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Abstract: We explore some consequences of modifying the usual Heisenberg commutation relations

of two simple systems: first, the one-dimensional quantum system given by the infinite square-

well potential, and second, the case of a gas of N non-interacting particles in a box of volume V,

which permit obtaining analytical solutions. We analyse two possible cases of modified Heisenberg

commutation relations: one with a linear and non-linear dependence on the position and another with

a linear and quadratic dependence on the momentum. We determine the eigenfunctions, probability

densities, and energy eigenvalues for the one-dimensional square well for both deformation cases.

For linear and non-linear x deformation dependence, the wave functions and energy levels change

substantially when the weight factor associated with the modification term increases. Here, the

energy levels are rescaled homogeneously. Instead, for linear and quadratic momentum p deformation

dependence, the changes in the energy spectrum depend on the energy level. However, the probability

densities are the same as those without any modification. For the non-interacting gas, the position

deformation implies that the ideal gas state equation is modified, acquiring the form of a virial

expansion in the volume, whereas the internal energy is unchanged. Instead, the ideal gas state

equation remains unchanged at the lowest order in β for the momentum modification case. However,

the temperature modifies the internal energy at the lowest order in β. Thus, this study indicates

that gravity could generate forces on particles by modifying the Heisenberg commutation relations.

Therefore, gravitation could be the cause of the other three forces of nature.

Keywords: quantum mechanics; modified Heisenberg commutation relations; infinite square-well

potential; momentum eigenstates; ideal gas properties

1. Introduction

The Heisenberg commutation relations constitute the critical element for quantising
different physical systems, that is, to determine their microscopic evolution from the
classical information to which we, as macroscopic beings, have access. The Heisenberg
canonical commutation relation for a one-dimensional system is

[x̂, p̂x] = x̂ p̂x − p̂x x̂ = ih̄ I. (1)

where h̄ = h
2π and I denotes de identity operator. The relation (1) can be seen as a constraint

in the non-commutative phase space (x̂, p̂x). Thus, from (1) one could “solve for” the
momentum operator p̂x in terms of the operator x̂. This necessarily implies the existence of
a certain relation between p̂x and x̂ and between their eigenvalues. The usual representation
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of the canonical operator as a differential operator acting on a function space or Hilbert
space is

x̂ → x, p̂x → −ih̄
∂

∂x
(2)

and is equivalent to solving the constraint (1), because on any wave function Ψ(x, t),
Equation (1) is satisfied identically. The memory of the quantum constraint (1) is then
transferred locally to the wave function. Thus, any change in the quantum constraint (1)
would imply changes in the behaviour of the wave function, its associated probabilities,
and its energy spectrum.

In recent years, there has been a growing interest in studying modifications to the
usual canonical commutation relations in various contexts. For example, it is well known
that the effects of quantum gravity, modelled by string theory, loop quantum gravity,
or black hole physics, predict the existence of a Generalised Uncertainty Principle (GUP),
which can change the usual canonical commutation relations [1–7]. Its possible implications
for entanglement and the Hamilton–Jacobi equation are analysed in [8–12]. In particular,
the analysis of the implications of the modified Heisenberg commutation relations of
one-dimensional systems, and specifically the infinite square-well potential, can be found
in [13–20].

The studies developed in references [13–20] are related to a modified Heisenberg
relation of the form

[x̂, p̂x] = ih̄
(

I+ β p̂2
x

)

(3)

applied to the one-dimensional square well. There, the eigenfunction and eigenvalues
are obtained approximately by expanding the quantities of interest in a series in the
deformation parameter β (and kipping the lowest order expansion) or using numeric al
methods.

The present article tries to follow the same line of research but differs from the previous
ones in its two main objectives:

(i) to explore possible implications of a more general class of modified Heisenberg alge-
bras than (3) over a simple system, and

(ii) If possible, try to obtain analytical solutions for both eigenfunctions and eigenvalues.

Thus, we consider more general canonical commutation relations than (1) and (3),
of the type

[x̂, p̂x] = ih̄
(

I+ F(x̂, p̂x)
)

(4)

for some function F(x, px) depending on the position and momentum. Note, that the form
of the quantum algebra (4) guarantees the system has a well-defined classical limit when h̄
goes to zero. To study the effects of an algebra of the form (4) one can expand the function
F(x, px) in a Taylor series, so the algebra (4) becomes

[x̂, p̂x] = ih̄
(

I+ α + α1 x̂ + α2 x̂2 + · · ·+ β1 p̂x + · · ·+ γ2 x̂ p̂x + · · ·
)

(5)

and explore first the effects of each one of its terms in a separate way.
Thus, in this spirit, one can consider two special cases of (5): the case of a general

x̂ power
[x̂, p̂x] = ih̄

(

I+ αx̂n
)

n = 1, 2, 3, · · · (6)

and the linear one in the momentum

[x̂, p̂x] = ih̄
(

I+ β p̂x

)

(7)

The election of the algebras (6) and (7) is justified by our objective (ii), due to that these
algebras permit to found analytic solutions as we will see later.

Thus, in the present paper, we want to analyse the effect of the modified Heisen-
berg commutation relation (6) and (7) over the two simple systems: (i) the quantum
one-dimensional infinite square-well potential, and (ii) a more realistic one, such as a gas of
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non interacting particles in a cubic box, which is the three-dimensional analogue of the first
case. Due to their simplicity, these systems permit obtaining exact analytical solutions from
which to draw conclusions.

In particular, we want to obtain the consequences of these GUP algebras (6) and (7) over:

(i) the wave functions, probability densities and energy spectrum for the one-dimensional
infinite square well and

(ii) the possible modifications of thermodynamic properties, such as the gas state equation
and internal energy for the ideal gas.

We will start by analysing the case of the infinite square well in Section 2. In Section 2.1,
we take the simple linear x dependence F(x, px) = αx. In Section 2.2, we study its non-
linear generalisation F(x, px) = αxn for n = 2, 3, . . . Here, α reflects the intensity of the
modification of the standard canonical commutation relation. One hopes the solutions for
the modified case proceed continually to those of the unmodified case when α goes to zero.
For the one-dimensional infinite square well, the modified wave functions and probability
densities differ substantially from the original unmodified ones when α is greater than or
equal to unity. The energy eigenvalues are rescaled homogeneously by a constant factor for
n ≥ 1. To our knowledge, this case has not been previously analysed in the literature.

Section 2.3 explores the consequences of linear dependence on the momentum,
F(x, px) = βpx, for the energy spectrum and eigenfunctions. In this case, β reflects the
strength of modifying the standard commutation relation. For the infinite square-well

system, each energy eigenvalue En is rescaled in a different way, by a factor
L2 tanh2

(

πh̄βn
L

)

β2n2π2 h̄2

that depends on the energy level n. Also, this case has not been previously analysed in
the literature.

Section 2.4 explores the consequences of a quadratic dependence on the momentum,
F(x, px) = βp2

x. In this case, as shown in [18], the energy eigenvalue En is rescaled by

L2 tan2
(

nπh̄
√

β
L

)

βn2π2 h̄2 , that depends also on the energy level n. Note, the trigonometric dependence

instead of a hyperbolic one for the quadratic deformation case. Interestingly, for both
momentum modifications, the probability densities of the modified and original situations
are the same, i.e., that of the free particle.

Section 3 is dedicated to the study of the consequences of the modified Heisenberg
commutation relations (6) and (7) over the ideal gas. Sections 3.1 and 3.2 explore the effect
of the linear and quadratic x dependence in the GUP, revealing that the ideal gas state
equation is modified, acquiring the form of a virial expansion in the volume, whereas the
internal energy remains unchanged. Sections 3.3 and 3.4 explore the effect of a linear and
quadratic p dependence in the GUP, showing that, in this case, at the lowest order in β,
the ideal gas state equation remains unchanged. However, the temperature modifies the
internal energy at the lowest order in β.

