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Zusammenfassung

In dieser Dissertation wird eine Methode zur Berechnung der genus-eins Korrekturen
von offenen Strings zu Feldtheorie-Amplituden konstruiert. Hierzu werden Vek-
toren von Integralen definiert, die ein elliptisches Knizhnik—Zamolodchikov—Bernard
(KZB) System auf dem punktierten Torus erfiillen, und die entsprechenden Ma-
trizen aus dem KZB System berechnet. Der elliptische KZB Assoziator erzeugt eine
Relation zwischen zwei regulierten Randwerten dieser Vektoren. Die Randwerte en-
thalten die genus-null und genus-eins Korrekturen. Das fiihrt zu einer Rekursion
im Genus und der Anzahl externer Zustande, die einzig algebraische Operationen
der bekannten Matrizen aus dem KZB System umfasst. Geometrisch werden zwei
externe Zustande der genus-null Weltflache der offenen Strings zu einer genus-eins
Weltflache zusammengeklebt.

Die Herleitung dieser genus-eins Rekursion und die Berechnung der relevanten
Matrizen wird durch eine graphische Methode erleichtert, mit der die Kombina-
torik strukturiert werden kann. Sie wurde durch eine erneute Untersuchung der
auf Genus null bekannten Rekursion entwickelt, bei welcher der Drinfeld Assoziator
Korrekturen offener Strings auf Genus null auf solche mit einem zusatzlichen exter-
nen Zustand abbildet. Diese genus-null Rekursion umfasst ebenfalls ausschliesslich
Matrixoperationen und basiert auf einem Vektor von Integralen, der eine Knizhnik—-
Zamolodchikov (KZ) Gleichung erfiillt. Die in der Rekursion gebrauchten Matrizen
aus der KZ Gleichung werden als Darstellungen einer Zopfgruppe identifiziert und
rekursiv berechnet.

Der elliptische KZB Assoziator ist die Erzeugendenreihe der elliptischen Multi-
plen Zeta-Werte. Die Konstruktion der genus-eins Rekursion bendtigt verschiedene
Eigenschaften dieser Werte und ihren definierenden Funktionen, den elliptischen
Multiplen Polylogarithmen. So werden Relationen verschiedener Klassen von ellip-
tischen Polylogarithmen und Funktionalrelationen erzeugt durch elliptische Funk-

tionen hergeleitet.
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Abstract

In this thesis, a method to calculate the genus-one, open-string corrections to the
field-theory amplitudes is constructed. For this purpose, vectors of integrals satis-
fying an elliptic Knizhnik—Zamolodchikov—Bernard (KZB) system on the punctured
torus are defined and the matrices from the KZB system are calculated. The elliptic
KZB associator is used to relate two regularised boundary values of these vectors.
The boundary values are shown to contain the open-string corrections at genus zero
and genus one. This yields a recursion in the genus and the number of external
states, solely involving algebraic operations on the known matrices from the KZB
system. Geometrically, two external states of the genus-zero, open-string worldsheet
are glued together to form a genus-one, open-string worldsheet.

The derivation of this genus-one recursion and the calculation of the relevant
matrices is facilitated by a graphical method to structure the combinatorics involved.
It is motivated by the reinvestigation of the recursion in the number of external
states known at genus zero, where the Drinfeld associator maps the genus-zero,
open-string corrections to the corrections with one more external state. This genus-
zero recursion also involves matrix operations only and is based on a vector of
integrals satisfying a Knizhnik—Zamolodchikov (KZ) equation. The matrices in the
KZ equation and used in the recursion are shown to be braid matrices and a recursive
method for their calculation is provided.

The elliptic KZB associator is the generating series of elliptic multiple zeta val-
ues. The construction of the genus-one recursion requires various properties of these
values and their defining functions, the elliptic multiple polylogarithms. Thus, the
third part of this thesis consists of an analysis of elliptic multiple polylogarithms,
which in particular leads to relations among different classes of elliptic polyloga-

rithms and functional relations generated by elliptic functions.
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Chapter 1

Introduction

1.1 Motivation

The main focus of this thesis lies on the investigation of properties of a class of
functions, elliptic multiple polylogarithms (eMPLs), as well as special values thereof,
elliptic multiple zeta values (eMZVs), and on the role they take in the construction of
planar, one-loop amplitudes of open-string interactions. On the one hand, various
functional relations among the eMPLs, derived in ref. [1], will be given and on
the other hand, a recursive method to calculate the string corrections to the field-
theory amplitudes in one-loop, open-string interactions, which involves the eMPLs,
will be presented [2,3]. The construction of this method was motivated by the
results of ref. [4], where the analogous recursive method for tree-level interactions

from ref. [5] has been reformulated in terms of twisted de Rham theory.

Elliptic multiple polylogarithms and elliptic multiple zeta values in high
energy physics

For the last decades, various beautiful mathematical aspects of eMPLs and eMZVs
have been known and investigated [6-8]. More recently, they have come to the
attention of particle physicists and string theorists due to an increasing appearance
in high-order calculations of scattering amplitudes in the standard model, N'=4
super-Yang—Mills theory and open string theory, for example in refs. [9-27]. Since
higher and higher accuracies are achieved at collider experiments, such higher-order
calculations become more and more relevant to compare theoretical predictions to
the measured cross-sections.

The eMPLs and eMZVs are a natural class of functions and values appearing in
such high-order calculations, generalising an important class at the lowest order, the
multiple polylogarithms (MPLs) and multiple zeta values (MZVs): while MPLs and
MZVs are iterated integrals on the Riemann sphere, a genus-zero Riemann surface,
eMPLs and eMZVs are iterated integrals on a genus-one Riemann surface, the torus
or elliptic curve, respectively. Understanding the origin of these iterated integrals in

the corresponding theories along with their mathematical properties and numerical
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evaluation is crucial for theoretical predictions to keep up with the accuracy of

experimental measurements.

String theory

The representation of MPLs and eMPLs on genus-zero and genus-one Riemann
surfaces motivates to investigate these classes of iterated integrals in the context of
string theory, where tree-level and one-loop interactions can be described in terms
of worldsheets with these two geometries'. Besides this geometric motivation, string
theory serves as a highly symmetric and pure laboratory to investigate properties of
scattering amplitudes. High-order amplitudes leading to eMPLs and eMZVs can be
investigated and efficient methods for their calculations can be constructed. These
results may hopefully serve as a basis for future research projects in field theories.

