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Abstract

The work presented in this thesis deals with two fundamental subjects. One sub-

ject deals with cosmological physics and involves the study of two dimensional ex-

tended objects features and dynamics in general relativistic scenarios: The formation

of domain walls can be caused, for example, by a spontaneous symmetry breaking

of a discrete symmetry at a phase transition. This situation may be realized in

the very early universe, when the universe has cooled down through some critical

temperature and the scalar field dominating the universe acquired a non-zero value.

Therefore, the study of creation and evolution of domain walls may be significant

for understanding the evolution of the universe.

To that end, we use models of thin shells, where the thickness of the shell is much

smaller than any other length scale in the system, in order to study the ways in which

they can induce stabilization of thin shells when an electromagnetic field is present

and also how vacuum bubbles trigger the creation of child universes out of an almost

empty space. The methods and the techniques which will be in use are presented

and explained. In particular, we study the properties of a system consisting of an

uncharged spherically symmetric two-dimensional extended object which encloses a

stationary point charge placed in the shell’s center. We show that there can be a

static and stable configuration for the neutral shell, using only the gravitational field

of the charged source as a stabilizing mechanism. We also analyze the dynamical

possibilities, including the possibility of child universe creation. Then, we examine

the possibility of unsuppressed creation of child universes at an arbitrarily small

energy cost, i.e. from an almost empty space, for a number of general scenarios.

The other research topic presented here, concerns axion-photon conversion in 2+1

dimensions. This study explores a continuous axion-photon duality symmetry to

view the axion and the photon in terms of complex scalar particles and anti-particles.



This novel formalism allows one to analyze the scattering of axions in an exter-

nal magnetic field in two spatial dimensions in a relatively simple manner and to

view it in a way which resembles a Stern-Gerlach experiment. We have used the

particle-anti-particle 2D scattering formalism to calculate the axion-photon conver-

sion probability for external magnetic fields with cylindrical symmetry and also for

the scattering of axions in a quadrupole magnetic field. The guideline in this research

is to obtain the expected conversion probabilities in different possible terrestrial ex-

periments.

In this study, we calculate the total cross section for the production of photons

from the scattering of axions by different forms of inhomogeneous cylindrical mag-

netic fields which can approximately be produced by a solenoidal current. These the-

oretical results are used to estimate the axion-photon conversion probability which

could be expected in a reasonable experimental situation. We also study the scat-

tering at a resonance Eaxion ∼ maxion, which corresponds to the scattering from a

δ-function and gives the most enhanced results. Then, we analyze the 2D scattering

of axions from an accelerator like quadrupole magnet using the eikonal approxima-

tion in order to learn whether or not such a setup could serve as a new possible

method for detecting axions in terrestrial experiments.

Lastly, we discuss some basic technological aspects and requirements from a Next

Generation Axion Helioscope (NGAH). In particular, we discuss the ideal design

of the NGAH magnet’s geometry. Inspired by the huge barrel toroid design of the

ATLAS experiment at CERN, we analyze some aspects of possible designs with

toroidal geometry.
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Part I

Preface

My doctorate studies have been developing through the research of two topics: One

concerning cosmological objects known as general relativistic shells and another one

studying axion-photon conversion in external magnetic fields. Although the initial pro-

posal of my doctorate concerned the study of thin general relativistic shells, during my

studies my supervisor, Prof. Eduardo Guendelman, introduced a novel formalism to

analyze the axion-photon system by means of a duality symmetry in the axion-photon

phase space. This new formalism has attracted my attention as an advanced and new

way to discover the speculated axion. For this reason, I decided to work in parallel on

the subjects of general relativistic shells and axion-photon conversion. Furthermore, our

study of the novel axion-photon formalism was proved to be very fruitful and lead to a

collaboration with Prof. Konstantin Zioutas of Patras University and CERN. Following

this joint work, I was offered by Prof. Zioutas to visit CERN as a project associate for a

period of 6 months (which was extended by one more month during my visit). The goal

of this visit was to conduct a conceptual design study and optimization of the Next Gen-

eration Axion Helioscope (NGAH) magnet as a future possible replacement of the CAST

experiment at CERN. The reason behind this, perhaps peculiar, transition from theory

to experimental/technological aspects of axions hunt is my motivation to go deeper into

axions research and to learn and gain experience in different aspects of it. The strong

mathematical and theoretical background, established by my theoretical work will com-

plete and complement the comprehension and understanding of the experimental and

technological side of axion research. Indeed, my post-doctoral studies will be held at

CERN as part of the NGAH collaboration, which these days is being established and

founded and will consider both the theoretical and experimental/technological aspects

of axions search.
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As the title of my PhD proposal (”Thin Shells and How They Induce Stable Solitons

and Child Universes Production”) reads, the original plan of my doctorate period was

to study the dynamics of 2+1D topological defects. General relativistic thin shells

provide a non-trivial gravitational system, whose dynamics can be described by a set of

equations with a clear geometrical meaning. This allows one, for example, to consider

a finite sized elementary particle like structure while taking into account the effects of

gravity. In principle, the basic concept uses a static and stable brane. Imposing the

approximation that the thickness of the brane is much smaller than any other length

scale in the system means that we consider a static, stable, general relativistic shell. The

idea of an elementary particle with a finite size is very appealing. Quoting Dirac, such

an idea may be ?the most natural concept that makes the total energy of the Coulomb

field of the electron finite?. Of course, it is known from experiment that up to a scale of

10−16 cm, quarks and leptons behave as point-like objects.

Usually, attempts to describe finite sized static and stable shells use additional matter

terms constrained to the brane’s surface. Nonetheless, we have brought up the interesting

question of whether it would be possible to obtain a static and stable configuration by

pure gravitational means. Of course, additional fields must be present and we apply

them by placing a source of electric field within the shell. Although we describe a finite-

sized static and stable we do not pretend to claim that our model may be a candidate

for an elementary particle with a finite size. Rather, we concentrate on the question of

what scenarios will allow for a static configuration of a brane.

Furthermore, another, perhaps more intuitive, use of general relativistic shells is within

the context of cosmology. Cosmology, the study of the origin and evolution of our uni-

verse, greatly challenges our understanding of the laws of physics. Recent developments

have enlightened the suggestive possibility that this challenge may be more concrete for

us than we may have thought. Moreover, this may not be confined to the, remote in

time, era when our universe was born. In general relativity, the dynamics of space-time

is very rich. This, sometimes, pushes one to face situations which seem counterintuitive
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when interpreted with a Newtonian mind. An example for such a situation is the re-

alization of child universes. Child universes are regions of space-time that expand to

an infinite radius without displacing, and in fact affecting in any way, the surrounding

space-time. This situation is realized when the presence of wormhole is allowed in the

global manifold. Then, the shell can expand by making its own space, provided it is

located in the wormhole region of the global manifold. Various models of child universe

creation realize, indeed, the possibility that the process could be taking place sponta-

neously in our vacuum at all times. Moreover, the additional possibility that it could

also be realized as an induced effect in the laboratory compels us to a more detailed

and in depth study of these models and their consequences. The child universe models

are usually interesting in the inflationary models, where the shell can undergo an expo-

nential growth, which recalls the exponential expansion of the early universe during the

inflationary era.

However, current models of child universes feature a mass threshold which requires the

shell to be massive enough in order to evolve into a child universe. This motivates

us to ask if this threshold is inevitable, or would it be possible for a child universe

to be realized when its mass is arbitrary. Then, the external observer, located in the

surrounding space-time, would have a difficulty sensing the presence of this low-energy

object. Therefore, in other words, we ask whether child universes may be emerged from

an almost empty space. These solutions of child universe scenarios are intended in the

broader sense of regions of space-time disconnecting from an ambient space and may be

relevant also outside the inflationary scenario in common cosmology.

The Nobel prize in physics for 2011, was very recently awarded to Perlmutter, Schmidt

and Riess for the discovery of the accelerating expansion of the universe through ob-

servations of distant supernovae. This accelerated expansion accounts for what we call

today dark energy. Dark energy was originally introduced by Einstein and de-Sitter

as the cosmological constant. In 1980, Alan Guth proposed that a negative pressure

field, similar in concept to dark energy, could drive cosmic inflation in the very early
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universe, as can also be realized by child universes in inflationary scenarios. It turns

out that roughly 70% of the Universe is dark energy. Ordinary matter adds up to about

5% and dark matter makes up about 25%. Dark matter neither emits nor scatters light

or other electromagnetic radiation and so cannot be directly detected via optical or

radio astronomy. Its existence is inferred from gravitational effects on visible matter

and gravitational lensing of background radiation. It was originally hypothesized to ac-

count for discrepancies between calculations of the mass of galaxies, clusters of galaxies

and the entire universe made through dynamical and general relativistic means. Many

experiments to detect dark matter through non-gravitational means are underway.

Light bosons, such as axions, are among the most promising candidates to solve the dark

matter problem of cosmology as well as the strong CP problem in QCD. In addition,

other axion like particles have been considered in order to solve puzzles related to the

cosmic gamma ray background. While such particles play a central role in the very

foundations of contemporary physics they, so far, have not been detected and therefore

their existence is still speculative. In the work presented here, we seek new means to

detect these particles, or at least to put better limits on their existence over a wider

range of parameter space. More specifically, we shall extend and develop new means for

axion detection via a beam splitting effect. This effect, which makes sense in at least 2

spatial dimensions, is evident from a novel formalism which introduces an axion-photon

duality symmetry when an external magnetic field is present and when the axion mass is

neglected. This symmetry allows one to examine the behavior of axions and photons in

external magnetic fields in terms of an axion-photon complex field, as this complex field

obtains the same scattering amplitude as the amplitude for axion-photon conversion.

Part II of this thesis deals with the analysis of general relativistic shell dynamics. Sec-

tions 1, 2 and 3 serve as an introduction and a review of the methods currently being

used to study such a system. In particular, we shall explain more coherently and in

greater detail the ways to obtain a child universe solution and also the necessary means

to obtain a static and stable configuration. We shall explain and obtain Israel’s junc-
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tion conditions, which yield the equation of motion for an embedded brane, by using

the Gauss-Codacci formalism and explain how these junction conditions are sufficient

to provide a full description of the brane dynamics. Section 4 introduces a new way

for achieving stabilization of a two dimensional extended object using the gravitational

effects from a massive charged source on an uncharged spherical shell. Therefore, the

stabilization is induced purely from gravitational effects. Section 5 analyzes the ways to

obtain unsuppressed creation of child universes out of almost empty space.

Part III concerns new methods for the detection of axions (and axion like particles) using

the novel particle-anti-particle formalism. In section 6 we present a thorough introduc-

tion of axion theory, starting with a discussion on the strong CP problem and its solution

by Peccei and Quinn. We then discuss the different axion models relevant to this work

and explain shortly the current bounds on invisible axion models. Section 7 introduces

the new axion-photon duality symmetry, while in section 8 we use this formalism to

obtain measurable quantities for a possible terrestrial experiments using magnetic field

with solenoidal symmetry. In section 9 we obtain the axion-photon conversion probabil-

ity from an accelerator like quadrupole magnet, as this setup was recently proposed as

a possible experiment that will extend the current limits of axions search.

Part IV gives an introductory summary of the requirements from a Next Generation

Axion Helioscope magnet. This part is a short and simple review of the work I have

conducted at CERN. It may be viewed, perhaps, as an appendix which broadens Part

III. However, it is presented as an independent part because of the technological nature

of this subject. It is written so that merely general knowledge in physics is required

to understand it since we have kept the more subtle issues like cold mass design, stress

analysis along magnet’s coils, cryogenics and protection systems, etc. out of this thesis.
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1 INTRODUCTION

Part II

Thin Shells and How They Induce

Stable Solitons and Child Universes

Production

1. INTRODUCTION

The formation of global or local topological defects, and in particular domain walls, is

known to happen during a spontaneous symmetry breaking of a discrete symmetry at a

phase transition, when a nontrivial topology exists. In the cosmological context, these

objects are likely to occur in the very early universe, when the universe has cooled down

through some critical temperature and the scalar field dominating the universe acquired

a non-zero value. Therefore, domain walls might have important implications for the

creation and evolution of our universe [1, 2].

Loosely speaking, domain walls exist when space-time has two or more regions. The

common structure of the models we shall use to analyze the dynamics of domain walls

is made of a spherically symmetric wall positioned at the radius R(τ), where τ is the

proper time of an observer moving along with the domain wall. This shell of matter-

energy Σ is the intersection of both space-time manifolds M± (i.e. the interior and

exterior, represented by the − and + subscripts, respectively), so thatM− ∩ M+ = Σ.

Furthermore, the thin-wall approximation, which considers the thickness of the wall to

be infinitely small compared to all other length scales in the problem, is applied. In

many models (particularly in the context of inflationary cosmology), the domain wall

often encloses a false vacuum region in its interior M− while the true vacuum region is

at its exterior M+. Therefore, put more visually, these models are considering bubbles
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1 INTRODUCTION

of false vacuum. This system is also known as a thin general relativistic shell [3].

For definiteness, let us write the metric, which is static and adapted to the spherical

symmetry (thus satisfying the relation grrgtt = −1), in the two space-times (i.e. the

interior and exterior of the bubble)

ds2
± = −A±(r±)dt2± + A−1

± (r±)dr2
± + r2

±dΩ2
± . (1.1)

Due to the spherical symmetry, it is not restrictive to assume θ− = θ+ = θ and φ− =

φ+ = φ. Then, the shell can be described solely by its radius R(τ). Moreover, since we

also have for the circumferential radius

R(τ) = r±|Σ , (1.2)

the continuity of the (induced) metric across Σ is realized. This allows for the dynamics

of the shell to be analyzed by geometrical means, as we shall see in the following sections.

Let us note that, equivalently, the induced metric on the brane will be well defined when

the internal and external radii coincide on the brane (Eq. (1.2)). This is obtainable

from the demand that the total area of the brane, as measured from both regions at the

same proper time of the brane, will yield the same result. In addition to that, the time

flow on either side of the domain wall has to satisfy

−A+(R)dt2+ + A−1
+ (R)dR2 = −A−(R)dt2− + A−1

− (R)dR2 . (1.3)

The latter defines −dτ 2 for an observer moving along with brane at fixed (θ, φ).

Several different models which apply the physical system we have just presented were

suggested in the past. These models can generally be divided into two main categories:

The first one analyzes the dynamics and evolution of the bubble, usually in the framework

of inflationary cosmology. Many models of this category explore the creation of a ”child
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1 INTRODUCTION

universe” (i.e. the process in which a new universe (the child universe) emerges from an

existing one, usually referred to as the parent universe, in such a way that the structure of

the parent universe is preserved) from a false vacuum bubble which detaches, classically

or via tunneling, from the original space-time as it goes through an inflationary phase [4–

9]. Models of the second category are looking for the possibility of obtaining a stable,

elementary-particle-like, bubble. These models often utilize additional matter terms in

the energy density of the domain wall or a negative surface tension (or both) [10–17].

The work presented in this part of the thesis is divided into two different branches, each

of which can be related to one of the categories mentioned above. The first will explore

the possibility of achieving a static and stable bubble purely from gravitational effects,

while the second explores the interesting possibility of creating a child universe from an

almost empty space.

1.1. Child Universes

The study of vacuum decay has began more than 30 years ago with the work of Callan

and Coleman [18, 19]. In the following years interest in this subject has increased and the

possible interplay of true vacuum bubbles with gravitation was also studied [20]. At the

same time, and as opposed to the true vacuum bubble of Coleman et. al., false vacuum

bubbles were also considered. The behavior of false vacuum bubbles with connection to

gravity was first analyzed by Sato et. al. [21–24] and later also in [4] and [7]. In the

original model, the universe was represented by an inner false vacuum core, surrounded

by a shell-like true vacuum region, which was itself immersed in a false vacuum bulk.

In this model the vacuum phase transition appears with an interesting and important

connection to the formation of black holes and wormholes in the space-time structure

(which is a crucial condition for the creation of child universes, as we shall see) [4, 25].

Not much later, a detailed analysis of the creation process of false vacuum bubbles

appeared [22]. The relevance of thermal bubble nucleation, in conjunction with the
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1 INTRODUCTION

quantum production process, has also been emphasized, together with the important

role that is played by primordial black/white holes and wormholes [23].

In inflationary cosmology, the consideration of the dynamics of an isolated false vacuum

bubble leads to the concept of child universes. The latter is a common name for regions

of space-time that expand up to an infinite size without displacing the surrounding

space. For example, a natural and straightforward model of a false vacuum bubble is

obtained by choosing a de Sitter space-time to describe the interior of the bubble and a

Schwarzschild space-time to describe the exterior.

For a big enough bubble of false vacuum, the expansion to arbitrarily large values of the

radius is inevitable despite the fact that the pressure difference (the false vacuum implies

that the pressure in the interior is smaller than the pressure in the external region)

and the existence of a positive surface tension on the domain prevent the bubble from

expanding into the surrounding space. This, of course, is counterintuitive. Nevertheless,

this scenario is indeed possible due to the presence of wormholes. The peculiar structure

of the Kruskal extension makes it possible for the bubble to expand by making its own

space, provided it is located in the wormhole region of the Schwarzschild space. When

this situation is realized, the mechanical force that accelerates the wall, which is pushing

from the outside to the inside, acts in the direction of increasing radius (i.e. towards the

wormhole region in the Kruskal diagram) and supports the bubble’s expansion. Then,

as the bubble grows, the wormhole will get thiner until its throat will close entirely

and the child universe will continue to grow disconnected from the parent space-time.

Therefore, the growth of the child universe takes place without affecting in any way the

evolution of the parent universe and the child universe is, in fact, growing by making its

own space. In fact, the late time evolution of the child universe is classically hidden from

an observer living in the parent universe by the presence of an event horizon. These

observers will only witness the child universe’s creation (at least classically) by looking

into their very far past.

Often, models of the child universe scenario use a family of three parameters. These
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1 INTRODUCTION

parameters are the energy density inside the bubble Λ, a parameter describing the matter

content on the surface of the bubble σ, and the total mass-energy as measured in the

parent space-time M . Then, whether or not a child universe will be formed, depends

on the values of these three parameters. For example, some generic choices of these

parameters might not give birth to a child universe as there can be no solution where

the bubble is small enough at earlier times and big enough at later times. This happens

when, for instance, there is a potential barrier separating small bubble configurations

from large ones. Put differently, a generic feature of the child universe models is the

existence of the critical value Mcr for the total mass-energy in the parent space-time.

When M < Mcr the bubble will not be able to expand to infinity when starting from a

small enough region. Thus, in order for a classical creation of a child universe to occur

(i.e. tunneling is not taken into consideration in the process), M must be greater than

the critical value Mcr. We will further discuss this subject in Sec. 3. However, as we

will show in Sec. 5, models in which the mass threshold is avoided are also feasible and

thus allow for the creation of a child universe from an almost empty space (i.e. for an

arbitrarily small M).

1.2. Static and Stable Domain Walls

As mentioned before, the vacuum bubble will generally not be static and, in particular,

spherical solutions of domain walls are usually unstable toward collapse. Nonetheless,

prior studies have shown that some modifications of the effective surface tension (e.g

radially dependent surface tension) [11, 12], as well as considerations of charged bubbles

[13, 14], can yield a static and stable shell solution. However, this kind of stabilization

takes place even before considering gravitational effects. Stable configurations of do-

main walls can give rise to many interesting physical models (e.g models for elementary

particles). Hence, let us review and explain shortly the idea behind the possibility of

obtaining a stationary domain wall.
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1 INTRODUCTION

Attempts to describe a stable elementary particle with a finite size began a long time ago

(see for example the paper by Einstein from 1919 [15], where he proposed to describe an

elementary particle as a bubble with an internal cosmological constant). The first brane

model was suggested by Dirac in 1962 [16], where he thought of the electron as a charged

conducting surface with a positive surface tension which balances the repulsive forces

of the charge. However, in Dirac’s paper, gravity was not considered. Yet, by using

the so-called Israel junction conditions [3] (see Sec. 2) one can solve the corresponding

problem with the presence of gravity.

As we will show in the next section, the equation of motion for a spherically symmetric

domain wall is equivalent to the equation of motion of a particle moving in one dimension

under the influence of a potential. Naturally, the dynamic coordinate is the trajectory

of the bubble. If the surface tension of the bubble is constant, the effective potential

will not have minima, and, therefore, one can not find a solution for a static and stable

bubble. In order to obtain a local minimum in the effective potential, one should consider

the more general case, where the surface tension of the domain wall σ is a function of

the dynamic coordinate (i.e. σ = σ(R)). The radial dependence of the effective surface

tension yields the possibility of obtaining a minimum value of the potential and, thus, a

stable configuration.

There are many examples for ways to obtain a stable false vacuum bubble. Here, we

shall shortly review the rather simple example of the model suggested by Guendelman

and Portnoy (GP) [11]. In the GP model, one views an elementary particle as a 2+1

dimensional brane embedded in a 3+1 bulk. Next, a 2+1 gauge theory is introduced on

the brane’s surface. The action for the brane now takes the form

S = σ0

∫ √
−hd3y + α

∫ √
−hFabF abd3y , (1.4)

where a and b take the values 0,1,2 and h = det(hab), where hab is the induced metric

on the brane. For the spherically symmetric bubble, the simplest non-trivial potential
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2 ISRAEL JUNCTION CONDITIONS

that respects the spherical symmetry (up to a gauge transformation) is the magnetic

monopole configuration

Aφ = f(1− cosθ) , (1.5)

which implies that Fθφ = fsinθ. The most general two dimensional spherically symmetric

metric is given by

ds2 = habdy
adyb = −dτ 2 +R2(τ)dΩ2 . (1.6)

Therefore, we have FabF
ab = 2f 2/R4, which means that the action can now be written

as

S = 4πσ0

∫
R2(τ)dτ + 8πα

∫
f 2

R2(τ)
dτ = 4π

∫ (
σ0 +

2αf 2

R4(τ)

)
R2(τ)dτ . (1.7)

Hence, one can obtains an effective surface tension

σ(R) = σ0 +
2αf 2

R4
= σ0 +

σ1

R4
, (1.8)

with σ1 = 2αf 2, where α is a constant. when one calculates the effective potential (as

we shall do in the following sections) using the effective surface tension, σ(R), one may

find a local minimum of the potential (for α > 0). This allows for a stable configuration

for the false vacuum bubble.

Also, it is important to notice that the famous magnetic monopole solutions in the

context of gauge theories are precisely stable bubbles of false vacuum [26].

2. ISRAEL JUNCTION CONDITIONS

General relativistic shells provide a non-trivial gravitational system, whose dynamics

can be described by a set of equations with a clear geometrical meaning. In systems
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with a high degree of symmetry the number of the equations of motion of the system is

also significantly reduced. In particular, for a spherically symmetric 2 + 1 dimensional

shell the number of independent equations of motion is just one. Moreover, this single

equation of motion is identical to that of a particle moving in one dimension under the

influence of a potential. Hence, the problem of analyzing domain walls dynamics (in

our spherically symmetric models) is reduced to analyzing the one dimensional effective

potential. Because the usual starting point in our analysis of domain walls dynamics is

the equation of motion itself for each specific problem, let us precede our analysis by

providing a general derivation of it as an essential review for studying the dynamics of

a generic shell of matter-energy.

Our generic system consists of a domain wall that splits the space-time into two spheri-

cally symmetric regions, for each of which Einstein’s equations are assumed to be satisfied

separately. The geometric property of the system manifests itself in the way that the

domain wall is embedded in the two regions. In order to compare the two geometries we

use the extrinsic curvature of the domain wall, induced by each of the two regions. The

jump between the two extrinsic curvature tensors on the brane yields the equation of

motion of the domain wall. This is done using the Gauss-Codacci formalism, which is a

method of viewing four-dimensional space-time as being sliced up into three-dimensional

hyper-surfaces [27].

The four dimensional Einstein Equations are

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (2.1)

where the metric has one negative eigenvalue, Gµν is referred to as the Einstein tensor,

Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is the matter energy-momentum

tensor. Following the procedure given in [4], we begin by introducing a Gaussian normal

coordinate system in the vicinity of the domain wall. Using the same notations as before,

let us denote the 2 + 1 dimensional hyper-surface covered by the domain wall as Σ and
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introduce a coordinate system on Σ. For definiteness, two of the coordinates can be

taken to be the angular variables on the domain wall, which are always well defined (up

to a rotation). For the third coordinate, one can use the proper-time variable τ . Next,

let us consider all the geodesics which are orthogonal to Σ. We consider a neighborhood

N about Σ so that any point that belongs to N lies on only one geodesic. The first three

coordinates of each point in N are then determined by the coordinates of the intersection

of this geodesic with Σ. The fourth coordinate η of each point in N can be taken as

the proper distance in the positive direction (defined as the direction fromM− toM+)

from Σ to that point along the geodesic line that connects them. Thus, the full set of

coordinates is given by xµ = (xi, η), where xi = (τ, θ, φ) and i = 1, 2, 3.

