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1 Introduction and Summary 

The theory for transverse and longitudinal multibunch instabilities is reviewed. The 
coherent beam modes are classified, and the various mode numbers defining the 
coherent modes are explained. Sacherer's longitudinal and transverse growth rate 
formulae are discussed and compared with the commonly used short-bunch 
approximation and Robinson's characteristic equation. Coupling impedances with 
long-range wakes are particular troublesome for the large high-current colliders 
planned for the next decade. These are the higher-order modes of the RF cavities, the 
fundamental mode of the RF cavities, and the transverse resistive wall impedance. 

Table 1. Classification of coherent beam modes 

Longitudinal 

Transverse 

Coasting Beams 
n = azimuthal mode number 
= 1,2,3 .... 

n = azimuthal mode number 
= -~,, ..... -1, 0, 1, 2 .... +~ 
k = phase plane periodicity 
= 1 (dipole), 2 (quadrupole), 
3 (sextupole) .... 

Bunched Beams 
n = coupled bunch mode number 

= 0, 1, 2 .. . .  (M-l) 
m = phase plane periodicity 

= 1 (dipole), 2 (quadrupole), 
3 (sextupole) .... 

(q = radial mode number) 

Mode coupling ~ Single-bunch 
"microwave" instability (turbulence). 
n = coupled bunch mode number 
= 0, 1, 2 .... (M-l) 
m = head-tail mode number 
= .... -2, -1, 0 1, 2 .... 
k = phase plane periodicity 
= 1 (dipole), 2 (quadrupole), 3 
(sextupole), .. 
Mode coupling =~ Single-bunch, fast, 
head-tail instability (turbulence). 
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2 Classification of Coherent Beam Modes 

Coherent beam modes are classified according to whether the coherent beam motion 
is longitudinal or transverse, and according to whether the beam is bunched or 
debunched (coasting beam), Table 1. In this way four main classes of coherent beam 
modes are defined. Beams are of course always bunched in e+/e- rings due to 
synchrotron radiation, but it is useful to classify the beam modes in this general way. 

The complexity of the beam motion increases from longitudinal to transverse, and 
from coasting to bunched, such that the mode description requires an increasing 
number of mode numbers. 

3 Longitudinal Bunched-Beam Modes 

The general theory for coherent bunched beam modes and their interaction with the 
environment is due to Sacherer [1][2][3]. Basically two mode numbers describe the 
motion (see Fig. 1). The coupled bunch mode number n is defined as the number of 
waves of coherent motion per revolution, and resembles therefore the azimuthal 
mode number for coasting beams. 

For bunched beams with M equidistant bunches, the bunch-to-bunch phase shift 
A¢ is related to the coupled bunch mode number n by A~ = 2rcn/M. There are M 
coupled bunch modes numbered from 0 to (M-l). This is in contrast to the azimuthal 

! A m -  1 ~ 
/i 4 

Afro I ,  

WrlNn-bunch mode number rn: 
m - 1,2,8 . . . .  number of periods 
of density modulation per 2 z 
synchrotron phase advance 

Coupled bunch mode number n: 
n = O, 1 .... (M-l) = waves/revolution 
Bunch-to-bunch phase shift: 
~=2=rdV 

Fig. 1. Longitudinal bunched-beam modes 

mode number for coasting 
beams, where there is an 
infinite number of modes. 

The within-bunch mode 
number m is the number 
of periods of phase space 
density modulation per 
synchrotron period in the 
longitudinal phase plane. 
The lowest mode number 
is m = 1, which 
corresponds to the dipole 
mode, m = 2  is the 
quadrupole mode, m = 3 is 
the sextupole mode and so 

on. The line density is the projection of the phase space distribution on the time axis. 
The observed pattern for a given bunch oscillates with m times the synchrotron 
frequency, and the pattern has m nodes along the bunch (see Fig. 1). 

The theory for longitudinal bunched beam mode interactions [4][5] contains in 
addition a radial mode number q = m, m+2 ..... which is describing an infinity of 
orthogonal radial modes with different density variations versus synchrotron 
amplitude (-- radius). The first higher-order radial mode q = 3 for the dipole mode 
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m q  5ms 

Dipole ~iode Quadrupole mode Sexzz:ole node ~cZJ~o:e -Dee 

Fig. 2. Within bunch modes m = 1 to 4, coupled-bunch pattern n = 4. a) Mountain-range 
display of one synchrolron period; b) Superimposed; c) Phase space. 

(m = 1) has thus a line density pattern which looks like a sextupole mode (m = 3), 
but it oscillates with the synchrotron frequency and not three times this frequency. 
Normally only the lowest radial mode is observed. This is probably due to the fact 
that the higher radial modes have higher Landau damping thresholds [5]. 

An example of various different coupled bunch modes observed in the CERN PS 
Booster (M = 5, n = 4, m = 1 to 4) is shown on Fig. 2. Note the bunch-to-bunch 

phase shift of the coherent motion of 

I = Xo(t) + Xm(t) 
, -  

-.l "rL p- m = 2 

Fig. 3. Stationary and oscillating 
part of line density 

A?p = 360°*n/M = 288 ° = -72 °. 
It is apparent from figures 1 and 2 that the line 

density ~ 0  or current I(0 = e ~t)  of a bunch can 
be decomposed into two parts, the stationary 
distribution ~ ( 0  plus an additional charge density 
Xm(O oscillating at m times the synchrotron 
frequency. The oscillating part Xm(t ) is an 

approximately sinusoidal standing-wave pattern with m fixed nodes along the bunch 
(Fig. 3). 

By taking the Fourier transform of the bunch current I(t), we get the frequency 
spectrum of the modes. It is a line spectrum, and the line frequencies for mode (n,m) 
are-" 

fnm,p = (n + pn ) fo  + mf s - 0~ < p < +,~, (1) 

where f0 is the revolution frequency, .fs is the synchrotron frequency, and p is an 
integer assuming both negative and positive values. It is convenient from a 
mathematical point of view to let the frequencies fnm,.9 assume both positive and 
negative values, although physically a frequency is always a positive quantity. 



