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1 Introduction

The idea that compact objects in the early universe could have observational consequences
in the present day was first postulated over fifty years ago [1]. Shortly after this work, it
was suggested that these objects could be black holes, formed from the collapse of density
perturbations [2, 3]. And so was born the field of primordial black holes (PBHs).

Relatively early on in the field’s lifetime, it was known that PBHs were a possible dark mat-
ter candidate [4] (see [5, 6] for reviews). More recently, there have been several advancements
in gravitational wave (GW) science, such as the Laser Interferometer Gravitational-Wave
Observatory (LIGO), Virgo and the Kamioka Gravitational Wave Detector (KAGRA) [7–9].
These advancements have led to new perspectives on PBHs, such as accounting for the
detected GWs from BH mergers [10–12]. Amongst several other factors, this has led to a
huge surge in the literature (see [13–15] for recent reviews of the field).
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PBH studies typically require an understanding of primordial curvature perturbations.
This information is encoded in the primordial curvature power spectrum Pζ(k), assuming the
perturbations follow a Gaussian distribution (for non-Gaussian PBH studies see [16–18], for
example). In the context of PBHs, Pζ needs to be enhanced by many orders of magnitude
from the amplitude measured on the large scales (10−4 Mpc−1 ≲ k ≲ 1 Mpc−1) of the
cosmic microwave background (CMB), where the power spectrum has been measured with
extreme accuracy [19].

A popular model used to achieve such an enhancement, whilst matching CMB observations,
is ultra-slow-roll inflation [20–22]. The level of fine-tuning needed to achieve such a boost
of power on small scales is significant in several theoretically motivated single-field inflation
models [23] (see also [24, 25] for more promising multi-field studies). Regardless, we assume
there is a peak and study how different parametrisations (and thus shapes) of the peak
impact PBH abundances and constraints.

PBH studies not only require an understanding of curvature perturbations in the early
universe but also of the universe itself when these perturbations re-enter the horizon. Typically,
PBHs are thought to form when the universe is radiation dominated (see [26–28] for examples
of PBHs forming during an early matter dominated epoch and [29] for a review). The pressure
of said radiation is dictated by the standard model (SM) of particle physics. As the universe
expands and cools, particles become nonrelativistic, and the pressure of the radiation drops
more rapidly than the energy density.

It has been understood for a long time that the reduction in pressure of the primordial
plasma leads to an exponential enhancement in the formation rate of PBHs [4, 30–32].
Making use of this SM-related enhancement and assuming a flat Pζ(k), it was argued that
several cosmological questions such as LIGO-Virgo-KAGRA observations and the origin of
supermassive black holes could be explained in a unified PBH scenario [33]. This scenario
has since been shown to be unviable [34], or at the very least it is finely-tuned. One of the
main goals of this paper is to extend this investigation to peaked power spectrum. Thus, we
will consider whether the SM-related enhancement in abundance can motivate answers to the
originally considered cosmic conundra for more realistic power spectra.

A difficulty often faced when motivating PBHs at a given mass scale is the sensitivity of
PBH abundance to the amplitude of Pζ , which is also exponential. Hence, we expect PBH
formation to take place only on scales very close to where the primordial power spectrum
peaks, regardless of whether this coincides with a scale at which a SM particle decouples. If
these scales don’t coincide but you would like a population of PBHs motivated by the SM,
you must then have a sufficiently broad power spectrum. Thus, we investigate the challenges
associated with having such a broad peak.

The key challenge to generating PBHs on larger scales than the horizon scale during the
QCD transition are CMB spectral distortions, whose constraints on Pζ are about three orders
of magnitude tighter than observational PBH constraints [35]. Thus, power spectra peaked
at these scales with broad tails to small k are ruled out. On smaller scales, pulsar timing
array (PTA) constraints from the possible induced stochastic GWs are comparably tight to
direct PBH constraints. This places a less tight constraint on the tails of the primordial
power spectrum towards smaller scales.
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We find that power spectrum constraints are largely dependent on the parametrisation
you assume. For some parametrisations of Pζ , motivating a population of PBHs at a given
SM-related scale through the associated reduction in pressure is tightly constrained. This
requires the power spectrum to be peaked at this scale, which we argue is fine-tuned. For
other shapes of the power spectrum we find that the standard model is able to have a large
impact on primordial black hole abundances.

The paper is organised as follows. In section 2 we review early universe phase transitions,
tracking both the pressure and energy density of the primordial plasma and thus the equation of
state and threshold for collapse. In section 3 we describe the power spectrum parametrisations
that we consider, before explaining how we calculate our PBH abundances. In section 4
we summarise the current constraints on the primordial power spectrum which we then use
to constrain the parameters of our chosen power spectra. Throughout this section, we pay
special attention to the mass scales relevant to the SM. We conclude our findings in section 5.
Finally, we discuss additional details and extensions of our work in the appendix.

2 Relativistic degrees of freedom in the early universe

Reheating leaves the universe filled with a hot, dense plasma of relativistic SM particles [36, 37]
(see [38–40] for reviews). As the universe expands the density and pressure of the plasma
decrease at the same rate, along with the temperature. As the temperature decreases below
the mass threshold of a given SM particle the particle decouples from the plasma, resulting
in a drop in relativistic degrees of freedom. This results in the ratio between pressure p

and the total energy density ρ, or equation of state, becoming temporarily non-constant
and varying with temperature as

ω(T ) ≡ p(T )
ρ(T ) . (2.1)

To obtain our early universe equation of state we use the following formulas for ρi and pi

for a given particle, i, in thermal equilibrium

ρi = gi

2π2

∫ ∞

mi

√
E2 − m2

i

exp(E/T ) ± 1E2dE, (2.2)

pi = gi

6π2

∫ ∞

mi

(E2 − m2
i )3/2

exp(E/T ) ± 1dE, (2.3)

where mi is the particle’s mass, gi is the particle’s degrees of freedom, and the plus (minus)
sign in the denominator applies to fermions (bosons). This information can be found in [41],
for instance. To obtain the total pressure and density and hence ω(T ) we sum over all particles.

To relate temperature to horizon mass, wavenumber and time we use the following
approximate relations [42, 43]

MH ≃ 1.5 × 105
(

g∗ρ

10.75

)−1/2 ( T

1MeV

)−2
M⊙,

≃ 17
(

g∗ρ

10.75

)−1/6 ( k

106Mpc−1

)−2
M⊙,

≃ 2 × 105
(

t

1s

)
M⊙,

(2.4)
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Figure 1. Total reduction in the equation of state ω during the EW crossover, as a function of the
horizon mass of the universe. We also track each relevant particle’s contribution to this reduction.

where g∗ρ is the number of relativistic degrees of energy density as a function of T and k

respectively. We note the cancellation of g∗ρ contributions in the final equation.

