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1 Introduction

Scattering amplitudes in quantum field theory are often defined by analytic continuation
from (4, 0) Euclidean signature to (3, 1) Lorentzian signature. This provides an efficient pre-
scription for the Feynman-diagram singularities encountered in perturbation theory. More-
over, positivity properties in Euclidean space enable powerful non-perturbative instanton
and axiomatic analyses. Euclidean methods have also proven effective in quantum gravity.

In recent years, however, analytic continuation from Minkowski space to a split (2, 2)
signature spacetime — which we shall refer to as Klein space1 K2,2 — has emerged as
a complementary and surprisingly effective tool in quantum field theory. An awkward
feature of Euclidean space is that particles cannot be on-shell. Amplitudes are therefore
represented as analytic continuations of sums of off-shell processes, which can both become
inordinately complicated and obscure the underlying physics. Dramatic simplifications
have been found in some on-shell descriptions in Klein space [1–8]. The group-theoretic
reduction of the 4D (2, 2) Lorentz group to the product of two 1D conformal groups, the
associated reality of the self duality condition [9], and the non-degeneracy of massless
three-point scattering also lead to significant simplifications.

In quantum gravity in asymptotically flat spacetimes, there are yet further reasons to
consider Klein space. The paucity of generally covariant bulk observables — and more
generally the holographic principle — suggests that any theory of quantum gravity should
be defined by boundary observables. In Euclidean space, the conformal boundary is just a
point. It seems challenging to formulate a holographic dual which encodes the richness of
asymptotically flat quantum gravity by observables at a zero-dimensional point. Here we

1After the mathematician Felix Klein, who pioneered the study of these spaces in the Erlangen Program.
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find that, in contrast, Klein space has a rich conformal boundary at infinity, providing a
suitable potential home for a holographic dual.

In section 2 we show that the conformal boundary at null infinity in Klein space,
denoted I, is the product of a null interval with the Lorentzian signature celestial torus.
Both spatial and timelike infinity i0 and i′ are the product of a disk with a circle and are
endowed with the conformal metric of AdS3/Z. Here the Z-quotient makes the familiar
AdS3 cylinder periodic. The gluing of the toroidal boundaries of these AdS3/Z geometries
to the celestial tori at the two ends of I trivializes different cycles of the latter, giving
a toric representation of the I ∪ i0 ∪ i′ infinity as S3. Since I has only one connected
component, observables are given by an S-vector rather than an S-matrix. The fact that
the continuation from Minkowski to Klein space leads to the replacement of the sphere
with a torus will perhaps prove useful for sharpening the concept of a celestial conformal
field theory.

Section 3 reviews the SL(2,R)L×SL(2,R)R symmetry of Klein space. Expressions are
given for Ln, L̄n, n = −1, 0, 1 in a natural basis where L0 ± L̄0 generate the compact
space and time directions of the celestial torus, as well as for the finite group action on
the celestial torus. The group action preserves the AdS3/Z hypersurfaces which are a fixed
distance from the origin and foliate Klein space.

Section 4 considers conformal basis wave functions for massless scalars. Single-
valuedness on the celestial torus requires that the L0 and L̄0 eigenvalues are either both
integer or both half-integer. “L-primary” solutions are found corresponding to highest-
weight states annihilated by L1 and L̄1. More general solutions are then obtained by
taking descendants. Convolutions of these wave functions with the bulk field operator cre-
ate states which have an interpretation as L0, L̄0 eigenstates of the 1+1D celestial CFT
living on a spatial circle of the celestial torus. The fact that the time direction of the
torus is periodic is not a problem because L0 + L̄0 is quantized. We also find lowest-weight
solutions annihilated by L−1 and L̄−1, as well as mixed solutions annihilated by L±1, L̄∓1.

