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Abstract

Using recently proposed method of discrete Hirota dynamics for integrable (1 + 1)D quantum field the-
ories on a finite space circle of length L we derive and test numerically a finite system of nonlinear integral 
equations for the exact spectrum of energies of SU(N) × SU(N) principal chiral field model as functions of 
mL, where m is the mass scale. We propose a determinant solution of the underlying Y-system, or Hirota 
equation, in terms of Wronskian determinants of N × N matrices parameterized by N − 1 functions of the 
spectral parameter θ with the known analytic properties at finite L. Although the method works in principle 
for any state, the explicit equations are written for states in the U(1) sector only. For N > 2, we encounter 
and clarify a few subtleties in these equations related to the presence of bound states, absent in the previ-
ously considered N = 2 case. As a demonstration of efficiency of our method, we solve these equations 
numerically for a few low-lying states at N = 3 in a wide range of mL.
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1. Introduction

Integrable 1 + 1 dimensional quantum field theories on a finite space circle have been rather 
intensively studied in the last 20 years [1–10]. A great deal of success in the exact treatment of 
the finite size effects in various integrable QFT’s was due to the thermodynamic Bethe ansatz 
(TBA) approach [11] resulting in a system (in most of the cases infinite) of non-linear integral 
equations. It was realized that the TBA equations could be rewritten in a functional, Y-system 
form [2].

Recently, a novel, quite general approach to these problems was proposed in [12] based on 
the integrability of the Y-system. The Y-system is known to be a gauge invariant version of the 
famous Hirota bilinear equation, often called the T-system, in its discrete form [13]. The un-
derlying discrete Hirota dynamics is integrable and general solutions of Hirota equations can 
be found in a determinant (Wronskian) form [14] for various boundary conditions correspond-
ing to a variety of different problems, from matrix models to quantum spin chains and quantum 
sigma-models. For finite rank symmetry groups, the Wronskians contains only a finite number 
of functions of the spectral parameter. Thus the Wronskian solution can drastically simplify the 
problem: the infinite Y-system is reduced to a finite number of non-linear integral equations for 
these functions. Then the subtlest point comes: We should guess the analytic properties of these 
functions w.r.t. the spectral parameter. This is relatively easy to do for the spin chains where the 
polynomiality of transfer matrix leads to the final answer in terms of a set of Bethe ansatz equa-
tions. For the QFT’s at a finite volume L (length of the space circle) the situation is much more 
complicated and the analyticity properties of the Y-functions are not so obvious. Nevertheless, 
it often appears to be possible to extract them, partially from physical considerations, partially 
from certain assumptions of the absence of unphysical singularities. It helps to transform the Y-
system into a system of non-linear integral equations (NLIE), more tractable, and better suitable 
for the numerical studies. The resulting equations can remind the Destri–De Vega NLIE [1] or 
even coincide with them for a limited set of 2D QFT’s where these DDV equations are known.

This program was first performed in [12] for the SU(2)L ×SU(2)R principal chiral field (PCF) 
for a general quantum state, and the numerical study of the finite size spectrum was successfully 
done for a variety of interesting states, from the vacuum and mass-gap to quite general states, in 
the so called U(1) sector or even lying out of it (i.e. having excitations in left and right SU(2)

spin modes).
In this paper, we will construct within these lines the corresponding NLIE’s for SU(N) ×

SU(N) PCF at any N . We use the Wronskian solution of [14] for the underlying Hirota equation 
in terms of determinants of N × N matrices and guess the correct analytic form of the functions 
entering the Wronskian. For the vacuum state, the asymptotic Bethe ansatz (ABA) based on the 
scattering theory and, strictly speaking, valid only for sufficiently large length L teaches us that 
there are no singularities on the physical strip of the rapidity plane, at least for not too small L’s.2

For excited states there are certain poles entering the physical strip, and their qualitative struc-
ture can be guessed from the ABA. The explicit construction is done only for states in the U(1)

sector, but we sketch out the generalization to any state. We show how the exact S-matrix of the 
model (including the CDD factor) naturally emerges from this approach based on the Y-system 
by simple analyticity assumptions.

2 This argument based on ABA cannot exclude a possibility that at a sufficiently small size, some extra singularities 
occur. However, our numerics give serious evidence that at least for N = 3 such extra singularities do not appear.
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The presence of additional singularities on the physical strip related to the bound states, absent 
for N = 2, leads in the N > 2 case to significant modifications, already in the expression for the 
energies of excited states. We find from our NLIE’s the finite size (Lüscher) corrections which 
reveal the presence of the so called μ-terms. We also test our NLIE’s analytically, comparing the 
results with the known analytic data in the ultraviolet (conformal) limit. Finally, we demonstrate 
the power of our approach by solving the resulting NLIE’s numerically, for the vacuum energy 
and the energies of some low lying excited states as functions of the size mL for N = 3.

One of the principal motivations for our work was the possibility to realize the same program 
in the case of recently constructed AdS/CFT Y-system [15–17] for the exact spectrum of anoma-
lous dimensions in N = 4 supersymmetric Yang–Mills theory. The PCF model, having N − 1
particles (including N − 2 bound states) in its asymptotic spectrum, bears many similarities with 
the AdS/CFT case where the number of bound states is infinite. The corresponding Wronskian 
solutions of AdS/CFT Y-system, or Hirota equation with the so called T-hook boundary condi-
tions is also available [18,19].

2. The principal chiral field model in the large volume

In this section we will give the definition of the PCF model, remind the reader the basics of 
scattering theory for the physical particles and the ABA equations, and describe the equations 
for the finite size spectrum in terms of the Y-system.

2.1. The PCF model, its S-matrix and the large L ABA

The SU(N) × SU(N) PCF model has the classical action

SPCF = − 1

2 e2
0

∫
dτ

L∫
0

dσ tr[(h−1∂αh)2] , h(σ, τ ) ∈ SU(N) . (1)

The spectrum of this asymptotically free theory in the infinite volume L → ∞ consists of 
N − 1 physical particles with masses

ma = m
sin πa

N

sin π
N

(2)

where the lowest mass scales with the bare charge e0 according to the asymptotic freedom m =
�
e0

e
− 4π

Ne2
0 (� is a cut-off). Its wave function transforms in the fundamental representation under 

each of the SU(N) subgroups. The exact S-matrix for bi-fundamental particles, found from the 
conditions of factorizability, crossing, unitarity, analyticity and the bound state structure [20], 
reads3 [21,22]:

Ŝ12(θ) = χ̆CDD(θ) · S0(θ)
R̂L,R(θ)

θ − i
⊗ S0(θ)

R̂L,R(θ)

θ − i
(3)

S0(θ) =


(
i θ
N

)


(

1−iθ
N

)


(−i θ

N

)


(

1+iθ
N

) , χ̆CDD = sinh(πθ/N + iπ/N)

sinh(πθ/N − iπ/N)
(4)

3 In the N = 2 case, these definitions give χ̆CDD = −1 corresponding to the multiplication of S0 by i.
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where we introduced the standard SU(N) R-matrix R̂L,R(θ) = θ + iP̂L,R and P̂ is the permu-
tation operator exchanging the left/right spins of the scattering particles. In particular, crossing 
and unitarity lead to the following identity

N−1
2∏

k=− N−1
2

S0(θ + ik) = −θ − i N−1
2

θ + i N−1
2

(5)

on the scalar (dressing) factor.
We can use this S-matrix to study the spectrum of N particles on a periodic space circle of a 

sufficiently big circumference L � m−1 imposing periodicity of the wave function

N∏
j=k+1

Ŝ(θk − θj )

k−1∏
j=1

Ŝ(θk − θj )|�〉 = e−imL sinh(2πθk/N)|�〉 , (6)

which quantizes the momenta of the physical particles. The asymptotic spectrum is then given 
by

E 	
N∑

j=1

m cosh

(
2π

N
θj

)
+ O(e−mL) (7)

where θj are given by solutions to the system of nested Bethe equations following from the 
diagonalization of (6). This diagonalization can be performed by means of the algebraic Bethe 
ansatz and leads to the asymptotic Bethe ansatz (ABA) equations (43) and (32) [23,24].4

We will rederive the ABA equations as a large L limit of the Y-system of the model – a system 
of equations valid at any finite volume L and presented in the next subsection. Eq. (43) represents 
the diagonalized version of the periodicity condition (6). Eq. (32) is the set of 2(N − 1) nested 
Bethe equations for the auxiliary right and left magnon roots u(k)

j and v(k)
j following from a 

regularity condition, as we will see in section 4.1.
Note that the ABA equations (32) remind the Bethe ansatz equations for two inhomogeneous 

SU(N) spin chains with the inhomogeneity parameters θj given by the rapidities of physical 
particles. Their dynamics is defined by the periodicity equation (43). So the large L limit can be 
also called the “spin chain limit”.

2.2. TBA, Y-system and Hirota equation

The generalization of the ABA equations to any length L is achieved by the TBA trick [2]: 
the system is put on the space time torus, with a finite space period L and a big Euclidean 
“time” period R → ∞. Then, using the relativistic invariance, we exchange the roles of time 
and space and solve the problem for the same system but rather with the infinite space extent 
R with a periodic “time” L which can be interpreted as the inverse temperature [25]. The full 
energy spectrum of such an infinite system can be found from the nested BAE (6) and from (7)
by means of the so called string hypothesis. The resulting equations for the densities of bound 
states are presented in [26], following the direct solution of the PCF given in [27] (see also [28]). 

4 In what follows we will measure all dimensional quantities in the units of the mass m, so that we put everywhere 
m = 1. The only continuous parameter of the problem is now the volume L.
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Fig. 1. The (a, s)-strip for Y-system and T-system.

The free energy calculation at a finite temperature for such an infinite volume system can be done 
thermodynamically, using the saddle point approximation due to [29]. Then the resulting integral 
TBA equations can be rearranged into the Y-system5

Y+
a,s Y−

a,s = 1 + Ya,s+1

1 + (Ya+1,s )−1

1 + Ya,s−1

1 + (Ya−1,s )−1
,

a = 1,2, . . . ,N − 1; −∞ < s < ∞ (8)

where, by definition, Y0,s = YN,s = ∞ and we have the following6 boundary conditions at θ →
±∞:

Ya,s ∼ e−Lpa(θ)δs,0 × consta,s , pa = cosh(
2θπ

N
)
sin( aπ

N
)

sin( π
N

)
. (9)

This Y-system describing PCF at finite L is an infinite set of functional equations (8) with the 
functions Ya,s(θ) of the spectral parameter θ defined in the nodes marked by black and white 
bullets in the interior of the infinite strip in a, s lattice represented in Fig. 1.