2.1 Standard model phase transitions

The first drop in the equation of state in relation to SM particles occurs at around 100 GeV
(corresponding to MH ≈ 10−5 M⊙) when the electroweak (EW) gauge symmetry SU(2)×U(1)
is spontaneously broken by the vacuum expectation value of the Higgs field. The observed
mass of the Higgs boson [44] suggests that this symmetry breaking is a smooth crossover rather
than a first-order phase transition [45], thus this period is named the electroweak crossover.
During this crossover the top quark, Z, W, and Higgs bosons each become non-relativistic.
In figure 1 we track the contributions to ω during the EW PT as an example.

In minimal extensions of the standard model, the EW PT can be strongly first order, for
example in Next-to-Minimal supersymmetry models [46–48], composite Higgs models [49, 50]
and many more. This would result in violent bubble collisions and the scalar order parameter
and fluid of light particles could produce GWs [51] within the sensitivity region of future
GW detectors.

The most drastic drop in ω(T ) occurs during the QCD PT when the temperature of
the universe is approximately 100 MeV(corresponding to MH ≈ 1 M⊙). This occurs when
strong interactions confine quarks into hadrons. Lattice QCD studies suggest that similar
to the EW PT, the QCD PT is also a crossover [52, 53]. Lattice studies are needed due
to QCD being highly non-perturbative. To provide a complete equation of state, we thus
interpolate the results of [54].
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Shortly after the QCD PT pions and muons decouple from the plasma. Finally, at around
1 MeV (corresponding to MH ≈ 106 M⊙), e−e+ annihilation and neutrino decoupling occur.
It has recently been argued that, in the context of PBH formation, the reduction in ω(T )
during the e−e+ annihilation epoch doesn’t necessarily enhance abundances [40, 55]. The
argument is that, since neutrino interactions with the rest of the plasma freeze out shortly
before this PT, they are able to free-stream out of overdense regions.

2.2 Threshold for collapse

The critical threshold for collapse, or δc as it is often written, is a key quantity when calculating
PBH abundances. This quantity defines the minimum value a density perturbation amplitude
must have at horizon entry for a BH horizon to form and collapse. Generally, a black hole
collapses if the inwards gravitational force overcomes the outwards force of pressure gradients.
In our context, the density (pressure) of the primordial plasma when a perturbation re-enters
the horizon will set the gravitational (pressure) forces. Thus, it is naturally a function of
the equation of state ω. We note that the collapse threshold value also depends on the
shape of the energy density profile [56–58].

Using the equation of state, we calculate the threshold for collapse following the method
of [59, 60]. To do this, we track the equation of state at the horizon entry time of the
perturbation and the time at which the overdensity begins to collapse. These times correspond
to the minimum and maximum peak formation times, which can be related to minimum and
maximum peak masses using eq. (2.4). This can be intuitively understood as the horizon
mass growing with time.

It is also useful to track time-averaged and logarithmic time-averaged values from the
equation of state. These values are both similar, suggesting an insensitivity to our method of
averaging. It should also be stated that the averaged values are likely to be closer to the true
answer, due to the equation of state varying between horizon entry and overdensity collapse.
We plot δc(MH) in figure 2, obtained using the time-averaging method.

When calculating many quantities involved with PBHs there are typically many layers
of detail, both theoretically and numerically. For example, in the above derivation of δc

from ω. As noted in [11], for a more complete calculation we should include the effect of
both the sound speed squared and the gravitational field potential on the dynamics of PBH
collapse. In this example, we find that although these inclusions shift each drop in δc to
slightly higher masses, the shape remains similar. Throughout the paper, we have tried
to be careful in selecting methods that lead to results that are insensitive to increases in
complexity, which we exemplify in appendix B.

3 PBH mass distribution

The abundance of PBHs is usually stated in terms of the mass fraction of the universe that
collapses to form PBHs at the time of formation or the fraction of CDM comprised of PBHs.
These, in themselves, are interesting quantities to study, with a plethora of techniques used
in calculations throughout the literature. Moreover, knowing the PBH abundance is pivotal
to discussions about GWs from black hole mergers, constraints on PBHs, and gravitational
wave backgrounds to name a few.
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Figure 2. The threshold for the collapse of PBHs, as a function of the horizon mass of the
universe. Here we take the radiation domination value of the threshold as 0.453, which has been found
numerically [59]. Clearly, there are three departures from this value, corresponding to the three PTs
described in the previous subsection.

3.1 The curvature power spectrum

As previously mentioned, there are several challenges with having an extended, nearly flat
primordial power spectrum if we wish to motivate PBH abundance enhancement due to the
drops in ω(T ) [34]. We aim to test these conclusions for different shapes of power spectra, of
which we focus on two commonly used in the literature. The two we focus on are different
parametrisations of peaks with tuneable positions and widths, which offer a more realistic
situation than a flat peak with sharp cutoffs; generating a 6–7 orders of magnitude increase
in power at a single scale is easier for a model than creating the same increase in power
over a large range of scales.

The first peaked parametrisation we consider is the lognormal power spectrum, defined as

Pζ(k) = A
1√

2π∆
exp

(
− ln2(k/kp)

2∆2

)
, (3.1)

where ∆ is the width of the power spectrum, kp is the peak scale of the power spectrum
and the normalisation is chosen such that the variance with respect to ζ is equal to A. We
recover the Dirac delta function for ∆ → 0.

Secondly, we focus on the broken power law power (BPL) spectrum, defined as

Pζ(k) = A
(α + τ)λ[

τ(k/kp)−α/λ + α(k/kp)τ/λ
]λ , (3.2)
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where α describes the growth, τ describes the decay and λ the width of the spectrum at
the scale kp. This parametrisation arises naturally from USR models [16]. In both these
examples, A is the power spectrum amplitude, however, for the BPL A does not correspond
to the variance.

In the literature, it is common to see BPL shape parameters described with different
notation. We have chosen our notation so as not to confuse later discussion, and have been
consistent throughout the paper.

3.2 Variance of perturbations

Once we have chosen a curvature power spectrum we can define the smoothed density power
spectrum during radiation domination as

PδR
(k) = 16

81(kR)4W 2(k, R)Pζ(k), (3.3)

where W (k, R) is a window function used to relate Pζ(k) in Fourier space to the probability
distribution function of δ in real space [61, 62]. The 16/81 factor depends on the equation of
state which is non-constant during a given PT, making this equation approximate. We also
choose to omit a transfer function T (k, R) because it’s order one at horizon entry. It has,
however, recently been argued that a non-linear transfer function is needed to be consistent
in threshold and variance calculations [63]. Moreover, the renormalisation procedure [64]
must also be applied on super-horizon scales.