In string perturbation theory, the full scattering amplitude is expanded in the
genus of the worldsheet of the underlying string interactions and in the inverse
string tension o'. At each genus in this double expansion of the string amplitudes,
the corrections to the field-theory limit o/ —0 are referred to as string corrections. In
particular it is the string corrections of massless open-(super)string states at genus
zero and one, which are the main focus of this thesis. The genus-zero corrections
to the (super-)Yang—Mills amplitudes are known to be given by the generating se-
ries of MZVs, the Drinfeld associator [28,29]. This role of the MZVs is described
in ref. [5] and facilitates a recursion in the number of external states to calculate the
o’-expansion of genus-zero, open-string corrections solely using matrix operations.
Further methods to recursively calculate the open-string, genus-zero corrections are
known, such as a Berends—Giele recursion [30]. At genus zero, the string corrections
of the closed-string states can be deduced from the open-string corrections by the
beautiful Kawai-Lewellen-Tye (KLT) relations [31]. Again, this only requires ma-
trix algebra and no integrals have to be calculated. More recently, further methods
to obtain the closed-string corrections from the open-string corrections at genus zero
have been described. A prominent example [32-34] uses a single-valued map [35, 36]
which maps the MZVs in the string corrections to their single-valued analogues, the
single-valued MZVs [37].

Research questions

In this thesis, the analogous role of eMPLs and eMZVs in open string theory at
genus one is investigated, which ultimately leads to a recursive method to compute
the o'-expansion of the string corrections at genus one. The recursion is described
in refs. [2,3] and only uses operations of matrices, which are explicitly calculated

in the latter reference, such that none of the iterated integrals on the torus have to

'We will restrict ourselves to the two orientable worldsheets, the Riemann sphere and the torus,
appearing in string interactions at genus zero and one. These are the relevant geometries for the
description of MPLs and eMPLs.
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be solved directly. At the same time, another method to calculate the o/-expansion
of the genus-one, open-string corrections has been worked out in refs. [38,39]. The
relation between these two complementary approaches is discussed in ref. [3]. Tt is
expected that both points of view are required to relate the string calculations to
the corresponding mathematical literature, in particular to ref. [40].

The way to the genus-one recursion from refs. [2,3] is presented in this thesis

and split into three stages, where the following three questions are addressed:

Question 1: How are the various notions of elliptic generalisations of MPLs
interrelated, which functional relations do they satisfy and what are the prop-

erties of the generating series of these eMPLs?

Question 2: What are the crucial ingredients in the genus-zero recursion
from ref. [5] leading to the relation of genus-zero, open-string corrections to

the MZVs and how can the relevant matrices be calculated?

Question 3: Can the results of ref. [5] be generalised to genus one, i.e. are the
genus-one, open-string integrals expressible in terms of the generating series of
eMZVs and is there a recursive mechanism to calculate these integrals solely

using matrix operations?

The first question has lead to the publication [1] and is of mathematical interest
in its own right. The MPLs and MZVs are mathematically enormously rich objects
leading to deep interconnections between various mathematical areas. A beautiful
example is the Bloch—Wigner dilogarithm, a single-valued function on the Riemann
sphere constructed by cancelling monodromies of the dilogarithm. Together with
its functional relations, it admits a broad variety of mathematical interpretations
and applications, ranging from periodicities of a cluster algebra [41-43], volumes in
hyperbolic space [44,45], the symbol calculus [46,47], the relation to the Dedekind
zeta function of an algebraic number field evaluated at two [48], to functional iden-
tities generated by rational functions on the Riemann sphere [49]. Thus, there is an
intrinsic motivation to explore the properties of eMPLs, where at least part of this
mathematical richness encountered at genus zero is expected to carry over to genus
one. Moreover, a deep understanding of eMPLs and eMZVs is crucial to tackle
questions two and three, which have lead to the publications [2—4].

Besides the importance of the second and third question for string amplitudes,
answers are expected to lead to valuable insights into possible applications to quan-
tum field theories. Recursive methods to calculate high-order contributions to scat-
tering amplitudes are very valuable due to the (analytic and computational) com-
plexity of the corresponding integrals. Moreover, special properties of the ingredients
of string amplitudes may lead to deep insights into field-theory amplitudes. A prime
example is the KLT relation at genus zero, which states that at genus zero closed-

string corrections are, loosely speaking, squares of open-string corrections. Since the



4 CHAPTER 1. INTRODUCTION

former describe gravitational states, while the latter lead to states in gauge theory,
the field-theory limit of this relation corresponds to the tree-level gauge-gravity du-
ality. A thorough investigation of the open-string corrections at genus one is crucial
for a potential extension of this result to higher genera or loop orders, respectively.
This is yet another motivation for this thesis: answering the three questions above
may be an important step towards a KLT relation at genus one and are hoped
to complement current efforts in this research field such as the progress presented
in refs. [50-53].

1.2 Background

Particle interactions

In quantum field theory? particles are point-like excitations of vacuum states whose
evolution in the four-dimensional Minkowski spacetime can be parametrised by lines,
the so-called worldline of the particle. Hence, an interaction of several external par-
ticles, which may include exchanging particles, decaying into further particles and
recombining from certain particles, is described in terms of graphs schematically
encoding the trajectory of the interaction in spacetime. For a specific quantum field
theory a dictionary associates to each of these so-called Feynman graphs an inte-
gral, the Feynman integral, which in turn, gives the contribution of the considered
interaction to the scattering amplitude of all the possible interactions of the exter-
nal particles. The modulus squared of the scattering amplitude is the differential
cross-section of the interaction, which can be measured experimentally at particle

colliders.

String interactions

In string theory® states are described by one-dimensional strings in spacetime (with a
priori arbitrary integer dimensions) and excitations correspond to vibrational modes
of the strings. The strings may either be closed or open. Thus, the evolution of a
string in spacetime sweeps out a two-dimensional surface, a worldsheet, such as in
figure 1.1. Therefore, a closed-string interaction can schematically be described by a
two-dimensional worldsheet in spacetime with various handles or loops, respectively,
which correspond to the splitting and recombination of strings, and open boundaries
which are the external string states. Similarly, open-string interactions are described
by two-dimensional worldsheets with boundaries at which the external string states

appear in a certain order.

2See e.g. refs. [54-56] for thorough introductions to quantum field theory.
3See e.g. the lecture notes from ref. [57] for an accessible introduction to string theory with an
emphasis on the mathematical structures. Other classical books are refs. [58-62].
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Figure 1.1: Worldsheets of an interaction with four (blue) external strings. On the
top, closed worldsheets from four closed strings are depicted, where the boundaries
correspond to the external strings. On the bottom, there are four open strings,
leading to worldsheets with boundaries, on which the external strings appear in a
certain order. The incoming strings can recombine and split up again to form the
outgoing strings. Intermediate splittings and recombinations lead to worldsheets
with handles (right-hand side), which are high-order (loop) corrections to the four-
point interaction.

