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Abstract
The symmetry-resolved Rényi entanglement entropy is the Rényi entanglement entropy of
each symmetry sector of a density matrix ρ. This experimentally relevant quantity is known
to have rich theoretical connections to conformal field theory (CFT). For a family of critical
free-fermion chains, we present a rigorous lattice-based derivation of its scaling properties
using the theory of Toeplitz determinants. We consider a class of critical quantum chains
with a microscopic U(1) symmetry; each chain has a low energy description given by N
massless Dirac fermions. For the density matrix, ρA, of subsystems of L neighbouring sites
we calculate the leading terms in the large L asymptotic expansion of the symmetry-resolved
Rényi entanglement entropies. This follows from a large L expansion of the chargedmoments
of ρA; we derive tr(eiαQ Aρn

A) = aeiα〈Q A〉(σ L)−x (1 + O(L−μ)), where a, x and μ are
universal and σ depends only on the N Fermi momenta. We show that the exponent x
corresponds to the expectation from CFT analysis. The error term O(L−μ) is consistent
with but weaker than the field theory prediction O(L−2μ). However, using further results
and conjectures for the relevant Toeplitz determinant, we find excellent agreement with the
expansion over CFT operators.

Keywords Symmetry-resolved entanglement entropy · Toeplitz determinants · Conformal
field theory

1 Introduction

Entanglement is a fundamental concept in quantum information theory and quantum many
body physics [1–3]. One important context is entanglement in ground states of many body
systems. A key insight is the area law for entanglement for gapped phases of matter; of
importance for tensor network descriptions of these states [4]. A major result was the proof
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of the area law in general one-dimensional systems [5, 6]. This area law is violated at phase
transitions; entanglement properties are then closely related to the nature of the quantum
critical point. For example, in one-dimensional spin chains with low-energy conformal field
theory (CFT) description, the von Neumann entanglement entropy, S(L), of a subsystem
consisting of L neighbouring spins (away from any boundary) obeys a universal scaling law

S(L) = c

3
log(L) + O(1), (1)

where c is the central charge of the CFT [7–10].
More recently, symmetry-resolved analogues of the usual entanglement entropies have

been introduced and analysed [11–14]. Roughly speaking, one block diagonalises the reduced
density matrix of the subsystem into different sectors of fixed charge and then finds the
entropy of each sector. This is a natural problem, and has experimental relevance [15–18].
One theoretical result is the equipartition of entanglement: for CFTs with U(1) symmetry,
the leading order behaviour is independent of the symmetry sector [14]. The leading charge-
dependent contributions to the entanglement were identified in exact calculations in free-
fermion chains in Ref. [19]. There is a growing literature on this topic; while a full review is
beyond our scope, we note works based on CFT and the replica trick [13, 14, 20], approaches
combining CFT and lattice form factors [21] and lattice results based on Toeplitz determinant
theory [19, 22, 23]. There are moreover extensions to more general quantum field theories
[24–26], spacetimes with dimension greater than two [27, 28], symmetry-resolved negativity
[29, 30], symmetry-resolved relative entropies [31, 32] as well as the out-of-equilibrium
behaviour of the symmetry-resolved entanglement following a quench [33–38]. Note that in
the literature, the concept of symmetry-resolved entanglement (in particular, for the setting
of a U(1) symmetry generated by the particle number) is closely related to the concepts of
configurational entanglement, entanglement of particles and operational entanglement [15,
39, 40].

In this paper we analyse symmetry-resolved entanglement entropies in a class of critical
quantum chains with U(1) symmetry. The low energy description of these chains is a the-
ory of N massless Dirac fermions, each with associated momentum k j and velocity v j for
1 ≤ j ≤ N . For N = 1 this is a CFT with c = 1 (the usual compactified boson at
the free-fermion radius). For an example in this class (a nearest neighbour tight-binding
model, Jordan–Wigner dual to the spin-1/2 XXmodel [41]) entanglement entropies [42] and
symmetry-resolved entanglement entropies [19, 21, 22] have been analysed previously using
lattice methods. For N > 1, we have a low-energy CFT description only when each of the v j

are equal: an SO(2N )1 Wess-Zumino-Witten (WZW) model with c = N [43]. For general
velocities, the case N > 1 can still be understood using CFT concepts: the scaling law (1)
holds with c = N [44] and one can identify low-energy descriptions of lattice operators by
taking sums and products of CFT operators from each of the different sectors [45–49] (each
sector being a copy of the c = 1 CFT). Moreover, we give an explicit argument that for a
family of N = 2 Hamiltonians that are not described at low energies by a CFT (since they
have different Fermi velocities), the ground state has a parent Hamiltonian that is described
at low energies by a CFT. Hence, ground state properties such as entanglement entropies
should agree exactly with CFT results. We expect this to hold more generally within the
family of models considered. Indeed, this point was made in Ref. [47] for general Bethe
Ansatz solvable models.

Consider now a subsystem of the critical chain consisting of L neighbouring sites. Our
main result consists of the leading terms in the large L asymptotic expansion of the symmetry-
resolved Rényi entropies. In order to derive this, we calculate the leading term, and give an
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estimate for the error, in the asymptotic expansion of the charged moment (defined below);
taking a Fourier transform then leads to the symmetry-resolved Rényi entropies. Fundamen-
tal to our proof is the asymptotic analysis of Toeplitz determinants with Fisher–Hartwig
singularities [50]. These methods were applied to the computation of entanglement entropies
in the XX model by Jin and Korepin [42] and then to the class of chains we consider here
by Keating and Mezzadri [44]. See also [51, 52] for further examples and references. This
method was generalised by Bonsignori, Ruggiero and Calabrese [19] and by Fraenkel and
Goldstein [22] to the computation of symmetry-resolved entropies in the XX model. We
largely follow their method to prove our results for the broader class of models considered
here. However, an important point is that the analysis given in those papers relies on a con-
jectured expansion of the relevant Toeplitz determinant to identify subleading terms (in fact
the dominant subleading terms were derived by Kozlowski [53], but not in a form that we
can use in our proof). We set up the problem differently so that we can use a rigorous and
sufficiently uniform bound from Ref. [54]. This approach does, however, lead to a weaker
bound on the correction term than expected—we address this in our discussion. While our
results for N = 1 largely reproduce the formulae already in the literature, we consider our
analysis to be of interest also in that case since we can give a rigorous estimate of the errors
at each stage.

Motivated by our analysis of the symmetry-resolved Rényi entropies, and the work of
[19, 22, 55], we give an extended discussion of the calculation of subleading terms in the
charged moments using both CFT and Toeplitz determinant methods. While not leading to a
rigorous result, we find that applying these two different techniques gives the same estimate
for the algebraic decay of the subleading term (which is generally the same as the N = 1 XX
model case [19, 22]), and also gives the corresponding oscillatory terms (going beyond the
XX model case) that allow us to match CFT operators to Fisher–Hartwig representations of
certain functions. We give an exact expression for the subleading term in all cases, based on
certain assumptions about the asymptotic expansion.

The outline of the paper is as follows. In Sect. 2 we define the model and quantities of
interest before stating our results. This is followed in Sect. 3 by the corresponding proofs. In
Sect. 4 we discuss our results, make connections to corresponding field theoretical calcula-
tions and analyse subleading correction terms. Note that Sects. 4.1–4.4 in the discussion can
be read independently of the proofs. Section 4.5 analyses the subleading terms from Toeplitz
determinant theory, and relies on certain definitions given in Sect. 3.1.3. Finally we discuss
further avenues of research.

2 Statement of Results

2.1 A Class of Models

Consider a chain of M sites, each with a spinless fermionic degree of freedom cn , such that
{cn, cm} = 0 and {c†n, cm} = δnm . We will take the limit M → ∞ and examine the class of
fermionic hopping Hamiltonians:

H = −
∑

n∈sites

(
t0c†ncn +

R∑

α=1

tα(c†ncn+α + c†ncn−α)

)
tα ∈ R. (2)

This class has a U(1) symmetry generated by Q = ∑
n∈sites c†ncn . We can diagonalise by

Fourier transformation:
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H = −
∑

k

(
t0 + 2

R∑

α=1

tα cos(kα)

)

︸ ︷︷ ︸
f (eik )

c†k ck . (3)

The ground state has filled modes with momentum k such that f (eik) > 0. If the function
f (z) has no zeros on the unit circle, then the ground state is trivial. Zeros on the unit circle
generically occur1 in conjugate pairs and with multiplicity one. If we have N such pairs then
we can linearise the dispersion about each point to find the low energy behaviour described
in the introduction [45]. We denote2 the independent momenta by 0 < k1 < · · · < kN < π .
Then:

f (eik) = ±h(k)

N∏

j=1

sin

(
k − k j

2

)
sin

(
k + k j

2

)
, (4)

where h(k) = h(−k) is real and strictly positive—the ground state is independent of h(k),
and while the excitation energies (and Fermi velocities v j = |∂k f (eik j )|) depend on h(k), it
will play no role in our analysis. Indeed, the symmetry-resolved entropies are properties of
the ground state and are otherwise independent of the Hamiltonian.

Using the Jordan–Wigner transformation this model is equivalent to the spin-1/2 chain:

Hspin = 1

2

∑

n∈sites

(
t0Zn −

R∑

α=1

tα
(

Xn

(
n+α−1∏

m=n+1

Zm

)
Xn+α

+ Yn

(
n+α−1∏

m=n+1

Zm

)
Yn+α

))
tα ∈ R, (5)

where Xn, Yn and Zn are the usual Pauli operators on site n. This is a family of generalised
cluster models [44, 57, 58], with U(1) symmetry generated by Q = ∑

n∈sites Zn . Such
chains appear as transitions between certain symmetry-breaking and symmetry-protected
topological (SPT) phases [58, 59]. We note that the symmetry-resolved entanglement of
certain ground states in such gapped SPT phases was studied in Ref. [60].

2.2 Symmetry-Resolved Entropies, ChargedMoments and Symmetry-Resolved
Moments

Consider a bipartition of our critical chain into two subsystems A and B, where A consists
of L neighbouring sites. The density matrix of the subsystem is given by ρA = trB(ρ)

where ρ is the ground state. The U(1) charge acts locally as Q = Q A + Q B ; let �q be
the projector onto the eigenspace of Q A with eigenvalue q . Then ρA can be decomposed
as ρA = ⊕q p(q)ρA(q) where p(q) = tr(�qρA) and for p(q) 	= 0 we define normalised

1 Real zeros at k = 0 or k = π and with multiplicity one are not consistent with the condition f (z) = f (1/z)
that is satisfied by the class ofmodels above. The free-fermionmodel (outside of the class above) corresponding
to f (eik ) ∝ sin(k) could be studied using the techniques here. The general analysis is in fact unchanged if
all zeros of f (z) on the unit circle have odd multiplicity (simply use the result where the corresponding
zeros have multiplicity one). Models with some zero on the unit circle having even multiplicity correspond to
multicritical points (the multicritical point in the phase diagram of the XY model is an example). These zeros
are ‘removable’—for further discussion see Refs. [48, 49, 56].
2 In the case N = 1 we will also use the notation kF for the Fermi momentum.
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density matrices ρA(q) = (�qρA�q)/p(q). Then we can define the symmetry-resolved
Rényi entropies by:

Sn(q) = 1

1 − n
log tr

(
ρA(q)n

)
(6)

and the symmetry-resolved von Neumann entropy by S(q) = −tr
(
ρA(q) log(ρA(q))

)
. Note

that S(q) is the limit of Sn(q) as n → 1.
In order to calculate the entropy, we first define the symmetry-resolved moment:

Zn(q) = tr
(
�qρn

A

)
, (7)

then Sn(q) =
(
log
(
Zn(q)

) − n log
(
Z1(q)

))
/(1 − n). The symmetry-resolved moment is

the Fourier transform of the charged moment:

Zn(q) = 1

2π

∫ π

−π

e−iqα Zn(α)dα (8)

where Zn(α) = tr
(
eiαQ Aρn

A

)
. (9)

For definiteness Q A = ∑L
j=1 c†j c j is the number of particles in the region A. This is the

key step to allow the calculation of the symmetry-resolved entropies, since we can calculate
Zn(α) as a contour integral where we have asymptotics for the integrand [13, 14, 19, 22].
Note that for n = 1 the charged moment is equal to the full-counting-statistics generating
function that has been studied before, at least for the XXmodel [61, 62]. More generally, this
quantity appears (in the obvious way) in defining charged Rényi entropies in a holographic
setting [21, 63].