272 

Bunch frequency harmonics 

M = 4 ~ "~ .  Unequal bunch Iines'~. 

n - 3 1  2 2 1 3  oTo 3 ~ 2  13  oTo 
,,ltT ltl ltT lit ltl ltl ltT 111 

n -  3 1 
m,,321 1 23 

Ill/IN, 
I -.4 b---f s 

Fig. 4. The line spectrum of longitudinal bunched beam 
modes 

This line spectrum is 
depicted graphically (see Fig 
4), where the mode lines 
originating from negative 
values of fnmt, (lower 
sidebands) are 'Shown as 
downward pointing arrows, 
while mode lines originating 
from positive values (upper 
sidebands) are shown pointing 
up. The spectral lines given by 
equation ( 1 ) are those 
associated with the coherent 
motion or the oscillating part 
of the bunch t.m(t ). In addition 

there are lines associated with the stationary bunch spectrum or ~(t) .  There are 
strong lines at the bunch frequency Mfo and harmonics thereof. In practice the M 
bunches will have slightly different intensifies or there might be a gap in the bunch 
train, which causes spectral lines of lower amplitude to appear at the intermediate 

revolution harmonics. 
Each bunched beam mode 

(m,n) has thus two lines 
appearing within each band 
Mfo wide between two bunch 
frequency harmonics, one 
pointing up and one pointing 
down. Each mode has therefore 
a large number of spectral 
lines. The envelope or the 
relative amplitude of those 
lines depends upon the within- 
bunch mode number m and the 
bunch length 'c L. Fig. 5. Observed spectrum for mode n = 3, m = 4 in the 

CERN PSB. Bandwidth 300 kHz, range 0 - 50 MHz, An example of a measured 
linear scale, bunch length x L = 66 ns. longitudinal mode spectrum 

from the CERN PS Booster [3] 
is shown on Fig. 5 ( M = 5 ,  

n = 3, m = 4, octupole mode). Both coherent mode lines, bunch frequency harmonics, 
and unequal bunch lines are clearly seen. 

3.1 Sacherer's Formula for Longitudinal Bunched Beam Modes 

Due to electromagnetic interactions with the beam environment quantitatively 
described by the longitudinal coupling impedance ZL((O ), the coherent mode 
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frequencies are shifted a complex quantity AC0mn away from their low intensity 
values. This shift is obtained by a weighted sum (factor FmffpXi.)) of the coupling 
impedance ZL(COp) sampled at all those frequencies ¢0p = 2 gfp that corresponds to a 
mode line (see Fig. 4, equation (1)) of mode (m,n), Sacherer's formula [1][2][3]: 

Ao~,nn = jo~s m I ZL (fp)  
m + l  3B~hVcosOps ~, Fm(fp 'TL) p+'-----'~ (2) 

P 

where o~ s is the synchrotron frequency, I is the total beam current in M bunches, B 0 
the bunching factor (='ct/T0,,where T O = lifo is the revolution period), h the 
harmonic number, V the total RF voltage, ~s is the synchronous phase angle with the 
convention that V sin~p s is the energy gain per turn, ~s < 90° below transition, 
#Ps > 90° above transition, and x L the full bunch length. The form factor F m is the 
normalised power spectrum of the perturbed part ~m(t) of the line density ~(t): 

Fm(fp'r,L)= 1 (~m(P)[ 2 m ( 3 )  

MBo E ] ~ m ( p l  2 

P 

~t~rt b~oh approxln~on, m - I 
. - Trmcr~t~ , "  = A, . .  / Slnusold¢ mode8 with m+l helf-wav~ength¢l 
U.UT i / m  = 1 . ~  2 3 4 along bunch 

°'T// \ o.,.// / ,,x,. A \ 

1 2 3 

Fig. 6. Sinusoidal mode form factors (from [3]) and 
short bunch approximation 

where ~m(P) is the Fourier 
transform of the perturbed part 
Xm(t) of the line density and M 
the number of equidistant 
bunches. For the sinusoidal 
type modes shown on Fig. 3, 
the form factors Fm(f~L) are 
plotted on Fig. 6. 

The growth rate of mode 
(m,n) is -Im{Ac0,,m} which is 
related to the real part of the 

coupling impedance ZL(O~ ). The real coherent frequency shift of mode (m,n) is 
Re{AC0mn.}, which is related to the imaginary part of the coupling impedance. 

3.2 Discussion of Sacherer's Longitudinal Bunched Beam Formula 

The real part of the coupling impedance ZL(co ) is symmetric, (Re{ZL(co)} = 
Re{ZL(-co)} ), so contributions to the sum in (2) associated with negative and positive 
values offp (mode lines pointing down and up on Fig. 4) enter with opposite signs 
due to the factor 1/(p÷n). Broad-band and resonant impedances with bandwidths 
larger than the bunch frequency Mfo (decay time less than bunch separation) do 
therefore not cause any growth or damping rate. Each mode has two mode lines in 
each band between two bunch frequency harmonics, and their contributions to the 
sum of (2) tend to cancel each other. 
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For resonant impedances with bandwidths smaller than the bunch frequency Mfo 
(decay time longer than bunch separation), a single mode line for each mode 
dominates in the sum and one or several coupled-bunch modes grow. The growth 
rate is proportional to the total current I in M bunches, and independent of the 
number of bunches unless the bunch frequency is low enough to get partial 
cancellation from another mode line of the same mode falling within the resonator 
bandwidth. 

