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1 Introduction and Summary

The theory for transverse and longitudinal multibunch instabilities is reviewed. The
coherent beam modes are classified, and the various mode numbers defining the
coherent modes are explained. Sacherer's longitudinal and transverse growth rate
formulae are discussed and compared with the commonly used short-bunch
approximation and Robinson's characteristic equation. Coupling impedances with
long-range wakes are particular troublesome for the large high-current colliders
planned for the next decade. These are the higher-order modes of the RF cavities, the
fundamental mode of the RF cavities, and the transverse resistive wall impedance.

Table 1. Classification of coherent beam modes

Coasting Beams Bunched Beams
Longitudinal | n = azimuthal mode number | n = coupled bunch mode number
=123, .00 =0,1,2,..(M-1)

m = phase plane periodicity
= 1 (dipole), 2 (quadrupole),
3 (sextupole), ...
(g = radial mode number)

Mode coupling = Single-bunch
"microwave” instability (turbulence).

Transverse | n = azimuthal mode number
=-00,..,-1,0,1,2, .. 4

k = phase plane periodicity
= 1 (dipole), 2 (quadrupole),
3 (sextupole), ...

n = coupled bunch mode number
=0,1,2,..M-1)

m = head-tail mode number
=..,-2,-1,01,2, ...

k = phase plane periodicity

= 1 (dipole), 2 (quadrupole), 3
(sextupole), ..

Mode coupling = Single-bunch, fast,
head-tail instability (turbulence).
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2 Classification of Coherent Beam Modes

Coherent beam modes are classified according to whether the coherent beam motion
is longitudinal or transverse, and according to whether the beam is bunched or
debunched (coasting beam), Table 1. In this way four main classes of coherent beam
modes are defined. Beams are of course always bunched in e+/e- rings due to
synchrotron radiation, but it is useful to classify the beam modes in this general way.

The complexity of the beam motion increases from longitudinal to transverse, and
from coasting to bunched, such that the mode description requires an increasing
number of mode numbers.

3  Longitudinal Bunched-Beam Modes

The general theory for coherent bunched beam modes and their interaction with the
environment is due to Sacherer [1][2][3]. Basically two mode numbers describe the
motion (see Fig. 1). The coupled bunch mode number n is defined as the number of
waves of coherent motion per revolution, and resembles therefore the azimuthal
mode number for coasting beams,

For bunched beams with M equidistant bunches, the bunch-to-bunch phase shift
A¢ is related to the coupled bunch mode number n by A¢ = 2rnn/M. There are M
coupled bunch modes numbered from 0 to (M-1). This is in contrast to the azimuthal
mode number for coasting
beams, where there is an
infinite number of modes.

The within-bunch mode
number m is the number
of periods of phase space
density modulation per

'(2,.3 . synchrotron period in the
t p longitudinal phase plane.

Within-bunch mode numberm:  Coupled bunch mode number n: The lowest mode number
m =123, .. = number of periods n =0, 1, ... (M-1) = waves/revolution is m= 1, which
of density modulation per 2 x Bunch-to-bunch phasae shift: .

synchrotron phase advance Ap=2xnM corresponds to the dipole

mode, m=2 is the
quadrupole mode, m = 3 is
the sextupole mode and so
on. The line density is the projection of the phase space distribution on the time axis.
The observed pattern for a given bunch oscillates with m times the synchrotron
frequency, and the pattern has m nodes along the bunch (see Fig. 1).

The theory for longitudinal bunched beam mode interactions {4][5] contains in
addition a radial mode number q =m, m+2, ..., which is describing an infinity of
orthogonal radial modes with different density variations versus synchrotron
amplitude (= radius). The first higher-order radial mode ¢ = 3 for the dipole mode

Fig. 1. Longitudinal bunched-beam modes
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Fig. 2. Within bunch modes m=1 to 4, coupled-bunch pattern n=4. a) Mountain-range
display of one synchrotron period; b) Superimposed; c) Phase space.

(m = 1) has thus a line density pattern which looks like a sextupole mode (m = 3),
but it oscillates with the synchrotron frequency and not three times this frequency.
Normally only the lowest radial mode is observed. This is probably due to the fact
that the higher radial modes have higher Landau damping thresholds [5].
An example of various different coupled bunch modes observed in the CERN PS
Booster (M =5, n=4, m= 1 to 4) is shown on Fig. 2. Note the bunch-to-bunch
phase shift of the coherent motion of
) =Agl) + A () A¢ = 360°*n/M = 288° = -72°,
A" _/\_ + It is apparent from figures 1 and 2 that the line
- density A(t) or current I(z) = e A(t) of a bunch can
Pl om=2 be decomposed into two parts, the stationary
Fig. 3. Stationary and oscillating distribution Ay(#) plus an additional charge density
part of line density A,.(t) oscillating at m times the synchrotron
frequency. The oscillating part A,(1) is an
approximately sinusoidal standing-wave pattern with m fixed nodes along the bunch
(Fig. 3).
By taking the Fourier transform of the bunch current /(z), we get the frequency
spectrum of the modes. It is a line spectrum, and the line frequencies for mode (n,m)
are:

fnm,p=(n+pM)f0+mf:v —oo< p<+ ¢y

where f; is the revolution frequency, f; is the synchrotron frequency, and p is an
integer assuming both negative and positive values. It is convenient from a
mathematical point of view to let the frequencies fm’p assume both positive and
negative values, although physically a frequency is always a positive quantity.
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Bunch frequency harmonics
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Fig. 4. The line spectrum of longitudinal bunched beam
modes