By conformal symmetry, these configurations can be mapped to punctured Rie-
mann surfaces, where the external string states correspond to the punctures, cf. fig-
ure 1.2. In the language of conformal field theory, these punctures are the vertex
insertion points of the external states. Correspondingly, closed string interactions
are described by punctured Riemann surfaces without boundaries and the open in-
teractions by Riemann surfaces with boundaries, at which the punctures are located.
All possible configurations of the punctures on the Riemann surfaces contribute to
the final amplitude. Thus, for closed strings all possible positions of the punctures
on the Riemann surfaces without boundaries have to be integrated over. In the case
of open strings, where the punctures are located at the boundaries in a certain order,
all the configurations satisfying this order have to be added up, i.e. integrated along
the boundaries. This procedure for open strings leads to iterated integrals on the
Riemann surface. Since the punctured Riemann surfaces with boundaries can be
embedded into the closed, punctured Riemann surfaces, the latter are the central
geometry to describe closed as well as open string amplitudes. Correspondingly, the
differential forms are defined® on these closed, punctured Riemann surfaces. How-
ever, the integration domains are different: for closed-string amplitudes it is the
whole surface, while for open-string amplitudes it is only a path on the closed Rie-
mann surface. From here on unless specified otherwise, we will restrict our focus to

open strings and these iterated integrals.

4They may just be well-defined on universal covers of the surfaces, this is related to non-trivial
monodromies of meromorphic functions, cf. chapter 2 and chapter 3.
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Figure 1.2: The punctured Riemann surfaces are the images of the worldsheets
from figure 1.1, after applying a conformal transformation. The number of loops or
handles in the worldsheet corresponds to the genus of the Riemann surface. The
surfaces with boundaries from the open-string interactions at the bottom, the disk
and the perforated disc (topologically a cylinder), can be embedded (red and violet
contours) into the closed surfaces from the closed-string interactions on the top. The
open-string amplitudes are obtained from integrating the ordered punctures (blue)
along the red lines, which leads to the iterated integrals F7;\7"(a/) and F{5™ (o, 7)
appearing in eq. (1.4) below.

The n-point, genus-g, open-string corrections

For a given number of external string states n, the open-string scattering amplitude
ASPe™ obtains contributions from all possible interactions, including any number of
loops. Thus, it can be written as a sum of contributions A;P™ from two-dimensional
worldsheets with an increasing number g of loops, which is the genus of the corre-

sponding punctured Riemann surface:

AoPen (o) = ZAZI,);n@/) . (1.1)

920

This is the expansion of the string amplitudes in the genus. For example, the
first two terms A" (o) and A" (/) are the amplitudes which correspond to the

punctured, genus-zero and genus-one Riemann surfaces at the bottom of figure 1.2.

At each genus, all possible configurations of the external states on the corre-
sponding Riemann surface have to be summed up as well, which leads to an integral
over the Riemann surface. Separating the colour and kinematic factors from the in-
tegral over the external states and the modular parameters of the Riemann surface

yields a factorisation into field-theory contributions from particle amplitudes and



1.2. BACKGROUND 7
open-string corrections®
open/ . /\ __ article open/ /
Anl,)g (Oé ) - Ag,g ’ Mnr,)g (Oé ) . (12)

The string corrections in the vector M;P™(a') are integrals over the moduli space of
the punctured, genus-g Riemann surface, stripped of any other factors which can be
pulled out of the integral. Expanding them in the inverse string tension o/, a double
expansion of the string amplitude in genus and o is obtained. These corrections

depend on o/ via the Mandelstam variables
Sij = —Oé/<ki + ]fj)z y (13)

where k; is the momentum of the i-th external string state. Moreover, the moduli-
space integrals M P (') can further be decomposed into an integral over the
modular parameters 7 of the Riemann surface and configuration-space integrals
FP"(o/, T) over the punctures parametrising the external states on the boundary

of the punctured Riemann surface with modular parameters 7
open N — open ! =
MO (o) = / 47 FPon(o/, 7). (1.4)

The integrals in the vector FyP™ (o', T) are the iterated integrals mentioned at the
end of the previous subsection, for example Fy[y" (/) and F5™" (o, 7) are the it-
erated integrals obtained from integrating the four punctures in figure 1.2 along
the red contours. The entries of the vector F7P™(a/,T) correspond to the differ-
ent possible orderings of arranging the n external states on the boundaries of the
Riemann surface. These integrals encode the two-dimensionality of the open strings
and are present irrelevant of the details of the theory such as compactification or the
amount of supersymmetry. They will be referred to as n-point, genus-g, open-string
corrections and are the central objects considered in this thesis. On the one hand,
performing the integral over the modular parameters to obtain the moduli space
integrals M,"™(a’) is another delicate task which requires an extensive analysis.
On the other hand, the integrals F'"™(a’,7) and their dependence on the modu-
lar parameters are mathematically rich objects closely related to various geometric

aspects of the corresponding Riemann surface.

As mentioned in the previous subsection, for closed strings, the string corrections
FSZSEd(a’ ,T) are integrals over the full configuration space of punctured genus-g

Riemann surfaces with modular parameter 7.

5In general, bold symbols denote vectors or matrices.
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1.3 Results

Elliptic multiple polylogarithms

In ref. [1] several constructions of elliptic multiple polylogarithms have been related
to the iterated integrals I', introduced in refs. [63,64]. The eMPLs I, in turn, are
based on the definitions in refs. [7,8]. Moreover, the functional relations from ref. [49]
satisfied by the elliptic analogue of the Bloch—Wigner dilogarithm are reinvestigated.
They are expressed in terms of the iterated integrals T, leading to more general
functional relations. Thereby, an alternative derivation of the functional relations
of the elliptic Bloch-Wigner dilogarithm is presented. This gives an answer to the
first part of question 1.

Multiple polylogarithms in open-string corrections at genus zero

The integrands of the open-string corrections in the vector Fy™(a/, 7) include mero-
morphic functions with simple poles, depending on the position of the punctures on
the boundaries of the genus-g Riemann surface. However, meromorphic functions

are not closed under integration. Therefore, iteratively integrating the meromorphic

open
n,9

the Riemann surface. More general classes of integrals have to be considered in

integrands of F°°" (o, T) is not expected to yield meromorphic functions defined on

order to describe the string corrections FP™ (o, 7).