A direct but rather tedious derivation of this Y-system was performed in Appendix A of [12]
for N = 2. The generalization of this calculation to N > 2 is rather straightforward, but the 
Y-system (8) is known from other considerations [30] and is a very universal system of equations 
describing the integrable Hirota dynamics [14].

As we will see later, the expression for the momentum pa(θ) is the only one compatible 
with the Y -system and relativistic invariance, up to a normalization that can be absorbed into 
the definition of the size L of the spin chain.7 As a result of (9) we see that the middle node 
Y-functions, Ya,0, a = 1, 2, · · · , N − 1, are exponentially suppressed at large L or at large |θ |.

Obviously, the Y-system (8) has many solutions and to specify the physical solution we have 
to describe its analytic properties. To have a qualitative idea of the analyticity we have to consider 
a certain limit for the solution where we know the corresponding Y-functions entirely as analytic 

5 To make many formulas less bulky, the shifts of the spectral parameter will be often denoted as follows f ± =
f (θ ± i

2 ), f ±± = f (θ ± i), and in general f [±k] = f (θ ± i
2 k).

6 Note that the notation pa refers to the auxiliary model where the roles of space and time are exchanged; in the original 
model, it corresponds rather to an energy.

7 So that the length L is actually measured in units of mass.
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functions of the spectral parameter θ . The most convenient limit is L → ∞ where we can solve 
the Y-system directly, with the appropriate physically natural analyticity assumptions, to obtain 
explicitly all Y-functions and make a link with the exact scattering matrix and the resulting ABA 
equations, as it was done for the N = 2 case in [12]. We will give this asymptotic solution in
section 4. Then the Y-system, in the form of TBA equations, can be in principle solved numeri-
cally by iterations, starting at large L and then adiabatically approaching L ∼ 1, and even very 
small L’s corresponding to the ultraviolet CFT behavior. The method was successfully used for 
various integrable sigma models, including the SU(2) PCF [12,31,32,7]. It will be also the main 
method of this paper devoted to the SU(N) PCF for N > 2. For the vacuum state, the informa-
tion from ABA is trivial: it suggests that we don’t have any singularities in the physical strip 
−iN/4 < Im(θ) < iN/4, at least for not too small L’s, since there are no Bethe roots.8

The TBA procedure described above leads to the following expression for the vacuum energy

Evacuum(L) = −m

N

N−1∑
a=1

sin( aπ
N

)

sin( π
N

)

∞∫
−∞

dθ cosh

(
2π

N
θ

)
log
(
1 + Ya,0(θ)

)
. (10)

With certain modifications in the analytic properties of Y-functions, described in the next 
section, the equations (8)–(10) appear to be appropriate not only for the vacuum state, as it was 
originally derived from the string hypothesis, but also for the excited states [3,4]. Y -functions for 
various excited states differ by their analytic properties which can be qualitatively inferred, as it 
was mentioned above, from the same states in the ABA. A naive heuristic proposal which worked 
well for the N = 2 case is that the excited states correspond to the appearance of logarithmic 
poles in the integrand of (10) at the points θj where

Y1,0(θj + iN/4) + 1 = 0 . (11)

If the contour is deformed so that it encircles these singularities, the pole calculation will give a 
contribution 

∑N
j=1 m cosh

2πθj

N
which fits well the prediction of the ABA formula (7). However, 

the situation appears to be more complicated at N ≥ 3, already because of the fact that unlike the 
N = 2 case of [12], the solutions θj of (11) are not necessarily real and this naive prescription 
should be slightly modified in order to get a real energy. This will be explained in detail in
section 5. One should admit that the right formulas for energies of excited states in the integrable 
sigma-models are still rather a matter of a natural guess then of a reliable derivation. More insight 
is needed into this issue.

To solve the Y -system equation (8) we will often use it in the form of the Hirota equation

T +
a,sT

−
a,s = Ta+1,sTa−1,s + Ta,s+1Ta,s−1 (12)

on a set {Ta,s} of functions of the spectral parameter θ related to the original Y -functions as 
follows

Ya,s = Ta,s+1Ta,s−1

Ta+1,sTa−1,s

. (13)

On the boundary, one sets Ta,s = 0 if a /∈ {0, 1, . . . , N}, so that T -functions are associated to the 
nodes of the grid in Fig. 1, including the boundaries a ∈ {0, N}.

8 It does not guarantee that we will not have some singularities entering the physical strip when L becomes small 
enough. But our numerical result doesn’t suggest such a strange behavior.
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The Hirota equation (12) is invariant under the gauge transformation

Ta,s → χ
[a+s]
1 χ

[a−s]
2 χ

[−a+s]
3 χ

[−a−s]
4 Ta,s (14)

so that T -functions are gauge dependent, whether as Y -functions (13) are gauge invariant. An-
other useful relation following from (12) is

1 + Ya,s = T +
a,sT

−
a,s

Ta+1,sTa−1,s

. (15)

3. Central node equations

The central node Y-functions Ya,0 related to the black, momentum carrying nodes in Fig. 1
play a special role in the Y-system. It will be useful for the future to solve the corresponding 
Y-system equations for these functions entering the l.h.s. of (8) in terms of the r.h.s.

Let us rewrite the Y -system (8) in the form

Y+
a,sY

−
a,s(

Ya+1,s

)1−δa,N−1
(
Ya−1,s

)1−δa,1
= 1 + Ya,s+1(

1 + Ya+1,s

)1−δa,N−1

1 + Ya,s−1(
1 + Ya−1,s

)1−δa,1
. (16)

At s = 0 it can be rewritten using (13)–(15) as follows

Y 
�
a,0 = T 
�

a,1 (T (L))
�a,−1

T 
�
a+1,0T


�
a−1,0

×
(

T +
N,0T

−
N,0

TN,1T
(L)
N,−1

)δa,N−1
(

T +
0,0T

−
0,0

T0,1T
(L)

0,−1

)δa,1

(17)

where we introduced a discrete D’Alembert operator � on the interval a ∈ [1, N − 1] defined by 
the formula9

F
�
a := F+

a F−
a

(Fa+1)
1−δa,N−1 (Fa−1)

1−δa,1
(18)

for any function Fa(θ), and δ is the Kronecker symbol, used to add the counter terms neces-
sary to satisfy (16) even at a = 1 and a = N − 1. By a superscript (L) in T (L)

a,−1 in (17) we 
denoted a T -function in a gauge of a type (L) which can be different from the gauge of the other 

T -functions in that formula. We can do so because 1 + Ya,s =
(
Ta,s

)
�
T

δa,1
0,s T

δa,N−1
N,s

in the right hand side 

of (16) are gauge invariant, and we are allowed to write each Y -function in terms of T ’s taken in 
a different gauge. The meaning and the notation of the gauge (L) will be explained later.

We can act by �−1 on both sides of (17), to get

Ya,0 = e−Lpa(θ)
Ta,1T

(L)
a,−1

Ta+1,0Ta−1,0

⎛⎝( T +
N,0T

−
N,0

TN,1T
(L)
N,−1

)δa,N−1
(

T +
0,0T

−
0,0

T0,1T
(L)

0,−1

)δa,1
⎞⎠
�−1

(19)

where pa = cosh( 2θπ
N

) sin( aπ
N

)/ sin( π
N

). The factor e−Lpa(θ) is a zero mode of �, in the sense 

that 
(
e−Lpa(θ)

)
� = 1, and it is added in order to reproduce the asymptotics (9). This equation 
(19) is valid up to a zero mode, which will be discussed in the next sections, though we can 

9 The terming “discrete D’Alembert operator” becomes clear if one takes the logarithm of the r.h.s. and the l.h.s. of 
(18).
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already see that this remaining zero-mode has a constant asymptotics at large θ . Furthermore, 
the action of the operator �−1 can be easily calculated by the discrete Fourier transform in θ, a
variables, so that the final expression is

Ya,0 = e−Lpa(θ)
Ta,1T

(L)
a,−1

Ta+1,0Ta−1,0

(
�N−a

[
T +

0,0T
−

0,0

T0,1T
(L)

0,−1

]
�a

[
T +

N,0T
−
N,0

TN,1T
(L)
N,−1

])
KN

, (20)

where f 
KN = elog f 
KN , (21)

and 
 stands for convolution; the “fusion” operator �s is defined as the following product

�k[f ](θ) =
(k−1)/2∏

j=−(k−1)/2

f (θ + i j) = f [−k+1]f [−k+3] . . . f [k−3]f [k−1] (22)

and the kernel KN is the operator inverse to �N : ∀f regular, (�N [f ])
KN = f . Its Fourier 
transform is

K̃N (ω) = 1∑N−1
2

j=− N−1
2

e2iπjω

. (23)

Back in the θ -space it takes the form

KN(θ) = 1

2N

[
tan

(
π − 2πiθ

2N

)
+ tan

(
π + 2πiθ

2N

)]
= 1

N

sin(π/N)

cosh(2πθ/N) + cos(π/N)
. (24)

4. The large L, “spin chain” limit of Y-system and its relation to ABA

We will derive in this section the large L, ABA equations (43), (32) directly from the Y-
system (8). Following the logic of [12] we use the fact that the Y-functions of the momentum 
carrying (black) nodes are exponentially small in this limit:

Ya,0 = Ta,1Ta,−1

Ta+1,0Ta−1,0
∼ e−Lpa(θ) . (25)

This implies that the two wings, left (for s < 0) and right (for s > 0), of the Y-system (8) are 
almost decoupled and can be treated separately.

4.1. Expressions for T -functions in the large volume, spin chain limit

Eq. (25) suggests that either Ta,1 ∼ e−Lpa(θ) or Ta,−1 ∼ e−Lpa(θ). Which one does so (whereas 
another one is finite) is a matter of choice of a gauge for T-functions.

We will work with two different gauges (R) and (L), such that in the large L limit we have

T
(R)
a,−1 
 1 , T

(L)
a,1 
 1︸ ︷︷ ︸

1≤a≤N−1

, T
(R)
a,s≥0 ∼ 1 , T

(L)
a,s≤0 ∼ 1 (26)

(R) will be called the “right-wing-gauge” and (L) the “left-wing-gauge”, and when this super-
script will be omitted it will be implicitly assumed that we are working in the (R) gauge.
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In the large L limit, the T-functions of the left (L) and right (R) gauge both describe the 
same Y functions but (up to exponential corrections) they satisfy Hirota equation restricted to 
the wings s ≥ 0 (resp. s ≤ 0). Moreover, these T -functions are in this limit analytic on the whole 
complex plane, and therefore polynomial.

