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A final observation bearing on the attitude to physical problems that we have maintained
in our studies.of the mathematical theories of black holes and of colliding waves: in the
theory of spacetimes with two Killing fields one timelike and one spacelike or both spacelike-
the basic governing equations are one or more Laplace’s equations, the Ernst equations,
and the X- and Y-equations. The simplest solutions of the Laplace and the Ernst equations
have provided all the fundamental solutions describing black holes and colliding waves. But
the simplest solution of the X- and Y- equations have been left out. At long last it has

found its place: it provides the first nontrivial binary black hole solution with supporting
strings.

— S. CHANDRASEKHAR.



1 Introduction

Einstein’s field equations N N
GY = —8rTY (1.1)

where T represents the energy momentum tensor of the matter and field, are second order non
linear partial differential equations. There are basically three approaches to study them : exact
solutions, approximation schemes and numerical computation. These approaches are listed in
order of decreasing aesthetic appeal. The exact solutions as explained below, are necessarily very
special and constitute a measure of zero in the space of all solutions. However, exact solutions
play an important role in generating tests for numerical codes [Centrella (1986)] and also for
providing checks on the validity of the approximation schemes. They can also provide models for
important, though oversimplified, physical situations e.g. the Schwarzchild, and Kerr black holes
and the Friedmann cosmological model on which almost all of the relativistic astrophysics and
astrophysical cosmology is based. Besides, they can also provide counter-examples to conjectures
[Misner (1963)]; for a discussion of these aspects one may refer to [MacCallum (1984, 1985 a,b)].
Due to the nonlinearity of the Einstein’s equations it is impossible to solve these equations in
their full generality. The usual practice is to assume, at the outset, some symmetry e.g. Cylindrical,
Planar, Axial or the ones described in terms of Killing vectors. In addition to this, one has to resort
to some specific energy momentum tensor. The most commonly used energy momentum tensors
are that characterising dust, perfect fluid, electromagnetic field, imperfect fluid and radiation field.
At this point it is to be noted that the solutions where energy momentum tensor is generalized
by way of introducing, say null radiation, electromagnetic field, heat conducting fluid etc., and
which do not leave any of its trace in the metric coefficients are not important unless a physical
interpretation of decomposing the energy momentum tensor and an explanation of how ambiguities
in the decomposition are to be removed is provided. [MacCallum (1987), Krasinski (1993)].
Exact solutions is one of the topics which attract many scientists working in General Relativity.
About 10% of the research papers at the International conferences on the subject and 40% on the
average at the Indian conferences are devoted to this topic. Hence, it is very difficult to present
an overview of the subject in such a short duration unless some selection rules and procedures
are adopted. Fortunately, in the literature, good review articles are available from time to time
on this topic and it would be easier to paint a ‘broad-brush’ picture of the state of affairs by
looking at these reviews. I would present an overview of these reviews with the year 1974 as the
cut off. Besides, we have to narrow down our interests to (i) stationary axi-symmetric fields and
(ii) inhomogeneous cosmologies. This restriction, is guided mainly by the fact that the physically

relevant solutions fall into these two subtopics but reflects my personal interests and prejudices as
well.

2 Stationary Axisymmetric Fields

Kinnersley (1974) describes briefly all known vacuum solutions including electrovacuum and their
inter-relationships. He discusses space times admitting two commuting 2-forming Killing vectors
containing (i) Tomimatsu-Sato solution (ii) stationary axially symmetric solutions and various
transformation theorems for generating solutions from other known solutions. Here, the alge-
braically special solutions with non-diverging rays and with non rotating rays have also been
discussed. 5

Starting from the early seventies and for about a decade there has been active interest and con-
siderable progress in obtaining new axisymmetric stationary solutions of Einstein’s field equations.
The main motivation was the close resemblance of Einstein’s equations, for this case, with the
non-linear differential equations e.g. Sine-Gordon or Korteweg-de Vries (KdV) equations arising in
other branches of Physics. Consequently, extensive use of Backlund transformations and Soliton
techniques has been made. The various topics e.g. Hoensaelers, Kinnersley, Xanthopolous (H K
X) transformations, Kinnersley-Chitre(K C) transformation, Geroch group have been discussed
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thoroughly and every aspect has been considered in detail at the Seminar with the title “Solutions
of Einstein’s Equation : Techniques and Results” edited by Hoensealers and Dietz (1994). For the
benefit of the reader list of topics covered there are included as Appendix I. For an earlier review
of the topic one may refer to Kramer and Stephani {1980).

