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We calculate the mass difference between the ϒ and ηb and the ϒ leptonic width from lattice QCD
using the highly improved staggered quark formalism for the b quark and including u, d, s and c
quarks in the sea. We have results for lattices with lattice spacing as low as 0.03 fm and multiple heavy
quark masses, enabling us to map out the heavy quark mass dependence and determine values at the b
quark mass. Our results are Mϒ −Mηb ¼ 57.5ð2.3Þð1.0Þ MeV (where the second uncertainty comes from
neglect of quark-line disconnected correlation functions) and decay constants, fηb ¼ 724ð12Þ MeV and
fϒ ¼ 677.2ð9.7Þ MeV, giving Γðϒ → eþe−Þ ¼ 1.292ð37Þð3Þ keV. The hyperfine splitting and leptonic
width are both in good agreement with experiment, and provide the most accurate lattice QCD results to
date for these quantities by some margin. At the same time results for the time moments of the vector-vector
correlation function can be compared to values for the b quark contribution to σðeþe− → hadronsÞ
determined from experiment. Moments 4–10 provide a 2% test of QCD and yield a b quark contribution
to the anomalous magnetic moment of the muon of 0.300ð15Þ × 10−10. Our results, covering a range of
heavy quark masses, may also be useful to constrain QCD-like composite theories for beyond the Standard
Model physics.

DOI: 10.1103/PhysRevD.103.054512

I. INTRODUCTION

Weak decay matrix elements calculated in lattice QCD
are critical to the flavor physics program of overdetermin-
ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix to
find signs of new physics. For that program the weak
decays of b quarks are particularly important since they
give access to the least well-known CKM elements, Vub

and Vcb. These CKM matrix elements can be determined
using either exclusive decay channels and lattice QCD form
factors or inclusive decay channels and measured spectral
shape functions. There continues to be some tension
between the exclusive and inclusive determinations [1]
that needs further improvements to both approaches to
resolve. On the lattice QCD side this means developing
improved approaches to B meson weak decay matrix
elements, such as [2,3], but also providing more stringent
tests of lattice QCD results in b physics to make sure that
sources of systematic error are under full control. Here we
provide three such tests using bottomonium correlation
functions: the ground-state hyperfine splitting (the mass
difference between the ϒ and ηb), the ϒ leptonic width and
the b quark contribution to Rðeþe− → hadronsÞ. The last
two, being electromagnetic processes, can be compared
with experiment free from CKM uncertainties. We obtain
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the most accurate results to date for these quantities and are
able to include the effect of the b quark’s electric charge in
the calculation for the first time.
We use the highly improved staggered quark (HISQ)

discretization of the quark action for these calculations. The
HISQ action was developed in [4] to have small discreti-
zation errors with the leading errors, quadratic in the lattice
spacing, removed. This makes the action particularly good
for heavier quarks when discretization errors appear as
powers of the quark mass in lattice units, which can be
relatively large. This action enabled the first accurate lattice
calculations in charm physics [5–8]. More recently it has
been used to achieve sub-1% accuracy in the charmonium
hyperfine splitting, J=ψ leptonic width, mc and c quark
vacuum polarization contribution to the anomalous mag-
netic moment of the muon [9]. The calculation used a range
of lattice spacing values from 0.15 to 0.03 fm with u, d, s
and c quarks in the sea and included the effect of the c
quark’s electric charge [9].
Here we will extend the latter calculation to bottomo-

nium. Because the b quark mass is much larger than that of
c, we need fine lattices to reach the b with a quark mass in
lattice units, amb < 1 and controlled discretization errors.
Our strategy, known as the heavy-HISQ approach [10], is to
perform calculations for a range of masses between c and b
on lattices with a range of fine lattice spacings. We can then
map out the dependence on the heavy quark mass of both
the quantity being calculated and its discretization errors.
This enables us to determine a physical result at the b
quark mass.
This approach has been very successful for decay

constants and spectroscopy for heavy-light (B, Bs and
Bc) mesons [10–12] and is now being used for the form
factors for B meson weak decays [2,3]. Here we will apply
this approach to the ϒ for the first time.
There are alternative nonrelativistic approaches that

can be used at the b quark mass on coarser lattices; see
[13] for the determination of the ϒ and ϒ0 leptonic widths
using lattice nonrelativistic QCD. The nonrelativistic
expansion of the Hamiltonian and the currents that appear
in matrix elements gives systematic uncertainties from
missing higher-order relativistic corrections and from
renormalization of the lattice current to match the con-
tinuum current. These uncertainties hinder tests at high
precision.
In contrast the HISQ action is relativistic and the HISQ

vector current can be matched accurately and fully non-
perturbatively to that in continuum QCD [14]. As we will
show below, this enables us to improve the lattice QCD
accuracy on the bottomonium hyperfine splitting to better
than 5% and to achieve percent-level precision on theϒ and
ηb decay constants and on moments that parametrize the b
quark contribution to Rðeþe− → hadronsÞ.
Our results cover the range of heavy quark masses from c

to b and we will give results for decay constant to mass

ratios over this range. These could be useful both for tuning
of phenomenological models of QCD and as constraints on
QCD-like composite theories for beyond the Standard
Model physics.
The paper is organized as follows. In the next section we

give details of the lattice calculation we perform. This
includes a general description of the fits that we use to
determine the heavy mass dependence of the quantities
calculated. We then present results for the bottomonium
hyperfine splitting in Sec. III, the decay constants for both
the ηb and ϒ in Sec. IVand the time moments of the vector
current-current correlators in Sec. V. Each section includes
a description of the calculation and then a discussion
subsection with comparison to experiment and previous
lattice QCD results. Section IV on decay constants also
includes plots of decay constant to mass ratios and the ratio
of vector to pseudoscalar decay constants over the quark
mass range from c to b. We then give our conclusions
in Sec. VI.

II. LATTICE CALCULATION

We use ensembles of lattice gluon field configurations
provided by the MILC Collaboration [15] at values of the
lattice spacing, a ≈ 0.09, 0.06, 0.045 and 0.03 fm. The
configurations are generated with an αsa2-improved dis-
cretization of the gluon action [16] and include the effect of
u, d, s and c quarks in the sea with the HISQ formalism [4].
The u and dmasses are taken to be the same and we denote
this mass ml. For most of the ensembles we have unphysi-
cally heavy u=d quarks with ml=ms ≈ 0.2 but we employ
two ensembles with physical values of ml and lattice
spacing values ∼0.09 and ∼0.06 fm. We expect sea quark
mass effects to be small for the ϒ because it has no valence
light quarks. However, an analysis of such effects is needed
for accurate results.
Table I lists the parameters of the ensembles that we use.

The lattice spacing is determined in terms of the Wilson
flow parameter w0 [17]. On these ensembles we calculate
quark propagators from random wall sources using the
HISQ action and with a variety of masses, mh, from that of
the c quark upward. The valence heavy quark masses that
we use on each ensemble are listed in Table II. The value of
ϵNaik used in the coefficient of the Naik term in the HISQ
action [4] is taken as the tree-level function of the quark
mass given in [6].
We combine the quark propagators into (connected)

meson correlation functions for both pseudoscalar (ηh)
and vector (ϕh) mesons, using the local γ5 and γi operators
converted to appropriate form for staggered quarks [8,9].
Note that we do not include quark-line disconnected
correlation functions that take account of the heavy
quark/antiquark annihilation to gluons. We expect the
effect of the disconnected correlation functions to be very
small in the heavyonium system. In [9] our result for the
mass difference between J=ψ and ηc mesons was accurate
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enough, for the first time, to see a difference with experi-
ment of 7.3(1.2) MeV.We concluded that this was the effect
of the missing disconnected correlation function on the ηc
mass. Here we will test for a similar effect on the ηb.
On the coarsest two ensembles we use 16 time sources

on each gluon field configuration for high statistics; we take
eight time sources on the other ensembles. We use at least

100 configurations on each ensemble for a good statistical
sample. In generating the very fine lattice (set 6 in Table I) a
slow evolution in Monte Carlo time of the topological
charge was observed [15], so that the ensemble does not
explore many topological sectors. However, it has been
shown that the impact of this on calculations for heavy
mesons is negligible [20].

TABLE I. Sets of MILC configurations [15] used here with HISQ sea quark masses, msea
l (l ¼ u=d), msea

s and msea
c given in lattice

units. The lattice spacing is given in units of w0 [17]; the physical value of w0 was determined to be 0.1715(9) fm from fπ [18]. Sets 1
and 2 are “fine” (a ≈ 0.09 fm), sets 3 and 4 are “superfine” (a ≈ 0.06 fm), set 5 “ultrafine” (a ≈ 0.045 fm) and set 6 “exafine”
(a ≈ 0.03 fm). The final two columns give the extent of the lattice in each spatial direction (Ls) and time (Lt).

Set Label w0=a amsea
l amsea

s amsea
c Ls Lt

1 f-5 1.9006(20) 0.0074 0.037 0.440 32 96
2 f-phys 1.9518(7) 0.00120 0.0363 0.432 64 96
3 sf-5 2.8960(60) 0.00480 0.0240 0.286 48 144
4 sf-phys 3.0170(23) 0.0008 0.022 0.260 96 192
5 uf-5 3.892(12) 0.00316 0.0158 0.188 64 192
6 ef-5 5.243(16) 0.00223 0.01115 0.1316 96 288

TABLE II. Results in lattice units for the masses of the ground-state pseudoscalar meson, ηh, and ground-state vector meson, ϕh, for
valence heavy quark masses in lattice units listed in column 2, for the ensembles listed in column 1. Results come from simultaneous fits
to all heavy quark masses on a given ensemble, except for the cases marked with an asterisk [19]. These used different random numbers
for the sources and so are not correlated with the other results for that ensemble. Column 5 gives the mass difference in lattice units
between the ϕh and ηh, column 6 the ηh decay constant and column 7 the raw (unrenormalized) ϕh decay constant. The required ZV
factors are taken from [14].