Such a solution of Hirota equation is well known in applications to the fusion procedure in 
similar spin chain systems, bosonic [14] or even supersymmetric [33,34]. First we parameter-
ize T1,s in terms of N functions X(W)

(j) (θ), j = 1, . . . , N by means of the following generating 
functional

Ŵ (W) =
(

1 − X
(W)
(N) (θ) ei∂θ

)−1 (
1 − X

(W)
(N−1)(θ) ei∂θ

)−1
. . .
(

1 − X
(W)
(1) (θ) ei∂θ

)−1

=
∞∑

s=0

T
(W)
1,±s(θ + i

2 (s − 1))

ϕ(θ − N i
4 )

eis∂θ (27)

where the superscript W = R, L indicates the wing that we study (either right or left), and ±s is 
equal to s for the right wing (if W = R) and to −s for the left wing (if W = L).

These functions X(W)
(j) (θ) can be further expressed as follows

X
(W)
(k) = Q

(W)
k−1

[N/2−k−1]

Q
(W)
k−1

[N/2−k+1]
Q

(W)
k

[N/2−k+2]

Q
(W)
k

[N/2−k] , k = 1,2, . . . ,N (28)

in terms of some Q-functions10 denoted as Q(W). These Q functions in the corresponding gauge 
are polynomials characterizing different solutions of Hirota equation in the large L limit, their 
roots are the Bethe roots describing various excited states – solutions of the Y -system11:

Q
(R)
k (θ) =

J
(R)
k∏

j=1

(
θ − u

(k)
j

)
, Q

(L)
k (θ) =

J
(L)
k∏

j=1

(
θ − v

(k)
j

)
(k = 1, · · · ,N − 1) (29)

Q
(R,L)
N (θ) ≡ ϕ(θ) =

N∏
j=1

(θ − θj ), Q
(R,L)
0 (θ) ≡ 1 . (30)

In particular, we have from (27)

T
(W)
1,±1(θ) = ϕ(θ − iN

4
)

N∑
k=1

X
(W)
(k) (θ) . (31)

T1,±1 should be free of poles, i.e. polynomial. But for each Bethe root wj = u
(k)
j or wj = v

(k)
j , 

the two functions X(W)
(k) and X(W)

(k−1) have a pole at the same position wj − i
2

(
N
2 − k

)
. By requiring 

their cancellation in the sum (31), we get a constraint on the position of wj , which we will call 
the auxiliary Bethe equation:

10 The present Q-functions Qk correspond to the functions Q1,2,...,k in the Hasse diagram notation of [35].
11 We assume here that there exists a gauge such that the large L limit is described by polynomial functions Q(W)

k
. 

Although it needs a better understanding from the point of view of Y-system, it is the case if we start treating the large L
limit from the S-matrix by the ABA approach.
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−1 = Q
(R/L)

k−1 (wj − i/2)

Q
(R/L)

k−1 (wj + i/2)

Q
(R/L)
k (wj + i)Q

(R/L)

k+1 (wj − i/2)

Q
(R/L)
k (wj − i)Q

(R/L)

k+1 (wj + i/2)
,

where

{
k = 1,2, . . . ,N − 1

wj = u
(k)
j resp. v

(k)
j

(32)

The rest of the T-functions in the right wing can be expressed through the Cherednik–
Bazhanov–Reshetikhin (CBR) determinant12 [36,37]

Ta,s = det1≤j,k≤a T1,s+k−j

(
θ + i

2 (a + 1 − k − j)
)

�a−1
[
ϕ[∓s−N/2]] (33)

and they are also automatically polynomial in virtue of (32).
Among these Q-functions, the polynomial function QN = ϕ, encoding, as its roots, the ra-

pidities of all physical particles, will be of a particular importance, and the vanishing of T (R)
a,−1 or 

T
(L)
a,1 due to (25) implies the following asymptotics13

ϕ(θ) = lim
L→∞T

(R,L)
a,0 (θ + i

N − 2a

4
) (34)

= lim
L→∞T

(R)
0,s>0(θ + i

N + 2s

4
) = lim

L→∞T
(L)

0,s<0(θ + i
N − 2s

4
) (35)

= lim
L→∞T

(R)
N,s>0(θ − i

N + 2s

4
) = lim

L→∞T
(L)
N,s<0(θ − i

N − 2s

4
) (36)

These relations translate all the zeroes θj of Y1,0(θ + i N
4 ) + 1, giving the roots of Bethe equation 

(11), into the zeroes of T -functions.

4.2. Asymptotic Bethe ansatz (ABA)

Now we will reproduce from the Y-system in large volume limit L → ∞ the ABA equations 
(43), (32) for the spectrum of energies. In this spin chain limit, (20) can be employed to compute 
Ya,0 to the leading order, by using the asymptotic behaviors (26).

At this point, it is interesting to notice that the crossing relation (5) implies that up to a zero 
mode of �N (i.e. up to a function Z such that �N [Z] = 1)14(

ϕ+

ϕ−

)
KN

= ϕ[+2−N ]

ϕ[−N ]

(
ϕ[−2N+1]

ϕ−

)
KN

= ϕ[+2−N ]S[−N ]

ϕ[−N ] = ϕ[+N ]S[+N ]

ϕ[−2+N ] (37)

where S(θ) :=
∏
j

S0(θ − θj ) i.e. S = (−1)N /N

(
ϕ[−N+1]

ϕ[+N−1]

)
KN

. (38)

12 Equation (33) makes sense if a ≥ 1, and can be extended to a = 0 under natural conventions: one can use the 
convention that �−a [f ] = 1/�a [f ] – consistently with �a+1[f ] = f [a]�a [f −] – and that the determinant of the 
empty matrix is equal to one, so that at a = 0 the relation (33) reduces to T0,s = ϕ[∓s−N/2].

Also note that the sign of the shift in the denominator ϕ[∓s−N/2] is different for T (R) and T (L) . This sign is actually 
a convention which can be fixed using the gauge freedom (14).
13 The statement in (34) is a bit too strong and we will see further that it actually only holds inside some strips on the 
complex plane.
14 One can note that the sign (−1)1/N = ei(2 k+1)π/N is defined up to a factor ei2 kπ/N , which is a zero mode of �N

and can be ignored.
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By denoting15 ε = (−1)N /N , this gives for instance

lim
L→∞�N−a

[
T +

0,0T
−
0,0

T0,1 · T (L)
0,−1

]
KN

= �N−a

[
ϕ[−N/2+1]

ϕ[−N/2−1]

]
KN

= �N−a

[
ε
ϕ[+N/2]S[+N/2]

ϕ[−2+N/2]

]

= ϕ[3N/2−a−1]

ϕ[−N/2+a−1] �N−a

[
εS[+N/2]] (39)

= ϕ[3N/2−a−1]

ϕ[−N/2+a−1]
ϕ[−N/2−a+1]

ϕ[3N/2−a−1]
1

�a

[
εS[−N/2]] . (40)

As a consequence, the large L limit of equation (20) is

Ya,0(θ) ∼ e−Lpa
Ta,1T

(L)
a,−1

Ta+1,0Ta−1,0

ϕ[−N/2−a+1]

ϕ[−N/2+a−1]
ϕ[−N/2−a+1]

ϕ[−N/2+a+1]
1

�a

[(
S[−N/2])2 χ

[−N/2]
CDD

] , (41)

where χCDD(θ) :=
∏
j

χ̆CDD(θ − θj ) . (42)

Here, the factor χCDD (4) was added as another zero mode, necessary to transform the double 
poles and double zeroes of S2 into the simple ones [22]. We will also see in section 7.3.2 that 
this factor arises in our Y-system formalism in a natural way.

In particular, at a = 1, we get the ABA equation (periodicity condition for the wave function):

−1 = e−iLsinh 2π
N

θj
1

χCDD(θj )S(θj )2

Q
(L)
N−1(θj − i/2)

Q
(L)
N−1(θj + i/2)

Q
(R)
N−1(θj − i/2)

Q
(R)
N−1(θj + i/2)

(43)

which expresses the fact that Y1,0(θj + iN/4) + 1 = 0 (here T1,1 was replaced by the single 
surviving, last term of (31)).

In conclusion, we have shown here that the Y system implies the familiar ABA equations 
[26,22]. In the next sections we will see how these ABA equations for the spectrum of PCF can 
be generalized to any finite size L.

5. Expressions for the energy of excited states

No complete and full proof procedure is known to generalize the formula (10) to the excited 
states.16 The analytic continuation of [4] with respect to the mass is difficult, if possible at all 
for a general state in our model. The procedure of [4,8] claims that for the excited states a set of 
logarithmic poles (different for each state) appears under the integral in (10). From (34) and the 
ABA we know that at very large L, Ta,0(θ) 	 ϕ(θ − iN/4 + ia/2), where ϕ(θ) =∏j (θ − θj )

is a polynomial encoding all real roots17 For finite L the roots θj will be shifted and in general 
become complex. These exact Bethe roots, as opposed to the approximate ones given by (43), 
are defined by the exact Bethe equations Ta,0(θ

(a)
j +iN/4−ia/2) = 0. There is a whole family of 

such roots when a ∈ [0, N ], because even though the two functions Ta,0(θ) and Ta+1,0(θ−i/2)

15 One can note that ε2 = (−1)2N /N is a zero mode of �N , which is ignored as long as we work up to a zero mode.
16 Except for the N = 2 case where we know from [12] the complete description of all excited states.
17 We consider here for simplicity only the situation when the Bethe roots θj are real in the asymptotic limit. The case 
when they occur in complex conjugated pairs should not be very different but at the moment we did not try to do it.
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have the same limit at large L, they do not necessarily have the same roots at finite size. Each 
of these roots also gives rise to two zeroes and two poles in the Y -functions, namely, as we see 
from (15), 1 + Ya,0(θ

(a)
j + iN/4 − ia/2 ± i/2) = 0 and 1 + Ya±1,0(θ

(a)
j + iN/4 − ia/2) = ∞. 

Among these families of finite size Bethe roots, we will actually restrict ourselves to the roots 

θ
( N

2 )

j for even N , and θ
( N±1

2 )

j for odd N . We will argue that only those ones will contribute as 
poles caught by an integration contour.

Separating the logarithmic poles (where 1 + Ya cancels) in the contour integral (10) should 
give a familiar contribution 

∑
j cosh 2π

N
θj to the energy of a finite L state. This appears to be the 

right, though not completely well understood and justified, answer for some models, including 
the PCF at N = 2 [12].

For PCF at N > 2 this procedure encounters another difficulty: the zeros under the logarithm 
in (10) appear to correspond in general to complex Bethe roots θj . We have to decide what is 
the right integration contour in (10) when this formula is applied to an excited state. We are not 
aware of any well justified procedure for fixing the contour but we shall try to guess it on the 
basis of our numerical observations and the symmetry considerations.