2. The Infinite Square-Well Potential and GUP

2.1. GUP Algebra Depending Linearly on x̂

For the first example of this dependence, consider the commutation relations

[x̂, p̂x] = ih̄
(

I+ αx̂
)

(8)

for which F(x, p) = αx. An operator representation of the above commutation relations is

x̂ = x (9)

p̂x = −ih̄
( ∂

∂x
+ αx

∂

∂x

)

= −ih̄(1 + αx)
∂

∂x
(10)
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The momentum eigenstates are in this case

p̂xΦpx (x) = pxΦpx (x) (11)

−ih̄(1 + αx)
∂Φpx

∂x = pxΦpx (12)

so

Φpx (x) = C(1 + αx)
ipx
αh̄ = Ce

ipx
h̄ ln[(1+αx)

1
α ] (13)

Consider now the usual non-relativistic classical Hamiltonian

H(x, px) =
p2

x

2m
+ U(x) (14)

The quantisation of this Hamiltonian by the rule (8) implies the following Schrödinger
equation:

−h̄2

2m
(1 + αx)

∂

∂x

[

(1 + αx)
∂

∂x

]

Ψ(x, t) + V(x)Ψ(x, t) = ih̄
∂Ψ(x, t)

∂t
(15)

or
−h̄2

2m

[

α(1 + αx)
∂Ψ(x, t)

∂x
+ (1 + αx)2 ∂2Ψ(x, t)

∂x2

]

+ V(x)Ψ(x, t) = ih̄
∂Ψ(x, t)

∂t
(16)

The associated time-independent Schrödinger equation is

−h̄2

2m

[

α(1 + αx)
∂Ψ(x)

∂x
+ (1 + αx)2 ∂2Ψ(x)

∂x2

]

+ V(x)Ψ(x) = EΨ(x, t) (17)

By performing the change in variables

y = ln[(1 + αx)
1
α ] =

ln(1 + αx)

α
(18)

which is well-defined for the interest region 0 ≤ x ≤ L and α > 0, we have that

∂

∂x
= αe−y ∂

∂y
(19)

and
∂2

∂x2 = −α2e−2y ∂

∂y
+ α2e−2y ∂2

∂y2 (20)

Replacing Equations (19) and (20) in (17), we obtain the following Schrödinger equa-
tions for the new variable y:

−h̄2α2

2m

∂2Ψ(y)

∂y2 + V(
ey − 1

α
)Ψ(y) = EΨ(y) (21)

Due to its simplicity, we will analyse the case of infinite square-well potential and
explore the consequences of the modification of the Heisenberg commutations relations for
its eigenstates and energy spectra. For this purpose, consider the potential U(x) given by
(see Figure 1)

U(x) =







+∞ if x < 0
0 if 0 ≤ x ≤ L

+∞ if x > L

(22)
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Figure 1. One-dimensional infinite square-well between x = 0 and x = L.

In terms of y, U is given by

U(y) =











+∞ if − 1
α < y < 0

0 if 0 ≤ y ≤ ln(1 + αL)
1
α

+∞ if y > ln(1 + αL)
1
α

(23)

So for 0 ≤ y ≤ ln(1 + αL) the Schrödinger equation is

−h̄2

2m

∂2Ψ(y)

∂y2 = EΨ(y) (24)

For E > 0, the above equation can be written as

∂2Ψ(y)

∂y2 = −k2Ψ(y) (25)

with

k2 =
2mE

h̄2 (26)

The general solution of (25) is

Ψ(y) = A sin(ky) + B cos(ky) (27)

or in terms of x,

Ψ(x) = A sin(
k

α
ln(1 + αx)) + B cos(

k

α
ln(1 + αx)) (28)

Since the potential is infinite at x = 0 and x = L, the wave function must be zero at
these two points so that

Ψ(0) = 0 and Ψ(L) = 0 (29)

The first condition implies B = 0 and the second condition gives

A sin(
k

α
ln(1 + αL)) = 0 (30)
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Since A cannot be zero (we are looking for non-trivial solutions), the above equa-
tion gives

k

α
ln(1 + αL) = nπ n = 1, 2, 3, 4, . . . (31)

so
k = kn =

nπα

ln(1 + αL)
n = 1, 2, 3, 4, . . . (32)

The eigenfunctions are thus

Ψn(x) = An sin(
kn

α
ln(1 + αx)) = An sin

(

nπ
ln(1 + αx)

ln(1 + αL)

)

(33)

whose energies are by virtue of (26)

En =
k2

n h̄2α2

2m
=

n2π2h̄2α2

2m ln2(1 + αL)
(34)

The energies E0
n of the usual unmodified case (α = 0) can be obtained by taking the

limit α → 0 of the Equation (34)

E0
n = lim

α→0

n2π2h̄2α2

2m ln2(1 + αL)
(35)

Since α << 1,
ln(1 + αL) ≈ αL (36)

and so

E0
n = lim

α→0

n2π2h̄2α2

2m(αL)2 =
n2π2h̄2

2mL2 (37)

Thus, the quotient between the modified and unmodified energies is

En

E0
n
=

α2L2

ln2(1 + αL)
(38)

Thus, all energy eigenvalues are uniformly re-scaled in this case. Figure 2 shows how
En

E0
n

changes as a function of α.

Figure 2. Red curve: Change of En

E0
n

as a function of α.
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The constant An in Equation (33) can be determined as usual, by normalising the wave
function to unity:

∫ +∞

−∞
Ψ(x)Ψ∗(x) dx = 1 (39)

i.e., for our case
∫ L

0
Ψ(x)Ψ∗(x) dx = 1 (40)

which gives

A2
n

∫ L

0
sin2

( kn

α
(ln(1 + αx))

)

dx = 1 (41)

After evaluating the integral, we obtain

A2
n

2Ln2π2

4n2π2 + ln2(1 + αL)
= 1 (42)

from which follows

An =

√

4n2π2 + ln2(1 + αL)

2Ln2π2 (43)

and the eigenfunctions are explicitly

Ψn(x) =

√

4n2π2 + ln2(1 + αL)

2Ln2π2 sin
(

nπ
ln(1 + αx)

ln(1 + αL)

)

(44)

Let us consider the case L = 1 so that

Ψn(x) =

√

4n2π2 + ln2(1 + α)

2n2π2 sin
(

nπ
ln(1 + αx)

ln(1 + α)

)

= An sin
(

nπ
ln(1 + αx)

ln(1 + α)

)

(45)

Figures 3 and 4 show

Ψn(x)

An
= sin

(

nπ
ln(1 + αx)

ln(1 + α)

)

as a function of x, for different values of α and n, when L = 1.

Figure 3. Cont.
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Figure 3. Red curve: Wave function of the ground state n = 1 for different values of α. From left
to right: α = 0.1, 1, 10, 100, 1000, 10,000. Blue curve: Wave function of the ground state for the
unmodified system.

Figure 4. Cont.
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Figure 4. Red curve: Wave function of the ground state n = 4 for different values of α. From left
to right: α = 0.1, 1, 10, 100, 1000, 10,000. Blue curve: Wave function of the ground state of the
unmodified system.

Let us now consider the associated probability densities. In this case

ρn(x) = Ψn(x)Ψ∗
n(x) = |An|2 sin2

(

nπ
ln(1 + αx)

ln(1 + α)

)

Figures 5 and 6 show the graph of ρn(x)

|An |2
= sin2

(

nπ
ln(1+αx)
ln(1+α)

)

as a function of x for

different values of α and n, when L = 1.

Figure 5. Probability density of state n = 1 for different values of alpha. From left to right α = 0.1, 1,
10, 100, 1000, 10,000.



Symmetry 2024, 16, 1268 10 of 34

Figure 6. Probability density of state n = 4 for different values of alpha. From left to right α = 0.1, 1,
10, 100, 1000, 10,000.

Note, that in all cases, for small values of α, the probability density of the original
solution (i.e., for the unmodified system) is recovered.