Set amh aMηh aMϕh
aΔMhyp afηh afϕh

=ZV

1 0.6 1.675554(47) 1.717437(70) 0.041882(84) 0.208641(60) 0.21865(11)
0.8 2.064088(40) 2.101542(57) 0.037454(70) 0.249695(64) 0.25711(10)

2 0.6 1.674264(13) 1.715453(32) 0.041189(35) 0.207535(22) 0.21690(10)
0.8 2.063015(11) 2.099940(26) 0.036925(29) 0.248493(21) 0.255249(96)
0.866� 2.185464(53) 2.221789(38) 0.036325(65) 0.264483(61) 0.27011(12)

3 0.274 0.896664(33) 0.929876(86) 0.033212(92) 0.117554(37) 0.12339(15)
0.4 1.175559(29) 1.202336(85) 0.026778(90) 0.135692(39) 0.13916(21)
0.5 1.387459(27) 1.411113(72) 0.023654(77) 0.148936(40) 0.15104(20)
0.548� 1.487111(36) 1.509697(54) 0.022586(65) 0.155563(68) 0.157200(87)
0.6 1.593089(25) 1.614626(63) 0.021537(68) 0.162314(41) 0.16318(19)
0.7 1.793118(23) 1.813249(57) 0.020131(61) 0.176638(42) 0.17617(19)
0.8 1.987504(22) 2.006783(52) 0.019279(56) 0.192680(44) 0.19061(19)

4 0.260 0.862671(27) 0.895702(52) 0.033030(58) 0.114147(34) 0.11969(10)
0.4 1.173904(23) 1.199806(36) 0.025903(43) 0.134475(37) 0.137266(83)
0.6 1.591669(19) 1.612586(27) 0.020917(34) 0.161035(39) 0.161236(77)
0.8 1.986246(17) 2.005047(24) 0.018801(29) 0.191297(41) 0.188634(82)

5 0.194 0.666821(41) 0.692026(59) 0.025205(72) 0.087774(42) 0.091442(91)
0.4 1.130722(31) 1.147617(40) 0.016895(51) 0.114953(46) 0.114918(72)
0.6 1.549098(26) 1.562884(32) 0.013786(41) 0.137487(54) 0.135412(69)
0.8 1.945787(23) 1.958252(27) 0.012465(35) 0.162850(58) 0.158238(72)
0.9 2.135642(21) 2.147903(25) 0.012261(33) 0.178229(58) 0.171745(74)

6 0.138 0.496969(42) 0.516149(61) 0.019180(74) 0.065916(59) 0.06841(10)
0.45 1.201328(29) 1.211601(28) 0.010273(40) 0.102989(81) 0.100572(70)
0.55 1.410659(27) 1.420048(24) 0.009389(36) 0.112668(82) 0.109506(67)
0.65 1.614877(24) 1.623684(21) 0.008807(32) 0.122639(81) 0.118680(64)
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We fit the correlation functions from each ensemble
using a multiexponential constrained fit [21] and following
the method in [9]. The fit form used for the pseudoscalar
correlators as a function of t, the time separation between
source and sink, is

CPðtÞ ¼
X
i

AP
i fðEP

i ; tÞ; ð1Þ

and the vector fit form is

CVðtÞ ¼
X
i

ðAV
i fðEV

i ; tÞ − ð−1ÞtAV;o
i fðEV;o

i ; tÞÞ: ð2Þ

Here

fðE; tÞ ¼ e−Et þ e−EðLt−tÞ: ð3Þ

The term that oscillates in time in the vector case results
from the use of staggered quarks. E0 is the mass of the
lowest lying state (either pseudoscalar or vector) and A0 is
related to the meson decay constants. The ground-state
pseudoscalar meson we will denote as ηh and the vector as
ϕh. We fit the correlation functions for all masses on a given
ensemble simultaneously (with two exceptions, see
Table II). This means that the correlations between results
for different masses are carried through the rest of the
calculation. The correlations between the ϕh and ηh
correlators are safely neglected as the uncertainty in the
ϕh results dominates that for the ηh. Results for the ground-
state mesons are listed in Table II.
We also have a limited amount of data which include the

effects of quenched QED (electrically charged valence
quarks, but not sea quarks). This allows us to assess the
impact of QED and appropriately account for it in our error
budgets. As in [9] we use photon fields in Feynman gauge
in the QEDL formalism [22]. Our quenched QED calcu-
lations [9,19] used a valence quark electric charge of 2=3e
(i.e., the charge on a c quark), where e is the magnitude of
the charge on an electron. We can use these results to
determine the electromagnetic correction for the b electric
charge of −ð1=3Þe. Given the smallness of αQED we take
QED corrections to be linear in the quark charge squared,
Q2, and simply rescale the effect of QED by a factor of 1=4
from that for Q ¼ ð2=3Þe. Results are given in Table III in
the form of the ratio, R0, of results in QCDþ QED to those
in pure QCD at a fixed value of the valence quark mass in

lattice units. We see there that the impact of QED is tiny but
visible. We showed in [9] that QED finite-volume effects
were negligible for the electrically neutral charmonium
mesons. This will continue to be true for the heavier
mesons that we study here and so we ignore such effects.
As we showed in [9], fixing the lattice spacing from w0

and fπ , as we have done, means that QED corrections to the
lattice spacing should be at the sub-0.1% level (coming
from QED effects in the quark sea). We can therefore
compare QCD plus quenched QED to pure QCD using the
same value of the lattice spacing (i.e., that from Table I).
QED affects the tuning of the lattice quark masses,
however. We use the simple and natural scheme of tuning
the b quark mass in both the QCDþ QED and pure QCD
cases so that theϒmass has the physical value. We can then
use our results to determine the impact of QED on the
quantities we study, taking the renormalization of the quark
mass into account. We will give that information, after
fitting, as the renormalized ratio R, which is the ratio of the
QCDþ QED result to that in pure QCD when both theories
have a b quark mass separately tuned so that the ϒ mass
takes the experimental value in both cases.
For each quantity that we study we must fit our results, in

physical units, as a function of heavy quark mass and lattice
spacing to determine results in the continuum limit at the
physical b quark mass. We will use the ϕh mass as a
physical proxy for the heavy quark mass and then the
physical point is defined by the ϕh mass becoming equal to
that of the ϒ.
In previous studies of heavy meson masses and decay

constants using the heavy-HISQ method the HPQCD
Collaboration have used fit forms that capture the heavy
mass dependence as a polynomial in the inverse Hs or ηh
mass [10,11]. In the case of heavy-light mesons this form is
justified by the heavy quark effective theory (HQET)
expansion. In the case of heavyonium the HQET expansion
is not valid but the same form may still be expected to work
as a Taylor expansion over a finite region in mh. Here,
however, we choose to use a fit form that is more agnostic
with regard to the dependence on the heavy quark mass. We
achieve this by using cubic splines between specified knot
positions.1 We do not expect to need many knots because
the quantities we study here should be smooth monotonic

TABLE III. Quenched QED corrections, for quark electric charge e=3, to a subset of the results of Table II presented as the ratio, R0, of
the value in QCDþ QED to that in pure QCD at fixed valence quark mass in lattice units.

Set amh R0
QED½aMηh � R0

QED½aMϕh
� R0

QED½aΔMhyp� R0
QED½afηh � R0

QED½afϕh
=ZV �

2 0.866 1.0002170(45) 1.0002637(14) 1.00307(25) 1.001255(68) 1.001343(62)
3 0.274 1.0003937(42) 1.0004468(28) 1.001875(83) 1.00078(12) 1.000708(83)

0.548 1.0003306(12) 1.00036876(24) 1.002882(80) 1.001127(35) 1.0009805(75)

1We use splines that are monotonic between knots (Steffen
splines [23]).
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functions of Mϕh
in the continuum limit at physical sea

quark masses. The fit function for our lattice results also
needs to include dependence on the lattice spacing and the
mistuning of sea quark masses. Both of these effects can
also depend on the heavy quark mass (Mϕh

) through
smooth monotonic functions and so we also include cubic
splines in their description.
We use fits of the following form for the pure QCD part

of our fit:

Fða;Mϕh
Þ½QCD�

¼ A

�
F0ðMϕh

Þ þ G0ð1=Mϕh
Þ þ

X3
i¼1

GðiÞ
1 ðMϕh

ÞðamhÞ2i

þ
X3
j¼1

GðjÞ
2 ðMϕh

ÞðaΛÞ2j þ G3ðMϕh
ÞðaΛÞ2ðamhÞ2

þ
X2
k¼0

GðkÞ
4 ðMϕh

ÞðamhÞ2kδl þ G5ðMϕh
Þδc

�
: ð4Þ

Fða;Mϕh
Þ are the lattice QCD results in physical units of

GeV for the hyperfine splitting and decay constants and
GeV−1 for the time moments. A is then a dimensionful
number of a size commensurate with the size of the quantity
being fitted (this will be given in each section) so that the
rest of the fit in square brackets is dimensionless. F0 is a
dimensionless function of Mϕh

that differs between the
different quantities we examine (and will also be given in
each section). It is a very simple function of Mϕh

that
captures the general trend in the mass dependence, on top
of which the corrections modeled by splines are relatively
minor. Gn denotes a cubic spline. All of the splines have
different parameters but keep the same positions for the
knots. The splines are functions of Mϕh

, where Mϕh
is in

GeV, except for the first spline, G0, which provides the
physical corrections to F0. We found that a spline in 1=Mϕh

rather than Mϕh
gave a better χ2 for quantities like the

hyperfine splitting which fall asMϕh
grows, approximately

as the inverse. We allow for two kinds of discretization
effects, those that are set by the heavy quark mass amh and
those that are independent of the heavy quark mass and
instead are set by a fixed scale that we call Λ. We take Λ to

be 0.5 GeV. The GðiÞ
1 splines allow for heavy mass

dependence in the amh discretization effects and the GðjÞ
2

splines allow for heavy mass dependence in the aΛ
discretization effects. We also include a mixed term in
ðamhÞ2ðaΛÞ2 with spline G3, although this has little impact
on the fits.
The last line of the fit form in Eq. (4) allow for sea quark

mass mistunings. The light quark mass mistuning param-
eter δl is defined as

δl ¼
2msea

l þmsea
s − 2mphys

l −mphys
s

10mphys
s

: ð5Þ

mphys
s and mphys

l are taken to be the same as those used in
[9]. The charm quark mass mistuning parameter is defined
similarly:

δc ¼
msea

c −mphys
c

10mphys
c

: ð6Þ

We allow for discretization effects and heavy mass

dependence set by splines GðkÞ
4 within the light sea

quark mass mistuning term. We allow for heavy mass
dependence in the sea charm mass mistuning term through
the spline G5.
For data that includes quenched QED effects we add

extra terms to the fit function in Eq. (4). The full fit takes
the form

Fða;Mϕh
Þ½QCDþQED�¼Fða;Mϕh

Þ½QCD�
þAαQEDQ2½Ĝ1ð1=Mϕh

ÞþcQED;amh
Ĝ2ðMϕh

ÞðamhÞ2�: ð7Þ

Ĝ1 and Ĝ2 are additional spline functions.
For all the fits considered here we use knots placed at

f2.5; 4.9; 10g GeV, taking knots at the beginning and end
of the fit range and one in the middle. This is the optimal
number of knots according to the Bayes factor. We have
checked that varying the sums over discretization effects so
that the number of terms included changes by �1 has no
significant effect. Because statistical errors are so small
here (see Table II) we employ a singular value decom-
position (SVD) cut [24] in the fit to account for tiny effects
that are too small to be modeled by our fit form of Eq. (4).
The SVD cut value times the maximum eigenvalue of the
covariance matrix sets a minimum value for the eigenval-
ues. Any eigenvalues of the covariance matrix below this
minimum are then replaced with the minimum value. This
is a conservative move which increases our uncertainties, as
can be seen from the impact of the SVD cut in our error
budgets.
The prior information given to the fit is central values

and widths for the values of the coefficients, cF, in F0 and
for the values of the spline functions at each knot. We use
priors of 0� 1 for all of these. We use the lsqfit PYTHON
module [25] to do the fits, implementing the splines with
the GVAR module [26].
To obtain our final results, the fit function is evaluated at

lattice spacing equal to zero, sea quark masses tuned to
their physical values and Mϕh

equal to Mϒ. This is taken
from experiment as 9.4603 GeV [1] with negligible
uncertainty.
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III. HYPERFINE SPLITTING