As discussed in [65], we must use the same smoothing function when calculating the
PBH formation criterion. In this work, we mainly considered a Gaussian window function
modified by a factor of 2 in the exponent [65] defined as

W (k, R) = exp
(

−(kR)2

4

)
. (3.4)

We also consider the Fourier transform of the top-hat smoothing function, given by

W̃ (k, R) = 3sin(kR) − kR cos(kR)
(kR)3 . (3.5)

We can then use PδR
(k) to calculate the momenta of the distribution, given as

σ2
i (R) =

∫ ∞

0

dk

k
k2iPδR

, (3.6)

where i is a non-negative integer.
We note here an important point regarding both of the considered power spectra. Upon

increasing the respective width parameters, the variance of perturbations with respect to the
density contrast (eq. (3.6), with i=0) increases (decreases) for lognormal (BPL) power spectra.
This will be an important distinction when discussing PBH constraints later in this paper.

3.3 Press-Schechter formalism

The mass fraction of the universe that collapses to form PBHs at the time of formation,
β, is a possible way of describing PBH abundances. This can loosely be thought of as the
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effect the curvature power spectrum and the equation of state in the early universe have
on each other. Typically, this is calculated using one of two formalisms: Press-Schechter
theory [66] or peaks theory [67]. The focus of this subsection and the vast majority of the
paper is the former. We note that the power spectrum amplitude required to generate a
given PBH abundance is insensitive to the calculation technique [68].

In the context of PBHs, Press-Schechter theory says that density perturbations with
a peak value greater than the threshold value, δc, will collapse to form a black hole. The
abundance is thus given as

β = 2
∫ ∞

δc

dδP (δ), (3.7)

where the factor of 2 is the Press-Schechter factor. If we assume that perturbations follow a
Gaussian distribution then the Gaussian probability density, P (δ), is given as

P (δ) = 1√
2πσ2

0

exp
(

− δ2

2σ2
0

)
. (3.8)

If we further assume that PBHs form with exactly the horizon mass we can then approximate
the abundance as

β = erfc

 δc√
2σ2

0

 , (3.9)

where erfc is the complementary error function. Finally, we can compute the mass distribution
of PBHs stated in terms of the fraction of CDM made up of PBHs of a given mass M , given as

f(MPBH) = 1
ΩCDM

dΩPBH
dlnM

, (3.10)

where ΩPBH is the total abundance of PBHs relative to the critical density and ΩCDM =
0.245 [69]. This equation is simplified if β is constant when δc is constant, which is the
case if we assume that the density power spectrum at horizon-entry is scale-invariant over
a relevant but limited range of scales. If we further assume that black holes form with
mass M=MH , we arrive at

f(MPBH) = 2.4
fPBH

β(MPBH)
(

MPBH
Meq

)−1/2

, (3.11)

where the factor 2.4 comes from 2(1+Ωb/ΩCDM), with Ωb = 0.0456 [69] and Meq is the
horizon mass at the time of matter-radiation equality, Meq ≈ 2.8 × 1017 M⊙.

In a more realistic calculation, we should take into consideration the effect critical collapse
has on the PBH mass spectrum. The previous calculation can thus be extended to account
for PBHs not forming with exactly the horizon mass. It was found that the PBH mass follows
a scaling relation [59, 70], described by the critical collapse equation

MPBH = κMH(δ − δc)γ , (3.12)
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where MH is the horizon mass at horizon re-entry, κ ≃ 0.36, γ ≃ 3.3 and δc ≃ 0.453 are found
numerically assuming radiation domination. We arrive at the amended expression

β = 2
∫ ∞

δc

dδ
MPBH
MH

P (δ) = 2
∫ ∞

δc

dδκ(δ − δc)γP (δ). (3.13)

Defining µ ≡ MPBH
κMH

and dδ
dlnMPBH

= 1
γ µ1/γ , we obtain the PBH mass distribution today

f(MPBH) = 1
ΩCDM

∫ ∞

−∞
dlnMH

2√
2πσ2

0(MH)
exp

[
−(µ1/γ + δc(MH))2

2σ2
0(MH)

]
MPBH
γMH

µ1/γ

√
Meq
MH

.

(3.14)

3.4 Phase transition impacts on PBH abundances

We would like to quantify a given PT’s impact on PBH abundances. We first calculate
the scale corresponding to the peak of f(MPBH) assuming radiation domination, which we
label kfpeak . This scale depends on power spectrum parameters, and is not equal to the
peak scale of Pζ . We then consider the scales at which the threshold for collapse is at a
minimum, for each SM PT. These scales, which we label kP T , are fixed by SM physics.
On the other hand, the value of f(MPBH) at these scales clearly depends on the power
spectrum shape as well as its amplitude.

Considering the collapse threshold shown in figure 2, we calculate the ratio of f(MPBH)
at kP T versus kfpeak . We do this analysis for the parameter space of each of the considered
power spectra, normalising the power spectrum amplitude A such that fPBH = 1, which gives
us a better understanding of the effect of varying each parameter. In reality, this value of
fPBH is constrained at the QCD scale to be O(10−3) [71]. Notably, we have checked the
ratio fPT/fpeak is not very sensitive to fPBH.

If this ratio is unity, the value of f(MPBH) is the same at kfpeak and kP T . Of course, this
will occur if the scales are the same (i.e. kfpeak = kP T ). We argue that in this case, despite a
given PT increasing f(MPBH), there would have to be some level of fine-tuning in a given
model to realise the scenario. Of interest are the parameter values that lead to the ratio
being greater than one, signifying a significant change in the shape of our abundance curve
which will now have its highest value at the same scale as the PT. In these scenarios, we
can say that a given PT has impacted the abundance of PBHs.

Initially, we focus on a lognormal Pζ peaked at scales around the QCD crossover. The
biggest drop in relativistic degrees of freedom occurs on these scales so we expect the biggest
change in the shape of f(MPBH) to be around this QCD scale, upon making δc a function of
MH . In figure 3, we exemplify our process of calculating fPT/fpeak, for lognormal parameters
kp = 2 × 106 and ∆ = 2.5, recovering a value of ≈ 9. This value is relatively large, so we
would say that the QCD PT has had a large impact on the PBH abundance curve, which
can be seen from this figure.