2.1 Anisotropic Cosmology

The well known Friedmann-Lemaitre Robertson-Walker (FLRW) model, represents Universe in
which all space points and all directions at any space point are equivalent. If one assumes the matter
to be represented by dust the Universe turns out to be homogeneous. The isotropy on a large scale
is confirmed by experiments but the issue whether the Universe was homogeneous and isotropic
already at its early stages and has it still these properties in very distant regions is so far unresolved.
Besides, there are. mathematical arguments in favour of inhomogeneous models [Tavakole and
Ellis (1988)]. It is to be pointed that even at the very early stage of Relativistic Cosmology
several physicists were able to see the importance and necessity of investigating inhomogeneous
cosmological models [Dingle (1933), Tolman (1934)]. For a detailed discussion of these aspects
one may refer to a recent review by Krasinski (1993) where one may find topics e.g. memorable
statements about the cosmological principle, why one should consider inhomogeneous models of the
universe. In view of the above there has always been active interest in inhomogeneous cosmological
models and in the literature several good review articles e.g. MacCallum (1984), Jantzen (1987),

Kramer and stephani (1980) are available for a recent review one may refer to Krasinski [1993,
1994).

2.1.1 Senovilla Class of Solution

Senovilla (1990) has discovered an important solution representing a perfect fluid distribution
with cylindrical symmetry and obeying an equation of state p = 3p. This solution represents
the distribution for —00 < t < oo having the curvature as well as matter invariants regular and
smooth everywhere. The fluid flow lines have inhomogeneous expansion, nonvanishing shear and
anisotropic acceleration. Until now the conventional and prevalent view of Cosmology was that of
FLRW which represents spherically symmetric isotropic and homogeneous perfect fluid distribution
with vanishing shear and homogeneous acceleration. The anisotropic and inhomogeneous models
obtained by earlier workers viz. Wainwright and Goode (1980), Feinstein and Senovilla (1980),
Davidson (1991), possess space - like Big Bang singularity. Consequently, it was considered that
this would represent general singularity structure in other models as well. This experience was
strongly aided by the singularity theorems, according to which if one adheres to Einstein’s theory of
General Relativity and assumes physically reasonable conditions of positivity of energy, causality
and regularity etc, the initial singularity (¢ = 0) is inescapable. Chinea, Fernandez-Jambrina
and Senovilla (1992) have carried out the analysis of geodesics and have found that the Senovilla
spacetime is geodesically complete. Senovilla and his coworkers have made a thorough scrutiny to
unravel how this solution could avoid the powerful singularity theorem. Senovilla argues that the
general reason presented by Hawking and Ellis (1973) in establishing the singularity theorem makes
use of the assumption of geodesic motion of the cosmological matter which is clearly not supported
by any theoretical reasoning. He further finds that the singularity free nature of his solution is
in accordance with Raychaudhuri’s work [1955] according to which the presence of acceleration or
rotation may prevent the existence of a universal singularity in our past [Senovilla (1995)]. The
other reason is attributed to the shear of the fiuid flow- lines which is nonvanishing and to the
nonexistence of compact surfaces. This is interpreted to mean that nowhere in the spacetime
gravity becomes strong enough to focus geodesics in a small compact region for the trapping of
the all particles including photons to take place [Dadhich, Tikekar and Patel (1993)]. Recently
Ruiz and Senovilla (1992) have obtained a general class of inhomogeneous perfect fluid solution
which contains singular solutions due to Wainwright and Goode (1980), Feinstein and Senovilla
(1989) and the solution being discussed presently. It is easier to understand Senovilla’s solution if
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we express FLRW solution in cylindrical coordinates (7,7, @, z) as

2 2
ds® = T-dr’ +dr* + 1+ M Z)d¢2 + Z dz?] (2.1)

where T is an arbitrary function of time and M is an arbitrary constant ; its sign is related the
usual curvature index in FLRW model. 3 is a function of r given by