2.3 Results

To state our results, define the quantity Lσ = σ L , where, given the momenta k1, . . . , kN ,
the (inverse) length scale3 σ is defined as:

σ =
( N∏

r=1

2 sin(kr )
∏

1≤r<s≤N

(
sin2( kr +ks

2 )

sin2( kr −ks
2 )

)(−1)r+s)1/N

. (10)

We also define the function [19, 22]:

ϒ(n, α) = in
∫ ∞

−∞
(tanh(πw) − tanh(nπw + iα/2)) log


(1/2 + iw)


(1/2 − iw)
dw. (11)

For n ∈ Z+, ϒ(n, α) has the closed form [21]:

ϒ(n, α) = 2
n−1∑

m=0

log

(
G
(
1 − α

2πn
+ 2m + 1 − n

2n

)
G
(
1 + α

2πn
+ 2m + 1 − n

2n

))
, (12)

where G(z) is the Barnes G-function [64]. Discussion and alternative expressions forϒ(n, α)

are found in Section 3.2.

3 More carefully: the length scale is a/σ where a is the lattice spacing.
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From the characterisation of the ground state of (3) in momentum space, the extensive
mean charge in the subsystem A is given by:

〈Q A〉 =
⎧
⎨

⎩

∑N
r=1(−1)N−r kr

π
L f (eiπ ) < 0

π−∑N
r=1(−1)N−r kr

π
L f (eiπ ) > 0.

(13)

We now state our results. We emphasise that related formulae for the XX model case are
found in [19, 21, 22].

Result 1 (Chargedmoments)Consider a system in our class of the form (4), with a low energy
theory of N complex fermions, and take a subsystem consisting of L neighbouring sites. The
charged moment of the subsystem has the following asymptotic expansion as L → ∞:

Zn(α, L) = L
− N

6

(
n− 1

n

)
− 2N

n ( α
2π )

2

σ eiα〈Q A〉eNϒ(n,α)
(
1 + O

(
L−μ(n,α)

) )
− π < α < π,

(14)

where 0 < n ∈ R and

μ(n, α) = min

{
1

2
,
1

n

(
1 − |α|

π

)}
. (15)

Note that μ(n, α) tends to zero as α → ±π ; in this limit the correction term is not
necessarily subdominant. This is as expected from both the CFT analysis and the analysis
using Toeplitz determinant theory. Note also that for n ≥ 2, we simply have μ(n, α) =
1
n

(
1 − |α|

π

)
. For n = 1 and α = 0, we can improve the bound on the error term, see

discussion in Appendix A.
To state our next result, we expand ϒ(n, α) as follows:

ϒ(n, α) = ϒ(n) + α2γ2(n) + α4γ4(n) + ε(n, α) (16)

where ε(n, α) = O(α6) and

γ2(n) = in

4

∫ ∞

−∞
(
tanh3(πnw) − tanh(πnw)

)
log


(1/2 + iw)


(1/2 − iw)
dw

γ4(n) = in

192

∫ ∞

−∞
sinh(3πnw) − 11 sinh(πnw)

cosh5(πnw)
log


(1/2 + iw)


(1/2 − iw)
dw. (17)

The above integral formulae hold for any 0 < n ∈ R. For n ∈ Z+ we have:

γ2(n) = 2
n−1∑

m=0

1

4n2π2

(
−1 + ψ

(
1 + 2m + 1 − n

2n

)

+ 2m + 1 − n

2n
ψ(1)

(
1 + 2m + 1 − n

2n

))

γ4(n) = 2
n−1∑

m=0

1

192n4π4

(
3ψ(2)

(
1 + 2m + 1 − n

2n

)

+2m + 1 − n

2n
ψ(3)

(
1 + 2m + 1 − n

2n

))
(18)

where ψ(x) = 
′(x)/
(x) is the polygamma function, with derivatives ψ(n)(x).
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Result 2 (Symmetry-resolved moments) Consider a system in our class of the form (4),
with a low energy theory of N complex fermions, and take a subsystem consisting of L
neighbouring sites. Define the quantity

a(n, L) = N

2nπ2

(
log(Lσ ) − 2nπ2γ2(n)

) = O(log L). (19)

Then, in the sector with charge q = q� + 〈Q A〉, where q� = O(1), the symmetry-resolved
moment of the subsystem has the following asymptotic expansion as L → ∞:

Zn(q) = Zn(0, L)√
4πa(n, L)

exp

(
− q2

�

4a(n, L)

)(
1 + 3

4

Nγ4(n)

a(n, L)2
+ O(log (L)−3)

)
. (20)

This second result leads directly to an expansion for the symmetry-resolved entanglement
entropies of the subsystem:

Result 3 (Symmetry-resolved entropy). With the same conditions as Result 2, the symmetry-
resolved Rényi entropy has the following asymptotic expansion as L → ∞:

Sn(q) = N

6

(
1 + 1

n

)
log(Lσ ) + N

1 − n
ϒ(n) − 1

2
log

(
2N

π
log(L)

)
+ 1

2(1 − n)
log(n)

+ log(L)−1
(nπ2

(
γ2(n) − γ2(1)

)

(1 − n)
− 1

2
log (σ )

)

+ log(L)−2
[

nπ2

(1 − n)

×
(

π2(nγ2(n)2 − γ2(1)
2) + log(σ )(γ2(1) − γ2(n)) + 3π2

N
(nγ4(n) − γ4(1))

)

+ 1

4
log (σ )2 + q2

�

nπ4

N (1 − n)
(γ2(1) − nγ2(n))

]
+ O(log (L)−3). (21)

As emphasised in [19], we see that the equipartition of entanglement breaks at order
log(L)−2. We can take the limit n → 1 to find the asymptotics of the symmetry-resolved
von Neumann entanglement entropy,

S(q) = S − 1

2
log

(
2N

π
log(L)

)
− 1

2
− log(L)−1

(
π2γ ′

2(1) + 1

2
log (σ )

)

+ log(L)−2
[

− 2π4γ2(1)γ
′
2(1) + π2γ ′

2(1) log(σ ) − 3π4

N
(γ4(1) + γ ′

4(1))

+ 1

4
log (σ )2 + q2

�

π4

N
(γ2(1) + γ ′

2(1))

]
+ O(log (L)−3). (22)

Here S is the usual von Neumann entropy calculated in [44], and the derivatives γ ′
2(1) and

γ ′
4(1) can be given as integrals using (17). Numerically, γ ′

2(1) � 0.0546 and γ ′
4(1) � 0.00154

[19, 65]. From (18), we have analytic expressions γ2(1) = −(1 + γE )/2π2 [14, 19, 21],
where γE is Euler’s constant, and γ4(1) = ψ(2)(1)/32π4.

Following Ref. [19], note that the O(1) term can be understood as follows. Since the den-
sity matrix is ρA = ⊕q p(q)ρA(q), we can write S = ∑

q p(q)S(q) −∑q p(q) log(p(q)).
The first term corresponds to configurational entanglement, while the second is the fluctu-
ation entanglement. Since Z1(q) = p(q), we can see using Result 2 that the fluctuation
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entanglement −∑q p(q) log(p(q)) is equal to 1
2

(
1 + log

( 2N
π

log(L)
) ) + o(1). Hence, at

leading order, the symmetry-resolved entanglement entropy obeys equipartition and is equal
to the configurational entanglement—this is natural since the symmetry-resolved entangle-
ment entropy corresponds to the entanglement entropy in a fixed charge sector and so there
is no fluctuation entanglement.

3 Analysis

In this section we give proofs of the above results. Section 3.1 leads to Result 1. This is
the most involved part of the analysis. We give various results relating to the term ϒ(n, α)

in Sect. 3.2. In Sect. 3.3, we reach Result 2—this is straightforward analysis of a Gaussian
integral, but does require the error term in Result 1 to justify the expansion. Finally, the steps
to write down the asymptotics for the symmetry-resolved entropies are given in Sect. 3.4.

3.1 Asymptotics of the ChargedMoments

3.1.1 Set Up

In the ground state of our class of models we have the two-point correlator:

〈c†mcn〉 = 1

2π

∫ 2π

0
e−ik(m−n) (sign[ f (eik)] + 1)

2
dk. (23)

Consider the L × L correlation matrix defined by Cmn = 〈c†mcn〉 for 1 ≤ m, n ≤ L , and
define its L eigenvalues by

1+ν j
2 for 1 ≤ j ≤ L . The ν j are eigenvalues of a Toeplitz matrix,

T , with symbol t(z) = sign[ f (z)]—this means that Tmn = tm−n , the (m − n)th Fourier
coefficient of t(z) [50]. There is a unitary transformation from the c j to fermionic modes d j

such that the reduced density matrix for the subsystem A is given by:

ρA =
L∏

j=1

1 + ν j

2
d†

j d j + 1 − ν j

2
d j d†

j (24)

(see, for example, Refs. [7, 66, 67]). Consider the charged moment, where we make the
dependence on L explicit:

Zn(α, L) = tr(ρn
Ae

iα
∑L

j=1 c†j c j ). (25)

Using (24), we then have the following expression for the charged moment:

Zn(α, L) =
L∏

j=1

((
1 + ν j

2

)n

eiα +
(
1 − ν j

2

)n)
. (26)

Note that Zn(α, L) is periodic in α, and so we can restrict without loss of generality to
−π < α ≤ π . However, α = π is a special case that is excluded from our analysis.

Denote by DL [t(z)] the Toeplitz determinant generated by the symbol t(z). The ν j

for 1 ≤ j ≤ L are eigenvalues of the Toeplitz matrix generated by sign[ f (z)]. Hence,
they are the zeros of the characteristic polynomial DL [λ − sign[ f (z)]]. We will write
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t(z, λ) = λ − sign[ f (z)]. From the residue theorem we have the following expression
for the logarithm of the charged moment:

log Zn(α, L) = 1

2π i

∫

C
fn(1 + ε, λ, α)

d log DL [t(z, λ)]
dλ

dλ, (27)

where

fn(x, λ, α) = log

[(
x + λ

2

)n

eiα +
(

x − λ

2

)n]
, (28)

and C is any simple and positively oriented contour containing the interval [−1, 1] that does
not cross the branch cuts of fn(1 + ε, λ, α). The branch cut structure and the contour of
integration will be considered in the following subsection.

3.1.2 Branch Cuts of the Integrand and Integration Contours for the Charged Moments

The integrand of equation (27) is the product of the function fn(x, λ, α) and the logarithmic
derivative of a Toeplitz determinant. This determinant is the characteristic polynomial, with
zeros corresponding to eigenvalues ν j that satisfy −1 ≤ ν j ≤ 1. This is because they
correspond to eigenvalues of the reduced densitymatrix (24); hence the logarithmic derivative
has singularities on the real axis between −1 ≤ λ ≤ 1 and nowhere else.

The function fn(1 + ε, λ, α) has branch points at

1 + ε + λ

1 + ε − λ
= ei

−α+π+2πm
n = eiθm (29)

where the integers m are such that the argument θm satisfies−π < θm ≤ π (this is consistent
with the principal logarithm defining (1+ε±λ)n for general n). The branch point associated
to θm is at λ = i(1 + ε) tan(θm/2): hence, the branch points have zero real part, and the
imaginary part is non-zero for −π < α < π . Note that taking the limit α → ±π , the closest
imaginary branch points to the real line approach zero, and in the limit we can no longer set
up the problem using the residue theorem.

To fix the contour, we need the imaginary branch points closest to the real line above and
below, we will denote them by iλ±. If there is no such branch point we put λ± = ±∞. Note
that the branch point corresponding to θ0 is above the real axis, and the the branch point
corresponding to θ−1 is below. As we vary n, there are three different cases that appear:

(1) For n ≥ 2 there are always at least two solutions to (29): θ0 and θ−1. Hence, iλ+ =
i(1 + ε) tan( π−α

2n ) and iλ− = −i(1 + ε) tan( π+α
2n ).