In the rest of this section, we consider the formula for excited states of the U(1) sector – 
the one which corresponds to the wave function |�〉 having the maximal value of total spin 
SL = SR = N /2 w.r.t. the SU(N)R and SU(N)L symmetries. In this case J (L,R)

k = 0 and there 

are no auxiliary roots in the ABA Q-functions (29) (all of them are equal to 1 except Q(R,L)
N = ϕ, 

see (29)–(30)). In what follows, we shall distinguish even and odd N ’s.

5.1. Energy of state in the U(1) sector at odd N ’s

It is believed that the energy of an excited state can be obtained from (10) by an analytic con-
tinuation in the parameter L. This continuation has the effect of appearance of new singularities 
of the integrand in the physical strip in (10) and a certain choice of the integration contour, en-
closing some singularities of the integrand [3,4]. How it happens in each particular model or state 
is usually a rather complicated question. It implies the analysis of positions of these singularities 
at a finite L but the large L asymptotics often serves as an important guiding principle.

Here we propose a formula for the energies of excited states in the U(1) sector which seems 
to work well for any odd N . It is based on our numerical and analytic observations, in particular 
for the N = 3 case. It reads as follows

E(L) = −m

N

N−1∑
a=1

sin( aπ
N

)

sin( π
N

)

∞−N i
4 +a i

2∫
−∞−N i

4 +a i
2

dθ cosh

(
2π

N
θ

)
log
(
1 + Ya,0(θ)

)
(44)

so that we have the straight integration contours parallel to the real axis and shifted by −N i
4 +

a i
2 .18

Let us explain the reason for such a choice of contours. First, let us note that in order to 
have a real energy from (44) we should impose the following property of Y-functions under 

18 One of the advantages of this straight contour is that it can be easily implemented in numerics. We will see indeed 
that the Y functions can be most easily computed on exactly these lines. We will also see that the statement holds only 
for roots with even momentum number, but for odd momentum number, the (slightly modified) contour stays very close 
to this straight line.
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Fig. 2. Analyticity of the integrand cosh( 2π
3 θ) log

(
(1 + Y1,0)(1 + Y2,0)

)
and manipulations with the contours when 

N = 3.

complex-conjugation: Ya,s(θ) = YN−a,s(θ̄ ). We will restrict ourselves to the gauges where this 
property is a consequence of the relation

Ta,s(θ) = TN−a,s(θ̄ ) (45)

For finite L, we will focus on the roots θj defined19 by TN−1
2 ,0(θj + i/4) = 0.

Due to the very definition of 1 + Ya,0 = T +
a,0T

−
a,0

Ta+1,0Ta−1,0
, each θj gives rise to two zeros and 

poles. In particular, 1 + YN−1
2 ,0(θ) has a zero and a pole20 at respective positions θj − i/4 and 

θj − i/4 because T +
N−1

2 ,0
(θj − i/4) = 0 and TN+1

2 ,0(θj − i/4) = 0. In the large L limit these zero 

and pole almost coincide since θj is almost real. By complex conjugation, we can also say that 
1 + YN+1

2 ,0(θ) has a zero and a pole at respective positions θj + i/4 and θj + i/4.

This structure is illustrated for N = 3 in Fig. 2. From the Lüscher corrections,21 we can say 
that the pole occurs below the zero for 1 +Y1,0 and vice versa for 1 +Y2,0, at least for roots with 
even momentum numbers.22 This is important to ensure the right answer if we want the contours 
to be straight.

In (44) we chose the integration contour to pass, for the N−1
2 and N+1

2 -th term in the sum, 
between those zero and pole. Deforming the contour to the real axis and computing the contri-
butions of the logarithmic poles enclosed by the contour during that deformation,23 one gets the 
following formula

E(L) = −m

N

N−1∑
a=1

sin( aπ
N

)

sin( π
N

)

∞∫
−∞

dθ cosh

(
2π

N
θ

)
log
(
1 + Ya,0(θ)

)

19 In this section, we will denote θj for θ
( N−1

2 )

j
, because the other types of finite size roots don’t contribute.

20 In addition to this zero and pole, 1 + Y N−1
2 ,0

(θ) has another zero at θj + 3i/4 and a pole at each root of T N−3
2 ,0

, 
but this will not have any consequence in the contour argument.
21 In section 8.1, we detail how this is proved in the asymptotic limit. Our numerics suggests that it is still true at finite 
size, and even in the conformal limit.
22 So that the contour will actually have to be slightly modified for roots having odd momentum number. This will be 
done in such a manner that (46) will stay true.
23 The contour deformation is best understood after an integration by parts which removes logarithmic cuts and changes 
the cosh into a sinh.
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Fig. 3. Analyticity of the integrand for the energy and choice of the contours for N = 4.

+ i
∑
j

m
cos π

2N

sin π
N

[
sinh

(
2π

N

(
θj − i/4

))− sinh

(
2π

N

(
θ̄j + i/4

))]
(46)

In the thermodynamic limit (L � 1), the Bethe roots θj become real and the second line of 
(46) reduces to the asymptotic result (7), whereas the term in the first line appears to be O(e−mL).

5.2. Energy of state in the U(1) sector at even N ’s

When N is even, the corresponding contour cannot be chosen as a straight line. We will 
conjecture here the analogue of (46) to be simply

E(L) = −m

N

N−1∑
a=1

∞−N i
4 +a i

2∫
−∞−N i

4 +a i
2

pa(θ) log
(
1 + Ya,0(θ)

)
dθ +

∑
j

cosh(θj ) (47)

where the roots θj are defined by TN
2 ,0(θj ) = 0, so that the second term in (47) is real due to the 

reality of TN
2 ,0. The corresponding contour is shown in Fig. 3.

We should admit here that this formula for the masses at even N has a status of a natural 
conjecture. We have not enough of numerical, or analytic evidence to be 100% sure in it. It 
would be good to verify it at least for the mass gap at N = 4, numerically and by means of the 
Lüscher corrections at large L.

6. Wronskian solution for Hirota equation equivalent to Y-system

For the principal chiral field, Ta,s is defined for a = 0, 1, . . . , N , while Ya,s is defined for a =
1, 2, . . . , N − 1. We can solve the Hirota finite difference equation (12) (and the corresponding 
Y-system) with the appropriate boundary conditions using its integrability. Any solution of (12)
is gauge equivalent to a solution where T0,s(θ) = T0,0(θ − s i

2 ) and TN,s(θ) = TN,0(θ + s i
2 ). We 

will choose this convention for the gauge T (R):

T
(R)

0,s (θ) = T
(R)
0,0 (θ − s

i
) , and T

(R)
N,s (θ) = T

(R)
N,0(θ + s

i
) . (48)
2 2
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The most general solution under this gauge constraint can be expressed [14] as an N × N

determinant, in terms of 2N unknown functions qj and qj
24,25:

T (R)
a,s (θ) = i

N(N−1)
2 Det(cj,k)1≤j,k≤N (49)

where cj,k = qj

(
θ + i

2

(
s + a + 1 + N

2
− 2k

))
if k ≤ a

and cj,k = qj

(
θ + i

2

(
−s + a + 1 + N

2
− 2k

))
if k > a .

At this point, qj is not necessarily the complex-conjugate of qj and the gauge freedom reduces 
to two independent functions g and g

qj (θ) → g(θ) · qj (θ) (50)

qj (θ) → g(θ) · qj (θ) (51)

As an example of this determinant solution, the large L (spin chain limit) solution corresponding 
to the states of U(1) sector, described by the roots θi , can be easily identified by plugging the 
following values for qj into (49)

qj (θ) = qj (θ) = θj−1

(j − 1)! for 1 ≤ j < N

qN(θ) = qN(θ) = P∞(θ) (52)

where (i e− i
2 ∂θ − i e

i
2 ∂θ )N−1P∞ = ϕ =

∏
k

(θ − θk) (53)

To see that this is the correct parameterization of the U(1) solution, first, we can convince our-
selves that Ta,−1 = 0, Ta,0 = ϕ(θ − i N−2a

4 ), and second, that it reproduces the T1,s generated by 

(27)–(28) where all Qj(θ)
∣∣
j<N

are set to 1. For the vacuum state P∞(θ) = θN−1

(N−1)! .
In the gauge T (L), by contrast, we symmetrically choose T

(L)
0,s (θ) = T

(L)
0,0 (θ + s i

2 ) and 

T
(L)
N,s (θ) = T

(L)
N,0(θ − s i

2 ), and we have

T (L)
a,s (θ) = i

N(N−1)
2 Det(c′

j,k)1≤j,k≤N (54)

where c′
j,k = qj

′
(

θ + i

2

(
−s + a + 1 + N

2
− 2k

))
if k ≤ a

and c′
j,k = q ′

j

(
θ + i

2

(
s + a + 1 + N

2
− 2k

))
if k > a .

Now we will explain how this allows to generalize the large L solution of section 4 to any 
finite L.

24 The general solution doesn’t assume that q’s and q’s are complex-conjugated. Nonetheless, our numerics has shown 
that at least for the states in the U(1) sector, it is sufficient to restrict ourselves to the solutions where q’s and q’s are 
complex conjugated.
25 The present q-functions qi are related to the functions Qi in the Hasse diagram notation of [35].
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7. Solution of the Y -system for PCF at a finite volume L

This section describes how to solve the finite volume Y -system by reducing it to a finite num-
ber of non-linear integral equations (NLIEs), that can be solved in its turn by iterative numerical 
methods.

We will focus on U(1) sector states, although the method is in principle applicable to any 
excited state (see the discussion in subsection 9).

7.1. Definition of the jump densities

We propose here an ansatz for the finite size L solution by adding to the large L polynomial 
expressions (52)–(53) for q’s certain terms decreasing for θ → ±∞ and exponentially small for 
L → ∞ or θ → ∞ : The finite L qj ’s take thus the form

qj (θ) = θj−1

j − 1! + Fj (θ) when j < N and Im(θ) ≤ 0 (55)

qj (θ) = θj−1

j − 1! + Fj (θ) when j < N and Im(θ) ≥ 0 (56)

qN(θ) = P(θ) + FN(θ) when Im(θ) ≤ 0 (57)

qN(θ) = P(θ) + FN(θ) when Im(θ) ≥ 0 (58)

where

Fj (θ) = 1

2iπ

∞∫
−∞

fj (η)

θ − η
dη when Im(θ) < 0 (59)

Fj (θ) = 1

2iπ

∞∫
−∞

fj (η)

θ − η
dη when Im(θ) > 0 (60)

and the polynomial P has the same degree as P∞ = limL→∞ P given by (53).26 Note that for 
the vacuum state at finite L we have to choose27 again P = θN−1

(N−1)! . As a consequence of these 
definitions, we have

qj
[+0] − q

[−0]
j ≡ lim

ε→0
qj

[+ε] − q
[−ε]
j = −fj (61)

so that fj is actually the discontinuity (jump) between the functions qj and qj on the real axis.
Eqs. (55)–(58) define qj only below the real axis and qj above the real axis, so that the 

determinant only allows to compute Ta,s inside the strip Im(θ) ∈ [−N−2a
4 − s+1

2 , −N−2a
4 + s+1

2 ]. 
We can already see that these strips are the minimal strips to compute the Y functions on the 

26 The way we fix this polynomial will be explained in section 7.4, where the finite size Bethe equations are discussed.
27 For vacuum, it would in principle be possible to set P to any polynomial of degree N − 1. However, terms of lower 
degree than N − 1 can be set to zero by operations on lines and columns of the determinant (49), and the normaliza-

tion can be fixed to P = θN−1

(N−1)! at the price of changing the normalization of T -functions (a particular case of gauge 
transformation).