2 2
S o=1+M > (2.2)

where a prime indicates derivative with respect to r. The density p and the pressure p of the fluid

are given by
' g (1% 1 {2 12
p= i‘z‘(ﬁ‘@ » P = —fﬁ(?’ﬁ’M) (23)

where an overhead dot represents derivative with respect to time. The Senovilla solution is given
by
ds? = T2(1+n) 22"('"—1) [—d7'2 +d’l‘2]

+72(1+n) 2271 2'2 d¢72 (2.4)

+T2(1-n) $°3(1 — n)dz?
where 3 is a function of 7 satisfying
2 2(1—-211)

Z = Mz+1—n1< Z (2.5)

and M,n and k are arbitrary constants. There arises two cases :

(i) n=0 and T arbitrary (2.6)
Acosh(2VMC) + Bsin h(2y/7) , M>0
(ii) n=0 and T? = { AT+B , M=0 2.7

Acosh(2 — V=MT) + Bsinh(2/-M7) , M <0

The expansion 6, acceleration a; and shear o;; have their nonvanishing components as given by

0 — (TL +3) zn(l—-n) _T_nj_“;’
— _1 n(l-n) 28
ay n(n )Z Trn+1 ( . )

_ — _ 2n n(l-n) T
ol = 022 =033 = 73 Tn¥2

The anisotropy of the fluid motion, the scale factor R(7) and deceleration parameter g are given
by '

o _ 2 3

5 = 7‘5[1”;:3‘]

R(r) = Tn+3/3 (2.9)
¢ = 2-2(-H)



The solution reduces to FLRW solution for n = 0. The physical scenario described by this
solution is as follows. The distribution if ; we assume it initially to contract, collapses to r = 0 and
then reverses its motion and expands for ever. This model may be compatible with observational
fact that the present Universe is to be homogeneous and expanding provided one prefers to have
the dynamics of the distribution as given by

Tsp arbund 7=0with anyn
T(7) ~ (2.10)
Terpw for C =7 with n=0

where Tsr represents the time scale for singularity free Senovilla solution valid up to 7, the instant
of bounce and Trrrw is the time scale as given by FLRW solution. However, there are many
conceptual issues to be resolved. For a discussion of these one may refer to Senovilla (1995). Some
recent works attempting to establish the uniqueness of Senovilla class of cylindrically symmetric
solution among separable, irrotational space times are going on and encouraging results are reported
[Dadhich, Patel, Govinder and Leach (1994), Dadhich, and Patel (1995).]

2.1.2 Spherically Symmetric Non-vanishing Shear Models

I have remarked above that the existence of the shear of the four velocity is attributed to be a reason
for resulting in a singularity free solution. For spherically symmetric perfect fluid distribution with
vanishing shear there is no dearth of exact solutions. [Srivastava (1987,1992)] But the investigations
with non-vanishing shear are rare and may be counted. The so.ations for a stiff matter [Wesson
(1978), Vaidya (1968)], and for equation of state p = p(p), under the assumption of separability of
metric coefficientists [Vandenberg and Wils (1985)] are available. The additional assumptions to
yield a solution are (i) existence of self similarity [Collins and Lang (1987)], (ii) The four velocity
begin perpendicular to surface = constant [Vaidya 1968)]. Biech and Das (1990) have shown
null coordinates to be useful for obtaining solutions of this class. This investigation also presents
reviews of the earlier works. Recently an interesting result has emerged out of the earlier works of
Me Vittie and Wiltshire (1977) ; the solution is found to have shear. [Bonnor and Knutsen (1993),
and Knutsen (1995)]. This investigation employs noncomoving coordinates. It is interesting to
remark that investigations for solutions with shear has been a topic of interest in the very early
days. [Narlikar (1936), Narlikar and Moghe (1935)].