(2) For 1 ≤ n < 2 we have that for −π(n − 1) ≤ α < π(n − 1), both θ0 and θ−1

are solutions to (29). For π(n − 1) ≤ α < π we have a single solution θ0, and for
−π < α < −π(n − 1) we have a single solution θ−1. Depending on the value of α we
have, for example, iλ+ = i(1 + ε) tan( π−α

2n ) or iλ+ = i∞.
(3) For 0 < n < 1 we have either no solutions or a single solution to (29). For π(1 − n) ≤

α < π , θ0 is a solution. For −π < α < −π(1 − n), θ−1 is a solution.

For generic (non-integer) n there are also branch points at λ = ±(1 + ε).
We will use two contours of integration, sketched in Fig. 1. The first contour, C0(ε, δ),

is a rectangular contour with corners, for finite4 λ±, at λ = 1 + ε/2 + i(λ+ − δ) and

4 If λ+ (or λ−) is infinite we take a rectangle with corner at λ = 1 + ε/2 + iR (or at λ = −1 − ε/2 − iR),
and then take the limit as R → ∞.
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(a)
� δ

� δ

C0(ε, δ)

Re(z)

Im(z)
λ+×

λ−×

×× ××
1 + ε1−1 − ε −1

�

(b)

C(ε, δ′)

� δ′

Re(z)

Im(z)
λ+×

λ−×

×× ××
1 + ε1−1 − ε −1

�

Fig. 1 Contours of integration for calculating the logarithmof the chargedmoment. The bold (red) line contains
singularities of the logarithmic derivative of DL [t(z, λ)], while wavy (blue) lines correspond to branch cuts
of fn(1 + ε, λ, α). C0(ε, δ) is the initial contour, where we take the asymptotic expansion of the Toeplitz
determinant. Then we deform the integral to C(ε, δ′) to evaluate the terms in this expansion. We have branch
points at iλ+ = i(1 + ε) tan( π−α

2n ) and iλ− = −i(1 + ε) tan( π+α
2n ), and hence assume that −π < α < π

and n ≥ 2. The case where n < 2 is described in the text. (Color figure online)

λ = −1−ε/2+ i(λ− +δ). This contour will be useful for defining the asymptotic expansion
with an explicit and uniform estimate for the error. C0(ε, δ) may be deformed to C(ε, δ′).
Below we will take the limit as ε, δ′ → 0 and the contour integral reduces to two integrals
infinitesimally above and below the red cut—these are the integrals appearing in related
calculations in Refs. [19, 22, 42, 44].

3.1.3 Fisher–Hartwig Asymptotics for the Toeplitz Determinant

Now, to find the large L asymptotics of log Zn(α) we need the large L asymptotics of the
Toeplitz determinant log DL [t(z, λ)]. This is a Toeplitz determinant with Fisher–Hartwig
jump singularities, and the asymptotics may be rigorously evaluated using standard results
[54, 68], our treatment closely follows Refs. [42, 44]. First of all, one needs to put the symbol
in a canonical form:

t(z) = eV (z)z
∑

r βr
∏

r

gzr ,βr (λ)(z)z
−βr (λ)
r (30)

where

gz j ,β j (z) =
{
eiπβ j 0 ≤ arg(z) < θ j

e−iπβ j θ j ≤ arg(z) < 2π
for z j = eiθ j . (31)

Now, suppose that f (z) has 2N zeros at5 {z1 = eik1 , . . . , zN = eikN , zN+1 =
ei(2π−kN ), . . . , z2N = ei(2π−k1)}. Then we can have a canonical form for t(z, λ) with the
following choices6:

eV (z,λ) = eV0(λ) = (λ + 1)

(
λ + 1

λ − 1

)∑N
r=1(−1)N+1−r kr /π

(32)

βr = (−1)N+1−r β(λ) 1 ≤ r ≤ 2N (33)

where

β(λ) = 1

2π i
log

(
λ + 1

λ − 1

)
; −π ≤ arg

(
λ + 1

λ − 1

)
< π. (34)

5 We put all arguments between 0 and 2π for consistency with Ref. [54].
6 Vk is the kth Fourier coefficient of V (z).
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This representation implicitly assumes that f (eiπ ) < 0; this means that the sign in (4) is
equal to −1. It suffices to consider only that case: suppose we transform f (z) → − f (z),
then the eigenvalues of the Toeplitz matrix generated by sign[ f (z)] go from ν j → −ν j .
Hence:

Zn(α, L)

∣∣∣− f (z)
=

L∏

j=1

((
1 − ν j

2

)n

eiα +
(
1 + ν j

2

)n)
= eiαL Zn(−α, L)

∣∣∣
f (z)

. (35)

Thus if f (eiπ ) > 0, we can find the charged moment by calculating the charged moment of
− f (z) using the representation above.

Taking the result from [54] we then have the following asymptotics:

log DL [t(z, λ)] = V0(λ)L − 2Nβ(λ)2 log L + log E(λ) + o(1) (36)

where

E(λ) =
(

σ−β(λ)2G(1 + β(λ))G(1 − β(λ))

)2N

; (37)

recall that σ was defined in (10).
In terms of the length scale Lσ = σ L , we can rewrite this as:

log DL [t(z, λ)] = V0(λ)L − 2Nβ(λ)2 log Lσ

+ 2N log

(
G(1 + β(λ))G(1 − β(λ))

)
+ o(1). (38)

From Ref. [54], the error term is o(1) = O(L ||β(λ)||−1), where ||β|| is given by
max j,k |Re(β j )−Re(βk)|. This error term is uniform for compact sets ofβ such that ||β|| < 1,
and is analysed in Appendix A for the contour of integration C0(ε, δ). There we show that
we have:

||β(λ)|| − 1 ≤ max

{
− 1

2
,−1

n

(
1 − |α|

π

)}

︸ ︷︷ ︸
−μ(n,α)

+O(δ, ε). (39)

We can take the limit ε, δ → 0 and, for a fixed −π < α < π and n > 0, we can hence
uniformly bound the next-to-leading order term in the asymptotics.

3.1.4 Asymptotics of the Charged Moment: Proof of Result 1

In order to evaluate the charged moment we insert these asymptotics into the integral and
then deform the contour from C0(ε, δ) to C(ε, δ′). I.e., we have:

log Zn(α, L) = lim
ε,δ→0

1

2π i

∫

C0(ε,δ)

fn(1 + ε, λ, α)
d log DL [t(z, λ)]

dλ
dλ

= lim
ε,δ→0

i

2π

∫

C0(ε,δ)

d fn(1 + ε, λ, α)

dλ
log DL [t(z, λ)]dλ

= a0L + a1 log Lσ + a2 + O(L−μ(n,α)), (40)
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where

a0 = lim
ε,δ′→0

1

2π i

∫

C(ε,δ′)
fn(1 + ε, λ, α)

(1 +∑N
r=1(−1)N+1−r kr/π

1 + λ

+
∑N

r=1(−1)N+1−r kr/π

1 − λ

)
dλ (41)

a1 = N lim
ε,δ′→0

1

2π i

∫

C(ε,δ′)
fn(1 + ε, λ, α)

d
(− 2β(λ)2

)

dλ
dλ

= 2N

π2 lim
ε,δ′→0

∫

C(ε,δ′)
fn(1 + ε, λ, α)

β(λ)

1 − λ2
dλ (42)

a2 = N

π i
lim

ε,δ′→0

∫

C(ε,δ′)
fn(1 + ε, λ, α)

d log
(
G(1 + β(λ))G(1 − β(λ))

)

dλ
dλ. (43)

Note that we integrate by parts initially to avoid differentiating the asymptotic expansion—
for each individual integral we then integrate by parts again. These integrals can be evaluated
as in Refs. [19, 22]. In particular we have:

a0 = −iα
N∑

r=1

(−1)N+1−r kr/π (44)

a1 = −N

(
1

6

(
n − 1

n

)
+ 2

n

( α

2π

)2 )
(45)

a2 = N ϒ(n, α) (46)

where ϒ(n, α) is defined in (11); for further details see the next subsection.
Now, recall that in our analysis we assumed that f (eiπ ) < 0; in this case the mean density

of charges in the ground state is given by 〈Q A〉/L = ∑N
r=1(−1)N−r kr/π . In the case that

f (eiπ ) > 0 we have that 〈Q A〉/L = (π −∑N
r=1(−1)N−r kr )/π . Thus using (35), and noting

that the other terms are even in α, we have Result 1 for all cases. Note that the dependence
on 〈Q A〉 is as expected [19], since from (25) we have that Z1(α, L) = 1+ iα〈Q A〉+ O(α2).
This agrees with the calculations above: fixing n = 1 gives Z1(α, L) = eiα〈Q A〉+O(α2). To
see this, we use a1 = −2N

(
α
2π

)2 and from (16) we have a2 = O(α2) (see also the following
subsection).

3.2 Analysis of7(n,˛)

By evaluating the integral (43), we have:

ϒ(n, α) = in
∫ ∞

−∞
(tanh(πw) − tanh(nπw + iα/2)) log


(1/2 + iw)


(1/2 − iw)
dw (47)

= − 1

π2

∫ ∞

0

∫ ∞

0
log

(
2 cos(α) + 2 cosh(nu)

(
2 cosh( u

2 )
)2n

)(
e−t

t
− cos( ut

2π )

2 sinh(t/2)

)
dtdu.

(48)

The derivation of ϒ(n, α) follows the same steps as for the corresponding term ϒ(n) =
ϒ(n, 0) given for the XX model in Ref. [42]. Hence, the expressions agree in that case; we
refer the reader to Refs. [19, 22] for details. The form given in (48) (for a derivation see [22])
makes the following features explicit: ϒ(n, α) is real valued and is an even function of α.
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In the expression (47), we can use the Taylor expansion of tanh(nπw + iα/2) about α = 0,
which converges uniformly in w for |α| < π . Hence, using the notation of [19], we have the
series expansion:

ϒ(n, α) = ϒ(n) + α2γ2(n) + α4γ4(n) + ε(n, α) (49)

where ε(n, α) = O(α6) and γ2(n) and γ4(n) are given in Eq. (17). This expansion will be
used in calculating asymptotics of the symmetry-resolved moments.

An alternative formula for ϒ(n, α) can be derived by integrating (43) by parts leading to:

Nϒ(n, α) = − N

π i
lim

ε,δ′→0

∫

C(ε,δ′)

d

dλ

(
fn(1 + ε, λ, α)

)
log
(
G(1 + β(λ))G(1 − β(λ))

)
dλ.

(50)

The function d fn(1 + ε, λ, α)/dλ has simple poles at λm = i(1 + ε) tan(θm/2), where the
θm are defined in (29). For n ∈ Z+ these are the only singularities and deforming the contour
to infinity, the residue theorem leads to:

ϒ(n, α) = 2
n−1∑

m=0

log

(
G
(
1 − α

2πn
+ 2m + 1 − n

2n

)
G
(
1 + α

2πn
+ 2m + 1 − n

2n

))
. (51)

Note that this form is alsomanifestly symmetric inα. This result was previously derived using
residue calculus in Ref. [21] and coincides with the result of lattice form-factor calculations
described in Sect. 4.2.

We have the following expansion for the summands in the above expression:

log

(
G
(

x − α

2πn

)
G
(

x + α

2πn

))

= log(G(x)2) + 1

4n2π2

(
−1 + ψ(x) + (x − 1)ψ(1)(x)

)
α2

+ 1

192n4π4

(
3ψ(2)(x) + (x − 1)ψ(3)(x)

)
α4 + O(α6), (52)

(recall that ψ(x) is the usual polygamma function). Using also that G(1) = 1, we have
the result given in (18) for n ∈ Z+. Using this formula for γ2(1) we then immediately

have the known result γ2(1) = − 1+γE
2π2 [14, 19, 22]; we also have that γ4(1) = ψ(2)(1)

32π4 .
More generally, these expressions give a closed formula that avoids the need for numerical
integration to evaluate γ2(n) and γ4(n) for integer n. The above method is straightforwardly
extended to find higher terms in the expansion of ϒ(n, α) by expanding (51).