2.2. GUP Algebra Depending Non-Linearly on x̂

If, instead of the commutation relation (8), one considers the generalisation

[x̂, p̂x] = ih̄
(

I+ αx̂n
)

(46)

for n = 1, 2, 3 . . . , the momentum operator has the representation

p̂x = −ih̄(1 + αxn)
∂

∂x
(47)

The momentum eigenfunctions are, in this case, the solutions of the equation

p̂xΦn
p = −ih̄(1 + αxn)

∂Φp

∂x
= p Φn

p (48)

that is

ln(Φn
p) =

ip

h̄

∫

dx

(1 + αxn)
+ C0 (49)

or
Φn

p = Ae
ip
h̄ Θn(x) (50)

where

Θn(x) =
∫

dx

(1 + αxn)
(51)

whose solution is

Θn(x) = x hypergeom
([

1,
1
n

]

,
[

1 +
1
n

]

, I xnα(−1)
1
2 csgn(Iα)+ 1

2 csgn(Ixn)− 1
2 csgn(Ixn) csgn(Iα)

)

(52)



Symmetry 2024, 16, 1268 11 of 34

Explicitly, the first functions Θn(x) are

Θ2(x) = arctan(
√

αx)√
α

Θ3(x) = 1
3

ln
(

x+( 1
α )

1/3
)

α( 1
α )

2/3 − 1
6

ln
(

x2−x( 1
α )

1/3
+( 1

α )
2/3
)

α( 1
α )

2/3 + 1
3

√
3 arctan





1
3

√
3





2x

( 1
α )

1/3 −1









α( 1
α )

2/3

Θ4(x) = 1
4

(

1
α

)1/4√
2 arctan

( √
2x

( 1
α )

1/4 + 1
)

+ 1
4

(

1
α

)1/4√
2 arctan

( √
2x

( 1
α )

1/4 − 1
)

+ 1
8

(

1
α

)1/4√
2 ln

(

x2+( 1
α )

1/4
x
√

2+
√

1
α

x2−( 1
α )

1/4
x
√

2+
√

1
α

)

(53)

Let us now consider the eigenfunctions in the presence of the potential well. The Hamil-
tonian is in the region 0 < x < L,

H(x, px) =
p2

x

2m
(54)

whose eigenfunctions are the momentum states Φn
p with energies E(p) = p2

2m . To satisfy
the boundary conditions (29) one must construct a superposition of two states: one of
positive momentum p and another of negative momentum −p of the form

Ψn(x) = Anei
pΘn(x)

h̄ + Bne−i
pΘn(x)

h̄ (55)

The boundary conditions (29) imply that

Ψn(0) = Anei
pΘn(0)

h̄ + Bne−i
pΘn(0)

h̄ = 0 (56)

and
Ψn(L) = Anei

pΘn(L)
h̄ + Bne−i

pΘn(L)
h̄ = 0 (57)

From the first of these equations, we have that

Bn = −Anei
2pΘn(0)

h̄ (58)

so, the second equation gives

An

(

ei
pΘn(L)

h̄ − e−i
pΘn(L)

h̄ ei
2pΘn(0)

h̄

)

= 0 (59)

Since An ̸= 0 we have

ei
pΘn(L)

h̄ = e−i
pΘn(L)

h̄ ei
2pΘn(0)

h̄ (60)

or
ei

2p(Θn(L)−Θn(0))
h̄ = 1 (61)

which implies the quantisation condition for momentum

2pk(Θn(L)− Θn(0))
h̄

= 2πk k = 1, 2, 3, . . . (62)

that is

pk =
kπh̄

Θn(L)− Θn(0)
k = 1, 2, 3, . . . (63)
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The energy eigenvalues are

Ek
n =

p2
k

2m
=

k2π2h̄2

2m[Θn(L)− Θn(0)]2
k = 1, 2, 3, . . . (64)

The quotient of the energies Ek
n of the modified system over the original energies

Ek
0 = k2π2 h̄2

2mL2 is

Ek
n

Ek
0

=
L2

[Θn(L)− Θn(0)]2
(65)

so that the energies are uniformly rescaled for each value of n.
The corresponding eigenfunctions are

Ψk
n(x) = An

(

ei
pkΘn(x)

h̄ − ei
2pkΘn(0)

h̄ e−i
pkΘn(x)

h̄

)

(66)

Ψk
n(x) = Anei

pkΘn(0)
h̄

(

ei
pkΘn(x)

h̄ e−i
pkΘn(0)

h̄ − ei
pkΘn(0)

h̄ e−i
pkΘn(x)

h̄

)

(67)

Ψk
n(x) = Anei

pkΘn(0)
h̄ sin

( pk

(

Θn(x)− Θn(0)
)

h̄

)

(68)

that is

Ψk
n(x) = Anei

pkΘn(0)
h̄ sin

(

kπ
[Θn(x)− Θn(0)

Θn(L)− Θn(0)

])

(69)

The corresponding probability densities are

ρk
n(x) = Ψk

n(x)Ψk ∗
n (x) = |An|2 sin2

(

kπ
[Θn(x)− Θn(0)

Θn(L)− Θn(0)

])

(70)

If we define the non-normalised densities by

ρ̃k
n(x) ≡ ρk

2(x)

|An|2
= sin2

(

kπ
[Θn(x)− Θn(0)

Θn(L)− Θn(0)

])

(71)

we have explicitly for the first n values that

ρ̃k
2(x) = sin2

(

kπ arctan(
√

αx)

arctan(
√

αL)

)

(72)

ρ̃k
3(x) = sin2































kπ











1
6

−2
√

3 arctan





1
3

√
3
(

−2x+( 1
α )

1/3
)

( 1
α )

1/3



+2 ln
(

x+( 1
α )

1/3
)

−ln
(

x2−x( 1
α )

1/3
+( 1

α )
2/3
)

α( 1
α )

2/3 + 1
18

√
3π

α( 1
α )

2/3











1
6

−2
√

3 arctan





1
3

√
3
(

−2L+( 1
α )

1/3
)

( 1
α )

1/3



+2 ln
(

L+( 1
α )

1/3
)

−ln
(

L2−L( 1
α )

1/3
+( 1

α )
2/3
)

α( 1
α )

2/3 + 1
18

√
3π

α( 1
α )

2/3































(73)

ρ̃k
4(x) = sin2













kπ

(

2 arctan
(√

2x+( 1
α )

1/4

( 1
α )

1/4

)

− 2 arctan
(

−
√

2x+( 1
α )

1/4

( 1
α )

1/4

)

+ ln

(

− x2+( 1
α )

1/4
x
√

2+
√

1
α

( 1
α )

1/4
x
√

2−x2−
√

1
α

))

2 arctan
(√

2L+( 1
α )

1/4

( 1
α )

1/4

)

− 2 arctan
(

−
√

2L+( 1
α )

1/4

( 1
α )

1/4

)

+ ln

(

− L2+( 1
α )

1/4
L
√

2+
√

1
α

( 1
α )

1/4
L
√

2−L2−
√

1
α

)













(74)
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Figures 7 and 8 show the unnormalised probability density ρ̃k
n(x) for various values

of α, k and n, when L = 1.

Figure 7. Probability density for state k = 1 for different values of α. From left to right α = 0.1, 1, 10,
100, 1000, 10,000. Red curve n = 1, blue curve n = 2, green curve n = 3 and cyan curve n = 4.

Figure 8. Probability density for state k = 2 for different values of α. From left to right α = 0.1, 1, 10,
100, 1000, 10,000. Red curve n = 1, blue curve n = 2, green curve n = 3 and cyan curve n = 4.

From the results shown in Figures 3–8, one can ask: why the wave functions and
their density probabilities are deformed in that way, and why the density probabilities are
shirking to the left side of the potential well.