Interestingly, we see in the figure that the peak in the full f(MPBH) does not quite
occur at the “QCD scale”. Of course, the QCD PT isn’t instantaneous and many scales are
affected by it. As previously stated, we defined this to be the scale of the minimum in the
collapse threshold during the QCD PT. The reason for this result can be seen by looking at
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)

MH(M⊙
)

Figure 3. We exemplify our method of calculating the impact of the QCD PT on the PBH abundance.
We show the abundance curves assuming radiation domination and considering the full equation of
state, for a lognormal power spectrum with kp = 2 × 106 and ∆ = 2.5. The vertical grid lines show
the peak scale of the abundance curve assuming pure radiation and the QCD scale. The horizontal
grid lines are the corresponding values of the full f(MPBH) evaluated at these scales. In this example,
we recover a ratio of ≈ 9.14.

eq. (3.9). Specifically, the abundance is dictated by the ratio within the complementary error
function. In this example, the standard deviation of perturbations has increased quicker than
the threshold (for k ≲ kQCD), resulting in δc/

√
2σ2

0 decreasing which corresponds to a larger
abundance. We find that this property becomes more evident as kp decreases.

We considered calculating the ratio at the peak scale in the full f(MPBH), instead of at
the QCD scale. However, regardless of at which scale you evaluate f(MPBH) in the numerator,
the ratio remains relatively similar. We simply point out that, as the difference in kp and
kQCD increases, our ratio values increasingly underestimate this new ratio.

In figure 4, we show the value of the ratio, fPT/fpeak, assuming a lognormal peak. We
can see from the figure that, for a given peak scale in Pζ , increasing the width will lead to
an increase in the ratio. This is to be expected, for broader spectra scales further from the
peak will have more power. As previously mentioned, the PBH abundance is very sensitive
to this increase. By widening our spectra we are thus enhancing the impact of the drop
in δc on the shape of our abundance curve.

As well as the QCD PT, we investigated the EW PT in this context. These results
are also plotted in figure 4 where we can see that none of the [kp, ∆] parameter space
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kp(Mpc
-1)

Δ
MH(M⊙)

fPT/fpeak

0.45 1.80 3.15 4.50 5.85 7.20 8.55

Figure 4. The ratio of the full f(MPBH) evaluated at PT scales versus the peak scale in the abundance
curve assuming radiation domination. We show the results assuming a lognormal power spectrum,
over the QCD and EW PTs. This gives us some intuition about the impact of a PT on the shape
of f(MPBH) as the Pζ parameters are varied. At the EW scale, we see the maximum of this ratio
equaling unity.

leads to a ratio fEW/fpeak greater than unity. This doesn’t come as much of a surprise,
despite the exponential sensitivity of abundances to δc(ω) we only see a drop of ∼ 1% in
this parameter (as opposed to ∼ 10% during the QCD PT). In [33], two planetary-mass
microlensing events [72, 73] were argued to possibly be explained by PBHs. The motivation
for this was the softening in ω at the EW scale producing a peak in their abundance curve.
However, our results suggest difficulty motivating PBHs at this precise scale, assuming a
lognormal power spectrum.

Despite having the ability to choose lognormal parameter values which lead to a large
enhancement on the impact of the QCD PT on PBH abundances, many parameter values
are ruled out by observational constraints. These will be discussed in section 4.

Lastly, we investigated the effect of the QCD PT on the PBH abundance curve assuming
a broken power law power spectrum. To make a more direct comparison with figure 4, we
focus on the width parameter of the broken power law, λ. Our results are plotted in figure 5,
where we have set shape parameters α = 4 and τ = 3. Plotting up to λ = 40, we reproduce a
similar plot to the lognormal, with some interesting distinctions. It would be informative
to investigate whether such a large value for λ is natural from a model-building perspective.
One could also perform a log-likelihood analysis on a relevant dataset as was done in [74]
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Figure 5. The ratio of the full f(MPBH) evaluated at the QCD scale versus the peak scale in the
abundance curve assuming radiation domination, for a BPL power spectrum. In this plot, we vary the
width parameter, λ, whilst keeping α = 4 and τ = 3. We can see several similarities to figure 4.

(although only up to λ = 10), to reveal whether this value of λ was favorable. However,
these discussions are beyond the scope of this paper.

The figure exemplifies how important the cut-offs of a power spectrum are when calculating
fPT/fpeak. For kp ≲ 6×106 Mpc−1 (which is the scale at which fpeak=fQCD), τ is the relevant
quantity. For kp greater than this scale, α is the relevant quantity. Decreasing the steepness
of the slope by a value of 1, we see a large increase in the ratio. We point out that this
effect isn’t solely due to the slope. As can also be seen in the lognormal case (which has
the same slope on either side of the peak), the ratio is typically larger for lower values of
kp. This is due to pions (π±,0) and muons (µ) decoupling shortly after the QCD PT, leaving
an additional drop in δc, which can be seen in figure 2.

4 PBH constraints

Observational constraints have been placed on PBH abundances over a large range of masses
(See [75] for a review). The majority of these constraints come from direct observations
where, if there were a certain abundance of PBHs at a given mass, we would expect to see
their effect on a given observation. On the other hand, see [76] for hints of detections from
various observations. As well as direct observational constraints, PBHs also face indirect
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constraints. These are associated with the primordial curvature power spectrum. Specifically,
the large increase in power required for the formation of PBHs in the typical scenario. In
this section, we discuss both direct and indirect constraints, followed by a comparison of
their respective constraints on power spectrum parameters.

4.1 Direct constraints

In the standard cosmological picture, primordial black holes with initial masses greater than
m ∼ 1015 g wouldn’t have completely evaporated by today. Thus, direct constraints on
PBH abundances of lower masses come from the effect of their Hawking evaporation [77].
For example, the Hawking evaporation of PBHs can affect element abundances [78, 79],
γ-ray backgrounds [80, 81] and cosmic rays [82, 83]. PBHs with masses in the range
1017g ≲ m ≲ 1022g are unconstrained, meaning they can account for the totality of dark
matter. It should be stated that this “asteroid-mass window”, as well as each of the direct
observational constraints, depend on the PBH mass-function one assumes [84]. Interestingly,
in higher dimensions the evaporation bound is weakened [85], leaving a larger range in which
PBHs can account for the totality of dark matter.

For PBHs with masses 1022g ≲ m, there are also a large number of direct constraints.
These include microlensing [73] and dynamical [86] constraints. To constrain Pζ from the
direct constraints on PBH abundance, we first use figure 18 from [75] which shows the
combined constraints on the mass fraction β with common parameters normalised out. We
use eq. 8 of the same paper to relate this parameter to β as follows

β′(M) ≡ γ
1/2
eff

(
g∗f

106.75

)−1/4 ( h

0.67

)−2
β(M), (4.1)

where h ≈ 0.67 [69] is the dimensionless Hubble parameter and g∗f is the standard model
relativistic degrees of freedom at the epoch of PBH formation. We set γeff equal to unity,
however, the precise value is an ongoing debate [87].