In this coordinate system the metric obeys the following simplifying relations

gηη = gηη = 1 , gηi = gηi = 0 . (2.2)

Next, we define a unit vector field nµ(x) which is normal to each of the of the η = const

hyper-surface. Notice that nµ is chosen so that the positive direction is pointing from

the interior space-time to the exterior. In the Gaussian normal coordinate system, this

vector field is given by

nµ(x) = nµ(x) = (0, 0, 0, 1) . (2.3)

The next step is to describe the extrinsic curvature of the domain wall. The extrinsic

curvature is a three dimensional tensor, corresponding to each η = const hyper-surface,

whose components are defined by

Kij = ni;j , (2.4)

where the semicolon represents the four-dimensional covariant derivative, but with the

indices are restricted to the values 1, 2, 3 (in fact, the general form of the extrinsic
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curvature tensor is given by Kij = ni;j − ξniaj, where ai = nkni;k is defined as the

acceleration vector and ξ = nin
i. However, when the normal vector field is taken to

lie on a geodesic, as in Gaussian normal coordinates ai = 0). The extrinsic curvature

measures the fractional shrinkage and deformation of a figure lying in the space-like

hyper-surface Σ that takes place when each point in the figure is carried forward a unit

interval of proper time ”normal” to the hyper-surface out into the enveloping space-time

[27].

By choosing the Gaussian normal coordinates system, we now benefit from the simple

form that this tensor takes

Kij = −Γηij = 1
2
∂ηgij . (2.5)

It is also clear from the latter that the extrinsic curvature is a symmetric tensor.

Now, the four dimensional tensors Rµνκξ, Rµν and R can be expressed at any point

in terms of the corresponding three dimensional tensors and the extrinsic curvature of

the hyper surface passing through the given point. One should note that the Gauss-

Codacci formalism does not require the use of Gaussian normal coordinates. However,

this formalism can be derived in a considerably simpler way by choosing this coordinate

system. Noting that the only nonzero components of the affine connection are given by

Γkij = (3)Γkij , Γηij = −Kij , Γiηj = Ki
j , (2.6)

where the superscript (3) denotes three dimensional geometric quantities. Then, Ein-

stein’s equations become

Gη
η = −1

2
(3)R +

1

2

[
(TrK)2 − Tr(K2)

]
= 8πGT ηη , (2.7)

Gη
i = Km

i |m − (TrK)|i = 8πGT ηi , (2.8)
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Gi
j = (3)Gi

j − ∂η
(
Ki
j − δijTrK)

)
− (TrK)Ki

j + 1
2
δij [Tr(K2) + (TrK)2] =

= 8πGT ij ,
(2.9)

where a subscript vertical bar denotes the three-dimensional covariant derivative.

In the thin wall approximation, Tµν has a δ-function singularity on the domain wall.

Thus, one can define the surface energy-momentum tensor Sµν by writing

Tµν = Sµνδ(η) + regular terms . (2.10)

It is worth noting that when the matter content on the domain wall is described by a

perfect fluid, the energy-momentum tensor on the shell’s surface takes the form Sµν =

(σ + p)UµUν + phµν , where hµν = gµν − nµnν is the projector onto the surface of the

shell and Uµ is the four-velocity of the wall.

Inserting Eq. (2.10) into the field equations (2.7 - 2.9), shows that Eqs. (2.7) and

(2.8) are satisfied automatically provided that they are satisfied for η 6= 0 and that

gij is continuous at η = 0 (so that Kij will not acquire a δ function singularity). The

remaining Eq. (2.9) leads to Israel’s junction conditions [3]:

γij = −8πG(Sij −
1

2
δijTrS) , (2.11)

where Sij = Sikhkj and

γij = lim
ε→0

[Kij(η = +ε)−Kij(η = −ε)] . (2.12)

The spherical symmetry of the system ensures us that the off-diagonal components of

the extrinsic curvature tensor vanish and that its angular components are related by

Kφφ = sin2θKθθ. Hence, the junction conditions are completely determined by the θθ

and ττ components of Eq. (2.11).
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Next, one needs to express the metric coefficients in terms of the Gaussian normal

coordinate system so that the extrinsic curvature is given by Eq. (2.5). Because this is

a purely technical step and since we ultimately wish to obtain the equation of motion

in terms of the standard metric notation, we shall skip this derivation here. The details

of this calculation can be found in [4].

Now, by choosing an equation of state to describe the matter content on the shell, one

is able to obtain the energy density on the brane and thus calculate the right hand side

of (2.11). Let us write the equation of state for the matter on the bubble surface as

p(R) = ωσ(R) (i.e. a perfect fluid), where p is the two dimensional isotropic pressure, ω

is a constant and σ is the surface energy density. Then, energy conservation on the shell

Si0 |i = 0 yields the equation dσ = −2(σ(R) + p(R))dR
R

. This, of course, is equivalent to

the first law of thermodynamics du = −pda (where u = m(R) = 4πR2σ(R) is the total

energy content and a = 4πR2 is the surface area of the bubble). Solving for σ(R) we

find that

σ(R) = σ0R
−2(1+ω) , (2.13)

where σ0 is a constant.

Now, we are in a position to write the equation of motion explicitly in terms of the

metric coefficients and the energy density on the brane. Taking the θθ component of

(2.11) and keeping in mind that due to the spherical symmetry Sθθ = Sφφ , one notes that,

in fact, only the energy density (i.e. Sττ , coming from TrS), remains in the equation.

Then, plugging all the above into (2.11) yields the equation of motion for a general

energy-matter shell

β− − β+ = 4πGσ(R)R , (2.14)

where β± are defined as
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β+ = ε+(A+(R) + Ṙ2)1/2 and β− = ε−(A−(R) + Ṙ2)1/2 , (2.15)

where an over-dot denotes a derivation with respect to τ , A±(R) = −g±tt and the signs

of the coefficients ε± are to be determined by the geometric analysis of the problem:

ε± = sgn(nµ∂µr)|M± determine if the radial coordinate r is decreasing (ε± = −1) or

increasing (ε± = +1) along the normal coordinate to the brane, nµ. Eq. (2.14) is

equivalent to the equation of motion of a particle moving in one dimension under the

influence of an effective potential of the form Ṙ2 + Veff (R) = 0 [4].

The proper-time component of Eq. (2.11) yields just the proper-time derivative of Eq.

(2.14). Thus, (2.14) determines all the properties of the solution to the general problem

of our system. One should notice that for geometries that do not contain wormholes the

signs of both β+ and β− must be positive.

3. VACUUM DECAY AND CHILD UNIVERSES: A SHORT DISCUSSION

The phase transition which leads to the creation of domain walls involves a phase sep-

aration process, where the domain wall is the boundary between the two vacua. This

is similar to first order phase transitions effect in thermodynamics. However, following

the discussion which appears in [28], it is the purpose of this section to explain that the

classical geometrical description is appropriate to provide a comprehensive description

of the dynamics of domain walls and also to elaborate on the conditions required for

child universes creation.

The above formalism (i.e. Israel junction conditions) has been widely used to describe

the formation of child universes. It provides a convenient practical way to implement a

more comprehensive description in which the vacuum decay is represented by the decay

of a scalar field. If the scalar field has two equilibrium states which have a different

energy density and quantum effects are considered, the higher energy density state can
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become unstable due to the possibility of tunneling under the potential barrier. This

may become transparent already in the semiclassical approximation with a single scalar

field with non derivative interactions being considered. The decay process of a volume

V of the higher energy density false vacuum into the lower energy density true vacuum

has a probability (per unit time per unit volume) which is given by

Γ

V
= Ae−B/~ [1 +O(~)] , (3.1)

where the positive exponent constant B [18] and the coefficient A [19] can be computed

by standard techniques. This analysis is particularly relevant when it is coupled to

gravity. It was recognized by Coleman and De Luccia [20], who studied the effect of

gravitation upon the decay of false vacuum, that a study of vacuum decay that would

not include gravitational effects would be incomplete.

However, the vacuum bubbles we have described above are true vacuum bubbles, that

is, the phase transition is from false vacuum to true vacuum. Nonetheless, the opposite

transition is also possible (i.e. a false vacuum bubble can arise in a bulk of true vacuum).

This kind of bubbles is particularly interesting in the cosmological context since they

can undergo an exponential growth, which recalls the exponential expansion of the early

universe during the inflationary era. For example, a detailed analysis of the false vacuum

bubble creation by cosmological first order phase transition can be found in [22].

Although all these processes involve the decay of a scalar field, by using the thin shell

formalism [4, 29] the problem of bubble nucleation can be analyzed at the classical level

by concentrating merely on a general relativistic description. Considering the analysis

developed in [4], it is seen that the formalism described in section 2 is perfectly suited

to analyze the formation of a vacuum bubble. Moreover, an immediate interpretation

of the properties of the model is made possible by the intuitive geometrical meaning of

the quantities which appear in the junction condition (i.e. Eq. (2.14)).

In more detail, the model studied in [4] studies the dynamics of a vacuum bubble in
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terms of the dynamics of a general relativistic shell separating a region of a de Sitter

space-time (i.e. A− = 1− χ2r2) from a region of a Schwarzschild space-time (i.e. A+ =

1 − 2GM/r). Because this model corresponds to a standard (or pure, i.e. which does

not involve additional matter terms) domain wall, the energy-matter content of the shell

is represented by a uniform, positive and constant energy-density σ0, which is equal to

the opposite of the (equal) radial and tangential pressures. Thus, we have Sij = −σ0h
ij,

where hij is the induced metric on the shell. Therefore, one is able to define the ”mass

content” of the bubble as m(R) = 4πσ0R
2. This also naturally arises from the models

described above by using a scalar field to describe the vacuum phase transition. The

study of the solutions of the junction condition can then be performed by obtaining an

equivalent effective formulation of Eq. (2.14) that reduces the problem to the analysis of

the motion of a classical particle of unit mass under the influence of a potential. However,

this reformulation of the junction condition needs to be completed by the understanding

of the behavior of the normal vector to the brane. Hence, the results of the behavior

of the radial coordinate R(τ) have to be complemented with the determination of ε±,

which can also be obtained in closed form in the general case [30].

As we briefly discussed in the introductory subsection 1.1, this model is governed by three

parameters: The cosmological constant of the false vacuum bubble Λ = 3χ2 (which

can be connected to the vacuum energy density ρ by the relation Λ = 8πGρ), the

Schwarzschild mass of the asymptotically flat region M and the surface energy density

σ.

As was explained in Sec. 1.1, and can also easily seen by squaring twice at Eq. (2.14)

for a given case (as will be done in the following sections), two qualitatively different

types of solutions of (2.14) are obtained when varying these parameters:

1. The system admits solutions which start from a zero radius and grow up to an

arbitrarly large R. These solutions become large enough to describe the formation

and evolution of an inflationary universe, but develop from an initial singularity.
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2. The system admits two kinds of solutions:

(a) Bounded solutions, which start evolving from a zero radius and, after reaching

a maximum radius of expansion, collapse back to a zero radius;

(b) Bounce solutions, which collapse from large R values up to a minimum radius

and then expand again to infinity.

In these two situations, where a classical transition from a bounded to a bounce

solution is forbidden by the existence of a potential barrier, the bounded solutions

cannot become big enough to describe the evolution of a universe like ours, while

the bounce solutions, cannot evolve in the small radius region (i.e. they are not

suited to describe the early evolution of a universe like ours).

It thus seems that the only choice to have a bubble evolution that is suitable for the

description of the observed universe is to accept the initial singularity, at least at the

classical level. This result is not a failure of the present model, but is connected with

general results of singularity theorems in general relativity [31] - [35] (see also [36] and

[37] for standard textbook discussions) as it was recognized in [38]. Hence, classical

models are still very useful to investigate the essential features of child universes creation

process.

As we have discussed in Sec. 1.1, child universes, emerging from a false vacuum bubble,

are characterized by an energy density which is larger than that of the surrounding space.

Therefore, the bubble encloses a region of lower pressure which makes it impossible for

the bubble to expand onto the parent universe (when M < Mcr and the bubble starts

with a small enough radius). However, when a wormhole is formed the child universe

can grow by making its own space on the other side of the wormhole throat. In this

case, the late time evolution of the child universe is classically hidden from an observer

living in the parent universe by the presence of an event horizon. It is important to

remark that it is the wormhole structure of space-time that allows for the creation of the
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child universe. The same force that would prevent the expansion to the parent universe

side of the wormhole, acts in the opposite direction and, in fact, favors the expansion

on the other side of the wormhole. In this region the normal vector to the brane, which

is directed from the child universe M− toward the parent space M+, points in the

direction of decreasing radius. Mathematically, this is reflected by a negative value for

ε+ in equation (2.14). If this condition is met for values of the parameters for which

solutions of type 1 above can be realized, then child universes are formed.

To summarize, two requirements have to be met for child universes to be realized as

false vacuum bubbles when using the thin-wall approximation:

requirement 1: There must be a process by which a very small bubble can become

big enough, so that both the early and late time evolution of our universe can be

described. This means that the solution to the junction condition is of type 1.

requirement 2: At late times, the evolution must guarantee that ε+ = −1, so that

the child universe is, effectively, classically disconnected from the parent universe.

This requirement indicates the presence of a wormhole and that the bubble may

expand by creating its own space on the other side of the wormhole.

The above requirements can be applied also to generalizations of the model, which was

first analyzed in [4], and also to those generalizations involving semiclassical quantum

effects.

4. NEUTRAL SHELL STABILIZATION BY GRAVITATIONAL EFFECTS

FROM ELECTRIC FIELDS

Before moving on to analyze the creation of child universes out of an almost empty space,

we wish to study the more elementary subject which explores, by using the classical

formalism we have described above (i.e. Israel junction conditions), a novel possibility

to stabilize a domain wall.
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However, first we wish to clarify our choice of parameters space which will be used for

the different scenarios in sections 4 and 5. In this work we chose to concentrate on

analytical solutions. In order to obtain analytical solutions, we have confined ourselves

to a comparatively small region of parameters which have a physical meaning while

still keeping the solution analytical. As was explained before, the phase space of the

problems which appear in this part of the work is determined by the choice of the inner

and outer metrics, as well as the choice for the energy density on the brane. A work

theme that makes sense then, is to choose the matter content on the brane and then

choose different types of metrics in order to obtain a more general solution. For example,

the choice ω = −1/2 leads to σ(R) = σ0/R. Putting this into the equation of motion (i.e.

Eq. (2.14)) yields β−−β+ = const. which implies that a fairly simple analytical solution

may be obtainable. Then, the choice of the inner and outer metrics will determine the

shape of the potential. Of course, there are no general solutions to Einstein’s equations

and therefore no single general solution is obtainable for each choice of ω. In other

words, this way of search for (more) general analytical solutions is repeating itself in

order to reach a wider family of solutions to the analysis of two dimensional branes. The

final results and conclusions of this process are presented in the rest of this part of the

work.

In this section we wish to explore a different way, than those mentioned in Sec. 1.2,

for achieving stabilization of a two dimensional extended object using the gravitational

effects from a massive charged source on an uncharged spherical shell. Hence, the stabi-

lization in the case presented here is induced purely from gravitational effects. Following

[39], we shall show that obtaining a static and stable domain wall configuration is in-

deed possible, even without introducing additional mass terms. The major result of our

analysis is that the mere presence of a global electric field (that is, an electric field which

is present on both regions of the global space-time manifold) can serve as a stabilizing

mechanism for a vacuum bubble. Here, the source of this electric field is a massive point

charge, located at the center of the vacuum bubble.
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4.1. Analysis of the Electro-Magnetic Properties

Since we have a massive and stationary point charge located at the center of the bubble,

the general metrics for both regions of our set-up are Reissner-Nordstrom metrics. As

the shell does not carry any charge, the charge parameter that appears in both metrics

should be equal, leading to

ds2
− = −

(
1− 2Gm

r
+ GQ2

r2

)
dt2 +

(
1− 2Gm

r
+ GQ2

r2

)−1

dr2 + r2dΩ2, r < R ,

ds2
+ = −

(
1− 2GM

r
+ GQ2

r2

)
dt2 +

(
1− 2GM

r
+ GQ2

r2

)−1

dr2 + r2dΩ2, r > R ,

(4.1)

where m is the mass of the electric field source, with charge Q, and M is the mass-

energy of the system as seen by an external observer. The only non-zero component of

the electromagnetic tensor will be F0r = −Fr0. Therefore, Maxwell’s equations reduce

to the single equation

∇rF
0r =

1√
−g

∂r
(√
−gg00grrF0r

)
= 0 , (4.2)

for r 6= 0. Thus, from classical electrodynamics, we have (for each region)

(
√
gg00grr)iF i

0r ∝ Q, where i indexes the different regions. From the latter we find

that the electric field is continuous across the shell

F0r =
Q

r2
, ∀ r . (4.3)

Finally, we find the energy density of the electric field to be

T 0
0 = −Q

2

2r4
, ∀ r . (4.4)
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4.2. Dynamical Analysis

Now we turn to derive the effective potential which governs the bubble dynamics and

look for at-least one local minimum point which fulfills the condition Veff (Rmin) = 0.

For consistency, let us write again the bubble’s equation of motion

ε−

√
A−(R) + Ṙ2 − ε+

√
A+(R) + Ṙ2 =

Gm(R)

R
= κ(R) , (4.5)

where the ± subscripts indicate the exterior and the interior regions of the shell, respec-

tively, A±(R) = −g±tt , m(R) = 4πR2σ(R) describes the energy-matter content which is

located on the surface of the bubble and the coefficients ε± = sgn(nµ∂µr)|M± determine

if the radial coordinate r is decreasing or increasing along the normal coordinate to the

brane, nµ.

Let us choose, as we have done in Sec. 2, the equation of state for the matter on

the bubble surface to describe a perfect fluid p(R) = ωσ(R), where p(R) is the two

dimensional isotropic pressure, ω is a constant and σ(R) is the surface energy density.

Then, energy conservation on the shell yields

σ(R) = σ0R
−2(1+ω) , (4.6)

where σ0 is a constant. For example, ω = −1 represents a constant surface tension (i.e.

a standard domain wall) and ω = −1/2 represents a matter that can be interpreted

as a gas of strings living on the surface of the bubble [40, 41] (a gas of strings in n

spatial dimensions satisfies the equation of state p = −σ/n.). Putting Eq. (4.6) into the

equation of motion (4.5) we get

κ(R) = 4πGσ0R
−(1+2ω) = κ0R

−(1+2ω) , (4.7)
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where κ0 = 4πGσ0. Squaring twice Eq. (4.5) yields the effective one dimensional

equation

Ṙ2 + 1− κ2
0R
−2(2ω+1)

4
− G(M +m)

R
+
GQ2

R2
− G2(M −m)2

κ2
0

R4ω = 0 , (4.8)

which defines the effective potential to be

V (R) = 1− κ2
0R
−2(2ω+1)

4
− G(M +m)

R
+
GQ2

R2
− G2(M −m)2

κ2
0

R4ω . (4.9)

Let us now concentrate on two specific cases that have a physical meaning: ω = −1/2

and ω = 0. The first case describes a gas of strings which is located on the surface of

the bubble, while the second choice corresponds to dust localized on the wall. For these

two values of the equation of state parameter the effective potential is tractable and can

be solved in closed form.

Let us show now that in both cases the potential can have a local minimum which

satisfies V (Rmin) = 0, after some fine tuning. Let us begin with the stringy gas bubble.

4.2.1. String Gas Bubble

The effective potential for this kind of bubble is (ω = −1/2)

VS.G(R) = 1− κ2
0

4
− G(M +m)

R
+
GQ2

R2
− G2(M −m)2

κ2
0R

2
. (4.10)

Solving the equation VS.G(R) = 0, we are lead to a polynomial equation of rank 2. By

imposing the demands that the discriminant will equal zero and that κ2
0 < 4, we ensure

that we will have a global minimum which satisfies VS.G(Rmin) = 0.

The discriminant of the effective potential function is given by
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∆ = G2(M +m)2 + (κ2
0 − 4)

(
GQ2 −G2 (M −m)2

κ2
0

)
(4.11)

and by demanding ∆ = 0 we arrive at the condition:

Q2 =
G(M +m)2

4− κ2
0

+
G(M −m)2

κ2
0

. (4.12)

The radius of curvature of the stable bubble is thus given by

Rmin = 2G
M +m

4− κ2
0

, (4.13)

with Rmin being positive under the imposed conditions.

Now we turn to ask if Rmin is located behind any horizons. In principle, there might be

two different horizons in each region. But, if Q2 is bigger than GM2 there will be no

horizons in the system (remembering that M ≥ m, since we do not consider negative

surface tension). Comparing Eq. 4.12 to GM2 is equivalent to comparing the function

f1(x) and the quantity g1, where:

f1(x) = x2 + x(κ2
0 − 2) + 1 , (4.14)

g1 =
κ2

0

4
(4− κ2

0) , (4.15)

with x = m/M being the ratio between the masses (which is constrained to 0 < x < 1).

So the condition Q2 < GM2 is now f1(x) < g1. The minimum value of f1(x) is located

at xmin = (2−κ2
0)/2, when κ2

0 < 2, and at x = 0 when κ2
0 > 2. Looking at the minimum

value of f1 we find that it satisfies f1(xmin) = g1. This means that f1(x) will always be

greater than g1 (i.e Q2 > GM2) except for the case when the ratio between the masses

is fine tuned to equal precisely xmin and the surface tension is small enough (i.e κ2
0 < 2).
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This limiting case means that there would be two degenerate horizons (i.e an extremal

black-hole-like object). When x 6= xmin, we have a naked singularity at r = 0, since

this corresponds to Q2 > GM2. When m = (1 − κ2
0/2)M (i.e x = xmin), the bubble

would sit exactly on the degenerate horizon (i.e Rmin = GM) and therefore it would be

a light-like brane. However, we consider here only a time-like motion for the brane and

this particular case is merely a limiting situation.

The above result is actually an example of the more general relation between the effective

potential and the metric coefficients which states that A±(R)−Veff (R) ≥ 0. Thus, when

the effective potential is definite positive, as in the cases studied here, the geometries

M± can not contain any horizons. A proof for this relation is given in Ref. [42].

Veff (R)

R

lim
R→∞

Veff (R)

Rmin

FIG. 1: The general characteristics of the effective potential Veff (R) (continuous line). This

graph corresponds to both cases analyzed here: ω = −1/2 and ω = 0, which show similar

characteristics of the effective potential. The dashed line corresponds to the limit of Veff (R)

at R→∞: 1− κ2
0/4 in the ω = −1/2 case and 1− (G(M −m)/κ0)2 in the ω = 0 case.
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4.2.2. Dust Shell

For the case of ω = 0, the effective potential is

VDUST (R) = 1− κ2
0

4R2
− G(M +m)

R
+
GQ2

R2
− G2(M −m)2

κ2
0

. (4.16)

In the same manner of section 4.2.1, by solving the equation VDUST (R) = 0 we encounter

again a simple quadratic equation. The conditions for having a stable solution now are

(note the different units of κ0 in this case) G2(M −m)2 < κ2
0 < 4GQ2 and

∆ = G2(M +m)2 + (κ2
0 − 4GQ2)

(
1− G2(M −m)2

κ2
0

)
= 0 . (4.17)

The latter can, again, be written as a constraint on the charge:

Q2 =
κ2

0

4G

4G2Mm+ κ2
0

κ2
0 −G2(M −m)2

. (4.18)

The radius of curvature for the stable bubble is now given by

Rmin =
1

2

G(M +m)κ2
0

κ2
0 −G2(M −m)2

, (4.19)

which is, again, positive under the imposed conditions.

Looking for the location of Rmin relative to the horizons, we continue in analogy to the

prior case, where now

f2(x) = G3M4(1− x)2 +GM2κ2
0x , (4.20)

g2 = κ2
0

(
GM2 − κ2

0

4G

)
. (4.21)

37 of 144



4 NEUTRAL SHELL STABILIZATION BY GRAVITATIONAL EFFECTS FROM ELECTRIC FIELDS

f2(x) has one minimum at xmin = 1 − κ20
2(GM)2

, when κ2
0 < 2(GM)2, and at x = 0 when

κ2
0 > 2(GM)2. It can be easily verified that f2(xmin) = g2. The conclusions are the same

as before: there will be no horizons unless κ2
0 < 2(GM)2 and x = xmin, where the latter

means that the two horizons are degenerate and located at R = GM , exactly where the

bubble would sit. Again, this demonstrates the more general relation A±(R)−V (R) ≥ 0

[42].