The hyperfine splitting, ΔMhyp, is the difference in mass
between the ground-state ϕh and ηh mesons. The values for
the hyperfine splitting on each ensemble for a variety of
heavy quark masses are given in lattice units in column 5 of
Table II. The separate ηh and ϕh masses are given in lattice
units in columns 3 and 4. The impact of quenched QED at
fixed valence quark mass is given in Table III. The effect of
QED is similar to that for charmonium [9] but reduced
because of the smaller electric charge of the b quark. The
direct effect of QED on the hyperfine splitting is to increase
it, through a QED hyperfine effect which has the same sign
as the QCD hyperfine effect. QED also increases the meson
masses, however, and this requires a retuning of the bare
quark masses downward to match the same meson mass.
This then has an indirect effect, increasing the hyperfine
splitting by a very small amount.
Our lattice results are plotted in Fig. 1 as a function of the

vector heavyonium mass, Mϕh
. The points include both

pure QCD and QCDþ QED values but the QCDþ QED
values are indistinguishable from pure QCD on this scale.
To fit our results for the hyperfine splitting using Eq. (4)

we take A ¼ 0.1 GeV and the simple form for F0,

F0 ¼ cð0ÞF þ cð1ÞF ð3 GeVÞ=Mϕh
. The coefficients cð0ÞF and

cð1ÞF have prior values 0(1). Note that we multiply the QED
correction term in the fit [Eq. (7)] by a factor of 2 because
of the size of the QED corrections that we see in the results
(Table III and [19]). That these prior widths are very
conservative can be judged from the values and variation
across Fig. 1. Evaluating the fit result at zero lattice

spacing, tuned quark masses and with Mϕh
equal to the

ϒ mass, we obtain the physical result for the bottomonium
hyperfine splitting using connected correlation functions of

Mϒ −MηbðconnectedÞ ¼ 57.5ð2.3Þ MeV: ð8Þ

This is the QCDþ QED value. For the ratio of the
QCDþ QED value to the pure QCD result, we obtain

RQED½ΔMhyp� ¼ 1.0001ð26Þ: ð9Þ

Note that this is the “renormalized” ratio with the b quark
mass tuned from the ϒ in both QCDþ QED and QCD. We
see no significant impact of quenched QED at the 0.2%
level. The fit has a χ2=dof of 0.73 using a SVD cut
of 5 × 10−3.
Figure 1 shows our fit curve as a function of Mϕh

in the
continuum limit for tuned sea quark masses. This gives
useful physical insight into how the hyperfine splitting falls
as the quark mass increases. At the high mass end of the
plot we mark with a black cross the experimental average
value [1] for the bottomonium system. We will discuss the
comparison to experiment further in Sec. III A. We note
that at the lower mass end of the curve we have results for
charmonium. Our fit here does not include all of the
charmonium results that went into [9] but gives a value
for the charmonium hyperfine splitting that is consistent
(within 1σ) with [9] for the pure QCD case. The QEDþ
QCD result here is too small at the charmonium end of the
fit curve because the QED is being included with quark
charge 1=3e rather than the correct charm quark charge
of 2=3e.
We will discuss in Sec. III A what the impact of quark-

line disconnected (but gluon-connected) correlation func-
tions could be on the bottomonium hyperfine splitting. For
our charmonium calculation of [9] we included an estimate
of the QED quark-line disconnected contribution to the
hyperfine splitting coming from cc̄ annihilation to a single
photon, which then converts back to cc̄. The contribution of
this to the charmonium hyperfine splitting is 0.7 MeV,
which was a little more than half the uncertainty in our
result. The equivalent contribution for the ϒ here is much
smaller, at 0.17 MeV, because of the smaller electric charge
of the b quark. At a size of one tenth of the uncertainty in
our result in Eq. (8), this would then have negligible impact
and we do not include it.
A complete error budget for the bottomonium hyperfine

splitting is given in Table IV. Statistical uncertainties are
divided between those arising from our two-point fits and
those coming from the lattice spacing determination, both
correlated between ensembles (w0) and uncorrelated
(w0=a). The uncertainty from the two-point fits is further
divided in two. As already mentioned, the use of a SVD cut
is conservative and increases the uncertainty in the fit
output. We can calculate the contribution to an error budget

FIG. 1. The heavyonium hyperfine splitting as a function of the
vector heavyonium mass,Mϕh

. The points show our lattice results
from Tables II and III, with different symbols denoting different
ensembles as in the legend. The errors are dominated by
uncertainties from a that are correlated between the points.
QCDþ QED points are shown in cyan. They are not distinguish-
able from their pure QCD counterparts, but are visible by being
shown on top of these values. Cubic splines are used to fit the
heavy mass dependence, as described in the text. The fit evaluated
at the physical point and zero lattice spacing is given by the
purple dashed line with error band. The experimental average
value for the hyperfine splitting [1] is plotted as the black cross at
the physical ϒ mass.
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of the data both with and without the SVD cut applied to its
correlation matrix. In the error budgets of Table IV we give
the contribution from the data with the original correlation
matrix under the heading “statistics.” The additional con-
tribution from the SVD cut is then defined as the square
root of the difference of the squared contributions from the
data with and without a SVD cut applied. The contributions
from various parts of the heavy mass dependence in
Eqs. (4) and (7) are shown individually, labeled by the
set of spline functions for that contribution.
The fit parameters required to reproduce the physical

curve of the hyperfine splitting as a function ofMϕh
plotted

in Fig. 1 are given in Table IX of the Appendix.

A. Discussion: Hyperfine splitting

Our bottomonium hyperfine splitting result of Eq. (8) is
compared to earlier lattice QCD results in Fig. 2, going
back to the first lattice QCD calculation to include sea
quarks [27]. Clearly the use of the heavy-HISQ approach
has allowed us to reduce the uncertainty significantly (by a
factor of 3) relative to these earlier results. The earlier
results all use nonrelativistic actions, or actions with
nonrelativistic input such as the Fermilab formalism
[28], for the b quarks. This leads to uncertainties from
the normalization of relativistic corrections to the
Hamiltonian, such as the σ · B term that is responsible
for the hyperfine splitting. We avoid this uncertainty with
the HISQ action at the cost of having to calculate at
multiple heavy quark masses rather than directly at the b
quark mass.
As discussed in Sec. II, we have only computed con-

nected correlators. This is also true for the earlier results
except for that in [32]. This means that we are neglecting
the contribution to the ηb mass from its annihilation to
gluons. This contribution can be related to the ηb hadronic

width using nonrelativistic QCD (NRQCD) perturbation
theory [4]:

ΔMηb ¼
Γηb

2

�
2ðln 2 − 1Þ

π
þOðαs; v2=c2Þ

�
: ð10Þ

Using the total width of the ηb of 10(5) MeV [1] gives a
shift to the ηb mass from the leading-order term of
−1.0ð5Þ MeV. This would result in an upward shift in
the hyperfine splitting of approximately 1 MeV, which
amounts to 0.5σ for our result [Eq. (8)].
We recently showed, for the first time, that this leading-

order analysis fails in the case of the charmonium hyperfine
splitting [9] where, with the improved accuracy we were
able to achieve, it becomes clear that the lattice QCDþ
QED result is significantly higher than the experimental
average. Assuming that this difference is the result of the

TABLE IV. Error budget for the hyperfine splitting and decay
constants as a percentage of the final answer.

Mϒ −Mηb fϒ fηb

Statistics 2.40 0.77 0.38
SVD cut 1.48 0.44 0.67
w0 0.55 0.61 0.59
w0=a 0.66 0.23 0.18
ZV � � � 0.29 � � �
F0 0.03 0.01 0.00
G0 0.05 0.02 0.01
G1 1.14 0.17 0.18
G2 0.48 0.24 0.31
G3 0.42 0.28 0.45
G4 1.45 0.73 0.98
G5 1.08 0.29 0.27
Ĝ1

0.29 0.07 0.08

Ĝ2
0.19 0.01 0.00

Total (%) 3.99 1.43 1.59

FIG. 2. Comparison of lattice QCD determinations of the
bottomonium hyperfine splitting. Our result from Eq. (8) is
given by the top purple hexagon. Previous results (green squares)
come from HPQCD/UKQCD usingOðv4Þ NRQCD b quarks and
2þ 1 flavors of asqtad sea quarks [27]; the Fermilab Lattice/
MILC collaborations using the Fermilab formalism for the b
quark and 2þ 1 flavors of asqtad sea quarks [29]; S.Meinel using
NRQCD b quarks with Oðv6Þ spin-dependent terms and 2þ 1
flavors of domain-wall sea quarks [30]; the RBC/UKQCD
collaborations using the relativistic heavy quark formalism for
the b quark and 2þ 1 flavors of domain-wall sea quarks [31] and
HPQCD using radiatively improved NRQCD b quarks with
Oðv6Þ spin-dependent terms and 2þ 1þ 1 flavors of HISQ sea
quarks [32]. All of these results come from calculation of
connected correlation functions and do not include an uncertainty
from missing quark-line disconnected diagrams, except for [32].
Reference [32] includes the effect of these disconnected diagrams
through the inclusion of 4-quark operators with coefficients,
calculated in perturbation theory through OðαsÞ. See the text for
discussion of the impact on the hyperfine splitting through ηb
annihilation to gluons. The red band is the PDG experimental
average [1]. The result for the hyperfine splitting calculated here
shows a clear improvement on previous lattice QCD results, as
well as being the first to include QED effects. This improvement
is in large part due to the elimination of systematic uncertainties
from the use of nonrelativistic actions which arise in previous
calculations.
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effect of ηc annihilation missing from the lattice calcu-
lation, it seems that the leading-order perturbative analysis
is misleading in this case. Presumably missing higher-order
terms in the perturbative analysis or nonperturbative effects
from mixing between the ηc and other flavor-singlet
pseudoscalar mesons [33], or both combined, have a larger
effect than the leading-order term and opposite sign. In the
bottomonium case the ηb is considerably farther from
these lighter states and so we may expect a much smaller
effect from this. We also expect perturbation theory to be
more reliable at the higher energy associated with botto-
monium states.
We therefore allow an additional 1 MeV uncertainty for

the impact of ηb annihilation on the hyperfine splitting and
give a final result of