A striking feature of this construction is that the solutions are labelled by three integers:
the conformal weights and the levels of the left and right descendants, giving L-primary
scattering a discrete character. This contrasts with dynamics on the celestial sphere in
Minkowski space, where the conformal basis solutions are labelled by three continuous
parameters: a position on the sphere and a continuous complex conformal dimension. The
discrete character of celestial scattering in Klein space resonates with several other recent
developments. Spacetime translations shift conformal weights by a half-integer [10], so the
set of all L-primaries and their descendants associated to a given spacetime field form a
representation of the Poincaré group.2 In gauge theory and gravity, the infinite hierarchy of
soft currents appears at negative integer weight, while the positive integer weights appear
related to Goldstone bosons [13–16]. Poles at negative even integer conformal weights in
celestial scattering amplitudes were recently shown [17] to encode the coefficents in the
Wilsonian effective action. These poles characterize much or all of the theory and may be
naturally probed by scattering L-primaries.

2Unlike the continuous complex highest weight representations discussed in [11, 12] which are restricted to
have the real part of the conformal weight equal to unity and cannot be put in representations of translations.
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In section 5 we construct, as Mellin transforms of plane waves, modes corresponding
to particles which emerge at a fixed point on the celestial torus. These correspond to
“H-primary” operators which are primary with respect to elements H1, H̄1 leaving fixed
the point at which the particles emerge. Scattering of such particles takes the form of a
correlation function on the celestial torus. We show that L-primary wave functions can be
expressed as weighted integrals over the torus of H-primary wave functions with quantized
weights. This is a version of the celestial state-operator correspondence. Hence L-primary
scattering amplitudes are weighted celestial integrals of Mellin transforms of plane wave
scattering amplitudes. We close with a few comments in section 6.

2 Null, spacelike and timelike infinity

In this section we conformally compactify K2,2 and derive the conformal geometry of null
infinity I, spatial infinity i0 and timelike infinity i′.3 The flat metric on K2,2 is

ds2
4 = dzdz̄ − dwdw̄. (2.1)

In polar coordinates z = reiφ and w = qeiψ, this becomes

ds2 = −dq2 − q2dψ2 + dr2 + r2dφ2. (2.2)

Now define q − r = tanU , q + r = tan V , giving

ds2 = 1
cos2 U cos2 V

(
−dUdV − 1

4 sin2(V + U)dψ2 + 1
4 sin2(V − U)dφ2

)
. (2.3)

The coordinate ranges are the solid triangle −π
2 < U < π

2 and |U | < V < π
2 , as depicted

in figure 1. Null infinity I is at V = π/2 where the factor out front blows up. Spacelike
(timelike) infinity i0 (i′) is the boundary at U = −π

2 (U = π
2 ).

Note that, unlike the case of M3,1, null infinity has only one connected component.
This means we cannot define an S-matrix. Instead we have only an S-vector in the sense
of [19]. It is an amplitude for a collection of incoming particles on I to scatter into nothing
— which they must as there is nowhere to go! This S-vector together with a suitable
analytic continuation procedure can in principle be used to define an S-matrix in M3,1.
I is parameterized by the null coordinate −π

2 < U < π
2 and the periodic coordinates

ψ and φ. Taking V → π
2 while rescaling (2.3) by cos2 V one finds the conformal metric on

I to be the square, Lorentzian torus

ds2
I = −dψ2 + dφ2, ψ ∼ ψ + 2π, φ ∼ φ+ 2π. (2.4)

Hence I is the product of the celestial torus with a null interval.
Now we turn to i0, i′. Since the boundary of a boundary is nothing, we must be able to

glue these to I to get an S3 which is the topological boundary of K2,2. S3 is topologically
represented in toric geometry as a torus fibration over the interval in which one of the two
torus cycles shrinks to zero at one end of the interval, and the other at the other end. Then

3An alternate conformal compactification of K2,2 has been studied in [18].
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i0

i
′

I

U V

Figure 1. Toric Penrose diagram for signature (2, 2) Klein space. 45o lines are null as usual.
A Lorentzian torus is fibered over every point in the diagram. The spacelike cycle of the torus
degenerates along the timelike line U = V , while the timelike cycle degenerates along the spacelike
line U = −V . Neither cycle degenerates at null infinity I which is the interval −π2 < U < π

2 , V = π
2 .

