H̃0) = −gY B

(
gY B + gB

2

)
xμ

×√
xB̃′xH tan β I2(xB̃′ , xH, xμ̃R ). (B9)

4. The one-loop contributions from B̃(W̃ 0, B̃ ′)–H̃0–μ̃L .

aμ(μ̃L , H̃0, B̃) = 1

2
g2

1xμ
√
x1xH tan β I2(x1, xH, xμ̃L ),

(B10)

aμ(μ̃L , H̃0, W̃ 0) = −1

2
g2

2xμ
√
x2xH tan β I2(x2, xH, xμ̃L ),

(B11)

aμ(μ̃L , H̃0, B̃ ′) = 1

2
gY B(gY B + gB)xμ

× √
xB̃′xH tan β I2(xB̃′ , xH, xμ̃L ). (B12)

5. The one-loop contributions from B̃ − B̃ ′ − μ̃R − μ̃L .

aμ(μ̃R, μ̃L , B̃, B̃ ′) = g1(4gY B + 3gB)xμ
√
xBB′xH tan β

×
(√

x1xB̃′ f (xB̃′ , x1, xμ̃L , xμ̃R ) − g(xB̃′, x1, xμ̃L , xμ̃R )
)
.

(B13)

The one loop functions f (x, y, z, t) and g(x, y, z, t) are
shown as

f (x, y, z, t) = 1

16π2

[
t[t3 − 3t xy + xy(x + y)] log t

(t − x)3(t − y)3(t − z)

− x[x3 − 3t xz + t z(t + z)] log x

(t − x)3(x − y)(x − z)3

+ y[y3 − 3t yz + t z(t + z)] log y

(t − y)3(x − y)(y − z)3

− z[z3 − 3xyz + xy(x + y)] log z

(t − z)(z − x)3(z − y)3 + 1

2(x − y)

×
( t

(t−x)2(z−x)
− 2y

(t−y)(y−z)2 + x(2t − 3x + z)

(t−x)2(x−z)2

+ t + y

(t − y)2(y − z)

)]
, (B14)

g(x, y, z, t) = 1

16π2

{
− t[t3(x + y) − 3t2xy + x2y2] log t

(t − x)3(t − y)3(t − z)

+ z[x2y2 + xz2(z − 3y) + yz3] log z

(t − z)(z − x)3(z − y)3

+ x2[x3 − 3t xz + t z(t + z)] log x

(t − x)3(x − y)(x − z)3

− y2[y3 − 3t yz + t z(t + z)] log y

(t − y)3(x − y)(y − z)3

− x2(2t − 3x + z)

2(t − x)2(x − y)(x − z)2

+ t x

2(t − x)2(x − y)(x − z)

− y[t (y + z) + y(z − 3y)]
2(t − y)2(y − x)(y − z)2

}
. (B15)

In Eqs. (B1), (B2), (B5), (B6), (B8)–(B13), one can easily

find the factor xμ tan β with xμ = m2
μ

�2 , which is similar as
the MSSM condition. Equations (B6), (B9), (B12), (B13),
include the new gauge coupling constants gB and gY B, which
are beyond MSSM.

Supposing all the masses of the superparticles are almost
degenerate. we also use the following relation to obtain sim-
plified results

M1 = M2 = mH = mμ̃L = mμ̃R = m
ν̃
R,I
L

= mR,I
ν̃R

= |MBB′ | = |MB̃′ | = MSUSY .

Then these one loop functions I1(x, y, z), I2(x, y, z),
I3(x, y, z), f (x, y, z, t), g(x, y, z, t) are much simplified
as

I1(1, 1, 1) = 1

48π2 , I2(1, 1, 1) = 1

96π2 ,

I3(1, 1, 1) = 1

96π2 , f (1, 1, 1, 1) = − 1

240π2 ,

g(1, 1, 1, 1) = − 1

960π2 . (B16)

Using the relations, N-B-LSSM one-loop contributions to
muon g-2 are simplified to a large extent.

a1L
μ 	 1

192π2

m2
μ

M2
SUSY

tan β(5g2
2 + g2

1)

+ 1

192π2

m2
μ

M2
SUSY

tan βsign[MB̃′ ](g2
B + 3gY BgB + g2

Y B)

+ 1

960π2

m2
μ

M2
SUSY

tan βg1(4gY B + 3gB)sign[MBB′ ]

×
(

1 − 4sign[MB̃′ ]
)
. (B17)
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