4.2.3. Dynamical Solutions

Here we would like to address the question: what happens to the two types of bubbles

we have considered earlier, if the conditions for time independence are not satisfied?

Obviously, one option is that no dynamics is possible (when ∆ < 0). The other option

is that the effective potential will be negative in some region, which will allow a kinetic

energy for the shell. Here we have two cases: a finite or an infinite region where V < 0.

The first case (finite region) corresponds to bounded solutions, or a ’breathing’ bubble

[43], where the bubble starts off at some radius, expands to a maximum radius value and

then shrinks back to the initial radius. On the other hand, the second case corresponds

to a bubble which begins with a finite radius and then expands to an infinite size.

The question is whether the bubble blows up onto the surrounding space-time or perhaps

there is a possibility for wormholes to exist in this case and allow for a child universe

solution (as we discussed before, when wormholes are present the bubble can make its

way and expand to infinity by creating its own space completely disconnected from the

original space-time).

In order to determine if wormholes might be present in the solution we need to calculate

the extrinsic curvature tensor induced on the shell. This was done, of course, in Eq. (4.5).

For spherically symmetric metrics the relevant component of the extrinsic curvature is

Kθθ ∝ ∂gθθ/∂n so that the coefficients ε± determine the behavior of the radial coordinate

in the direction orthogonal to the trajectory of the bubble, hence allowing us to determine
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the existence of wormholes. Calculating the signs of these coefficients for the two types

of bubbles we are considering, we find that for the string gas bubble

sgn(ε+) = sgn

(
2G(M −m)

R
− κ2

0

)
, (4.22)

sgn(ε−) = +1 , (4.23)

and therefore the extrinsic curvature induced on the shell from the exterior changes sign

at R = 2G(M−m)

κ20
. This change of sign is a generic characteristic for the presence of

wormholes since when ε+ is negative the normal coordinate to the brane, which points

from the bubble interior to its exterior, is pointing along a direction for which the

radial coordinate is actually decreasing rather than, as in the more familiar possibility

of non wormhole geometry, increasing. Thus, we conclude that there is a possibility for

the bubble to expand to infinity disconnected from the original space-time (i.e a child

universe solution).

For the dust shell case, the trajectory constants signs read

sgn(ε+) = sgn

(
2G(M −m)

R
− κ2

0

R2

)
, (4.24)

sgn(ε−) = +1 , (4.25)

so in the limit R→∞ we see that ε+ is positive, indicating that the normal to the brane

does not point to a direction in which the radial coordinate decreases. Hence, there is

no child universe formation.

4.3. Conclusions

To conclude, the electric charge causes a gravitational repulsive effect which balances

the natural tendency of two dimensional extended objects to collapse and thus yields a
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static and stable shell configuration, even though the latter carries zero charge and does

not interact directly with electric fields.

We notice that in the limiting case where the charge parameter of the interior and

exterior solutions is zero our results coincide with those presented by Kijowski, Magli

and Malafarina [44], where they reviewed the dynamics of spherical time-like shells

by matching two different Schwarzschild space-times and also analyzing the canonical

formulation of such systems.

In a future research we will study the semi-classical quantization of the bounded excita-

tions of the string gas shell. From the structure of the effective potential , which contains

a flat region as r →∞ (independent of the mass), we see that there is the possibility of

”ionization” which could be responsible for a dynamical creation of a universe, since for

bigger radii the solutions will approach those studied in reference [45], which represent

child universe creation.

In contrast, for the case of a dust shell, the ionization does not produce a child universe,

but instead it is simply an ”expansion” where the dust shell achieves the critical ’escape

velocity’ necessary to expand to infinity in the existing space, i.e without creating a new

space of its own (a child universe).

5. UNIVERSES OUT OF ALMOST EMPTY SPACE

As we have seen, in order for a classical creation of a child universe to occur (i.e tunneling

is not taken into consideration in the process), there exists a mass threshold where M

must be greater than the critical value Mcr. It is thus interesting, if not required, to

ask if this condition is a necessary one. In a previous letter by Guendelman [46], it

was shown that in the limits where the volume energy density, Λ, and/or the surface

energy density, σ (where the bubble carries a constant surface tension), become very

large the mass threshold actually disappears. Therefore, when the child universe is

characterized by a very high volume/surface energy density the critical mass above
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which the creation process can happen becomes very small. Even if we were interested

in the more elaborated tunneling process, it turns out that the upper bound for M , close

to which a limited amount of tunneling is required, becomes smaller and smaller. This

seems to indicate that the presence of a critical mass is not a necessary feature in the

child universe creation process.

The objective of this section is to show that child universes, intended in the broader sense

of regions of space-time disconnecting from an ambient space, are relevant also outside

the framework of inflationary cosmology. A particular realization of a child universe

involving string-gas like matter is studied, to show that it can be created from almost

empty space (i.e. with an arbitrarily small M).

5.1. A First Example

A technically straightforward model for child universe creation can be, in fact, obtained

even in a framework which is simplified compared to one of the models discussed above.

Following [45], in order to demonstrate the principle of the idea of universes out of an

almost empty space, let us choose the interior of the bubble to be a Minkowski space-

time and the exterior to be a Schwarzschild space-time. Therefore, we eliminate one of

the generic parameters of the typical child universe model by setting Λ = 0. Then, the

equation of motion of the wall reads

ε−
√

1 + Ṙ2 − ε+

√
1− 2GM

R
+ Ṙ2 =

Gm(R)

R
= κ(R) . (5.1)

Again, the function m(R) = 4πR2σ(R) represents the matter content on the surface

of the bubble after imposing spherical symmetry conditions on the stress tensor and

relating the pressure p and the energy density σ on the bubble surface with an equation

of state of the form p = ωσ.

Our choice for the equation of state will be ω = −1/2, which implies that the domain
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wall is made of strings gas. This gives, from conservation of energy on the domain

wall (see Eq. (2.13)), σ = σ0/R, where σ0 is a constant, and therefore we get m(R) =

4πσ0R = κ0R/G, where κ0 = 4πGσ0. Now we are able to identify the effective potential

for this case and solve eq. (5.1)

Ṙ2 + V (R) = 0 , V (R) = 1− 1

4κ2
0

(
2GM

R
+ κ2

0

)2

, (5.2)

where the signs of ε± are given by ε− = +1 and ε+ = sgn(2GM/R−κ2
0). One notes that

the effective potential V (R) satisfies the following conditions

lim
R→0+

V (R) = −∞ ,

lim
R→∞

V (R) = 1− κ2
0

4
, (5.3)

dV (R)

R
> 0 .

From this we conclude that

1. For κ0 > 2 the potential will be definite negative. Thus, there can be unbounded

trajectories when κ0 > 2.

2. The first conclusion is independent of M . Hence, for κ0 > 2, there are unbounded

trajectories for any M > 0.

3. For any unbounded trajectory ε+ changes sign, being positive for small enough

R and negative for large enough R. One should also notice that ε+ changes sign

behind the horizon, in this case. When κ0 > 2, at R = 2GM the sign of ε+ is

already negative.
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The structure of the global space-time, associated with these properties for all unbounded

solutions (see Fig. 2), shows that the creation of a child universe will be realized for any

positive value of M provided that the density of the string gas is large enough. This is

a first example for a child universe which is created out of an almost empty space.

This generalized child universe formation does not necessarily relate to early universe

cosmology, but has nonetheless similar properties. In particular, for an outside observer

a black hole is formed and the large string density shell that the observer can see looking

into the far past eventually disappears behind an event horizon. In this technically simple

and transparent example the black hole mass M can be arbitrary (thermodynamics

could favor small values of M, but in view of the complexity of the thermodynamics of

gravitational systems we use this argument only as a suggestive indication).

One should note that more general equations of state for the shell can be considered

without spoiling this result. For instance, models of vacuum decay suggest the presence

of a uniform surface tension σ0. Adding this term we then have m(R) = κ0R/G+4πσ0R
2

and a sufficient condition not to change the conclusions discussed above is κ0+4πGσ0R ≥

2. This is certainly satisfied for all values of R if the condition κ0 ≥ 2 holds. This

allows for child universe creation out of an almost empty space in the simple space-time

structure we described above (note the important point that the qualitative behavior of

ε+ is also unaffected by the presence of σ0). The condition κ0 ≥ 2 remains unaltered

also if, in the spirit of false vacuum decay, we add a uniform energy density Λ inside the

child universe, as we explicitly prove in the next section. Other equations of state can

be considered as well, either instead of the one chosen here, or in combination with it,

to obtain models with composite matter similar to the one we just mentioned.

We therefore see that this model allows for unbounded child universe creation. However,

the model described above is, of course, rather simplified and hence generalizations are

desirable, if not required.
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FIG. 2: Construction of the global space-time structure with the classical formation of a child universe for an unbounded

solution of the Minkowski-Schwarzschild junction by a sphere of string gas (the boundaries at infinity are labeled accord-

ing to the conventions in [36]). In panel “a” we plot the effective potential (solid curve) together with the horizon curve

A+(R) = 1− 2GM/R (dashed gray curve). The effective classical dynamics are given by the motion of the representative

point along the R axis, which corresponds to a motion with zero energy in the potential V (R) (cf. eq. (5.2)). Correspond-

ingly the shell starts from zero radius, expanding towards infinity. In the two spacetimes, this motion corresponds to the

solid curves in panels “b” and “c”. From looking at panel “a”, it is clear that the shell will cross the white hole horizon,

since it will expand up to arbitrarily large values of the radius R. To determine if the part of spacetime participating in

the junction will be the one on the left or on the right of the shell trajectory, we have to look at the normal (also shown

in the picture). In Minkowski spacetime (see panel “b”) the sign of ε− is always positive, i.e. the normal always points in

the direction of increasing radii. Moreover, our convention is that the positive direction of the normal is going from M−
to M+ so that the unshaded region is, in fact, M−. An analogous procedure has to be performed in the Schwarzschild

spacetime (panel “c”). Again M− is the unshaded region. In this case, however, a new feature appears, since the sign

ε− changes at P , and the normal that before P was pointing in the direction of decreasing radii, after P will point in the

direction of increasing radii. This change between the relative orientation of the normal and the increasing radii direction

happens when the horizon curve A(R) is tangent to the potential curve V (R) (see the zoomed snapshot in panel “a”).

All these properties give rise to the global spacetime structure in panel “d”: the fact that the asymptotically flat part

of Schwarzschild spacetime includes the central point of the diagram, which in turn is due to the fact that outside the

horizon ε+ = −1, certainly shows that a child universe is formed in the process. Courtesy of Stefano Ansoldi.
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5.2. The False Vacuum Case

The following couple of sections serve as a proof for the possibility to obtain a child

universe solution from an almost empty space for more general space-times. The method

for the analysis of the effective potential is essentially the same in both sections. However,

since the analysis of the effective potential is becoming more complicated, both sections

are included in order for one to be able to rely on the previous proofs to comfortably (as

much as possible) track the stages and logic steps of the proofs. In fact, the situation

described in Sec. 5.3 will merely generalize its preceding models.

As a second example, it is possible to extend the model and add a cosmological constant

to the interior of the bubble (i.e Λ 6= 0). We wish to show that the same conclusion as

above can be achieved for a false vacuum bubble with a string gas on its surface.

Our set up is made with a bubble enclosing on a false vacuum region, where the interior

metric is given by

ds2
− = −(1− χ2r2)dt2 + (1− χ2r2)−1dr2 + r2dΩ2 , (5.4)

while the exterior region metric is given by the Schwarzschild metric

ds2
+ = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2 . (5.5)

The effective potential in this case is given by

V (R;κ0, χ,M) = 1− κ2
0

4
− χ4R4

4κ2
0

− χ2R2

2
+
GMχ2

κ2
0

R− GM

R
− (GM)2

κ2
0R

2
, (5.6)

where, again, κ0 = constant. By making the following substitutions

κ0 = 2D, R =
2Dy

χ
, M =

8D3C

Gχ
, (5.7)
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(note that when χ ≥ 0, κ0 ≥ 0 and M ≥ 0, then C ≥ 0 and D ≥ 0. Moreover, if κ0 ≥ 2

then D ≥ 1) the potential can be written as

V (R;κ0, χ,M) = V̄ (y;C,D) =

= 1−D2

(
1 +

4C

y
+

4C2

y2
+ y4 + 2y2 − 4Cy

)
. (5.8)

We wish to analytically obtain the conditions for which V̄ (y;C,D) will be definite neg-

ative for any M ≥ 0. To that end, we write the effective potential as a sum of two

polynomials

V̄ (y;C,D) = W (y;C,D) + P (y;C,D) , (5.9)

where

W (y;C,D) = −D2
(

4C2

y2
+ y4 − 4Cy

)
P (y;C,D) = 1−D2

(
1 + 4C

y
+ 2y2

)
.

(5.10)

A graph showing the qualitative behavior of V̄ , W and P is depicted in Fig. 3.

Now, let us analyze these two functions and obtain the conditions which will impose

a definite negative potential. Starting with W (y;C,D), we write it as W (y;C,D) =

W1(y;C,D) +W2(y;C,D) where

W1(y;C,D) = −4C2D2

y2

W2(y;C,D) = 4D2Cy −D2y4 .

(5.11)

An illustrative graph showing the qualitative characteristics (for the same values used

to plot Fig. 3) of W1(y;C,D) and W2(y;C,D) is given in Fig. 4.
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FIG. 3: An Illustrative graph representing V̄ and its two components as a function of y, where

the range of the parameters values is D = 1 and C > 0. The blue line is W , the red line is P

and the green line is V̄ .
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FIG. 4: An illustrative graph representing W1 and W2 as functions of y, for the same values

of parameters as in Fig. 3. W1 is represented by the blue line, while W2 is represented by the

red line.
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W1 is a definite negative function which is ascending for all y. W2 is easily found to

have one real maximum point y2 which satisfies W2(y2) > 0. Thus, we can conclude that

W (y;C,D) has one real maximum point. The derivative of W (y;C,D) is

∂

∂y
W (y;C,D) = 4D2

(
2C2

y3
+ C − y3

)
. (5.12)

Equating the latter to zero yields the equation

y3(y3 − C) = 2C2 , (5.13)

whose real solution is y0 = (2C)1/3. Putting this into W (y;C,D) shows that

W (y0;C,D) = −D2(24/3 + 24/3 − 27/3)C4/3 = 0 . (5.14)

Therefore, the maximum value of W (y;C,D) is zero for any value of D and for all

C > 0. Now, if the maximum value of P (y;C,D) will be less than zero, we will be able

to conclude that V̄ is definite negative.

The derivative of P is

∂P (y;C,D)

∂y
= −D2

(
4y − 4C

y2

)
. (5.15)

Equating to zero we get

y =
C

y2
, (5.16)

which is, essentially, the same equation we obtained when looking for the maxima of

W2(y;C,D). Thus, we have one real solution which is y1 = C1/3. Putting this into

P (y;C,D) we get
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P (y1;C,D) = 1−D2(1 + 6C2/3) . (5.17)

Demanding that P (y = C1/3;C,D) < 0 yields the condition D2(1+6C2/3) > 1. Isolating

C2/3 shows that we must have

C2/3 >
1

6

(
1

D2
− 1

)
. (5.18)

Since we have already restricted our phase space to C > 0, this condition will always be

fulfilled for D > 1 (which is equivalent to κ0 > 2). Therefore, V̄ will be definite negative

under the conditions C > 0 and D > 1.

Lastly, we discuss the possibility for creating a child universe. As we discussed before,

the coefficients ε± determine the behavior of the radial coordinate in the direction or-

thogonal to the trajectory of the bubble, hence allowing us to determine the existence

of wormholes.

For our metric

ε+ = sgn[−χ2R2 + 2GM
R
− κ2

0] ,

ε− = sgn[−χ2R2 + 2GM
R

+ κ2
0] .

(5.19)

Since at small R values ε+ is positive. at large R values we demand that ε+ will change

sign to allow for the bubble to expand to infinity disconnected from the original space-

time. The dominating term at large R values is −sgn[χ2R2] which implies that the

second requirement for a child universe (as stated in Sec. 3) creation is indeed satisfied.

5.3. A More General Case

We now examine a more general case of a bubble with a hedgehog de-Sitter space in the

interior and a Schwarzschild de-Sitter space in the exterior.
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The hedgehog configuration is a spherically symmetric configuration where the isospin

index of an isovector scalar field is identified (up to a constant) with the radial unit

vector of space. In a nonlinear σ model, the scalar field part of the Lagrangian is given

by

Lf = 1
2
∂µ~φ∂

µ~φ+ λ(~φ · ~φ− f 2)2 . (5.20)

Concentrating on the limiting case λ→∞, we get

Lf = 1
2
∂µ~φ∂

µ~φ , (5.21)

where ~φ constrained to ~φ · ~φ = f 2. Thus, ~φ is parallel to the radial direction ~φ = ±f r̂,

with r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) [8]. This leads to a metric which is a configuration

of a global magnetic monopole, with f being the strength of the magnetic monopole.

Both of these forms for ~φ lead to the same energy-momentum tensor Tµν and also solve

the scalar field equations of motion when the metric is of a spherically symmetric form.

The energy-momentum tensor produced by (5.21) is given by

Tµν = ∂µ~φ∂ν~φ− gµν
(

1
2
∂ρ~φ∂

κ~φ
)
, (5.22)

which yields, for ~φ = ±f r̂,

T 0
0 = T rr = −f

2

r2
, Tϕϕ = T θθ = 0 . (5.23)

All other components of T µν vanish. For a metric of the form ds2 = −sdt2 +sdr2 +r2dΩ2,

where s is a space-time constant, 8πGT µν = Gµ
ν gives the only nonzero terms

T 0
0 = T rr =

s− 1

8πGr2
. (5.24)
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Hence, we have s = 1 − 8πGf 2. Therefore, for 8πGf 2 < 1 (i.e. s > 0), the metric

corresponds to a static geometry, while for 8πGf 2 > 1 (i.e. s < 0) we get an anisotropic

cosmology. This is because the time coordinate becomes a space-like coordinate while r

becomes a time-like one and the term r2dΩ2 represents an expanding two-sphere with a

singularity at r = 0. The positivity of energy (T00 for s > 0 and Trr for s < 0) is assured

provided s < 1.

Returning back to our case of study, the metric coefficients are now

A− = s− χ2
−r

2 ,

A+ = 1− 2GM
r
− χ2

+ ,
(5.25)

where s should satisfy the condition 0 ≤ s ≤ 1 to ensure a static geometry and positive

energy. The effective potential is given by

V (R;κ0, χ−, χ+, s,M) = s+1
2
− κ20

4
− (s−1)2

4κ20
−GM

(
1− 1−s

κ20

)
1
R
− (GM)2

κ20R
2 +

+GMχ2

κ20
R− χ2

−+χ2
+

2
R2 + s−1

κ20
χ22R2 − χ4R4

4κ20
,

(5.26)

where χ2 = χ2
− − χ2

+.

The characteristics of the potential can be analyzed with the same method as before:

Writing the effective potential as the sum V (R;κ0, χ−, χ+, s,M) = W + P where

W = − (GM)2

κ20R
2 + GMχ2

κ20
R− χ4R4

4κ20
, (5.27)

P = s+1
2
− κ20

4
− (s−1)2

4κ20
−GM

(
1− 1−s

κ20

)
1
R
−
(
χ2
−
2

(
1 + 1−s

κ20

)
+

χ2
+

2

(
1− 1−s

κ20

))
R2 .

By making the same substitutions as in Eq. (5.7) we arrive again at Eq. (5.10) for

W . Therefore, the maximum value of W (y;C,D) is zero for any value of D and for all

C > 0. Now, if the maximum value of P (y;C,D) will be less than zero, we will be able

to conclude that V̄ is definite negative.
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P (y;C,D) has one extremum point at

R0 =

 GM
(

1− 1−s
κ20

)
2
(
χ2
−
2

(
1 + 1−s

κ20

)
+

χ2
+

2

(
1− 1−s

κ20

))
1/3

, (5.28)

so that

P (R0) = s+1
2
− κ20

4
− (s−1)2

4κ20
−

−
(
GM

(
1− 1−s

κ20

))2/3 (
2
(
χ2
−
2

(
1 + 1−s

κ20

)
+

χ2
+

2

(
1− 1−s

κ20

)))1/3

−

−
(
GM

(
1− 1−s

κ20

))2/3
1

22/3

(
χ2
−
2

(
1 + 1−s

κ20

)
+

χ2
+

2

(
1− 1−s

κ20

))1/3

.

(5.29)

Defining the parameters

A = κ2
0 + 1− s

B = κ2
0 − 1 + s

(5.30)

where A ≥ B, A is always non negative and B is non negative for κ2
0 ≥ 1 − s, P (R0)

can be written as

P (R0) = 1− A2

4κ20
−
(
GM
2κ20

B
)2/3 ( χ2

−
2κ20
A+

χ2
+

2κ20
B
)1/3

. (5.31)

Demanding that P (R0) will not be greater than zero yields the condition

1− A2

4κ20
≤
(
GM
2κ20

B
)2/3 ( χ2

−
2κ20
A+

χ2
+

2κ20
B
)1/3

. (5.32)

Of course, for this equation to have a meaning we must demand that B will not be

negative, which gives the condition κ2 ≥ 1−s. Because we wish to have a child universe
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solution with an arbitrarily smallM , we now demand that 1− A2

4κ20
≤ 0, which is equivalent

to

κ4
0 − 2κ2

0(1 + s) + (1− s)2 ≥ 0 . (5.33)

The zeros of the polynomial with κ2
0 being the argument are at 1 +s±2

√
s. It is easy to

check that both zeros are always positive. Thus, the general solution is 1+s+2
√
s ≤ κ2

0

and κ2
0 ≤ 1 + s−2

√
s. Now, the condition for the non negativeness of B comes in handy

and leaves us with the sole condition 1 + s+ 2
√
s ≤ κ2

0. When there is no hedgehog and

s = 1, this solution converges to the usual solution κ0 ≥ 2.

Turning to discuss the possibility for creating a child universe, we obtain

ε+ = sgn[s− 1− (χ2
− − χ2

+)R2 + 2GM
R
− κ2

0] ,

ε− = sgn[s− 1− (χ2
− − χ2

+)R2 + 2GM
R

+ κ2
0] .

(5.34)

Since at small R values ε+ is positive. at large R values we demand that ε+ will change

sign to allow for the bubble to expand to infinity disconnected from the original space-

time. The dominating term at large R values is −sgn[(χ2
− − χ2

+)R2] which implies that

we the condition for a child universe creation is χ2
− > χ2

+. This, of course, is valid for

false vacuum bubbles.

5.4. Conclusions

In this section, as well as in the preview Sec. 3, we have discussed the formation of

a child universe, reviewing in an historical perspective the relevance and distinctive

features of the process. We have also described a refinement of one of the simplest

realizations of a region of space-time disconnecting from an ambient one, namely the

one in which the interior region is described by Minkowski space-time and the exterior

one by Schwarzschild space-time. In the models we have reviewed, the consideration of
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a string gas for the matter composing the thin shells that separates the two domains,

supports the interesting idea that child universe creation can take place out of almost

empty space. We have also proceeded to make natural generalizations of this model and

have seen that they preserve this suggestive result.

To summarize, the main picture that emerges from this discussion is as follows. Firstly,

although we certainly have in mind applications to early universe cosmology, we have

used the term ’child universe’ in a more generic sense, as a region of space-time that

eventually disconnect from a pre-existing parent one. We have also seen that this process

can take place starting from almost empty space under the generic condition of κ0 being

large enough. Therefore, when the string content on the shell exceeds a critical value,

the creation of a child universe can happen at an arbitrary small value of M , i.e. the

critical mass threshold is completely absent.

These results strongly support the idea that, in general, child universe creation is more

likely to happen when the energy density of the child universe becomes bigger and bigger.

In field theory realizations of child universe creation, the energy density of the space-

time is related to the vacuum expectation value of a scalar field: The higher its energy

density, the more excited the state (false vacuum). In this sense, child universes with a

higher energy density are more excited than child universes with a lower energy density

and it appears that the creation of more excited child universes is more likely. Further

developments of these ideas and a more detailed account of their possible applications

are subject to our current research and will be reported in the future.
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Part III

Axion-Photon Conversion in Two

Spatial Dimensions

6. AXIONS: AN INTRODUCTION

The Peccei-Quinn (PQ) mechanism [47, 48] is the most compelling solution of the strong

CP problem, namely the question why this discrete symmetry is not violated by the non-

trivial vacuum structure of QCD. Central to the PQ mechanism is the axion [49–52],

the Goldstone boson of a new spontaneously broken symmetry U(1)PQ, with properties

closely related to those of the neutral pion. The axion mass ma is given by mafa ∼

mπfπ, where mπ = 135 MeV and fπ = 92 MeV are the pion mass and decay constant,

respectively, and fa is the PQ symmetry breaking scale. The axion couplings with

matter and radiation scale as 1/fa. Experimental and astrophysical constraints imply

that fa & 109 GeV, corresponding to ma . 10 meV [53]. Thus, axions are expected to

be very light, very weakly interacting and very long lived. The peculiar properties of

axions allow them to be produced in the early universe as coherent field oscillations and

therefore to provide all or part of the cold dark matter [54, 55].