Spacelike infinity i0 is at (U, V ) = (−π2 ,
π
2 ) and has the conformal geometry of signature (1, 2)

AdS3/Z. Timelike infinity i′ is at (U, V ) = (π2 ,
π
2 ) and has the conformal geometry of signature

(2, 1) AdS3/Z. The blue lines are lines of constant ww̄ − zz̄ with τ = 0 at U = 0.

there are no non-contractible cycles. In order to complete I to S3 in this manner, the i0, i′

“caps” must both be topologically the product of a disk and a circle. We now show that
this is indeed the case and moreover that the conformal geometry on each cap is AdS3/Z.

Following procedures which are standard for M3,1 [20–24], we resolve i′ by taking the
τ →∞ limit of the signature (2, 1) surface

zz̄ − ww̄ = −τ2. (2.5)

We denote the two regions of K2,2 with positive or negative zz̄−ww̄ by K2,2±. Coordinates
covering the region K2,2−, which contains i′, are

z = τeiφ sinh ρ,
w = τeiψ cosh ρ. (2.6)

The inverse relations are

τ =
√
ww̄ − zz̄, tanh ρ =

√
zz̄

ww̄
,

eiφ =
√
z/z̄, eiψ =

√
w/w̄.

(2.7)

The Klein space metric in these coordinates is

ds2
4 = −dτ2 + τ2ds2

3, (2.8)

where
ds2

3 = − cosh2 ρ dψ2 + sinh2 ρ dφ2 + dρ2 (2.9)
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is the conformal geometry of i′. We recognize it as the standard metric on AdS3/Z, where
the Z acts as the time-like quotient ψ → ψ + 2π.

A similar construction for i0 begins with (τ̃ , ρ̃, φ, ψ) covering K2,2+ with zz̄−ww̄ = +τ̃2:

z = τ̃ eiφ cosh ρ̃,
w = τ̃ eiψ sinh ρ̃. (2.10)

The inverse relations are

τ̃ =
√
zz̄ − ww̄, tanh ρ̃ =

√
ww̄

zz̄
,

eiφ =
√
z/z̄, eiψ =

√
w/w̄.

(2.11)

One finds

ds2
4 = dτ̃2 − τ̃2ds2

3, (2.12)
ds2

3 = − cosh2 ρ̃ dφ2 + sinh2 ρ̃ dψ2 + dρ̃2. (2.13)

We see that the non-contractible loop in the AdS3/Z factor is now φ instead of ψ and
spacelike instead of timelike in the K2,2± embedding space. Hence gluing the conformal
geometries of the two AdS3/Z caps to I trivializes both cycles of the celestial torus and
the full topology of infinity is S3.

3 Symmetries

The “Lorentz group” of K2,2 is SO(2, 2) ∼= SL(2,R)L×SL(2,R)R

Z2
, where the Z2 is generated by

−1L ×−1R. The spin group is the double cover SL(2,R)L × SL(2,R)R. The symmetry is
generated on Klein space by (real combinations of) the six Killing vector fields

L1 = z̄∂w + w̄∂z, L̄1 = z∂w + w̄∂z̄,

L0 = 1
2 (z∂z + w∂w − z̄∂z̄ − w̄∂w̄) , L̄0 = 1

2 (−z∂z + w∂w + z̄∂z̄ − w̄∂w̄) ,

L−1 = −z∂w̄ − w∂z̄, L̄−1 = −z̄∂w̄ − w∂z.

(3.1)

In K2,2− we may also write

L1 = 1
2e
−iψ−iφ (∂ρ − i tanh ρ ∂ψ − i coth ρ ∂φ) ,

L0 = − i2 (∂ψ + ∂φ) ,

L−1 = 1
2e

iψ+iφ (−∂ρ − i tanh ρ ∂ψ − i coth ρ ∂φ) ,

L̄1 = 1
2e
−iψ+iφ (∂ρ − i tanh ρ ∂ψ + i coth ρ ∂φ) ,

L̄0 = − i2 (∂ψ − ∂φ) ,

L̄−1 = 1
2e

iψ−iφ (−∂ρ − i tanh ρ ∂ψ + i coth ρ ∂φ) ,

(3.2)