Mϒ −Mηb ¼ 57.5ð2.3Þð1.0Þ MeV: ð11Þ

The first uncertainty is from the lattice calculation
and the second from missing quark-line disconnected
contributions.
The experimental average value for the bottomonium

hyperfine splitting (62.3� 3.2 MeV) [1] is shown by a red
band on Fig. 2. A more detailed comparison with exper-
imental results is given in Fig. 3. This makes clear the
spread in the experimental results, handled in [1] by
increasing the uncertainty in the average by a factor of
1.8. In particular it shows that the most recent and most
precise result from BELLE [34] is noticeably lower than the
others. This BELLE result is in agreement with our
determination to within 1σ.
Our result is also in agreement with the PDG average to

within 1.5σ. We see no disagreement with the experimental

result that would signal a larger contribution from ηb
annihilation than the 1 MeV that we have allowed above.
Indeed a shift upward of our hyperfine splitting result by
1 MeV, as suggested by leading-order perturbation theory,
would improve the agreement between lattice QCD and
experiment, although the shift would not be significant. In
contrast, a shift downward of the bottomonium hyperfine
splitting by several MeV, as we found for the charmonium
hyperfine splitting, would cause tension with the exper-
imental results.
Finally we note that the high precision we are able to

achieve for the bottomonium hyperfine splitting is the result
of concentrating on the ground-state mesons with a highly
improved relativistic action. For a more complete picture of
the bottomonium spectrum, obtained on an anisotropic
lattice with the Fermilab heavy quark action and focusing
on highly excited states see [38].

IV. ϒ AND ηb DECAY CONSTANTS

We define the vector heavyonium meson (ϕh) decay
constant from the annihilation matrix element as

h0jψ̄γiψ jϕhi ¼ fϕh
Mϕh

ϵi: ð12Þ

This means that we can determine the decay constant from
our fits to the vector meson correlation functions using

afϕh

ZV
¼

ffiffiffiffiffiffiffiffiffi
2AV

0

EV
0

s
; ð13Þ

where AV
0 is the ground-state amplitude from a correlator fit

of the form given in Eq. (2). ZV is the renormalization
constant required to match the local vector current in lattice
QCD to that of continuum QCD at each value of the lattice
spacing. We use ZV values calculated in a nonperturbative
implementation of the regularization-invariant symmetric
momentum subtraction (RI-SMOM) scheme [14,39,40].
The pure QCD results for ZV for the HISQ action are given
in [9,14]; we use values at scale μ ¼ 2 GeV. Note that no
additional matching factor is required to reach MS from the
RI-SMOM scheme and, because ZV has no anomalous
dimensions, any μ dependence is purely a discretization
effect [14].
The vector meson decay constant is the amplitude for

annihilation of the valence quark/antiquark pair, into a
photon, for example. It is related to the experimentally
measurable leptonic width by

Γðϕh → eþe−Þ ¼ 4π

3
α2QEDe

2
h

f2ϕh

Mϕh

; ð14Þ

where eh is the quark electric charge (1=3 for b). The αQED
here is evaluated at the mass of the heavy quark and is equal
to 1=132.15 [41] at the b.

FIG. 3. Comparison of different experimental results for the
bottomonium hyperfine splitting. The red band shows the PDG
average of these experimental results [1]. The filled blue hexagon
is our result [Eq. (11)] and is carried downward as the blue band.
Note that our result here includes an uncertainty from the effect of
ηb annihilation missing from our lattice calculation. There is
some tension between the different experimental results with our
value favoring the most recent result from BELLE [34]. The
result labeled CLEO is from [35], BABAR01 from [36] and
BABAR02 from [37].
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We also compute the decay constant of the pseudoscalar
heavyonium meson, fηh . In terms of the parameters of our
correlator fit, Eq. (1), this is defined as

fηh ¼ 2mh

ffiffiffiffiffiffiffiffiffiffiffiffi
2AP

0

ðEP
0 Þ3

s
: ð15Þ

Because the partially conserved axial current relation holds
for HISQ quarks the pseudoscalar decay constant is
absolutely normalized and no Z factor is required to match
to the continuum regularization of QCD. Since the pseu-
doscalar meson does not annihilate to a single particle,
there is no experimental decay process that gives direct
access to the decay constant. Its value is nevertheless of
interest for comparison to that of the corresponding vector
meson and other pseudoscalar mesons.
The values of the decay constants, in lattice units, on

each ensemble and for each heavy mass are given in the
sixth and seventh columns of Table II. The decay constants
converted to GeVunits, and renormalized in the case of the
vector decay constant, are plotted as a function of the ϕh
mass in Fig. 4. The decay constants increase with increas-
ing ϕh mass. Discretization effects are clearly visible that
cause the lattice results to peel away from the physical

curve upward. The same effect was seen previously for
both heavy-light and heavyonium mesons [10,11].
We also show results in Fig. 4 that include the effect of

quenched QED. Those results are given in Table III as the
ratio of values in QCDþ QED to those in pure QCD. For
the decay constant of the ϕh these ratios do not include the
impact of QED on the vector current renormalization factor,
ZV . This was calculated in [14] for the case of a quark with
electric charge 2e=3, again as a ratio of results in QCDþ
QED to those in pure QCD. These results are given in
Table IVof [14], with further results in Table X of [9]. The
ratio is within 0.05% of 1, as expected for an OðαQEDÞ
correction to a Z factor that is already very close to 1 for the
HISQ action in pure QCD. Here we need results for an
electric charge of e=3 so we determine the ratios in QCDþ
QED to pure QCD in that case by taking the values from
[9,14] (for μ ¼ 2 GeV) and dividing the difference from 1
by a factor of 4.
To fit our decay constant results as a function of lattice

spacing and heavy quark mass we again use the fit form of
Eq. (4) but we use A ¼ 0.7 GeV, as appropriate for the
decay constant values, and a different form for F0 from that
used for the hyperfine splitting case. The dependence of the
decay constants on the heavy mass is approximately linear

and so we choose F0 ¼ cð0ÞF þ cð1ÞF Mϕh
=ð3 GeVÞ, where

cð0ÞF and cð1ÞF are fit parameters with prior values of 0� 1.
We fit the ϕh and ηh decay constants simultaneously,
including the correlations between them, and take the same
F0 for both since they are so close in value. The spline
functions that map out the differences from F0 in physical
heavy quark mass dependence and the dependence on the
lattice spacing and sea quark masses take independent
values in the two cases. The fit has a χ2=dof value of 0.44
using an SVD cut of 1 × 10−4. We again evaluate our fits at
zero lattice spacing, physical sea quark masses and with
Mϕh

¼ Mϒ to obtain the physical bottomonium results.
We obtain, for the ϒ,

fϒ ¼ 677.2ð9.7Þ MeV; ð16Þ

with

RQED½fϒ� ¼ 1.00004ð76Þ: ð17Þ

For the ηb,

fηb ¼ 724ð12Þ MeV; ð18Þ

with

RQED½fηb � ¼ 1.00017ð71Þ: ð19Þ

Again, QED effects are not discernible within our 0.1%
uncertainties. At the charmonium end of our range our
results agree within uncertainties with the values we

FIG. 4. Upper panel: the ϕh decay constant plotted against the
ϕh mass. The symbols correspond to different gluon field
ensembles, as given in the legend (see Table I for a list). Points
including quenched QED are shown in cyan, indistinguishable
from pure QCD points underneath. The dashed line and error
band show the fit described in the text evaluated at zero lattice
spacing and physical sea quark masses. Lower panel: the ηh decay
constant plotted against the ϕh mass, symbols and fit line
as above.
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obtained in [9], remembering that the calculation done here
is for an electric charge that does not match that of the c
quark. The error budget for both decay constants is given in
Table IV. The fit curves evaluated at zero lattice spacing and
physical sea quark masses are plotted as a function of heavy
quark mass (given by Mϕh

) in Fig. 4. The fit parameters
required to reproduce these physical curves of the decay
constants as a function of Mϕh

are given in Table X of the
Appendix.
Given that the heavy mass dependence and discretization

effects in the vector and pseudoscalar decay constants are
similar we can study the ratio of the two as a function of the
heavy mass to high precision. Our results for the ratio are
shown as a function of Mϕh

in Fig. 5. A slow downward
drift of the ratio is seen with increasing Mϕh

from a value
slightly above 1 for c quarks to a value slightly below 1 for
b quarks.
To obtain a physical result for the ratio we again use the

fit form of Eq. (4), now taking F0 to be a constant, cF, since
the ratio is relatively flat, so that the spline functions handle
all of the mass dependence. We take the prior value of cF to
be 1(1), i.e., with a very conservative width. Since we
expect a lot of systematic effects to cancel in this ratio (and
Fig. 5 shows that they do) we halve the prior widths on all
of the correction terms in Eq. (4), i.e., we take prior values
on the function values at the knots of 0.0(5). The fit has a
χ2=dof of 0.22 and no SVD cut is required. Evaluating the
fit function at the physical point gives

fϒ
fηb

¼ 0.9454ð99Þ ð20Þ

and

RQED

�
fϒ
fηb

�
¼ 0.99994ð38Þ: ð21Þ

The total uncertainty in the ratio for the b is 1%, with a
value clearly below 1. The fit curve evaluated at zero lattice
spacing and physical sea quark masses is plotted as a
function of Mϕh

in Fig. 5. The fit parameters required to
reproduce this physical curve are given in Table XI of the
Appendix.

A. Discussion: Decay constants

Figure 6 compares our result for the ϒ decay constant,
fϒ, to that of an earlier lattice QCD calculation on a subset
of the same gluon field configurations used here but using
an improved NRQCD action for the b quarks [13]. Clearly,
we achieve a considerably improved uncertainty over that
of [13]. A large amount of the NRQCD uncertainty arises
from the normalization and Oðv2=c2Þ improvement of the
NRQCD vector current, where v is the nonrelativistic quark
velocity. Here, since we use the HISQ action which is
relativistic and we have performed the vector current
renormalization to very high precision previously [14],
these sources of uncertainty are effectively eliminated.
Figure 6 also compares our result for fϒ to that obtained

from the experimental average for the ϒ leptonic width
using Eq. (14). Using Γðϒ → eþe−Þ ¼ 1.340ð18Þ keV [1]
gives

fexptϒ ¼ 689.7ð4.6Þð0.8Þ MeV; ð22Þ

where the first uncertainty comes from the experimental
uncertainty in Γ and the second allows for an OðαQED=πÞ
uncertainty from higher order in QED terms in Eq. (14)
coming, for example, from final-state radiation. Note that
using αQED of 1=137 here instead of 1=132.15 would
increase the experimental value of fϒ by 3.7% or 25 MeV.
This is several times larger than either the experimental
uncertainty or our lattice QCD uncertainty.
Figure 6 shows good agreement, within 1σ, between

our lattice QCD result and that from experiment [Eq. (22)].