The signs in (2) are such that upper sidebands are unstable above transition, and 
lower sidebands are stable (assuming passive coupling impedances: Re{ZL} > 0). 
The opposite is true below transition. For M _> 3 upper and lower sidebands belong to 
different coupled-bunch modes (except for n = 0 and M/2) so a resonator will drive 
one mode n 1 and damp the other complementary mode nl-M. For a single bunch, or 
two bunches, upper and lower sidebands belong to the same coupled-bunch mode 
and therefore tend to cancel unless the impedance is very narrow-band (such as the 
fundamental RF resonance) and tuned asymmetrically with respect to the frequencies 

with mirror symmetry such as PMfo or (p+~)Mfo. 
The imaginary part of the coupling impedance ZL(CO ) is anti symmetric, 

(Im{ZL(CO)} =-Im{ZL(-CO)}, so contributions to the sum in (2) associated with 
negative and positive values offp (mode lines pointing down and up on Fig. 4) add 
up, so even a broad-band impedance can produce a substantial real frequency shift 
due to its imaginary part. For the special case of inductive-wall or space-charge 
impedance, where Im {ZL(COp)/p} is constant below a certain frequency, we can move 
ZL(COp)/p outside the summation, and we get for the real coherent frequency shift: 

I Im{ZL i (4) 
Acoln =-Co s 6B3MhVcosC~s P 

This is the coherent shift relative to the incoherent frequency ¢0 s as given by the total 
voltage V including the inductive-wall contribution itself. The expression agrees with 
the expression given in [6] except for a factor (n/3)2 = 1.097. It is a single-bunch, 
short-range wake effect where all coupled-bunch modes n have the same shift, which 
is the same as saying that all individual bunches have their coherent frequencies 
shifted the same amount. As expected, the shift is proportional to the current per 
bunch I/M. 

3.3 Turbulent Bunch Lengthening and Longitudinal Mode Coupling 

For sufficiently high currents (or sufficiently high impedances), single bunches can 
become unstable, as was fh'st observed by Boussard [7]. The instability is usually 
called the microwave instability in proton rings due to the high frequencies involved, 
or turbulent bunch lengthening in electron rings, probably d u e  to difficulties 
involved in observing the even higher frequencies involved in electron rings. The 
instability threshold is given by the Keil-Schnell criterion [8] for coasting beams, but 
with local values of bunch current and momentum spread as suggested by Boussard. 
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It was shown by Sacherer [2], that this threshold is consistent with the mode 
coupling threshold for two higher order longitudinal modes m and m+ 1, as the real 
frequency shifts associated with the imaginary part of the coupling impedance cause 
their frequencies to cross. The mode coupling theory gives a more precise 
information about the threshold dependence upon resonator bandwidth than the 
Boussard criterion. 

3.4 Short Bunch Approximation for Dipole Modes 

Bunches in e+/e- rings are often so short that the frequencies of interest below the 
vacuum pipe cut-off frequency are below the peak of F 1. In this case the complex 
coherent frequency shift for the dipole mode m = 1 can be simplified to: 

A°31n = - J 2  ~ E l e  E fPZL( fP)  (5) 
• Qs~ ( ) p 

where r I = 1/~/t 2 -1/~/2, I is the total beam current, Qs = ¢°sl°~o is the longitudinal 

tune, E is the total energy, e the fundamental charge, 13 and ~, the usual relativistic 
parameters, and ~/t is the transition energy. Note that the form factor F 1 does not 
appear in this equation. By using the expression for the synchrotron frequency cos: 

. . . .  [ - ~ h v c o s ¢ ,  
m s - w 0 ~ ~  (6) 

and equating the coherent shifts given by equation (5) and (2) we get an expression 
for the rigid dipole mode form factor F 1 implied in equation (5): 

F1 (f~L) = 3(p + n) 2 B02 = 3(fxt.)2 (7) 

which is plotted on Fig. 6 together with the form factor for the sinusoidal modes. It 
corresponds to the initial parabolic behaviour of FI(fXL), and is a valid 
approximation forflL << 0.5. 

It is seen from Fig. 6, that the form factor corresponding to the short bunch 
formula (5) is slightly higher than the form factor computed from sinusoidal modes. 
This is because the sinusoidal modes assumed are slightly different from the rigid 
bunch motion assumed in (5). 

4 Longitudinal Coupling Impedances 

Longitudinal coupling impedances can be subdivided into short-range-wake or 
broad-band impedances (bandwidth > Mfo), which have identical effects on all 
bunches and on all coupled-bunch modes n, and long range wake or narrow band 
impedances (bandwidth < Mfo ) which have very different effects on the different 
coupled bunch modes n due to the line structure of the spectrum. Note that the 
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dividing criterion depends on the bunch frequency Mfo or bunch separation 1/Mfo" 
since the crucial point is whether the wake decays in the bunch interval. 

Broad-band impedances are responsible for single-bunch effects, which have 
thresholds related to current per bunch, and where each bunch behaves 
independently of the others. Narrow-band impedances are responsible for multibunch 
effects, where the thresholds are related to total current, and the coupled-bunch mode 
number is important. 

Next generation, high-current colliders (B, tau/charm and phi factories) typically 
have very high bunch frequencies, and even fairly well damped broad band 
resonators have significant long-range multibunch effects. 

4.1 Parasitic Higher Order Modes 

RF cavities are often the major source of long-range, narrow-band coupling 
impedances due to undesired higher-order modes (HOM's) between the fundamental 
RF resonance and the vacuum pipe cut-off frequency. For low total current and low 
bunch frequencies, it is usually possible to lower the Q and the shunt impedance of 
these cavities to a level where the coupled-bunch growth rates are below the 
synchrotron radiation damping rate. 

For high-current colliders, sophisticated HOM damping schemes [9] are required 
to damp the higher-order modes by more than two orders of magnitude without 
significantly affecting the fundamental mode. Usually one or several wave guides 
with a cut-off frequency between the fundamental RF cavity resonance and the lowest 
frequency higher-order mode form a high-pass filter between the RF cavity and the 
HOM loads, both for normal conducting cavities [10][11] and superconducting 
cavities [12], where an enlarged portion of the beam pipe is used as a HOM wave 
guide. 