This line spectrum is
depicted graphically (see Fig
4), where the mode lines

originating from negative
values of f,, (lower
sidebands) are shown as

downward pointing arrows,
while mode lines originating
from positive values (upper
sidebands) are shown pointing
up. The spectral lines given by
equation (1) are those
associated with the coherent
motion or the oscillating part
of the bunch A,(z). In addition

there are lines associated with the stationary bunch spectrum or Ay(t). There are
strong lines at the bunch frequency Mf; and harmonics thereof. In practice the M
bunches will have slightly different intensities or there might be a gap in the bunch
train, which causes spectral lines of lower amplitude to appear at the intermediate

gL Ratttadla A,
TTTI’1']IIIIIIIlllllll!lli]l'l‘l L] >
0 5 10 15 20 25 30 f/fo

Synchrotron Fraquency sidebands
m=4 around 12'th harmonic showing
121;)

m=4,
Fig. 5. Observed spectrum for mode n=3, m = 4 in the
CERN PSB. Bandwidth 300 kHz, range 0 - 50 MHz,
linear scale, bunch length 1; = 66 ns.

revolution harmonics.

Each bunched beam mode
(m,n) has thus two lines
appearing within each band
Mf, wide between two bunch
frequency harmonics, one
pointing up and one pointing
down. Each mode has therefore
a large number of spectral
lines. The envelope or the
relative amplitude of those
lines depends upon the within-
bunch mode number m and the
bunch length 1;.

An example of a measured
longitudinal mode spectrum
from the CERN PS Booster [3]
is shown on Fig. 5§ (M =5,

n =3, m= 4, octupole mode). Both coherent mode lines, bunch frequency harmonics,

and unequal bunch lines are clearly seen.

3.1 Sacherer's Formula for Longitudinal Bunched Beam Modes

Due to electromagnetic interactions with the beam environment quantitatively
described by the longitudinal coupling impedance Z;(w), the coherent mode
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frequencies are shifted a complex quantity Aw,, away from their low intensity
values. This shift is obtained by a weighted sum (factor F m(f},'tl)) of the coupling
impedance Z;(w,) sampled at all those frequencies o, = 2 fp that corresponds to a
mode line (see Fig. 4, equation (1)) of mode (m,n), Sacherer's formula [1][2][3):

ZL(fp)
p+n

= ! S Fn(fp L) Q)

m+1 3B2hV cos ¢, %5

Aw ,,, = jO 4

where @; is the synchrotron frequency, / is the total beam current in M bunches, By,
the bunching factor (= 1;/Ty, where Ty = 1/f;, is the revolution period), & the
harmonic number, V the total RF voltage, ¢, is the synchronous phase angle with the
convention that Vsing, is the energy gain per turn, ¢, < 90° below transition,
;> 90° above transition, and 7, the full bunch length. The form factor F,, is the
normalised power spectrum of the perturbed part A, (#) of the line density A(1):

. 2

Fulfyi) = — o) 3

m\Jp'L) = - 2

MBo lem(p)I
4
Short bunch approximation, m = 1 where Xm(p) is the Fourier
o -A—Fm(f"z. d A fuqusoldu modes with m+1 half-wavelengths transform of the perturbed part
' ,I 2 S p #long bunch A,(1) of the line density and M
041 /' the number of equidistant
/ bunches. For the sinusoidal
02T/ « | type modes shown on Fig. 3,
' ; . ; : : +» | the form factors F,(ft;) are
1 2 3 plotted on Fig. 6.

Fig. 6. Sinusoidal mode form factors (from [3]) and

The growth rate of mode

short bunch approximation (m,n) is -Im{Aw,,,} which is
related to the real part of the
coupling impedance Z;(®w). The real coherent frequency shift of mode (m,n) is

Re{Aw,,,.}, which is related to the imaginary part of the coupling impedance.

3.2 Discussion of Sacherer's Longitudinal Bunched Beam Formula

The real part of the coupling impedance Z;(w) is symmetric, Re{Z;(w)} =
Re{Z,;(-w)}), so contributions to the sum in (2) associated with negative and positive
values of Jf, (mode lines pointing down and up on Fig. 4) enter with opposite signs
due to the factor 1/(p+n). Broad-band and resonant impedarices with bandwidths
larger than the bunch frequency My, (decay time less than bunch separation) do
therefore not cause any growth or damping rate. Each mode has two mode lines in
each band between two bunch frequency harmonics, and their contributions to the
sum of (2) tend to cancel each other,
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For resonant impedances with bandwidths smaller than the bunch frequency Mf,
(decay time longer than bunch separation), a single mode line for each mode
dominates in the sum and one or several coupled-bunch modes grow. The growth
rate is proportional to the total current / in M bunches, and independent of the
number of bunches unless the bunch frequency is low enough to get partial
cancellation from another mode line of the same mode falling within the resonator
bandwidth.

The signs in (2) are such that upper sidebands are unstable above transition, and
lower sidebands are stable (assuming passive coupling impedances: Re{Z;} > 0).
The opposite is true below transition. For M 2 3 upper and lower sidebands belong to
different coupled-bunch modes (except for n = 0 and M/2) so a resonator will drive
one mode n; and damp the other complementary mode n,-M. For a single bunch, or
two bunches, upper and lower sidebands belong to the same coupled-bunch mode
and therefore tend to cancel unless the impedance is very narrow-band (such as the
fundamental RF resonance) and tuned asymmetrically with respect to the frequencies
with mirror symmetry such as pMf, or (p+2)Mf,.