FIG. 5. The ratio of the vector to pseudoscalar heavyonium
decay constants as a function of vector heavyonium mass. At the
charmonium point the ratio is above 1. By the bottomonium point
the ratio has shifted to be below 1. The symbols correspond to
results on the different gluon field configurations listed in the
legend with cyan points corresponding to QCDþ QED. The line
is the fit curve evaluated at the physical point as a function ofMϕh

described in the text.

FIG. 6. A comparison of our result (filled blue hexagon) for the
decay constant of the ϒ with HPQCD’s earlier lattice QCD result
using NRQCD b quarks [13] (open green square). We also
include the value inferred from the experimental leptonic decay
width in Eq. (22) (pink open circle).
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The experimental uncertainty is about half that from our
lattice QCD result.
Our result for fϒ can be converted into a determination

of the width for ϒ decay to light leptons in the Standard
Model using Eq. (14). This gives

Γðϒ → eþe−Þ ¼ 1.292ð37Þð3Þ keV; ð23Þ

where the first uncertainty comes from the lattice QCD
result and the second allows for a relative OðαQED=πÞ
correction to Eq. (14) from higher-order QED effects.
Our result for fηb can be compared to an earlier HPQCD

lattice QCD result using HISQ quarks and the heavy-HISQ
approach on gluon field configurations including the effect
of 2þ 1 flavors of asqtad sea quarks [11]. That work
obtained a value fηb ¼ 667ð6Þ MeV, which is significantly
lower (by 4σ) than our result here. The discrepancy is most
likely to result from a bias in the earlier results from not
having values on lattices with spacings as fine as we do
here. Another possible source of the discrepancy is the fact
that the earlier calculation did not include c quarks in the
sea. Having more flavors of quarks in the sea results in a
slower running of the strong coupling constant. Hence,
using the language of potential models, we expect
the Coulomb-like term in the heavy quark potential [of
the form −4αsðrÞ=ð3rÞ] to have a larger value for αs at the
short-distance scales to which the ηb meson decay constant
is sensitive. This corresponds to a deeper potential at short
distances and a correspondingly larger “wave function at
the origin,” which is the quantity in a potential model that
translates approximately into the decay constant. This
effect could explain some of the discrepancy but is unlikely
to be large enough to explain it all. The calculations in [11]
also used a different form to fit the lattice results as a
function of heavy quark mass (in that case using as proxy
Mηh ). This consisted of multiple powers of the inverse
heavy quark mass multiplied by a leading function of the
form ðM=M0Þb where b was allowed to float. We have
checked that using that fit form here gives us results for fηb
very consistent with our spline fits, so the discrepancy with
[11] is not related to the form of the fit used.
The ratio of vector to pseudoscalar decay constants as a

function of heavyonium mass provides a test of our
understanding of these mesons. In the language of potential
models the heavyonium vector and pseudoscalar mesons
differ only through spin-dependent relativistic corrections
to the central potential [42]. The size of relativistic
corrections falls as the heavy quark mass increases and
the mean squared velocity of the heavy quarks falls. In the
infinite quark mass limit pseudoscalar and vector heav-
yonium mesons have the same mass and the same wave
function at the origin. The decay constants differ, however,
by the matching factors that are needed to renormalize
temporal axial and spatial vector currents from this non-
relativistic framework to full continuum QCD. The ratio of

the vector to pseudoscalar heavyonium decay constants
would then be expected to become the ratio of the vector to
temporal axial vector matching factors in the heavy quark
limit. The matching factors come from high-momentum
regions of phase space and so can be calculated in QCD
perturbation theory. An OðαsÞ matching calculation was
done in [43] for spin-independent nonrelativistic QCD and
gave the result

ZV

ZA
¼ 1 −

g2

6π2
¼ 1 −

2αs
3π

: ð24Þ

From this we conclude that we would expect the ratio of
vector to pseudoscalar decay constants to be below 1 for
large heavy quark mass. Equation (24) expects the differ-
ence from 1 to be Oð5%Þ, taking αs ≈ 0.25, but this
formula will have corrections from higher orders in αs.
A value for the ratio of 5% below 1 is very consistent with
our results in Fig. 5, however.
Very similar behavior is seen for the ratio of vector to

pseudoscalar decay constants for heavy-light mesons from
lattice QCD calculations. The decay constant of the D�

s
meson is found to be several percent larger than that of the

FIG. 7. Upper panel: the physical ratio (evaluated at zero lattice
spacing and with sea quark mass mistunings set to zero) of the
mass to decay constant for the pseudoscalar heavyonium meson,
ηh, as a function of the ratio of pseudoscalar to vector heav-
yonium masses. Lower panel: the physical ratio of decay constant
to mass for the vector heavyonium meson, ϕh (the quantity
denoted fV in [52]), plotted against the same ratio of masses.
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Ds [44–46] whereas that of the B�
s is a few percent below

that of theBs [45,47]. This behavior can be understood on the
same basis as the arguments for heavyonium above. In the
heavy-light case an α3s calculation of the matching factors is
available in the infinite heavy quark mass limit [48]. The
corrections to the OðαsÞ formula for the ratio [which is the
same as for heavyonium in Eq. (24)] are sizable but have
the same (negative) sign and so do not change the qualitative
behavior of the difference of the ratio from 1.
Having performed the fits of the previous subsections we

now have physical values for the decay constants not only
at the b quark mass but also at the full range of masses
between the c and b quark masses. The physical curves as a
function of meson mass in Figs. 4 and 5 could be used to
tune phenomenological QCD potential models, which often
differ markedly on features of heavyonium physics such as
details of the wave function even when reproducing the
spectrum (see, for example, [49–51]).
They may also be useful beyond QCD. In [52] lattice

QCD results across a range of masses were collected with
the intention of providing useful information for phenom-
enologists studying strongly coupled beyond the Standard
Model (BSM) theories. These theories are often QCD-like

but typically with heavier (relative to the confinement
scale) fundamental fermions than the light quarks of QCD.
Reference [52] makes the point that information from
lattice QCD calculations about how (for example) meson
masses and decay constants depend on quark masses can be
useful to constrain such BSM theories. This then requires
lattice QCD results for quark masses not at their physical
values, as we have here. The lattice QCD results need to be
presented in an appropriate way with dimensionless com-
binations of decay constants and masses on both axes.
A convenient x axis is the ratio of pseudoscalar to vector
meson mass. In [52] the square of this quantity was used
since the lattice QCD results were concentrated at light
quark masses. Here, since we have heavy quarks and the
ratio of pseudoscalar to vector meson masses is close to 1,
we simply use the ratio.
Dimensionless ratios are readily obtained for our raw

lattice results using the values in Table II. Correlations can
be ignored because statistical uncertainties are so small. In
the following we construct appropriate ratios from our fit
functions in the limit of zero lattice spacing and physical
sea quark masses and do not include the raw lattice results
in the figures, for clarity.

TABLE V. Results in lattice units for time moments of the vector heavyonium correlator as defined in Eq. (25). We give raw results
here in which the vector current has not been renormalized and we also take the ðn − 2Þth root to reduce all the moments to the same
dimensions. The numbers in the table are then ðGV

n =Z2
VÞ1=ðn−2Þ for n ¼ 4 to 10.

Set amh n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10

1 0.6 0.562768(11) 1.263877(18) 1.849015(25) 2.386587(33)
0.8 0.4342507(59) 1.0316257(96) 1.525578(12) 1.967383(15)

2 0.6 0.5628101(56) 1.2640282(83) 1.849341(10) 2.387158(12)
0.8 0.4342571(32) 1.0316599(48) 1.5256620(57) 1.9675445(65)
0.866 0.395358(44) 0.966054(54) 1.439945(54) 1.861205(52)

3 0.274 1.070712(58) 2.27651(10) 3.35545(14) 4.37419(17)
0.4 0.797940(92) 1.72744(16) 2.54252(21) 3.31432(25)
0.5 0.665034(57) 1.466318(96) 2.15508(13) 2.80305(16)
0.548 0.60993(22) 1.36481(25) 2.00869(24) 2.61113(24)
0.6 0.569093(37) 1.282926(63) 1.886184(84) 2.44653(10)
0.7 0.495371(26) 1.145651(43) 1.689190(58) 2.186270(72)
0.8 0.436182(18) 1.037685(31) 1.538234(41) 1.989299(51)

4 0.260 1.114660(44) 2.366266(78) 3.48827(11) 4.54699(14)
0.4 0.798236(18) 1.728246(32) 2.544009(44) 3.316608(55)
0.6 0.5691755(75) 1.283151(13) 1.886612(17) 2.447216(22)
0.8 0.4362111(38) 1.0377647(63) 1.5383891(83) 1.989559(11)

5 0.194 1.431378(91) 3.03675(16) 4.49434(22) 5.86769(29)
0.4 0.808461(20) 1.757499(36) 2.597493(51) 3.396810(65)
0.6 0.5722526(77) 1.292481(13) 1.904940(19) 2.476827(24)
0.8 0.4371741(39) 1.0407975(65) 1.5447616(86) 2.000643(11)
0.9 0.3876830(29) 0.9510722(49) 1.4215906(63) 1.8418824(80)

6 0.138 1.91475(23) 4.06357(42) 6.02429(55) 7.86806(66)
0.45 0.739093(19) 1.623965(33) 2.403967(45) 3.147423(57)
0.55 0.621096(13) 1.389882(21) 2.052994(29) 2.679049(36)
0.65 0.5342576(87) 1.222777(15) 1.806579(20) 2.349544(24)
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One useful quantity [53] is the ratio of the pseudoscalar
meson mass and decay constant for a meson made of quarks
of degenerate mass (i.e., the “pions” of the BSM model).
Using the physical heavy mass dependence of fηh extracted
from our fit we display the ratio ofMηh and fηh as a function
of the ratio of pseudoscalar to vector mesonmasses in Fig. 7.
Our results show values of Mηh=fηh around 10, and
continuing to rise, as the ratio of pseudoscalar to vector
mesonmasses heads toward 1. Note that our definition of the
pseudoscalar decay constant in Eq. (15) corresponds to the
normalization fπ ≈ 130 MeV.
As discussed in [52] composite models of a dark sector

in which a “dark ρ” meson couples to ordinary matter
through a dark photon (see, e.g., [54]) need information
on the vector meson decay constant for an appropriate
range of fermion masses. The ratio of vector meson decay
constant to vector meson mass is denoted fV in [52]. In our
convention for the vector meson decay constant [Eq. (12)] it
is fϕh

=Mϕh
. We plot fϕh

=Mϕh
against the pseudoscalar to

vector meson mass ratio in Fig. 7. We see that this ratio
becomes small as the ratio of pseudoscalar to vector meson
masses heads toward 1. It also has relatively strong
dependence on the mass ratio, so using an approximately
constant value (based, for example, on naive dimensional
analysis) would not agree well with our results.
We also note that accurate lattice QCD results

are available at the ratio of pseudoscalar to vector meson
masses of 0.673, which corresponds to ss̄ mesons when
only connected correlation functions are calculated. This
means that the pseudoscalar meson is not allowed to
annihilate and mix with flavor-singlet mesons made from
lighter quarks, and likewise the vector decay to two pseu-
doscalarmesons incorporating lighter quarks is not included.
This is then the scenario that would match that required in a
composite BSM scenario. For this case HPQCD calculates
Mηs=fηs¼3.801ð16Þ [18] and fϕs

=Mϕs
¼ 0.233ð3Þ [55].