For example at genus zero, the fraction 1/x appears in F'7"(a’). It is a mero-
morphic function on the Riemann sphere and has a non-vanishing residue, hence, its
integral, the logarithm log(x), is not meromorphic due to the non-trivial monodromy
at the origin. Thus, the genus-zero, open-string corrections F"¢"(a’) contain loga-
rithms and integrals thereof, the MPLs G, (z): they appear in the o/-expansion of
the open-string corrections F,'"(a’) in the form of their values at one, the MZVs
Cw = Gyu(1). A few years ago, it was shown in ref. [5] that these MZVs appear in
a particular form given by the genus-zero, open-string recursion from eq. (4.105)

below. Schematically it reads for n > 4
FI0" () = Onp(d) F750(0f), Fyp(a) =1, (1.5)
where the sum

Cpo() = Cuewnld) (1.6)

is the Drinfeld associator. It contains all MZVs (,, which are labelled by words
w € (ep,e1)* from a two-letter alphabet (ep,eq). For each n, the matrix e, , (o),
associated to a word w is homogeneous of degree the length |w| of the word w

in s;;, thus proportional to (a/)*l. The investigation of question 2 in ref. [4] has
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lead to recursive expressions for the matrices e, ,(a’) and a reformulation of the
recursion in twisted de Rham theory. The relation (1.5) facilitates the calculation
of the a/-expansion of the n-point, open-string corrections from the (n—1)-point
corrections solely using matrix operations. Geometrically, it can be thought of as a
gluing mechanism, where a trivalent interaction is glued to an external state of the

(n—1)-point worldsheet. This is depicted in figure 1.3.

¢4’0(Ql) . pu— pum

Figure 1.3: The genus-zero, open-string recursion can be interpreted as a gluing
mechanism, where the Drinfeld associator ®,, o(a’) glues a trivalent (blue) interaction
to a certain external (blue) state. The geometric interpretation of the four-point

example @, o(a’) F3y" (o) = Fi" (o) is depicted.

Elliptic multiple polylogarithms in open-string corrections at genus one

At genus one, the integrands of F"/"(a/, 7) are meromorphic functions on the torus,
i.e. meromorphic functions with two periods, one and 7. These are the elliptic
functions. Their integrals lead to the class of eMPLs T',(2, 7). Using the insights
from the projects [1,4] on the properties of eMPLs and the role of the MPLs in
genus-zero, open-string corrections, the second part of question 1 could be answered
and a generalisation of the genus-zero recursion (1.5) to genus one has been worked
out, answering question 3 as well. The results of refs. [2,3], culminating in the genus-
one, open-string recursion from eq. (5.98) below, can schematically be summarised
as follows: for n > 2, the n-point, genus-one, open-string corrections F)"7"(a/, )

are obtained from the (n+2)-point, genus-zero corrections by
F7 (o, 7) = Qo (o, 7) FEG (), (1.7)
where the sum

Cp1 (o, 7) =D wul(7) Tu (@) (1.8)

is the generating series of eMZVs, the elliptic Knizhnik—Zamolodchikov-Bernard
(KZB) associator [40]. It runs over all eMZVs w,,(7) = L'y (1,7), which are labelled
by words w € (xg, 1, xe,...)* from an infinite alphabet (zg,z1,x2,...). The ma-
trices @, (/) are again of degree |w| in o' and explicitly known, cf. eq. (C.67)
below. Even though eq. (1.7) by its one is at most the first step in a potential re-
cursion in the genus, it is still called a recursion, since together with the genus-zero

recursion (1.5), it can be used to recursively calculate the genus-one, open-string
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corrections for any number of external states n. The exact formulation of this
genus-one, open-string recursion, including the calculation of the matrices @, , (o)
is the main focus of this thesis. Geometrically, eq. (1.7) expresses the gluing of two
external states from a (n+2)-point, genus-zero worldsheet to an n-point, genus-one

worldsheet, cf. figure 1.4.

Figure 1.4: The genus-one, open-string recursion can be interpreted as a gluing
mechanism, where the elliptic KZB associator ®,,1(, 7) glues together two external
states from a genus-zero, (n+2)-point interaction to from a genus-one interaction
with n external states. For example, the action of ®5;(a/,7) on the genus-zero,
four-point corrections leads, according to ®o(a’,7) Fily" (o) = F3" (o), to the
two-point corrections at genus one, which is depicted in this figure on the level of

the worldsheets.

Graphical method for generating series

The reinvestigation of the genus-zero recursion (1.5) in ref. [4] has lead to a graphical
representation for products of a certain class of generating series of meromorphic
functions. This graphical tool was crucial to structure the combinatorics in the
calculation of the matrices e, ,(c’) in the genus-zero recursion (1.5) and @, (&)
in the genus-one recursion (1.7) in refs. [3,4]. In this thesis, it is extended and
defined in such a generality that it may hopefully be applied to future higher-genus

calculations as well.

1.4 Outline

In chapter 2 various well-known aspects of MPLs are presented: integrals of mero-
morphic functions on the Riemann sphere are discussed in section 2.1, leading to the
MPLs presented in section 2.2. In section 2.3 their monodromies are analysed and
single-valued MPLs are constructed by cancelling these monodromies. The chapter
finishes with section 2.4, where further mathematical concepts are introduced to
describe functional relations of (single-valued) MPLs.

The analogous investigation at genus one is conducted in chapter 3: elliptic
functions are discussed in section 3.1, while their integrals resulting in the eMPLs
are investigated in section 3.2. The elliptic KZB associator, a crucial ingredient in
the genus-one recursion (1.7), is introduced in section 3.3. Certain constructions of
single-valued eMPLs are described in section 3.4. Finally, the results on eMPLs and
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their functional relations from ref. [1] are presented in section 3.5.

Having introduced and investigated MPLs and eMPLs, in chapter 4 the genus-
zero recursion (1.5) is outlined: the precise form of the genus-zero, open-string
corrections F"" () is given in section 4.1. As a new result, the string corrections
are generalised in section 4.2 to a class of integrals with integrands defined on the
n-punctured Riemann sphere, where p punctures thereof remain unintegrated. This
leads to a convenient formulation of the genus-zero recursion (1.5) in section 4.3.
The latter two sections contain several results from ref. [4].

Chapter 5 is dedicated to the genus-one recursion (1.7) and follows the outline

of the original construction in refs. [2,3] and the previous genus-zero chapter: first,

open
n,l

the open-string corrections F,""(c/,T) at genus one are introduced in section 5.1.
Second, they are generalised to iterated integrals on the p-punctured torus with
integrands defined on the n-punctured torus in section 5.2. This leads to the genus-
one recursion in section 5.3.