The imaginary part of the coupling impedance Z;(®w) is anti symmetric,
(Im{Z;(w)} = -Im{Z,(-0)}, so contributions to the sum in (2) associated with
negative and positive values of f, (mode lines pointing down and up on Fig. 4) add
up, so even a broad-band impedlz;nce can produce a substantial real frequency shift
due to its imaginary part. For the special case of inductive-wall or space-charge
impedance, where Im{ZL(mp)/p} is constant below a certain frequency, we can move
Zi(0,)lp outside the summation, and we get for the real coherent frequency shift:

Z
I Im{=L

Awy, =—-0 —pm———
S 6BIMRV cosg, P

Q)

This is the coherent shift relative to the incoherent frequency @ as given by the total
voltage V including the inductive-wall contribution itself. The expression agrees with
the expression given in [6] except for a factor (n/3)? = 1.097. It is a single-bunch,
short-range wake effect where all coupled-bunch modes n have the same shift, which
is the same as saying that all individual bunches have their coherent frequencies
shifted the same amount. As expected, the shift is proportional to the current per
bunch I/M. '

3.3 Turbulent Bunch Lengthening and Longitudinal Mode Coupling

For sufficiently high currents (or sufficiently high impedances), single bunches can
become unstable, as was first observed by Boussard [7]. The instability is usually
called the microwave instability in proton rings due to the high frequencies involved,
or turbulent bunch lengthening in electron rings, probably due to difficulties
involved in observing the even higher frequencies involved in electron rings. The
instability threshold is given by the Keil-Schnell criterion [8] for coasting beams, but
with local values of bunch current and momentum spread as suggested by Boussard.
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It was shown by Sacherer [2], that this threshold is consistent with the mode
coupling threshold for two higher order longitudinal modes m and m+1, as the real
frequency shifts associated with the imaginary part of the coupling impedance cause
their frequencies to cross. The mode coupling theory gives a more precise
information about the threshold dependence upon resonator bandwidth than the
Boussard criterion.

3.4 Short Bunch Approximation for Dipole Modes

Bunches in e+/e- rings are often so short that the frequencies of interest below the
vacuum pipe cut-off frequency are below the peak of F;. In this case the complex
coherent frequency shift for the dipole mode m = 1 can be simplified to:

Z frZ p&L (fp) P &)

A01n =" 2QSB2(E/ )~

where n=1/7,2 —-1/72, I is the total beam current, Q, = ® /wy is the longitudinal
tune, E is the total energy, e the fundamental charge, 8 and y the usual relativistic
parameters, and v, is the transition energy. Note that the form factor F; does not
appear in this equation. By using the expression for the synchrotron frequency o,

®, =g —MhVcoso, ' 6)
2n(E/e)p?

and equating the coherent shifts given by equation (5) and (2) we get an expression
for the rigid dipole mode form factor F1 implied in equation (5):

F(fip)=3(p+m)?B% =3(fi,)? 0

which is plotted on Fig. 6 together with the form factor for the sinusoidal modes. It
corresponds to the initial parabolic behaviour of Fy(ff), and is a valid
approximation for ft; << 0.5.

It is seen from Fig. 6, that the form factor corresponding to the short bunch
formula (5) is slightly higher than the form factor computed from sinusoidal modes.
This is because the sinusoidal modes assumed are slightly different from the rigid
bunch motion assumed in (5).

4  Longitudinal Coupling Impedances

Longitudinal coupling impedances can be subdivided into short-range-wake or
broad-band impedances (bandwidth > Mf), which have identical effects on all
bunches and on all coupled-bunch modes n, and long range wake or narrow band
impedances (bandwidth < Mf;;) which have very different effects on the different
coupled bunch modes n due to the line structure of the spectrum. Note that the
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dividing criterion depends on the bunch frequency Mf; or bunch separation 1/Mf,,
since the crucial point is whether the wake decays in the bunch interval.

Broad-band impedances are responsible for single-bunch effects, which have
thresholds related to current per bunch, and where each bunch behaves
independently of the others. Narrow-band impedances are responsible for multibunch
effects, where the thresholds are related to total current, and the coupled-bunch mode
number is important.

Next generation, high-current colliders (B, tau/charm and phi factories) typically
have very high bunch frequencies, and even fairly well damped broad band
resonators have significant long-range multibunch effects.

4.1 Parasitic Higher Order Modes

RF cavities are often the major source of long-range, narrow-band coupling
impedances due to undesired higher-order modes (HOM's) between the fundamental
RF resonance and the vacuum pipe cut-off frequency. For low total current and low
bunch frequencies, it is usually possible to lower the Q and the shunt impedance of
these cavities to a level where the coupled-bunch growth rates are below the
synchrotron radiation damping rate.

For high-current colliders, sophisticated HOM damping schemes [9] are required
to damp the higher-order modes by more than two orders of magnitude without
significantly affecting the fundamental mode. Usually one or several wave guides
with a cut-off frequency between the fundamental RF cavity resonance and the lowest
frequency higher-order mode form a high-pass filter between the RF cavity and the
HOM loads, both for normal conducting cavities [10]{11] and superconducting
cavities [12], where an enlarged portion of the beam pipe is used as a HOM wave
guide.