2.1.3 Shearfree Models

In contrast to the above there is sufficient reason to study the perfect fluid distributions with
vanishing shear. As has been discussed by Collins (1986) shear free solutions would retain the
feature of isotropy of local motions but redshifts need not be isotropic. It is shown following Ellis
(1971) that relative recessional motion of the neighbouring galaxies is isotropic iff o;; = 0 whereas
for the relative red shift to be isotropic one would need in additon vanishing of U;. Further the
isotropy of the transverse motion of the neighbouring galaxies would require o;; = w;; = 0. Thus
o;j = 0 is a common feature of all these aspects. For a review of shear free perfect fluid solutions
one may refer to Barnes (1983). Besides, there is another strong reason to study shear free models.
It is because of following conjecture due to Collins [1986].

gi; = 0 = wd =0 ' (211)

This conjecture is based on the observation that for shear free motions;it must have either w = 0
or § = 0. The conjecture has been proved for (i) and parallel to each other [White and Collins
(1984)] and (ii) the vanishing magnetic part of the Weyl tensor [White (1986)]. The importance
of the study is in obtaining a counter-example to the conjecture because in Newtonian theory it
is fairly readily shown that for because in Newtonian theory it is fairly readily shown that for
self gravitating shear free fluids neither vorticity nor expansion vanish. The intuitive picture in

general relativity would therefore, be illusive if conjecture holds. At this point I would like to quote
Chandrasekher.
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“On the relativistic theory, the frequencies of oscillation of the non-radial models (as
we have shown) depend only on the distribution of the energy density and the pressure
in the static configuration and the equation of state only to the extent of its adiabatic
exponent. If this is a true representation of the physical situation then it must be valid in

the Newtonian theory as well : the true nature of an object cannot change with modes and
manner of one's perception”.

—S. CHANDRASEKHAR (1991).

3 Commentary

Kinnersely (1974) while presenting his talk on “Recent progress in exact solutions” at the GR7
International Conference has remarked “the study of exact solutions has acquired a rather low
reputation in the past, for which there are several explanations. Most of known exact solutions
describe situations which are frankly unphysical and these do have a tendency to distract attention
from useful ones. But the situation is also partially the fault of us who work in the field. We toss
in null currents, macroscopic neutrino fields and tachyons for the sake of greater “generality”; We
seem to take delight at the invention of confusing anti-intuitive notion ; and when all is done we
leave our newborn wobbling on its vierbien without any visible means of interpretation”.

More or less similar views have been expressed by later workers. There is another aspect
of the problem. We have too many solutions rather than too few solutions. Simple minded
attempts to derive a new solution from natural assumptions are likely to result in yet another
discovery. As a side effect, some simple results are published again and again while important fine
developments remain unnoticed for a long time [Krasinski (1993)]. For example, the investigation
of Kustaanheimo and Kvist (1948) pertaining to shear free perfect fluids could only be noticed after
the publication of book by Kramer et al. (1980). To avoid such repetition and also for our own sake
we should not stop just after obtaining a solution but should look for invariant characterisation. At
present the literature is full of materials where these aspects are clearly discussed e.g. MacCallum
(1987), Krasinski (1994), Kramer et al. (1980).

In fact even in the early seventies it was being felt that number of exact solutions was growing;
consequently to any serious minded research worker in the field it was necessary to have a stock -
taking of known solutions in order to avoid duplication. The notable investigations among these
are Kramer, Neugebauer and Stephani (1972) and Kinnersley (1974). Kramer et. al started in
1975 an exhaustive survey of the literature on exact solutions of Einstein’s field equations and
have published their results in the form of a book [Kramer et. al (1980)]. It is devoted to the
classification and construction of exact solutions. They have discussed the classification schemes
for exact solutions viz. (i) algebraic classification of conformal curvature tensor (Petrov types),
(ii) algebraic classification of the Ricci tensor (Plebanski types) and the physical characterisation
of the energy momentum tensor, (iii) the existence and structure of the preferred vector fields and
(iv) the group of symmetry admitted by the metric. However, they have based the classification of
the known solutions primarily on (i) symmetry group and (ii) Petrov types and subdivided these to
include other main classification schemes. Besides, these studies have remarkably brought to our
notice many old works to name a few, Wyman (1946), Narlikar (1947), Kustaanheimo and Qvist
(1948) which were otherwise almost out of sight but are more rigorous and deep as compared to
the later works which rederive their results.

3.1 What should we be doing?

An uptodate account of exact solutions has been presented by MacCallum at ICGC 87 and the
material covered there under the titles what solutions do we know? Can we find physically inter-
esting solutions?, Can we put realistic physics into our solution? Can we interpret the solutions we
find? Do we find interesting mathematics? is relevant even today and the reader may refer to it
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[MacCallum (1987)]. However, I would conclude my comments, which are of course, not completely
independent.

Tackle whole class of solutions at once.