Symmetry 2024, 16, 1268 14 of 34

To obtain an answer, one can consider the Hamiltonian operator (for the free particle)
associated with the modified Heisenberg commutation relation (46), which is given by

Ĥ =
p̂2

x

2m
=

−h̄2

2m
(1 + αxn)

∂

∂x

(

(1 + αxn)
∂

∂x

)

(75)

By taking the the classical limit h̄ → 0 [21], the corresponding classical Hamiltonian
function is

H(x, px) =
(1 + αxn)2

2m
p2

x

then, the Hamilton equations of motion give

ṗx = −∂H

∂x
= − (1 + αxn)αnxn−1

m
p2

x (76)

and

ẋ =
∂H

∂px
=

(1 + αxn)2

m
px

Because the classical Hamiltonian is time-independent, the energy is conserved, so
E = H(x, px) is a constant, thus

E =
(1 + αxn)2

2m
p2

x

so

p2
x =

2mE

(1 + αxn)2 (77)

By replacing the above equation in (76), obtains

ṗx = −2Eαnxn−1

(1 + αxn)
(78)

The right side of (78) is, by the Newton equation, the force Fn(x) that acts over the
particle for each n value, so

Fn(x) = −2Eαnxn−1

(1 + αxn)
(79)

The above two relations have interesting implications because these equations establish
that the modified Heisenberg commutation relation (46) generates a force over the initial
free particle at both classical and quantum levels. In the first case, by generating the
force Fn(x) and, in the second one, by deforming the probability densities. Thus, gravity,
by modifying the Heisenberg commutation relations, can generate forces on the particles,
and in this way, gravitation could generate the other three forces of nature.

Note, that the classical force Fn(x) is negative for x > 0; thus, the particle accelerates
to the wall’s left side. That is consistent with the shift of probability densities to the left side
of the potential well. Figure 9 shows the classical force (79) for n = 1, 2, 3, 4. Note, that the
force has a maximum. From (79), the position x0

n for which the force reaches its maximum
value can be computed as

x0
n =

(

n − 1
α

) 1
n

Note, that for the case n = 1, the maximum is at the origin, but for n > 1, the maximum
is at the origin’s right side. When α increases, the maximum is shifted towards x = 0.
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Figure 9. Classical force Fn(x) given in Equation (79) for E = 1/2 and n = 1 (red curve), n = 2 (blue
curve), n = 3 (green curve) and n = 4 (yellow curve). Figure (a): α = 0.1. Figure (b): α = 1.

2.3. GUP Depending Linearly on the Momentum p̂x

Consider now the following GUP commutation relations depending on the momentum

[x̂, p̂x] = ih̄
(

I+ β p̂x

)

(80)

These commutation relations can be represented by the differential operators

x̂ = x (81)

p̂x =
1
β

(

eβ p̂0 − I
)

(82)

where p̂0 = −ih̄ ∂
∂x is the standard momentum operator for when β = 0.

The eigenfunctions of p̂0 are
p̂0Φp = p Φp (83)

that is
Φp = Ae

ipx
h̄ (84)

For the square well potential (22), the Hamiltonian in the region 0 < x < L is

Ĥ =

(

eβ p̂0 − I
)2

2mβ2
(85)



Symmetry 2024, 16, 1268 16 of 34

The eigenfunctions (84) of the momentum operator p̂0 are also eigenfunctions of the
Hamiltonian:

ĤΦp = E(p)Φp (86)

with energy eigenvalues

E(p) =

(

eβp − 1
)2

2mβ2 (87)

Figure 10 shows the spectrum of E(p) for various values of β.
Figure 11 presents a more detailed version of the spectrum for β = 1 and m = 1 in the

momentum region −10 < p < 1.

Figure 10. Energy E(p) as a function of momentum p for different values of parameter β and m = 1.
From left to right: β = 0.001, 0.01, 0.1, 0.5, 1. Note, how the energy spectrum becomes less and less
symmetric as β increases.

Figure 11. A closer view of the energy spectrum for β = 1 in the momentum region −10 < p < 1.
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It should be noted that when p becomes very negative, the energy tends asymptotically
to a constant value E∞. In fact

E−∞ = lim
p→−∞

E(p) =
1

2mβ2 (88)

For this asymptotic value E−∞ of the energy, there exists a maximum positive
momentum pmax > 0 that has the same energy, that is

E−∞ = E(pmax) (89)

or
1

2mβ2 =

(

eβpmax − 1
)2

2mβ2 (90)

so
eβpmax = 1 ± 1 (91)

with solutions
eβpmax = 2 o eβpmax = 0 (92)

The above equations imply that (see Figure 11 below)

pmax =
ln(2)

β
or pmax = −∞ (93)

On the other hand, if the energy of the particle is in the interval

0 < E < E−∞ (94)

then, as can be seen in Figure 11, there are two values of the momentum p, one positive p+
and the other negative p−, which give the same value of E. In fact, from

E = E(p) =

(

eβp − 1
)2

2mβ2 (95)

one can solve for the momentum p in terms of the energy E according to

eβp± = 1 ±
√

2mβ2E = 1 ±
√

E

E−∞
(96)

that is

p± =
1
β

ln

(

1 ±
√

E

E−∞

)

(97)

Note, that if

0 < E < E−∞ =⇒ 1 <

(

1 +
√

E
E−∞

)

< 2

0 < E < E−∞ =⇒ 0 <

(

1 −
√

E
E−∞

)

< 1
(98)

in such a way that
0 < p+ <

1
β ln(2)

−∞ < p− < 0
(99)

as can be seen in Figure 11. Thus, for an energy E in the interval 0 < E < E < E−∞ there
exist two distinct momentum eigenstates Φp+ and Φp− which have the same energy E.
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Since the values of p+ and p− in (96) or (97) depend on the E, these momenta must be
related. Using Equation (96) we see that

eβp+ = 1 +

√

E

E−∞
eβp− = 1 −

√

E

E−∞

Adding both equations gives

eβp+ + eβp− = 2 (100)

from which we can solve for p− as

p− =
1
β

ln
(

2 − eβp+
)

(101)

One must note that p− is negative, since for 0 < E < E−∞ it follows that

0 ⩽ p+ ⩽ pmax = ln(2)
β which implies that

1 > 2 − eβp+ > 2 − eβpmax = 2 − eln(2) = 0

and therefore, p− in Equation (101) gives the logarithm of a number between zero and one,
and therefore, p− is negative.

Note, also that Equation (97) implies that if E > E−∞ , i.e., the quotient
√

E
E−∞

> 1 ,

then p− is the logarithm of a negative number, so p− becomes a complex number. In this
situation, it is not possible to find stationary states because the boundary conditions can
only be satisfied at one side of the potential well.

Let us now consider the problem of determining the eigenstates associated with the
potential well. In the figure below, two momentum eigenstates are illustrated: Φp, which
has momentum p > 0 (and Thus, represents a wave travelling to the right) and Φ−p, which
has momentum −p < 0 (which represents a wave travelling to the left). Because of the
structure of the asymmetric energy spectrum in Figure 11, the energy of Φp is greater than
that of Φ−p. Thus, waves moving to the left have a lower energy than those moving to the
right (see Figure 12).

Figure 12. Energies of the eigenstates with momentum p and −p. Note, that the eigenfunction
moving to the left has a lower energy than those moving to the right.
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If we wish to generate a standing wave that vanishes at x = 0 and x = L, we must
superimpose two states in opposite directions but with the same energy E. For these states
to exist, the following condition must be fulfilled (see Figure 11):

0 ≤ E ≤ E−∞ =
1

2mβ2 (102)

For E in the above range, Φp+ = e
ip+x

h̄ and Φp− = e
ip−x

h̄ are two momentum
eigenstates, one with positive (p+) and the other with negative (p−), but with the same
energy E. Thus, we can consider the state

Ψ(x) = Ae
ip+x

h̄ + Bei
p−x

h̄ (103)

The boundary conditions (29) imply

Ψ(0) =A + B = 0

Ψ(L) =Ae
ip+L

h̄ + Be
ip−L

h̄ = 0

The above conditions require that B = −A, therefore,

A(e
ip+L

h̄ − e
ip−L

h̄ ) = 0

and since A ̸= 0 (otherwise the wave function is null), the following quantisation relation
is obtained:

e
ip+L

h̄ = e
ip−L

h̄

that is

e
i(p+−p−)L

h̄ = 1

implying that the momenta have discrete values pn
+ y pn

− such that

(

pn
+ − pn

−
)

L

h̄
= 2πn n = 1, 2, 3, . . . (104)

Using Equations (97) we obtain the quantisation condition for the energies En:

1
β

ln

(

1 +

√

En

E−∞

)

− 1
β

ln

(

1 −
√

En

E−∞

)

=
2πnh̄

L

or

ln





1 +
√

En
E−∞

1 −
√

En
E−∞



 =
2πnh̄β

L

that is
1 +

√

En
E−∞

1 −
√

En
E−∞

= e
2πnh̄β

L n = 1, 2, 3, . . .