– 5 –
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while on K2,2+

L1 = 1
2e
−iψ−iφ (∂ρ̃ − i coth ρ̃ ∂ψ − i tanh ρ̃ ∂φ) ,

L0 = − i2 (∂ψ + ∂φ) ,

L−1 = 1
2e

iψ+iφ (−∂ρ̃ − i coth ρ̃ ∂ψ − i tanh ρ̃ ∂φ) ,

L̄1 = 1
2e
−iψ+iφ (∂ρ̃ − i coth ρ̃ ∂ψ + i tanh ρ̃ ∂φ) ,

L̄0 = − i2 (∂ψ − ∂φ) ,

L̄−1 = 1
2e

iψ−iφ (−∂ρ̃ − i coth ρ̃ ∂ψ + i tanh ρ̃ ∂φ) .

(3.3)

In either case on the boundary at ρ → ∞ (or ρ̃ → ∞) these reduce to the familiar circle
action

Ln = − i2e
−in(ψ+φ) (∂ψ + ∂φ) , L̄n = − i2e

−in(ψ−φ) (∂ψ − ∂φ) , (3.4)

for n = −1, 0, 1. The Ln obey (for all ρ or ρ̃) the SL(2,R) Lie bracket algebra

[Ln, Lm] = (n−m)Lm+n, (3.5)

and similarly for the L̄n.
AdS3/Z is the SL(2,R) group manifold which admits an SL(2,R)L×SL(2,R)R group

action. The generators above leave fixed the AdS3/Z hypersurfaces of constant ww̄ − zz̄.
L0 − L̄0 generates AdS rotations and L0 + L̄0 generates AdS global time translations for
ww̄− zz̄ = τ2, while for zz̄−ww̄ = τ̃2 it is the other way around. In either case because of
the mod Z quotient, the eigenvalues of L0 ± L̄0 are separately quantized. This is standard
in SL(2,R) representation theory, but differs from familiar string theory applications in
which one works on the simply-connected universal cover AdS3 of AdS3/Z, and only L0−L̄0
is quantized.

SO(2, 2) acts faithfully on the celestial torus. We define the null angles

x± ≡ ψ ± φ. (3.6)

While ψ, φ naturally parametrize the cycles of the celestial torus, the symmetry group acts
more simply on x±. In particular SL(2,R)L acts only on x+, while SL(2,R)R acts only on
x−. The price for working with x± is that their periodicity properties are not independent.
Rather one has

(x+, x−) ∼ (x+ + 2π, x− + 2π) ∼ (x+ + 2π, x− − 2π). (3.7)

Finite elements of SL(2,R)L act as Möbius transformations on tan x+

2 by sending x+ → x+′

such that

tan x
+′

2 =
a tan x+

2 + b

c tan x+

2 + d
(3.8)

with ad − bc = 1. Note that tan x+

2 = tan x++2π
2 despite the fact that (x+, x−) and

(x+ + 2π, x−) are distinct points, so tan x+

2 is not a good coordinate on the whole torus.
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4 Primary scalar states

In this section we construct the highest- and lowest-weight conformal primary wave func-
tions for a massless scalar.

Solving the massless scalar wave equation �Φ = 0 in a conformal basis reduces to
finding representations of SL(2,R)L×SL(2,R)R as functions on the SL(2,R) group manifold
AdS3/Z. On K2,2− the equation separates as Φ(τ, ψ, φ, ρ) = Φ1(τ)Φ3(ψ, φ, ρ) and can be
written

1
τ

(∂ττ3∂τ )Φ1 = KΦ1, (4.1)

∇2
3Φ3 = KΦ3, (4.2)

where the separation constant K can be anything at this point. The first equation (4.1)
has two power law solutions which depend on K. (4.2) is the wave equation for a scalar of
mass m2 = K on AdS3/Z. In a standard basis, L0 + L̄0 generates time translations, while
L0 − L̄0 generates space rotations. Both must be integers, implying that L0 and L̄0 are
either both integers or both half-integers.4 (4.2) can be rewritten in terms of either the
SL(2,R)L or SL(2,R)R Casimirs on AdS3/Z