We then use the constraints on the mass fraction and substitute eq. (3.9) into eq. (4.1),
and rearrange for the power spectrum amplitude. This results in the amplitude constraint plot
being a function of power spectrum parameters. We note that the formation criterion for PBHs
depends on the choice of smoothing function [65, 88]. As such, using the modified Gaussian
window function in our abundance calculation, we set δc=0.25. Due to the exponential
sensitivity of PBH abundance to the threshold, the correct choice of δc is very important
to the discussion of power spectrum constraints.

We account for the non-linearities between the density contrast and curvature perturba-
tion [89] following the arguments of [68]. We thus multiply our constraint line by a factor
of 1.98. In figure 6 we compare the full non-linear calculation (detailed in appendix C)
to the simpler approximation. We see excellent agreement between the two, justifying the
simplification.

As previously mentioned, it was found that the power spectrum amplitude required
to generate a given value of fPBH is insensitive to whether we calculate abundances via
Press-Schechter or peaks theory in ref. [68] (but see [91] for a different view). If we instead
fixed the power spectrum amplitude and then calculated the abundance, we expect a 1–2
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Figure 6. The direct observational constraints of PBHs on the primordial power spectrum. The
sudden drop comes from CMB accretion constraints [90]. We compare the full calculation including
non-linearities to the approximation made in [68], which we use for the remainder of the paper. We
use a lognormal power spectrum with ∆=1. We see excellent agreement between this approximation
and the more computationally expensive full calculation.

order of magnitude difference for each technique [92, 93]. This difference is important for
some purposes, however, for this paper, we are interested in constraints on power spectrum
amplitude. Thus, it is more important to us that the power spectrum amplitude remains
similar regardless of the abundance calculation technique. The large difference in PBH
abundance versus small difference in power spectrum amplitude constraints is due to the
exponential sensitivity of the former to the latter. This means that, if we were to use peaks
theory, we would expect similar limits on the power spectrum from direct PBH constraints.

4.2 CMB µ-constraints

Spectral distortions quantify deviations from the CMB’s black-body temperature distribution.
If there were an increase in power on small scales the energy stored in density perturbations
would be dissipated through photon diffusion, via Silk damping. On scales relevant to
µ-distortions (the most relevant for our analysis), Bremsstrahlung and double Compton
scattering are inefficient due to the expansion of the universe. These inefficiencies result in
photon distributions on different scales being described by different blackbodies [94].

The spectral distortions place one of the tightest current constraints on the primordial
curvature power spectrum. During the µ-era, due to no detection of spectral distortions,
the power spectrum amplitude must be lower than 10−4, meaning PBH formation at this
scale is completely ruled out in the standard picture of Gaussian curvature perturbations [35].
Interestingly, this scale corresponds to PBHs of supermassive black hole masses and e−e+
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annihilation. Adding non-Gaussianity with positive skewness is not enough to stop µ-
constraints from being significantly tighter than the PBH constraints unless very extreme
and completely non-perturbative non-Gaussianity is considered [91, 95–98].

To quantify how much additional power is needed to cause observable spectral distortions
we must calculate the final µ-distortions induced by scalar perturbations, which can be
approximated as [94]

µ ≈
∫ ∞

kmin

dk

k
Pζ(k)Wµ(k), (4.2)

with k-space window functions of the form

Wµ(k) ≈ 2.27

exp

−
[

k̂

1360

]2/1 +
[

k̂

260

]0.3

+ k̂

340

− exp

−
[

k̂

32

]2
 , (4.3)

where k̂ ≡ k/1 Mpc−1 and kmin ≃ 1 Mpc−1. We can compare the total induced µ-distortions
with observations, resulting in a power spectrum-dependant function of scale k. The strongest
current observational constraint on µ-distortions comes from the FIRAS instrument on the
COBE satellite. A recent reanalysis of FIRAS data suggests µ-distortions to be smaller than
4.7×10−5 [99], which is 2 times tighter than the original analysis [100].

4.3 Pulsar timing arrays

On smaller scales than µ-distortion constraints, the primordial curvature power spectrum is
constrained by PTAs. An increase in power at a given scale will result in large first-order
scalar perturbations at that scale. In cosmological perturbation theory at second order, scalar
and tensor perturbations are coupled meaning this increase in power can be responsible for a
stochastic gravitational wave background (see [101] for a review).

Recently, PTA collaborations NANOGrav [102, 103], EPTA [104–106], PPTA [107–109]
and CPTA [110] have released data showing evidence for a stochastic gravitational wave
background. There is already much literature investigating PTA results and Pζ [111–114],
equation of state [115, 116], as well as PBH studies [74, 117–125]. In addition to scalar-induced
GWs there are many other cosmological explanations for this evidence [126, 127], such as
phase transitions [128–135] and topological defects [136–141]. There are also astrophysical
explanations for the signal [142–146], such as merging supermassive black holes. We assume
that the stochastic gravitational wave background is due to something other than scalar-
induced GWs, allowing us to place tighter constraints on the curvature power spectrum.

The scalar-induced GW spectrum today, ΩGWB, from a given curvature power spectrum
is given by [147, 148]

ΩGWB(k)h2 ≈ 3.2 × 10−5
∫ 1

0
dd

∫ ∞

0
dsTrad(d, s)Pζ

(
k

2 (s + d)
)

Pζ

(
k

2 (s − d)
)

, (4.4)

with transfer function, Trad(d, s), given in [149] for example.
To calculate the scalar-induced GW spectrum we used the python package [150], which

assumes that the equation of state is constant during GW production. As discussed in
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section 2.1, this is not the case for the early universe. A full calculation is beyond the scope
of this paper, however, see appendix B.3 for more discussion.

Then, we find the limiting amplitude of the given power spectrum such that PTA data
may constrain the scalar-induced GW spectrum. We use the all-sky GW strain 95% upper
limit data from NANOGrav15 [151], which we convert to a limit on primordial GWB energy
density through the following equation

ΩGWB(f)h2 = 2π2

3H2
0

f2h2
c(f), (4.5)

where H0=100 h km s−1 Mpc−1, and hc is the GW strain. We convert this to units of
wavelength via the following equation

f = 1.6nHz
(

k

106Mpc−1

)
. (4.6)

Finally, we arrive at our formula for constraining the power spectrum amplitude using
PTA data

Aconstraint = Min
(√

ΩGWB,NG(k)h2

ΩGWB,signal(k, Pζ)h2

)
, (4.7)

where ΩGWB,NG(k) is the constrained GWB value of NANOGrav and ΩGWB,signal(k, Pζ) is
the GWB we calculate using eq. (4.4).