Even with a sophisticated HOM damping scheme, the residual shunt impedance
may still be large enough to cause longitudinal dipole-mode growth rates in excess of
the synchrotron radiation damping rate, and a multibunch feedback system is
required to stabilise all the modes. Operating with a high RF voltage, as required to
obtain short bunches, appears to make the growth rate smaller (cos'1 scaling,
equation (5)), but does in fact make it worse, as the total resonant HOM impedance
Z, is proportional to the number of cavities.

If the bandwidth of the HOM's is large compared with the synchrotron frequency,
about half the coupled-bunch modes are unstable as discussed above. For one or two
bunches growth rates are small due to cancellation, since upper and lower sidebands
at each harmonic belong to the same mode n. For small rings with high synchrotron
tune and little or no HOM damping, the HOM bandwidths may become small
compared to the synchrotron frequency, and cancellation is no longer effective. This
is the case for the SLC damping rings [13], where HOM's of the accelerating cavities
drive the n = 1 mode (M = 2), also called the ® mode, unstable. This fact can also be
used with advantage to passively damp the instability. The instability has been cured
by adding a passive cavity, tuned to interact mainly with the a lower sideband of the
n =1 mode.
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4.2 Fundamental Resonance of RF Cavities

For small rings, the fundamental resonance interacts only with the n =0 mode,
which is easily stabilised (at least for electron rings with no complex RF feedback
loops) by an appropriate tuning of the RF cavity. For large rings with high beam
currents, other coupled-bunch dipole modes (n=M -1, M - 2, etc.) may be driven
unstable.

4.2.1 The Robinson Criterion and the n = 0, m = 1 Mode

A complete analysis of the stability of the interaction between the n = 0 dipole mode
of the beam and the fundamental resonance of the RF cavity (without feedback) was
first described by Robinson [14], and results in a characteristic equation of fourth
order. The stability criterion can be solved analytically, and above transition we get:

215 cosd,

B

<sin2¢, <0 ®)

where I is the peak value of RF current required to drive the cavity to the operating
voltage when in tune (the loss current), Ig = 2 I is the peak value of the fundamental
RF component of the beam current, which for short bunches equals twice the beam
DC current /, and ¢z the impedance angle of the cavity impedance at the operating
RF frequency. The notation used here is slightly different from the one used in
Robinson's original paper. The two regions of instability corresponding to the two
inequalities in (8) are
depicted graphically on
IB/ID 7 Flg 7.
é "Zero’ frequency / 4 7 For low currents the

high current imit / o Coharort growth rate that s
3 // Frequency Shift obtained from Robinson's

\7227)
% characteristic equation by
a root perturbation
2| technique is in perfect
agreement with the short

N

$s=160° Detuning for Growd
Real Load rowing

Damped 4 % Synchratron bun_ch formula (5). If the
Synchrotron é Osclllations (t:lz‘ivxty is tuned exactly to
Oscillations / e operating RF
t } } 4 W / / frequency, the symmetry
-80°  -60* -40°  -20° 2 & 60 in the real part of the
Fig. 7. Zones of instability versus normalised beam loading Cavity impedance causes a
I/l and cavity impedance angle ¢, = Arg(Z,) perfect cancellation of the

contributions from upper
and lower sidebands, so no growth rate is induced of the n =0, m = 1 mode. Since
the imaginary part of the impedance is anti symmetric around the RF frequency,
there is no real frequency shift either. By detuning the cavity below the operating RF
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Jrequency (above transition) this mode is damped. This corresponds to satisfying the
right hand inequality in (8).

Since the fundamental of the beam current is out of phase with the voltage, the
beam load represents a partly reactive load to the RF source, which results in an
unnecessary increased power demand from the RF source. By detuning the RF cavity
such that a real total load (beam plus cavity) is presented to the RF source, less
power is needed. This optimum detuning is usually done automatically by a tuning
loop. It is fortunate that the signs are such that this detuning is always to the same
side as that which produces damping of the n=0 mode. At high current a
zero-frequency instability occurs even if the cavity is detuned to the 'stable’ side.
This instability threshold corresponds to the left hand side of the Robinson criterion
(8). This instability occurs (for optimum detuning) when the beam power equals or
exceeds the dissipated power in the cavity (including the equivalent loss in the RF
source impedance). If the power source is back matched (e. g. circulator in
transmission line), the RF power source is matched to the total load (beam plus
cavity), and the cavity optimally detuned (real total load) the system is in principle
always stable against small transients, although not by a large margin if the beam
power is significant.

The stability margin can be increased by increasing the detuning beyond optimum
detuning, and by adjusting the power source to cavity RF coupling above optimum
coupling (overcoupling).

4.2.2 Coupled Bunch Modes n # 0 Driven by the Detuned Fundamental
Resonance

As mentioned above, it is essential to detune the cavity to compensate for the reactive
part of the beam load to minimise the required RF power. The optimum detuning
Af4, normalised to the revolution frequency f; is given by:

Aﬁi&_lgcosq)s R
fo - 2Ve (Q)h ®

where Iz =21 is the peak value of the fundamental RF component of the beam
current, V is the cavity voltage per cell, ¢, is the synchronous phase angle as
previously defined, R/Q is the shunt impedance over quality factor of a cavity cell
(using the usual electrical engineering convention where P = V%(2 R)), and A the
harmonic number. This value has been calculated for a number of medium to large
high-current synchrotrons (Table 2). All of these rings are at present either in the
design stage or under construction.