Nonetheless, it might still be possible to find these “invisible axions” in terrestrial exper-

iments. The generic aγγ vertex allows for axion-photon conversion in external electric or

magnetic fields in analogy to the Primakoff effect for neutral pions. The smallness of the

axion mass allows this conversion to take place coherently over macroscopic distances,

compensating for the smallness of the interaction strength [56]. It is especially promising

to use the sun as a source for axions. A strong magnet directed toward the sun and

follows it allows one to search for keV-range X-rays produced by an axion-photon con-

version, a process best visualized as a particle oscillation phenomenon [57] (in analogy
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to neutrino flavor oscillations).

The aim of this introductory section is to provide the reader with a summarized review

of axions theory. This calls for an introduction of the strong CP problem and, of course,

the PQ mechanism as a possible solution, since these lead to the prediction of the

axion as a consequence of the PQ symmetry breaking. Before, however, going through

these subjects, let us begin this review by discussing the subject of chiral anomalies,

concentrating mainly on the QCD anomalies.

6.1. The Chiral Anomaly in QCD

In (quantum) physics an anomaly is the failure of a symmetry which exists at the theory’s

classical level to exist as a symmetry of any regularization of the full quantum theory.

In this section we wish to analyze the chiral anomaly which arises in the theory of strong

interactions, Quantum Chromo-Dynamics (QCD).

The QCD Lagrangian has approximate axial symmetries, under which the right and

left handed parts of the light quarks are rotated in opposite directions. In the limit of

vanishing fermion masses (as mu, md � ΛQCD this approximation makes sense, at least

for these quarks) the chiral transformation

ψ(x)→ e
i
2
αγ5ψ(x) , (6.1)

which corresponds to the following Noether current (often called the axial vector current)

jµ5(x) = ψ̄(x)γµγ5ψ(x) , (6.2)

is an exact symmetry (one can easily compute ∂µj
µ5 = 2imψ̄γ5ψ assuming that ψ

satisfies Dirac’s equation. Hence jµ5 is conserved for m = 0). Because the transformation

ψ(x)→ eiα/2ψ(x), with the corresponding Noether vector current jµ(x) = ψ̄(x)γµψ(x),
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is also a symmetry of the Lagrangian, one would expect the strong interactions with N

flavors to be approximately U(N)V × U(N)A invariant.

However, this symmetry is true in the classical picture of massless QED and QCD. In

gauge theories, the conservation of the axial vector current is actually incompatible with

gauge invariance and radiative corrections add a nonzero term to the divergence of jµ5,

as we now wish to show.

For simplicity, let us begin with massless four dimensional QED. It is known that the

fermion fields satisfy the following equations of motion

/∂ψ = −ie /Aψ , ∂µψ̄γ
µ = ieψ̄ /A . (6.3)

Of course, at first sight, these equations may lead us again to conclude the jµ5 is con-

served. However, the axial vector current is a composite operator of fermion fields. It

is known that products of local operators are often singular. Therefore, following the

discussion in [58], let us define jµ5 by placing the fields at two different points separated

by distance η and then carefully take the limit as η → 0

jµ5 = symm lim
η→0

[
ψ̄(x+ η

2
)γµγ5 exp

(
−ie

∫ x+η/2

x−η/2
A(z)dz

)
ψ(x− η

2
)

]
. (6.4)

One should notice that for jµ5 to transform properly under Lorentz transformations, the

limit has to be taken symmetrically

symm lim
η→0

ηµ

η2
= 0 , symm lim

η→0

ηµην

η2
=

1

d
gµν , (6.5)

with d = 4 in our case. Now, taking the divergence of Eq. (6.4) and keeping terms up

to order η, we arrive at

∂µj
µ5 = symm lim

η→0

[
ψ̄(x+ η

2
) (−ieγµην(∂µAν − ∂νAµ)) γ5ψ(x− η

2
)
]
. (6.6)
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To find the anomaly in closed form, one must calculate the singular terms (which arise

in a nonzero background gauge field) in the operator product of the two fermion fields in

the limit η → 0. The leading term in this calculation is vanishing and thus it is required

to consider higher order terms in the expansion of the product of two operators. The

second order term is already nonzero and gives

〈ψ̄(x+ η
2
)γµγ5ψ(x− η

2
)〉 ∼ 2eεαβµγFαβ(x)

(
iηγ

8π2η2

)
, (6.7)

where Fαβ is the electromagnetic field tensor and α and β are Lorentz indices. Plugging

this result into Eq. (6.6) we obtain

∂µj
µ5 = symm lim

η→0

[
e

4π2
εαβµγFαβ

iηγ
η2

(−ieηνFµν)
]
. (6.8)

Now, we take the symmetric limit which yields

∂µj
µ5 =

e2

16π2
εαβµνFαβFµν =

e2

8π2
F̃ µνFµν , (6.9)

where F̃ µν = 1
2
εαβµνFαβ is the dual electromagnetic field tensor. This equation demon-

strates the anomalous non-conservation of jµ5 and is known as the Adler-Bell-Jackiw

anomaly [59].

Turning to QCD, let us again put an emphasis on the fact that we are ignoring all but

the lightest quarks (i.e. u and d) for the sake of the discussion to follow. Then, the

fermionic part of the QCD Lagrangian is

L = ūi /Du+ d̄i /Dd−muūu−mdd̄d , (6.10)

where Dµ = ∂µ − igAaµt
a is the gauge covariant derivative, with g being the coupling

constant, Aaµ are the eight gluon gauge fields and ta are the group generators. The

58 of 144



6 AXIONS: AN INTRODUCTION

mass terms are very small and thus may be neglected. With this approximation, the

Lagrangian has isospin symmetry which mixes between the two quarks fields. However,

this classical Lagrangian has no coupling between left and right handed quarks it does

obey the separate unitary transformations

u
d


L

→ UL

u
d


L

,

u
d


R

→ UR

u
d


R

. (6.11)

Separating the SU(2) and U(1) parts of these transformations, we see that L is invariant

under SU(2)L×SU(2)R×U(1)L×U(1)R symmetry group. Denoting the quark doublet

by Q, with the chiral components

QL =

(
1− γ5

2

)u
d

 , QR =

(
1 + γ5

2

)u
d

 , (6.12)

one can write the currents associated with this symmetry group as

jµL = Q̄Lγ
µQL , jµR = Q̄Rγ

µQR ,

jµaL = Q̄Lγ
µτaQL , jµaR = Q̄Rγ

µτaQR ,
(6.13)

where the τa = σa/2 are the generators of the SU(2) group, with a, b, c... being the Lie

symmetry group indices here and throughout this section. Now it is simple to take the

differences of these currents to find the axial vector currents

jµ5 = Q̄γµγ5Q , jµ5a = Q̄γµγ5τaQ , (6.14)

where jµ5a are the axial isotriplet currents and jµ5 is the isospin singlet axial current.

Next, to discover whether or not these currents are anomalous, one needs to modify the

chiral conservation laws due to the coupling of the quark currents to the gluon fields.
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Then, one discovers that the anomaly equation should be the Abelian result, supple-

mented by an appropriate group theory factor, or the anomaly coefficient. Moreover,

since the axial current is gauge invariant, the anomaly must be gauge invariant as well

and hence contain the full non-Abelian field strength.

For the general case, this totally symmetric coefficient is given by Aabc = Tr[ta{tb, tc}]

and is a trace over the group matrices in the representation R. So that in general, the

divergence of an axial vector current is given by

∂µj
µ
a =

Aabc
64π2

g2εαβµνM b
αβM

c
µν , (6.15)

where M c
µν is the field strength corresponding to the general symmetry and g is the

associated gauge coupling strength. Therefore, unless Aabc vanishes the current jµa is not

conserved.

In our model, we can find the anomaly coefficient for the Adler-Bell-Jackiw anomaly

from the triangle diagrams (illustrated in Fig. 5). Then, for the axial isospin currents

∂µj
µ5a =

g2

32π2
εαβµνGc

αβG
d
µν · Tr[τatctd] , (6.16)

where Gc
µν is the gluon field strength, τa is the isospin matrix, tc is a color matrix and

the trace is taken over colors and flavors. Since the trace of a single τa vanishes we have

Tr[τatctd] = 0 and the axial isospin currents are unaffected by the Adler-Bell-Jackiw

anomaly of QCD.

However, for the isospin singlet axial current, τa is replaced by the matrix 1 on flavors

and hence one finds that

∂µj
µ5 =

g2N

32π2
εαβµνGc

αβG
c
µν , (6.17)

with N = 2 in the current model we are examining. Therefore, this current is indeed

not conserved in QCD.
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g

g

jµ5

FIG. 5: The triangle diagram associated with the four dimensional anomaly.

Let us conclude this section by mentioning that the axial isospin currents, although

anomaly free from QCD interactions, do suffer from an anomaly associated with the

coupling of quarks to electromagnetism. This anomaly is responsible to the matrix

element of the decay π0 → 2γ.

6.2. The Strong CP Problem and QCD vacuum topology

In the massless quark limit, the chiral anomaly of QCD we have derived in the previous

section affects the action in the following way

δW = α

∫
d4x∂µj

µ5 = α
g2N

32π2

∫
d4xεαβµνGc

αβG
c
µν . (6.18)

An interesting puzzle that arrises from this anomaly term, is that the pseudoscalar

density is in fact a total derivative

G̃cµνGc
µν = ∂µK

µ , with Kµ = εµαβγAcα(Gcβγ − g
3
fcabAaβAbγ) . (6.19)

Thence, δW is a surface integral

δW = α
g2N

32π2

∫
d4x∂µK

µ = α
g2N

32π2

∫
dσµK

µ . (6.20)
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If one uses the naive boundary conditions with Aµc = 0 at spatial infinity, the last integral

vanishes. However, ’t Hooft showed [60, 61] that the correct boundary condition is that

Aµc should be a pure gauge field at spatial infinity. In other words, Aµc should be 0 or

a gauge transformation of 0. With these boundary conditions, the surface integral does

not vanish and U(1)A is not a symmetry of QCD.

Let us follow the discussion in [51] to show this point and its consequences. If one

chooses the temporal gauge A0
c = 0 and considers SU(2) QCD for simplicity, one is left

to consider only spatial gauge fields Aic. The gauge transformation of these fields is given

by

1
2
τ cAic = Ai → ΩAiΩ−1 +

i

g
∇iΩΩ−1 , (6.21)

where Ω is the gauge transformation matrix. This equation implies that vacuum con-

figurations either vanish or have the form i
g
∇iΩΩ−1. A topological distinction between

various possible vacuum states (which are classically associated with pure gauge trans-

formations) is introduced by demanding that at spatial infinity the gauge fields should

vanish. Hence, when r → ∞, the gauge transformations in Eq. (6.21) are restricted

to those that obey lim
r→∞

Ω → 1. These transformations define a mapping of the three

dimensional space with points at infinity identified into the group space.

Remembering that we have restricted ourselves to an SU(2) subgroup of QCD, this

mapping is a S3 → S3 mapping, since the manifold of SU(2) is also homomorphic to

the three dimensional sphere S3. It is known that these mappings fall into distinct (ho-

motopy) classes that cannot be continuously distorted into each other and are classified

by an integer n. For the SU(2) QCD case we are concentrating here, the matrices Ω

can be written as

Ωn = ei2πn , for r →∞ and where n = 0,±1,±2, ... , (6.22)
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where the index n indicates to which homotopy class they belong. Hence, the gauge

fields Ai (and thus the associated vacua) can also be classified by the integer n

Ain =
i

g
Ωn∇iΩ−1

n . (6.23)

The so called winding number n can be expressed by an integral over the gauge fields

Ain [62]

n =
ig3

24π2

∫
d3r Tr[εijkA

i
nA

j
nA

k
n] . (6.24)

The latter can be understood since the term εijkA
iAjAk is essentialy the Jacobian of the

transformation from from S3 to the hypersphere in group space, with n measuring the

number of windings of S3 on the group space.

Let us see now how this gives a further way to classify the vacuum configurations. The

expression for n is closely related to Kµ, where in the gauge we have chosen, only K0 6= 0

and one finds for pure gauge fields

K0 = −g
3
εijkεabcA

i
aA

j
bA

k
c =

4

3
igεijkTr[AiAjAk] . (6.25)

Hence, we see now that the space-time integral of G̃G is now determined by the change

of the charge g2

32π2

∫
d3xK0 = Ncs (indeed, in the vacuum we have Ncs = n. However

this relation does not hold in the general case) between initial and final surfaces [63]

g2

32π2

∫
dσµK

µ
∣∣t=tf→∞
t=ti→−∞

= g2

32π2

∫
d3xK0(x, tf )− g2

32π2

∫
d3xK0(x, ti) =

= g2

32π2

∫
d4xG̃cµνGc

µν = Ncs(tf )−Ncs(ti) ,

(6.26)

where the quantity Ncs is called the Chern-Simons number of the gauge field configura-

tion.
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Then, even though the pseudoscalar density is a total derivative it can indeed have a

physical implication, because the change in Ncs does not need to vanish in vacuum to

vacuum transitions. The reason for this is that the QCD vacuum is topologically non-

trivial. The existence of this charge implies that the QCD ground state is not unique.

In fact, it consists of a combination of degenerate states which are distinguished by their

Ncs eigenvalue.

To see that, let us first notice that representations of Ωn are constructed by Ωn = (Ω1)n.

Then, one can change the gauge field Ain to Ain+1. Even though one can regard a vacuum

state associated with each of the gauge field classes Ain, the true vacuum state of QCD

cannot be anyone of these |n〉 (where Ncs|n〉 = n|n〉) vacua since they are not gauge

invariant (Ω1|n〉 = |n + 1〉). So one can conclude that the true vacuum is, in fact, a

superposition of these so called n-vacua and is called the θ vacuum

|θ〉 =
∑
n

e−inθ|n〉 , (6.27)

where now Ω1|θ〉 =
∑
n

e−inθ|n+ 1〉 = eiθ|θ〉.

Now, one can write the vacuum to vacuum transition amplitude

+〈θ|θ〉− =
∑
m,n

eimθe−inθ +〈m|n〉− =
∑
ν

eiνθ
∑
n

+〈n+ ν|n〉− , (6.28)

where ν = n+−n−, the + and − subscripts refer to later and earlier times, respectively.

Hence, the vacuum amplitude is a sum over vacuum transition amplitudes, in which ν is

the net change in the winding number between later and earlier times (see Eq. (6.26)).

The phase factor eiνθ in Eq. (6.28) can be interpreted as an effective additional term

in the QCD Lagrangian. The transition amplitudes +〈n + ν|n〉− are given by a path

integral in which the space-time integral of G̃G is fixed by Eq. (6.26). Then, using the

usual path integral representation for the vacuum to vacuum amplitude, one finds that

[51]
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+〈θ|θ〉− =
∑
ν

∫
δAeiSeff [A]δ

(
ν − g2

32π2

∫
d4x G̃cµνGc

µν

)
, (6.29)

where

Seff [A] = SQCD[A] + θ
g2

32π2

∫
d4x G̃cµνGc

µν , (6.30)

and A is the non-abelian gauge field. Therefore, the complicated nature of the QCD

vacuum effectively adds a term to the QCD Lagrangian, the famous θ term

Lθ = θ
g2

32π2
G̃cµνGc

µν . (6.31)

However, if one includes the weak interactions in the theory, then the quark mass matrix

M is in general complex

Lmass = q̄iRMijqjL + h.c. (6.32)

When one transforms this to a physical basis, one performs a chiral transformation in

order to diagonalize this mass matrix. By doing so, θ changes by the term Arg DetM .

Hence, in the full theory the coefficient of the pseudoscalar density term G̃G is in fact

θ̄ = θ + Arg DetM . (6.33)

Then, the additional term in the Lagrangian is in fact

Lθ̄ = θ̄
g2

32π2
G̃cµνGc

µν . (6.34)
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This term violates P and T but conserves the C invariance. Therefore, this term violates

the CP symmetry, unless θ̄ is very small. Experiments show that this is indeed the case

and CP violation is not observed in strong interactions. The value of θ̄ can be determined

from the neutron electric dipole moment (nEDM) dn, which is induced by the additional

term Lθ̄. The nEDM can be estimated by [63]

dn ' θ̄
e mumd

(mu +md)m2
n

, (6.35)

where mn is the mass of the neutron. The experimental bound of dn is |dn| ≤ 3 ×

10−26 e cm [64] leads to the constraint θ̄ . 10−9. This remarkably small magnitude of θ̄

means, in practice, that low energy QCD is approximately CP conserving. Such a low

value of θ̄ is allowed. However, it implies that either both of the contributions to θ̄ in

(6.33) are very small or that these contributions cancel each other, resulting in a fine-

tuning of the parameters. Thus, the strong CP problem really asks why is the θ̄ angle,

coming from both strong and weak interactions, is so small, rather than questioning the

smallness of merely θ. In other words, we ask why do the strong interactions seem to

not violate CP - when CP violation is not forbidden by the theory.

6.3. The U(1)PQ Symmetry and Axions

There are, in principle, three possible solutions to the strong CP problem. The first

involves unconventional dynamics (for example, that the boundary conditions that give

rise to the θ vacuum are an artifact, or that the θ vanishes from the form of the vacuum

energy). The second considers spontaneously broken CP to justify setting θ = 0 already

at the Lagrangian level.

However, the most attractive and widely excepted, and also perhaps natural, way to

solve the strong CP problem is to introduce an additional global chiral U(1) symmetry,

which has become known as the U(1)PQ symmetry, as this chiral symmetry effectively
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rotates the θ-vacua away. This symmetry is necessarily spontaneously broken and its

introduction into the Lagrangian effectively replaces the the static CP violating angle θ̄

with a dynamical, CP conserving, field: The axion.

6.3.1. The Peccei-Quinn Mechanism

As a starting point to the dynamical θ solution, let us introduce the original idea by Pec-

cei and Quinn. As we have seen, the non-trivial vacuum to vacuum transition amplitude

in QCD gives rise to an effective term in the Lagrangian

Leff = L+ θ
g2

32π2
G̃cµνGc

µν . (6.36)

If L describes a non abelian gauge theory of the strong interactions this effective term

gives rise to strong CP violation, as we saw in the previous section. Then, Peccei and

Quinn claimed that L must posses a chiral U(1) invariance, such that changes in θ are

equivalent to changes in the definitions of the various fields in L and have no physical

implications. Any such theory is then equivalent to a θ = 0 theory and this has no strong

CP violation. The famous and novel contribution made by Peccei and Quinn to previous

theories (which shown that the argument for obtaining a CP violation free theory holds

for theories in which L represents a non abelian gauge field coupled to massless fermions

only) was that this argument ”remains true when some fermion masses are included in

L, or even when all strongly interacting fermions become massive, provided that at least

one fermion gets its entire mass from a Yukawa coupling to a scalar field, such that the

full L can posses at least a single U(1) invariance” [48].

Here, following [48], we consider L to describe a simplified model with one flavor of

fermion coupled to a single complex color singlet scalar field with Yukawa coupling

strength f
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L = −1
4
Gc
µνG

c µν + ψ̄i /Dψ + ψ̄
[
fφ
(

1+γ5

2

)
+ f ∗φ∗

(
1−γ5

2

)]
ψ

−|∂µφ|2 − µ2|φ|2 − h|φ|4 ,
(6.37)

with µ2 < 0 and h being the parameters which determine the renormalizable self interac-

tion term. In this theory where there is an anomalous term in the effective Lagrangian,

a chiral transformation (i.e. Eq. (6.1)) redefines the θ parameter (see Eq. (6.18), which

implies that θ → θ− α). If all fermions are massive such a rotation will also change the

fermion mass term f〈φ〉. Thus, one can define inequivalent theories with the same mass

terms for different θ values. However, equivalent theory classes related by the transfor-

mation (6.1) exist as well. Moreover, only one such class of theories , where θ → 0 when

all the fermion masses have been made real by an appropriate chiral transformation, will

give a CP invariant theory.

The effective potential for the scalar fields in the theory is θ dependent an does not have

the same symmetry as the scalar self interaction term in L. Hence, the minimum of

the potential corresponds to a particular choice of phases for the various scalar vacuum

expectation values (VEVs). These phases appear in the fermion mass terms and are

such that when the fermion masses are made real, then θ = 0.

To show that these theories are CP invariant one defines κ = Arg[eiθf〈φ〉] and demand

that this term will be zero

κ = Arg[eiθf〈φ〉] = 0 . (6.38)

The latter is equivalent to the demand we expressed before, i.e. that the fermion mass

f〈φ〉 will be real when the fields are defined so that θ = 0.

Peccei and Quinn were able to prove that Eq. (6.38) is indeed satisfied. However, we

shall supply the reader with only a short summary of their proof and then move on to

explain its consequences and implications.
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By examining the generating functional of the scalar Green’s functions, one finds that

the scalar VEV is defined by

〈φ〉 = λeiβ , (6.39)

where λ and β are real constants. Then, one can make the change of variables φ =

eiβ(λ + ρ + iα/2), where ρ and α are real scalar fields. By integrating out vector and

fermion fields and obtaining an expression for the generating functional of the scalar

Green’s functions in terms of non-local polynomials of the scalar fields, one is able to

write the constraints 〈ρ〉 = 〈α〉 = 0. These constraints require that κ = 0, π, which

are stationary points of the scalar potential. To find which of these points is the true

minimum point, it is required to examine the potential itself. Peccei and Quinn did so

to leading order for small f and h and found that the true vacuum occurs for κ = 0: In

this approximation the scalar potential is given by

Vθ(φ) = U(φ) +K |fφ| cosκ , (6.40)

where

U(φ) = −µ2φ∗φ− h(φ∗φ)2 , (6.41)

K =

∫
(dAµ)1

∫
dψ
∫
dψ̄
∫
d4xψ̄(x)1

2
(1 + γ5)ψ(x) exp[

∫
d4x′(−1

4
FF + ψ̄i /Dψ)]∫

(dAµ)0

∫
dψ
∫
dψ̄ exp[

∫
d4x(−1

4
FF + iψ̄i /Dψ)]

, (6.42)

and K is a real and positive constant. The subscript q of (dAµ)q defines the θ vacuum

on which the paths are summed (terms with |q| ≥ 2 contribute only in the order f 2 and

therefore are not considered in this approximation).
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From the form of the scalar potential Vθ it is seen that it does not posses the U(1)

symmetry which was required in the original Lagrangian (i.e. without the additional

effective θ term) and thus in U(φ). Therefore, ”for some range of the parameters κ =

0 is the true minimum of the scalar potential and thus the resultant theory is CP

conserving” [48]. In their paper, Peccei and Quinn did consider the inclusion of weak

and electromagnetic interactions. However, we shall save this for later as we just wish

to present the principal of the PQ mechanism here. Hence, this concludes our short

summary of the proof given by Peccei and Quinn.

A few important points should be noticed here. Although Peccei and Quinn were able

to find a successful solution to the strong CP problem by the dynamical relaxation of θ,

they considered a crude approximation for the scalar potential (in their own words). This

is seen by the fact that the parameters f and h may indeed be small in some physical

situations, the combination fλ should not be so small as it is, in fact, the fermion mass

scale. Moreover, they did not consider one of the consequences of their model in what

concerns the existence of a Goldstone boson (since a global chiral symmetry was broken).

In the following, we shall discuss the interpretation of Weinberg [49] and Wilczek [50] to

the chiral symmetry breaking. This model, sometimes referred to as the PQWW model,

introduces a new Higgs doublet and gives rise to the so called standard axion.

6.3.2. The PQWW Axion

Soon after the appearance of the PQ mechanism as a solution to the strong CP problem,

it was realized separately by Weinberg [49] and Wilczek [50] that this mechanism involves

a pseudoscalar Goldestone boson, the axion field.