The graphical method introduced in ref. [4] and used in refs. [2-4] to investigate
products of generating series is extended, rigorously formulated and used to derive
various identities in chapter 6. This is a crucial tool to structure the combinatorics
in the derivation of the explicit expressions of the matrices e, ,(a’) in the genus-zero
recursion (1.5) and @, ,(’) in the genus-one recursion (1.7). The remaining chap-
ters are formulated without this graphical method and can be understood without
reading this chapter. At certain points, however, results obtained using the graphical
derivation are stated with a reference to this chapter.

In the final chapter 7 the main results and their appearance in this thesis are
summarised. Additionally, a brief outlook and a discussion on further questions and
research directions are given.

The group structure of the elliptic curve is summarised in appendix A. In ap-
pendix B various calculations associated to elliptic polylogarithms, a subclass of
the eMPLs, are explicitly given. In the last appendix C the derivation of various
identities from chapter 6 is explicitly shown, which includes the closed formula for

the matrices @, (') in the genus-one recursion (1.7).

1.5 Publications and contributions by the author

The author of this thesis has composed or collaborated in the four publications [1-4]
relevant for this thesis: the collaborative project [1] on functional relations of eMPLs
and his single-author paper [4] on the genus-zero, open-string recursion (1.5) have
motivated the two collaborative publications [2,3] on the genus-one, open-string
recursion (1.7). In section 5.2 certain results solely worked out by the author of
this thesis from a current work in progress [65] are included as well. The content of

chapter 6 and appendix C is new and composed by the author of this thesis.



Chapter 2

Multiple polylogarithms

To begin with, the essential mathematical objects required in the formulation of the
genus-zero recursion (1.5) are introduced and discussed. In particular the MPLs and
MZVs are motivated beginning with the integration of meromorphic functions on
the Riemann sphere, following the outline of refs. [63,66]. Afterwards, their single-
valued versions are constructed according to ref. [37] and certain functional relations

are mentioned, for example the results of ref. [49] along the lines of ref. [67].

The content of this chapter is well-known and introduced as a preliminary to the
subsequent chapters. The only originality consists in the presented interconnections
and structure, large parts of which are based on the references mentioned above. In
section 2.1 meromorphic functions on the Riemann sphere are integrated, which leads
to the MPLs in section 2.2. Single-valued versions are constructed in section 2.3. In

section 2.4, some functional relations of these single-valued MPLs are reviewed.

2.1 Meromorphic functions on the sphere

The integrands of the genus-zero, open-string corrections F'7"(a’) are meromorphic
functions on the Riemann sphere. Therefore, in order to describe and investigate
these string corrections, the class of functions obtained by iterated integration of

such meromorphic functions has to be studied.

2.1.1 Rational functions

By definition, a rational function f(x) on C in one variable' z, which is denoted by

f € C(x), can uniquely be expressed as quotient of two coprime polynomials of the

'We will usually use the variable z for meromorphic functions on the Riemann sphere, while the
variable z is reserved for meromorphic functions on the torus introduced in subsequent chapters.

12
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form

n

F(z) = aH(x —b)" € Clzx],

G(z) = [J(z — c)™ € Cla]", (2.1)

i=1

where the denominator G(x) is not the zero polynomial. The non-negative integers
deg(F)=n, deg(G)=m (2.2)

are called the degree of F' and G, respectively, while the positive integers n;, m; € Z~q
are the multiplicities of the zeros b; and poles ¢;, respectively. Therefore, the rational

function f(z) can be written as a product

F(z)

n+m

=a H (x —a;)%, (2.3)

where the non-zero integers d; € Z are given by

n; if a; = bz s

—m; if a; = C;.

The order of the rational function at some point x is defined in terms of these

integers as follows

d; if x=a;,
ord,(f) = (2.5)
0 otherwise.

The representation (2.3) indicates that univariate rational functions f(z) € C(x)
are meromorphic functions on C and that eq. (2.5) defines the order of vanishing of
fatzx

f/
ord,(f) = res, <—) . (2.6)

S
However, the inverse does not hold since for example e /x is meromorphic, but not
rational on C. Upon one-point compactification, the rational functions on C can nat-

urally be extended to rational functions on the Riemann sphere* P!(C) = C U {oo},

2For the sake of simplicity, we choose to work with the dehomogenised form of the Riemann
sphere P*(C) = {[X : Y]} using the non-homogeneous coordinates + = X/Y € C, y = 1 and
oo = [1: 0], such that P1(C) = CU {oo} = C can be identified by a minor abuse of notation.



14 CHAPTER 2. MULTIPLE POLYLOGARITHMS
denoted by

C=CU{x}. (2.7)
In terms of maps f : C— @, this extension is obtained by assigning the value

a if deg(F) = deg(G),
f(oo) =<0 if deg(F) < deg(G), (2.8)
oo if deg(F) > deg(G)

to the north pole co. Since the Riemann sphere is compact, Liouville’s theorem
now ensures that the meromorphic functions on the Riemann sphere C are indeed
exactly the rational functions on C, naturally extended to C. Due to this fact, we will
interchangeably call functions of the form (2.3) rational functions on the complex
plane or meromorphic functions on the Riemann sphere. The ring of meromorphic

functions on the Riemann sphere is denoted by

C(z) = {f : C = C meromorphic}
={f:C—C| flc € C(x) and f(co) given by (2.8)}. (2.9)

According to the representation (2.3), the rational functions are determined up
to an overall constant by their zeros and poles, including the multiplicities. In
order to facilitate the discussion on this dependence, the group of divisors of C (or

subsets thereof) is introduced: it is the free abelian group generated by points of C

A ~

and denoted by Div(C). Thus, a divisor D € Div(C) is of the form

D= an(as) , (2.10)

where all but finitely many of the integer coefficients n, € Z are zero. Using the

order defined in eq. (2.5), a divisor can be associated to each rational function by

div(f) = ord,(f)(z), (2.11)

zeC

where the order of f at infinity is given by the order of g(x) = f(1/z) at zero. A

A

divisor D € Div(C) is called principal if and only if there exists a rational function
f € C(z) such that D = div(f).