The fundamental RF resonance is likely to create a serious instability problem for
the n=M-1,M-2, .. modes if the cavity detuning is in the same order of
magnitude as the revolution frequency or larger. It is seen from equation (9) that this
is likely to happen for large A (large ring, high RF frequency), high R/Q value (low
stored energy), high beam current, and at low voltage per cell. Using
superconducting cavities, which have a high voltage per cell and a low R/Q, tend to
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Table 2. Normalised optimum detuning for reactive beam load compensation

Machine I B[Ap] Ve [kVp] RIQ [Q}: h Af . ifo
PEP II 4.28 925 117 3'492 0.93
CESR B 3.96 3000 45 1275 0.038
KEK B-fact. n/c 52 390 98 5'120 3.34
KEK B-fact. s/c 52 2750 43 5'120 0.21
SSC collider 0.14 500 125 104'544 1.77
SSC HEB 0.90 325 150 2'178 045
LHC 1.70 1500 43 36'540 0.89
KAONC 5.6 100 100 225 0.63
KAOND 5.6 50 100 225 1.26

reduce the problem as is apparent from the three rings in the table above with
superconducting cavities (CESR B, KEK s/c, and LHC). This also helps to solve
problems associated with transients induced by beam gaps [15].

The growth rate can be very large. For the PEP II LER (low energy ring) for
example it is the same order of magnitude as the synchrotron frequency, and almost
three orders of magnitude larger than the radiation damping rate.

An obvious solution to the coupled-bunch problem would be not to detune the
cavities, such that the cavity impedance is symmetric around the RF frequency. In
most cases with heavy beam loading, the required extra RF power due to the large
amounts of reflected power makes this solution unattractive. In addition the stable
zone near the ¢, = 0 axis is very narrow (Fig. 7), and the required tuning tolerances
difficult to achieve, as a rather precise RF vector sum representing the total RF
current injected into the cavity must be made.

Reducing the shunt impedance by loading, as used for the parasitic higher-order
modes, is also totally unacceptable due to large amounts of wasted power. The most
attractive solution is to apply RF cavity feedback [16]{17][18], by which the apparent
beam impedance of the RF system can be reduced several orders of magnitude.

Another solution being considered for the KEK B factory is to substantially lower
the R/Q of a normal conducting cavity by coupling it to a storage cavity operating in
a very high Q mode such that the lower R/Q is achieved without much loss in shunt
impedance [19].

5 Transverse Bunched-Beam Modes

The theory for the transverse coherent bunched-beam modes (Table 1, Fig. 8) and
their interactions with the environment were again first described in its most general
form by Sacherer [20][21]. As in the longitudinal case there are M coupled bunch
modes characterised by the integer number of waves n of the coherent bunch motion
around the ring. The coupled-bunch mode number therefore resembles the azimuthal
mode number n for coasting beams.
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x(0 For bunched beams with

m=0 © — M equidistant bunches, the
o -t bunch-to-bunch phase shift

s g @ - Ap is related to the
g WALt coupled-bunch mode

% 0 number n by Ad = 2nn/M.

m= 2 I_e%_T There are M coupled-bunch

\

Within-bunch mode number m: Coupled bunch mods number n: modes nutnl?er'ed from 0 to
M=.,2-1,0,1,2, . =numberof n=0,1,..(M-1)=wavesfrevoluton | (-1). This is in contrast to

betatron wavelengths (with sign)  Bunch-to-bunch phasa shift: the  azimuthal  mode
-2 .

per synchrotron period 44250 number for coasting beams,

Fig. 8. Transverse bunched beam modes. where there is an infinite
number of modes.

The within-bunch mode number m (also called the head-tail mode number) is the
net number of betatron wavelengths (with sign) per synchrotron period at a given
instant, At any given instant, a closed pattern of iml betatron periods corresponds to
one synchrotron period with the betatron phase either advancing (m > 0) or retarding
(m < 0) in the direction of advancing synchrotron phase. Unlike the longitudinal case
the mode number m can thus assume both positive and negative integer values as
well as zero. For m = 0 all particles in the bunch have the same betatron phase for
zero chromaticity. The relation between longitudinal phase space co-ordinates
(AE, At) and transverse motion is depicted for zero chromaticity on the 3-D surface
plots on Figs. 9 and 10, as well as the directly observable average displacement along
the bunch.

There are lml nodes along the bunch. The transverse displacements for various
energies at those positions along the bunch continue to average out to zero, so no

Fig. 9. Modes m= 0, -1, +1 for zero chromaticity. Surface plois indicating transverse
displacement times particle density in longitudinal phase plane as function of longitudinal
phase space co-ordinates At (left/right), and AE (front/back) for three successive values of
betatron phase. Top trace is average transverse displacement times line density as observed by
the A-signal of a transverse pick-up.
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Fig. 10. Modes m = 0, -2, +2 for zero chromaticity

average displacement is observed on a pick-up, although there is much coherent
transverse motion at different energies. The betatron phase pattern in the
longitudinal phase plane appears to rotate either clockwise or counter-clockwise
depending upon the sign of m. These two different senses of rotation are not
immediately apparent from the observable, projected distribution, as they appear
identical for mode m = +1, and mode m = -1. The difference is however apparent in
the frequency domain, since the corresponding mode lines have slightly different
frequencies, as the synchrotron frequency in one case is added to the betatron
frequency, and in the other case subtracted.