The PQWW axion is the common phase field in the two Higgs doublet fields in the stan-

dard SU(3)c×SU(2)L×U(1)Y electroweak theory. With only one Higgs doublet, three

phases of this doublet are absorbed to the longitudinal components of the W± and Z

gauge bosons and the remaining Higgs boson has a potential term. Therefore, one needs
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at least two Higgs doublets. Thus, this model is an extension of the Standard Model

(SM). However, this condition is not sufficient. A further condition for the existence

of the axion field is the absence of a potential term (except, of course, for the effective

potential arising from the aG̃G interaction). This can be achieved by introducing a

spontaneously broken global symmetry, the PQ symmetry. The PQ symmetry must be

axial in order for it to be broken via the fermion anomaly where the axion couples to

the anomaly by the term aG̃G. This coupling is a result of the triangle diagram which

effectively arises in the theory in much the same way as the π0 field couples to two pho-

tons. In short, one has to introduce the axion field a and impose the U(1)PQ symmetry

where a appears as the Goldstone boson of this spontaneously broken symmetry, so that

a does not have a potential [65].

For two Higgs doublets, the most general renormalizable Higgs potential which posses a

reflection symmetry between the Higgs fields is given by

V (φ1, φ2) = −µ2
1(φ†1φ1)− µ2

2(φ†2φ2)+

+
∑

i,j aijφ
†
iφiφ

†
jφj +

∑
i,j bijφ

†
i φ̃iφ̃

†
jφj +

∑
i 6=j(cijφ

†
i φ̃jφ̃

†
iφj + H.C.) ,

(6.43)

where ai,j and bi,j are real and symmetric, ci,j = c∗j,i is Hermitian, φ̃ = iσ2φ
∗ and the two

Higgs fields have hypercharge Y (φ1) = 1
2

and Y (φ2) = −1
2
. This potential has a U(1)Y

symmetry which is not useful for an independent global symmetry. Hence, Peccei and

Quinn [47, 48] imposed the condition ci,j = 0 to allow for an additional global U(1)PQ

symmetry, under which the Higgs doublets transform as

φ1 → eiαΓ1φ1 , φ2 → eiαΓ2φ2 , (6.44)

where Γ1 and Γ2 are the PQ charges of φ1 and φ2 and the phase α is now the available

phase for the axion. When the term (µ2
εφ
†
1φ̃2+H.C.) is introduced, the U(1)PQ symmetry

is broken and µ2
ε will satisfy the condition for the dynamical relaxation of θ.
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One also has to add Yukawa couplings in order for the U(1)PQ symmetry to be preserved.

LY = −fu∗ij Q̄Ljφ2uRi − fuijφ
†
2ūRiQLj − fd∗ij Q̄Ljφ1dRi − fdijφ

†
1d̄RiQLj , (6.45)

where i, j are summed over flavors. Therefore, the QEM = −1
3

quarks get their masses

form the VEV of φ1 and the QEM = 2
3

quarks get their masses form the VEV of φ2.

Now, the U(1)PQ transformations for the fermions are

uL → e
i
2
αΓ2uL , uR → e−

i
2
αΓ2uR ,

dL → e
i
2
αΓ1dL , dR → e−

i
2
αΓ1dR .

(6.46)

These Yukawa interactions yield the coupling between the axion and the quarks. The

coupling between leptons and the axion, although easily obtained in a similar way to

the above, will not be considered in this discussion.

Next, one needs to identify the axion components in the phases of the Higgs fields. Noting

that the axion is the Goldstone boson of the spontaneously broken U(1)PQ symmetry,

we write φ0
1 and φ2

0 as

φ0
1 =

v1 + ρ1√
2

eiP1/v1 , φ0
2 =

v2 + ρ2√
2

eiP1/v2 , (6.47)

where the VEV of the Higgs components are 〈φ0
1〉 = v1√

2
and 〈φ0

2〉 = v2√
2

and ρ1 and ρ2 are

the real Higgs fields. Now we are able to see that one linear combination of P1 and P2

is absorbed in the Z gauge boson by the Higgs mechanism, while the other combination

is the Goldstone boson of the broken symmetry - the axion

h = −P1 sin γ + P2 cos γ ,

a = P1 cos γ + P2 sin γ ,
(6.48)

where the angle γ is given by
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cos γ =
v1Γ1√

v2
1Γ2

1 + v2
2Γ2

2

, sin γ =
v2Γ2√

v2
1Γ2

1 + v2
2Γ2

2

. (6.49)

From the condition that the Goldstone boson h is absorbed into the Z boson and a

similar argument for the axion component one can determine that

h =
−v1P1 + v2P2√

v2
1 + v2

2

. (6.50)

By comparing the latter with Eq. (6.48), one obtains tan γ = v1/v2. Thus, we can

determine the ratio Γ1/Γ2

Γ1 : Γ2 = v2/v1 : v1/v2 = x : 1/x , (6.51)

with x = v2/v1. Then

a =
v2aP1 + v1P2

vF
, (6.52)

where vF =
√
v2

1 + v2
2 ' 250 GeV is the electroweak scale. Lastly, we notice that the

three remaining field degrees of this broken symmetry are identified as π0 and η mesons.

6.3.3. Inclusion of The Weak and Electromagnetic Interactions

Let us shortly summarize what we have found so far. By introducing a global chiral U(1)

symmetry, the U(1)PQ symmetry, one sees that in the Lagrangian of the theory in hand

the effective θ term is dynamically eliminated. This symmetry must be spontaneously

broken and it effectively replaces the static CP violating angle by a dynamical CP

conserving field. This field is the Goldstone boson of the broken U(1)PQ symmetry, i.e.

the axion. Hence, the axion field transforms under U(1)PQ as
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a(x)→ a(x) + αfa , (6.53)

where fa is the order parameter associated with the breaking of U(1)PQ. For the PQWW

axion fa = vF , where vF is the electroweak breaking scale.

The SM Lagrangian can be written in a U(1)PQ invariant way by adding the effective

axion coupling term

L = LSM + θ̄
g2
s

32π2
G̃cµνGc

µν −
1

2
∂µa∂

µa+ Lint(∂
µa
fa
, ψ) + ξ

a

fa

g2
s

32π2
G̃cµνGc

µν , (6.54)

where gs is the coupling strength of the strong interactions and ξ is the anomaly coeffi-

cient. The last term on the right hand side of the latter gives rise to the U(1)PQ chiral

anomaly

∂µj
µ
PQ = ξ

g2
s

32π2
G̃cµνGc

µν . (6.55)

This term also serves as an effective potential for the axion field. With this term, not all

values of 〈a〉 are allowed in the vacuum: Inclusion of the anomaly term induces a VEV

of the axion field at 〈a〉 = −θ̄fa/ξ, where the θ̄ term cancels out and thus the theory is

CP invariant. The minimum of the CP violating density GG̃ is periodic in the relevant

θ parameter of the theory (i.e. the effective vacuum angle θ̄ + 〈a〉ξ/fa). For example,

in the instanton approximation 〈GG̃〉 is proportional to cos(θ̄ + 〈a〉ξ/fa). This makes

the VEV of 〈GG̃〉 to vanish precisely when the axion is at its VEV. Of course, writing

the Lagrangian in terms of the physical axion field, i.e. the excitation with the VEV

removed, aphys = a− 〈a〉 rules out the CP violating term.

The axion is nominally massless as a Goldston boson, however, it acquires a mass as a

result of the chiral anomaly via expansion of its effective potential
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m2
a =

〈
∂2Va
∂a2

〉
= − ξ

fa

g2
s

32π2

∂

∂a

〈
GcµνG̃c

µν

〉 ∣∣∣
〈a〉=−θ̄fa/ξ

. (6.56)

6.3.4. The Mass of the Axion

Our next goal is to derive the mass of the axion. This was first done explicitly by Bardeen

et. al. [66]. However, we shall trace the logic of [67] and use an effective Lagrangian

derivation of the axion mass ma.

The U(1)PQ current, given by

jµPQ = −vF∂µa+ x
∑
i

ūRiγ
µuRi +

1

x

∑
i

d̄Riγ
µdRi , (6.57)

reveals the anomaly coefficient ξ (see Eq. (6.54)) [51]

ξ =
N

2

(
x+

1

x

)
. (6.58)

To obtain the axion mass it is useful to consider, again, a model with only the lightest

quarks (i.e. u and d). For this model, one may introduce a 2 × 2 matrix of Goldstone

fields

Σ = exp

(
i
~τ · ~π + η

fπ

)
, (6.59)

where fπ is the pion decay constant. This matrix corresponds to the meson sector of

the two light quark theory. Then, this appears in the Lagrangian as

L̃ = Lchiral + Lmass , (6.60)

where
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Lchiral =
f 2
π

4
Tr(∂µΣ∂µΣ†) , (6.61)

and

Lmass =
1

2
(fπm

0
π) Tr(ΣAM + (ΣAM)†) , (6.62)

with

A =

e−iax/vF 0

0 e−ia/xvF

 , M =

 mu
mu+md

0

0 md
mu+md

 . (6.63)

However, a further term is required in order to have a CP free Lagrangian and give the

axion its mass. This term takes into account the anomalies in both U(1)A and U(1)PQ

and considers the contributions of heavy quarks to the PQ anomaly

Lanomaly = −
(m0

η)
2

2

(
η + a

fπ
vF

(N/2− 1)(x+ 1/x)

2

)2

, (6.64)

where (m0
η)

2 ' m2
η � m2

π. The coefficient in front of the axion field in Lanomaly reflects

the relative strength of the couplings of a and η to GG̃ as a result of the anomalies in

U(1)PQ and U(1)A. Naively, the ratio of these couplings is just fπ/2vF ξ. However, the

reason that N/2 − 1 appears in the above, rather than just N/2, is that Lmass already

includes the light quark interactions of axions, so only the contribution of heavy quarks

to the PQ anomaly should be taken into account in Lanomaly.

By diagonalizing the quadratic terms in both Lmass and Lanomaly, one obtains the axion

mass and the axion-pion and axion-eta mixing parameters for the PQ model. Defining,

for convenience,

m̄a = mπ
fπ
vF

√
mumd

mu +md

' 25 keV , (6.65)
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we find that

ma = λmm̄a , ξaπ = λ3
fπ
vF

, ξaη = λ0
fπ
vF

, (6.66)

where

λm = N
2

(
x+ 1

x

)
,

λ3 = 1
2

[(
x− 1

x

)
N
2

(
x+ 1

x

)
md−mu
md+mu

]
,

λ0 = 1
2

(
1− N

2

) (
x+ 1

x

)
.

(6.67)

It is important to notice that in addition to the three parameters in Eq. (6.67), all

axion models are also characterized by axion couplings to two photons. In fact, this

interaction is most important when considering terrestrial axion search experiments.

These use this interaction to convert an axion in an external magnetic field to a photon,

which is detectable in a lab. This interaction can be described in the Lagrangian by the

term

Laγγ =
α

4π
Kaγγ

aphys
fa

F̃ µνFµν , (6.68)

where we need to find the coupling strength Kaγγ for this model. Again, from the

anomaly of the PQ current in this effective Lagrangian one may find [51]

ξaγγ =
4

3

N

2

(
x+

1

x

)
. (6.69)

Again, one needs to separate the light quarks contribution to the anomaly and add back

the aγγ contribution from the the coupling of π0 and η to two photons via the axion-pion

and axion-eta mixing (λ3 + 5
3
λ0). Thus, ξeffaγγ = 4

3
N
2

(x+ 1/x)− 4
3
x− 1

3
1
x

and

Kaγγ =
N

2

(
x+

1

x

)
mu

mu +md

. (6.70)
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6.4. Invisible Axion Models

The main phenomenological drawback of the PQWW axion is that its physics is coupled

at the electroweak symmetry breaking scale. This model, with fa = vF , was rather

quickly ruled out by experiment, where this axion was tested in decay modes of K, in

reactor experiments, beam dump experiments and astrophysics. All these lead to the

belief that this model’s phenomenology is incorrect with reasonable value of the ratio

of the two Higgs’ doublets, x. However, axion models with fa � vf are still feasible.

Kim [68] was the first to introduce a model where the PQ scale is separated from the

electroweak scale. To that end, the axion field should not reside in the phase of neutral

Higgs doublets (which transform nontrivially under SU(2) × U(1)), but rather in the

phase of an SU(2)×U(1) singlet complex scalar field which carries a PQ charge (denoted

below as σ). This gives rise to the so called invisible axion models, a branch of models

which suggest that the axion is a very light, very weakly interacting and very long lived

particle. The introduction of this scalar field is the common feature for the invisible axion

models, although different models can have different phenomenological implications.

After understanding where to ”house” the axion, the next task is to have U(1)PQ −

SU(3)C − SU(3)C anomaly. For this anomaly to be present some quarks must carry

nontrivial PQ charges. In the standard model with one Higgs doublet, the light quarks

cannot carry PQ charges, sine then the quarks cannot obtain phenomenologically ac-

ceptable masses. Therefore we need more fields to have the desired anomaly, in addition

to the scalar field σ.

In principal, two important such models have been proposed. The first, suggested by

Kim [68] and Shifman, Vainshtein and Zakharov [69], introduces the scalar field σ with

fa = 〈σ〉 � vF and a super-heavy quark Q with MQ ∼ fa as the only fields carrying a

PQ charge. This model is usually referred to as the KSVZ axion. The second model,

suggested by Dine, Fiscler and Srednicki [70] and Zhitnisky [71], introduces (along with

σ) an additional Higgs doublet so that both light quarks and Higgs doublets carry non-

78 of 144



6 AXIONS: AN INTRODUCTION

vanishing PQ charges. This model is usually called the DFSZ model. Let us illustrate

now shortly how these models work.

6.4.1. The KSVZ Axion

To realize the PQ symmetry Q should not have a bare mass. Assuming, for simplicity,

that Q is a color triplet, the Yukawa coupling and Higgs potential are given by

LY = −fQ̄LσQR − f ∗Q̄Rσ
∗QL ,

V (σ, φ) = −µ2
φφ
†φ− µ2

σσ
∗σ + λφ

(
φ†φ
)2

+ λσ (σ∗σ)2 + λφσφ
†φσ∗σ ,

(6.71)

where φ is the Higgs doublet of the SM. The transformation rules are

a→ a+ αfa ,

σ → eiQσασ ,

QL → e
i
2
γ5QσαQL ,

QR → e−
i
2
γ5QσαQR ,

(6.72)

where Qσ is the PQ charge of σ. Then, the axion can be identified as the phase of σ

σ =
1√
2

(v + ρ)ei
a
v , (6.73)

which leads to fa = Qσv/
√

2 � vF and the PQ scale is determined by the VEV of σ.

Of course, with the normalization Qσ = 1 we get fa = 〈σ〉, as stated at the beginning

of this section.

It is also useful to obtain the axion mass for this model using the effective Lagrangian,

as we did in Sec. 6.3.4. By construction, the KSVZ axion does not interact with leptons

and it only interact with light quarks through the strong and electromagnetic anomalies

[51]
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LKSV Zaxion =
a

fa

(
g2
s

32π2
G̃cµνGcµν + 3e2

Q

α

4π
F̃ µνFµν

)
, (6.74)

where eQ is the electromagnetic charge of Q. The interactions of the axion with the

light quark sector come from the effective anomaly mass term (as the Higgs field does

not carry a PQ charge in this model)

Lanomaly = −
(m0

η)
2

2

(
η +

fπ
2fa

a

)2

. (6.75)

As before, one needs to add the quadratic term coming from light quarks

Lmass = −(m0
π)2

2

(
mu

mu +md

(π0 + η)2 +
md

mu +md

(η − π0)2

)
. (6.76)

Diagonalizing Lanomaly and Lmass we find that

ma = λm
vF
fa
m̄a , ξaπ = λ3

fπ
fa

, ξaη = λ0
fπ
fa

, (6.77)

where, for the KSVZ model, one has

λm = 1 , λ3 = − md −mu

2(mu +md)
, λ0 = −1

2
. (6.78)

Expressing the mass of the axion in terms of the light quark masses, the pion mass and

the pion decay constant we have [72]

ma =
vF
fa
m̄a =

mπfπ
fa

√
mumd

mu +md

' 0.60 meV

fa/1010 GeV
. (6.79)

We are left with the calculation of Kaγγ. To that end, one should add to the contribution

of the super-heavy quark in the electromagnetic anomaly 3e2
Q the contribution from the

mixing of the axion with pion and eta mesons. Hence,
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Kaγγ = 3e2
Q −

4md +mu

3(mu +md)
. (6.80)

6.4.2. The DFSZ Axion

In this model, the desired AG̃G coupling is realized from the light quarks. The scalar

field σ is coupled to the Higgs doublets which then couple to the light quarks (σ is not

coupled directly to the light quarks because it is an SU(2)×U(1) singlet). We shall not

repeat the analogous calculations for the DFSZ axion here, but we shall just state the

final results.

Let us define, for convenience, [51]

X1 =
2v2

2

v2
F

, X2 =
2v2

1

v2
F

, (6.81)

where v1 and v2 are, as usual, the VEVs of the two Higgs doublets. Next, let us rescale

fa → fa/N . Then, the axion mass is given by the same equation as in the KSVZ model

Eq. (6.79) with λm = 1. With this rescaling one can also find

λ3 =
1

2

(
X1 −X2

N
− md −mu

2(mu +md)

)
, λ0 =

1−N/2
N

, (6.82)

and

Kaγγ =
4

3
− 4md +mu

3(mu +md)
. (6.83)

As a last note, although the axions in the models we have just reviewed (i.e. the KSVZ

and DFSZ models) are referred to as ”invisible”, they are, however, predicted to convert

to and from photons in the presence of strong magnetic fields through the effective
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anomaly terms in the Lagrangian. This property is used to detect axions in terrestrial

experiments, where, basically, an axion beam is passing through a large (as possible)

magnet with magnetic field perpendicular to the axions’ momentum. Then, the axions

are predicted to convert to photons with a specific energy. The experimentalists are

looking to find these specific photons and isolate them from the background in order

to determine wether or not they were originated from the scattering of an axion in the

magnetic field. We will discuss this in more detail in the following sections.

6.4.3. The Primakoff Effect and Bounds on the Invisible Axion

Bounds on the mass of the axion can be obtained from astrophysics. Axion emission,

through Compton production (i.e. eγ → ea) and the Primakoff effect, lead the energy

loss in stars [73].

The Primakoff effect was first proposed in 1951 by Henry Primakoff to study the π0 −

γ coupling. The two-photon coupling of pions or other pseudo-scalars allows for the

conversion a ↔ γ in an external electric or magnetic field by virtue of the amplitude

shown in Fig. 6a. The Primakoff effect turns out to be important for non relativistic

conditions, where T � me (T being the temperature and me is the electron mass) so

that both electrons and nuclei may be treated as heavy relative to typical energies of

the ambient photons. The Primakoff effect gives rise to conversions of axions to photons

and vice versa in strong electromagnetic fields. Hence, axions could be produced in the

Sun’s core when X-ray photons scatter off electrons and protons in the presence of strong

electric fields and thus are converted to axions. These axions may be converted back

into photons by passing the axion flux through a strong magnetic field in a terrestrial

laboratory.

For example, Sikivie [56] proposed to search for galactic axions by means of a Primakoff-

like method. The a → γ conversion of non-relativistic axions in the µeV mass range

produces photons in the microwave (GHz) range. Thus, placing a microwave cavity in a
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strong magnetic field may excite cavity modes by the axion field. The electromagnetic

modes of the cavity and the free axion field modes can be viewed as oscillations coupled

by an interaction term of the form L = −1
4
gaγFµνF̃µνa = gaγ ~E · ~Ba, where ~E corresponds

to an electromagnetic cavity mode and ~B is the external static field. The Axion Dark

Matter eXperiment (ADMX) is an ongoing experimental search for axions in the milky

way’s dark matter halo, which is using Sikivie’s idea to conduct its research. It is

located at the University of Washington’s Center for Experimental Nuclear Physics and

Astrophysics (CENPA).

In the very same paper, Sikivie proposed to apply the same idea to the solar axion flux

since in a strong magnetic field axions are expected to convert to X-ray photons (”the

axion helioscope”). For example, the CERN Axion Solar Telescope (CAST) experiment

is currently underway to detect solar axions by converting them back to X-rays in a

strong magnetic dipole field (≈ 9 T) mounted in the laboratory.

Another type of experiment using conversions of photons to axions and vice versa, which

will be mentioned in the following sections, is the so called ”light shining through the

wall” experiment. In this type of experiments, a beam of light is passed through an

intense magnetic field in an attempt to observe the conversion of photons into axions by

placing an opaque plate (which can be made of an antiferromagnet, such as aluminum

for example) in the middle of the magnetic field region. This plate will block the passage

of photons while allowing the passage of the low interacting axions. This, supposedly

purely axionic, beam is then expected to convert back into (detectable) photons on the

other side of the plate. An example for this type of experiment is the Optical Search

for QED vacuum magnetic birefringence, Axions and photon Regeneration (OSQAR)

experiment at CERN.

The Primakoff effect, which in the frame of this work refers to the conversion of axions

to photons and vice-versa in strong electromagnetic fields, serves as the basis for the

calculations carried out in sections 8 and 9, where different possible experiments which

use axion-photon conversion are presented. This effect can lead to experiments which
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γ a

(a)Axion production in an external

electromagnetic field.

γ

Ze

a

Ze

(b)Axion production in the sun.

FIG. 6: The Feynman diagrams for the Primakoff effect.

address the questions of the existence of the invisible axion.

The energy loss in stars is inversely proportional to f 2
a and therefore proportional to

m2
a. Hence, axions must be light enough in order to not affect stellar evolution. Another

bound on the mass of the axion can be found from the energy-loss limit from SN 1987A,

as axion emission in the core collapse affects the neutrino signal [74]. This suggests that

QCD axions have fa & 109 GeV or ma . 10–20 meV. Moreover, if axions also interact

with electrons, axions nearly saturating the SN 1987A limit could explain the apparent

anomalous energy loss of white dwarfs [75–78].

Cosmology gives an ever lower bound on the mass of the axion. When the universe went

through the PQ phase transition at temperature T ∼ fa � ΛQCD, the QCD anomaly

was not yet relevant. Therefore, in the early universe 〈aphys〉 is arbitrary. But, as the

universe cooled down to a temperature of the order T ∼ ΛQCD, the axion acquired a

mass which leads to 〈aphys〉 → 0. The PQ mechanism is not an instantaneous process

and thus 〈aphys〉 oscillates to its final value. These coherent axion oscillations contribute

to the energy density of the universe and axions act as cold dark matter. The energy

density of the axion oscillations is proportional to fa. Hence, bounds on the energy

density of the cold dark matter in the universe leads to a bound on fa and thus on ma.
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To summarize, axions are produced in the early universe by the misalignment mecha-

nism [54, 55]. If the PQ symmetry is restored by reheating after inflation, axion strings

and domain walls form and decay, providing an additional source of axions. These relic

axions provide the cold dark matter for ma ∼ 10 µeV, with a large uncertainty in either

direction, and actually ma could be as large as 200 µeV [55].

7. AXION-PHOTON DUALITY SYMMETRY

In a series of recent publications by Guendelman [79, 80] it was shown that an axion-

photon system displays a continuous axion-photon duality symmetry when an external

magnetic field is present and when the axion mass is neglected. This allows one to

analyze the behavior of axions and photons in external magnetic fields in terms of an

axion-photon complex field. For example, the deflection of light from magnetars has been

recently studied using these techniques [81]. It is important to note here that the same

duality symmetry exists also when considering massive photons, under the condition

mγ = ma, that is, the photon and the axion masses are equal. These conditions can

be achieved when conducting experiments where the axion-photon conversion region is

filled with a suitable refractive gas. In the next part of the thesis we will show that the

coupling of axion-photon complex particles to a localized magnetic flux generated by

a solenoid renders scattering solutions with a cross section which could conceivably be

measured.

To see this, let us write the Lagrangian describing the relevant light pseudoscalar cou-

pling to the photon,

L = −1
4
F µνFµν + 1

2
∂µa∂

µa− 1
2
m2
aa

2 −−g
8
aεµναβFµνFαβ . (7.1)

Following [82], we focus on the case where an electromagnetic field with propagation

along the x and y directions and a strong magnetic field pointing in the z-direction are
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present. The magnetic field may have an arbitrary space dependence in x and y, but it

is assumed to be time independent.

For small electromagnetic perturbations around the static magnetic background (i.e,

the axion and the electromagnetic wave), we consider only small quadratic terms in

the Lagrangian for the axion and the electromagnetic fields. By choosing a static mag-

netic field pointing in the z direction and having an arbitrary x and y dependence and

specializing to x and y dependent electromagnetic field perturbations and axion fields,

the interaction between the background magnetic field and the axion and photon fields

reduces to

LI = −βaEz , (7.2)

where β(x, y) = gB(x, y). Choosing the temporal gauge for the electromagnetic field

and considering only the z-polarization for the electromagnetic waves (since only this

polarization couples to the axion) we get the following 2+1 dimensional effective La-

grangian

L2 =
1

2
∂µA∂

µA+
1

2
∂µa∂

µa− 1

2
m2
aa

2 + aβ∂tA , (7.3)

where A is the z-polarization of the photon, so that Ez = −∂tA.