The strain amplitude upper limit data was calculated in [151] in two ways, using a
uniform and log-uniform prior. Assuming a uniform prior corresponds to each value in a
model parameter’s, θ, distribution to be equally likely. A log-uniform prior corresponds to a
uniform distribution in ln(θ). A log-uniform prior is typically assumed in ΛCDM fits of Pζ

amplitude [69, 152], for example. It was shown that bounds derived with this assumed prior
may be strongly sensitive to the choice of lower prior boundary [153].

To place our constraints on the primordial power spectrum we chose to use the strain
data assuming a uniform prior, however, see [91] for constraints assuming a log-uniform
prior. The choice of prior leads to differences in power spectrum amplitude constraints of
O(2). As expected, the log-uniform prior leads to tighter constraints [151]. As previously
discussed, this difference of order 2 in the power spectrum amplitude leads to many orders
of magnitude differences in PBH abundance, making the prior choice an important decision
when calculating such constraints. Prior dependence has been discussed in many other
cosmological scenarios [154–156].

4.4 Constraining Pζ

4.4.1 Lognormal peak

As has been discussed, both direct and indirect observations can constrain the primordial
curvature power spectrum. In figure 7 we show an example plot for the constraints on the
lognormal power spectrum amplitude with ∆ = 1.1. A point above a given constraint line
is ruled out by the respective constraint. We also show the values of the power spectrum
amplitude leading to fPBH = 1 and fPBH = 10−10. The small value of fPBH = 10−10 is
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Figure 7. We show the indirect constraints on an example lognormal power spectrum, with ∆=1.1.
We also show the amplitude required to produce a PBH abundance fPBH=1 and fPBH=10−10 and
the current (direct) PBH constraint which lies in between these extreme values.

the order of magnitude constraint we would reach if most of the dark matter consisted
of WIMPs [157–163].

Using figure 7, we can identify the scales at which spectral distortion and PTA observations
place tighter constraints on the power spectrum amplitude than direct PBH constraints. For
the given values of fPBH we can calculate the values of kp that are ruled out by indirect
constraints. We point out that each constraint line and each fPBH line will differ upon
variation of the width of the lognormal, ∆. This can be seen from each respective constraint
equation, which all depend on Pζ . Using all this information we can make a parameter space
constraint plot, which we show in figure 8.

Notably, µ-distortion constraints on power spectrum parameters remain similar regardless
of each of the scenarios considered. This shows an insensitivity to fPBH that comes from the
relatively small variation in direct observational constraint lines, which is due to the exponen-
tial sensitivity of fPBH to the power spectrum amplitude. In other words, a relatively small
change in A will result in a relatively big change in fPBH. With regard to the PTA parameter
space constraints, we see more dependence on our PBH constraint line. This is because PTA
and PBH constraints are comparably tight, resulting in a sensitivity to relatively small changes
in both PTA and PBH constraint lines. We also note the coincidence of scales between PTA
observations and the QCD scale (≈ 3 × 106 Mpc−1), which is evident from the plot.
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Figure 8. We show the constraints on the lognormal power spectrum from µ-distortions (blue line)
and PTA (red line) for different scenarios. The parameter points above these lines cannot produce
PBH populations with fPBH values above those shown in the caption.

We can see that a broader lognormal power spectrum leads to tighter µ-distortion and
PTA constraints. In particular, we find that for ∆ ≲ 1, PTA observations are unable to
constrain the PBH abundance. In this case, it is not possible to detect QCD PT signatures
on fPBH using the current PTA data. In general, the region under a given line signifies the
parameter values leading to direct observational constraints on power spectrum amplitude,
and thus PBH abundance, being the most competitive. If we had used GW strain data with
a log-uniform prior, as discussed in section 4.3, then each PTA constraint line in figure 8
compete with direct observations to lower ∆.

In [33], PBHs in this mass range were argued to offer solutions to several ongoing
issues [164–166]. Moreover, LIGO-Virgo-KAGRA detections of BHs of potentially primordial
origin have also been studied in detail, including the QCD impact [11, 12]. We have shown
that, if a lognormal Pζ doesn’t peak around the QCD scale, then it must be broad for
the PT to impact the overall abundance. We have also shown that this scenario is tightly
constrained. We reiterate that this conclusion is drawn assuming the PTA signal is not due
to scalar-induced GWs and hence we are not trying to fit PTA data.
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Figure 9. The constraints on BPL parameters (Top left: α, Top right: τ , Bottom: λ) and kp

coming from µ-distortions and PTA, where shaded regions are ruled out. We have also included
fPBH = 1, 10−4 constraints. When varying each shape parameter respectively, we set the remaining
two according to α = 4, τ = 3 and λ = 1.

4.4.2 Broken power law peak

The broken power law power spectrum could be said to have several advantages over the
lognormal if we want to motivate PBHs from the drops in δc. Firstly, instead of falling
logarithmically about the peak it has sharper cut-offs. This results in scales around the peak
having less of an effect on a given constraint. Secondly, with two extra parameters used to
describe the BPL, we will have more freedom to control the overall power spectrum shape.

To produce the parameter space constraint plots for the BPL equivalent to figure 8, we
had to fix two of (α, τ , λ). For example, in the [kp, α] plot we fixed both τ and λ. The fixed
values we chose were based on [74], who found α = 4, τ = 3, and λ = 1 to be a relatively
conservative parameter combination. In other words, a small change in each respective fixed
parameter won’t affect our conclusions. The results are shown in figure 9.

We can see from figure 9, that for shape parameters τ and γ (describing the decay
and width of the BPL power spectrum) the variation in constraining power of µ-distortion
observations is not large. We note that this is particularly evident for the τ parameter, which
is to be expected as this describes the tail of the distribution. For the growth parameter, α,
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we see that this is not the case. Decreasing α can be thought of as flattening out the power
spectrum on scales k < kp. Thus, it is also expected that decreasing α will lead to tighter
µ-distortion constraints on power spectra peaked at smaller scales. This can be seen from
the plot, which suggests a difficulty motivating BPL spectra with α ≲ 1.

Similar to the lognormal constraint plot, µ-distortion constraints appear to be insensitive
to the value of fPBH. On the other hand, we find that if we take fPBH = 10−10 (as was done
in the lognormal case) then PTA null-detections rule out none of the parameter space. We
thus compare constraints with the power spectrum amplitude leading to fPBH = 10−4. Using
these constraints we consider the BPL parameter space permitting multiple PT imprints on
PBH abundance in appendix A. To make a more direct comparison between the lognormal
we focus on the λ (width) parameter of the BPL for the remainder of this subsection.