For general 0 < n ∈ R, the function d fn(1+ε, λ, α)/dλhas branch points atλ = ±(1+ε);
and we take the branch cuts along the real line. Deforming the contour to infinity we have
additional contributions from integrating along the branch cuts, as well as residues. Defining
m1 = �n/2 − 1/2 + α

2π � and m2 = �n/2 + 1/2 − α
2π �, a calculation leads to:

ϒ(n, α) = 2
m1∑

m=0

log

(
G
(
1 + 1

2n

(
2m + 1 − n − α

π

) )
G
(
1 − 1

2n

(
2m + 1 − n − α

π

) ))

+ 2
m2∑

m=1

log

(
G
(
1 + 1

2n

(
1 + n − 2m − α

π

) )
G
(
1 − 1

2n

(
1 + n − 2m − α

π

) ))

+ 8n sin(nπ)

π
I (n, α), (53)
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where the branch cut contribution corresponds to:

I (n, α) =
∫ ∞

0

xn−1(x + 2)n−1
(
cos(α)

(
x2n + (x + 2)2n

)+ 2xn(x + 2)n cos(πn)
)

∣∣∣(x + 2)2n + 2xn(x + 2)neinπ cos(α) + e2inπ x2n
∣∣∣
2

× log

(
G

(
1 + 1

2π i
log(1 + 2/x)

)
G

(
1 − 1

2π i
log(1 + 2/x)

))
dx . (54)

3.3 Symmetry-ResolvedMoments

We have that

Zn(q, L) = 1

2π

∫ π

−π

e−iqα Zn(α, L)dα. (55)

We are interested in the case that q� = q − 〈Q A〉 is O(1) for large L . A corresponding
analysis can be made for q� at different scales. We have from above that:

Zn(0, L) = L
− N

6

(
n− 1

n

)

σ eNϒ(n)

(
1 + O

(
L
max

{
− 1

2 ,− 1
n

}))
. (56)

With these definitions, we have:

Zn(q) = Zn(0, L)

2π

∫ π

−π

e−iq�α− α2

2nπ2
N log(Lσ )+N

(
α2γ2(n)+α4γ4(n)+ε(n,α)

)

×
(
1 + O(L−μ(n,α))

)
dα. (57)

Then let us define:

a(n, L) = N

2nπ2

(
log(Lσ ) − 2nπ2γ2(n)

) = O(log L). (58)

Note that a(n, L) is a real-valued function, and for L sufficiently large it will be positive-
valued. We will split the integral over α into three pieces:

Zn(q) = 1

2π

∫ −π/2

−π

e−i(q�+〈Q A〉)α Zn(α, L)dα
︸ ︷︷ ︸

I1

+ 1

2π

∫ π/2

−π/2
e−i(q�+〈Q A〉)α Zn(α, L)dα

︸ ︷︷ ︸
I2

+ 1

2π

∫ π

π/2
e−i(q�+〈Q A〉)α Zn(α, L)dα

︸ ︷︷ ︸
I3

. (59)

Asymptotically I2 dominates I1 and I3 as we will now show. First, let us analyse I2 as
L → ∞. Note that for |α| ≤ π/2 we have −μ(n, α) ≤ max{− 1

2 ,− 1
2n }. Then:

I2 = Zn(0, L)

2π

∫ π/2

−π/2
e−α2a(n,L)−iq�α+Nα4γ4(n)+Nε(n,α)

(
1 + O

(
L
max

{
− 1

2 ,− 1
2n

}))
dα

= 1√
a(n, L)

Zn(0, L)

2π

∫ π
√

a(n,L)/2

−π
√

a(n,L)/2
exp

(
− α′2 − i

q�√
a(n, L)

α′
)
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×
(
1 + Nα′4

a(n, L)2
γ4(n) + O(log(L)−3)

)
dα′

= Zn(0, L)√
4πa(n, L)

exp

(
− q2

�

4a(n, L)

)(
1 + 3

4

Nγ4(n)

a(n, L)2
+ O(log (L)−3) + e(L)

)
. (60)

In the last line we extend the limits of integration to infinity. The corresponding error function
asymptotics result in a subdominant error term

e(L) = O

(
exp

(
q2
�

4a(n, L)

)
L− N

8n (log(L))−1/2

)
(61)

that we can ignore7. For I3 we have the bound:

|I3| =
∣∣∣∣

Zn(0, L)

2π

∫ π

π/2
e−α2a(n,L)−iq�α+Nα4γ4(n)+Nε(n,α) (1 + O(1)) dα

∣∣∣∣

≤ const√
a(n, L)

Zn(0, L)

2π

∫ π
√

a(n,L)

π
√

a(n,L)/2
exp(−α′2)

(
1 + O(log(L)−2)

)
dα′

= O
(

Zn(0, L)L− N
8n (log(L))−1

)
. (62)

Similarly |I1| = O
(

Zn(0, L)L− N
8n (log(L))−1

)
. These contributions are subdominant to

the expansion in negative powers of log(L) that appear in I2. We hence have the large L
asymptotics claimed in Result 2:

Zn(q) = Zn(0, L)√
4πa(n, L)

exp

(
− q2

�

4a(n, L)

)(
1 + 3

4

Nγ4(n)

a(n, L)2
+ O(log (L)−3)

)
. (63)

3.4 Symmetry-Resolved Entropies

The symmetry-resolved Rényi entropies are defined by:

Sn(q) = 1

1 − n

(
log (Zn(q)) − n log (Z1(q))

)
. (64)

From (63), it is then straightforward to extract the asymptotics. First:

Sn(q�) = Sn − 1

2(1 − n)
log (4πa(n, L)) + n

2(1 − n)
log (4πa(1, L))

+ 1

1 − n

(
− q2

�

4a(n, L)
+ nq2

�

4a(1, L)

)

+ 1

1 − n
log

(
1 + 3

4

Nγ4(n)

a(n, L)2
+ O(log (L)−3)

)

− n

1 − n
log

(
1 + 3

4

Nγ4(1)

a(1, L)2
+ O(log (L)−3)

)
; (65)

7 Note that the power appearing here depends on the arbitrary choice of α = ±π/2 that we use to cut off the
integral away from α = ±π . We are free to choose any α = ±(π − x) for fixed x > 0 and this will lead to
a different algebraic decay. This is always subdominant to the expansion in negative powers of log(L) that
comes from expanding exp(Nγ4(n) + Nε(n, α)) and doing the Gaussian integral.
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where Sn is the usual Rényi entropy8, with asymptotics:

Sn =
(

N

6

(
1 + 1

n

)
log(Lσ ) + N

1 − n
ϒ(n, 0)

)
+ O(Lmax{−1/2,−1/n}). (66)

Expanding the other terms we have:

Sn(q) = Sn − 1

2(1 − n)
log
(
4πa(n, L)

)
+ n

2(1 − n)
log
(
4πa(1, L)

)

+ 1

1 − n

(
− q2

�

4a(n, L)
+ nq2

�

4a(1, L)

)
+ 3

4(1 − n)

(
Nγ4(n)

a(n, L)2
− n

Nγ4(1)

a(1, L)2

)

+ O(log (L)−3). (67)

Then inserting the definition of a(n, L), writing log(Lσ ) = log(L) + log(σ ), and grouping
powers of log(L) leads to Result 3.

4 Discussion

Wenowdiscuss our results and put them in context.We focus onResult 1, since given that, the
others follow. First in Sect. 4.1 we explain the calculation of Zn(α) (we will drop the explicit
L dependence in this section) using the twist-field method. We show how this recovers the
scaling dimension as well as the oscillatory factor in Result 1, as well as allowing us to derive
the same properties of the subdominant terms. Then in Sect. 4.2, we discuss another approach
to calculating the exact leading term by identifying the coefficients of the CFT expansion
with certain twisted overlaps in the lattice model. As with the CFT method, this applies
more generally to models that are not free-fermion, but we see for the free-fermion case that
this approach recovers the exact formula. Sect. 4.3 contains more details of the connections
between our approach and the CFT and form factor approaches. We also show how, under
certain assumptions, one could reconstruct Result 1 from the CFT analysis along with known
lattice results. In Sect. 4.4 we study a simple limiting case, a stack of decoupled chains.
Finally in Sect. 4.5 we give a discussion of subleading terms from Toeplitz determinant
theory and the connection to the CFT expansion.

4.1 Field Theory Approach

The usual method for calculating the Rényi entropy Sn(L) in CFT, for integer n > 1, is to use
the replica trick [8, 10, 69]. This leads to studying the CFT on an n-sheeted Riemann surface,
that in turn corresponds to a Zn–orbifold CFT on the complex plane. The moments tr(ρn

A)

then correspond to correlators of certain branch-point twist operators Tn . Following Refs.
[13, 14, 19, 21], in order to calculate the charged moments, we dress the branch-point twist
operator with another operator. This is the CFT field Vα corresponding to the lattice operator
eiαQ A ; the resulting composite twist operator is Tn,α = TnVα . Denoting the corresponding
antitwist operator by T̃ , and taking the subsystem A to be an interval of length L , we have:

Zn(α) = 〈Tn,α(L)T̃n,α(0)〉. (68)

8 As emphasised in [19] this is the exact value of Sn , we then proceed to evaluate it asymptotically.
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The scaling behaviour of this correlator can be derived [13]: assuming that Vα is a primary
operator with dimensions hα , hα , then the Tn,α behave as primary operators with scaling
dimension:

hn,α = c

24
(n − 1/n) + hα/n hn,α = c

24
(n − 1/n) + hα/n, (69)

where c is the central charge. For further details see the discussion in Refs. [13, 14, 19, 21].
The previous result is rather general. Let us now turn our attention to the family of models

considered in this paper, and in particular let us focus on the case where all Fermi velocities
are equal so that we have a low energy CFT (we explain below how to think about other
cases). Then we can use the general result taking c = N and, considering the theory of N

bosonised complex fermions, Vα is a particular vertex operator with hα = hα = N
2

(
α
2π

)2.
We justify this in the following section.

4.1.1 The FieldV˛

To identify Vα we give a brief treatment of the field content of this theory; further details
may be found in references [41, 70–74]. We will use a field-theoretic bosonisation, ignoring
certain subtleties, such as Klein factors. The constructive approach [75] can be clearer, but
our main aim here is to outline the solution and show that it agrees with the rigorous results
given above.

For each fermion ψ j (x) we have two 2π -periodic bosonic fields ϕ j (x) and θ j (x). They
satisfy [∂ϕ j (x), θ j (y)] = 2π iδ(x − y), and we have corresponding local vertex operators

V ( j)
m,n = exp(imϕ j (x)+inθ j (x)) form, n ∈ Z, these are primary fieldswith scaling dimension

h+h = m2+n2/4 and conformal spin h−h = mn. Fermionic operators are of the form V ( j)
m,n

with m half-integer—this corresponds to a Jordan–Wigner string and arises from integrating
the density fluctuation ∂ϕ j (x)/2π . More general vertex operators can be written as products
of the above for different sectors, and the scaling dimension is then a sum over the scaling
dimension from each sector.

Now, when α = π , the operator eiαQ A = eiα〈Q A〉eiαQ� corresponds to the Jordan–Wigner
string. Similarly, for general α we can write down a corresponding operator:

eiαQ� = exp

⎛

⎝
N∑

j=1

(
iα

2π

∫ L

0
∂ϕ j (x) dx

)⎞

⎠ . (70)

If we take the vacuum expectation, this looks like a two point function of vertex operators

Vα(x) = exp
(∑N

j=1
iα
2π ϕ j (x)

)
at x = 0 and x = L . Using the usual formula for the scaling

dimension, we have hα = hα = N
2

(
α
2π

)2. These operators are, of course, not local fields in
the bosonic CFT; these nonlocal operators generically map between different sectors with
different boundary conditions [71, 76]. Indeed, focusing on the c = 1 complex fermion CFT,
the operator:

Vα(z) = ei
α
2π (ϕ(z)−ϕ(0)) = ei

α
2π

∫ z
0 ∂ϕ(z)dz (71)

corresponds to a cut (along the integration contour) where the fermionic field (on the plane)
has a phase shift of e−iα . The scaling dimension of this operator, for −π < α < π ,
then corresponds to the ground state energy of the fermionic CFT with corresponding
twisted boundary condition ψ(x + 2π) = −e−iαψ(x) on a cylinder of radius one [71,
73]. A thorough treatment of these twisted boundary conditions of the CFT is given in
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[73,Chapter 10]—the key result is that we have hα = hα = 1
2

(
α
2π

)2; and in fact this holds
for α ∈ R. Note also that as we take α → ±π we have degenerate CFT ground states: this is
the usual degeneracy in the scaling dimensions of e±iϕ/2, and means that we should expect
that the dominant asymptotics changes at these values of α.