Analyse the symmetry structure of field equations viz. Lie, Painle’ve analysis. A good recent

reference to Painle’ve analysis of which I am aware may be the lecture notes (unpublished)
of Leach, Govinder (1994).

Explore new solutions for the well identified field e.g. solution having two Killing vector fields,

source for Kerrmetric, anisotropic inhomogeneous cosmologies, radiating star, colliding plane
waves, etc. ’

Apply more efforts towards physical interpretation of the known solutions rather than to
increase the number of solutions.

Have more physical motivation in obtaining exact solution than the mathematical skill. I

would explain this point by an example from one of my work [Srinivastava (1987)] in appendix
IL

Obtain the invariant characterisation of the solution e.g. kinematical parameters, classifica-
tion of Weyl tensor, and of principal null eigen vectors after one has obtained it.
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APPENDIX -1

Some topics in the Proceedings, Seminar on Solutions of Einstein’s field Equations: Techniques
and results .

SI.No. | Title Page Authors
1. Backlund transformations in general relativity 1-25 Kramer, D. and
Neugehauer, G.

2. Vector Backlund transformation and associated 55-67 Chinea, ¥.J.
superposition principle

3. H K X transformations : An introduction 68-84 Hoensaelers, C.
4. The Geroch group is a Banch Lie group 113-127 | Schmodt, B.G.
5. On the homogeneous Hilbert problem for effecting | 128-175 | Hauser, L.

Kinnersley-Chitre transformations

6. Non-iterative methods for constructing exact 186-198 | Guo, D.S.
solutions of Einstein equations

7. Inverse scattering, differential geometry, 199-234 | Gurses, M.

Einstein Maxwell solutions and one
soliton Backlund transformations

8. N Kerr particles 311-320 | Yamazaki, M.

9. Algebraically special, shearfree diverging and 321-333 | Stephani, H.
twisting vacuum and Einstein-Maxwell fields

10. Exact solutions in Cosmology 334-366 | MacCallum, M.A H.

APPENDIX - II

The purpose of this appendix is to show, with the help of an example, how physical motivation
renders a solution not to be new which otherwise had appeared as new. The solution refers to
spherically symmetric perfect fluid distribution executing shearfree motion [Srivastava (1987a)}.

We start with the metric ansatz

_ 2 2 . 2
ds? = (-1——;%) dt® - [(—l—i‘?—é] (dr?® + r?d§? + r? sin® 8d4?) (I1.1)

where V = V{(rt),S = S(t) and & = ®(r,t) are arbitrary functions of their arguments. An
analysis of field equations reveals that

o = %[/ (%) Sdt+U(r)] (1.2)

C = bS[1 - 2as]"1/? (I1.3)
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where a and b are arbitrary constants and U(r) and F(r) are arbitrary functions of r. It is to be
noted for later reference that F' is related to Weyl conformal curvature invariant as

-3
Yy = —%F [5(1 +<I>)] (I1.6)

Hereafter the analysis gets divided into two classes.

Casel : a=0, Casell : a#0 (I1.7)

In the first case the functions U,V and F are determined explicitly and the solution becomes the
one obtained earlier by Glass and Mashhoon (1976). Whereas in the second case one has to solve
equations :

U'v? = ¢*(a?U? - b?) ,q = const. (11.8)

40202072 2y U’ 2 1
@U2 523 U ('ff) = A (11.9)

72

These equations can be solved in principle but it had not been possible to find U(r) explicitly. At
this stage I thought that the two cases ought to be new precisely because of the way they appear
in (IL4). However, before the solution for the case (ii) could be claimed to be new its invariant
classification is needed. For this, one way is to evaluate F(r) for the two cases. Fortunately,
following the analysis made by Stephani (1983) I could evaluate the function F(r) for the second
case and met happy surprise to see that (I1.9) is a perfect third order differential equation.

2772 2 )

The function F(r) for the case (i) has the same functional form as in the case (i) hence the two
cases should be the same. This means that by a suitable parameterisation equations (I11.4)-(I1.5)
should reduce to corresponding ones with a = 0. The required parameterisation is found to be

U=
2 (I1.11)

— —2ab“V

V =» v = (QTO'_H‘*)Q'

which in no way is an obvious parameterisation. This illustrates the point.
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