For non-zero chromaticity & there is a tune modulation AQ associated with the
momentum modulation Ap as a particle moves around the synchrotron orbit given
by:

AQ . Ap 10
Qgp (10)

This tune modulation results in a betatron phase advance  during one half of the
synchrotron period as the particle moves from head to tail of the bunch. This is
compensated by a betatron phase retard -y during the other half of the synchrotron
period as the particle moves back from tail to head. The head-tail phase advance is
proportional to the synchrotron amplitude and has its largest value for a particle with
a synchrotron amplitude corresponding to the bunch length 1;, and is given by

x =%Q‘°OTL (11)

where n=1/y,2-1/v%, & is the chromaticity as defined above, and W, is the
revolution frequency

This chromaticity dependent phase modulation is then superimposed upon the
betatron phase pattern given by the mode number m, see Fig. 11. It is seen that the
average transverse displacement signal contains the same Iml nodes as with zero
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Fig. 11. Modes m=0, +1, and +2 for a head-tail phase advance of % = 5 radians. Surface
plots indicating fransverse displacement times particle density in longitudinal phase plane as
function of longitudinal phase space co-ordinates At (left/right), and AE (front/back) for three

successive values of betatron phase. Top trace is average transverse displacement times line
density as observed by the A-signal of a transverse pick-up.

chromaticity, and that a travelling-wave component is added to the standing-wave
patterns observed for zero chromaticity.

Average transverse displacements superimposed and turn by turn mountain range
displays are shown on Fig. 13 for three different chromaticities and for modes m = 0,
+1, and +2. An example of several different vertical bunched-beam modes observed
in the CERN PSB is shown on Fig. 12.

In addition (see Table 1) there is a third mode number k=1 (dipole),
2 (quadrupole), 3 (sextupole), etc. which is the number of periods of density
modulation per betatron
period. In general, and as
assumed in the preceding
discussion, the dipole
modes (k=1) with one
period of density
modulation are observed.
This  corresponds to
transverse  displacements
of the beam. The
quadrupole modes (k=2)
corresponding to coherent
beam width oscillations
only interact very weakly
with the vacuum chamber
environment. The situation
is different for very
localised interactions such

Fig. 12. Vertical head-tail modes observed in the CERN PS
Booster.
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Fig. 13. A-signal of a single bunch versus time on separate revolutions for three different
chromaticities, modes m = 0, +1, +2. Upper traces: every fourth turn, superimposed. Lower
traces: every turn, mountain range display. Fractional tune: q = 0.0417, 15° phase advance
per turn.

as coherent beam-ion [22] and coherent beam-beam interactions [23][24]. Transverse
coherent beam-ion quadrupolar instabilities have been observed with coasting
antiproton beams in the CERN AA [25], and can be expected to occur for bunched
beams as well. A quadrupolar pick-up is required to observe such modes.

By taking the Fourier transform of the average transverse displacement times the
bunch current (the signal seen by the A-signal of a transverse pick-up for dipole
modes £ = 1), we get the frequency spectrum of the modes. It is a line spectrum, and
the line frequencies for mode (n, m, k) are:

Jamkp =(n+pM+kQ) fo+mfy —o<p<es (12)

where f; is the revolution frequency, f; is the synchrotron frequency, and p is an
integer assuming both negative and positive values. It is convenient from a
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m2 30 1280 1231012301 mathematical point of
i | {”,— o Bk T “T\fJ - view to let the frequencies
- :L’:{:*: At L s e :T'}:M, Jamk,p assume both positive
8 7 6 5 4 3 2\4\0 1 zv&4 5 6 7 8 and" negative values,
Postivs o nez) 2363 12 F1 20 09 13 although  physically a
T‘ - i}?‘f'f*iiﬂ frequency is always a

As seen by specirum analyser 1 VT ?ﬁ?ﬁm positive quantity.
01 23 45 6 78 This line spectrum is
maiti2 depicted graphically for
M=4 Q=23 dipole modes (k=1) on
b ¢ Fig. 14, where the mode
fy > lines originating from
Fig. 14. The line spectrum of transverse bunched-beam negative values of fnmk,p
modes are shown as downward

pointing arrows, while
mode lines originating from positive values are shown pointing up. Each betatron
line splits up into several lines corresponding to the different within-bunch mode
numbers m and separated by the synchrotron frequency as given by equation (12) and
shown on Fig. 14, The envelope shown corresponds to mode m = 0. These spectral
lines are those associated with the coherent motion of the bunches. In practice the
beam will never pass exactly through the electrical centre of the pick-up, and
additional lines associated with the stationary bunch spectrum will be observed, like
the bunch frequency Mfy and harmonics thereof.

Each bunched-beam
mode (m,n) has thus two
lines appearing within
each band Mf, wide
between  two  bunch
frequency harmonics, one
pointing up and one
pointing down. Each mode
has therefore a large
number of spectral lines.

The envelope or the
relative amplitude of those
lines depends upon the
within-bunch mode
number m, the bunch
Fig. 15. Power-spectrum envelopes for modesm=0to 3 for length 1;, and the
zero chromaticity. chromaticity & The power

spectrum envelopes h,,(®)
for zero chromaticity are shown on Fig. 15. The width of the envelope is inversely
proportional to the bunch length 1;. The chromaticity § will shift the centre
frequency of those envelopes to the chromatic frequency 0 given by:

Iy )
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og = 2000 =1/, | 13)
where all symbols have been defined previously.