Returning to the c = N CFT, the field Vα(x) = exp
(
i
∑N

j=1
α
2π ϕ j (x)

)
gives the same

twisted boundary condition for each of the different fermions, and the scaling dimension is,
as expected, hα = hα = N

2

(
α
2π

)2. Note that the more general operator Vα;n1,...,nN (x) =
exp
(
i
∑N

j=1

(
α
2π + n j

)
ϕ j (x)

)
creates the same boundary conditions; but for −π < α < π

corresponds to an excited state in that sector (i.e., it is subdominant to Vα(x)) since it has
scaling dimension hα = hα =∑N

j=1
1
2

(
α
2π + n j

)2.

4.1.2 The Formula for the Charged Moment

Using (68), with the above choice of operator Vα , leads to:

Zn(α) = const × L
− N

6 (n−1/n)− 2N
n ( α

2π )
2

0 eiα〈Q A〉(1 + o(1)), (72)

where L0 = L/a0 for some constant a0 with dimensions of length. The other constant
corresponds to the normalisation of the twist field.

4.1.3 Subdominant Terms

In fact, the composite twist operator will generically contain all terms allowed by symmetry.
This leads to an expansion of the form:

Tn,α = Tn(x) ×
( ∑

{n j }∈ZN

(
c{n j },xe

i
∑N

j=1(
α
2π +n j)ϕ j (x) + descendants of this operator

)

+
∑

{n j }∈ZN

∑

{m j }∈S

(
c{m j ,n j },xe

i
∑N

j=1

((
α
2π +n j + m j

2

)
ϕ j (x)+m j θ j (x)

)

+ descendants of this operator
))

, (73)

where the constants c{n j },x contain the relevant normalisations and also oscillatory terms
(these can be obtained by replacing ϕ j (x) → ϕ j (x) + k j x or ϕ j (x) → ϕ j (x) − k j x as
appropriate). The set S corresponds to m j ∈ Z, such that at least two of the m j are not equal
to zero, and

∑N
j=1 m j = 0. Note that this second sum does not occur in the N = 1 case;

it corresponds to overall uncharged terms that create fermions in one sector and annihilate
fermions in another. Note also the periodicity in α in the set of fields that we know holds for
Zn(α).

Inserting this ansatz into (68), we find two possibilities for the order of the dominant
subleading term:

(1) The first comes from subdominant primary operators with o(1) = O
(

L−2d(n,α)
0

)
where

d(n, α) = 1
n

(
1 − |α|

π

)
. There are a number of operators with this scaling dimension.

First, we have contributions from the first sum in (73) where one of the n j = −sign(α)

123



Symmetry-Resolved Entanglement Entropy in Critical Chains Page 19 of 38    28 

and the rest are zero. For N > 1, we also have contributions at the same order from
the second sum. For j1 	= j2 put m j1 = 1, m j2 = −1 and n j1 = −(sign(α) + 1)/2
and n j2 = −(sign(α) − 1)/2, leading to the same scaling dimension. Note that more
generally if our system is described by a compact boson away from the free-fermion
radius one of these contributions will be subdominant compared to the other.

(2) The second corresponds to contributions of descendants; the dominant descendant cor-
rection will satisfy o(1) = O(L−1

0 ). This is not immediate from (73); indeed the
correspondence for the scaling dimensions (69) derived in Ref. [13] relies on the property
that the field is primary, so we should not apply that formula. It would be interesting
to derive the behaviour of transformed descendants either in the same way, or using the
partition function approach [14]; see also discussion in Ref. [77]. We simply note that
the Zn-orbifold CFT will have fields arranged into primaries and descendants, and so
we expect the descendant fields to map onto the corresponding tower of states. This is
consistent with the findings of [55].

Using the formula (15), we see that the CFT prediction for the subleading term is
O(L−2μ(n,α)), while our rigorous bound is O(L−μ(n,α))—these are consistent. The CFT
prediction for the subleading term matches numerical calculations in the XX model [19].
Note that these numerical calculations were for n = 2, and for n ≥ 2 the contribution from
the subleading vertex operator always dominates the contribution from the first descendant.
We will discuss these subdominant contributions further in Sect. 4.5.

Finally, for the XX model case, we note that a formula was found for the expansion
coefficients c{n j },x in (73) by an analytic continuation in α of the function ϒ(n, α) [22]. This
agrees with the approach based on Fisher–Hartwig expansions given below in (97).

4.2 Beyond Field Theory: Form Factors and Twisted Overlaps

Estienne, Ikhlef and Morin-Duchesne analysed the problem of symmetry-resolved entropies
in the XXZ model, which includes as a special case the XX model at half-filling:
f (eik) = cos(k) [21]. Of particular interest to our discussion is that the constants appearing
in (72) can be identified with limits of certain twisted overlaps in the lattice model that can
be calculated separately. This uses details of the lattice model, but is a separate approach to
the one taken in this paper. Note in particular that this method relies on the CFT description
of the low-energy behaviour, and the replica approach fixes n ∈ Z+.

Suppose we have our system on a periodic ring; the starting point is that the two-point
function of twist operators in the imaginary time direction is, by the state operator correspon-
dence, proportional to the square of the absolute value of the twisted overlap 〈ψ0|ψα〉, where
|ψα〉 is the ground state on the ring with α-twisted boundary conditions. We can replace
this by the limit of the ground state of a chain with M sites and with α-twisted boundary
conditions, denoted |ψα(M)〉. More precisely,

Z1(α) = |A1(α)|2eiα〈Q A〉L−2( α
2π )

2 + . . . (74)

where we have the form-factor

|A1(α)|2 = lim
M→∞

((
M

2π

)2( α
2π )

2

|〈ψ0(M)|ψα(M)〉|2
)

. (75)

For the half-filled XX model, direct calculation of the twisted overlap gives [21]:

|A1(α)|2 = 2−2( α
2π )

2
eϒ(1,α). (76)
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In this model we have σ = 2, so using the CFT formula above we recover the leading term
given in Result 1 (as had already been found in [19, 22]). The method can be extended
beyond half-filling, but one would need to give an asymptotic analysis of certain functions
that appear9. For general filling, we hence expect that the outcome of this analysis would
give:

|A1(α)|2 = σ−2( α
2π )

2
eϒ(1,α) =

(
2 sin(kF )

)−2( α
2π )

2

eϒ(1,α), (77)

although a direct derivation of this relation is beyond our scope.
There is a related formula for |An(α)|2, where we take the lattice equivalent of the Zn-

orbifold construction. In particular, we take n replicas of the quantum chain, and introduce
twisted boundary conditions that cyclically connect the j th copy to the ( j + 1)th and imple-
ment the α-twist. We take the overlapAn(α) of this twisted ground state and the ground state
of n decoupled chains, and then we have the following formula for the half-filled XX model
[21]:

|An(α)|2 = 2− 1
6 (n−1/n)− 2

n (
α
2π )

2
eϒ(n,α), (78)

where the form (12) for ϒ(n, α) appears directly from the asymptotic analysis. Then:

Zn(α) = |An(α)|2eiα〈Q A〉L− 1
6 (n−1/n)− 2

n (
α
2π )

2 + . . . . (79)

Again, since σ = 2 this agrees with Result 1 in this case. More generally, comparing this
analysis to Result 1 gives a formula for the limit of the twisted overlap for a general model
in our class.

4.3 Connection to Our Results

4.3.1 CFT Ground States and Fermi Velocities

Wecan nowuse the CFT analysis to put our results in context. First, note that the CFT descrip-
tion of the low-energy physics holds only for the case that all v j are equal (otherwise there
is no rescaling so that space and time are symmetric). However, as pointed out in Sect. 2.1,
everything that we calculate is a ground state property, and the ground state is invariant if
we deform our Hamiltonian by multiplying f (eik) by a function10 h(k) = h(−k) > 0. This
means that for a given model, we can find a family of models with different Fermi velocities
and different low-energy physics that nevertheless have the same ground state. In Appendix B
we explore this for the case N = 2. There we find that along with the class of Hamiltonians
that clearly have a low-energy CFT description (models with k2 = π − k1 and h(k) = 1),
we can also find a Hamiltonian that is a CFT at low energies and that shares the ground state
with the model (4) for any π/3 < k1 < k2 < 2π/3. In general, due to the fact we can tune
the Fermi velocities, we should expect that they do not enter into ground state properties,
and moreover that we should expect to apply the CFT analysis above in general (although
it remains to be shown explicitly that every model in our class shares its ground state with
another Hamiltonian in our class that has a low-energy CFT description). This general point
is made for Bethe Ansatz solvable models in Ref. [47].

9 These take the form
∑

y log[sinc
(

π
M (y + a)

)] for particular ranges of y that depend on the filling.
10 We can write h(k) = ∑R

n=0 bn cos(nk) where R corresponds to a minimal hopping range in the corre-
sponding model. Hence, if we restrict to a finite-range class of models, we should have R < ∞.
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4.3.2 Result 1: The Charged Moment

We now discuss Result 1 in light of the CFT analysis. Note that given Result 1, Results 2
and 3 follow as in the lattice calculations by taking the Fourier transform. Comparing (72)
to Result 1, we see that we have rigorous lattice asymptotics that agree with the scaling
dimension predicted by the branch-point twist field analysis. We can identify the UV scale
as a0 = a/σ , where a is the lattice spacing, and the composite twist operator Tn,α has a
normalised two-point function if we multiply by e−Nϒ(n,α)/2. As expected, both the lattice
results and the form of the CFT results are independent of the Fermi velocities v j . We have
already compared the error term in Result 1 to the error term predicted by CFT; we will
look at this more deeply in Sect. 4.5 where we discuss corrections to the asymptotics of the
Toeplitz determinant.

It is interesting that, aside from the mean charge, the dependence on the Fermi momenta,
k j , enters into the length scale a0 only. A similar point was observed for the full counting
statistics, Z1(α), in Ref. [61]. We can interpret this as follows, fixing N = 1, then, for a
given n and α, the normalisation of the composite twist operator is universal. For N > 1,
we have a natural decoupling of the ground state into N sectors, and the normalisation of the
composite twist operator is again universal and corresponds to the N = 1 normalisation in
each low energy sector. Indeed, if we assume universality then this must be the case. This is
because there is a lattice limit of decoupled chains where this decoupling is manifest through
the entire calculation, and so this product normalisation appears in that case. We discuss this
limit further in Sect. 4.4.

4.3.3 Reconstructing Result 1

We now show how we can reconstruct the leading term of Result 1 using CFT analysis and
previous lattice results, if one makes certain physically reasonable assumptions. In particular,
let us suppose that normalisation of the twist operator for fixed n and α is universal and that
there is a single UV scale a0 that depends only on the Fermi momenta characterising the
ground state. Then we can state Result 1 (for integer n and with the CFT estimate for the
error term) using ϒ(n, α) and a0 = a/σ . An analytic continuation would then recover
the formula for all n. ϒ(n, α) is known from work on the XX model: for general n using
Toeplitz determinant methods [19, 22], alternatively, for positive integer n, using the twisted
overlap method [21]. The scale a0 was implicit in the result for the asymptotic von Neumann
entanglement entropy given by Keating and Mezzadri [44], again using Toeplitz determinant
methods. Note that the proof of Result 1 does not use any of these assumptions, and therefore
confirms the above reasoning. We also see in the (conjectured) structure of the subleading
corrections given in Appendix D that the same universality properties do not appear to hold in
general. In particular, unlike the normalisation of the leading term, the coefficients appearing
in the operator expansion depend on the Fermi momenta.