Even with a sophisticated HOM damping scheme, the residual shunt impedance 
may still be large enough to cause longitudinal dipole-mode growth rates in excess of 
the synchrotron radiation damping rate, and a multibunch feedback system is 
required to stabilise all the modes. Operating with a high RF voltage, as required to 
obtain short bunches, appears to make the growth rate smaller (¢0s-1 scaling, 
equation (5)), but does in fact make it worse, as the total resonant HOM impedance 
Z L is proportional to the number of cavities. 

If the bandwidth of the HOM's is large compared with the synchrotron frequency, 
about half the coupled-bunch modes are unstable as discussed above. For one or two 
bunches growth rates are small due to cancellation, since upper and lower sidebands 
at each harmonic belong to the same mode n. For small rings with high synchrotron 
tune and little or no HOM damping, the HOM bandwidths may become small 
compared to the synchrotron frequency, and cancellation is no longer effective. This 
is the case for the SLC damping rings [13], where HOM's of the accelerating cavities 
drive the n = 1 mode (M = 2), also called the rc mode, unstable. This fact can also be 
used with advantage to passively damp the instability. The instability has been cured 
by adding a passive cavity, tuned to interact mainly with the a lower sideband of the 
n = 1 mode. 
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4.2 Fundamental Resonance of RF Cavities 

For small rings, the fundamental resonance interacts only with the n = 0 mode, 
which is easily stabilised (at least for electron rings with no complex RF feedback 
loops) by an appropriate tuning of the RF cavity. For large rings with high beam 
currents, other coupled-bunch dipole modes (n = M - 1, M - 2, etc.) may be driven 
unstable. 

4.2.1 The Robinson Criterion and the n = 0, m = 1 Mode 

A complete analysis of the stability of the interaction between the n = 0 dipole mode 
of the beam and the fundamental resonance of the RF cavity (without feedback) was 
first described by Robinson [14], and results in a characteristic equation of fourth 
order. The stability criterion can be solved analytically, and above transition we get" 

210 cosCs < sin2¢z < 0 (8) 
IB 

where I 0 is the peak value of RF current required to drive the cavity to the operating 
voltage when in tune (the loss curren0, I B = 2 1 is the peak value of the fundamental 
RF component of the beam current, which for short bunches equals twice the beam 
1)(2 current I, and CZ the impedance angle of the cavity impedance at the operating 
RF frequency. The notation used here is slightly different from the one used in 
Robinson's original paper. The two regions of instability corresponding to the two 

inequalities in (8) are 
. . . . . . . . . . . . . .  ~.IB/I ° "/////////////; depicted graphically on 

~ ' ~ r o '  frequency~-~ 4 ~ / / ~ / : / y ~ / / ~  Fig. 7. 
For low currents the 

~ ~ / ~  ~ growth rate that is 
~ i ~  obtained from Robinson's 
a ~ characteristic equation by 

a root perturbation 
technique is in perfect 

~PS=I~*N~ [Detunlngfor~ ~ _ ~ ~  ~/. agreement with the short 
: '  ~,~!, R e ~ n  ) ~ Growing 
I Darn.ped. ] ~.~---~ ~----"1"~ b"ynchmtron ~/ bunch formula (S). If the 
I Synchrotron I ~ \ \  ' ~ Oscillations P'~ cavity is tuned exactly to 
~oscilla,t~J . ~ ~z the operating RF 

-~" - ~  -4'0" -20" 20" 40" so "~ frequency, the symmetry 
in the real part of the 

Fig. 7. Zones of instability versus normalised beam loading cavity impedance causes a 
ln/lo, and cavity impedance angle (~z = Arg(ZL) perfect cancellation of the 

contributions from upper 
and lower sidebands, so no growth rate is induced of the n = 0, m = 1 mode. Since 
the imaginary part of the impedance is anti symmetric around the RF frequency, 
there is no real frequency shift either. By detuning the cavity below the operating RF 
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frequency (above transition) this mode is damped. This corresponds to satisfying the 
right hand inequality in (8). 

Since the fundamental of the beam current is out of phase with the voltage, the 
beam load represents a partly reactive load to the RF source, which results in an 
unnecessary increased power demand from the RF source. By detuning the RF cavity 
such that a real total load (beam plus cavity) is presented to the RF source, less 
power is needed. This optimum detuning is usually done automatically by a tuning 
loop. It is fortunate that the signs are such that this detuning is always to the same 
side as that which produces damping of the n = 0 mode. At high current a 
zero-frequency instability occurs even if the cavity is detuned to the 'stable' side. 
This instability threshold corresponds to the left hand side of the Robinson criterion 
(8). This instability occurs (for optimum detuning) when the beam power equals or 
exceeds the dissipated power in the cavity (including the equivalent loss in the RF 
source impedance). If the power source is back matched (e. g. circulator in 
transmission line), the RF power source is matched to the total load (beam plus 
cavity), and the cavity optimally detuned (real total load) the system is in principle 
always stable against small transients, although not by a large margin if the beam 
power is significant. 

The stability margin can be increased by increasing the detuning beyond optimum 
detuning, and by adjusting the power source to cavity RF coupling above optimum 
coupling (overcoupling). 

4.2.2 Coupled Bunch Modes n ~e 0 Driven by the Detuned Fundamental 
Resonance 

As mentioned above, it is essential to detune the cavity to compensate for the reactive 
part of the beam load to minimise the required RF power. The optimum detuning 
Afd o normalised to the revolution frequency f0 is given by: 

Afao _ IBcosCs O 
fo 2Vc ( - ) h  (9) 

where I B = 21 is the peak value of the fundamental RF component of the beam 
current, V c is the cavity voltage per cell, Cs is the synchronous phase angle as 
previously defined, RIQ is the shunt impedance over quality factor of a cavity cell 
(using the usual electrical engineering convention where P = V2/(2 R)), and h the 
harmonic number. This value has been calculated for a number of medium to large 
high-current synchrotrons (Table 2). All of these rings are at present either in the 
design stage or under construction. 