As mentioned in section 3.2, increasing the width parameter for both considered power
spectra affects the variance of perturbations with respect to the density contrast differently.
Direct PBH constraints depend on this quantity (as can be seen from rearranging eq. (4.1)),
making this an important distinction between the two spectra. Notably, increasing the width
of the BPL (lognormal) results in more (less) tight direct constraints on the power spectrum
amplitude. For the case of a BPL power spectrum with λ ≳ 6, we find that PTA constraints are
no longer comparable to direct observational constraints. In other words, direct observations
more tightly constrain the power spectrum amplitude than PTA constraints. If we had used
log-uniform strain data there would be less unconstrained parameter space. However, we
don’t expect our conclusions regarding the BPL power spectrum to depend on this choice.

From figure 9, we can see the other parameter space constraints don’t share this property,
with PTA constraints remaining relatively similar upon increasing α and τ . Looking at
figure 5, we see that a large portion of “interesting” (as defined in section 3.4) parameter
space is unconstrained by µ-distortion and PTA constraints. Thus, the shape of the power
spectrum plays an important role if we wish to constrain the impact of the QCD PT on
the PBH abundance using indirect observations. We have also shown that the constraining
power of both direct and indirect observations can differ greatly based on the assumed peaked
power spectrum shape. Upon variation of power spectrum parameters, the behaviour of the
variance, σ2

0, plays an important role in this reasoning. We have shown that these differences in
behaviour become more apparent when increasing the width of our respective power spectrum.

5 Conclusions

In this paper, we have calculated constraints on two popular parametrisations of peaked
power spectra. Combining direct observational non-detections of primordial black holes,
recent pulsar timing array data, and µ-distortions we have put constraints on the parameters
of each power spectrum. We have also compared this to Pζ constraints assuming different
values of fPBH. We find the lognormal power spectrum parameter space to be more tightly
constrained than that of the broken power law, offering less flexibility in describing populations
of primordial black holes. We believe the additional freedom of the broken power law comes
from having extra parameters and sharper cut-offs about the peak.

We have paid particular interest to standard model phase transitions throughout our
analysis, investigating the impact that the corresponding drop in ω (and thus threshold for
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collapse) has on f(MPBH). This was in part due to each phase transition scale corresponding
to an interesting cosmological scale such that if a population of primordial black holes were
to form around said scale, it could offer a solution to a cosmological unknown. In the context
of the lognormal power spectrum, we find it difficult to motivate any of these scenarios.

For the broken power law we find that, upon increasing the width of the power spectrum,
the variance of perturbations with respect to the density contrast decreases. This, in turn,
leads to tighter direct PBH constraints on the power spectrum amplitude. We note that
this also lowers the required amplitude needed to generate a given abundance of primordial
black holes. We find that for width parameter λ ≳ 6 the pulsar timing array constraints are
no longer competitive to the direct PBH constraints on the power spectrum. This results
in a large region of parameter space in which the QCD phase transition has a large impact
on primordial black hole abundances, whilst evading pulsar timing array constraints. Thus,
different parameterisations of peaked power spectra can lead to vastly different conclusions as
to whether the shape of our abundance curves can be impacted by the standard model-related
drops in the equation of state.

Nonetheless, we found that for peaked power spectra it was difficult motivating primordial
black holes with the drop in equation of state associated to the electroweak phase transition.
We have also discussed the difficulties related to power spectra peaked at scales around e−e+

annihilation. Moreover, capturing the impact of more than one phase transition on primordial
black hole abundances is not permitted for any of the parameter space values we considered.

Lastly, we show in the appendices that our results are insensitive to several extensions
we could make to our calculations. Namely, non-linearities, collapse dynamic effects, and
constraints including the full equation of state. This gives us more confidence in our
conclusions above.
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A A broad BPL example

As mentioned, the e−e+ annihilation scale coincides with tight µ-distortion constraints. Thus,
when asking whether we can have a peaked power spectrum that captures features of two
early universe phase transitions we are talking about the QCD and EW crossovers. The
BPL offers a more interesting answer to this question than the lognormal, which requires an
unreasonable width. As can be seen from figure 9 there is a large portion of unconstrained [kp,
τ ] parameter space with small τ . We can thus realise a situation in which two PTs significantly
impact our abundance calculations: k4 growth in power [167] (or steeper [168–171] to a peak
at 105 Mpc−1≲ kp ≲ kQCD ≈ 3 × 106 Mpc−1 with τ ≪ 1.

In this scenario, we are able to capture the effects of the QCD PT on PBH abundances,
due to the position of the peak. Combined with the steep growth we are also able to evade
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µ constraints. Lastly, the shape parameter τ ≪ 1 results in a long tail in our distribution,
allowing us to also capture EW effects on our abundance. This seems interesting until we
consider correlations between δ and ζ. The correlation coefficient, discussed in the appendix
of [172], is defined as

γδζ =
σ2

δζ

σδσζ
, (A.1)

with

σ2
δζ = 4

9

∫ ∞

0

dk

k
(kR)2W̃ (k, R)Pζ(k),

σ2
δ = 16

81

∫ ∞

0

dk

k
(kR)4W̃ 2(k, R)Pζ(k),

σ2
ζ =

∫ ∞

0

dk

k
Pζ(k).

(A.2)

If γδζ is close to one, then δ and ζ are highly correlated. In other words, a peak in δ

corresponds to a peak in ζ. This validates the high-peak limit assumption, and thus spherical
symmetry. On the contrary, if the correlation coefficient is close to zero then perturbation
theory based on ζ doesn’t work. In other words, whilst small values of δ could give fPBH ≈ 1,
this could result in ζ greater than unity. This leads to our results being unreliable, so we
would ideally be using power spectrum parameters such that γδζ ≈ 1.

In figure 10 we plot the correlation coefficient for the τ parameter of the BPL Pζ . The
figure shows that for τ ≪1 we obtain γδζ ≪ 1. Thus, we are unable to draw any reliable
conclusions from our method regarding τ ≪ 1. A log-likelihood analysis of EPTADR2 and
NANOGrav15 data, however, has shown that this scenario is largely disfavoured [74].

We calculate γδζ for the lognormal and BPL parameter values leading to the fQCD/fpeak≈
9, as discussed in section 3.4. For the BPL, the width parameter λ = 40 leads to γδζ ≈ 0.39.
For the lognormal, the width parameter ∆ = 2.5 leads to γδζ ≈ 0.3. This shows that our
results leading to this large impact on abundance are more reliable if we assume the shape
of the power spectrum is a BPL instead of a lognormal.

B Extensions of our work

B.1 Threshold calculations

As mentioned in the main text, when calculating the threshold of collapse for PBHs from
the equation of state there are many extensions we can make. Our method, for example,
neglects the effects of sound speed and doesn’t compute the gravitational potential correctly.
Calculating the threshold including these effects was done in [11]. The shape differs slightly
from ours, however the total relative drop is similar. We argue that for our discussions
involving the threshold the more important factor is the relative change and not the shape.
Thus, we are not concerned by this discrepancy and believe our conclusions remain reliable
despite being approximate. We compare these thresholds in figure 11.