4.4 Decoupled Chains

It is instructive to consider the limit of fully decoupled chains—these are models of the form

f (eik) = cos(Nk) − h (80)
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and are critical for |h| < 1. [Note that for even values of N these models are not in the class
explicitly analysed above, since f (eiπ ) > 0. Recall that (35) allows us to proceed in this
case.] This gives N decoupled copies of the XX model11, each with kF = arccos(h).

We can compare the Rényi entropies from these two points of view. First, evaluating the
entropies in our class using Result 1 we have the asymptotic formula:

Sn =
(

N

6

(
1 + 1

n

)
log(Lσ ) + N

1 − n
ϒ(n)

)
+ o(1). (81)

Then, using the results for the XX model [42], we have:

Sn =
N∑

r=1

(
1

6

(
1 + 1

n

)
log(2 sin(kF )L/N ) + 1

1 − n
ϒ(n)

)
+ o(1)

= N

6

(
1 + 1

n

)
log(2 sin(kF )L/N ) + N

1 − n
ϒ(n) + o(1). (82)

Note the universal normalisation of the composite twist operator appearing in both for-
mulae. Comparing the two formulae, we have an identity between the length scales:

( N∏

r=1

2 sin(kr )
∏

1≤r<s≤N

(
sin2( kr +ks

2 )

sin2( kr −ks
2 )

)(−1)r+s)1/N

= 2 sin(kF )

N
, (83)

where kr are the solutions of cos(Nk) = h between 0 and π .
We point out that this identity can be proved independently. Using the explicit form of

solutions of cos(Nk) = cos(α):

k2n+1 = α

N
+ 2πn

N
n = 0, . . . , �N/2� − 1 and

k2n = − α

N
+ 2πn

N
n = 1, . . . , �N/2�, (84)

one can show that the identity (83) follows from the simpler identity

sin
(
α/N

) N−1∏

s=1

(
sin
(

α
N + πs

N

)

sin
(

πs
N

)
)

= sin(α)

N
. (85)

This in turn follows from sin(N z) = 2N−1∏N−1
k=0 sin(z + kπ

N ) [64,Eq. 4.21.35].

4.5 Discussion of Fisher–Hartwig Determinants, Generalisations and the Error Term
for the ChargedMoment

4.5.1 The Conjectured Full Asymptotic Expansion

The theory of Toeplitz determinants with Fisher–Hartwig symbols gives the leading term in
the asymptotics of the determinant where the symbol has certain singularities; this includes
the jump discontinuities that appear at the zeros of f (z) above. The formula for this leading
term was the long-standing Fisher–Hartwig conjecture [78, 79]; this conjecture and further
generalisations, have now been proved—see the comprehensive review [50] and references
therein. Notice that the canonical form (30) is invariant if we put βr → βr + nr such that

11 To be precise, the model with Hamiltonian equivalent to f (eik ) = cos(k) − h.
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∑2N
r=1 nr = 0. Above, we chose the unique canonical form, or representation, with ||β|| < 1;

this gives the correct asymptotics, as proved by Basor [68]. In the case that ||β|| = 1, Basor
and Tracy proposed the generalised Fisher–Hartwig conjecture (gFHC) [80]: this states that
the leading asymptotics are a sum over the terms corresponding to each canonical form with
||β|| = 1 . This generalised conjecture was proved in Ref. [81]. Note that for a symbol with
Fisher–Hartwig singularities, there always exists a canonical form with ||β|| ≤ 1, and it is
unique when ||β|| < 1 [81].

These results give the first term in the asymptotic expansion. In our analysis above we
used the rigorous results of [54] to give an estimate of the correction term. In the analysis
of symmetry-resolved entanglement entropies in the XX model, given in Refs. [19, 22],
conjectured forms of the sub-leading terms in the expansion are used in the analysis (although
as we will see below, the dominant sub-leading terms are in fact a result of Kozlowski [53]).
The conjectural correction terms come from a full asymptotic expansion—this is also referred
to as the gFHC, although it is distinct from the gFHC of Basor and Tracy mentioned above.
For the discussion here it suffices to consider the symbol of Sect. 3.1.3, fixing N = 1 (this is
the XX model case):

eV (z,λ) = eV0(λ) = (λ + 1)

(
λ + 1

λ − 1

)−kF /π

(86)

β2 = −β1 = β(λ) = 1

2π i
log

(
λ + 1

λ − 1

)
; −π ≤ arg

(
λ + 1

λ − 1

)
< π. (87)

This representation has ||β|| < 1, and we can find other representations by taking β(λ) →
β(λ)+ m for m ∈ Z. Then the conjectured full asymptotic expansion of DL [t(z, λ)], for this
case, is as follows:

∑

m∈Z

(
L−2(β(λ)+m)2

σ e(V0−2ikF m)L G(1 + β(λ) − m)G(1 − β(λ) + m)

‘Descendant’ corrections for each m︷ ︸︸ ︷(
1 +

∞∑

k=1

a(m)
k (λ)L−k

σ

) )

︸ ︷︷ ︸
Sum over Fisher–Hartwig representations

,

(88)

where Lσ = 2 sin(kF )L and the coefficients a(m)
k (λ) are not specified. Using the idea of a

Fisher–Hartwig representation [81, 82], one can write down a general conjecture of this form
for any Toeplitz determinant with Fisher–Hartwig singularities. This expansion is natural
from the perspective of conformal field theory. For example, in the study of spin-correlations
in the XX model, Toeplitz determinants with Fisher–Hartwig singularities appear (see [49]
and references therein); then the sum over Fisher–Hartwig representations corresponds to a
sumover vertex operators [41, 70–74] and the correction terms correspond to the descendants.
Another example is the sum over vertex operators in the analysis above—see Eq. (73)—
however, the comparison is less direct since we must analyse the contour integral as in
Sect. 3.1 to go from one expansion to the other. In Appendix D we compare the dominant
subleading terms using the two approaches for the case N = 2. We see that they agree
both in the power of L that appears, as well as in the oscillatory factors. There are many
examples in the literature of using subdominant terms that arise from these Fisher–Hartwig
representations with ||β|| > 1, for example Refs. [55, 61, 83–86]. General conjectures of
the form (88) are found in Refs. [53, 55, 62, 86–88]. Note that in some cases the term gFHC
refers to the sum without the descendant corrections, while in other places it refers to the
whole expansion. Indeed, in a study of corrections to scaling in entanglement entropies [55],
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the the term gFHC is used to refer to the sum over representations without the descendant
correction terms, but the authors expect and indeed derive such correction terms—we will
use their result for the first descendant correction below.

4.5.2 Kozlowski’s Results for the Subleading Term

Now,while the full expansion is conjectural, we emphasise that Ref. [53] gives a derivation of
thefirst subleading corrections for symbolswith ||β|| < 1usingRiemann–Hilbert techniques.
This is most interesting and indeed agrees with the more general conjecture given above.
Moreover, these first subleading terms are already enough to make a non-trivial comparison
to field theory predictions, and naturally coincide with the subleading terms analysed in the
recent works [19, 22] on symmetry-resolved entanglement entropy in the XX model.

More precisely, in Ref. [53], the first subleading terms in the asymptotic expansion of
DL [t(z, λ)] were found. These include both oscillatory terms and non-oscillatory terms; and
the oscillatory terms can be identified as corresponding to subdominant Fisher–Hartwig rep-
resentations. Indeed, this motivated Kozlowski to give a general conjecture for an expansion
of the form (88). We also mention that a closely related formula, at least for the oscillatory
terms, is found in [81]. The result in Ref. [53] is an expansion of the form:

log DL [t(z, λ)]
= V0(λ)L − 2Nβ(λ)2 log L + log E(λ) + A(L, λ)

L2 (1 + o(1)) + B(λ)

L
(1 + o(1)),

(89)

where A(L, λ) is the oscillatory correction (the L dependence is purely oscillatory) and B(λ)

is the non-oscillatory correction. Specialising the general formulae to our case (in particular,
setting up the problem as in Result 1) the oscillating corrections are given by:

A(L, λ)

=
∑

1≤r<s≤2N

(

(1 − βr )
(1 + βs)


(βr )
(−βs)
L2βr −2βs

(
zs

zr

)L 1

|zs − zr |2
∏

t 	=r |zt − zr |−2βt

∏
t 	=s |zt − zs |−2βt

+ 
(1 − βs)
(1 + βr )


(βs)
(−βr )
L2βs−2βr

(
zr

zs

)L 1

|zs − zr |2
∏

t 	=s |zt − zs |−2βt

∏
t 	=r |zt − zr |−2βt

)
, (90)

where the λ dependence is through the βr . Recall that the zk are defined in Sect. 3.1.3. Note
that we can group the sum depending on the power of L appearing; there are three terms,
L4β(λ), L0 and L−4β(λ):

A(L, λ) =
�N/2�∑

r=−�N/2�+1

�N/2�−1∑

s=−�N/2�

(

(1 − β(λ))2


(β(λ))2
L4β(λ)

(
zN+2r

zN+1+2s

)L

× 1

|zN+2r − zN+1+2s |2
∏

t 	=N+1+2s |zt − zN+1+2s |−2βt

∏
t 	=N+2r |zt − zN+2r |−2βt

)

+
�N/2�∑

r=−�N/2�+1

�N/2�−1∑

s=−�N/2�

(

(1 + β(λ))2


(−β(λ))2
L−4β(λ)

(
zN+1+2s

zN+2r

)L

× 1

|zN+2r − zN+1+2s |2
∏

t 	=N+2r |zt − zN+2r |−2βt

∏
t 	=N+1+2s |zt − zN+1+2s |−2βt

)
+ O(L0). (91)
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The O(L0) term is not needed for the analysis of the dominant subleading terms, but can
be written down explicitly if needed using (90). Furthermore, the non-oscillating corrections
are given by:

B(λ) = −β(λ)2
2N∑

r=1

⎛

⎝
∑

s 	=r

βs
(zr + zs)

(zr − zs)

⎞

⎠ = β(λ)3
2N∑

r=1

⎛

⎝
∑

s 	=r

(−1)N−s (zr + zs)

(zr − zs)

⎞

⎠ . (92)

In Ref. [53], the expansion (89) is derived with no control over the error terms. Let us
suppose that (89) holds with o(1) terms that are uniform in λ. Then we can integrate to find
explicit subleading corrections to the chargedmoment. In particular, with the usual definitions
as in Result 1, we would have:

log Zn(α, L)

=
(

− N

6

(
n − 1

n

)
− 2N

n

( α

2π

)2 )
log(Lσ ) + iα〈Q A〉 + Nϒ(n, α)

+ dn(α, L)(1 + o(1)) + d̃n(α, L)(1 + o(1)) (93)

where

dn(α, L) = − 1

2π iL2

∫

C0(ε,δ)

d fn(1 + ε, λ, α)

dλ
A(L, λ)dλ (94)

d̃n(α, L) = − 1

2π iL

∫

C0(ε,δ)

d fn(1 + ε, λ, α)

dλ
B(λ)dλ. (95)

Defining

σ�(r , s) =
(∏

t 	=N+1+2s |zt − zN+1+2s |(−1)N−t

∏
t 	=N+2r |zt − zN+2r |(−1)N−t

)1/2

> 0, (96)

we show in Appendix C that dn(α, L) has the following form:

dn(α, L) = L− 2
n (1+α/π)


( 12 + 1
2n (1 + α/π))2


( 12 − 1
2n (1 + α/π))2

×
( �N/2�∑

r=−�N/2�+1

�N/2�−1∑

s=−�N/2�

(
zN+2r

zN+1+2s

)L
σ�(r , s)2− 2

n (1+α/π)

|zN+2r − zN+1+2s |2
)

+ L− 2
n (1−α/π)


( 12 + 1
2n (1 − α/π))2


( 12 − 1
2n (1 − α/π))2

×
( �N/2�∑

r=−�N/2�+1

�N/2�−1∑

s=−�N/2�

(
zN+1+2s

zN+2r

)L
σ�(r , s)2− 2

n (1−α/π)

|zN+2r − zN+1+2s |2
)

+ O(L−2).

(97)

For n ≥ 2 one of the two explicit terms will be the dominant subleading term. Otherwise,
one might be interested in the exact form of d̃n(α, L) which is O(L−1)—see the discussion
in the next section. Note that specialising this formula to the N = 1 case, we recover the
results of Refs. [19, 22].