5.1 Sacherer's Formula for Transverse Bunched-Beam Modes

Due to electromagnetic interactions with the beam environment quantitatively
described by the transverse coupling impedance Z®), the coherent mode
frequencies are shifted a complex quantity Aw,, away from their low-intensity
values. This shift is obtained by a weighted sum (f,,(®)) of the coupling impedance
L(mp) sampled at all those frequencies that corresponds to a mode line (see Fig. 14,
equation (12)) of mode (m,n), Sacherer's formula [20][21]:

‘ ZZT(mp)hm(o)p ~ )
- 1 ]eﬁlo P (14)
m+12QwgymoLl ¥ hy(0, —00)
P

“)m,n

where B and vy are the usual relativistic parameters, e the electron charge, my the
particle rest mass, /; the current per bunch and Zj the transverse coupling impedance
in ohms/m.

The growth rate of mode (m,n) is -Im{A®,,,} which is related to the real part of
the coupling impedance Z(w). The real coherent frequency shift of mode (m,n) is
Re{Aw,,,}, which is related to the imaginary part of the coupling impedance.

5.2 Discussion of Sacherer's Transverse Bunched-Beam Formula

The real part of the transverse coupling impedance has odd symmetry:
Re{Z(w)} = -Re{Z(-w)} and Re{Z{w)} > 0 for ® > O for passive impedances. The
negative mode lines contribute therefore to growth in (14) while the positive mode
lines contribute to damping. For zero chromaticity there is therefore cancellation of
positive and negative frequency contributions for ' broad-band impedances and
resonant impedances with bandwidths larger than the bunch frequency Mfy, (decay
time less than the bunch separation) similarly to the longitudinal case.

For non-zero chromaticity the cancellation for broad-band impedances is no longer
effective, as the power spectrum envelopes /,,(w - “’é) are shifted in frequency by
g . For the naturally negative chromaticity above transition o is negative, so all
coupled-bunch modes n are driven unstable by the real part of the broad-band (short
range) coupling impedance. This is the so-called "head-tail" effect and is a
single-bunch effect proportional to the current per bunch. This effect can also be
used with advantage to damp the instabilities by correcting the chromaticity to a
positive value thus achieving a passive damping of all bunches and thus all
coupled-bunch modes.
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single mode line for each
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Ts,,,,.? e 7 e S sum and one or several
™ Lt 1| D 7x ,, | coupled-bunch modes are
'/ T P %, growing. The growth rate
1umm is proportional to the total

current / in M bunches,
and independent of the
number of bunches unless
the bunch frequency is low
enough to get partial
- cancellation from another
mode line of the same
mode falling within the
resonator bandwidth.

Some typical examples
to illustrate this folding of
the mode line spectrum
with the frequency
response of the coupling

impedance are shown on Fig. 16 for a slightly positive chromaticity. On the top
figure the long-range wake from the resistive-wall impedance drives the n = 1, m =0
mode unstable, on the middle figure this mode is stabilised by the broad-band
(single-bunch) interaction with the high-frequency impedance thanks to a positive
wg. On the bottom figure a narrow-band resonator drives the n=3, m=0 mode
unstable.

For a low number of bunches M the damping effect due to the head-tail effect and a
positive chromaticity (above transition) may be effective in damping multibunch
instabilities. This is much less so for large M as the damping effect is proportional to
the single-bunch current while the growth rate due to a long-range wake (resistive
wall or resonator) is proportional to the total circulating current.

Fig. 16. Mode spectra for mode m = 0 and positive
chromaticity (above transition) for typical examples of
transverse coupling impedances with long-range wake. Top:
Thick-wall, resistive-wall impedance; middle: same plus
broad-band, high-frequency, coupling impedance; bottom:
resonant narrow-band impedance.

5.3 Transverse Mode Coupling

In the wansverse case the imaginary part of Zp has even symmetry,
Im{Zp{(®0)} =Im{Z{-0)}, so contributions to the sum in (14) from positive and
negative mode lines add up and give a real coherent frequency shift. Since hg(w)
samples low frequencies with a predominantly inductive impedance while #A;(w)
samples much higher frequencies where the reactance may become capacitive, the
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real coherent shift of the m = 0 modes is different from the real coherent shift of the
m =1 modes, in particular if the bunch length is short relative to the vacuum
chamber. When the difference in frequency shift of the m = 0 mode and the m= -1
mode is equal to their separation by the synchrotron frequency, the two mode
frequencies merge together. If this threshold is exceeded they become imaginary, an
instability known as the fast head-tail or transverse mode coupling instability occurs
[26][27]. It is a single-bunch instability since it is due to the broad-band or
short-range wake characteristics of the transverse coupling impedance. It is often an
intensity limiting factor for large rings with few short bunches.

6  Transverse Coupling Impedances

As in the longitudinal case coupling impedances can be subdivided into short-range
wake or broad-band impedances and long-range wake or narrow-band impedances,
depending on whether the bandwidth is larger or smaller than the bunch frequency
Mfy. The transverse coupling impedance Zy (for dipolar modes, k= 1) is defined as
the integral over one turn of the combined electric and magnetic deflecting field
divided by the current / times displacement A, giving:

Zr M [ohms / meter] 15)

= ohms/ meter
T i |

where 3 = v/c, ¢ is the speed of light, and 1 indicates the component perpendicular
to the beam direction.