The third alternative available to us is to rewrite our equation of state in terms of
relativistic degrees of energy density, g∗ρ, and entropy density, g∗s. These are related to
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Figure 10. The correlation coefficient, γδζ for the BPL shape parameter τ . This value quantifies the
correlation between δ and ζ. As τ≪ 1, these quantities are highly uncorrelated, which would lead our
results to be unreliable.
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Figure 11. We plot three comparisons of the relative change in threshold for collapse during the
QCD PT. We can see that our threshold calculation leads to a similar drop in threshold to [11]. We
also plot results obtained from fitting functions of energy and entropy densities, which leads to a
slightly reduced drop.
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energy and entropy via the following equations

g∗ρ(T ) ≡ 30ρ(T )
π2T 4 , g∗s(T ) ≡ 45s(T )

2π2T 3 , (B.1)

where s is the entropy density.
We can retrieve the pressure p from the relationship between the energy density and

entropy density via p = sT − ρ. Then we are able to recast ω(T ) as

ω(T ) ≡ p(T )
ρ(T ) = 4g∗s(T )

3g∗ρ(T ) − 1. (B.2)

Using fitting functions for these densities, provided by [173], we can plot the corresponding
threshold for collapse. The lack of reduction in threshold is noticeable, which we expect
would lead to different results to ones we found. In particular, to obtain the same impact
from a given phase transition on PBH abundance at a fixed kp, we would require a broader
power spectrum which is more tightly constrained.

This is due to the authors specifically constructing smooth functions which reproduce
the features of g∗s(T ) and g∗ρ(T ). This does not necessarily mean that fine features in some
composite functions of these two quantities can be reproduced. If we wanted to construct
composite functions such as g∗s(T )/g∗ρ(T ) we would require information on the correlations
between the two functions, else we have very large errors. We conclude that, in the context
of ω(T ) and primordial black hole abundances, it is better to follow the method outlined
in the main text.

B.2 κ(MH), γ(MH)

Another extension of our work that could be made is regarding eq. (3.14). As discussed
in [11], in a full calculation the quantities κ and γ are nonconstant during a PT. These
numerical factors depend on the radial profile of the perturbations being considered as well
as the characteristic scale of the horizon crossing of said perturbations. We plot the impact
of the MH dependence of these quantities on the PBH abundance in figure 12, assuming
a nearly scale-invariant curvature power spectrum.

As can be seen from the plot, the shape of each abundance curve remains similar. There
are, however, some interesting distinctions. In particular, accounting for variation in γ boosts
PBH abundance by a factor of 2. Secondly, varying κ seems to shift the peak to slightly
lower masses. Once more, we believe our conclusions would not be altered by the inclusion
of the variation of these parameters in our calculations.

B.3 Constraint dependence on MH

Lastly, we comment on the impact of a varying equation of state on our constraints. For
example, the scalar-induced GW spectrum we calculated assumes the constant radiation
domination value of ω. As previously discussed, this is not the case in the early universe. We
show the PTA constraints for different constant values of ω in figure 13. As can be seen, if
ω decreases the constraints on Pζ are less severe. We can go further toward the complete
picture by using ω(T ), however, this makes the computation much more involved. From
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Figure 12. The PBH mass function f(MPBH) calculated varying the MH dependence of the quantities
κ and γ. The dashed line shows the resulting abundance with no PTs. The green line follows our
typical calculation.

the figure we expect these changes to be relatively small. We note that this has been done
for a cut power-law power spectrum [174].

As well as PTA constraints depending on the equation of state, direct PBH constraints
also depend on this quantity. This can be seen from eq. (3.7), where it is understood that
the threshold depends on ω. Moreover, the overall factor we multiply our PBH constraint
line in appendix C in order to approximate non-linearities depends on both threshold and
gravitational potential. In figure 13, we also show the impact of including these additional
contributions to the PBH constraint line. Again, we see the impact of this inclusion is
relatively small.

C Non-linearities

It has been known for some time that the density contrast and curvature perturbation have a
non-linear relationship [89]. In the super-horizon regime, this can be expressed as [175]

δ(r̂) = −4(1 + ω)
5 + 3ω

( 1
aH

)2
exp

(
−5ζ(r)

2

)
∇2exp

(
ζ(r)

2

)
, (C.1)

where r̂ is the radial coordinate in the comoving synchronous gauge, and in spherical symmetry

∇2 = ∂2

∂r2 + 2
r

∂

∂r
. (C.2)

The result of this relationship is that we expect the density contrast to be non-Gaussian,
regardless of whether ζ follows a Gaussian distribution. However, when calculating PBH
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Figure 13. This plot shows the (Top: PTA, Bottom: PBH) constraints on the lognormal power
spectrum, varying the equation of state parameter. As we can see, a reduction in the equation of state
results in a weaker constraint on the power spectrum from PTA data, but tighter constraints from the
null-detection of PBH. In both cases, the change is relatively small.

abundances we are more interested in the smoothed density contrast. This can be written
in terms of a linear, Gaussian component δl as follows

δm = δl − 3
8δ2

l . (C.3)

The critical amplitude of this component can be calculated by inverting the above, giving

δc,l± = 4
3

1 ±

√
2 − 3δc

2

 . (C.4)

We can further note that the number density of sufficiently rare peaks in a comoving volume
for a random Gaussian field is [67]

N =
(

σ3
1

4π2σ3
0

)
ν3exp

(
−ν2

2

)
, (C.5)
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where ν≡ δl/σ0. Following [176], peaks theory is then used to calculate β such that the
non-linear relationship between δ and ζ is accounted for, given as

β(MH) =
∫ 4

3σ0

νc−
dν

κ

3π

(
νσ0 − 3

8(νσ0)2 − δc

)γ ( σ1
aHσ0

)3
ν3exp

(
−ν2

2

)
, (C.6)

where νc− ≡ δc,l−/σ0.
To account for non-linearities when calculating our PBH constraints, we follow the

arguments of [68]. They assume that each peak that collapses to form a PBH has an
amplitude close to the critical value. Using the Fourier transform of the top-hat window
function, which provides an analytic relation between δ and ζ, δc = 0.55 [88] which leads to
the critical amplitude of the Gaussian component δc,l− ≈ 0.77. Thus, they conclude that
peaks should have an amplitude 1.41 times larger if we are to approximate non-linearities.
The overall factor we times our PBH constraint line is then 1.412=1.98, because Pζ ∝ δ2

c .
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