2.1.2 Integrating rational functions

The integral of a rational function f(z) € C(x) as defined in eq. (2.3) with the

singularities S = {c1, ..., ¢y} leads to the following class of functions: using partial
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fractioning

1 1 1
= + (2.12)

)
Lkilkj Lkilij Tl j5

where z;,z;, 2, € C are distinct and
Tij = Tij = Ti — Tj, (2.13)

the integral of f(x) is (up to an additive constant) a C-linear combination (2.3) of

integrals of the form

/ dv | k£, 2.14)
(z — ;) log(z —¢;) k=1, .

where k € Z. For the case k = 1, logarithms are obtained, thus, rational functions
are not closed under integration. This is expected from Cauchy’s residue theorem:
the integral of 1/(x—¢;) along a path from some zg # ¢; to some x # ¢; depends on
the homotopy class of the integration path on C\S and not only on the endpoint
x. Thus, it is a multi-valued® function of . However, rational functions are single-
valued, hence the integral of 1/(x—¢;) can not be a rational function and is denoted

by log.

In order to obtain a closed class of functions with respect to integration starting

from rational functions, for ¢, # 0 iterated integrals of the form

G(cay...,cr32'),

X
G(cl,CQ,...,c,,;:E):/ da’
0

GGx)=1 (2.15)

r—c

have to be considered, where ¢; € S for some finite set of distinct points S C C.
These functions of # € C\S are called Goncharov polylogarithms (GPLs) [68,69].
The non-negative integer r is called the weight of G(cy, ¢a, ..., c;x). For ¢, = 0, the
definition (2.15) would lead to divergent integrals due to the pole of the innermost
integration kernel at x = 0 from the lower integration boundary. This may be
accounted for by the following definition

1

T da!
G0,...,0;z) = —log"(x), 1 — -
( :L’) 0og ($) Og(x)

2.16
7! T ( )

3 For a punctured Riemann surface M and 7 : M — M a universal cover, a holomorphic
function f on M is called multi-valued if there is a holomorphic function f defined on a simply
connected subset U C M, such that f lifts f and there is a non-unique holomorphic continuation
of f to M. Any such continuation of f to M is called a multi-valued function on M. In this sense,
the logarithm and the GPLs defined below are multi-valued due to the path-dependent integration.
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and using relations expected from the shuffle algebra of iterated integrals to reduce
the general case ¢, = 0 to the definitions (2.15) and (2.16). The resulting functions
can as well be obtained from the definition (2.15) by a so-called tangential base-
point regularisation [70]. This regularisation prescription ensures that for general
sequences A = (ay,as,...,a,) and B = (by,by,...,bs) the GPLs still satisfy the
shuffie algebra

G(A;z)G(B;x) = G(Aw B; x) (2.17)

even though not all of them are iterated integrals. Above, the identification of the
GPLs by a sequence A — G(A;x) is linearly extended to a formal sum of sequences
and the shuffle of two sequences A and B is a linear combination of sequences, which

is recursively defined by

AwB = (al,(ag,...ar)LLlB)—F(bl,ALLI(bQ,...,bS)),
Awug=gwA=A. (2.18)

Therefore, Aw B is the sum of all permutations of (ai,...,a,,by,...,bs) such that
the order of A and B is preserved. E.g. for A = (1,2) and B = (3,4), it is given by

(1,2) w(3,4) = (1,2,3,4) + (1,3,2,4) + (3,1,2,4)
+(1,3,4,2) + (3,1,4,2) + (3,4,1,2). (2.19)

To summarise, eqns. (2.15), (2.16) and (2.17) define the functions G(cq, ..., ¢ ;)
for any ¢; € S.

Due to the path-dependence of the logarithm G(0;z) = log(z), this class of
functions is not single-valued. In this thesis, the branch cut of the logarithm is
generally chosen to be Ry and the identification log(—1) = im is used.

The mentioned closure of the GPLs under integration can now be stated more
precisely: let R(S) C C(x) be the field of rational functions with poles at most
at the points S and denote the R(S)-algebra generated by all the GPLs G with
singularities at most at S by Agpr(S). The multiplication is given by the shuffle
product, which leads to a grading of Agpr(S) by the weight

Acpi(S) = P Acpr.(9)

r>0

Acrrr(5) = (Gler, ca, ..o 6i2) | ¢ € S)res) - (2.20)

The algebra Agpr,(S) is closed under differentiation and integration: for every
f € AapL(5), there exists a F' € Agpr,(S) such that f = 9, F and vice-versa.
Let us point out that partial fractioning (2.12) is crucial for the closure under

integration: it ensures that any product of two different integration kernels from
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eq. (2.15) can be written as a linear combination of such kernels

11 11 11
= + (2.21)

[E—CiI—Cj Cj—CZ‘ZL’—Cj CZ‘—CJ’JZ—CZ'

Similarly, integration by parts can be used to reduce any higher power of an inte-

gration kernel to £ = 1 and total derivatives

S NP
(z—c)b  1—k "(z—c)r?

(2.22)

for k # 1.

2.2 Multiple polylogarithms

In the context of n-point, open-string amplitudes at genus zero, only a subclass of the
GPLs needs to be considered. The reason is that there is a residual gauge symmetry;,
a global transformation on the Riemann sphere arising from diffeomorphisms which
can be undone by Weyl transformations. The symmetry group is the conformal
Killing group SL(2,C)/Zs, which can be used to gauge fix three of the n punctures
x1,Ta,...,T, at arbitrary points, e.g. (z1,x2,z,) = (0,1,00). In order to include
all the possible configurations of external string states contributing to the string
amplitude, all the other (unfixed) punctures xs3,xy,...,x, 1 are integrated over.
Hence, the unfixed punctures can be thought of as the integration variable z’ in
the definition (2.15), while the fixed punctures take the role of the singularities
¢;. Accordingly, only the subclass of GPLs with ¢; € S = {0,1} appears in the

open-string corrections at genus zero.