We emphasise that this conclusion requires assuming uniformity of the error term. It would
be interesting to prove this using the Riemann–Hilbert method, taking the results of Deift,
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Its, Krasovsky [54, 81] and Kozlowski [53] further. Indeed, in Ref. [81] it is remarked that
given an analytic V (z) (in our case of interest V (z) is constant), one can derive subleading
terms in the expansion using the methods of that paper, i.e., using Riemann–Hilbert methods.
It would be most interesting to calculate the Fisher–Hartwig subleading term this way, with
control of the error term, and hence to rigorously derive the subleading terms for the charged
moment in agreement with the CFT description.

4.5.3 Descendant Corrections

The expression (97) gives the expected subdominant behaviour for n ≥ 2 but there is a
leading 1/L correction for 0 < n < 2 (for a range of α); although the coefficient in the
expansion could be zero. Note that the corrections for N = 1 have been analysed in Ref. [55]
as follows. Reinterpreting the Toeplitz determinant of interest as a random matrix average,
a recursion relation, determined by the Painlevé VI equation, for DL [t(z), λ)] at different
values of L can be used to derive subdominant terms [44, 55]. Inserting the above ansatz (88)
into the recursion relation, Calabrese and Essler found that a(0)

1 = 4i cos(kF )β(λ)3. This
moreover agrees with the result for non-oscillating corrections given by Kozlowski (in this
case B(λ)/L = 2iβ(λ)3 cot(kF )/L = a(0)

1 /Lσ ). Using Eq. (40) and deforming to C(ε, δ′),
the corresponding term of order L−1

σ is:
[
d̃n(α, L)

]

N=1

= −2 cos(kF )

π Lσ

lim
ε,δ′→0

∫ 1

−1

d

dλ

(
fn(1 + ε, λ, α)

)(
β(λ + iδ)3 − β(λ − iδ)3

)
dλ

= −2 cos(kF )

Lσ

n
∫ ∞

−∞
(tanh(πw) − tanh(πnw + iα/2)) (3w2 − 1/4)dw

︸ ︷︷ ︸
J (n,α)

, (98)

where in the second line we used standard substitutions as in Refs. [19, 55]. Note that
J (n, 0) is the integral of an odd function of w and thus vanishes. This is consistent with the
results of Calabrese and Essler: the O(L−1) correction is not present in their results for the
Rényi entropies. (They do find descendant corrections of order L−2, but these are always
subdominant to the leading correction coming from a primary.) However, in the charged case
this integral is non-zero in general. Indeed in Appendix E we prove that:

J (n, α) = i

4n2

(
(n2 − 1)

α

π
+
(α

π

)3) ; (99)

this is zero only for α = 0 (for general n) and for α = ±π
√
1 − n2 (when n ≤ 1). When

n = 1, this is a correction to the full-counting statistics generating function, and then (99)
agrees with the result found in [86].

More generally, let us suppose that (89) holds uniformly. Then we can insert (92) into the
contour integral and using (99) we have that:

d̃n(α, L) = − 1

8n2L

(
(n2 − 1)

α

π
+
(α

π

)3)( 2N∑

r=1

∑

s 	=r

(−1)N−s zr + zs

zr − zs

)
. (100)

To conclude this discussion, we have seen a close relationship between the CFT expansion
in primary operators and descendants and the asymptotic expansion of Toeplitz determinants
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with Fisher–Hartwig symbols, the latter based on subdominant Fisher–Hartwig representa-
tions. We emphasise that both of these techniques are in excellent agreement with each other,
and indeed with numerical calculations in the XX model [19, 22, 55]. Moreover the form of
the dominant subleading terms in the Fisher–Hartwig expansion is found in [53]. However,
the uniformity of the error term in that case has not been established, and so we have used
weaker bounds on the error term in deriving our results above—this is enough to establish
the expansion in powers of log(L)−1 for the symmetry-resolved entropies. It is an exciting
question to understand more deeply these subdominant terms, and the relationship between
the structure of the Fisher–Hartwig expansion and conformal field theory.

5 Outlook

We have obtained exact formulas for symmetry-resolved Rényi entropies in a large class
of critical free-fermion lattice models. These lattice models have a low-energy description
given by N massless complex fermions. The key step was an asymptotic analysis of the
charged moments using Toeplitz determinant theory, including a rigorous error term. We
emphasise an effective scale σ , that depends only on the Fermi momenta. We have given the
physical context for our results, and made connections between the CFT analysis and the
theory of Toeplitz determinants with Fisher–Hartwig singularities. Our work significantly
expands upon the work on the XX model given in Refs. [19, 22]. We also give connections
to the lattice methods based on twisted overlaps, given in Ref. [21].

As far as open questions are concerned, a key issue is a greater understanding of subleading
terms in the calculation of the charged moment. This is discussed at length in the previous
section, we reemphasise here that the Riemann–Hilbert method, as used in Ref. [53, 54, 81],
could be used to rigorously derive these terms. It may be useful to separate the problem
of proving the leading subdominant terms with uniform error estimates from the task of
establishing the full asymptotic expansion. Note also that the class we consider here, with
N > 1, involves an expansion in CFT fields that goes beyond that appearing in the N = 1
case. We have presented calculations in Appendix D that show that in the case N = 2,
there is a correspondence between leading subdominant vertex operators and the leading
subdominant Fisher–Hartwig representations. It would be most interesting to see if this were
true in general.

The twisted overlaps used in Ref. [21] to derive the full lattice result from the CFT
formula are themselves determinants of Toeplitz matrices. It would be interesting to derive
the asymptotics of these overlaps for the more general class considered here directly; our
results implywhat these asymptotics should be.We also note that the form-factor calculations
apply also to subdominant terms in the CFT expansion. It would be very interesting to see
if they agree with the constants one would get from using subdominant Fisher–Hartwig
representations.

The charged moment Zn(α) is periodic in α. The dominant asymptotic term is valid
only when fixing the range −π < α < π , which suffices for many purposes. Including
the subleading corrections in the CFT expansion (73) can in principle restore periodicity
in α—see relevant discussion in Refs. [21, 22, 63]. Indeed in Ref. [22] an analytic (rather
than periodic) continuation of ϒ(n, α) to |α| > π is found. This is again relevant to the
subleading terms and both the CFT and Fisher–Hartwig expansions. We saw agreement with
the dominant subleading primary terms in the XX model case. A similar comparison to the
conjectured coefficients in the Fisher–Hartwig expansion should be made more generally.
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In this work we studied systems with U(1) symmetry. We can consider larger classes of
models that contain our family, for example, the BDI class of topological superconductors
[59, 89, 90]. The gaplessmodels considered here are at phase transitions of gapped phases that
have symmetries includingZ2 fermion parity symmetry. One can consider the corresponding
Z2-resolved entropies; these were studied in [22] for the XY spin chain. The entanglement
entropies in theXYmodel can be analysed usingToeplitz determinant theory [91, 92]. Amore
general analysis of all gapped models in the (translation-invariant) BDI class (equivalently,
the Jordan–Wigner dual spin-1/2 chains) was given by Its, Mezzadri andMo [93]. The results
for the corresponding (block)-Toeplitz determinant are less simple in this case, but it would
be interesting to understand if one could find the Z2-resolved entropies in that case. We also
mention recent work on symmetry-resolved entropies in WZW models via CFT methods.
The models considered here are simple examples of WZW models [the group is SO(2N )1].
One could try to find the corresponding symmetry-resolved entropies using the lattice model,
confirming they fit the CFT prediction.

We note that knowledge of the Rényi entropies for all n is equivalent to knowing the
entanglement spectrum [94–98] (or spectrum of the reduced density matrix). It would be
interesting to use our results to find the entanglement spectrum of the different symmetry
sectors.

Finally, to apply the CFT analysis to our class of models, we supposed that every ground
state had a parent Hamiltonian that is described by a CFT at low energies. We proved this
for a simple subclass of models with N = 2, but this should apply in general based on the
form of our results and the principles of [47]. It would be neat to have a general formula for
the function h(k) that would allow us to constructively show this in the general case.
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Appendix A: Details for Sect. 3.1.3

A.1. The Case n ≥ 2

Here we analyse ||β|| on the contour of integration C0(ε, δ) (see Fig. 1). Recall that ||β|| is
defined as max j,k |Re(β j )−Re(βk)|. Hence, for our choice of β j (λ) (given in (33)), we have
that the seminorm ||β(λ)|| is equal to 2|Re(β(λ))|. Recall also that the branch points are at

iλ+ = i(1 + ε) tan

(
π − α

2n

)
(101)
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iλ− = −i(1 + ε) tan

(
π + α

2n

)
. (102)

Let us consider the vertical contours. First take λ = (1 + ε/2) + is for (λ− + δ) ≤ s ≤
(λ+ − δ); then:

|Re (β(λ))| = 1

2π

∣∣∣∣ arctan
(

− 2s

s2 + ε + ε2/4

) ∣∣∣∣, (103)

which is maximised at s = ±√
4ε + ε2, with value 1

2π |arctan ((ε + ε2/4)−1/2
)|. The same

formula holds for the other vertical contour, λ = −(1+ ε/2) − is. Hence, along the vertical

contours we have that |Re (β(λ))| ≤ 1/4, and so
(
||β(λ)|| − 1

)
≤ −1/2.

The upper horizontal contour is λ = i(λ+ − δ) − s for −(1+ ε/2) < s < (1+ ε/2). We
have:

Re(β(λ)) = 1

4π i

(
log

(
i(λ+ − δ) − s + 1

i(λ+ − δ) − s − 1

)
− log

(
i(λ+ − δ) + s − 1

i(λ+ − δ) + s + 1

))
. (104)

It is straightforward to see (e.g., from (105) below) that Re(β(λ+)) < 0, and, moreover, that
Re(β(λ)) has a minimum at s = 0. Furthermore, s = 0 is the only stationary point. Hence
|Re(β(λ))| is maximised at s = 0, and so we have:

|Re(β(λ+))| =
∣∣∣∣
1

2π i
log

(
−
(
1 + λ+
1 − λ+

)) ∣∣∣∣ =
∣∣∣∣
1

2π i
log
(−eiθ0

) ∣∣∣∣ =
∣∣∣∣
1

2π
(θ0 − π)

∣∣∣∣

= 1

2π

(
(n − 1)π + α

n

)
. (105)

Hence, along the upper horizontal contour we have:

||β(λ)|| − 1 ≤ −1

n

(
1 − α

π

)
+ O(δ, ε). (106)

Now consider the lower horizontal contour with λ = i(λ− + δ)+ s for −(1+ ε/2) < s <

(1 + ε/2). By analogous calculations, on the lower horizontal contour we have:

||β(λ)|| − 1 ≤ −1

n

(
1 + α

π

)
+ O(δ, ε). (107)

Now, forn ≥ 2wehave that− 1
n

(
1 − |α|

π

)
≥ −1/2; i.e., the horizontal contours dominate.

We can then conclude that, for −π < α < π and along the contour C0(ε, δ), we have the
following λ-independent bound:

||β|| − 1 ≤ −1

n

(
1 − |α|

π

)
+ O(δ, ε). (108)

Note that for integer n there is no branch cut on the real line, so we can extend the rectangular
contour along the real axis. This will improve the bound on the vertical contour, but since
this is always subdominant to the contribution from the horizontal contour it does not affect
our result.

A.2. The Case 0 < n < 2

We now have the possibility that there are no imaginary branch points either above or below
the real axis, i.e., λ± = ±∞. This means that we take our rectangular contour with corner
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at λ = 1 + ε/2 + iR or λ = −1 − ε/2 − iR respectively, and then take the limit of large R.
Note that on the horizontal contour with imaginary part±R, we have Re(β(λ)) → 0. On the
vertical contour, the maximum of Re(β(λ)) is always at s = ±√

4ε + ε2, independent of R.
Depending on the value of α and n we can use the above analysis to find a similar bound.