By defining γn ≡ e
2πnh̄β

L and θn ≡ 2πnh̄β
L , i.e., γn = eθn then, we have

√

En

E−∞
=

(γn − 1)
(γn + 1)

or

En = E−∞

[

(γn − 1)
(γn + 1)

]2
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Explicitly

En = E−∞ ·
[

(

eθn − 1
)

(

eθn + 1
)

]2

= E−∞





eθn/2 ·
(

eθn/2 − e−θn/2
)

eθn/2 ·
(

eθn/2 + eθn/2
)





2

= E−∞





(

eθm/2 − e−θm/2
)

/2
(

eθn/2 + e−θn/2
)

/2





2

= E−∞

[

senh(θn/2)
cosh(θn/2)

]2

that is

En =
1

2mβ2 · tanh2
(

πh̄βn

L

)

(105)

By means of Equation (97), we can obtain the momenta pn
+ and pn

− as

pn
+ =

1
β

ln
(

1 + tanh
(

πh̄βn

L

))

pn
− =

1
β

ln
(

1 − tan h

(

πh̄βn

L

))

We can now compare the energies of the modified systems to the original ones by
means of the quotient En

E0
n

, which is given by

En

E0
n
=

1
2mβ2 · tanh2

(

πh̄βn
L

)

n2π2 h̄2

2mL2

=
L2 tanh2

(

πh̄βn
L

)

β2n2π2h̄2 (106)

Here, the energy eigenvalues are not uniformly rescaled, but depend on each state
n. Figure 13 shows the quotient En

E0
n

for various values of n as a function of the parameter

u = βh̄
L for L = 1. Note, that for larger values of n, the quotient tends more rapidly to zero.
Let us now consider the probability densities of the different states. These are given by

ρn(x) = Ψn(x)Ψ∗
n(x)

ρn(x) = |An|2
(

e
ipn
+x

h̄ − e
ipn−x

h̄

)(

e
−ipn

+x

h̄ − e
−ipn−x

h̄

)

ρn(x) = |An|2
(

1 − ei
(pn

+−pn
n)x

h̄ − e−i
(pn

+−pn
n)x

h̄ + 1

)

ρn(x) = |An|22

[

1 − cos

(

(

pn
+ − pn

n

)

x

h̄

)]

Due to the quantisation relation (104), we finally obtain

ρn(x) = |An|22
[

1 − cos
(

2πnx

L

)]

However, as

cos
(

2πnx

L

)

= 1 − 2 sin2
(

2πnx

2L

)

we have

ρn(x) = |An|22
[

1 −
(

1 − 2 sin2
(

2πnx

2L

))]

that is
ρn(x) = 4|An|2 sin2

(nπx

L

)
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Figure 13. Quotient En

E0
n

in terms of u =
βh̄
L for different values of n for L = 1. Red curve n = 1, blue

curve n = 2, green curve n = 4, cyan curve n = 10.

Note, that this density is proportional to the probability density of the original system
(i.e., with β = 0). The amplitude An is obtained by normalising the wave functions by
means of Equation (40), which gives

An =
1√
2L

This suggests that the wave functions of the modified systems should be the same as
the original ones. In fact, by Equation (116), the new eigenfunctions are

Ψn(x) =
1√
2L

(

e
ipn
+x

h̄ − ei
pn−x

h̄

)

and due to the quantisation of momentum (104) we have that

pn
− = pn

+ − 2πnh̄

L

so that

Ψn(x) =
1√
2L

(

e
ipn
+x

h̄ − ei
pn
+x

h̄ e−i 2πnx
L

)

Ψn(x) =
1√
2L

e
ipn
+x

h̄

(

1 − e−i 2πnx
L

)

Ψn(x) =
1√
2L

e
ipn
+x

h̄ e−i 2πnx
2L

(

ei 2πnx
2L − e−i 2πnx

2L

)

Ψn(x) =
1√
2L

e
ipn
+x

h̄ e−i πnx
L sin

(πnx

L

)

Ψn(x) =
1√
2L

e
i(pn

+− πnh̄
L )x

h̄ sin
(πnx

L

)

Ψn(x) =
1√
2L

Cn(x) sin
(πnx

L

)

Thus, we see that the new eigenfunctions differ from the original ones by a com-
plex function

Cn(x) = e
i(pn

+− πnh̄
L )x

h̄



Symmetry 2024, 16, 1268 22 of 34

of unit norm, which does not change the value of the corresponding probability densities.
Thus, the new probability densities are the same as the original ones, but the energy
spectrum changes completely.

To conclude this subsection, we will mention a few words about the strange energy
behaviour in terms of momentum given by Equation (95). As indicated above, a wave
travelling to the right with momentum p > 0 has an energy greater than a wave travelling
to the left with momentum −p < 0 as indicated in Figure 12.

Because our Hamiltonian is time-independent, energy must be conserved. This fact
implies that for a fixed energy, waves moving to the right have momentum magnitude
lower than those moving to the left (see Figure 11 above). One can understand this
awkward behaviour by considering the classical limit of (85). As shown in [22], the classical
Hamiltonian function is just given by (95). Now, consider a simple classical non-relativistic
collision between a mass m1 (with initial velocity v1) with a second stationary mass m2.
If u1 and u2 are the velocities after the collision, conservation of momentum implies that

m1v1 = m1u1 + m2u2

and using (95), energy conservation gives

E(m1v1) = E(m1u2) + E(m2u2)

By solving this system, it can be shown that in the limit m2 >> m1, the velocity u1
with which mass m1 bounces back is given by

u1 = −v1

(

1 + m1v1β + (m1v1β)2 + 2(m1v1β)3 + 4(m1v1β)4 + · · ·
)

For β = 0, the usual behaviour, in which a ball reverses its velocity when it hits a wall,
is recovered. However, for non-zero β, the speed with which it bounces to the left is greater
than the speed it had when it was moving to the right. Thus, changes generated by the
deformed Heisenberg commutation relations could be detected by simply throwing balls
over a wall and measuring velocities. All these questions and the connection of GUPs with
classical mechanics will be analysed in a detailed way in our next article [21].

It should be mentioned here that this awkward energy property, in terms of the mo-
mentum, can be related to what mathematicians call quasi metric spaces [23–26], i.e., spaces
in which the distance measured when moving to the right differs from that measured when
moving to the left. In the case at hand, energy or momentum can be taken as a measure
analogous to distance. In this sense, the case of linear deformation would represent these
quasimetric spaces in the physical world.

Finally, note that as is shown in [3], for a deformed Heisenberg commutation relation
of the form

[x̂, p̂x] = i f ( p̂x) (107)

for some function f (p), the above algebra can be represented by the differential operators

x̂ = x (108)

p̂x = h( p̂0) (109)

where the function h(p) is solution to the differential equation [3]

h′(p) = f (h(p))

and p̂0 = −ih̄ ∂
∂x is the standard momentum operator. Thus, the Hamiltonian for the particle

inside the square square-well is

Ĥ =
(h( p̂0))

2

2m
(110)
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In the classical limit h̄ → 0, the Hamiltonian (110) goes to the classical Hamiltonian function

H(x, px) =
(h(px))

2

2m

whose Hamiltonian equations of motion are

ṗx = −∂H

∂x
= 0 (111)

and

ẋ =
∂H

∂px
=

h(px) f (h(px))

m
(112)

Note that (111) implies that there are no forces acting classically on the particle and,
px = p0

x is constant, so (112) implies that the velocity is also constant. Thus, for a deformed
Heisenberg commutation relation whose right side depends only on the momentum as in
(107), the particle inside the well has no force acting on it, so the probability density must
be the same as the non-deformed case, that is, the free-particle density as we are shown
explicitly above for the case of linear deformation.