The subclass of GPLs with singularities ¢; € {0,1} is called multiple polylog-
arithms (MPLs) [71]. The set of all words generated by the two-letter alphabet
E = (ep, €1), which is an ordered tuple of letters, is denoted by £*. Hence, MPLs

are multi-valued functions on C\{0, 1} indexed by words ending in ey,

w=cf " ter... el ey € E%y (2.23)
where n; > 1 and denoted by
Gu(z) = G(0,...,0,1,...,0,...,0,1;2) (2.24)
—1 —1

and

G@(x) =1 (2.25)
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for the empty word w = @. For |z| < 1 the MPLs of the form (2.24) exhibit a

well-known sum representation usually denoted by

k
Li, ()= 3 e = (~1) Gula). (2.26)

k™Mo knr
1<k <-<ky L r

which can be analytically continued to |z| > 1. The subclass corresponding to r = 1

is called polylogarithms (PLs) of weight n,
Gegqu(x) = —Li,, (). (2.27)

While the definitions (2.24) and (2.25) only involve GPLs defined by eq. (2.15),
one can also associate MPLs to words w € £*ey ending in ey. This leads to the
shuffle-regularised MPLs based on eqgs. (2.16) and (2.17), such that for n >0

Gen () = log” () (2.28)

n!

and for any words w’, w” € £* the shuffle algebra
G (2)Guwr () = Gurwwr (2) (2.29)

is satisfied, i.e. inherited from eq. (2.17). This implies that for words of the form
w = e}, MPLs exhibit a logarithmic divergence in the limit* x — 0, while they

vanish for all the other words

lim G,(z) =0, if wHef. (2.30)

x—0

It is known that the MPLs are linearly independent over the ring Clz, %, ﬁ] of

regular functions on C\{0, 1} [72,73]. Moreover, according to the above definitions
MPLs indexed by words e;w € ¢;E* for i € {0, 1} satisfy the differential equations
1 1
axGeow(x) = —Gw(l‘) ) axGelw(:E) =

x r—1

Gol). (2.31)

In fact, the MPLs are the unique family of holomorphic functions defined on
the open set U = C\((—o00,0] U[1,00)) satisfying the recursive differential equa-
tions (2.31) with initial condition (2.30) and the regularisation in eq. (2.28) [37,74].
Thus, the MPLs may alternatively be defined in terms of a generating series of
MPLs: it is the unique holomorphic solution Lg(x) of the differential equation
€0 €1

+
T r—1

OpLe(z) = Le () (2.32)
(25

4Throughout this thesis, any limits to zero or one are generally taken within the unit interval
unless stated otherwise.
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such that

] —€o —

glclir[l)l' Le(x)=1. (2.33)
Indeed, the function Lg(x) is the generating series of MPLs

Le(z) = > wGy(), (2.34)
weEX
since the right-hand side of eq. (2.34) satisfies the differential equation (2.32) due
to eq. (2.31) and its asymptotic behaviour as x — 0 is according to eqs. (2.28)
and (2.30) given by

Z w Gy(T) ~ Z ey log" () =z (2.35)

n!
weEX n>0

in agreement with the initial condition (2.33). The map L¢ : © — Lg¢(x) is a multi-
valued map from C\{0, 1} into the ring of formal power series in the words £* with

coefficients in C, denoted by

CUEY ={ ) cow | cw €C} (2.36)

weEX
and equipped with the concatenation product of words.

A differential equation of the form (2.32) is called Knizhnik—Zamolodchikov
(KZ) equation [75]. It will play an essential role in the construction of the re-
cursion (1.5) for open-string corrections at genus zero, which will be summarised in

subsection 2.2.2 and extensively discussed in chapter 4.

2.2.1 Multiple zeta values

In ref. [76] physicists realised that many scattering amplitudes can be expressed
in terms of MPLs evaluated at certain points, which yields multiple zeta values.
More than two hundred years ago, these numbers were investigated by Euler. More
recently, they have again come to the attention of mathematicians, e.g. in ref. [77].
By now, they are known to be basic ingredients in a huge number of scattering
amplitudes and their appearance therein is closely related to the properties of the
corresponding quantum field or string theory. A prime example is open string theory,
where the genus-zero string corrections involve the generating series of multiple zeta
values, cf. the genus-zero, open-string recursion (1.5), which will be discussed in

detail in chapter 4.

The multiple zeta values (MZVs) are defined by the value at one of the sum
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representation Li,,

.....

Cnt,eomy = Ly, (1) - (2.37)

The sum Y, n; is called the weight and r the depth of (,,
the MZVs are labelled by words of the form

n,.- 10 terms of words,

.....

w=ep ey el e €egE%er, mp > 1, (2.38)

n. can be denoted by

.....

Co = Curromr = (—1)"Gy(1). (2.39)

Using the shuffle regularisation of G, from egs. (2.28) and (2.29), the definition
of MZV's may be extended to also include words ending in eq, this leads in particular

to the value
Cep = Geo(1) = G(0;1) = 0. (2.40)

In addition to the pole of dz/z at the lower integration boundary for words ending
in eg which required the regularisation of the MPLs, the integral G,,(1) will also
diverge at the upper integration boundary for words beginning with e; due to the
pole of the differential form dz/(z—1) at z = 1. This issue has been circumvented so
far by the requirement n, > 1 in the definition of MZVs. The definition (2.39) can
be extended to any word beginning with e;. This regularisation of MZVs is again
a tangential base-point regularisation [70,78]: in negative direction at x = 1 (and
along the positive direction for the regularisation of MPLs at = = 0) [66]. In analogy
to the definition (2.40), it effectively amounts to setting the divergent integrals to

Zero
<e1 = _G€1(1> = _G<1; 1) =0, (241)
and the use of the shuffle algebra

Cur Curr = Cw’ww” (242)
to reduce the remaining cases to the definitions (2.39), (2.40) and (2.41).

Multiple zeta values satisfy further relations than shuffie relations, a prominent
example are the stuffie relations, which can be derived by a resummation of the sum

representation from eq. (2.37). The simplest example of such a stuffle relation is

Can - Cm,n + Cn,m + Cm—i—n . (243)
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The @-span of the MZVs is a subalgebra of R, graded by the weight of the MZVs.
There are conjectures for bases of this subalgebra at fixed weights and at fixed
depths [77,79,80], cf. ref. [81] for a data mine of such bases at lowest weights.
However, a rigorous mathematical treatment of the underlying algebraic structures
of MZVs is so far only possible for a sophisticated model of the MZVs, based on
a so-called f-alphabet and motivic MZVs [82-85]. This, in particular, leads to a

decomposition of any motivic MZV into a non-canonical basis [83].

2.2.2 Drinfeld associator

The MZVs may also be described in terms of a generating series, derived from the
generating series of MPLs Lg(x). Due to the divergence at x = 1 of the MPLs
Ge,w(7) mentioned above, the value of Lg(x) at one is divergent as well. Hence, in
order to obtain the generating series of MZVs, the series Lg(z) has to be regularised

as well before it can be evaluated at x = 1.