(4L̄2
0 − 2L̄−1L̄1 − 2L̄1L̄−1)Φ3 = (4L2

0 − 2L−1L1 − 2L1L−1)Φ3 = KΦ3. (4.3)

Here we consider conformal primary solutions in a basis of (L0, L̄0) eigenstates. These obey
the eigenvalue condition

L0Φ3 = hΦ3, L̄0Φ3 = h̄Φ3 (4.4)

for integer or half-integer (h, h̄), as well as the highest-weight condition

L1Φ3 = L̄1Φ3 = 0. (4.5)

We refer to these as “L-primary”, to distinguish them from operator-type primaries dis-
cussed in the next section. Commuting L1 and L̄1 to the right where they annihilate Φ3,
the wave equation reduces to (4.5) together with

K = 4h(h− 1) = 4h̄(h̄− 1) (4.6)

for some integer or half-integer (h, h̄) eigenvalues of L0, L̄0. (4.1) then has two solutions

Φ1 = τ−2h, Φ̃1 = τ2h−2, (4.7)

which are indirectly related by the shadow transform. Moreover the highest-weight condi-
tions (4.5) imply

h = h̄ (4.8)

together with
∂ρΦ3 + 2h tanh ρΦ3 = 0. (4.9)

4In the familiar case of AdS3, ψ is not periodically identified and L0 + L̄0 is not quantized.
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This is solved by

Φ3 ∝
e2ihψ

cosh2h ρ
. (4.10)

Putting this together we have a pair of conformal primary solutions in K2,2− for every
half-integer value of h,

Φ++
h = e2ihψ

cosh2h ρ
τ−2h, Φ̃++

h = e2ihψ

cosh2h ρ
τ2h−2. (4.11)

We can construct descendant solutions by acting with L−1, L̄−1 on Φ++
h . However we still

have to match this to a solution on K2,2+. For this purpose it is easiest to work in terms
of the (z, z̄, w, w̄) coordinates. Then we find

Φ++
h = w̄−2h, Φ̃++

h = w̄−2h(ww̄ − zz̄)2h−1. (4.12)

The equation of motion
�Φ = 4(∂z∂z̄ − ∂w∂w̄)Φ = 0 (4.13)

has ∂2h
w̄ δ

(2)(w) sources at w = 0 for positive h, which may be important or need regulation
in some applications. The singularity along the light cone of the origin zz̄ = ww̄ can be
regulated with a ±iε prescription, a choice of which may be necessary for example to define
scattering amplitudes. Similar regulators are likely needed in solutions below but will not
be analyzed herein. Near I at V = π

2 one finds

Φ++
h → (π − 2V )2he2ihψ, Φ̃++

h → (π − 2V )e2ihψ(2 tanU)2h−1. (4.14)

We could also consider lowest-weight solutions obeying

L−1Φ = L̄−1Φ = 0. (4.15)

Inspection of (3.1) immediately reveals that the complex conjugates

Φ−−h = (Φ++
h )∗ = w−2h, Φ̃−−h = (Φ̃++

h )∗ = w−2h(ww̄ − zz̄)2h−1 (4.16)

obey (4.15) and

L0Φ−−h = L̄0Φ−−h = −hΦ−−h , L0Φ̃−−h = L̄0Φ̃−−h = −hΦ̃−−h . (4.17)

There are further mixed solutions obeying

L1Φ = L̄−1Φ = 0. (4.18)

Again from (3.1) we see that under the exchange z ↔ w, we have

Ln ↔ Ln, L̄n ↔ −L̄−n. (4.19)

It follows that
Φ+−
h = z̄−2h, Φ̃+−

h = z̄−2h(ww̄ − zz̄)2h−1 (4.20)

– 8 –
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obey (4.18) and

L0Φ+−
h = −L̄0Φ+−

h = hΦ+−
h , L0Φ̃+−

h = −L̄0Φ̃+−
h = hΦ̃+−

h . (4.21)

Finally the other class of mixed solutions

L−1Φ = L̄1Φ = 0 (4.22)

is given by
Φ−+
h = z−2h, Φ̃−+

h = z−2h(ww̄ − zz̄)2h−1. (4.23)

The full SL(2,R)L×SL(2,R)R multiplets can for all cases be obtained by suitable actions
of L±1, L̄±1.