2.4. GUP Depending Quadratically on the Momentum p̂x

Consider now the case of a GUP depending on p2
x of the form

[x̂, p̂x] = ih̄
(

I+ β p̂2
x

)

As is indicated in [18], this Heisenberg algebra can be represented by the differen-
tial operators

x̂ = x (113)

p̂x =
tan
(√

β p̂0
)

√

β
(114)

where again p̂0 = −ih̄ ∂
∂x is the standard momentum operator for β = 0. The momentum

eigenvectors are the same given in (84) and the Hamiltonian operator is

Ĥ =
tan2

(√

β p̂0
)

2mβ
(115)

and its energy eigenvalues are

E(p) =
tan2

(√

βp
)

2mβ

Figure 14 shows the energy eigenvalues E(p) versus the momentum for three different
β values.

Now, by considering the state

Ψ(x) = Ae
ipx
h̄ + Bei

px
h̄ (116)

and imposing the boundary conditions Ψ(0) = 0 and Ψ(L) = 0, one obtains that the wave
functions are Ψn(x) = 1√

2L
sin
(

πnx
L

)

and the energy eigenvalues are [18]

En =
1

2mβ
· tan2

(

nπh̄
√

β

L

)
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Compare these eigenvalues with the linear case (105). Note, that we have trigonometric
dependence instead of a hyperbolic one, and the deformation parameter β appears in terms
of its square root.

The quotient En

E0
n

, which is given now by

En

E0
n
=

1
2mβ · tan2

(

nπh̄
√

β

L

)

n2π2 h̄2

2mL2

=

L2 tan2
(

nπh̄
√

β

L

)

βn2π2h̄2 (117)

Figure 14. Energy E(p) as a function of momentum p for different values of parameter β. From left to
right: β = 0.1, 1.2 and 10. Note, that in this case energy spectrum is symmetric and periodic.

3. The Ideal Gas and GUP

To explore the consequences of the GUP Heisenberg commutation relations in a more
realistic physical system, we analyse their effects on an ideal gas for linear and quadratic
deformations in the position and momentum operator.

3.1. The Linear Deformation Case in x̂

Consider the following GUP relations in three-dimensional space

[x̂, p̂x] = ih̄
(

I+ αx x̂
)

[ŷ, p̂y] = ih̄
(

I+ αyŷ
)

[ẑ, p̂z] = ih̄
(

I+ αz ẑ
)

(118)

and where any other commutator between the canonical variables is equal to zero. This
algebra can be represented by the differential operators

(x̂, ŷ, ẑ) = (x, y, z)

p̂x = −ih̄(1 + αxx)
∂

∂x

p̂y = −ih̄(1 + αyy)
∂

∂y

p̂z = −ih̄(1 + αzz)
∂

∂z

(119)

The momentum eigensates are in this case

Φ p⃗ (⃗r) = Ce
i
h̄ p⃗·⃗θ1 (⃗r) (120)
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with

θ⃗1 (⃗r) =
( ln(1 + αxx)

αx
,

ln(1 + αyy)

αy
,

ln(1 + αzz)

αz

)

(121)

The corresponding time-independent non-relativistic Schrödinger equation is

−h̄2

2m

[

αx(1 + αxx) ∂Ψ
∂x + αy(1 + αyy) ∂Ψ

∂y + αz(1 + αzz) ∂Ψ
∂z +

(1 + αxx)2 ∂2Ψ
∂x2 + (1 + αyy)2 ∂2Ψ

∂y2 + (1 + αzz)2 ∂2Ψ
∂z2

]

+ U(x, y, z)Ψ

= E Ψ

(122)

By setting

ux = ln(1+αx x)
αx

uy =
ln(1+αyy)

αy

uz =
ln(1+αzz)

αz

(123)

The above three-dimensional Schrödinger equation becomes

−h̄2

2m

[∂2Ψ

∂u2
x
+

∂2Ψ

∂u2
y
+

∂2Ψ

∂u2
z

]

+ U
( eαxux − 1

αx
,

eαyuy − 1
αy

,
eαzuz − 1

αz

)

Ψ = EΨ (124)

Consider now the problem of a particle in a box of lengths Lx, Ly, Lz, so the Schrödinger
equation reduces to

−h̄2

2m

[∂2Ψ

∂u2
x
+

∂2Ψ

∂u2
y
+

∂2Ψ

∂u2
z

]

= EΨ (125)

with solutions

Ψnxnynz(ux, uy, uz) = A sin(knx
x ux) sin(k

ny
y uy) sin(knz

z uz) (126)

where

knx
x =

nxπαx

ln(1 + αxLx)
, k

ny
y =

nyπαy

ln(1 + αyLy)
, knz

z =
nzπαz

ln(1 + αzLz)
(127)

to satisfy the boundary conditions, and the energy eigenvalues E = Enxnynz are given by

Enxnynz =
h̄2

2m

(

(knx
x )2 + (k

ny
y )2 + (knz

z )2
)

= h̄2π2

2m

(

n2
xα2

x

ln2(1+αx Lx)
+

n2
yα2

y

ln2(1+αy Ly)
+ n2

z α2
z

ln2(1+αz Lz)

) (128)

If one defines de deformed GUP lengths ax, ay, az associated with de real lengths
Lx, Ly, Lz by

ai =
ln(1 + αiLi)

αi
i = x, y, z (129)

the energy eigenvalues are the usual ones in terms of the modified lengths

Enxnynz =
h̄2π2

2m

(n2
x

a2
x
+

n2
y

a2
y
+

n2
z

a2
z

)

(130)

Consider now an ideal gas of N particles in a cubic box, so Lx = Ly = Lz = L and
consider the symmetric case, where the α parameters are identical

αx = αx = αz = α

so
ax = ay = az = a =

ln(1 + αL)

α
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and

Enxnynz =
h̄2π2

2ma2

(

n2
x + n2

y + n2
z

)

(131)

For this case, the gas partition function is [27]

QN =
qN

3
N!

with

q3 = ∑
nx ,ny ,nz

e
− 1

kBT Enxnynz =

[

∑
n

exp
(

− 1
kBT

E0
n

)

]3

=

[

∑
n

exp
(

− h2n2

8ma2kBT

)

]3

= (q0)
3

The last expression can be calculated as [27]

q0 = ∑
n

exp
(

− 1
kBT

E0
n

)

=
∫ ∞

0
e−h2n2/(8ma2kBT)dn =

(

2πmkBT

h2

)1/2

a (132)

But a = ln(1+αL)
α and V = L3 so a = ln(1+αV1/3)

α , Thus,

q0 =

(

2πmkBT

h2

)1/2 1
α
(ln(1 + αV1/3))

The gas pressure can be computed as

p = kBT

(

∂ ln QN

∂V

)

N,T
=

NkBT

q3

(

∂q3

∂V

)

=
3NkBT

q0

(

∂q0

∂V

)

that is

p =
NkBT

ln(1 + αV1/3)

αV−2/3

(1 + αV1/3)
(133)

Then, the modified Heisenberg commutation relations change the usual state equation
of an ideal monoatomic gas by a factor that depends on the gas volume. By expanding the
right side of (133) in the Taylor series in α one has that

pV = NkBT
[

1 − 1
2

V1/3α +
5

12
V2/3α2 − 3

8
Vα3 +

251
720

V4/3α4 + · · ·
]

(134)

For α → 0, one recovers the standard ideal gas state equation. Note, that the expansion
in (133) resembles a virial expansion of an interacting gas. Thus, a macroscopic observer
who measures in the laboratory the modified ideal gas state Equation (134) can think that
the gas is an interacting one. Modified Heisenberg commutation relations can then generate
interactions for a macroscopic observer.