The fundamental RF resonance is likely to create a serious instability problem for 
the n = M- 1, M-  2, .. modes if the cavity detuning is in the same order of 
magnitude as the revolution frequency or larger. It is seen from equation (9) that this 
is likely to happen for large h (large ring, high RF frequency), high RIQ value (low 
stored energy), high beam current, and at low voltage per cell. Using 
superconducting cavities, which have a high voltage per cell and a low R/Q, tend to 
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Table 2. Normalised optimum dettming for reactive beam load compensation 

Machine la[Ap] 

4.28 

vc V, Vp] 
925 

R/Q [f~], 

3'492 

Afdfo 
0.93 PEP II 117 

CESR B 3.96 3000 45 1'275 0.038 
KEK B-fact. n/c 5.2 390 98 5'120 3.34 
KEK B-fact. s/c 5.2 2750 43 5'120 0.21 
SSC collider 0.14 500 125 104'544 1.77 
SSC HEB 0.90 325 150 2'178 0.45 
LHC 1.70 1500 43 36'540 0.89 
KAON C 5.6 100 100 225 0.63 

100 KAON D 225 50 5.6 1.26 

reduce the problem as is apparent from the three rings in the table above with 
superconducting cavities (CESR B, KEK s/c, and LHC). This also helps to solve 
problems associated with transients induced by beam gaps [15]. 

The growth rate can be very large. For the PEP II LER (low energy ling) for 
example it is the same order of magnitude as the synchrotron frequency, and almost 
three orders of magnitude larger than the radiation damping rate. 

An obvious solution to the coupled-bunch problem would be not to detune the 
cavities, such that the cavity impedance is symmetric around the RF frequency. In 
most cases with heavy beam loading, the required extra RF power due to the large 
amounts of reflected power makes this solution unattractive. In addition the stable 
zone near the Cz = 0 axis is very narrow (Fig. 7), and the required tuning tolerances 
difficult to achieve, as a rather precise RF vector sum representing the total RF 
current injected into the cavity must be made. 

Reducing the shunt impedance by loading, as used for the parasitic higher-order 
modes, is also totally unacceptable due to large amounts of wasted power. The most 
attractive solution is to apply RF cavity feedback [16][17][18], by which the apparent 
beam impedance of the RF system can be reduced several orders of magnitude. 

Another solution being considered for the KEK B factory is to substantially lower 
the R/Q of a normal conducting cavity by coupling it to a storage cavity operating in 
a very high Q mode such that the lower R/Q is achieved without much loss in shunt 
impedance [19]. 

5 Transverse Bunched-Beam Modes 

The theory for the transverse coherent bunched-beam modes (Table 1, Fig. 8) and 
their interactions with the environment were again first described in its most general 
form by Sacherer [20][21]. As in the longitudinal case there are M coupled bunch 
modes characterised by the integer number of waves n of the coherent bunch motion 
around the ring. The coupled-bunch mode number therefore resembles the azimuthal 
mode number n for coasting beams. 
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m - o  s" ~ ' x ~ " ~ x  . 
II I % f 

° . . ,  

m -  .,-~' , f~/VX 

Wlllhi'l-lmneh mode number m: 
m . . . .  - l ,  -1, O, 1,2,., - nurrlblr of 
lilCilamn l lve l l ingl tu l  (with/On) 

Coupled bunch mode number n: 
n - O, 1, ... ~ - 1 )  - waves/revolution 
E r r S - t o - b u s h  phase shin: 
b t - 2 x a ~  

Fig. 8. Transverse bunched beam modes. 

For bunched beams with 
M equidistant bunches, the 
bunch-to-bunch phase shift 
A4) is related to the 
coupled-bunch mode  
number n by A~ = 2rm/M. 
There are M coupled-bunch 
modes numbered from 0 to 
(M-l). This is in contrast to 
the azimuthal mode 
number for coasting beams, 
,where there is an infinite 
number of modes. 

The within-bunch mode number m (also called the head-tail mode number) is the 
net number of betatron wavelengths (with sign) per synchrotron period at a given 
instant. At any given instant, a closed pattern of Iml betatron periods corresponds to 
one synchrotron period with the betatron phase either advancing (m > 0) or retarding 
(m < 0) in the direction of advancing synchrotron phase. Unlike the longitudinal case 
the mode number m can thus assume both positive and negative integer values as 
well as zero. For m = 0 all particles in the bunch have the same betatron phase for 
zero chromaticity. The relation between longitudinal phase space co-ordinates 
(AE, At) and transverse motion is depicted for zero chromaticity on the 3-D surface 
plots on Figs. 9 and 10, as well as the directly observable average displacement along 
the bunch. 
There are Iml nodes along the bunch. The transverse displacements for various 
energies at those positions along the bunch continue to average out to zero, so no 

. . . . .  X = 0 -''-'1~'~' r a  = -1 X = 0 m =+1 X = 0 

Fig. 9. Modes m = 0, -1, +1 for zero chromaticity. Surface plots indicating transverse 
displacement times particle density in longitudinal phase plane as function of longitudinal 
phase space co-ordinates At (left/right), and AE (front/back) for three successive values of 
betatron phase. Top trace is average transverse displacement times line density as observed by 
the A-signal of a transverse pick-up. 
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Fig. 10. Modes m = 0, -2, +2 for zero chromaticity 

average displacement is observed on a pick-up, although there is much coherent 
transverse motion at different energies. The betatron phase pattern in the 
longitudinal phase plane appears to rotate either clockwise or counter-clockwise 
depending upon the sign of m. These two different senses of rotation are not 
immediately apparent from the observable, projected distribution, as they appear 
identical for mode m = +1, and mode m = -1. The difference is however apparent in 
the frequency domain, since the corresponding mode lines have slightly different 
frequencies, as the synchrotron frequency in one case is added to the betatron 
frequency, and in the other case subtracted. 