5 Primary scalar operators

In the previous section we constructed wave functions whose convolutions with bulk field
operators create states in the (1, 1) celestial CFT on the Lorentzian torus. These are
L-primary with respect to the standard SL(2,R)L×SL(2,R)R action, diagonalizing both
time translations and space rotations.

The (1, 1) CFT also contains local operators acting at points on the torus

Oh,h̄(x̂+, x̂−), x̂± = ψ̂ ± φ̂, (5.1)

which are H-primary rather than L-primary [25]. They are annihilated by the raising
operators in the basis that diagonalizes boosts towards (x̂+, x̂−). This basis is

H x̂
0 = 1

2
(
eix̂

+
L1 − e−ix̂

+
L−1

)
, H x̂

±1 = iL0 ∓
i

2
(
eix̂

+
L1 + e−ix̂

+
L−1

)
,

H̄ x̂
0 = 1

2
(
eix̂
−
L̄1 − e−ix̂

−
L̄−1

)
, H̄ x̂

±1 = iL̄0 ∓
i

2
(
eix̂
−
L̄1 + e−ix̂

−
L̄−1

)
.

(5.2)

These obey the commutation relations

[Hn, Hm] = (n−m)Hn+m, [H̄n, H̄m] = (n−m)H̄n+m. (5.3)

Analogous primary operators were constructed in Minkowski space, where they live on
the sphere rather than the torus, as Mellin transforms of momentum space field operators
in [11]. The construction is easily continued to Klein space. Let us write in (z, z̄, w, w̄)
coordinates

p = ωp̂(x̂) = ω(eiφ̂, e−iφ̂, eiψ̂, e−iψ̂), (5.4)
X = (reiφ, re−iφ, qeiψ, qe−iψ), (5.5)

so that p2 = 0 and

p̂(x̂)·X = r cos(φ̂−φ)−q cos(ψ̂−ψ)

= (r−q)cos x̂
+−x+

2 cos x̂
−−x−

2 +(r+q)sin x̂
+−x+

2 sin x̂
−−x−

2 , (5.6)

– 9 –
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where x̂ = (x̂+, x̂−). As usual the Mellin transform gives5

ϕh(X; x̂) =
∫ ∞

0
dωω2h−1eiωp̂·X = e−πihΓ(2h)

(p̂ ·X)2h . (5.7)

These obey, by construction, the wave equation as well as

H x̂
1ϕh(X; x̂) = H̄ x̂

1ϕh(X; x̂) = 0, (5.8)

H x̂
0ϕh(X; x̂) = H̄ x̂

0ϕh(X; x̂) = hϕh(X; x̂), (5.9)

H x̂
−1ϕh(X; x̂) = −2∂̂+ϕh(X; x̂), (5.10)

H̄ x̂
−1ϕh(X; x̂) = −2∂̂−ϕh(X; x̂). (5.11)

Scattering amplitudes of particles with these wave functions are Mellin transforms of plane
wave amplitudes, and are identified with conformal primary correlation functions on the
celestial torus. These wave functions have branch cuts for generic h and are periodic in
both the time and space directions ψ and φ. One may also consider the shadows of these
solutions

ϕ̃h(X; x̂) = ϕh(X; x̂)(X2)2h−1, (5.12)

which obey (5.8)–(5.11).
We can put our (1, 1) CFT on the Lorentzian cylinder just as well as the Lorentzian

torus, and it is instructive to see how they are related. In a conventional (1, 1) CFT on the
cylinder there is a canonical map from primary operators at a point to operator modes on
the circle, given by an integral over a causal diamond

Om,n =
∫ 2π

0
dx̂+

∫ 2π

0
dx̂−e−imx̂

+−inx̂−Oh,h̄(x̂+, x̂−), (5.13)

where h − h̄ ∈ Z. Spatial periodicity requires m − n ∈ Z. In order that our modes create
the primary and descendant states associated with Oh,h̄, we need m,n ∈ Z− h. When we
instead consider this mode expansion on the torus, the timelike periodicity further requires
m + n ∈ Z, which means that the only consistent operators of the type (5.13) arise from
H-primaries with h+ h̄ ∈ Z. Accordingly we henceforth restrict to h± h̄ ∈ Z.