Without assuming any particular x and y dependence for β, but insisting that it will

be static, we see that neglecting the axion mass ma (the validity of this assumption will

be discussed at the end of this work), we discover a continuous axion photon duality

symmetry. This is due to a rotational O(2) symmetry in the axion-photon field space,

allowed by the axion and photon kinetic terms and by expressing the interaction term,

LI , in an O(2) symmetric way by dropping a total time derivative from it:

LI =
1

2
β(a∂tA− A∂ta) . (7.4)
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Defining now the axion-photon complex field, Ψ, as

Ψ =
1√
2

(a+ iA) (7.5)

and plugging this into the Lagrangian results in

L = ∂µΨ∗∂µΨ− i

2
β(Ψ∗∂tΨ−Ψ∂tΨ

∗) , (7.6)

where Ψ∗ is the charge conjugation of Ψ. From this we obtain the equation of motion

for Ψ

∂µ∂
µΨ + iβ∂tΨ = 0 . (7.7)

We therefore have the magnetic field, or β/2 (the U(1) charge), coupled to a charge

density. Introducing the charge conjugation [82] , that is

Ψ→ Ψ∗ , (7.8)

shows that the free part of the action is indeed invariant under (7.8). When acting on

the free vacuum the A and a fields give rise to a photon and an axion respectively, but

in terms of the particles and antiparticles (defined in terms of Ψ), we see that a photon

is an antisymmetric combination of particle and antiparticle and an axion a symmetric

combination, since

a =
1√
2

(Ψ∗ + Ψ) and A =
1

i
√

2
(Ψ−Ψ∗) . (7.9)

Hence, the axion is even under charge conjugation, while the photon is odd. These two

eigenstates of charge conjugation will propagate without mixing as long as no external
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magnetic field in the perpendicular direction to the eigenstates (i.e axion and photon)

spatial dependence is applied. The interaction with the external magnetic field is not

invariant under (7.8). In fact, under (7.8) we can see that

SI → −SI , (7.10)

where SI =
∫
LIdxdydt. Therefore, these symmetric and antisymmetric combinations,

corresponding to axion and photon, will not be preserved in the presence of B in the

analog QED language, since the ”analog external electric potential” breaks the symmetry

between particle and antiparticle and therefore will not keep in time the symmetric or

antisymmetric combinations. In fact, if the corresponding external electric potential

is taken to be a repulsive potential for particles, it will be an attractive potential for

antiparticles, so the symmetry breaking is maximal.

Even at the classical level these two components suffer opposite forces, thus under the

influence of an inhomogeneous magnetic field both a photon or an axion will be decom-

posed through scattering into their particle and antiparticle components, each of which

is scattered in a different direction, since the corresponding electric force is related to

the gradient of the effective electric potential, i.e., the gradient of the magnetic field,

times the U(1) charge which is opposite for particles and antiparticles. If we look at

the scattering amplitudes for particles and antiparticles, we see that they have opposite

signs. Calling S the scattering amplitude for a particle, the amplitude for an antiparticle

is then −S. Therefore, an axion [i.e. the symmetric combination of particle antiparticle

(1, 1)] goes under scattering to (1, 1) + (S,−S). So the amplitude for axion going into

photon (1,−1) is S. Hence, we conclude that the amplitude for axion-photon conversion

is equal to the particle scattering amplitude.

For this effect to have meaning, we have to work at least in a 2+1 formalism [80].

The 1+1 reduction [79], [82] which allows motion only in a single spatial direction, is

unable to produce such separation, since in order to separate particle and antiparticle
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components we need at least two dimensions to obtain a final state with particles and

antiparticles propagating in slightly different directions.

This is in a way similar to the Stern-Gerlach experiment in atomic physics [83], where

different spin orientations suffer a different deflection force proportional to the gradient

of the magnetic field in the direction of the spin. Here, instead of spin we have that

the photon is a combination of two states with different U(1) charge and each of these

components will suffer opposite force under the influence of the external inhomogeneous

magnetic field. Notice also that since particle and antiparticles are distinguishable, there

are no interference effect between the two processes.

Therefore an original beam of photons will be decomposed through scattering into two

different elementary particle and antiparticle components (and also, of course, the pho-

tons that were not scattered). These two beams are observable, since they both have

photon components, so the observable consequence of the axion-photon coupling will

be the splitting of a photon, or axion, beam by a magnetic field of the configuration

considered here, whereas in the normal Primakoff effect analysis there is no explicit

recognition of a splitting. This effect is, moreover, of first order in the axion-photon

coupling (g), unlike the “light shining through a wall” phenomena which depend on the

coupling constant squared (g2).

Perhaps this is the place to mention that the splitting of axion and photon in an in-

homogeneous magnetic field can be understood in terms of different indices of refraction

of modes of the axion and photon system, which here we associate to particle - anti

particle representation [81].

8. PHOTON PRODUCTION FROM THE SCATTERING OF AXIONS OUT

OF A SOLENOIDAL MAGNETIC FIELD

Here, following [84], we calculate the total cross section for the production of photons

from the scattering of axions by a strong inhomogeneous magnetic field in the form of
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a 2D δ-function, a cylindrical step function and a 2D Gaussian distribution, which can

be approximately produced by a solenoidal current. These theoretical results are then

used to estimate the axion-photon conversion probability which could be expected in a

reasonable experimental situation. Comparison between the 2D conversion probabilities

for QCD inspired axions and those derived by applying the celebrated 1D calculation of

the (inverse) coherent Primakoff effect is made using an averaging prescription procedure

of the 1D case. We also consider scattering at a resonance Eaxion ∼ maxion, which

corresponds to the scattering from a δ-function and gives the most enhanced results.

The goal which guidelines this study, is to obtain the expected conversion probabilities

in different possible terrestrial experiments, using a magnetic field with a cylindrical

symmetry. There are some practical difficulties in using a solenoid for solar axions

search as we mention later, in Sec. 11. However, as a first attempt for obtaining some

phenomenological results of the 2D particle anti-particle formalism in 2D we ignore these

difficulties for now and treat this research as a study case from which one can learn and

gain a further insight on this novel axion-photon conversion formalism in 2D.

To apply the results of the previous section to a specific system with magnetic field, one

writes separately the time and space dependence of the axion-photon field as Ψ(~r, t) =

e−iωtψ(~r). This will be done in all the following cases in order to analyze the Ψ fields

interaction with the external magnetic field and obtain the axion-photon conversion

probability.

8.1. First Approximation: A Magnetic Field of an Infinitely Thin Solenoid

As a first model, let us consider an inhomogeneous magnetic field of the form B =

Φδ2(x, y), where Φ is the magnetic field flux. This kind of a potential can not, of

course, be realized in the lab, however, we will show that the results for this, presumably

purely theoretical, calculation have physical significance in the resonance case, where the

scattering becomes isotropic.
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Separating the time and space dependence of Ψ and considering the δ function potential

reduces Eq. (7.7) to

[−~∇2 + gΦEδ2(x, y)]ψ(~r) = E2ψ(~r) . (8.1)

In terms of momentum space wave functions, φ(~k) =
∫

ei
~k·~rψ(~r)d2r, the latter equation

is now

~k2φ(~k) + gΦEψ(0) = E2φ(~k) , (8.2)

from which the solution

φ(~k) = (2π)2δ2(~k − ~k0)− gΦEψ(0)

k2 − E2
, (8.3)

with k2
0 = E2, is obtained. The constant gΦEψ(0) is determined from Eq. (8.3) by

integration over momentum space

ψ(0) = 1− gΦEI2(−E2 − iε)ψ(0) , (8.4)

where

I2(−E2 − iε) =

∫
d2k

(2π)2

1

k2 − E2 − iε
=

1

4π
log(

Λ2

z
) , (8.5)

with and z = −E2 − iε and Λ is a cutoff constant that was introduced to regulate the

integral I2(z) by limiting k. It is straightforward to calculate gΦEψ(0) from Eq. (8.4)

gΦEψ(0) =

[
1

gΦE
+

log(Λ2/z)

4π

]−1

=

[
1

gΦE
+

log(Λ/E)

2π
+
i

2

]−1

. (8.6)
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To obtain the scattering amplitudes, we write the wave functions in position space

ψ(~r) = ei
~k·~r − gΦEψ(0)Gk(r) , (8.7)

where Gk(r) is Green’s function in two dimensions

(−∇2 − k2)Gk(r) = δ(~r) , (8.8)

Gk(r) =
i

4
H

(1)
0 (kr)

r→∞−→ 1

2
√

2πkr
ei(kr+π/4) . (8.9)

By identifying the scattering amplitude from the asymptotic behavior of the scattering

wave function

ψ(~r)→ ei
~k·~r +

1√
r
f(θ)ei(kr+π/4) , (8.10)

we get for the constant scattering amplitude

f(θ) = − 1√
2πE

gΦE

2
ψ(0) , (8.11)

since k2 = E2. Since there is no dependence on the scattering angle in f(θ) the scattering

from a δ function is completely isotropic. The total cross-section in 2 dimensions is given

by σtot =
∫ 2π

0
|f(θ)|2dθ. Hence, by expanding f(θ) to first order in g we find that

σδtot =
g2Φ2E

4
. (8.12)

Our primary motivation comes from the QCD inspired axions, with mass up to the ∼1

eV range. To estimate the magnitude of the total cross-section, we take the value of
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the coupling constant g from a recent result from the CAST collaboration. CAST is

searching for axions produced in the sun and travelling to earth by trying to detect

photons from the conversion of axions inside a constant magnetic field, following the

coherent inverse Primakoff effect. Along with the Japanese axion helioscope Sumico [85],

CAST has set an upper limit on the magnitude of the axion-photon coupling constant

of g . 2.2 × 10−10 GeV−1 for an axion mass of ma . 0.4 eV [86]. We choose to use

g = 10−10 GeV−1 throughout this paper. The dimensionless magnetic flux is, of course,

given by Φ = πB0R
2, where B0 is the magnetic field strength inside the solenoid and R

is the solenoid radius. Lastly, the mean energy of axions arriving at the earth from the

sun is estimated to be E = 4.2× 103 eV [87].

In order to get the 3D total cross-section (i.e the scattering cross-section) σS we multiply

the 2D cross-section σtot by the length of the solenoid L, taking L = 10 cm as an

example. Multiplying the scattering cross-section by the flux of axions coming from the

sun, F = 3.67 × 1011 /cm2 · sec [87], we can estimate the number of events per second

N .

The quantity we are ultimately looking for is the axion-photon conversion probability. To

obtain this, we calculate the ratio between the number of axions arriving at the solenoid

to the number of photons produced. The number of axions hitting the solenoid is given

by multiplying the flux of axions arriving by the geometrical cross section of the solenoid,

given by σG = DL, where D is the solenoid diameter and L is its length. Of course, the

δ function does not have any volume, however, when conducting an experiment where

the wavelength of the Ψ wave function will be smaller, or even comparable to the length

scale of a cylindrical potential the scattering becomes more and more isotropic and we

essentially obtain δ function scattering. This issue and the physical realization of δ

scattering will be discussed at the end of these section, after presenting the resonant

scattering case.

The number of produced photons is found by multiplying the scattering cross section

(σS = σtot · L) times the flux. Thus, the probability is given by
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Pδ = σS/σG =
g2Φ2E

4D
=
π2g2B2

0R
3E

8
. (8.13)

Notice that the dependence on the magnetic field strength is squared. However, the

dependence on the surface magnetic field gradient is “hidden”, since it was implied

in deriving this relation. A few examples for the cross-section, number of events and

probability are given below in TABLE I.

B [Tesla] D [cm] σδtot [cm] Nδ [sec−1] Pδ = σS/σG

10 1 3.08× 10−15 0.01 3.08× 10−15

10 10 3.08× 10−11 112.98 3.08× 10−12

6 2 1.77× 10−14 0.07 8.87× 10−15

6 20 1.77× 10−10 650.78 8.87× 10−12

TABLE I: Total cross-section, number of events and axion-photon conversion probablity for

different choices of the magnetic field strength (B) and the solenoid diameter (D) and for

g = 10−10 GeV−1. We have used rationalized natural units to convert the magnetic field units

from Tesla to eV2, where the conversion is 1 T = 195 eV2 (please see appendix A in [88] for

more details).

8.2. Finite Sized Solenoidal Generated Potentials

8.2.1. Gaussian Distributed Magnetic Field

We wish to obtain eventually measurable quantities which can be incorporated in a

laboratory experiment, thus we have to consider a more realistic function to describe

the magnetic field generated by the solenoid. As a first model, we choose to describe the

inhomogeneous magnetic field by a Gaussian distribution around the solenoid’s axis.
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~B(r) = B0e
−r2
R2 ẑ . (8.14)

The Gaussian function is normalized so that the total magnetic flux equals to BπR2,

the flux through a cylinder with radius R and constant magnetic field B.

Introducing again Green’s function in the x , y plane, we write the wave function in

position space

ψ(~r) = ψfree(~r) +

∫
G(~r − ~ρ)gEB(ρ)ψ(~ρ)d2ρ , (8.15)

where ψfree = ei
~k·~r is the solution of the free field equation. To first Born approximation,

noting that

ei
~k·~ρeik|~r−~ρ| = eikrei(

~k−k ·~r
r )·~ρ (8.16)

and using again the asymptotic approximation of Green’s function in 2 dimensions (see

Eq. 8.9) we arrive at

ψ(~r) = ei
~k·~r +

eikr

2
√

2πrE

∫
gEB(~ρ)ei~q·~ρd2ρ , (8.17)

where ~q = ~k − k ~r
r

is the momentum transfer in the scattering process. To evaluate the

integral, B(~q) =
∫
B(~ρ)ei~q·~ρd2ρ, we write ~ρ · ~q = qρ cosφ and get

B0

∫ ∞
0

e
−ρ2

R2 ρdρ

∫ 2π

0

dφeiqρ cosφ = 2πB0

∫ ∞
0

e
−ρ2

R2 J0(qρ)ρdρ = πB0R
2e−

1
4

(Rq)2 . (8.18)

Hence, the wave function becomes

ψ(~r) = ei
~k·~r +

√
πgB0R

2
√
E

2
√

2r
e−

1
4

(Rq)2ei(kr+π/4) . (8.19)
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By defining, as before,

ψ(~r)→ ei
~k·~r +

1√
r
f(θ)ei(kr+π/4) , (8.20)

we find for the scattering amplitude

f(θ) =
√

(π/8)gB0R
2E1/2e−

1
4

(Rq)2 , (8.21)

where the explicit dependence of q on the angle is given by

q2 = 2k2(1− cos θ) = 4k2 sin2(θ/2) . (8.22)

Hence, The total 2D cross-section is given by

∫ 2π

0

|f(θ)|2dθ =
π

8
(gB0)2R4E

∫ 2π

0

e−
1
2

(Rq)2dθ =
π2

4
(gB0)2R4Ee−(Rk)2I0((Rk)2) , (8.23)

where I0(x) = J0(ix) is the modified Bessel function. The argument of this function

(i.e (Rk)2) is very large (1 eV × 1 cm ≈ 105) so we can use the asymptotic from of the

modified Bessel function

In(x) =
ex√
2πx

(
1 +

(1− 2n)(1 + 2n)

8x
+ ...

)
. (8.24)

Keeping only the first order term gives the result

σGausstot =
π3/2

√
32
g2B2

0R
3 . (8.25)

Again, we find the axion-photon conversion probability P = σS/σG to be
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PGauss =
π3/2

8
√

2
g2B2

0R
2 . (8.26)

The geometrical cross-section is taken as 2RL, as in the previous section, to keep the

correspondence to a cylinder with radius R and constant magnetic field B0.

This is the place to notice that one can yield the cross section (or, equivalently, the scat-

tering amplitude) for the δ function scattering (Eq. (8.11) ) directly from the Gaussian

case by taking the limit Rk → 0 of Eq. (8.23) (using I0(x)
x�1−−→ 1).

Notice that the comparison between the 1D and the 2D calculations is not straight

forward since in the 1D case there is no concept of ?small angle scattering? and hence all

the scattering is either forward or backward. We will address this issue more thoroughly

at the last section of this work.

B [Tesla] D [cm] σGausstot [cm] NGauss [sec−1] PGauss

10 1 1.17× 10−23 4.29× 10−11 1.17× 10−23

10 10 1.17× 10−20 4.29× 10−8 1.17× 10−21

6 2 3.38× 10−23 1.24× 10−10 1.69× 10−23

6 20 3.38× 10−20 1.24× 10−7 1.69× 10−21

TABLE II: Total 2D cross-section, number of events and the axion-photon conversion prob-

ablity for different choices of the magnetic field strength (B) and the solenoid diameter (D)

for the finite sized solenoid with Gaussian distributed magnetic field case. Again, we use

g = 10−10 GeV−1 and rationalized natural units to convert the magnetic field units from Tesla

to eV2, where the conversion is 1 T = 195 eV2.

8.2.2. Solenoidal Generated Potential - Square Well Approximation

Now we turn to consider the magnetic field generated by an ideal solenoidal current

which is described by a step function realizing a uniform magnetic field pointing in the
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ẑ direction and constrained to a cylindrical region around the origin

~B(r) =

B0ẑ , r < R ,

0 , r > R .
(8.27)

Repeating the same manipulation as in equations (8.15) to (8.22) and using the Fourier

transformation of the step function

B0

∫ R

0

ρdρ

∫ 2π

0

dφeiqρ cosφ = 2πB0

∫ R

0

ρdρJ0(qρ) =
2πRB0

q
J1(qR) , (8.28)

we find that the scattering amplitude is now given by

f(θ) =

√
π

2

B0RgE
1/2

q
J1(qR) , (8.29)

where the explicit dependence of q on the angle is given by Eq. (8.22).

Before evaluating the integral for the total cross-section, let us write the total cross

section for the square well case in terms of the delta function cross-section, calculated

in section 8.1

σwelltot. =
π

32
g2B2

0D
4E

[∫ 2π

0

∣∣∣∣J1(qR)

qR

∣∣∣∣2 dθ
]

= σδtot.
2

π

[∫ 2π

0

∣∣∣∣J1(qR)

qR

∣∣∣∣2 dθ
]

= σδtot.
2

π
I(ER) ,

(8.30)

where I(ER) =
∫ 2π

0

∣∣∣J1(qR)
qR

∣∣∣2 dθ is a dimensionless quantity which is a function of the

multiplication E · R. Using the relation P = σtot/D (where we use the same notations

as in section 8.1), the proportionality constant connects also the conversion probabilities

for the δ function and square well cases

Pwell = Pδ
2

π
I =

π

32
g2B2

0D
3EI(ER) . (8.31)
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Denoting ER = kR by η, the integral can be analytically solved with the solution

I(η) =
π

2
2F3({1

2
, 2

3
}; {1, 2, 3} ;−4η2) , (8.32)

where 2F3 is an hypergeometric function.

To analyze this solution we expand the hypergeometric function 2F3 to a series. Then,

for small η, I(η) is converging toward the constant value π/2, thus giving the equality

σwelltot. = σδtot.. This result is expected since considering only small η values is equivalent

to considering isotropic scattering because η � 1 means that ER � 1. Hence, the

wavelength of Ψ is very large compared to the length scale of the potential. Therefore,

this approximation corresponds to the δ function limit of the step function, which, in

turn, means that we consider isotropic scattering.

This conclusion can also be deduced from the following viewpoint regarding the scat-

tering angle: The integrand of I is becoming extremely oscillatory as its argument (i.e.

qR) is bigger and therefore for a reasonable scale of ER (≈ 105) we have a highly oscil-

latory integrand which is also decaying very fast as a function of θ (since the momentum

transfer q is a function of the scattering angle). Thus, the biggest contribution will

come from smaller angles. In fact, demanding that the integrand will be of order one

is equivalent to considering scattering angles that satisfy θ . 1/ER ≈ 10−5. Then,

using the asymptotic form of the Bessel function for small arguments we have I ≈ π/2

which simply gives the solution σwelltot. = σδtot. = π2g2B2
0R

4E/4. Considering only small

angles is equivalent to demanding that the argument of the Bessel function will satisfy

the condition ER · sin(θ/2) � 1. Without limiting the range of the scattering angle,

this of course means that η = ER � 1, the condition which coincides with the small η

expansion of I(η).

On the other end, we have the expansion for large η. This reveals the fact that the

integral approaches the limit I → 8
3πη

= 8
3πER

very fast. For example, for η = 10 we

already have 8
30π
/I(η = 10) = 0.997. A plot of I(η) and its limit 8

3πη
is shown in Fig. 7.
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Putting this limit into Eq. (8.31) gives the result

Pwell =
1

6
g2B2

0D
2 =

2

3
g2B2

0R
2 . (8.33)

5 10
Η

Π

4

Π

2

IHΗL

FIG. 7: The solution of the integral I(η), defined by Eq. 8.30, is an hypergeometric function

I(η) = π
2 2F3({1

2 ,
2
3}; {1, 2, 3} ;−4η2). This figure shows a plot of I(η) as a function of the

multiplication ER = η in the solid line. The dashed line represents the fast approached limit

of I(η), which is given by 8
3πη . At η = 10 both lines are close enough so that the ratio

8
30π/I(η = 10) already equals 0.997.

Since the generalized hypergeometric function is difficult to analytically work with for

large arguments (large η values), we have also calculated the total 2D cross-section

numerically to verify our results for the entire spectrum of η. In order to evaluate the

integral I we have used the ’MATLAB’ program, running the new ’quadgk’ function

100 of 144



8 PHOTON PRODUCTION FROM THE SCATTERING OF AXIONS OUT OF A SOLENOIDAL MAGNETIC
FIELD

which is using the Gauss-Kronrod quadrature and is efficient specifically for oscillatory

integrands. The results of the the analytical and numerical calculations match to very

high precision and both results are practically the same. In fact, when considering solar

axions (i.e. ER = η is of order 108), the numerical calculation gave the result of Eq.

(8.33) as well. A few examples for the cross-section, number of events and conversion

probability for solar axions are given below in TABLE III.

B [Tesla] D [cm] σwelltot [cm] Nwell [sec−1] Pwell

10 1 1.58× 10−23 5.80× 10−11 1.58× 10−23

10 10 1.58× 10−20 5.80× 10−8 1.58× 10−21

6 2 4.56× 10−23 1.67× 10−10 2.28× 10−23

6 20 4.56× 10−20 1.67× 10−7 2.28× 10−21

TABLE III: Total 2D cross-section, number of events and the axion-photon conversion proba-

blity for different choices of the magnetic field strength (B) and the solenoid diameter (D) for

the finite sized ideal solenoid case. We use g = 10−10 GeV−1 and rationalized natural units to

convert the magnetic field units from Tesla to eV2, where the conversion is 1 T = 195 eV2

When comparing the cross-sections of the Gaussian distributed magnetic field to the step

function, one expects the step function cross-section to be bigger than a cross-section

generated by a smooth function, in agreement with similar studies done in the context

of nuclear physics models, where it has been shown that a step function potential gives

a bigger scattering cross-section than a smooth potential like, for example, the Woods-

Saxon Diffuse potential [90]. Our results qualitatively agree with Woods and Saxon, as

can be seen by comparing Tables II and III.
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8.3. Resonant Scattering For E ∼ ma

So far in this study, we have considered the axion field as a massless field in order to

get the U(1) symmetry between axions and photons. In fact, this symmetry holds up

whenever the axion mass is equal to the (effective) photon mass inside a medium, or

when the interaction term is much bigger than the mass term [91]. For example, in axion

helioscope experiments photons acquire an effective mass [87] if one fills the conversion

region with a suitable refractive gas.

Of course, if we had recalculated our results with massive axions and “massive” photons

(of equal mass to that of the axion), our conclusions will have to be modified. The term

that has to be taken under consideration is an 1/
√

(E2 −m2)1/2 term which comes from

the Green’s function and will replace the current 1/
√
E in the scattering amplitude.

Thus, in the ma ∼ mphoton 6= 0 case, the total two dimensional cross-section (for the δ

function case) would have the following energy dependence

σtot =
πg2B2

0R
4E2

4
√

(E2 −m2)
, (8.34)

and we obtain a resonance when E = m, which has, in a sense, a similar behavior to

the 1D problem analyzed by Adler et. al. [92] (notice that Adler et. al. consider

the conversion between a massive axion and a massless photon), where of course the

resonance here appears at maxion ∼ mphoton. In Eq. (8.34) the relation maxion ∼ mphoton

is assumed from the beginning and we see that the additional resonance appears as

E ∼ m. For an axion rest mass below ∼ 1 eV, this can have practical consequences, for

example, in laser generated axions (e.g in ”light shining through the wall” experiments)

when one can control the energy of the photon/axion beam.