For non-zero chromaticity ~ there is a tune modulation AQ associated with the 
momentum modulation Ap as a particle moves around the synchrotron orbit given 
by: 
&Q 

= t Ap (lO) 
Q p 

This tune modulation results in a betatron phase advance X during one half of the 
synchrotron period as the particle moves from head to tail of the bunch. This is 
compensated by a betatron phase retard -X during the other half of the synchrotron 
period as the particle moves back from tail to head. The head-tail phase advance is 
proportional to the synchrotron amplitude and has its largest value for a particle with 
a synchrotron amplitude corresponding to the bunch length "c L, and is given by 

X =~QCOo'CL (I1) 

where ~=l/'~tz-1/~[ 2, ~ is the chromaticity as defined above, and 00 o is the 
revolution frequency 

This chromaticity dependent phase modulation is then superimposed upon the 
betatron phase pattern given by the mode number m, see Fig. 11. It is seen that the 
average transverse displacement signal contains the same Iml nodes as with zero 
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m=O "--->" '"X= 5 18o* m = + l  X=5  m=+2 X=5  

Fig. 11. Modes m = 0, +1, and +2 for a head-tail phase advance of Z = 5 radians. Surface 
plots indicating transverse displacement times particle density in longitudinal phase plane as 
function of longitudinal phase space co-ordinates At (left/right), and AE (front/back) for three 
successive values of betatron phase. Top trace is average transverse displacement times line 
density as observed by the A-signal of a transverse pick-up. 

chromaticity, and that a travelling-wave component is added to the standing-wave 
patterns observed for zero chromaticity. 

Average transverse displacements superimposed and turn by turn mountain range 
displays are shown on Fig. 13 for three different chromaticities and for modes m = 0, 
+1, and +2. An example of several different vertical bunched-beam modes observed 
in the CERN PSB is shown on Fig. 12. 

In addition (see Table 1) there is a third 
2 (quadrupole), 3 (sextupole), etc. which is the 

m = 2  

~v = 0 

Fig. 12. Vertical head-tail modes observed in the CERN PS 
Booster. 

mode number k=  1 (dipole), 
number of periods of density 

modulation per betatron 
period. In general, and as 
assumed in the preceding 
discussion, the dipole 
modes (k= 1) with one 
period of density 
modulation are observed. 
This corresponds to 
transverse displacements 
of the beam. The 
quadrupole modes (k = 2) 
corresponding to coherent 
beam width oscillations 
only interact very weakly 
with the vacuum chamber 
environment. The situation 
is different for very 
localised interactions such 
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m=O X=5 m= l  X=5 m=2 X=5 

m=O X=9 m=l  X=9 m=2 X=9 
~ - -  ~.~.. " ~--. ";',~-. .~.-'~". .t~ "~-'-, t'-~-"~.. 

~ < . . <  y. ."<. x ~ .'- . . . . .  
• ~ . . ~ /  ~ . - , . , ~ .  

Fig. 13, A-signal of a single bunch versus time on separate revolutions for three different 
chromaticities, modes m = 0, +1, +2. Upper traces: every fourth turn, superimposed. Lower 
traces: every turn, mountain range display. Fractional tune: q = 0.0417, 15 ° phase advance 
per turn. 

as coherent beam-ion [22] and coherent beam-beam interactions [23][24]. Transverse 
coherent beam-ion quadrupolar instabilities have been observed with coasting 
antiproton beams in the CERN AA [25], and can be expected to occur for bunched 
beams as well. A quadrupolar pick-up is required to observe such modes. 

By taking the Fourier transform of the average transverse displacement times the 
bunch current (the signal seen by the &-signal of a transverse pick-up for dipole 
modes k = 1), we get the frequency spectrum of the modes. It is a line spectrum, and 
the line frequencies for mode (n, m, k) are: 

fnrnk, p = ( n + P g + k Q ) f o + r a f s  - o o < p < o o  (12) 

where f0 is the revolution frequency, f s  is the synchrotron frequency, and p is an 
integer assuming both negative and positive values. It is convenient from a 
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Fig. 14. The line spectrum of transverse bunched-beam 
modes 

mathematical point of 
view to let the frequencies 
fnmk,p assume both positive 
and negative values, 
although physically a 
frequency is always a 
positive quantity. 

This line spectrum is 
depicted graphically for 
dipole modes (k= 1) on 
Fig. 14, where the mode 
lines originating from 
negative values of f ,~ ,p  
are shown as downward 
pointing arrows, while 

mode lines originating from positive values are shown pointing up. Each betatron 
line splits up into several lines corresponding to the different within-bunch mode 
numbers m and separated by the synchrotron frequency as given by equation (12) and 
shown on Fig. 14. The envelope shown corresponds to mode m = 0. These spectral 
lines are those associated with the coherent motion of the bunches. In practice the 
beam will never pass exactly through the electrical centre of the pick-up, and 
additional lines associated with the stationary bunch spectrum will be observed, like 
the bunch frequency Mfo and harmonics thereof. 

~ m ~  . 

I ; ' : : .,~ • . , o , o , 

Fig. 15. Power-spectrum envelopes for modes m = 0 to 3 for 
zero chromaticity. 

Each bunched-beam 
mode (m,n) has thus two 
lines appearing within 
each band Mfo wide 
between two bunch 
frequency harmonics, one 
pointing up and one 
pointing down. Each mode 
has therefore a large 
number of spectral lines. 