370 V. Kazakov, S. Leurent / Nuclear Physics B 902 (2016) 354–386
integration contour of equation (44), and we will see that it enables to compute the exact28

energy of states in the U(1) sector, at any length L.
The jump densities fj (η) are well defined on the real axis where they take only imagi-

nary values, which follows from (61) and they are exponentially suppressed at large L or large 
cosh( 2π

N
θ), as can be inferred from (9).

At the end of this subsection, let us comment on a slightly generalized version of our Wron-
skian solution of this section, now including the twisted, quasi-periodic boundary conditions on 
the wave function of the system. The twist matrix g ∈ SU(N) can be chosen, without loss of gen-
erality, in a diagonal form: g = diag{x1, x2, · · · , xN } where the eigenvalues are unitary: x̄j = 1

xj
, 

and 
∏N

j=1 xj = 1. Then the ansatz (55)–(58) will be modified29

qj (θ) = xiθ
j eFj (θ) when 1 ≤ j < N and Im(θ) ≤ 0 (62)

qj (θ) = xiθ
j eFj (θ) when 1 ≤ j < N and Im(θ) ≥ 0 (63)

qN(θ) = P(θ)xiθ
N eFN(θ) when Im(θ) ≤ 0 (64)

qN(θ) = P(θ)xiθ
N eFN(θ) when Im(θ) ≥ 0 (65)

with the same definition (60) for the functions F̄ , F (we can put F1 = F1 = 0). For the vacuum 
state, we should put P(θ) = 1. In this case, in the limit L → ∞ we obtain from the formula (49)
that the T-function becomes a character of representation λ = as of the twist matrix (up to the 
Vandermonde determinant �(x1, · · · , xN)). Note that it is not a trivial matter to reproduce in the 
untwisting limit xj → 1, j = 1, 2, . . . , N the ansatz (55)–(58): One has to do special rotations of 
the basis of qj to arrive at the right answer.

The present article describes symmetric states (more specifically U(1) sector states), for 
which there is a single twist matrix g ∈ SU(N). But in general, there should be two independent 
SU(N) twists due to the overall SU(N) ×SU(N) symmetry. If we use a general SU(N) ×SU(N)

twist and break the symmetry of the state, then one would need two distinct sets of q-functions 
for the right and left wing, as argued in the discussion about non-symmetric states (in section 9). 
In that case, one twist appears in the parameterization (55)–(65) of the right wing, and another 
twist in the parameterization of the left wing.

7.2. Relation to the analyticity of T functions

From the ABA (41) and the finite size equation (20), we can see that

1 + Ya,0 −−−−→
θ→∞

or L→∞
1 when | Im(θ)| < N

4
(66)

which means that 1 + Ya,0 = T +
a,0T

−
a,0

Ta+1,0Ta−1,0
has a proper behavior in this strip, being a meromor-

phic function regular at infinity. On the other hand, when | Im(θ)| = N
4 , 1 + Ya,0 oscillates at 

Re(θ) → ∞, and it diverges when, e.g., | Im(θ)| ∈ [N
4 , 3N

4 ]. By that reason we conclude that the 

28 Up to the precision of our numerical procedure solving these NLIE’s.
29 In this ansatz, one can either choose to write eFj or 1 + Fj , it only amounts to a slight change of the functions Fj . 
What really differs with respect to (55)–(58) is the factor xiθ and the fact that the polynomial term θj−1

is replaced by 1.

j j−1!
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analyticity30 strip of 1 + Ya,0 = T +
a,0T

−
a,0

Ta+1,0Ta−1,0
is {θ, | Im(θ)| < N

4 }. From this we can identify the 
strips where the asymptotics (34) hold for Ta,s :

T0,0 −−−−−−−−−→
L cosh( 2πθ

N
)→∞

ϕ[−N/2] when Im(θ) <
N

4
(67)

Ta,0|0<a<N −−−−−−−−−→
L cosh( 2πθ

N
)→∞

ϕ[+a−N/2] when | Im(θ)| < N

4
+ 1

2
(68)

TN,0 −−−−−−−−−→
L cosh( 2πθ

N
)→∞

ϕ[+N/2] when Im(θ) > −N

4
. (69)

These conditions ensure the proper analyticity of 1 + Ya,0 = T +
a,0T

−
a,0

Ta+1,0Ta−1,0
, and the boundaries of 

the analyticity strips of each 1 + Ya,0 are given by the boundaries of the analyticity strips of the 
corresponding T functions.31

Now, since we know that the T functions are described by Wronskian determinants, these 
analyticity strips suggest that

qj is analytic when Im(θ) < 1/2 (70)

qj is analytic when Im(θ) > −1/2 (71)

So the analyticity strip for qj ends up at Im(θ) = 1/2 which is reflected for instance in the fact 
that TN−1,0 is not analytic when Im(θ) > N/4 + 1/2. This explains why YN−1,0 isn’t analytic 
when Im(θ) > N/4.

Equations (70), (71) teach us that the analyticity domain is a bit bigger than what is necessary 
for (55)–(58). It tells us that in the definitions (59), (60), the contour can be shifted up to ±i/2. 
In other words, the functions fj (η) are analytic on the strip | Im(η)| < 1/2.

It is noteworthy that even with these contour deformations, the determinant expressions 
(55)–(58) describe the function Ta,s(θ) inside the strip Im(θ) ∈ ]−N−2a

4 − s
2 − 1, −N−2a

4 +
s
2 + 1[, which is narrower than in equations (67), (69). But we will show that the relatively 
narrow strips given by this ansatz are sufficient to solve the Y -system and compute the energies.

7.3. Closed system of NLIEs

The gauge freedom (50), (51) can be used to impose F1(θ) = F1(θ) = 0, which leaves only 
N − 1 independent densities to compute. Let us now see how N − 1 equations on this densities 
can be obtained by imposing that the state is symmetric, i.e. that Ya,−s = Ya,+s . This requirement 
means that we can choose T

(L)
a,−s = Ta,s , which simplifies the Y -system equation for the middle 

node (16),32 in the same manner as in [12].
Using this symmetry of the state and the boundary condition (48), equation (20) is reduced to:

30 Note that we use the word “analyticity strip” to denote a domain where the L → ∞ limit of Y- (resp. T- and q-) 
functions is a meromorphic (resp. holomorphic) function of θ .
31 The analyticity strips for T0,0 and TN,0 can be chosen on a half plane thanks to an appropriate gauge.
32 As a consequence, we are solving the Y -system under the following two constraints: Ya,s ∼ e−Lpa(θ)δs,0 × consta,s

on the one hand, and T (L)
a,−1 = Ta,1 one the other hand. This second constraint is specific to symmetric states (which 

includes the states in the U(1) sector), such that Ya,−s = Ya,s .
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Ya,0 = e−Lpa
(Ta,1)

2

Ta−1,0Ta+1,0

(
T

[+N−a]
0,0 T

[−a]
N,0

T
[a−N ]

0,0 T
[+a]
N,0

)
KN

, (72)

or equivalently,

T
[a−N/2]
a,−1 = e−Lp

[a−N/2]
a T

[a−N/2]
a,1

(
T

[+N/2]
0,0 T

[−N/2]
N,0

T
[2a−3N/2]
0,0 T

[2a−N/2]
N,0

)
KN

. (73)

The reason why we chose such shifts in the relation (73) is that the l.h.s. has a determinant 
expression (49) where one has cj,a = qj

[+0] while cj,a+1 = qj
[−0]. After subtracting one column 

from another in the determinant, there is a full column of qj
[+0] − q

[−0]
j = −fj which is expo-

nentially small. That explains the exponential suppression of Ta,−1. Expanding the determinant 
w.r.t. these columns33 gives the following linear system relating fj ’s to Ta,−1’s:

Ta,−1

(
θ − i

N − 2a

4

)
=
∑
j

da,j (θ)fj (θ) (74)

where da,j = i
N(N−1)

2 (−1)j+a+1

det(ck,l) k �=j
l �=a

+ det(ck,l) k �=j
l �=a+1

2
(75)

These ck,l are the coefficients of the determinant (49) defining Ta,−1

(
θ − i N−2a

4

)
, and finally 

equations (72), (74) can be recast into

∑
j

da,j (θ)fj (θ) = e−Lpa(θ−i N−2a
4 )T

[a−N/2]
a,1

(
T

[+N/2]
0,0 T

[−N/2]
N,0

T
[2a−3N/2]

0,0 T
[−N/2+2a]
N,0

)
KN

. (76)

This is a closed system of equations on {fj(θ)}θ∈R because all coefficients da,j , and all T ’s can 
be computed out of fj ’s through several convolutions.

The solution of the Y -system is therefore achieved by solving this system of N − 1 equations 
on N − 1 densities. The simple inversion of the linear system (74) brings (76) into the form

fj (θ) = Hj({fk(η)} k=2...N−1
η∈R

) . (77)

This Hj defines a contraction mapping in some vicinity of fj = 0 when L is sufficiently large 
since it leads to an exponentially small fj (θ). This implies that in some vicinity of L = ∞, the 
mapping Hj has a fixed point that can be found numerically through repeated iterations of H .

The way we solve Y -system is therefore simply the iteration of (77) and a good news is that, 
at least for N = 3, even at very small L, this procedure seems, at least according to our numerics, 
to converge to a fix point of Hj , giving a complete solution of (77) and thus of the Y -system.