These results must connect smoothly to the ones shown in
Fig. 7 as the quark mass is increased.

V. VECTOR CURRENT-CURRENT
CORRELATOR TIME MOMENTS AND abμ

The ground-state vector heavyonium decay constant is
determined by the amplitude of the state that dominates the
correlator at large times and this can be connected to
experiment via the leptonic width, as we have seen. We can
also calculate the time moments of the correlator. These
depend on the behavior of the correlator at shorter time
distances and can also be connected to experimental results
[8,56]. The moments of the vector heavyonium correlator
are defined by

GV
n ¼ Z2

V

X
t̃

t̃nCϕh
ðt̃Þ; ð25Þ

where t̃ is lattice time symmetrized around the center of the
lattice, Cϕh

is the vector two-point correlation function and

FIG. 8. Results for the fourth, sixth, eighth and tenth time
moments of the heavyonium vector correlator plotted as a
function of Mϕh

. The symbols correspond to different gluon
field ensembles, as given in the legend (see Table I for a list). The
errors on the points are dominated by uncertainties from the
determination of ZV that are correlated between the points. Points
including quenched QED are shown in cyan, indistinguishable
from pure QCD points underneath. The dashed line with purple
error band displays our continuum/chiral fit, as discussed in the
text. Values determined from experimental results for Reþe−

[Eq. (26)] are plotted as the black crosses at Mϕh
¼ Mϒ [57].
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ZV is the renormalization factor for the heavyonium vector
current operator used.
Results for ðGV

n =Z2
VÞ1=ðn−2Þ in lattice units on each of our

ensembles are given in Table V for n ¼ 4 to 10. The power
1=ðn − 2Þ is taken to reduce all the moments to the same
dimension. We take the ZV factor for the vector current to
be the same one used for the leptonic width above [14].
Figure 8 then shows the physical results for these moments
as a function of Mϕh

.
Results that include quenched QED corrections for a

subset of ensembles are given in Table VI. These are
given as the ratio of the result in QCDþ QED to that in
QCD at fixed valence quark mass in lattice units. The
values of R0 are very slightly below 1, as for charmo-
nium [9]. The difference from 1 is even smaller here
because of the smaller quark electric charge. Note that
the vector current is not renormalized in these raw results
and QED effects in ZV must also be taken into account,
as for the decay constant [14]. These results are also
plotted in Fig. 8 as the cyan points. The impact of QED
is not visible.
To fit the time-moment results as a function of lattice

spacing and heavy quark mass we again use the fit of
Eq. (4), supplemented with QED effects in Eq. (7). For the
time moments we use F0 ¼ ðcð0ÞF þ cð1ÞF ð3 GeVÞ=Mϕh

Þ,
and the dimensionful parameter A is taken as 0.5 GeV−1

for every moment. The prior values on cð0ÞF and cð1ÞF are
taken to be 0� 1 for each moment. We fit all moments
separately using a SVD cut of 5 × 10−4 in all cases. The
χ2=dof of the fits, in order of increasing n, are 0.9, 0.19,
0.26 and 0.4. The curves in Fig. 8 show the fit results
evaluated at zero lattice spacing and with tuned sea quark
masses.
Table VII gives our results for the time moments

evaluated at the b quark mass in the continuum limit, with
their total uncertainties. The corresponding error budget is
given in Table VIII. In the next section we compare these
results to earlier lattice analyses and values determined
from experimental data for Rðeþe− → hadronsÞ. We will
also use the results to improve the determination of the b
quark contribution to the hadronic vacuum polarization
term in the Standard Model determination of the anomalous
magnetic moment of the muon. Column 3 of Table VII
gives the ratio of the QCDþ QED result to that in pure
QCD for each moment. Again we are not able to

distinguish any impact of QED on the results at the level
of our uncertainties (which range from 0.4% down
to 0.1%).

A. Discussion: Time moments and abμ
In Fig. 9 we compare our results for the time moments to

those of an earlier HPQCD calculation that used NRQCD b
quarks [13]. For the NRQCD results the key sources of

TABLE VI. Quenched QED corrections, for quark electric charge e=3, to the time moments given for a subset of the results in Table V
for the (n − 2)th root of the unrenormalized GV

n =Z2
V . The results are given as the ratio, R0, of the value in QCD þ QED to that in pure

QCD at fixed valence quark mass in lattice units.

Set amh n ¼ 4 n ¼ 6 n ¼ 8 n ¼ 10

2 0.866 0.999669(32) 0.999731(16) 0.999697(11) 0.999641(8)
3 0.274 0.999774(30) 0.999692(25) 0.999646(24) 0.999622(24)

0.548 0.999475(43) 0.999353(22) 0.999194(14) 0.999060(11)

TABLE VII. Results for the time moments of the bottomonium
vector current-current correlator obtained from evaluating our fit
functions in the continuum limit at the b quark mass. These are
given in the second column for moment numbers listed in the first
column. The results extracted from experimental data in [57] are
given in the third column for comparison. The fourth column
gives the quenched QED correction to these moments, as a ratio
of the value in QCD plus QED to that in pure QCD with a tuned b
quark mass (to reproduce the ϒ mass from experiment) in both
cases. All of the ratios are consistent with 1.0.

n G1=ðn−2Þ
n ðGeV−1Þ ðGexp :

n Þ1=ðn−2Þ ðGeV−1Þ RQED½G1=ðn−2Þ
n �

4 0.0905(23) 0.09151(31) 0.9996(38)
6 0.1920(39) 0.19910(49) 0.9999(19)
8 0.2934(55) 0.29964(55) 0.9999(13)
10 0.3918(66) 0.39548(59) 0.9999(10)

TABLE VIII. Error budget for the nth time moment, G1=ðn−2Þ
n ,

as a percentage of the final answer.

n 4 6 8 10

Statistics 0.25 0.27 0.27 0.24
SVD cut 1.84 1.63 1.50 1.34
w0 0.59 0.62 0.62 0.58
w0=a 0.39 0.31 0.33 0.23
ZV 0.13 0.04 0.02 0.01
F0 0.01 0.02 0.02 0.03
G0 0.01 0.01 0.01 0.02
G1 0.75 0.35 0.26 0.28
G2 0.42 0.31 0.24 0.42
G3 0.43 0.14 0.14 0.19
G4 0.57 0.36 0.32 0.31
G5 0.97 0.71 0.67 0.42
Ĝ1

0.34 0.18 0.12 0.09

Ĝ2
0.01 0.00 0.00 0.00

Total (%) 2.54 2.03 1.87 1.68
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error were from the vector current normalization (using a
method based on matching the time moments to continuum
perturbation theory) and from the lattice spacing depend-
ence effects in the NRQCD action. Our uncertainties here
are a considerable improvement (by over a factor of 2) on
the NRQCD results, because we have a very accurate vector
current normalization and have results over a large range of
lattice spacing values to control the lattice spacing
dependence.
Figure 9 shows that our results agree within 2σ with the

values extracted for the q2-derivative moments, Mk
(n ¼ 2kþ 2), of the b quark vacuum polarization using
experimental values for Reþe− ¼ σðeþe− → hadronsÞ=σpt
[57]. The appropriate normalization of these results for the
comparison to ours is

Gexp
n ¼

�
Mexp

k n!
12π2e2b

�
1=ðn−2Þ

: ð26Þ

Our results from lattice QCD have considerably larger
uncertainties than those of the experimental values but
together these results provide a further test of QCD at the
level of 2%.
We may also use these time moments to extract the b

quark connected contribution to the leading-order hadronic
vacuum polarization contribution to the anomalous mag-
netic moment of the muon. This was done in [13] and,
given that we have improved on the time moments of that
work, we provide an update here. We obtain

abμ ¼ 0.300ð15Þ × 10−10: ð27Þ

This agrees with the value in [13] with an improvement in
uncertainty of a factor of 2.5. Since the b quark is so heavy,
this is not a significant contribution to the anomalous
magnetic moment of the muon [58].

VI. CONCLUSIONS

We have used the fully relativistic HISQ action to
calculate the masses and decay constants of ground-state
bottomonium mesons in lattice QCD including the effects
of u, d, s and c quarks in the sea. We have used very fine
lattices and a range of heavy quark masses at each lattice
spacing to control the discretization effects as a function of
heavy quark mass along with the physical dependence on
the heavy quark mass of the quantities being studied. We
have used a fit function with completely generic depend-
ence on the heavy quark mass in each of its component
pieces, capturing this dependence through cubic spline
functions. Values for bottomonium are obtained by evalu-
ating the fit function at zero lattice spacing with tuned sea
quark masses and a valence quark mass tuned to that of the
b, defined to be the point at which the ϒ mass agrees with
experiment. We have also included an analysis of the
impact of the electric charge of the valence b quarks on the
quantities being studied. The results given are from
the QCDþ QED fit but, in all cases, we find the impact
of QED to be negligible at the level of our uncertainties.
Our results yield the most precise, to date, lattice

calculation of the bottomonium hyperfine splitting. We
obtain the value [repeating Eq. (11)]

Mϒ −Mηb ¼ 57.5ð2.3Þð1.0Þ MeV: ð28Þ

The first uncertainty is from our fit results (see error
budget in Table IV) and the second uncertainty is from
an estimate of missing quark-line disconnected contribu-
tions that would affect the mass of the ηb meson. Our result
is in agreement with, but on the low side of, the exper-
imental average value [1]. It tends to favor the most recent
experimental result obtained by the BELLE Collaboration
[34], although uncertainties (both ours and from the
experiment) are still too large to draw strong conclusions
from this.
We also provide the most precise lattice QCD determi-

nation of the ϒ decay constant, which can be used to
determine the ϒ leptonic width. Our uncertainty of 1.5% is
3 times better than the previous lattice QCD calculation of
[13]. The big advantage of using a relativistic formalism, as
we do here, is that the vector current can be normalized
very accurately and nonperturbatively [14]. Our result
[repeating Eq. (16)] is

fϒ ¼ 677.2ð9.7Þ MeV; ð29Þ

with the error budget in Table IV. Using this result to obtain
the ϒ leptonic width gives [repeating Eq. (23)]