The envelope or the 
relative amplitude of those 
lines depends upon the 
within-bunch mode 
number m, the bunch 
length "cz,, and the 
chromaticity ~. The power 
spectrum envelopes hm(o) ) 

for zero chromaticity are shown on Fig. 15. The width of the envelope is inversely 
proportional to the bunch length "c L. The chromaticity ~ will shift the centre 
frequency of those envelopes to the chromatic frequency o)~ given by" 
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co¢=~Q O=ZIXL 

where all symbols have been defined previously. 

(13) 

5.1 Sacherer's Formula for Transverse Bunched-Beam Modes 

Due to electromagnetic interactions with the beam environment quantitatively 
described by the transverse coupling impedance Z./(0~), the coherent mode 
frequencies are shifted a complex quantity A(Omn away from their low-intensity 
values. This shift is obtained by a weighted sum (hm(O~)) of the coupling impedance 
ZT(tOp) sampled at all those frequencies that corresponds to a mode line (see Fig. 14, 
equation (12)) of mode (m,n), Sacherer's formula [20][21]: 

ZT ( % ) h m ( %  - 
ACOm,,t = ~ je~I° P (14) 

m + l  2Q(o0Ym0L ~.,hm(OJp -o)~ ) 
p 

where [~ and y are the usual relativistic parameters, e the electron charge, m o the 
particle rest mass, I 0 the current per bunch and Z T the 0ransverse coupling impedance 
in ohms/m. 

The growth rate of mode (re,n) is -Im{A0~mn } which is related to the real part of 
the coupling impedance ZT(0) ). The real coherent frequency shift of mode (m,n) is 
Re {AfOmn }, which is related to the imaginary part of the coupling impedance. 

5.2 Discussion of Sacherer's Transverse Bunched-Beam Formula 

The real part of the transverse coupling impedance has odd symmetry: 
Re{ZT(CO)} = -Re{ZT(-O))} and Re{ZT(C0)} > 0 for co > 0 for passive impedances. The 
negative mode lines contribute therefore to growth in (14) while the positive mode 
lines contribute to damping. For zero chromaticity there is therefore cancellation of 
positive and negative frequency contributions for 'broad-band impedances and 
resonant impedances with bandwidths larger than the bunch frequency Mfo (decay 
time less than the bunch separation) similarly to the longitudinal case. 

For non-zero chromaticity the cancellation for broad-band impedances is no longer 
effective, as the power spectrum envelopes hm(O~ - o)~) are shifted in frequency by 
o)~.. For the naturally negative chromaticity above transition o~ is negative, so all 
coupled-bunch modes n are driven unstable by the real part of the broad-band (short 
range) coupling impedance. This is the so-called "head-lair' effect and is a 
single-bunch effect proportional to the current per bunch. This effect can also be 
used with advantage to damp the instabilities by correcting the chromaticity to a 
positive value thus achieving a passive damping of all bunches and thus all 
coupled-bunch modes. 
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Fig. 16. Mode spectra for mode m = 0 and positive 
chromaticity (above transition) for typical examples of 
transverse coupling impedances with long-range wake. Top: 
Thick-wall, resistive-wall impedance; middle: same plus 
broad-band, high-frequency, coupling impedance; bottom: 
resonant narrow-band impedance. 

For resonant impedances 
with bandwidths smaller 
than the bunch frequency 
Mfo (decay time longer 
than bunch separation), a 
single mode line for each 
mode dominates in the 
sum and one or several 
coupled-bunch modes are 
growing. The growth rate 
is proportional to the total 
current I in M bunches, 
and independent of the 
number of bunches unless 
the bunch frequency is low 
enough to get partial 
cancellation from another 
mode line of the same 
mode falling within the 
resonator bandwidth. 

Some typical examples 
to illustrate this folding of 
the mode line spectrum 
with the frequency 
response of the coupling 

impedance are shown on Fig. 16 for a slightly positive chromaticity. On the top 
figure the long-range wake from the resistive-wall impedance drives the n = 1, m =0 
mode unstable, on the middle figure this mode is stabilised by the broad-band 
(single-bunch) interaction with the high-frequency impedance thanks to a positive 
o)~. On the bottom figure a narrow-band resonator drives the n = 3, m = 0 mode 
unstable. 

For a low number of bunches M the damping effect due to the head-tail effect and a 
positive chromaticity (above Vansition) may be effective in damping multibunch 
instabilities. This is much less so for large M as the damping effect is proportional to 
the single-bunch current while the growth rate due to a long-range wake (resistive 
wall or resonator) is proportional to the total circulating current. 

5.3 Transverse Mode Coupling 

In the transverse case the imaginary part of Z T has even symmetry, 
Im{ZT(0))} = Im{ZT(-Co)}, so contributions to the sum in (14) from positive and 
negative mode lines add up and give a real coherent frequency shift. Since h0(o3 ) 
samples low frequencies with a predominandy inductive impedance while hl(O~ ) 
samples much higher frequencies where the reactance may become capacitive, the 
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real coherent shift of the m = 0 modes is different from the real coherent shift of the 
m = +1 modes, in particular if the bunch length is short relative to the vacuum 
chamber. When the difference in frequency shift of the m = 0 mode and the m = -1 
mode is equal to their separation by the synchrotron frequency, the two mode 
frequencies merge together. If this threshold is exceeded they become imaginary, an 
instability known as the fast head-tail or transverse mode coupling instability occurs 
[26][27]. It is a single-bunch instability since it is due to the broad-band or 
short-range wake characteristics of the transverse coupling impedance. It is often an 
intensity limiting factor for large rings with few short bunches. 

6 Transverse  Coupl ing  Impedances  

As in the longitudinal case coupling impedances can be subdivided into short-range 
wake or broad-band impedances and long-range wake or narrow-band impedances, 
depending on whether the bandwidth is larger or smaller than the bunch frequency 
Mfo. The transverse coupling impedance Z T (for dipolar modes, k = 1) is defined as 
the integral over one turn of the combined electric and magnetic deflecting field 
divided by the current I times displacement A, giving: 

Z T = j ~[E +v x B]-k d s -  [ohms/meter] (15) 

where ~ = v/c, c is the speed of light, and _1_ indicates the component perpendicular 
to the beam direction. 