First, let 0 < n < 1 and −π(1 − n) < α < π(1 − n). Then iλ± = ±i∞ and on the two
horizontal contours we have Re(β(λ)) → 0. Thus from the vertical contours we have the
λ-independent bound:

||β|| − 1 ≤ −1/2. (109)

For 0 < n < 1 and π(1 − n) < α < π , we have a branch point at θ0, and close our contour
below it. Then we have the bound (106) for the horizontal contour; and over the full contour
we have the λ-independent bound

||β|| − 1 ≤ max

{
− 1

2
,−1

n

(
1 − |α|

π

)}
+ O(δ, ε). (110)

The same bound follows for 0 < n < 1 and −π ≤ α ≤ −π(1 − n). Moreover, for

−π(1− n) < α ≤ π(1− n) we have − 1
2 > − 1

n

(
1 − |α|

π

)
, so we conclude that (110) holds

for 0 < n < 1 and for −π < α < π .
By considering the different cases for 1 < n < 2, we are again led to (110). Hence, that

bound holds for all n > 0 and all −π < α < π . For the special case n = 1 we have a single
branch point at θ0 for 0 ≤ α < π and at θ−1 for −π < α < 0. There is no branch point
on the real line, so we can extend the rectangular contour to ±∞ along the real axis. This
means that on the vertical contours ||β|| → 0, while the horizontal contours are analysed as
above. We then see that for n = 1:

||β|| − 1 ≤ max

{
− 1,−

(
1 − |α|

π

)}
+ O(δ, ε). (111)

In fact, for α = 0 this agrees with the expected CFT scaling, O(L−1). However, based on
the discussion in Sect. 4.5, we expect that this contribution has coefficient equal to zero (see
Ref. [55] in the XX model case and (100) more generally). Hence, once again, the rigorous
bound does not give the expected (conjectural) leading subdominant term.

Appendix B: CFT Parent Hamiltonian for N = 2

Suppose we have a model of the form (4), with Fermi momenta 0 < k1 < k2 < π , and
h(k) = 1. The Fermi velocities are given by:

v1 = 1

4
sin(k1)(cos(k1) − cos(k2))

v2 = 1

4
sin(k2)(cos(k1) − cos(k2)). (112)

These are equal at all points k2 = π − k1.
Now, let h(k) = 1 + b cos(k), which is a valid choice of h(k) for |b| < 1; i.e., the

Hamiltonian f1(eik) and the Hamiltonian f2(eik) = f1(eik)h(k) have the same ground state.
The Fermi velocities of the new model are those of the original model multiplied by h(k) at
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the Fermi momenta, giving:

v1 = (1 + b cos(k1))
1

4
sin(k1)(cos(k1) − cos(k2))

v2 = (1 + b cos(k2))
1

4
sin(k2)(cos(k1) − cos(k2)). (113)

We can then solve v1 = v2 for b, giving:

b = sin(k2) − sin(k1)

cos(k1) sin(k1) − cos(k2) sin(k2)
, (114)

which satisfies |b| < 1 for π/3 < k1 < k2 < 2π/3.
Consider the analogous calculation using

h(k) = 1 +
(

sin(k2) − sin(k1)

cos(nk1) sin(k1) − cos(nk2) sin(k2)

)
cos(nk) (115)

for n ≥ 2. For this to be valid, we need

−1 <

(
sin(k2) − sin(k1)

cos(nk1) sin(k1) − cos(nk2) sin(k2)

)
< 1. (116)

One can try to find a suitable n satisfying this inequality for a given k1 and k2, or try different
forms h(k) =∑R

n=0 bn cos(nk). A full analysis would be of interest since it would establish
that for allmodels in our class, the ground states have a parentHamiltonian that is aCFT at low
energies. In this appendix we simply show that this conclusion holds beyond a measure-zero
region of k-space.

Appendix C: Details for Sect. 4.5

In this appendix we outline the steps to reach the explicit form of the subleading term given
in Sect. 4.5. First, recall the definition:

σ�(r , s) =
(∏

t 	=N+1+2s |zt − zN+1+2s |(−1)N−t

∏
t 	=N+2r |zt − zN+2r |(−1)N−t

)1/2

> 0 (117)

and define corresponding length scale L� = σ�L . Then note that the expression for the
oscillating corrections A(L, λ) given in (91) is a sum over terms of the form:

J1(r , s) = i

2π |zN+2r − zN+1+2s |2L2

(
zN+2r

zN+1+2s

)L

×
∫

C0(ε,δ)

d fn(1 + ε, λ, α)

dλ


(1 − β(λ))2


(β(λ))2
L4β(λ)

� dλ

J2(r , s) = i

2π |zN+2r − zN+1+2s |2L2

(
zN+2r

zN+1+2s

)−L

×
∫

C0(ε,δ)

d fn(1 + ε, λ, α)

dλ


(1 + β(λ))2


(−β(λ))2
L−4β(λ)

� dλ. (118)

To evaluate these integrals, deform the contour C0(ε, δ) to C(ε, δ′) and take the limit. We
then reach standard integrals that have been studied before in the XX model case [19, 22,
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55]. In particular:

lim
ε,δ′→0

∫

C(ε,δ′)

d fn(1 + ε, λ, α)

dλ


(1 − β(λ))2


(β(λ))2
L4β(λ)

� dλ

= πn
∫ ∞

−∞
(tanh(nπw + iα/2) − tanh(πw))


( 12 + iw)2


( 12 − iw)2
L−4iw+2

� dw
(
1 + O(L−4

� )
)

= −2π iL
2− 2

n (1+α/π)
�


( 12 + 1
2n (1 + α/π))2


( 12 − 1
2n (1 + α/π))2

(1 + o(1)). (119)

In the second line we use the change of variables λ = tanh(πw). The third equality follows
from the residue theorem on closing the contour in the lower half-plane; the explicit leading
term comes from the pole closest to the real axis. Similarly

lim
ε,δ′→0

∫

C(ε,δ′)

d fn(1 + ε, λ, α)

dλ


(1 + β(λ))2


(−β(λ))2
L−4β(λ)

� dλ

= −2π iL
2− 2

n (1−α/π)
�


( 12 + 1
2n (1 − α/π))2


( 12 − 1
2n (1 − α/π))2

(1 + o(1)). (120)

Putting this all together, we have a correction term of the form given in (97).

Appendix D: Vertex Operators and Fisher–Hartwig Representations
for N = 2

In this appendix we look inmore detail at corrections to the chargedmoment coming from the
conjectured expansion of the Toeplitz determinant and the corresponding corrections coming
from the CFT expansion. We will consider the case N = 2. Then we have:

σ =
⎛

⎝4 sin(k1) sin(k2)
sin2

(
k2−k1

2

)

sin2
(

k2+k1
2

)

⎞

⎠
1/2

. (121)

D.1: Fisher–Hartwig Terms

We can specialise (97) to the case N = 2. Then:

dn(α, L) = L− 2
n (1+α/π)


( 12 + 1
2n (1 + α/π))2


( 12 − 1
2n (1 + α/π))2

×
(

c1(−α)ei(k2−k1)L + c2(−α)e2ik2L + c3(−α)e−2ik1L
)

+ L− 2
n (1−α/π)


( 12 + 1
2n (1 − α/π))2


( 12 − 1
2n (1 − α/π))2

×
(

c1(α)e−i(k2−k1)L + c2(α)e−2ik2L + c3(α)e2ik1L
)

+ O(L−1) (122)
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where:

c1(α) = 2 ×
(
4 sin

(
k2 − k1

2

))− 2
n (1−α/π)

⎛

⎝ sin(k1) sin(k2)

sin
(

k2+k1
2

)

⎞

⎠
2− 2

n (1−α/π)

c2(α) = (4 sin(k2))
− 2

n (1−α/π)

⎛

⎝
sin
(

k2−k1
2

)

sin
(

k2+k1
2

)

⎞

⎠
2− 2

n (1−α/π)

c3(α) = (4 sin(k1))
− 2

n (1−α/π)

⎛

⎝
sin
(

k2−k1
2

)

sin
(

k2+k1
2

)

⎞

⎠
2− 2

n (1−α/π)

. (123)

Note that the terms oscillating as e±i(k2−k1)L each correspond to two summands in (97).

D.2: CFT Operators

Now let us consider the CFT description for N = 2. Then, considering the expansion (73),
for n ≥ 2 and α > 0 the dominant terms correspond to correlators of vertex operators:

(1) ei(
α
2π −1)ϕ1(x)ei

α
2π ϕ2(x),

(2) ei
α
2π ϕ1(x)ei(

α
2π −1)ϕ2(x),

(3) e
i
(

α
2π − 1

2

)
ϕ1(x)

ei(
α
2π − 1

2 )ϕ2(x)eiθ1(x)e−iθ2(x),

(4) e
i
(

α
2π − 1

2

)
ϕ1(x)

ei(
α
2π − 1

2 )ϕ2(x)e−iθ1(x)eiθ2(x).

Using (68), the two-point function in the orbifold CFT of each of these operators scales as

L− 1
3 (n−1/n)− 4

n ( α
2π )2− 2

n (1− α
π ), (124)

and so the correction to (72) is o(1) = O(L− 2
n (1− α

π )). Now, the dominant term leading
to (72) allows us to fix the phase factors that come with the fields ϕk(x). In particular, we
put ϕ1(x) → ϕ1(x) + 2k1x and ϕ2(x) → ϕ2(x) − 2k2x . This means that in the two-point
functions of the subdominant terms listed above, we have an oscillatory factor e2ik1L for
(1), an oscillatory factor e−2ik2L for (2) and the correlator of both (3) and (4) oscillates as
ei(k1−k2)L . An analogous discussion holds in the case α < 0.

D.3: Conclusion

We see that calculating the charged moment using an expansion of the Toeplitz determinant
based on representations of the symbol with ||β|| > 1, and calculating the charged moment
using an expansion in CFT fields leads to the same order of subleading term. Moreover,
the oscillatory terms that arise in the two methods coincide exactly. This correspondence
is perhaps even closer: there are two vertex operators and two Fisher–Hartwig representa-
tions corresponding to ei(k1−k2)L , while there is one vertex operator and one Fisher–Hartwig
representation corresponding to each of the other oscillatory terms. We point out that the

lattice calculation (122) does not lead to a sum over terms of the form L
− 2

n (1± α
π )

σ , for the
length-scale σ given above. This means that in the CFT expansion (73) the prefactors depend
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non-trivially on the Fermi momenta. This is in contrast to the N = 1 XX model case, where
the dependence is on Lσ also in subleading terms.

Appendix E: Leading Descendant Correction to ChargedMoment

In this appendix we prove certain claims made in Sect. 4.5.3 about the correction of order
L−1 to the charged moment. First, recall the definition (98) of J (n, α):

J (n, α) = n
∫ ∞

−∞
(tanh(πw) − tanh(nπw + iα/2)) (3w2 − 1/4)dw. (125)

We now use a trick that was used to evaluate (42) in [19]. Writing z = nπw, for |α| < π we
have:

d

dα
J (n, α) = − i

2π

∫ ∞

−∞
1

cosh(z + iα/2)2

( 3

n2π2 z2 − 1/4
)
dz. (126)

The singularities of the integrand nearest to the real line are at z + iα/2 = ±iπ/2, we can
thus deform the contour to get:

d

dα
J (n, α) = − i

2π

∫ ∞

−∞
1

cosh(z)2

( 3

n2π2 (z − iα/2)2 − 1/4
)
dz

= 3i

4n2π3 α2 + i
1

4πn2 (n2 − 1). (127)

Since J (n, 0) = 0, we can integrate to reach the claimed formula (99).
Now let us consider the correction of order L−1

σ for the full-counting statistics generating
function, Z1(α). We take the case n = 1 in (98) to give:

Z1(α) = eiα〈Q A〉+ϒ(1,α)L
−2( α

2π )
2

σ

(
1 − 2 cos(kF )

Lσ

J (1, α) + o(L−1)

)
. (128)

Using (99), we have:

Z1(α) = eiα〈Q A〉+ϒ(1,α)L
−2( α

2π )
2

σ

(
1 − i

α3

2π3

cos(kF )

Lσ

+ o(L−1)

)
. (129)

This result was conjectured in [61] based on numerical calculations, and was then derived
analytically, assuming the Fisher–Hartwig expansion (88), in Ref. [86]. Since we use formula
(98), our derivation also implicitly assumes that this expansion holds. Alternatively, we could
assume that the expansion given in (89) is uniform.
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