We can see here that the 1D treatment of this process can not be justified since in

the limit of zero momentum (or infinite wavelength) the scattering amplitude and the

differential scattering cross-section become isotropic (i.e equal for all angles) and it is
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impossible to consider only one direction in the scattering. In fact, in the limit of exactly

zero momentum (assuming there is a tunable laser capable of very fine accuracy to obtain

E very close to m) the amplitude of a finite potential becomes of the form to Eq. (8.34).

This is since taking the limit of zero momentum implies zero momentum transfer (from

Eq. 8.22) which means to consider only zero modes in the Fourier transform of the

magnetic field. Hence, the cross-section of a finite potential becomes of the form of the

modified δ function potential. It is an experimental question whether such a fine tuning

is possible with an existing laser, if the axion has a mass of the order of eV. But, in

astrophysical environments this can occur occasionally.

Achieving a resonance requires a material which has a zero index of refraction. The real

part of the refractive index is given by

nR(ω) = 1 +K
ω0 − ω

(ω0 − ω)2 + γ2
, (8.35)

where K = Ne2f with N being the number density of atoms, e is the electron charge and

f transition oscillator strength, ω0 is the transition frequency and γ represents dissipative

interactions [93]. Equating the latter to zero requires the conditionK2 > 4γ2. A negative

and zero refractive indices are indeed possible as was experimentally observed by Shelby

et al. [94]. Let us hope that one day it will be possible to implement this in an axion

detection lab experiment.

A similar problem of a resonant interaction between axions and photons was also studied

by Sikivie [56], who has considered a rather similar resonance condition E = m in the

case where the external magnetic field is applied to a cavity with a resonance frequency ω.

What is special in our case is that at the resonance the corrections to the 1D scattering

(i.e going away from a forward direction) become big. In other words, there are two

enhancements in this case: one due to the summation on all angles in 2D and the other

because of the resonance.
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8.4. Summary, Discussion and Conclusions

In this section we have studied the first examples of scattering which is not one dimen-

sional and we have obtained enhanced probabilities. This effect is further increased in

the case of resonant scattering that appears when E = m and corresponds to isotropic

scattering (as in the δ function scattering). One should notice that allowing for two

dimensional scattering is the same as allowing the possibility of axion-photon splitting

which does not make sense in 1D scattering. We have studied here merely magnetic

fields with a cylindrical structure. Further generalizations should include the scattering

from, for example, a quadrupole magnetic field (as we shall do in the following section),

which is more complicated than the cylindrical symmetric case we have studied here

but, on the other hand, is quite accessible as a possible experimental setup.

In the 1D case the conversion probability is P1D = g2B2l2/4, where l is the linear

dimension associated with the extent of the magnetic field [89]. Hence, when trying to

compare the conversion probability for the cylindrically symmetric geometry found by

the method used in this work with the known 1D calculation it is not so obvious what

is the correct length scale l that should be taken to calculate P1D. The problem is, of

course, that the notion of splitting does not make sense in 1D and that the scattering

region is not an area but a line. Hence, the best way to discuss the relation between

the two calculations will be to average the 1D probability over the scattering region for

each case. In other words, we look at the 2D experiment as the weighted average of an

infinite number of 1D experiments.

For the step function case the scattering region is a cylinder with radius R. Writing l =

2
√
R2 − y2, where the wave travels in the x̂ direction and ŷ is the transverse dimension,

the average of P1D is

Pwell avg.
1D =

∫ R
−R P1Ddy∫ R
−R dy

=
1

2R
· 2
∫ R

0

1
4
g2B2

04(R2 − y2)dy =
2

3
g2B2

0R
2 , (8.36)
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a result which coincides with Eq. (8.33).

The general case is more complicated since the scattering region may be infinite and the

magnetic field may not be homogenous. However, a 1D analogue to the 2D experiment

can be found and the weighted average can be done by choosing the magnetic flux as

the averaging measure

P avg
1D =

∫∞
−∞

∫∞
−∞

1
4
g2|
∫∞
−∞B(x′, y)dx′|2B(x, y)dxdy∫∞

−∞

∫∞
−∞B(x, y)dxdy

. (8.37)

Then, of course, eq. (8.36) is a special case of the latter.

When considering the Gaussian case (B(x, y) = B0e−
x2+y2

R2 ) the averaged 1D probability

is

PGauss.avg.
1D =

π√
3

g2B2
0R

2

4
. (8.38)

The comparison of this result with Eq. (8.26) gives PGauss/PGauss.avg. = 1.085 and thus

the two formulations do not exactly coincide.

However, despite Eq. (8.37) not all 2D experiments can have a 1D analogue. In fact, we

have seen in the previous section that when considering resonant scattering, the limit of

zero momentum implies that the cross section is isotropic and there is no way to describe

such a process with an analogous 1D calculation since there is no way to consider only

one scattering dimension.

When considering scattering from a finite sized potential (Gaussian and step function

potentials) the enhancement of the conversion probability compared to the 1D case still

gives probabilities in the same order of magnitude. This is due to the fact that the

wavelength (1/E) of the Ψ wave function is much smaller than the length scale of the

potential (R), which essentially results in a quasi-1D behavior of the system. If the

wavelength will be larger, or even comparable to the length scale of the potential the

deviation between the two results gets bigger since in this case the scattering becomes
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more and more isotropic and we essentially obtain δ function scattering, as was discussed

in the previous subsection.

The wavelength is determined by the momentum of the particles. For the massive case,

the momentum approaches zero when the magnitude of the particle?s energy approaches

the order of the particle’s mass. This situation, where the wavelength of the particles

is much larger than any other length scale in the problem, is realized in the resonant

scattering case, as discussed in section 8.3. There we have shown explicitly that this

limit gives an isotropic scattering for a finite potential and thus, conversion probabilities

of the order of the δ function case (shown in table I).

The cross-section in the resonance case was calculated at tree level. This gives a sin-

gularity of the cross-section at E = m. However, in practice a resonance effect should

have a certain width and this, of course, should also be the case for the resonance case

found here. We notice also that the resonance behavior comes together with a break-

down of the 1D treatment of axion-photon conversion and also that a finite width can

be originated from absorption effects. All these problems will be addressed in a future

publication.

9. AXIONS SCATTERING FROM A QUADRUPOLE MAGNETIC FIELD

The question of the scattering of axions from a quadrupole magnetic field has recently

been proposed as a new possible method for detecting axions on terrestrial experiments

such as the CAST experiment at CERN. Current axion detection experiments use a

constant magnetic field, that can be generated by a particle accelerator dipole magnet

for example, to trace QCD axions. These experiments use a standard 1D analysis (i.e

the inverse Primakoff effect) [56] to evaluate the axion-photon reconversion. Therefore,

it is an interesting question wether a magnetic field which is varying over the scattering

region, and thus should be analyzed by a 2D formalism, could improve the probability

of QCD axion detection in the near future. Here we follow [96] to estimate the cross-
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section and conversion probability of solar axions that scatter along a long accelerator

like quadrupole magnet, using the novel 2D scattering method which accounts for an

axion-photon splitting and presented in the means of an axion-photon duality symmetry.

9.1. The Scattering Amplitude in a 2D Eikonal Approximation

As we did for the cylindrical symmetric case (Sec. 8), we write separately the time and

space dependence of the axion-photon field as Ψ(~r, t) = e−iωtψk(~r), which yields

(−ω2 −∇2 + ωβ)ψk = 0 . (9.1)

In order to develop the space dependent term of the axion-photon field, let us consider

a high energy, non-relativistic scattering. We assume that the wavelength of the ψ

field is short, i.e kR � 1, where R is the length scale of the scattering region and

k is the momentum of the incoming beam, and that |V0|/E � 1, where |V0| = gB0

is the averaged magnitude of the potential over the scattering region and E is the

energy of the incoming beam. Under these assumptions we can address the problem by

assuming small scattering angles and representing our equation in the integral from of

the Lippman-Schwinger equation

ψk(r) = ei
~k·~r +

∫
d2r′G

(+)
0 (r, r′)U(r′)ψk(r

′) , (9.2)

where G
(+)
0 (r, r′) is Green’s function given by

G
(+)
0 =

1

2
√

2πk|r − r′|
ei(k|r−r

′|+π/4) =
1

(2π)2
lim
ε→0

∫
d2k′

eik
′(r−r′)

k′2 − k2 − iε
, (9.3)

where k = ω for a massless field. writing the spatial part ot the wave function ψk(r) as

ψk(r) = ei
~k·~rφ(r) , (9.4)
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and substituting into Eq.(8.15) yields an equation for φ(r) [97]

φ(r) = 1 + e−i
~k·~r ∫ d2r′G

(+)
0 (r, r′)U(r′)ei

~k·~r′φ(r′) =

= 1 + 1
(2π)2

∫
d2r′

∫
d2k′ e

i(~k′−~k)·(~r−~r′)

k′2−k2−iε U(r′)φ(r′) = 1 + I(r) .

(9.5)

Choosing ~k = (k, 0) and ~k′ = (k cos(θ), k sin(θ)), the momentum transfer vector ~q = ~k′−~k

is just ~q = (0, kθ) for small angles. Changing integration variables from k′ to q in the

latter equation gives

I(r) =
1

(2π)2

∫
d2r′

∫
d2q

ei~q·(~r−~r
′)

2~k · ~q + ~q 2 − iε
U(r′)φ(r′) , (9.6)

and since |~q| � 1 we can expand I(r) to a power series in terms of |~q|2

1

2~k · ~q + ~q 2 − iε
≈ 1

2~k · ~q − iε
− 1

(2~k · ~q − iε)2
q2 + · · · (9.7)

As a result of this expansion the transmitted part of the wave function and the scattering

amplitude can be written as a series as well

φ(r) = φ(1) + φ(2) + . . .

f(k, θ) = f (1) + f (2) + . . . .
(9.8)

Now we turn to calculate I(r) to first order, bearing in mind that we chose the incident

wave to propagate along the x̂ axis, hence giving

I(1)(r) = 1
(2π)2

∫
d2r′

∫
dqxdqy

ei(qx(x−x′)+qy(y−y′))
2kqx−iε U(r′)φ(r′) =

= 1
(2π)

∫
d2r′

∫
dqx

eiqx(x−x′)
2kqx−iε δ(y − y

′)U(r′)φ(r′) =

= i
2k

∫
d2r′Θ(x− x′)δ(y − y′)U(r′)φ(r′) = i

2k

x∫
−∞

dx′U(x′, y)φ(x′, y) .

(9.9)
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Using the latter result we can evaluate φ(r) and the wave function

φ(r) = 1 + i
2k

x∫
−∞

dx′U(x′, y)φ(x′, y) = e
i
2k

x∫
−∞

dx′U(x′,y)

,

ψk(r) ≈ e
i(~k·~r+ 1

2k

x∫
−∞

dx′U(x′,y))

.

(9.10)

Since we consider here asymptotic scattering, we need to evaluate Green’s function under

the approximation |r| � |r′| and hence

|~r − ~r′| =
√
~r2 − 2~r · ~r ′ + ~r ′2 ≈ r

√
1− 2

r̂

r
· ~r ′ ≈ r − ~r ′ · r̂ , (9.11)

and then, from Eq. (8.15), the wave function can be written as

ψk(r) = ei
~ki·~r +

ei(kr+π/4)

√
8πkr

∫
d2r′e−i

~kf ·~r′U(r′)ψk(r
′) , (9.12)

where ki = kx̂ and kf = kr̂ is defined to be the scattered wave. Identifying the scattering

amplitude from the asymptotic behavior of the wave function

ψk(r) = ei
~k·~r +

1√
r
f(θ)ei(kr+π/4) , (9.13)

we get for the scattering amplitude

f(k, θ) =
1√
8πk

∫
d2r′ei(

~kf−~ki)·~r ′U(r′)e
i
2k

x′∫
−∞

dx′′U(x′′,y′)

. (9.14)

9.2. Comparison of the Eikonal Approximation With Previous Results

In this section we apply the eikonal approximation to two cases, a square well potential

and a magnetic field with Gaussian ditribution, which were addressed in [84] and com-

pare the results obtained in [84] by using Born’s approximation with the new method

presented here.
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9.2.1. A Solenoid Magnet

Let us consider a magnetic field generated by an ideal solenoidal current which is de-

scribed by a step function realizing a uniform magnetic field pointing in the ẑ direction

and constrained to a cylindrical region around the origin

~B(r) =

B0ẑ , r < R ,

0 , r > R .
(9.15)

Thus, the potential associated with the square well is U(x, y) = ωgB0Θ(x2 + y2 − R2),

where B0 is the strength of the magnetic field, g is the coupling constant, and ω is the

energy of the incident wave. Then, we obtain

i

2k

∫ x′

−∞
dx′′U(x′′, y′) =

igB

2
(x′ +

√
R2 − y′2) . (9.16)

Using the current limits on the axion-photon coupling constant (i.e g . 10−19 eV−1

[86]), the energy of solar axions (4.2 eV) and current limits on terrestrial magnetic

fields (< 16 T in the best permanent magnets, using the Nb3Sn superconductor), the

condition |V |/E � 1 is obviously satisfied. These values for the parameters will be used

throughout the rest of this work.

For this potential the 2D scattering amplitude, Eq. (9.14), is

f(k, θ) =
ωgB0√

8πk

∫
dx ′dy ′ei(

~kf−~ki)·~r ′e
igB0

2
(x ′+
√
R2−y′2) , (9.17)

where the integration is preformed over the scattering region. Following the procedure

from the previous section, we evaluate ~kf−~ki for small scattering angles (i.e ~q = ~kf−~ki ≈

(0, kθ)) to get
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f(k, θ) =
ωgB0√

8πk

R∫
−R

dx ′e
i
2
gB0x ′

√
R2−x′2∫

−
√
R2−x′2

dy ′eikθy
′+ i

2
gB0

√
R2−y′2 . (9.18)

In order to calculate the total cross section we shall use the optical theorem in 2D.

Since the latter equation is continuous in θ, one can take θ = 0. We can further

simplify this integral by expanding the exponential to a series in powers of gB0R. For

reasonable values for a terrestrial length scale of the scattering region and the same values

mentioned above for the coupling constant g and magnetic field strength B0 the first

order approximations for the exponent can indeed be justified. This expansion would be

done at the end of the calculation in order to have a result which is comparable to the

Born approximation calculation, hence we might as well do it now. Hence, we obtain

σwelltot = 2
√

2π
k

Im{f(k, 0)} ≈ 1
2
g2B2

R∫
−R

dx ′

√
R2−x′2∫

−
√
R2−x′2

dy ′(x′ +
√
R2 − y′2) =

= (gB0)2R3

2

∫ 1

−1
dξ
∫√1−ξ2

−
√

1−ξ2
dη
(
ξ +

√
1− η2

)
=

= 8
3

(gB0)2R3

2
.

(9.19)

As was explained in Sec. 8, to obtain the conversion probability, we calculate the

ratio between the number of axions arriving at the solenoid and the number of photons

produced in the conversion process. The number of axions hitting the solenoid is given by

multiplying the flux of incoming axions by the geometrical cross section of the solenoid,

given by σG = 2RL, where L is the solenoid length. In order to get the 3D total cross-

section (i.e the scattering cross-section) σS we multiply the 2D cross-section σtot by the

length of the solenoid L. The number of produced photons is found by multiplying the

scattering cross section (σS = σtot · L) times the flux. Thus, the conversion probability

is given by
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Pwell = σS/σG =
4

3

g2B2
0R

3

2R
=

2

3
g2B2

0R
2 . (9.20)

Comparing this result to the result obtained by using the Born approximation in Sec.

8.2.2 for the same setup (Eq. (8.33) there) we get precisely

P eikonal
well /PBorn

well = 1 . (9.21)

Hence, there is a complete correspondence between the eikonal approximation and the

Born approximation in this case.

9.2.2. Gaussian Magnetic Field

In this setup the potential has the form

U(x, y) = ωgB0e−
x2+y2

R2 . (9.22)

Integrating the potential along the axis of the incident wave yields

i

2k

∫ x′

−∞
dx′′U(x′′, y′) = i

gB0

2

√
πR

2
[1 + Erf(

x′

R
)]e−

y′2

R2 , (9.23)

where Erf(x) = 2√
π

∫ x
0

et
2
dt. The scattering amplitude is given by

f(k, θ) =
√

ω
8π
gB0

∫∞
−∞ dy

′eikθy
′
e−

y′2

R2 e
i
4
gB0R

√
πe−

y′2
R2 ∫∞

−∞ dx
′e−

x′2
R2 e

i
4
gB0R

√
πErf(x′

R
)e−

y′2
R2

=

=
√

ω
8π

4
∫∞
−∞ dy

′eikθy
′
e
i
4
gB0R

√
πe−

y′2
R2

sin(1
4
gB0R

√
πe−

y′2

R2 ) .

(9.24)
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In order to calculate the total cross section we use, as usual, the optical theorem in 2D

and by using the same reasoning as in Eq. (9.18) to consider only the θ = 0 angle we

get

σGausstot = 4

∫ ∞
−∞

dy′ sin2(
1

4
gB0R

√
πe−

y′2

R2 ) . (9.25)

To obtain an analytic result and simplify the calculation, we can use the fact that

exp{−y′2

R2 } ≤ 1 for all y and that reasonable values of the parameters g, B0 and R allow

us to make a first order approximation. Thus, Eq. (9.25) can be written as

σGausstot ≈ π

4
g2B2

0R
2

∫ ∞
−∞

dy′e−
2y′2

R2 =
π

3
2

√
32
g2B2

0R
3 . (9.26)

Hence, using the same method we used in the previous setup, the probability will be

PGauss =
π

3
2

8
√

2
g2B2

0R
2. (9.27)

The comparison to the probability of conversion calculated in Sec. 8.2.1, using the Born

approximation, (Eq. (8.26)) gives

P eikonal
Gauss /P

Born
Gauss = 1, (9.28)

so that there is again a complete correspondence between the eikonal approximation and

the Born approximation. Thus, we conclude that the Eikonal approximation is indeed

valid and will most probably yield a correct results under our assumptions for a high

energy, yet non-relativistic scattering.

9.3. Axions Scattering in a Quadrupole Magnet

After verifying the accuracy of the eikonal approximation for two known problems, we

now turn to calculate the scattering of axions from a quadrupole magnetic field.
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Placing the quadrupole magnet in the yz plane with the x axis (the direction of the

incoming beam) along the symmetry axis of the quadrupole field, the quadrupole mag-

netic field distribution can be approximated (for a quadrupole magnet with a narrow

aperture compared to its length) by [99]

~B(x, y, z) = s~∇(yz) = s(zŷ + yẑ) =
2B0

R
(zŷ + yẑ) , (9.29)

where s = 2B0

R
is the quadrupole gradient, B0 is the value of the magnetic field at

the pole tips (i.e at the points (0,±R
2
, 0) and (0, 0,±R

2
)), where we chose a rectangular

aperture for simplicity. However, since in our formalism we chose to analyze the case

where the magnetic field is pointing in the z direction, only the z component of the

external magnetic field will take part in the scattering process and we effectively have an

inhomogeneous magnetic field of the form Bz = 2B0

R
y. However, the y component of the

magnetic field will, of course, give the same contribution to the scattering process as the

z component with the sole difference that the final photons will be with a y-polarization.

Thus, we need to take into account the Ψ particle that has the y-polarization of the vector

potential as one of its conjugate fields. This will be done at the end of this section.

Defining, in this case, the potential as:

U = ωg
2B0

R
y , (9.30)

for −R/2 ≤ y ≤ R/2 and −L/2 ≤ x ≤ L/2, we get

i

2k

∫ x′

−∞
dx′′U(x′′, y′) = ig

B0

R
y′(x′ + L/2) . (9.31)

Putting this into Eq. (9.14) we have for the scattering amplitude
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f(θ) =
√

ω
2π

gB0

R

∫ R/2
−R/2 dy

′eikθy
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y′eig

B0L
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−L/2 dx
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= 2
√
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) =
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· i ·
(

sin(
1
2
kRθ)
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1
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(9.32)

Therefore, using the optical theorem, we obtain the total cross section

σquadtot =

√
8π

k
Im{f(0)} = 2R

(
1−

sin(1
2
gB0L)

1
2
gB0L

)
. (9.33)

To get the probability, in this case we just divide by R (geometrical cross section = R2)

Pquad = 2(1−
sin(1

2
gB0L)

1
2
gB0L

) ≈ 2
1
8
(gB0L)3

3gB0L
=

1

3

g2B2
0L

2

4
. (9.34)

Although, as was discussed before, this result may be different than the one that would be

obtained by using Born’s approximation (since the potential is not piecewise continuous),

it coincides with a result that is obtained by using an optical analogue as was previously

shown by J. Redondo [100]. However, Redondo’s calculation is missing features of the

2D calculation (and is also computed in an unphysical setup), as we now show (and as

will be discussed in the conclusions of this work).

The scattering from the z component of the magnetic was merely a matter of choice

in the in the initial setup of our system. The Ψ field will scatter, of course, from the

y component as well since this component of the magnetic is also perpendicular to the

momentum of the incoming beam. The same process described above can be repeated

by a π/2 rotation of the system in the yz plane. In this case, the ψ field would have been

defined as Ψ̃ = (a+ iÃ)/
√

2, where Ã is the y-polarization of the photon this time. This

will give the same expression for the cross-section and conversion probability and since

these two processes are distinguishable we can sum incoherently the two probabilities.
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Hence, in order to get the complete probability we have to multiply Eq. (9.34) by a

factor of two and thus

P total
quad = 2 · Pquad =

2

3

g2B2
0L

2

4
=
g2s2R2L2

24
. (9.35)

9.4. Conclusions

In this section we have calculated the axion-photon conversion probability from a

quadrupole magnetic field. We have used the eikonal approximation to calculate the

scattering from the quadrupole magnet which simplifies the calculations compared to

the Born approximation and verified this approximation by comparing to known re-

sults obtained with the Born approximation. The comparison to the step function and

Gaussian distributed fields shows that the eikonal approximation and the Born’s ap-

proximation give reasonably close answers.

In a previous letter by J. Redondo [100], a related analysis concerning the evolution of an

axion-photon field in the presence of a magnetic field with a constant gradient over the

entire space, was studied. In our case, however, the constant gradient field exists only

in a finite region of space. This boundary condition for the magnetic field contributes

in an essential way to the scattering amplitude since, as was explained in [84], even for

the case of a strictly constant magnetic field living in a finite region of space one gets a

non trivial scattering amplitude due to these boundary conditions. Thus, we conclude

that the boundary effects can be as important as the gradient of magnetic field inside

the finite scattering region. This is a significant difference between our treatment and

that of reference [100]. In Redondo’s letter, the applied magnetic field does not satisfy

Maxwell’s equations without sources since, in his letter, ~∇ × ~B = ∂xBy = B1 = Jz

(where in Redonodo’s notations By = B1x). Therefore, in his analysis there is an

infinite extent of currents along the z axis which can simply not represent a physical

situation. In conclusion, the work of Redondo is not a scattering problem and therefore
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cannot incorporate all the physical aspects of an experimental set-up as opposed to the

work presented here. This is most easily seen by comparing Eq. (9.35) with equation 3

in Redondo’s letter. This comparison unveils the fact that the different approaches lead

to different results.

Moreover, it may sometimes be tempting to believe that the 2D results can be obtained

by averaging over 1D conversion probabilities. As we have already discussed here, a

general prescription to find a 1D analogue to the 2D calculation may be obtained by

using the magnetic flux as the averaging measure

P avg
1D =

∫∞
−∞

∫∞
−∞

1
4
g2|
∫∞
−∞B(x′, y)dx′|2B(x, y)dxdy∫∞

−∞

∫∞
−∞B(x, y)dxdy

. (9.36)

However, since the quadrupole magnetic flux is zero, this method will not work this time.