The analog of this map (on the torus now) at the level of the wave functions (5.7) is

Φm,n(X) =
∫ 2π

0
dx̂+

∫ 2π

0
dx̂−e−imx̂

+−inx̂−ϕh(X; x̂+, x̂−). (5.14)

Using

L0 = − i2(H x̂
1 +H x̂

−1), L±1 = e∓ix̂
+

2 (iH x̂
1 − iH x̂

−1 ± 2H x̂
0 ), (5.15)

5In Minkowski space the ±iε prescription at p̂ ·X = 0 distinguishes ingoing and outgoing solutions. In
Klein space changing the sign in front of ε is equivalent to changing the sign of p̂ and so does not give a
new solution, in accord with the fact that I has only one connected component. In the case when 2h − 1
is a negative integer — which is related to soft currents in the spin-one case — the wave functions should
be normalized so as to cancel the Γ-function singularities [26–29].
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together with (5.8), and integrating by parts with respect to x̂+ one finds the standard
mode relations

L1Φm,n = (h− 1−m)Φm+1,n, (5.16)
L0Φm,n = −mΦm,n, (5.17)
L−1Φm,n = (1− h−m)Φm−1,n. (5.18)

Any solutions Φ constructed from linear combinations of ϕh(X; x̂) obey

(L0(L0 − 1)− L−1L1)Φ = (L0(L0 + 1)− L1L−1)Φ = h(h− 1)Φ. (5.19)

Hence highest-weight solutions obeying L1Φ = 0 have m = −h or m = h− 1, while lowest-
weight solutions obeying L−1Φ = 0 have m = h or m = 1 − h. Similar relations hold for
the L̄n. The highest-weight solution with m = n = −h is

Φ−h,−h =
∫ 2π

0
dx̂+

∫ 2π

0
dx̂−eih(x̂++x̂−)ϕh(X; x̂+, x̂−) (5.20)

= 22+2hπ2eiπhΓ(2h)w̄−2h ∝ Φ++
h , (5.21)

in agreement with (4.12). The integral here is performed in appendix A. The poles at nega-
tive half-integer h are inherited from the normalization of the wave functions (5.7) and can
be absorbed by a redefinition of the wave functions resulting in finite amplitudes [27–29].

For h > 0, taking descendants of the primary generates the standard infinite-dimen-
sional unitary SL(2,R)L×SL(2,R)R representation. For h < 0, after taking 2h descendants
(on either left or right) we reach m = h and the representation terminates. This is a non-
unitary finite-dimensional representation.

Similarly for m = n = h we have

Φh,h =
∫ 2π

0
dx̂+

∫ 2π

0
dx̂−e−ih(x̂++x̂−)ϕh(X; x̂+, x̂−) (5.22)

= 22+2hπ2eiπhΓ(2h)w−2h ∝ Φ−−h . (5.23)

This is a lowest-weight solution. The representations are filled out by acting with powers
of L1, L̄1. Mixed primary solutions can also be obtained by taking (m,n) as (h,−h)
or (−h, h).

6 Comments on scattering

Celestial S-vector elements of particles with Klein space H-primary wave functions are
given by Mellin transforms of momentum space S-vector elements. The kth external par-
ticle is labeled by 3 continuous parameters: hk, x+

k , x
−
k . They take the form of CFT corre-

lation functions on a Lorentzian torus.
Celestial S-vector elements of particles with L-primary wave functions, and their de-

scendants, can also be computed from momentum space S-vector elements, with the addi-
tional weighted integral over the celestial torus given in (5.13). The kth external particle
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is labeled by 3 discrete parameters: hk and the left and right levels of the descendant. It is
interesting that the L-primary scattering problem has a discrete character. This resonates
with the results of [17] where it was shown, for the Minkowskian four-particle amplitude,
that the Wilsonian coefficients are encoded in poles at discrete integral conformal weights.
These are likely probed by L-primary scattering amplitudes.