33 The two terms in (75) correspond to the fact that before expanding the determinant, we have added and subtracted 

columns to get one full column of qj
[+0] − q

[−0]
j

= −fj and the other one of 
qj

[+0]+q
[−0]
j

2 (which corresponds to the 
principal value in (59), (60)).
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7.3.1. Numerically workable form for the NLIE’s
One difficulty of this numerical process is in computing the factor(

T
[+N/2]
0,0 T

[−N/2]
N,0

T
[2a−3N/2]
0,0 T

[−N/2+2a]
N,0

)
KN

in the right hand side of (76). As we have already seen, the Wron-

skian formula (49) in terms of qj ’s having cuts on the real axis allows to compute T0,0(θ) only 
when Im(θ) < −N

4 + 1
2 . So, for instance, T0,0(θ + i N

4 ) cannot be computed in this way when the 
spectral parameter θ is real. The denominator can nonetheless be computed if in the convolutions 
we shift appropriately both the argument of the kernel and of the T-functions(

1

T
[2a−3N/2]

0,0 T
[−N/2+2a]
N,0

)
KN

=
(

1

T
[−3N/2+a+1]
0,0

)
KN
[a−1] (

1

T
[+N/2+a−1]
N,0

)
KN
[−N+a+1]

(78)

since KN(θ) is regular when Im(θ) ∈ [−N−1
2 , N−1

2 ] and a ∈ [1, N − 1]. Eq. (78) simply reflects 

the fact that if k(θ) is analytic for Im(θ) ∈ [0, b/2], then for real θ , 
(
f [b])
k = f 
(k[b]) , ∀f .

The same idea, applied to the numerator, would give 
(
T0,0(θ + N i

4 )
)
KN = (T0,0(θ −

N i
4 )
)
K [+N]

N . But the equality fails because KN has a pole at i N−1
2 .

Instead, one can use the following relation(
T0,0

(
θ + N

i

4

))
KN

= T0,0(θ − N i
4 + i

2 )(
T

[+ N
2 −2]

0,0 T
[+ N

2 −4]
0,0 · · ·T [−3 N

2 +2]
0,0

)
KN
(79)

= T0,0(θ − N i
4 + i

2 )

T0,0(θ − N i
4 − i

2 )

(
T

[−3N/2]
0,0

)
KN

(80)

which simply uses the fact that for a regular function f , (�N [f ])
KN = f . This is true only up 
to a zero mode of �N which will be discussed in section 7.3.2.

Finally, the last factor in eq. (76) can be put into a numerically workable form by rewriting(
T

[+N/2]
0,0 T

[−N/2]
N,0

T
[2a−3N/2]

0,0 T
[−N/2+2a]
N,0

)
KN

= T
[−N/2+1]
0,0

T
[−N/2−1]
0,0

T
[N/2−1]
N,0

T
[N/2+1]
N,0

(
T

[−3N/2−a+1]
0,0

T
[−3N/2+a+1]

0,0

)
K
[a−1]
N
(

T
[3N/2+N−a−1]
N,0

T
[3N/2−N+a−1]
N,0

)
K
[−N+a+1]
N

(81)

This will help us to transform eq. (76), once the appropriate zero mode is added, into a really 
closed system of NLIEs where the right hand side can indeed be computed by knowing the 
functions fj only on the real axis.

7.3.2. χCDD factor
It is clear from the derivation of eq. (76), as well as of eqs. (79), (81) that they are fixed only 

up to a zero mode of the operator �N . A zero mode Z therefore has to be added to (76), to get

∑
da,j (θ)fj (θ) = Z e

−L cosh( 2π
N

(θ−i N−2a
4 ))

sin( aπ
N

)

sin( π
N

) T
[a−N/2]
a,1
j
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× T
[−N/2+1]
0,0

T
[−N/2−1]
0,0

T
[N/2−1]
N,0

T
[N/2+1]
N,0

(
T

[−3N/2−a+1]
0,0

T
[−3N/2+a+1]

0,0

)∗K
[a−1]
N
(

T
[3N/2+N−a−1]
N,0

T
[3N/2−N+a−1]
N,0

)∗K
[−N+a+1]
N

(82)

Such zero mode can include for instance the factors e−L cosh( 2πθ
N

) and χCDD from equation (42).
In the asymptotic limit (L → ∞), the zero modes in equation (72) can be obtained by com-

parison with (41). In the same manner, the zero modes implicitly present in equation (81) can be 
computed in the asymptotic limit, by replacing Ta,0’s by their asymptotic values in terms of ϕ, 
see eq. (34), so that we can directly compute the zero mode Z when L → ∞. We notice that, 
although both (76) and (81) are true up to a non-trivial zero mode, the zero mode in (82) happens 
to be34

Z = 1, (83)

at least in the asymptotic limit!
Indeed, if we compare (82) with (41) (where Ya,0 = Ta,1Ta,−1

Ta+1,1Ta−1,−1
is expressed using (74)), we 

see that in the asymptotic limit we have

Z
T

[−N/2+1]
0,0

T
[−N/2−1]
0,0

T
[N/2−1]
N,0

T
[N/2+1]
N,0

(
T

[−3N/2−a+1]
0,0

T
[−3N/2+a+1]

0,0

)∗K
[a−1]
N
(

T
[3N/2+N−a−1]
N,0

T
[3N/2−N+a−1]
N,0

)∗K
[−N+a+1]
N

∼ ϕ[−N+1]

ϕ[−N+2a−1]
ϕ[−N+1]

ϕ[−N+2a+1]
1

�a

[(
S[a−N ])2 χ

[a−N ]
CDD

] , (84)

from where we will show that Z∞ = 1, where Z∞ denotes the asymptotic limit of Z, which 
can be extracted from (84). To this end, we can note that, as a direct consequence of (30), (38), 
(42), (67)–(69), we have Z∞(θ) =∏j Z0(θ − θj ), where Z0 is the value of Z∞ corresponding 
to ϕ(θ) = θ (i.e. one single root at the origin). It is therefore sufficient to show that Z0 = 1, 
i.e. to study equation (84) when ϕ(θ) = θ . In this case, we can easily list the zeroes and poles 
of the r.h.s of (84): its zeroes are at positions N−1

2 + k N , 3N+1
2 − a + k N , −N−1

2 − k N and 
−N+1

2 − a − k N (where k ≥ 0 is an arbitrary non-negative integer) and its poles are at positions 
N+1

2 + k N , 3N−1
2 − a + k N , −N+1

2 − k N and −N−1
2 − a − k N .

We can then substitute the asymptotic limit (67)–(69) into the l.h.s. to find its analytic 

properties: one sees that the factor 
T

[−N/2+1]
0,0

T
[−N/2−1]
0,0

T
[N/2−1]
N,0

T
[N/2+1]
N,0

reproduces the same zeros and poles as 

the r.h.s. at position ±N±1
2 , whereas the factors (. . .)
KN are analytic when −N−1

2 − a <

Im(u) < N−1
2 + N − a. Hence we see that in the asymptotic limit, Z is analytic in the strip 

−N−1
2 − a < Im(u) < N−1

2 + N − a, but as a zero-mode it is also (N i)-periodic. Moreover it 
behaves as a constant when Re(u) → ∞, so that Liouville theorem implies that Z0 is a con-

stant, hence (as a zero mode) it is equal to ei 2kπ
N for a given value of k. This factor can be 

34 Actually the right hand side of (82) is itself defined up to a factor of ei 2kπ
N , because any f 
K = eK∗log f is defined 

up to an e2iπ
∫

K corresponding to the choice of the branch of the log. As a consequence, a more precise statement for 
(83) is Z = e

i 2kπ
N . k is chosen to reproduce (41), where the phase in (3) is chosen in such a way that one particle at rest 

(θ1 = 0) is a solution of the Bethe equation (43).
For states with zero momentum (like the mass gap and the vacuum), this extra phase can also be obtained by requiring 

a θ → −θ symmetry, which these states should exhibit.
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absorbed into the ambiguity in the definition of the branch of the logarithm in the definition of 
f 
KN = elog f 
KN (see also footnote 34).

In the numerical solution of the Y -system we therefore assume that Z = 1 holds even at a finite 
size, i.e. that the analyticity structure of the zero modes is the same at finite L as at L → ∞. We 
explicitly see that at L → ∞, χCDD defined in (4) is taken into account in (82). In addition we 
can check that at finite size, we obtain Y functions having simple poles only.

7.4. Finite size Bethe equations

Bethe equations emerge in this procedure as a regularity requirement on the jump densities 
fj ’s. Let us illustrate it for a general U(1) state in the SU(3) case, and also show why these finite 
L analogues of Bethe equations are equivalent, at large L, to the ABA Bethe equations on the 
roots of ϕ.

For such a state, the linear system (74) can be written as(
A B

−A −B

)(
f2
f3

)
=
(

T1,−1(θ − i/4)

T2,−1(θ + i/4)

)
(85)

where A = i
2 (q3 + q3) − i q−−

3 and B = − i
2 (q2 + q2) + i q−−

2 .

Inverting the matrix 
(

A B

−A −B

)
, some singularity could occur at the zeroes of the function 

AB −AB , i.e. when the determinant is zero. If we want fj ’s to be regular, we need the numerator 
to vanish at the same θ to cancel this pole. This gives the following finite size Bethe equation:

If
(
AB − AB

)∣∣
θ̃j

= 0 then

{
T1,−1(θ̃j − i/4)A(θ̃j ) = −T2,−1(θ̃j + i/4)A(θ̃j )

T1,−1(θ̃j − i/4)B(θ̃j ) = −T2,−1(θ̃j + i/4)B(θ̃j )
(86)

One can notice that at such θ̃j the two conditions in the r.h.s. are equivalent.
The claim that θ̃j are a finite size analogue of the Bethe roots is supported by the fact that at 

large L, the roots of AB − AB are precisely the Bethe roots. Indeed, at large L, B 	 1 and A 	
i(P − P −−), giving AB − AB 	 i(P ++ − P + P −− − P) = −iϕ. Moreover, we see from (45)

that the second relation in the r.h.s. of (86) reduces then to the reality condition T1,−1(θj −i/4)

T1,−1(θj −i/4)
=

−1. Using the leading-order large L expression of Ya,0 in terms of S, eq. (41), we get at large L

T1,−1(θ − i/4) 	 ϕ−−

ϕ

ϕ + 2ϕ−−

S−− e−L cosh( 2π
3 (θ−i/4)) (87)

where S(θ) =
∏
j

S2
0(θ − θj )χ̆CDD(θ − θj ) . (88)

Using the fact that ϕ(θi) = 0 at all Bethe roots θi , and dividing by the complex conjugate, the 
large L regularity requirement becomes(

ϕ−−)2
ϕS−−

ϕ(
ϕ++)2 S++

∣∣∣∣∣
θ=θi

eiL sinh( 2π
3 θj ) = −1 . (89)

Using the crossing relation, the left hand side becomes simply S(θj )e
iL sinh( 2π

3 θj ), so that the 
finite size regularity condition stated above is equivalent at large L to the asymptotic Bethe 
equations (43).
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As a consequence, the iterative solution of the closed, finite size equations (82), should start 
from the expression (55), (58) where P = P∞ is given in terms of the asymptotic Bethe roots by 
(53), and then at each iteration, this polynomial is updated in order to incorporate this regularity 
condition.