The internal energy is

U = kBT2
(

∂ ln QN

∂T

)

N,T
=

NkBT2

q3

(

∂q3

∂T

)

=
3NkBT2

q0

(

∂q0

∂T

)

=
3
2

NkBT (135)

which is the same as an ideal gas. There are no observable GUP effects on the gas for the
internal energy in this case.

3.2. The Case of Quadratic Deformation Case in x̂

Consider now the following GUP relations in three-dimensional space
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[x̂, p̂x] = ih̄
(

I+ αx x̂2)

[ŷ, p̂y] = ih̄
(

I+ αyŷ2)

[ẑ, p̂z] = ih̄
(

I+ αz ẑ2)
(136)

and where any other commutator between the canonical variables is equal to zero. This
algebra can be represented by the differential operators

(x̂, ŷ, ẑ) = (x, y, z)

p̂x = −ih̄(1 + αxx2)
∂

∂x

p̂y = −ih̄(1 + αyy2)
∂

∂y

p̂z = −ih̄(1 + αzz2)
∂

∂z

(137)

The momentum eigenstates, in this case, are

Φ p⃗ (⃗r) = Ce
i
h̄ p⃗·⃗θ2 (⃗r) (138)

with

θ⃗2 (⃗r) =
(

Θ2(x), Θ2(y), Θ2(z)
)

=
(arctan(

√
αxx)√

αx
,

arctan(
√

αyy)
√

αy
,

arctan(
√

αzz)√
αz

)

(139)

For the problem of a particle in a box of lengths Lx, Ly, Lz, the energy eigenstates are

Ψnxnynz(x, y, z) = A sin(knx
x Θ2(x)) sin(k

ny
y Θ2(y)) sin(knz

z Θ2(z)) (140)

where

knx
x =

nxπ
√

αx

arctan(
√

αxLx)
, k

ny
y =

nyπ
√

αy

arctan(
√

αyLy)
, knz

z =
nzπ

√
αz

arctan(
√

αzLz)
(141)

To satisfy the boundary conditions the energy eigenvalues E = En1n2n2 are given by

Enxnynz =
h̄2

2m

(

(knx
x )2 + (k

ny
y )2 + (knz

z )2
)

= h̄2π2

2m

(

n2
xαx

arctan2(
√

αx Lx)
+

n2
yαy

arctan2(
√

αy Ly)
+ n2

xαz

arctan2(
√

αz Lz)

) (142)

If one defines de deformed GUP lengths ax, ay, az associated with de real lengths
Lx, Ly, Lz by

ai =
arctan(

√
αiLi)√

αi
i = x, y, z (143)

For a ideal gas of N particles in a cubic box with Lx = Ly = Lz = L = V1/3 and
considering the symmetric case, where the α parameters are identical αi = α i = x, y, z,
one has that

ai = a =
arctan(

√
α V1/3)√
α

The energy eingenvalues are the same as in Equation (131) and the partition func-
tion (132) gives in this case

q0 =

(

2πmkBT

h2

)1/2 1
α1/2

(arctan(
√

αV1/3))
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The gas pressure can be computed again as

p = 3NkBT
q0

(

∂q0
∂V

)

= 3NkBT
(arctan(

√
αV1/3))

1
3

√
α

V2/3(αV2/3+1)

or

pV =
NkBT

[

arctan(
√

αV1/3)√
αV1/3

(

αV2/3 + 1
)

] (144)

By expanding again the right side of (144) in the Taylor series in α one has that

pV = NkBT
[

1 − 2
3

V2/3α +
26
45

V4/3α2 − 502
945

V2α3 + · · ·
]

(145)

Again for α → 0, one recovers the standard ideal gas state equation. Thus, different
GUPs generate distinct virial expansion interactions for macroscopic observers. From an
experimental point of view, modified Heisenberg commutation relations can be detected by
conducting a virial expansion of a dilute real gas and comparing it with expansions (134)
or (145).

Note, that the internal energy is the same as given in (135) because both partition
functions have the same temperature dependence.

3.3. The Case of Linear Momentum Deformation

Consider now the following GUP relations in three-dimensional space

[x̂, p̂x] = ih̄
(

I+ βx p̂x

)

[ŷ, p̂y] = ih̄
(

I+ βy p̂y

)

[ẑ, p̂z] = ih̄
(

I+ βz p̂z

)

(146)

and where any other commutator between the canonical variables is equal to zero. This
algebra can be represented by the differential operators

(x̂, ŷ, ẑ) = (x, y, z)

p̂x =
1
β

(

eβ p̂0x − I
)

p̂y =
1
β

(

eβ p̂0y − I
)

p̂z =
1
β

(

eβ p̂0z − I
)

(147)

where
p̂0x = −ih̄

∂

∂x

p̂0y = −ih̄
∂

∂y

p̂0z = −ih̄
∂

∂z

(148)

For the case of a linear momentum deformation, the energy eigenvalues are given by

Enxnynz =
1

2mβ2
x
· tanh2

(

πh̄βxnx

Lx

)

+
1

2mβ2
y
· tanh2

(

πh̄βyny

Ly

)

+
1

2mβ2
z
· tanh2

(

πh̄βznz

Lz

)

For a cubic box Li = L = V1/3 and considering the symmetrical case βi = β, the corre-
sponding partition function q3 is

q3 = ∑
nx ,ny ,nz

e
− 1

kBT Enxnynz = q3
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where

q = ∑
n

exp
(

− 1
2mβ2KBT

· tanh2
(

πh̄βn

L

))

or using Equation (106)

q = ∑
n

exp






− E0

n

KBT





tanh
(

πh̄βn
L

)

(

πh̄βn
L

)





2





where E0
n = n2π2 h̄2

2mL2 . By expanding tanh2(x)/x2 = 1 − 2
3 x2 + 17

45 x4 − 62
315 x6 + · · · to the

second order in β, the sum is

q =∑
n

exp

[

− 1
kBT

E0
n

(

1 − 2
3

(

πh̄βn

L

)2

+ . . .

)]

=∑
n

exp
[

− E0
n

kBT

]

exp

[

2E0
n

3kBT

(

πh̄βn

L

)2

+ . . .

]

=∑
m

exp
[

− E0
n

kBT

]

[

1 +
2E0

n

3kBT

(

πh̄βn

L

)2

+ . . .

]

=∑
n

exp
[

− E0
n

kBT

]

+ ∑
n

exp
[

− E0
n

kBT

]

[

2E0
n

3kBT

(

πh̄βn

L

)2
]

+ . . .

or

q = ∑
n

exp
[

− E0
n

kBT

]

+ β2







(

π2h̄2
)2

3mkBTL4





∑
n

n4 exp
[

− E0
n

kBT

]

+ . . . (149)

The first sum above is just q0 given in (132) by

q0 = ∑
n

exp
(

− h2n2

8mL2kBT

)

=
∫ ∞

0
e−h2n2/(8mL2kBT)dn =

∫ ∞

0
e−γn2

dn =

(

π

4γ

)1/2

(150)

with γ = h2

8mL2kBT
. The second sum in (149)

q02 = ∑
n

n4 exp
[

− E0
n

kBT

]

= ∑
n

n4 exp
(

− h2n2

8mL2kBT

)

= ∑
n

n4 exp
(

−γn2
)

=
∫ ∞

0
n4e−γn2

dn

is related to the second derivative of q0 respect to γ. In fact

q02 =
d2q0

dγ2 =
3
8

√
πγ−5/2 =

3
8

√
π

(

h2

8mL2kBT

)−5/2

Thus, Equation (149) gives

q = q0 + β2
(

h4

48mkBTL4

)

q02 + · · · (151)

or

q =

(

2πmkBT

h2

)1/2

L + β2
(

h2

2π

)(

2πmkBT

h2

)3/2

L + · · ·

so

q =

(

2πmkBT

h2

)1/2

V1/3

(

1 + β2mkBT + · · ·
)

(152)
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The pressure, in this case, is

p =
3NkBT

q

(

∂q

∂V

)

=
NkBT

V

Thus, at least at a lower order in the deformation parameter β, GUP algebra has no
observable effect on the ideal gas state equation. The internal energy, however, is given by

U =
3NkBT2

q

(

∂q

∂T

)

=
1
2

(

1 + 3kBTβ2m + · · ·
)

T(1 + kBTβ2m + · · · ) (153)

Expanding the right side at the lowest order in β gives

U =
3
2

NkBT + 3Nk2
BT2mβ2 + · · · (154)

Thus, in the case of linear momentum deformation, the internal energy changes by the
deformation of the Heisenberg algebra.