We defer a more detailed analysis of properties of the L-primary solutions to fu-
ture work.
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A Mapping H-primaries to L-primaries

In this appendix we evaluate the integral (5.20) mapping conformal H-primary solutions
to L-primary ones. We start with

I =
∫ 2π

0

∫ 2π

0
dx̂+dx̂−e−imx̂

+
e−inx̂

− e−iπhΓ(2h)
(p̂ ·X)2h . (A.1)

This integral consists of points inside the causal diamond, covering half of the celestial
torus. It can be related to an integral over the full torus by noticing that the integral over
the other half is obtained from the integral over the diamond by shifting x̂+ → x̂+ + 2π
for fixed x̂−. This transformation amounts to taking p̂ to its antipodal point −p̂. Under
this transformation,

e−imx̂
+−inx̂−Φh(x̂+, x̂−)→ e−2πihe−imx̂

+−inx̂−e±2πihΦh(x̂+, x̂−). (A.2)

For h ∈ 1
2Z the phases on the r.h.s. cancel in which case the integrals over the diamond

and its complement are equal. The integral over the causal diamond can then be replaced
by half the integral over the torus. The change of variables to ψ̂, φ̂ then leads to

I =
∫
T 2
dψ̂dφ̂ e−i(m+n)ψ̂e−i(m−n)φ̂ e−iπhΓ(2h)[

r cos(φ̂− φ)− q cos(ψ̂ − ψ)
]2h . (A.3)

Setting m = n and
w = ei(ψ−ψ̂), z = ei(φ̂−φ), (A.4)
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we find

I = −22he−2imψ
∮
dw

w

∮
dz

z
w2m e−iπhΓ(2h)

[r(z + z−1)− q(w + w−1)]2h
, (A.5)

where the contours are the unit circles |z| = |w| = 1. For fixed w and |r(z + z−1)| <
|q(w + w−1)| we can expand the denominator6

I =−22he−2imψe−iπhΓ(2h)
∮
dw

w

∮
dz

z
w2m

∞∑
k=0

(−q)−2h(w+w−1)−2h
(
−r
q

z+z−1

w+w−1

)k(−2h
k

)
(A.6)

and first evaluate the z integral,

∮
dz

z
(z + z−1)k = 2πi


Γ(k+1)

Γ(k/2+1)2 , k ∈ 2Z+,

0, else.
(A.7)

Then, upon a redefinition of the summation variable,

I = −22he−2imψe−iπhΓ(2h)2πi
∞∑
k=0

∮
dw

w
w2m(w + w−1)−2h−2k(−q)−2h

(
−r
q

)2k

× Γ(−2h+ 1)
Γ(1 + k)2Γ(−2h− 2k + 1) .

(A.8)

We now easily see that the remaining integral above simplifies and gives us the solutions
in (4.12). First set m = −h. The integral over w reduces to∮

dw

w
(w2 + 1)−2h−2kw2k. (A.9)

For k > 0, there are no poles inside the contour |z| = 1, so this integral vanishes.7 The
only term that survives in (A.8) is the k = 0 one which gives

Im=−h = 4π222he−iπhΓ(2h)e2ihψ(−q)−2h = 4π222heiπhΓ(2h)w̄−2h. (A.10)

The answer is well-defined for h ∈ 1
2Z+ and diverges for h ∈ 1

2Z−. The latter divergences
follow from the normalization of the conformal primary wave functions (5.7) and were
related to conformally soft poles in [27–29].

6It can be shown that the analogous expansion for |r(z + z−1)| > |q(w + w−1)| gives the same result
for m = −h.

7The branch cuts at ±i can be pushed away from the contour by an iε prescription.
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