6.1 Resistive-Wall Impedance 

For frequencies where the skin depth 8: 

_ 2p 
8 - ~/l.t--- ~ (16) 

is smaller then the vacuum chamber thickness, the surface resistivity Rsurf in ohms 
per square is given by: 

Rsurl, =(1+ j)p/~ = (1+ j)~t0~ c° (17) 

where p is the specific resistivity of the chamber material and tt 0 = 4n 10 -7 is the 
permeability of free space. The longitudinal coupling impedance due to the surface 
resistivity is simply the aspect ratio of the vacuum chamber surface times the surface 
resistivity: 

2nR R ~ c 0  Zt. = - ~  surf = R(1; j) (18) 
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where b is the vacuum chamber radius. It can be shown that for a circular chamber 
the following relation holds between 
impedances: 

the longitudinal and transverse coupling 

ZT(OO) = 2ZL (CO)c (19) 
b2c0 

where c is the speed of light. From this equation it is seen that since Re{ZL} is an 
even and Im{ZL} an odd function of co, the opposite will be true for the transverse 
coupling impedance: Re{ZT} has odd symmetry (as depicted on Fig. 16) and Im {ZT} 
has even symmetry. It also follows from equations (16), (17) and (18), that the real 
part of the transverse coupling impedance scales as co "~, such that the 
coupled-bunch mode with a negative mode line frequency closest to the origin is 
driven unstable. 

While the transverse resistive wall impedance can be extremely harmful due to the 
singularity near the origin, the longitudinal resistive wall impedance (17) is 
generally harmless since the mode m = 0 does not exist in the longitudinal case and 
the longitudinal form factor (7) for the lowest mode m = 1 scales as o~ 2 at low 
frequencies. In the transverse case, even modes with m * 0 can be driven unstable by 
the resistive-wall impedance as non-zero chromaticity shifts the mode spectrum 
envelopes such that they overlap with the origin. 

The resistive-wall impedance is particularly harmful for large rings with high 
current like PEP II, SSC and LHC. The frequency of the lowest frequency transverse 
mode line is very low, the aspect ratio of the vacuum chamber surface is high, and 
the beam current is high. For LHC it is a serious problem even with a very low 
resistivity, copper-coated, vacuum chamber at cryogenic temperatures. 

6.2 Parasitic Higher-Order Modes 

As in the longitudinal case the RF cavities are often the major source of long-range, 
narrow-band coupling impedances due to undesired higher-order deflecting modes. 
As in the longitudinal case two effects contribute to make these particularly harmful 
in high-current colliders, namely the high current and the high bunch frequency. 

For low bunch frequencies not much HOM damping is required before the HOM 
bandwidth becomes comparable to the bunch frequency, in which case any 
coupled-bunch mode n will have at least one positive and at least one negative 
frequency contribution to the sum in equation (14), of which the stabilising terms 
will dominate provided the chromaticity has the proper sign. For high bunch 
frequencies positive and negative contributions in (14) from the same mode n may be 
widely separated (up to Mfo/2 ), and unstable coupled-bunch modes are driven 
unstable in spite of applying a positive chromaticity above transition. 
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7 Damping of Multibunch Instabilities 

For moderate total currents (say 100 mA to 1 A), aggressive HOM damping of 
Wansverse and longitudinal modes in the RF cavities may keep the multibunch 
growth rates below the synchrotron radiation threshold. The resistive-wall instability 
is easier to damp if a tune just above an integer is used. Additional damping by the 
head-tail effect can be obtained by a positive chromaticity above transition, especially 
if the number of bunches is not too large. The longitudinal n = M- 1 mode driven by 
the detuned fundamental RF resonance is normally not a problem except for very 
large rings (example SSC) or very low RF voltages. 

For very high currents (for example LHC, PEP II, KEK B-factory) in the order of 
one ampere or more, all four sources (transverse: resistive-wall and HOM's, 
longitudinal: HOM's and detuned fundamental RF resonance) of multibunch 
instabilities cause growth rates in excess of synchrotron and/or Landau damping 
rates. In this case longitudinal and transverse multibunch feedback systems 
[3][28-33] become essential to maintain stability. 

Full bandwidth (all coupled-bunch modes, bunch-by-bunch feedback for example) 
transverse dampers can in addition be used to raise the transverse mode coupling 
threshold. This is achieved by phasing it in such a way that it represents a reactive 
impedance which gives a real frequency shift of the m= 0 modes, which 
compensates the shift of the m = 0 modes from the broad band transverse machine 
impedance [34]. 

The detuned fundamental RF resonance produces such a fast growth rate that it 
becomes essential to first reduce the apparent cavity impedance by local RFfeedback 
[16][17][18] to bring the impedance down to a level where the residual growth rate 
can be dealt with by means of multibunch feedback. 

Conclusion 

Colliders in the 70's and 80's typically had unseparated orbits, low number of 
bunches and therefore low bunch frequencies and were approaching single-bunch 
current limits. Short-range wake fields dominated the limiting phenomena: 
space-charge tune shift, beam-beam tune shift, transverse mode coupling and 
turbulent bunch lengthening. Examples are CESR, SPEAR, PEP SppS collider and 
the Tevatron collider. 

The high-luminosity, two-ring colliders of the next decade (like PEP II, CESR B, 
KEK B-factory, "~/c factories, DAFNE, SSC, LHC) have very high bunch frequencies 
and high total beam currents. In addition to pushing single-bunch limits, multibunch 
instabilities and long-range wake fields will become important limiting phenomena. 
RF cavity feedback, aggressive HOM damping, and longitudinal and transverse 
multibunch feedback systems will become essential to achieve the specified design 
goals. 
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