3.4. The Case of Quadratic Deformation Case in p̂x

Consider now the following GUP relations in three-dimensional space

[x̂, p̂x] = ih̄
(

I+ βx p̂2
x

)

[ŷ, p̂y] = ih̄
(

I+ βy p̂2
y

)

[ẑ, p̂z] = ih̄
(

I+ βz p̂2
z

)

(155)

and where any other commutator between the canonical variables is equal to zero. This
algebra can be represented by the differential operators

(x̂, ŷ, ẑ) = (x, y, z)

p̂x =
tan
(√

β p̂0x

)

√

β

p̂y =
tan
(√

β p̂0y

)

√

β

p̂z =
tan
(√

β p̂0z

)

√

β

(156)

where p̂0x, p̂0y, p̂0z are given by (148). The energy eigenvalues are given by

Enxnynz =
1

2mβx
· tan2

(

πh̄
√

βxnx

Lx

)

+
1

2mβy
· tan2

(

πh̄
√

βyny

Ly

)

+
1

2mβz
· tan2

(

πh̄
√

βznz

Lz

)

For a cubic box Li = L = V1/3 and considering the symmetrical case βi = β, the corre-
sponding partition function q is

q = ∑
n

exp

(

− 1
2mβKBT

· tan2

(

nπh̄
√

β

L

))

or using Equation (117)

q = ∑
n

exp











− E0
n

KBT









tan
(

πh̄
√

βn

L

)

(

nπh̄
√

β

L

)









2








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By expanding tan2(x)/x2 = 1 + 2
3 x2 + 17

45 x4 + 62
315 x6 + · · · to the second to order in β,

and noting that the Taylor expansion of tanh2(x)
x2 and tan2(x)

x2 are the same, but with minus
signs in the even terms of the first case, the sum is

q =∑
n

exp



− 1
kBT

E0
n



1 +
2
3

(

πh̄
√

βn

L

)2

+ . . .









=∑
n

exp
[

− E0
n

kBT

]

exp



− 2E0
n

3kBT

(

πh̄
√

βn

L

)2

+ . . .





=∑
m

exp
[

− E0
n

kBT

]



1 − 2E0
n

3kBT

(

πh̄
√

βn

L

)2

+ . . .





=∑
n

exp
[

− E0
n

kBT

]

− ∑
n

exp
[

− E0
n

kBT

]





2E0
n

3kBT

(

πh̄
√

βn

L

)2


+ . . .

or

q = ∑
n

exp
[

− E0
n

kBT

]

− β







(

π2h̄2
)2

3mkBTL4





∑
n

n4 exp
[

− E0
n

kBT

]

+ . . . (157)

The sum above using Equation (151) and replacing +β2 by −β

q = q0 − β

(

h4

48mkBTL4

)

q02 + · · · (158)

so by (152)

q =

(

2πmkBT

h2

)1/2

V1/3

(

1 − βmkBT + · · ·
)

The pressure, in this case, is

p =
3NkBT

q

(

∂q

∂V

)

=
NkBT

V

Thus, at least at lower order in β, GUP algebra has no observable effect on the ideal
gas state equation. The internal energy is given by

U =
3NkBT2

q

(

∂q

∂T

)

=
1
2
(1 − 3kBTβm + · · · )
T(1 − kBTβm + · · · ) (159)

Expanding the right side at the lowest order in β gives

U =
3
2

NkBT − 3Nk2
BT2mβ + · · · (160)

Therefore, in the case of quadratic momentum deformation, the internal energy again
suffers modifications by the GUP algebra. Observe that for the internal energy, the effect
of the quadratic momentum deformation is linear in β, whereas the effect of the linear
momentum deformation is quadratic in β.

4. Conclusions

This article has analysed the effects of modifying the Heisenberg commutation re-
lations for two simple systems: first, the one-dimensional quantum infinite square-well
potential, and second, the case of a gas of N non-interacting particles in a box of volume V.
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We have considered two different modifications of the commutation relations: one
that depends on the position operator x̂ (in a linear way and in a non-linear way) and
another one that depends linearly and quadratically on the momentum operator p̂x.

In the position x̂ modification case, the modified commutations relations read

[x̂, p̂x] = ih̄
(

I+ αx̂n
)

For the first system, the one-dimensional infinite square well, the modified wave
functions, and probability densities differ substantially from the original unmodified ones
when the intensity of the modification, given by the parameter α, is greater than or equal to

unity. The energy eigenvalues are rescaled homogeneously by a constant factor α2L2

ln2(1+αL)

for n = 1, and L2

[Θn(L)−Θn(0)]2
for n ≥ 2.

For the second system, i.e., the non-interacting gas, the corresponding state gas equa-
tion is modified, acquiring the form of a virial expansion in the volume. In contrast,
the internal energy is unchanged for analysed cases n = 1 and n = 2. These results imply
that the modified Heisenberg commutation relations can generate interactions for a macro-
scopic observer. This phenomenon may have significant implications since, it could be
that the four interactions of nature, could be the product of deformed Heisenberg algebras
acting on free particles.

In the momentum p̂ modification case, the modified commutation relation is in the
linear case

[x̂, p̂x] = ih̄
(

I+ β p̂x

)

and
[x̂, p̂x] = ih̄

(

I+ β p̂2
x

)

for the quadratic one. For the infinite square-well system, in the linear deformation case,

each energy eigenvalue En is rescaled in a different way, by a factor
L2 tanh2

(

πh̄βn
L

)

β2n2π2 h̄2 that

depends on the energy level n. For the quadratic case, the energy eigenvalues are rescaled

by a factor
L2 tan2

(

nπh̄
√

β
L

)

βn2π2 h̄2 , that also depends on the energy level. Curiously, probability

densities for both linear and quadratic momentum deformation cases, are equal to the
non-deformed free particle.

In the linear momentum deformation case, for energy greater than E−∞ = 1
2mβ2 ,

it is not possible to find stationary states and, for 0 ≤ E ≤ E−∞ , and the momentum
eigenstates moving in opposite directions have different energies: E(px) > E(−px) for
px > 0.

For the non-interacting gas system, the effect of both momentum p deformations
at the lowest order in β, is that the ideal gas state equation remains unchanged. However,
the internal energy is modified (at the lowest order in β) by the temperature. For linear
p deformation, the internal energy depends on β2; instead, for quadratic p deformation,
the dependence is linear in β.

Finally, in the study of quantum mechanics in a curved spacetime, the metric is fixed,
but by incorporating back-reaction effects, it implies that quantum mechanics alters the
original metric. This new gravitational field, in turn, should cause a deformation in the
Heisenberg commutation relations, which should generate a second back-reaction on the
metric, and this metric would generate new Heisenberg commutation relations and so on.
This means that a theory that incorporates gravity and quantum mechanics on the same
footing, i.e., a theory of quantum gravity, must necessarily be a fixed point of this whole
process. If this fixed point exists, it should have associated with it both a metric and a
possibly deformed commutation relations. And these deformed commutation relations
could generate the fundamental interactions that model our universe, from simple free
particles. In this sense, gravity could generate our entire perceptible world.
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To conclude, an interesting question arises: What does the momentum P mean in the
canonical commutation relation? Moreover, when taking the classical limit, are the classical
theories equivalent? Or better yet is there a canonical transform that maps the phase space
(x, p0) to the phase space (Q, P), where Q is the generalised coordinate associated to P?

Our next article will provide a comprehensive analysis of these questions. We can
confidently confirm that a canonical transformation is indeed possible, at least for the
position’s deformation case.

We hope these results will clarify the possible consequences of modifying the canonical
Heisenberg commutation relations.
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