7.4.1. Momentum number
In the asymptotic limit, one can introduce a notion of momentum number as follows: first one 

rewrites (43) in the form

∀j, e
i L sinh 2π

N
θj +i

∑
k �=j f (θj −θk) = 1 (90)

where the function

f (θ) = −i log(−χ̆CDD(θ)S(θ)2) (91)

is defined as a monotonous, continuous function, such that f (0) = 0. This allows to define the 
mode number of the particle j as the integer k such that L sinh 2π

N
θj +∑k �=j f (θj − θk) = 2πk.

By contrast, at finite size, the regularity condition (86) involves the phase −T1,−1(θ−i/4)B(θ)

T2,−1(θ+i/4)B(θ)
. 

While there are several values of θ where this phase is equal to one, only a few of these values 
(one for each particle) are zeroes of AB − AB; the choice of these values defines the mode 
numbers at finite size.

To give a simple example, we can consider a state with a single Bethe root (N = 1) and such 
that L sinh 2π

N
θ0 = 2π in the asymptotic limit (i.e. this state has momentum number 1). One 

can easily see that in the asymptotic limit the corresponding zero of AB − AB is the second 
smallest positive zero of Re(T1,−1(θ − i/4)B(θ)). Hence, at finite size, we recognize the state 
with mode number 1 as a state where the zero of AB − AB is the second smallest positive zero 
of Re(T1,−1(θ − i/4)B(θ)). To make sure that the iterative resolution algorithm does not “jump” 
from a state with given momentum number to another state, the momentum number has to be 
taken into account when the regularity condition (86) is enforced at every iteration.

7.4.2. N > 3 case
The same construction leads to finite size Bethe equations for any odd N . Like in equation (86)

the number of regularity constraints at each zero of the determinant is apparently N − 1 but re-

duces to only one constraint: the cancellation of the projection of 

⎛⎜⎝ T1,−1(θ − i(N − 2)/4)
...

TN−1,−1(θ + i(N − 2)/4)

⎞⎟⎠
to the kernel of the matrix di,j defining the linear system (74).

This procedure for finite-size Bethe equations was described here for odd N and for states 
having real Bethe roots in the asymptotic limit. The subtlety which arises when N is even, or for 
the states having, in the asymptotic limit, complexes of complex-conjugated Bethe roots, is that 
the zeroes of the determinant do not lie on the real axis but approximately on R ± i/2. The above 
procedure can in principle be applied anyway, but its interpretation is left to clarify because the 
regularity condition is imposed at the very boundary of the analyticity strip.

7.5. Numerical results

As seen in Fig. 4, this method allows to compute numerically the energies of excited states 
of the U(1) sector for the whole physically interesting range of lengths L, from deep IR to deep 
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Fig. 4. Energies35 of vacuum, of mass gap and of some excited states as functions of L, at N = 3. We see that in the 
L → ∞ limit, E tends to the number of “particles” (i.e. Bethe roots), whereas in the conformal L → 0 limit, E ∼
2π
L

(−N2−1
12 + n), where n is the sum of the mode numbers of the “particles”. The curves are interpolations from the 

numeric points (small crosses).

UV region. We can see that in the IR, L → ∞ limit, the energies of individual states basically 
tend to the number of “particles” forming the state – the number of the Bethe roots θj : The 
vacuum energy tends to 0, while the energies of the states θ0, θ1 and θ2 tend to 1, and the energy 
of θ00 tends to 2. In the conformal limit L → 0, we will see that the behavior is defined by the 
“particle’s” mode numbers: The energy goes to 2π

L
(−N2−1

12 + n) where N2 − 1 is the conformal 
central charge (the number of free bosonic fields of the model in this regime) and n is the total 
momentum mode number (see the discussion of IR and UV limits in the next section).

7.5.1. Numerical restrictions
As the length L is decreasing, the algorithm looks worse and worse converging, and the densi-

ties become more and more peaked around the endpoints of the distribution. By choosing a small 
enough interpolation step (the densities fj are numerically defined by polynomial interpolation 
from a finite number of values), it was nevertheless possible to make the algorithm reasonably 
convergent for the considered states and lengths L, when N = 3. Decreasing further the interpo-
lation step means increasing the computation time and the necessary amount of memory, which 
puts a practical limit to our precision and to the minimal length.

35 This figure shows the combination E tanh L , to make manifest the limit of E at large L, and of E L at small L.
2π 2π
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Table 1
Numerical energies36 for several U(1) sector states at N = 3.

L Evacuum Eθ0 Eθ1 Eθ2 Eθ0,0

10−8 −3.909 108 −3.668 108 2.43 108 8.749 108 −3.28 108

10−7 −3.8780 107 −3.606 107 2.55 107 8.791 107 −3.196 107

10−6 −3.8366 106 −3.529 106 2.56 106 8.843 106 −3.066 106

10−5 −3.7829 105 −3.427 105 2.65 105 8.914 105 −2.895 105

10−4 −3.7077 104 −3.289 104 2.75 104 9.005 104 −2.661 104

10−3 −3.5983 103 −3.088 103 2.92 103 9.146 103 −2.322 103

10−2 −3.4206 102 −2.7629 102 3.13 102 9.365 102 −1.777 102

10−1 −3.0715 101 −2.1393 101 3.62 101 9.788 101 −7.439
1 −1.9783 100 −2.993 10−1 4.93 11.031 2.180
101 −1.0683 10−4 .9995 1.181 1.606 2.066
102 −2.8 10−44 .999999 1.002 1.008 2.001

Fig. 5. Differences of energies, as functions of L, at N = 3. For low lying excited states, the combination (E −
Evacuum) tanh L

2π
is plotted, as in Fig. 4.

Unfortunately, at N ≥ 4 the calculations become heavier and with the size of interpolation 
steps we can afford our algorithm becomes instable already for L of order ∼ 1 (which means we 
cannot really check, for instance, the conformal limit). At the moment we cannot say whether 
this instability has a physical meaning (like some symmetry breakdown, or some new type of 
singularity appearing) or whether it is just a numerical artifact, due to a poor numerical accuracy, 
or to the choice of the equations. For instance, it could be that the equation we iterate stops to 
correspond to a contraction mapping but still has a fixed point, and maybe even that, by rewriting 
slightly the functions, it could become a contraction again, and extracting its fixed point would 
be possible by iterations.

36 In the table, the last digit (grayed out) is indicative and is not claimed to be accurate.
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8. IR and UV limits

In this section, we will compute analytically the IR, finite size corrections to particular lowest 
lying states, as well as the UV, small size limit for a general state of the model. These results are 
very useful for checking our numerical data.

8.1. Leading order results at large L

The approach of this paper allows to compute the first exponential finite size correction, the 
so called Lüscher correction, to the energy at large L, as we will show now on a few examples.

8.1.1. Vacuum
The large L behavior of vacuum is given by the condition that

Ya,0|L→∞
Lüscher

= (Ta,1)
2e−Lpa (92)

where Ta,1 is equal, according to the formulas (49), (52) and (53), to the binomial coefficient (
N
a

)
. This is obtained from (41) where ϕ = 1, and can be plugged directly into (10) to get 

the energy to the leading order. For instance, if N = 3, one gets Evacuum 	 −9
√

2
πL

e−L. By 

construction, this expression fits well our numerical results when L is large enough.37

8.1.2. Mass gap at N = 3
When N = 3 it suffices to compute Y1,0 to get the energy, because Y2,0 = Y1,0.
Moreover the previous analysis shows that

Y1,0 = e−L cosh( 2π
3 θ) (T1,1)

2

T0,0T2,0

1

S0(θ − 3 i
4 )

2

ϕ(θ − 3 i
4 )

ϕ(θ + i
4 )

1

χCDD(θ − 3 i
4 )

(93)

= e−L cosh( 2π
3 θ)

(3θ − 5 i
4 )2(

θ + i
4

)2 1

S0(θ − 3 i
4 )

2

1

χCDD(θ − 3 i
4 )

(94)

that enables to compute at large L the leading order value of the integral term in (46).
Unlike the vacuum case, we have to compute now the second term of (46) which is a bit 

tricky as it involves the position of the Bethe root. This position can be estimated by computing 
the densities to the leading order, to deduce the first correction to T1,0 in order to solve the 
equation T1,0(θ0 + i/4) = 0.

For the mass gap, this root should be at the origin, up to exponential corrections in L. More-
over, one can show38 that T1,0(0 + i/4) ∼ i

6f2(0) + if3(0) = O(e−L
√

3/2), while T ′
1,0(0 + i/4) ∼

i, so that T1,0(θ0 + i/4) = 0 gives θ0 ∼ − 1
6f2(0) − f3(0). Using the asymptotic expression 

for fj ’s (which can be extracted by keeping only the leading order in Ta,s and in da,j in the 

37 When L ≥ 4, the energy deviates from the asymptotic behavior precision by less than 10%, and this deviation quickly 
decreases when L increases.
38 These large L expressions are obtained by neglecting integral terms in the determinant expression of T1,0.
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Fig. 6. Mass gap �E = Eθ0 − Evacuum . The numeric results (crosses) are compared to the analytic Lüscher correction 
(95) for Emass gap

L→∞ [dashed gray curve], to the 1-loop expression L
2π

[Eθ0 (L) − E0(L)] ≈ 8
9

1
log c

L

[gray curve], and to 

the 2-loop expression L
2π

[Eθ0 (L) − E0(L)] ≈ 8
9

1
log c

L
+ 1

2 log log c
L

[black curve] (101), where c is chosen as the best fit 

for the L < 10−1 data.39

formula (76)), one gets θ0 ∼ ie−√
3L/2


(
− 1

3

)2


(

2
3

)2

√
3π

(

1
3

)2 , so that the second term in (46), which is 

sinh
(

2π
3 (θ0 − i/4)

)
− sinh

(
2π
3

(
θ̄0 + i/4

))
can be computed at leading order.

That gives

E
mass gap
L→∞ 	 1 −

⎛⎜⎝32e−√
3L/2π3



(

1
3

)6

⎞⎟⎠ (95)

which is in very good agreement the numerical results, as can be seen in Fig. 6.
Moreover, this expression (95) coincides exactly with the so-called μ-term [38,39], which is 

known to dominate the finite-size corrections in the presence of bound states.