6.1 Resistive-Wall Impedance

For frequencies where the skin depth &:

2p
5= |22 16
‘,uom a6)

is smaller then the vacuum chamber thickness, the surface resistivity Ry, in ohms
per square is given by:

Royp =1+ Dp/8=(14)) %“—’ arn

where p is the specific resistivity of the chamber material and pg = 4n 10°7 is the
permeability of free space. The longitudinal coupling impedance due to the surface
resistivity is simply the aspect ratio of the vacuum chamber surface times the surface
resistivity:

2nR R(1+j) {Mopw
z, =g - T) [HoP®
L™ omp v~y 2 (18)
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where b is the vacuum chamber radius. It can be shown that for a circular chamber
the following relation holds between the longitudinal and transverse coupling
impedances:

Z,[(w)=2ib2((‘:i (19)

where c is the speed of light. From this equation it is seen that since Re{Z; ]} is an
even and Im{Z; } an odd function of w, the opposite will be true for the transverse
coupling impedance: Re{Z;} has odd symmetry (as depicted on Fig. 16) and Im{Z;)
has even symmetry. It also follows from equations (16), (17) and (18), that the real
part of the transverse coupling impedance scales as o, such that the
coupled-bunch mode with a negative mode line frequency closest to the origin is
driven unstable.

While the transverse resistive wall impedance can be extremely harmful due to the
singularity near the origin, the longitudinal resistive wall impedance (17) is
generally harmless sirce the mode m = 0 does not exist in the longitudinal case and
the longitudinal form factor (7) for the lowest mode m =1 scales as @? at low
frequencies. In the transverse case, even modes with m # 0 can be driven unstable by
the resistive-wall impedance as non-zero chromaticity shifts the mode spectrum
envelopes such that they overlap with the origin.

The resistive-wall impedance is particularly harmful for large rings with high
current like PEP II, SSC and LHC. The frequency of the lowest frequency transverse
mode line is very low, the aspect ratio of the vacuum chamber surface is high, and
the beam current is high. For LHC it is a serious problem even with a very low
resistivity, copper-coated, vacuum chamber at cryogenic temperatures.

6.2 Parasitic Higher-Order Modes

As in the longitudinal case the RF cavities are often the major source of long-range,
narrow-band coupling impedances due to undesired higher-order deflecting modes.
As in the longitudinal case two effects contribute to make these particularly harmful
in high-current colliders, namely the high current and the high bunch frequency.

For low bunch frequencies not much HOM damping is required before the HOM
bandwidth becomes comparable to the bunch frequency, in which case any
coupled-bunch mode n will have at least one positive and at least one negative
frequency contribution to the sum in equation (14), of which the stabilising terms
will dominate provided the chromaticity has the proper sign. For high bunch
frequencies positive and negative contributions in (14) from the same mode n may be
widely separated (up to Mfyy/2), and unstable coupled-bunch modes are driven
unstable in spite of applying a positive chromaticity above transition.
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7  Damping of Multibunch Instabilities

For moderate total currents (say 100 mA to 1 A), aggressive HOM damping of
transverse and longitudinal modes in the RF cavities may keep the multibunch
growth rates below the synchrotron radiation threshold. The resistive-wall instability
is easier to damp if a tune just above an integer is used. Additional damping by the
head-tail effect can be obtained by a positive chromaticity above transition, especially
if the number of bunches is not too large. The longitudinal n = M-1 mode driven by
the detuned fundamental RF resonance is normally not a problem except for very
large rings (example SSC) or very low RF voltages.

For very high currents (for example LHC, PEP II, KEK B-factory) in the order of
one ampere or more, all four sources (transverse: resistive-wall and HOMss,
longitudinal: HOM's and detuned fundamental RF resonance) of multibunch
instabilities cause growth rates in excess of synchrotron and/or Landau damping
rates. In this case longitudinal and transverse multibunch feedback systems
[3][28-33] become essential to maintain stability.

Full bandwidth (all coupled-bunch modes, bunch-by-bunch feedback for example)
transverse dampers can in addition be used to raise the transverse mode coupling
threshold. This is achieved by phasing it in such a way that it represents a reactive
impedance which gives a real frequency shift of the m=0 modes, which
compensates the shift of the m = 0 modes from the broad band transverse machine
impedance [34].

The detuned fundamental RF resonance produces such a fast growth rate that it
becomes essential to first reduce the apparent cavity impedance by local RF feedback
[16][17][18] to bring the impedance down to a level where the residual growth rate
can be dealt with by means of multibunch feedback.

Conclusion

Colliders in the 70's and 80's typically had unseparated orbits, low number of
bunches and therefore low bunch frequencies and were approaching single-bunch
current limits. Short-range wake fields dominated the limiting phenomena:
space-charge tune shift, beam-beam tune shift, transverse mode coupling and
turbulent bunch lengthening. Examples are CESR, SPEAR, PEP SppS collider and
the Tevatron collider.

The high-luminosity, two-ring colliders of the next decade (like PEP II, CESR B,
KEK B-factory, 1/c factories, DAFNE, SSC, LHC) have very high bunch frequencies
and high total beam currents. In addition to pushing single-bunch limits, multibunch
instabilities and long-range wake fields will become important limiting phenomena.
RF cavity feedback, aggressive HOM damping, and longitudinal and transverse
multibunch feedback systems will become essential to achieve the specified design
goals,
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