Γðϒ → eþe−Þ ¼ 1.292ð37Þð3Þ keV: ð30Þ

The first uncertainty is from our result for fϒ and the
second from possible OðαQED=πÞ corrections to the

FIG. 9. Comparison of different determinations of the four
lowest time moments of the bottomonium vector current-current
correlator. The three determinations are, from the top, this work,
the previous calculation by the HPQCD collaboration using
NRQCD b quarks [13] and the values obtained from experimental
data on Rðeþe− → hadronsÞ in [57].
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formula connecting decay constant and leptonic width
[Eq. (14)]. This is to be compared with the current
experimental average of 1.340(18) keV [1]. We see that
our result is in good agreement with experiment and our
uncertainty is just twice as large.
The decay constant of the ηb can also be accurately

calculated with our approach. There is no experimental
decay rate that can be directly compared to this determi-
nation, but the value of fηb is important for our phenom-
enological understanding of the relationships between
decay constants for different mesons. We obtain [repeating
Eq. (18)]

fηb ¼ 724ð12Þ MeV: ð31Þ

In particular, repeating Eq. (20), we find that

fϒ
fηb

¼ 0.9454ð99Þ; ð32Þ

i.e., less than 1. This is in contrast to the charmonium case
where fJ=ψ=fηc is larger than 1 [9]. Figure 5 shows how the
ratio of the decay constants for vector and pseudoscalar
heavyonium mesons varies with heavy quark mass. This is
qualitatively similar to the behavior seen for the decay
constants of heavy-light mesons [47]. Finally, in Fig. (7) we
plot the ratios of mass to decay constant for pseudoscalar
and vector mesons as a function of the ratio of pseudoscalar
to vector meson masses. These may provide useful infor-
mation to constrain these ratios in QCD-like beyond the
Standard Model scenarios.
The low time moments of the bottomonium vector

current-current correlator provide a further opportunity to
compare lattice QCD results to experiment, where the
matching inverse-s moments of the b quark contribution to
Rðeþe− → hadronsÞ can be determined. Our results for the
fourth, sixth, eighth and tenth time moments are given in
Table VII, where they can be compared to the results
obtained from experiment. Our uncertainties are 2% so they
provide the most accurate test to date for these quantities.
The time moments can be used to determine the b quark
contribution to the anomalous magnetic moment of the
muon. We find [repeating Eq. (27)]

abμ ¼ 0.300ð15Þ × 10−10: ð33Þ

Together these results demonstrate how the properties of
low-lying bottomonium states can be determined in a fully
relativistic calculation in lattice QCD and the gains in
precision that such an approach makes possible. The results
given here also allow us to improve the fully nonperturba-
tive determination of the ratio of quark masses, mb to mc.
We will present this analysis separately.

ACKNOWLEDGMENTS

We are grateful to the MILC Collaboration for the use of
their gluon field configurations and for the use of MILC’s
QCD code. We have modified the code to generate
quenched U(1) gauge fields and incorporate those into
the quark propagator calculation as described here. We are
grateful to B. Galloway for contributions to this project at a
very early stage, and to R. Horgan, C. McNeile and J.
Rosner for useful discussions. Computing was done on the
Darwin supercomputer at the University of Cambridge
High Performance Computing Service as part of the
DiRAC facility, jointly funded by the Science and
Technology Facilities Council, the Large Facilities
Capital Fund of BIS and the Universities of Cambridge
and Glasgow. We are grateful to the Darwin support staff
for assistance. Funding for this work came from the Science
and Technology Facilities Council and the National
Science Foundation.

APPENDIX: RECONSTRUCTING THE HEAVY
QUARK MASS DEPENDENCE

We give here the fit parameters that enable our fit results
for the dependence on heavy quark mass of the hyperfine
splitting, decay constants and ratio of decay constants to be
reconstructed. The pieces of Eq. (4) that give the physical
curves in the continuum limit are F0ðMϕh

Þ andG0ð1=Mϕh
Þ,

multiplied by dimensionful constant, A (absent for the case
of the ratio of decay constants). We ignore here the QED
pieces of the fit; these have a negligible effect in all cases.

F0 is a simple function with at most two parameters, cð0ÞF

and cð1ÞF . G0 is a Steffen spline function [23] with three
knots at 2.5, 4.9 and 10.0 GeV in Mϕh

, so that in 1=Mϕh

they are at 1=2.5, 1=4.9 and 1=10.0. Tables IX, X and XI

give the mean and standard deviation of cð0ÞF , cð1ÞF , and the

TABLE IX. Fit parameters for F0 andG0 for the fit of Eq. (4) to
the hyperfine splitting as a function of the vector heavyonium
mass,Mϕh

. The dimensionful constant, A, is 0.1 GeV in this case

and F0¼cð0ÞF þcð1ÞF ×3GeV=Mϕh
. The mean and standard devia-

tion for cð0ÞF and cð1ÞF and the values at the three knot positions

for G0 are cð0ÞF ¼ 0.4407ð6371Þ; cð1ÞF ¼ 0.5031ð7476Þ; Gk1
0 ¼

0.3790ð7089Þ; Gk2
0 ¼ 0.0956ð5041Þ; Gk3

0 ¼ −0.0338ð5285Þ.
The correlation matrix for these five parameters is given below.
These results enable the red fit curve of Fig. 1 to be reconstructed
within the errors given.

cð0ÞF cð1ÞF
Gk1

0 Gk2
0 Gk3

0

1.0 −0.6195 −0.1146 −0.7011 −0.9420
−0.6195 1.0 −0.7084 −0.1250 0.3225
−0.1146 −0.7084 1.0 0.7878 0.4386
−0.7011 −0.1250 0.7878 1.0 0.8980
−0.9420 0.3225 0.4386 0.8980 1.0
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values at the three knots of G0: Gk1
0 , Gk2

0 and Gk3
0 . This is

followed underneath by the correlation matrix between
these parameters. The parameters are strongly correlated

and this is why we give the values to four significant
figures. The splines can easily be implemented using the
GVAR PYTHON module [26].

[1] P. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys.
(2020), 083C01.

[2] E. McLean, C. Davies, J. Koponen, and A. Lytle, Phys. Rev.
D 101, 074513 (2020).

[3] J. Harrison, C. T. H. Davies, and A. Lytle (HPQCD Col-
laboration), Phys. Rev. D 102, 094518 (2020).

[4] E. Follana et al. (HPQCD Collaboration), Phys. Rev. D 75,
054502 (2007).

TABLE X. Fit parameters for F0 and G0 for the fit of Eq. (4) to the vector decay constant of the vector heavyonium ϕh meson (upper
set) and the decay constant of the pseudoscalar heavyonium ηh meson (lower set), both as a function of the massMϕh

. The dimensionful

constant, A, is 0.7 GeV in these cases and F0 ¼ cð0ÞF þ cð1ÞF ×Mϕh
=3 GeV. The top row of each set gives the mean and standard

deviations for cð0ÞF and cð1ÞF and the values at the three knot positions for G0. The correlation matrix for these five parameters is given
underneath. These results enable the red fit curves of both plots of Fig. 4 to be reconstructed within the errors given.

fϕh

cð0ÞF cð1ÞF
Gk1

0 Gk2
0 Gk3

0

0.3487(3783) 0.1797(110) 0.030(378) 0.065(378) 0.051(378)

1.0 −0.0393 −0.9994 −0.9987 −0.9973
−0.0393 1.0 0.0279 −0.0080 −0.0289
−0.9994 0.0279 1.0 0.9986 0.9974
−0.9987 −0.0080 0.9986 1.0 0.9997
−0.9973 −0.0289 0.9974 0.9997 1.0

fηh

cð0ÞF cð1ÞF
Gk1

0 Gk2
0 Gk3

0

0.3487(3783) 0.1797(110) 0.005(378) 0.077(378) 0.122(378)

1.0 −0.0399 −0.9993 −0.9987 −0.9962
−0.0393 1.0 0.0146 −0.0076 −0.0372
−0.9993 0.0146 1.0 0.9992 0.9977
−0.9987 −0.0076 0.9992 1.0 0.9992
−0.9962 −0.0372 0.9977 0.9992 1.0

TABLE XI. Fit parameters for F0 and G0 for the fit of Eq. (4) to the ratio of vector to pseudoscalar heavyonium decay constants as a

function of the mass of the vector heavonium meson, Mϕh
. F0 is simply a constant, cð0ÞF in this case. The top row gives the mean and

standard deviations for cð0ÞF and the values at the three knot positions for G0. The correlation matrix for these four parameters is given
underneath. These results enable the red fit curve of Fig. 5 to be reconstructed within the errors given.

cð0ÞF
Gk1

0 Gk2
0 Gk3

0

0.9973(2080) 0.0691(2081) −0.0169ð2080Þ −0.0538ð2082Þ
1.0 −0.9992 −0.9998 −0.9988
−0.9992 1.0 0.9991 0.9983
−0.9998 0.9991 1.0 0.9993
−0.9988 0.9983 0.9993 1.0

BOTTOMONIUM PRECISION TESTS FROM FULL LATTICE … PHYS. REV. D 103, 054512 (2021)

054512-17

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.101.074513
https://doi.org/10.1103/PhysRevD.101.074513
https://doi.org/10.1103/PhysRevD.102.094518
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1103/PhysRevD.75.054502


[5] E. Follana, C. Davies, G. Lepage, and J. Shigemitsu
(HPQCD Collaboration), Phys. Rev. Lett. 100, 062002
(2008).

[6] C. Davies, C. McNeile, E. Follana, G. Lepage, H. Na et al.
(HPQCD Collaboration), Phys. Rev. D 82, 114504 (2010).

[7] H. Na, C. T. Davies, E. Follana, G. P. Lepage, and J.
Shigemitsu (HPQCD Collaboration), Phys. Rev. D 82,
114506 (2010).

[8] G. Donald, C. Davies, R. Dowdall, E. Follana, K. Hornbostel
et al. (HPQCD Collaboration), Phys. Rev. D 86, 094501
(2012).

[9] D. Hatton, C. Davies, B. Galloway, J. Koponen, G. Lepage,
and A. Lytle (HPQCD Collaboration), Phys. Rev. D 102,
054511 (2020).

[10] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and G.
Lepage (HPQCD Collaboration), Phys. Rev. D 85, 031503
(2012).

[11] C. McNeile, C. Davies, E. Follana, K. Hornbostel, and G.
Lepage, Phys. Rev. D 86, 074503 (2012).