Of course, it is possible to find an averaging process that will produce the 2D result,

but it cannot be done a-priori with certainty. Eq. (9.36) is an example for a legitimate

choice of measure that cannot produce a result at all. It is clear that there is no way

to avoid the real calculation and obtain results in higher dimensions from averaging

on lower dimension estimations. This shows that 2D processes cannot be reduced to a

1D calculation. The scattering process from a quadrupole field is intrinsically 2D since

the scattered photon may have two different polarizations: Considering a magnetic field

produced by a physical localized current naturally makes a significant difference. In

particular, it shows that any attempt to say that the problem can be deduced from

a 1D analogue is untenable and, in fact, will fail since the magnetic field produced

by a physical current will necessarily have at least two components (in the source free

region). Hence, in the process of photon production from the scattering of axions, the

photon will have two distinguished polarizations. In addition, in the source free regions,

a non-uniform field pointing in one direction, of the form ~B = B(x, y)l̂, will not be

able to satisfy the source free Maxwell’s equations, ~∇ × ~B = ~∇B(x, y) × l̂ = 0 and

~∇ · ~B = ~∇B(x, y) · l̂ = 0, since the solution requires that ~∇B(x, y) = 0. Therefore, a
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one directional magnetic field cannot solve these equations and the problem cannot be

reduced to 1D.

We can, however, compare the scattering from a quadrupole to the scattering from a

solenoid, which can represent a dipole accelerator magnet (with a different geometry of

course). The result obtained here shows that it will be preferable to have a constant

magnetic field distributed over the scattering region aperture (like, for example, the

field of a solenoid) rather than having an inhomogenous field (as the quadrupole field).

This comes from the fact that the magnetic field energy will be higher in the first case

(when the maximal magnetic field strength B0 is equal for both cases and both fields

are distributed over the same scattering region). Since B0 is an intrinsic property of the

superconducting material, comparing a quadrupole magnet to a dipole magnet of the

same length and aperture and made with the same superconductor, the dipole will yield

a higher conversion rate.

One can also observe that the magnetic field parameter that determines the conversion

rate is actually the global maximum value of the magnetic field in the scattering region.

This feature appears as well in other calculations of the conversion probability from

inhomogeneous fields, like, for example, the Gaussian distributed field in Sec. 8.2.1.
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Part IV

The Next Generation Axion

Helioscope

As we have seen, axions have very low interaction cross-sections with ordinary matter

which practically makes them ”invisible” particles. However, axions are predicted to

convert to and from photons in the presence of strong magnetic fields. This property is

used to detect axions in terrestrial experiments. It is the aim of this part of the research

to define a new superconducting toroidal detector magnet that will be specifically de-

signed for axions detection and will constitute the backbone of a Next Generation Axion

Helioscope (NGAH). The NGAH project will be an immense upgrade of axion detection

experiments, relative to the current state-of-the-art which is represented by the CAST

experiment at CERN. This will lead to a significant expansion of the present limits on

axions search.

For terrestrial axion search experiments, it is especially promising to use the sun as a

source for axions produced in its hot interior. Directing a strong magnet toward the

sun allows one to search for keV-range X-rays produced by axion-photon conversion, a

process best visualized as a particle oscillation phenomenon [57] in analogy to neutrino

flavor oscillations. Three such helioscopes were built, in Brookhaven [101], Tokyo [102]

and at CERN [103]. The CERN Axion Solar Telescope (CAST) is currently finishing an

8-year long data taking period, having strongly improved on previous experiments and

even surpassed astrophysical limits for some range of parameters, although axions have

not been found.

In this part, we show that large improvements to the magnetic field volume with respect

to the current state-of-the-art, represented by CAST, are possible and much needed.
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Based on these improvements, a New Generation Axion Helioscope (NGAH) could search

for axions that are 1–1.5 orders of magnitude more weakly interacting than those allowed

by the current CAST constraints. If these ambitious goals will be achieved, a much larger

range of realistic axion models can be probed and it is even conceivable that one can

reach a sensitivity corresponding to ma in the 10 meV range. This mass range would

be significant in several ways: The energy-loss limit from SN 1987A suggests that QCD

axions have fa & 109 GeV or ma . 10–20 meV as mentioned earlier. Moreover, if

axions also interact with electrons, axions nearly saturating the SN 1987A limit could

explain the apparent anomalous energy loss of white dwarfs [75–78]. For the first time,

it appears conceivable to surpass the SN 1987A constraint, test the white-dwarf cooling

hypothesis, and begin to explore entirely uncharted axion territory experimentally.

10. AN ENHANCED AXION HELIOSCOPE

As we have seen, the axion-photon interaction is given by the Lagrangian

Laγ = gaγE · B a, where a is the axion field and gaγ is the axion-photon coupling

constant. The probability that an axion going through the transverse magnetic field B

over a length L will convert to a photon is then given by [56, 104, 105]:

Paγ = 2.6× 10−17

(
B

10 T

)2(
L

10 m

)2 (
gaγ × 1010 GeV

)2F , (10.1)

where the form factor F = 2(1−cos qL)
(qL)2

accounts for the coherence of the process and q is

the momentum transfer.

The basic layout of an axion helioscope requires a powerful magnet coupled to x-ray

detectors. When the magnet is aligned with the sun, an excess of x-rays at the ends

of the magnet is expected, over the background measured at non-alignment periods.

During the last decade, the same basic concept has been used by CAST [86, 103–105]

with some innovations that provide a considerable step forward in sensitivity to solar
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axions. Moreover, during its last years of operation, CAST has also improved on the

original concept of an axion helioscope and developed the expertise that will be crucial

for a marked gain in sensitivity, as envisioned with a NGAH.

The CAST experiment is the most powerful axion helioscope ever constructed. It has

provided the best experimental limit on gaγ for a wide range of axion masses, up to ∼ 1

eV. As the conversion magnet is the main driver of a helioscope’s sensitivity, the CAST

collaboration has harnessed the most advanced superconducting magnet technology of

CERN. Specifically, CAST uses a decommissioned LHC test magnet that provides a

magnetic field of 9 Tesla along its two parallel pipes of 2×14.5 cm2 area and 10 m

length, increasing the corresponding axion-photon conversion probability by a factor

100 with respect to the previous implementation of the helioscope concept [104]. The

magnet is able to track the Sun for ∼ 3 hours per day. The rest of the day is used for

background measurements.

10.1. Figures of Merit

In this section we work out the dependence of the sensitivity to the axion couplings gaγ

and gae (where gae is the dimensionless axion-electorn Yukawa coupling) on each of the

experimental parameters, concentrating on the magnet parameters, in order to discuss

the basis for our proposed improvements. The axion signal counts Nγ and background

counts Nb in an enhanced axion helioscope can be written as: Nγ ∝ N∗ × g4 ≡

B2 L2 A ε t × g4 and Nb = b a εt t, where B, L and A are the magnet field, length

and cross sectional area, respectively. The efficiency ε = εd εo εt, εd being the detectors’

efficiency, εo the optics throughput or focusing efficiency (it is assumed the optics covers

all the magnet cross section area A), and εt the data-taking efficiency, i. e. the fraction

of time the magnet tracks the sun. Finally, b is the normalized (in area and time)

background of the detector, a the total focusing spot area and t the duration of the

data taking campaign. The relevant coupling constant g, is gaγ for hadronic axions and
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(gaγgae)
1/2 for non-hadronic axions.

Assuming that the measurement is dominated by backgrounds (Nb > Nγ) but these can

be estimated and subtracted through independent measurements, the discovery potential

of the experiment depends upon Nγ/
√
Nb. The sensitivity on the relevant coupling g

will be given by g ∼ (N∗/
√
Nb)

−1/4. It is useful to rewrite the previous expression in

terms of a figure of merit (FOM) f ≡ N∗/
√
Nb = fM fDO fT , where we write f as

a product of 3 factors to explicitly show the contributions of the various experimental

parameters: magnet, detectors and optics and tracking (i.e. effective exposure time of

the experiment)

fM = B2 L2 A fDO =
εd εo√
b a

fT =
√
εt t . (10.2)

10.2. A New Magnet For the NGAH

We shall not elaborate here on fDO and fT , as these are not part of our scope. However,

it was shown in [106] that the FOM clearly demonstrates the importance of the magnet

parameters when computing the sensitivity of an axion helioscope. It is difficult to

considerably increase the B or L parameters of CAST’s magnet as 9 T is close to the

maximum field one can get in current large-size magnets, while the length scale of 10 m

is considerable for any structure that needs to be moved with precision.

Hence, the most significant improvement may come in the cross section area. Substan-

tially larger cross sections, of up to several m2, can be achieved, although one needs to

consider a different magnet configuration. It is the motivation for our proposal that a

new magnet must be designed and built specifically for this application, if one aims at a

substantial step forward in sensitivity. These improvements could lead to sensitivities,

in terms of detectable signal counts, up to 106 better than CAST, which corresponds to

1.5 orders of magnitude in g, as seen from the FOMs of equation (10.2).

All the above, corroborates the importance of the magnet for a competitive axion he-
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lioscope. In order to achieve the stated step forward in sensitivity, the design and con-

struction of a new magnet is mandatory. Moreover, accelerator dipole magnets, like the

one CAST is currently using, have additional design constraints that are not required by

a NGAH use, with the most important constraint being the extraordinary quality of the

magnetic field (i.e. the field is required to be extremely uniform within the accelerator’s

aperture). Of course, the design of the new magnet must be done with the FOM for an

NGAH in mind already at the design stage. We have seen that the magnet’s aperture

is the only parameter left that can be significantly enhanced and thus our design of the

magnet focuses on it. We must stress that the use of x-ray optics at the end of the

magnet’s bore allows the enlargement of the magnet’s aperture do enhance the expected

signal without necessarily implying an increased background. Indeed, as was shown be-

fore, the overall FOM of the axion helioscope is proportional to the magnet bore area

f ∝ A (which means that the sensitivity to the coupling constant goes as gαγ ∝ A−1/4).

It should also be noted here that only the perpendicular components of B, with respect

to the axion beam momentum, will contribute to the conversion probability.

11. THE NGAH MAGNET

The previous analysis corroborates the importance of the magnet for a competitive

axion helioscope. As previously anticipated, in order to achieve the stated step forward

in sensitivity, the design and construction of a new magnet is mandatory. Of course,

this must be done with the FOM for an NGAH in mind already at design time. The

latest magnet technology allows for the magnetic strength and length to be improved

with respect to CAST. However, the needed margin for the required improvement in

the magnet FOM can still not be reached. Therefore, the magnet’s aperture is the only

parameter left that can be significantly enhanced and thus we shall base our possible

magnet design by concentrating on it. We must stress that thanks to the use of X-

ray optics at the end of the magnet bore, the enlargement of the magnet aperture do
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imply an enhancement of the expected signal without necessarily implying an increase of

background. Indeed, as was shown before, the overall FOM of the axion helioscope goes

directly proportional to the magnet bore area f ∝ A (which means that the sensitivity

to the coupling constant goes as gαγ ∝ A−1/4). Needless to say, for this relation to hold,

one assumes the optics size is enlarged accordingly to couple the magnet bore down to

the stated focal spot size. It should also be noted here that the magnetic field B in

an axion helioscope magnet must be perpendicular to the longitudinal (axion incoming)

direction. More correctly, only the perpendicular components of B, with respect to the

axion beam momentum, will contribute to the conversion probability.

Accelerator dipole magnets, like the one CAST is currently using (see Fig. 8), have addi-

tional design constraints that are not required by a NGAH use, with the most important

constraint being the extraordinary quality of the magnetic field (i.e the field is required

to be extremely uniform within the accelerator’s aperture). Moreover, accelerator type

magnets cannot reach apertures wide enough to improve the magnet FOM significantly.

For example, a CAST like magnet with a 9 T magnetic field and 9.26 m length will need

a 620 mm aperture ,which is clearly not achievable in the near future, in order to improve

the relative FOM by a factor of just 100. However, by considering different designs of

detector magnets (e.g the ATLAS and the AMS experiments), which are characterized

by a very large volume and a lower field (compared to accelerator magnets), relaxing

those constraints and, in principal, conceiving the magnet design from the beginning by

addressing specifically our requirements, it seems feasible to reach the required FOM, in

particular regarding apertures of up to several meters with rather intense fields.

A complete feasibility study is currently in progress to define the simplest magnet design

that satisfies the requirements of a NGHA and optimizes the FOM within the use of

current magnet technologies at CERN. In the light of the difficulties with achieving the

required FOM by using an accelerator type magnets, this study concentrates on the

approach of scaling an existing model of a detector magnet like, for example, ATLAS or

AMS.
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FIG. 8: A cross-section of the LHC main dipoles. 1: Aperture 1 (outer ring). 2: Aperture

2 (inner ring). 3: Cold-bore and beam screen. 4: Superconducting coil. 5: Austenitic steel

collar. 6: Iron yoke. 7: Shrinking cylinder. 8: Super-insulation. 9: Vacuum vessel. M1-M3:

Busbars for the powering of the main dipole and quadrupole circuits. N: Auxiliary busbar for

the powering of arc-corrector magnets. CAST is currently using a twin dipole LHC magnet

prototype with a design similar to the one shown here and with a total aperture of 2×15 cm2.

Courtesy of Stephan Russenschuck.
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The ATLAS experiment at CERN is using an enormous central toroid magnet [107]

(known as the barrel toroid) of 25.3 m in length with 20.1 m and 9.4 in outer and

inner diameters, respectively (see Fig. 9) . This toroid has a peak field of 3.9 T at the

coils which generates an average field of about 0.8 T in the useful aperture (that is, the

aperture that would have been used for solar axions search) for a current of 20.5 kA.

The NGAH can rely on this numbers and the barrel toroid design in order to scale it

down and optimize it for axions search. Since the useful diameter for the optics detector

is not more than 1 m, the NGAH has the advantage of having a smaller width and hence

maintaining a higher useful field in the aperture. First considerations seem to favor a

FIG. 9: The barrel toroid of the ATLAS experiment at CERN. The huge dimensions of the

magnet can be appreciated by a comparison to the man standing at the bottom of the photo.

The NGAH magnet’s volume will be about 1-2 % of this enormous magnet. Courtesy of the

ATLAS experiment.
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configuration in which 8 vacuum bores, of relatively large size (0.5 - 1 m diameter),

are placed between the coils and are available to couple optics and detectors. This

configuration is demonstrated in Fig. 10, where a cross-section of the geometry is shown.

The magnetic field in the bores, although not homogeneous, is largely perpendicular to

the axion directions. With this type of configuration, it appears possible to reach a

magnet length similar or somewhat longer than CAST (15 - 20 m), with B peak fields

not much less (about 6 T) and a total effective cross section of around 1 - 3 m2. The

average field in the aperture (i.e the vacuum bores) is about 2.5 - 3 T, thus providing a

FOM in the range of 100-350 relative to CAST, matching the requirements exposed in

previous sections.

As mentioned above, also in this class of magnets is the super-conducting shielded dipole

magnet design, which was designed by the AMS mission [108]. This NGAH design will

have a dipole field in its center, where the dipole is surrounded by a 8 coils, semi-toroidal,

geometry (see Fig. 11). The dipole bore can contain 6-8 apertures with an average field

of about 1.5 T, while the peripheral shielding coils coils give additional 2 apertures with

an average field of 2.5 - 3 T and 4 apertures (when using 4 shielding coils and not 6 as in

the original AMS design) with an average field of 2.5 T. Overall, this geometry will not

yield a higher FOM than the one that can be gained with the toroidal design and will

also have the disadvantage of using more cable, which increases the overall costs of the

NGAH. Moreover, another disadvantage of the AMS geometry is that it sustains higher

stress than the ATLAS geometry since the toroidal geometry is self supported thanks

to its symmetry. The bigger stress serves as an additional limitation on the maximal

current and hence on the magnetic field.

Another option for the NGAH will be to consider a solenoidal magnetic field. These kind

of magnets have the advantage of being the easiest to design and manufacture. However,

since in a CAST like experiment the axion beam has to be perpendicular to the magnetic

field, the solenoid must be transparent to x-ray photons, which limits the magnetic field

strength and the radius of the solenoid and makes achieving the FOM goal very difficult.
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FIG. 10: An example for a possible toroidal NGAH magnet design. The cross-section of

the toroidal magnet with 8 racetrack coils (with a double pancake configuration), where the

magnetic field lines and the field modulus inside the coils are represented. In this possible

design, the coils have a double layer geometry with 18 turns in each layer. The peak field is

6.1 T. This calculation was done with the CERN field computation program ROXIE 10.2 .

On top of that, a solenoid magnet with the parameters needed for the NGAH (i.e large

diameter and very high field) will suffer from very large fringe fields which will restrict

the possibility for easy approach and access to detectors, optics, cryogenics, etc.

The possibility of using a new and more advanced superconductor (SC) such as Nb3Sn
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FIG. 11: The AMS superconducting magnet. The two largest coils generate the dipolar field

while the 2 × 6 shielding coils close the magnetic flux and reduce considerably the fringe fields.

Source: http://www.ams02.org/what-is-ams/tecnology/magnet/scmagnet/

was also considered. Nb3Sn may increase the magnetic (peak) field up to 15-16 T in an

accelerator type magnet (for the same amount of SC). However, such an increase will

double the stress applied to the coils, which is already close to the limit at the 9 T dipole.

In addition, this material is about 5 times more expensive than NbTi and, moreover,

these magnets are still in a R&D stage. The use of Nb3Sn has also a limitation since it

is strain sensitive and very brittle. Thus, it practically ceases operating when the stress

is above 150 MPa.

The major efforts when coming to engineer the NGAH magnet, will focus on the me-

chanical structure, cryogenics and (quench) protection of such a machine. Since the

required increase of the present FOM is of a large factor, which will be challenging to

achieve, the new design will have to stretch the limits of the design factors (i.e operating

current, operational margin, cable design, inductance, etc.). Nonetheless, it will be more
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efficient to follow known designs and by that reduce the need for building and designing

new tooling and assembly machines.

In this context, it is important to emphasize that the NGAH magnet requires a very

large aperture while still maintaining the highest possible magnetic field. To understand

the difficulties in achieving this, two definitions are required: The so-called operational

margin of the magnet and the magnet’s load line (see Fig. 12).

For a superconducting magnet, the magnetic field is limited by the critical surface, which

is determined by the properties of the superconducting material. This means that for

a given temperature and current density there is a critical magnetic field limiting the

superconducting performance. Hence, for the sake of proper magnet operation, the

magnetic field should be low enough to avoid frequent quenching of the machine but, at

the same time, for the efficiency and the purpose for which the machine is being built

in the first place, the magnetic field should be as high as possible. This choice of the

operating envelope of the magnet determines the operational margin of the magnet.

The operational margin is defined by means of the load line: For a given configuration

of the magnet (at a constant temperature), the Bio-Savart law gives the (linear) relation

between the current density J and the magnetic field strength B. This relation yields a

straight line in the (B, J) phase space. The portion of this line, which extends from the

origin of the (B, J) space to the critical surface is called the ’load line’ of the magnet.

In the magnet designers’ jargon, it is common to refer to the operational margin by

the so called percentage on the load line. For example, the operational margin of the

LHC main dipoles is set at 20% on the load line [109]. This expression means that the

magnet’s operating values, namely the current density and the magnetic field, are those

given by the point (called the magnet’s working point) in the (B, J) phase space which

will mark 0.8 of the magnet’s load line length, for a given temperature (1.9 K for the

LHC). The smaller the operational margin is, the closer the magnet is to its quench

point.

Most detector type magnets usually work at lower fields and hence have a relatively large
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FIG. 12: Left: Critical surface of NbTi superconductor. Also shown are the load line (contin-

uous straight line, divided to two parts). The operational margin at a constant temperature

is the red portion of the load line, while the working point is at the end of the black portion of

the load line. Right: Critical current density of NbTi at 1.9 K (black line), together with the

linear approximation for the critical current density (red line), the load line and the working

point. These images represent data taken from the LHC main dipoles. Courtesy of Stephan

Russenschuck.

operational margin. However, as mentioned, the NGAH magnet will have to sustain the

highest possible fields. Thus, the operational margin will inevitably be reduced and the

NGAH will have to combine the protection techniques commonly used for both detector

and accelerator magnets. Consequently, the protection of the NGAH magnet may be

the most challenging part of the design.

An efficient magnet design will be the one which yields a load line with a slope as small

as possible since the smaller the load line’s slope is, the lower the current density needed
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to generate a specific magnetic field. A possible way to increase the operational margin,

for a given temperature, is by adding more SC to the magnet while at the same time

reducing the current density. Thus, by increasing the number of current sources, the

same field can be maintained for a lower current density. This can be done in two ways:

the straightforward way will be to increase the number of turns in the coil, or more

simply, using more cable. However, additional turns make the magnet’s coil, and hence

the cold mass (i.e the coils and their supporting structure) as well, bigger. Therefore,

the resulting magnet will have an aperture bigger than the area that can be covered by

the optics and this might result in a less efficient machine (depending on the gain in the

magnetic field). Another way to increase the SC amount is to use larger strands in the

cable and by that not effecting considerably the geometry of the magnet.

It is important to notice, however, that even increasing the amount of SC in the coils

has a limited influence on the magnet’s performance, since, at some point, adding more

SC to the coil will increase the cost of the machine without adding significantly to its

capabilities. Moreover, the magnetic field is always constrained by the critical field at

zero current density, which is an internal property of the superconducting material.

For example, for a dipole magnet as the one used by CAST, the relation between the

modulus of the magnetic field B to the critical current density Jc of the SC is given by

[99]

B =
µ0

2
λtotJcW , (11.1)

where µ0 is the vacuum permeability, λtot is the total superconducting filling factor (the

ratio between the engineering current density to the critical current density) and W is

the width of the coil. Using the linear approximation of the critical current density Jc

for NbTi

Jc = d(B̃c2 −B) , (11.2)
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valid for the high field region (i. e. for magnetic fields larger than 5 T at 1.9 K and 2

T at 4.2 K) and for B̃c2 > B, where d = −dJc
dB
|B̃c2 is the negative slope in the high field

region of the critical surface at constant temperature and B̃c2 is the critical field at zero

current density according to the fit [110], we get the relation between the modulus of

the magnetic field B and the critical field B̃c2

B =
µ0

2
λtot(B̃c2 −B)Wd . (11.3)

By obtaining an expression for the width of the coil from the latter

W =
2B

µ0λtotd(B̃c2 −B)
, (11.4)

one immediately notices that W → ∞ as B → B̃c2. Therefore, when increasing the

coil’s width W the magnetic field B will rise and at the same time the critical current

density (Jc = (B̃c2 − B)d) will have to be decreased (in order to stay below the critical

surface). By linearity of the Bio-Savart law, this implies that the slope of the load line

will be smaller.

From Eq. (11.3) we can also derive an explicit expression for the magnetic field

B =
µ0
2
λtotWd

1 + µ0
2
λtotWd

B̃c2 , (11.5)

from which it is seen that the relations B̃c2 > B and ∂B/∂W > 0 hold for any W > 0.

Hence, adding current sources to the coil will loose its efficiency at some point since

the B(W ) curve is asymptotically approaching the limit value B̃c2. Similarly, the same

conclusions of the last paragraph hold for detector type magnets as well.

Work is still ongoing to further define the geometry, dimensions and final magnetic field

strength, as well as the technical issues and cost. Preliminary results, however, indicate

that the toroid geometry and design, inspired by ATLAS, is the favorable choice for
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the NGAH. The toroid design seems to be the simplest and cheapest way to achieve

the required FOM. Also, we can base most of the design on the existing and proven

technology and the R&D that was carried out in order to be used in the ATLAS experi-

ment. Moreover, there are certain points of this design option that represent important

qualitative advantages with respect to the current CAST experience:

• The CAST magnet needs a heavy iron yoke around its bore and coils to let the

magnetic field lines close, and by thus to prevent the field from leaking out of the

magnet (i.e. fringe field). The coil arrangement in a toroidal geometry is such that

they lead the field on a closed compact path and there is no need for an iron yoke.

Hence, almost all the ?magnetic volume? produced by the magnet can effectively

be used for axion conversion. This is not the case in the CAST magnet, in which

part of the magnetic flux is lost for axion-detection purposes inside the iron yoke.

This leads to a more efficient use of the magnet’s strength.

• For the same reason (no need for an iron yoke), the weight of the magnet compared

to its volume is much lower than in the current CAST magnet. For example, a

toroid magnet will weight about 10 times more than the CAST magnet, but will

have an effective useful volume (i.e volume used for data taking) of 700 - 1100

times (depending on the length) more than the twin dipoles of CAST.

• The cryogenics to cool down the superconducting coils are confined around the

coils themselves, independent of the vacuum pipes (i.e the magnet’s apertures)

which lie in between the coils, thus leaving them at room temperature. This ar-

rangement, unlike the CAST one in which the magnet bore was cooled down to

cryogenic temperatures together with the coils, results in a more practical oper-

ation in several aspects: no big cryostat enclosing all the magnet, easier access

to the magnet bores (pumps, sensors, etc.), no cryogenic pumping effects in the

vacuum system, no need to use 3He in a possible second phase with buffer gas
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(4He at room temperature can go to the required pressures, while in CAST 3He

is needed as 4He would condense at 1.8 K).
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