8.2. Conformal limit at L → 0

Let us start from the vacuum. At very small L, the effective coupling constant becomes very 
small e2

0(L) 	 2π
| log L| and we can linearize the field on the group manifold in the vicinity of 

g(σ, τ) = I as g−1∂μg 	 i ∂μA, where A(σ, τ) is a Hermitian N × N traceless matrix field. The 
SU(N) PCF model should become a 2D CFT of N2 − 1 massless bosons: R(L) is very big, the 
action (1) becomes

39 Explicitly we used the value c = 44 for the one-loop best-fit, and c = 17 for the two-loop best-fit.
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S = 1

2e2
0(L)

∫
dτ

L∫
0

dσ

2∑
α=1

tr[(∂αA)2] + O(e4
0(L)). (96)

In the ground state, the Casimir effect will dominate the limiting energy: E0 	 −πc
6L

+
O(1/ log4(L−1)), with the central charge c = N2 − 1, which gives E0

L
2π

	 −N2−1
12 .

The energies of excited states are

L

2π
E�n1 �n2 �n3···(L) 	 − (N2 − 1)

12
+

N∑
k=1

N2−1∑
α=1

|n(α)
k | (97)

where �nk = (n
(1)
k , n(2)

k , · · · , n(N2−1)
k ) are the momentum numbers of components of the k-th par-

ticle and N is the number of particles constituting the state. We see that the small L asymptotics 
of our plots are well described by this formula. The vacuum, and the states θ0, θ0,0, . . . have total 

momentum zero, and their energy satisfies L
2π

E(L) 	 − (N2−1)
12 . This formula explains well the 

fact that the corresponding plots in Fig. 4 converge, though slowly, as inverse logarithm of L, 
to −(N2 − 1)/12. On the other hand, a state like θ1 has the momentum number equal to 1 and 
L

2π
E(L) 	 − (N2−1)

12 + 1, etc.
The approximate behavior of the states θ0, θ00, etc., at very small L’s can be explained by the 

fact that the quantum fields are dominated by their zero modes. Since the momentum modes are 
not excited the field g(σ, τ) does not depend on σ . The action and the Hamiltonian become:

S ≈ 1

2

L

e2
0(L)

∫
dτ tr(g−1∂τ g)2, Ĥ = e2

0(L)

2L
trĴ 2 (98)

where the g(τ) represents the coordinate of a material point (a top) on the group manifold, and 
Ĵ is the corresponding angular momentum operator. The quantum mechanical spectrum of this 
system is well known: the quantum states are classified according to the irreducible representa-
tions of su(N) characterized by highest weight with components (m1 ≥ m2 ≥ · · · ≥ mN) usually 
represented by a Young tableaux λ with N rows with the lengths mj , j = 1, · · · , N . The operator 
trĴ 2 is nothing but the second Casimir operator with the well known eigenvalues, so that

L

2π
(Eλ − E0) ≈ 1

4π
e2

0(L) trĴ 2 = e2
0(L)

4π

N∑
k=1

rk(rk − 2k + N + 1) (99)

where rk = mk − 1
N

∑N
j=1 mj .

We can use the two-loop expression for our length scale L 
 1

L

c
=
√

4π

N

1

e0
e
− 4π

Ne2
0

where the constant c is defined by the renormalization scheme (corresponding to our TBA ap-
proach). We will use this constant as a fitting parameter in our numerical results. This gives for 
the two-loop running coupling: 4π

Ne2
0

= log c
L

+ 1
2 log log c

L
.

For instance, for a state with only M real roots in the asymptotic limit (and without self-
conjugated complexes of roots), we have m1 = M , mk≥2 = 0, and hence
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L

2π
(Eθ{0,0, . . . ,0}︸ ︷︷ ︸

M times

− E0) ≈ e2
0(L)

4πN
(N − 1)M(M + N) . (100)

The 2-loop perturbative calculation of the mass gap [Eθ0(L) − E0(L)] for L 
 1 was done 
in [40]. It was compared with the numerical results following from the TBA approach in [6] for 
N = 2. Here we cite this result only for the mass gap (M = 1), in the logarithmic approximation 
using the 2-loop result of [41,42]:

L

2π
[Eθ0(L) − E0(L)] ≈ N2 − 1

N2

1

log c
L

+ 1
2 log log c

L

(L 
 1) (101)

which is in the perfect agreement with (99), as well as with our numerics, as seen from Fig. 6. In 
this figure the gray and black curve show respectively the one and two-loop expressions of the 
mass gap when N = 3. The value of c used in this picture is chosen to fit the L < 10−1 numeric 
data, and remarkably enough, the two-loop expression is reasonably close to the exact result up 
to L 	 3.

In principle, the three loop running coupling is also known in a certain scheme [43,44] but 
accounting for it will be beyond the accuracy of our numerics.

Formula (99) also gives a prediction for the state θ00 with two zero-momentum-particles, 

namely, for N = 3 we have 
Eθ00 (L)−E0(L)

Eθ0 (L)−E0(L)
	 5

2 . This result matches our numerics when L is 
smaller than 1 (see Fig. 5), up to the precision announced in Table 1.

Although the motivation of our approach was based on adding some terms, such as resolvents 
Fk in (55)–(58), correcting the infinite size solution, it reproduces correctly these conformal 
expressions, which shows that this description is not only accurate in some vicinity of L = ∞, 
but even in the conformal limit where L is very small. It proves that these terms were added by us 
into the ansatz (55)–(58) in a sufficiently general manner to describe the relevant exact solutions 
of the Y -system at any finite L.

9. Discussion

We have presented here, on the example of the SU(N) principal chiral field model, a pow-
erful and rather general approach to the study of finite volume spectrum of various integrable 
1 + 1 dimensional sigma-models. The approach continues the ideas of [12] where the method 
was proposed on the example of the SU(2) PCF, but for N > 2 the method has to be seriously 
reconsidered due to many new physical features w.r.t. the N = 2 case. In particular, the pres-
ence of the bound state particles and the non-reality of the Bethe roots at finite L show a few 
qualitatively new features within our approach.

For virtually all integrable sigma models at a finite volume, the TBA-like approach initiated 
by Al. Zamolodchikov can be summarized in a very universal system of functional equations, 
the Y -system. The Y-system is equivalent to the famous Hirota equation – the Master equation 
of integrability describing in this case the integrable discrete dynamics with respect to a pair of 
“representational” variables, a, s and the spectral parameter (rapidity) θ . The boundary condi-
tions for a, s are defined by the symmetry algebra of the model, whether as the analytic structure 
w.r.t. the θ variable is in general the most complicated issue, largely defining the dynamics of 
the model. However, in fact even the possible analyticity structures are greatly constrained by 
Hirota dynamics and by the symmetry algebra. It would be interesting to classify possible types 
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of analyticity stemming from Hirota dynamics and some simple physical arguments (relativis-
tic invariance, crossing, absence of certain singularities, etc.) related to the finite volume sigma 
models, similarly to the S-matrix bootstrap theory of Al. and A. Zamolodchikov valid only at 
infinite volume. This could lead to an interesting classification of sigma models themselves and 
possibly to the discovery of new integrable models. It would also help bypassing the standard 
TBA approach, poorly justified and, strictly speaking, valid only for the vacuum state.

In this paper, we managed to transform the finite volume spectral problem for one such rel-
ativistic σ -model, the SU(N) × SU(N) principal chiral field into a finite set of NLIEs. It was 
achieved by solving the underlying finite L Y-system in terms of Wronskian determinants of a 
finite number of Q-functions and parameterizing these Q-functions by N −1 densities correcting 
their large L asymptotics to any finite L.

Our work generalizes the analytic and numerical results of [12] to N ≥ 2, and we could 
numerically check, at least when N = 2, 3, that this procedures solves the Y -system, and enables 
to compute energies for a wide range of lengths L, compatible with the UV conformal limit 
and the IR finite size (Lüscher) corrections. On the way, we conjectured a natural generalization 
of the energy formula for excited states for the U(1) at finite L, to N ≥ 2. This generalization 
appears to be unexpectedly non-trivial and looks different for even and odd N . The question of 
definition of the energy formula for excited states deserves a better understanding and hopefully 
the eventual derivation.

The analysis was done for U(1) sector states, and it certainly can and should be generalized 
to any excited state, as was done in [12] for N = 2. To do this, one will have to understand 
the asymptotic terms and the structure of zeroes. In particular, some extra zeroes should appear 
in Y-functions which might affect the way the energy is computed by contour manipulation. 
Apart from that, the main difference with U(1) sector should be that for non-symmetric states 
(i.e. when Ya,s �= Ya,−s ), it will be necessary to introduce N − 1 densities for the right wing and 
N −1 densities for the left wing. One would have to write (20) as 2(N −1) different equations, by 

writing the left-hand side either as 
T

(R)
1,1 T

(R)
1,−1

T
(R)
2,0 T

(R)
0,0

or as 
T

(L)
1,1 T

(L)
1,−1

T
(L)
2,0 T

(L)
0,0

. Our approach based on the Wronskian 

solution of Y-system should a priori still enable us to compute the energies of these states.
An interesting problem which our approach might help to solve is the planar N → ∞ limit in 

PCF at finite L. This PCF model has a rich history of its comparison to QCD and it might provide 
an important example of exactly solvable 2 + 1 dimensional bosonic string theory, similarly 
to the matrix quantum mechanical model of the 1 + 1 dimensional, c = 1 non-critical string 
theory proposed and solved in [45]. The exact and explicit solution for this limit was given 
in the case of infinite volume L but in the presence of a specific “magnetic” fields [46]. The 
finite volume solution might provide a deeper understanding of ’t Hooft limit in asymptotically 
free QFT’s and even reveal some new physical phenomena, such as a possible large N phase 
transition at some Lc, in analogy with the Yang–Mills theory on the 2D sphere [47] (equivalent 
to the one-dimensional PCF). This, seemingly 2nd order, phase transition was already observed 
numerically in [48].

As concerns the numerics, our algorithm converges very well for any length when N ≤ 3, 
but for N ≥ 4 it is very unstable for small enough length L, already at L � 1 (which means for 
instance that we cannot really check the convergence to the conformal UV limit). Hopefully this 
instability has no direct physical meaning and is just a numerical artifact, due to a poor numeric 
accuracy or to the bad choice of the iteration procedure for our NLIEs. It would be good to 
compare our results with the high precision Monte-Carlo simulations of SU(3) [41,42] for the 
mass gap as a function of the volume, but these papers are mostly concerned with reaching the 
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infinite volume asymptotically free regime for the lattice PCF model with the torus, rather than 
cylindric boundary conditions.

We believe that this method of derivation of a finite system of NLIEs for integrable sigma 
models is general and powerful enough to work for much more complicated cases of AdS/CFT 
correspondence, such as the superstring on the AdS5 × S5 background dual to N = 4 SYM 
theory, and the so called ABJM model where the Y -system was already discovered [15,49,50]. 
The Wronskian quasiclassical character [18] and even the full quantum solution of the Hirota 
dynamics for AdS5/CFT4 [19] are already available. The understanding of the very rich and 
complicated analyticity structure of Q-functions for short operators is of a great help for the 
derivation of the AdS/CFT NLIE.
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