[12] A. Bazavov et al., Phys. Rev. D 98, 074512 (2018).
[13] B. Colquhoun, R. Dowdall, C. Davies, K. Hornbostel, and

G. Lepage, Phys. Rev. D 91, 074514 (2015).
[14] D. Hatton, C. Davies, G. Lepage, and A. Lytle (HPQCD

Collaboration), Phys. Rev. D 100, 114513 (2019).
[15] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 87,

054505 (2013).
[16] A. Hart, G. M. von Hippel, and R. R. Horgan (HPQCD

Collaboration), Phys. Rev. D 79, 074008 (2009).
[17] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling, S. D. Katz

et al., J. High Energy Phys. 09 (2012) 010.
[18] R. Dowdall, C. Davies, G. Lepage, and C. McNeile

(HPQCD Collaboration), Phys. Rev. D 88, 074504 (2013).
[19] D. Hatton, C. Davies, and G. Lepage, Phys. Rev. D 102,

094514 (2020).
[20] C. Bernard and D. Toussaint (MILC Collaboration), Phys.

Rev. D 97, 074502 (2018).
[21] G. P. Lepage, B. Clark, C. T. H. Davies, K. Hornbostel, P. B.

Mackenzie, C. Morningstar, and H. Trottier, Nucl. Phys. B,
Proc. Suppl. 106, 12 (2002).

[22] M. Hayakawa and S. Uno, Prog. Theor. Phys. 120, 413
(2008).

[23] M. Steffen, Astron. Astrophys. 239, 443 (1990), https://ui
.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract.

[24] R. Dowdall, C. Davies, R. Horgan, G. Lepage, C. Monahan,
J. Shigemitsu, and M. Wingate, Phys. Rev. D 100, 094508
(2019).

[25] G. P. Lepage, computer code lsqfit, version 11.7, https://
github.com/gplepage/lsqfit, 2020.

[26] G. P. Lepage, computer code GVAR, version 11.9.1, https://
github.com/gplepage/gvar, 2020.

[27] A. Gray, I. Allison, C. Davies, E. Dalgic, G. Lepage et al.
(HPQCD Collaboration), Phys. Rev. D 72, 094507 (2005).

[28] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,
Phys. Rev. D 55, 3933 (1997).

[29] T. Burch, C. DeTar, M. Di Pierro, A. X. El-Khadra,
E. D. Freeland, S. Gottlieb, A. S. Kronfeld, L. Levkova,

P. B. Mackenzie, and J. N. Simone, Phys. Rev. D 81, 034508
(2010).

[30] S. Meinel, Phys. Rev. D 82, 114502 (2010).
[31] Y. Aoki, N. H. Christ, J. M. Flynn, T. Izubuchi, C. Lehner,

M. Li, H. Peng, A. Soni, R. S. Van de Water, and O. Witzel
(RBC and UKQCD Collaborations), Phys. Rev. D 86,
116003 (2012).

[32] R. J. Dowdall, C. T. H. Davies, T. Hammant, R. R. Horgan,
and C. Hughes (HPQCD Collaboration), Phys. Rev. D 89,
031502 (2014); 92, 039904(E) (2015).

[33] L. Levkova and C. DeTar, Phys. Rev. D 83, 074504 (2011).
[34] R. Mizuk et al. (Belle Collaboration), Phys. Rev. Lett. 109,

232002 (2012).
[35] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 81,

031104 (2010).
[36] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

103, 161801 (2009).
[37] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

101, 071801 (2008); 102, 029901(E) (2009).
[38] S. M. Ryan and D. J. Wilson (Hadron Spectrum Collabo-

ration), arXiv:2008.02656.
[39] Y. Aoki et al., Phys. Rev. D 78, 054510 (2008).
[40] C. Sturm, Y. Aoki, N. Christ, T. Izubuchi, C. Sachrajda, and

A. Soni, Phys. Rev. D 80, 014501 (2009).
[41] A. Pivovarov, Phys. At. Nucl. 65, 1319 (2002).
[42] C. Davies, Lect. Notes Phys. 512, 1 (1998).
[43] B. Jones and R. Woloshyn, Phys. Rev. D 60, 014502

(1999).
[44] G. Donald, C. Davies, J. Koponen, and G. Lepage, Phys.

Rev. Lett. 112, 212002 (2014).
[45] V. Lubicz, A. Melis, and S. Simula (ETM Collaboration),

Phys. Rev. D 96, 034524 (2017).
[46] Y. Chen, W.-F. Chiu, M. Gong, Z. Liu, and Y. Ma (χQCD

Collaboration), Chin. Phys. C 45, 023109 (2021).
[47] B. Colquhoun, C. Davies, R. Dowdall, J. Kettle, J. Koponen,

G. Lepage, and A. Lytle (HPQCD Collaboration), Phys.
Rev. D 91, 114509 (2015).

[48] S. Bekavac, A. Grozin, P. Marquard, J. Piclum, D. Seidel,
and M. Steinhauser, Nucl. Phys. B833, 46 (2010).

[49] W. Kwong, J. L. Rosner, and C. Quigg, Annu. Rev. Nucl.
Part. Sci. 37, 325 (1987).

[50] E. J. Eichten and C. Quigg, Phys. Rev. D 52, 1726 (1995).
[51] E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, Rev.

Mod. Phys. 80, 1161 (2008).
[52] T. DeGrand and E. T. Neil, Phys. Rev. D 101, 034504

(2020).
[53] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky, and

J. G. Wacker, Phys. Rev. Lett. 115, 021301 (2015).
[54] K.Harigaya andY.Nomura, Phys. Rev. D 94, 035013 (2016).
[55] B. Chakraborty, C. Davies, G. Donald, J. Koponen, and G.

Lepage (HPQCD Collaboration), Phys. Rev. D 96, 074502
(2017).

[56] I. Allison et al., Phys. Rev. D 78, 054513 (2008).
[57] J. H. Kuhn, M. Steinhauser, and C. Sturm, Nucl. Phys.

B778, 192 (2007).
[58] T. Aoyama et al., Phys. Rep. 887, 1 (2020).

HATTON, DAVIES, KOPONEN, LEPAGE, and LYTLE PHYS. REV. D 103, 054512 (2021)

054512-18

https://doi.org/10.1103/PhysRevLett.100.062002
https://doi.org/10.1103/PhysRevLett.100.062002
https://doi.org/10.1103/PhysRevD.82.114504
https://doi.org/10.1103/PhysRevD.82.114506
https://doi.org/10.1103/PhysRevD.82.114506
https://doi.org/10.1103/PhysRevD.86.094501
https://doi.org/10.1103/PhysRevD.86.094501
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1103/PhysRevD.85.031503
https://doi.org/10.1103/PhysRevD.85.031503
https://doi.org/10.1103/PhysRevD.86.074503
https://doi.org/10.1103/PhysRevD.98.074512
https://doi.org/10.1103/PhysRevD.91.074514
https://doi.org/10.1103/PhysRevD.100.114513
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.79.074008
https://doi.org/10.1007/JHEP09(2012)010
https://doi.org/10.1103/PhysRevD.88.074504
https://doi.org/10.1103/PhysRevD.102.094514
https://doi.org/10.1103/PhysRevD.102.094514
https://doi.org/10.1103/PhysRevD.97.074502
https://doi.org/10.1103/PhysRevD.97.074502
https://doi.org/10.1016/S0920-5632(01)01638-3
https://doi.org/10.1016/S0920-5632(01)01638-3
https://doi.org/10.1143/PTP.120.413
https://doi.org/10.1143/PTP.120.413
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://ui.adsabs.harvard.edu/abs/1990A%26A...239..443S/abstract
https://doi.org/10.1103/PhysRevD.100.094508
https://doi.org/10.1103/PhysRevD.100.094508
https://github.com/gplepage/lsqfit
https://github.com/gplepage/lsqfit
https://github.com/gplepage/lsqfit
https://github.com/gplepage/gvar
https://github.com/gplepage/gvar
https://github.com/gplepage/gvar
https://doi.org/10.1103/PhysRevD.72.094507
https://doi.org/10.1103/PhysRevD.55.3933
https://doi.org/10.1103/PhysRevD.81.034508
https://doi.org/10.1103/PhysRevD.81.034508
https://doi.org/10.1103/PhysRevD.82.114502
https://doi.org/10.1103/PhysRevD.86.116003
https://doi.org/10.1103/PhysRevD.86.116003
https://doi.org/10.1103/PhysRevD.89.031502
https://doi.org/10.1103/PhysRevD.89.031502
https://doi.org/10.1103/PhysRevD.92.039904
https://doi.org/10.1103/PhysRevD.83.074504
https://doi.org/10.1103/PhysRevLett.109.232002
https://doi.org/10.1103/PhysRevLett.109.232002
https://doi.org/10.1103/PhysRevD.81.031104
https://doi.org/10.1103/PhysRevD.81.031104
https://doi.org/10.1103/PhysRevLett.103.161801
https://doi.org/10.1103/PhysRevLett.103.161801
https://doi.org/10.1103/PhysRevLett.101.071801
https://doi.org/10.1103/PhysRevLett.101.071801
https://doi.org/10.1103/PhysRevLett.102.029901
https://arXiv.org/abs/2008.02656
https://doi.org/10.1103/PhysRevD.78.054510
https://doi.org/10.1103/PhysRevD.80.014501
https://doi.org/10.1134/1.1495645
https://doi.org/10.1007/BFb0106891
https://doi.org/10.1103/PhysRevD.60.014502
https://doi.org/10.1103/PhysRevD.60.014502
https://doi.org/10.1103/PhysRevLett.112.212002
https://doi.org/10.1103/PhysRevLett.112.212002
https://doi.org/10.1103/PhysRevD.96.034524
https://doi.org/10.1088/1674-1137/abcd8f
https://doi.org/10.1103/PhysRevD.91.114509
https://doi.org/10.1103/PhysRevD.91.114509
https://doi.org/10.1016/j.nuclphysb.2010.02.025
https://doi.org/10.1146/annurev.ns.37.120187.001545
https://doi.org/10.1146/annurev.ns.37.120187.001545
https://doi.org/10.1103/PhysRevD.52.1726
https://doi.org/10.1103/RevModPhys.80.1161
https://doi.org/10.1103/RevModPhys.80.1161
https://doi.org/10.1103/PhysRevD.101.034504
https://doi.org/10.1103/PhysRevD.101.034504
https://doi.org/10.1103/PhysRevLett.115.021301
https://doi.org/10.1103/PhysRevD.94.035013
https://doi.org/10.1103/PhysRevD.96.074502
https://doi.org/10.1103/PhysRevD.96.074502
https://doi.org/10.1103/PhysRevD.78.054513
https://doi.org/10.1016/j.nuclphysb.2007.04.036
https://doi.org/10.1016/j.nuclphysb.2007.04.036
https://doi.org/10.1016/j.physrep.2020.07.006