Let £ = (e1,e0) denote the alphabet & = (eg, ;) with reversed order. By the
symmetry x — 1 —x of the KZ equation (2.32) (and interchanging the roles of ey and
e1), the function Lg(1 — z) is a solution of the KZ equation (2.32) with asymptotic

behaviour for x — 1 given by

Le(l =)~ e?flogn;%x) = (1—x). (2.44)
The product
Pe(z) = (Lg(1 — x)) " Le(x) (2.45)

relates the two solutions according to
Le(x) = Lg(1 — 2)Pg(x) (2.46)

and is independent of x, which holds for any product of the form (L;(z))~Ly(x)
where L;(z) and Lo(z) are solutions of the same KZ equation (i.e. with the same
letters ey and e;1). This independence can readily be shown by differentiating both
sides of eq. (2.46). The product ®¢(z) is known as the Drinfeld associator [28,29]

and due to the z-independence usually denoted by
O = Pe(x) € C(E) . (2.47)

The Drinfeld associator is the generating series of MZVs [86], which can be seen

using the z-independence to evaluate the product ®¢(z) in the limit z — 1, where
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the asymptotic behaviour (2.44) can be exploited:

=1- Cg[eo, 61] — Cg[e(] + €1, [60, 61“
+ Caller, [er, [er, eol]] + glex, [eo, [e1, eol]]
— [eo, [0, [e0, e1]]] + 2eo, e1]®) + - . . . (2.48)

Therefore, the regulating prefactor (1 — z)~° implements the regularisation from
egs. (2.41) and (2.42), leading to the generating series of MZVs. For the last equality

in the calculation (2.48), relations among MZVs have been implemented [81].

The Drinfeld associator does not only relate the two solutions Lg(z) and Lg(1—x)
of the KZ equation according to eq. (2.46), but actually relates two regularised
boundary values of any solution of the KZ equation as follows: let us consider an
arbitrary solution L(z) of the KZ equation (2.32) and define the two regularised
boundary values

Co(L) = ilir(l) x L(z), Ci(L)= il_}H%(l —x) " L(x). (2.49)

These boundary values are connected by the Drinfeld associator according to the

genus-zero associator equation
Ci(L) = De Cy(L) . (2.50)

This equation is obtained using the asymptotics (2.35) and (2.44) as well as the z-
independence of an inverse solution times a solution of the KZ equation (mentioned
below eq. (2.46)):

Dg Co(L) = lim @ (w)a L (z)
= lim(Lg(1 - x)) "' L(x)
= lim(Lg(1 — 2)) " L(z)
= lim(1 — 2)"'L(z)

r—1

= Cy(L). (2.51)

The associator equation (2.50) is the backbone of the open-string recursion (1.5)
at genus zero. The main result given in eq. (4.105) below and derived in ref. [5] is

that for each n > 5 a (n—3)!-dimensional vector of iterated integrals F,, satisfying



2.3. SINGLE-VALUED MULTIPLE POLYLOGARITHMS 23

a KZ equation with some generators (square matrices) &, = (e, €1,) has been
constructed. The regularised boundary values include the (n—2)-point and (n—1)-

point open-string corrections F,"% and F,*%, respectively:

. Fopen R I?EE?H
Co(F,) = ( "0_2’0> , Cu(F,) = < :1’°> . (2.52)

Hence, eq. (2.50) yields a recursion solely using matrix algebra to calculate the

(n—1)-point integrals F',,_; from the (n—2)-point integrals F,,_,,

IFZE?H lropen
( .1’0> — g, ( ”6210> : (2.53)

which is simply a more precise formulation of the genus-zero recursion (1.5). In ref. [4]
a combinatorial recursion to obtain the matrices ey, e;, has been given and it is
shown that they are (up to a basis transformation) the genus-zero braid matrices,
which will be elaborated on in section 4.2. Moreover, in refs. [2,3] an analogous
mechanism for open-string integrals at genus one has been constructed, which will

be discussed in chapter 5.

2.3 Single-valued multiple polylogarithms

Due to the simple poles of the integration kernels in eq. (2.15), MPLs depend on the
homotopy class of the integration path and, thus, are multi-valued. According to
the residue theorem single-valued versions of MPLs, whose integration kernels have
simple poles as well, can only be defined by giving up holomorphicity. This leads to
the single-valued MPLs, which are introduced in this section. They are particularly

relevant for closed-string corrections and functional relations of MPLs.

2.3.1 Single-valued polylogarithms

Generally, the MPLs are multi-valued on C\{0, 1}. They depend on the homotopy
class of the integration path due to the simple poles of the integration kernels at
zero and one. However, they may be modified using complex conjugate MPLs to
cancel the corresponding monodromies. Giving up the holomorphicity of the MPLs
leads to non-holomorphic combinations of iterated integrals with simple poles, which

however are single-valued on C\{0, 1}.

The simplest example is the logarithm. Let 7, denote a path on U = C\(—o0, 0]
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from 1 to z € U and evaluate the integral G,,(z) along v,

dzx
ol

Geo(z) = log(z) = (2.54)

Yo
Since U is simply connected, this integral is uniquely defined by z: it is single-
valued on U. However, if paths on C\{0} are allowed, G, (z) might be chosen to
be evaluated along a path encircling the origin. For example by first going around
the circle o; of radius one centred at the origin, then going along ~,, one obtains

the following integral

d d d d
Geo(rc)zlog(x)z/ _x:/ —x+/ —$:/ Ly omi. (2.55)
YxO1 4y Yz x g1 oy Yz T

A residue is picked up, which leads to the monodromy 2mi in the value of G, (x). A
monodromy operator is defined by acting on an integral adding a (sufficiently small)
loop around the point p (with positive orientation) of the integration domain before
travelling along the default path and denoted by M,. In other words, M, acts on
a local branch of a possibly multi-valued function, giving the value of its analytic
continuation along a small circle around p. In particular, M, is multiplicative and
commutes with differentiation. The above calculation and the monodromy of G,

can therefore be expressed as

MGy () = Gy () + 27mi . (2.56)

Using Chen series [87] the multi-valuedness of any MPL may be expressed in
terms of the homotopy class of the corresponding integration path, which leads to
the monodromies of the generating series of MPLs around zero and one. The result
is [72]

MoLe(x) = Lg(x)e*™
M Le(z) = Le ()P e*™ Oy . (2.57)

These monodromy relations can be derived using the Drinfeld associator as follows:
the monodromy from M, follows from the monodromy of the logarithm (2.56) and
the asymptotics (2.35). The second monodromy follows from eq. (2.46) and the
asymptotics (2.44)

MiLe(x) = MiLg(1 — 2)Ps(x)
= MiLs(1 — x)Pe(x)
= Lz(1 — 2)e®™ g (x)
= Le(x)®;'e?™ O . (2.58)
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Note that the last equality makes use of the invertibility of ®¢, which naturally
follows from the construction in terms of Chen series [87].

With the monodromies of the MPLs at hand, a class of single-valued MPLs may
be constructed by adding the appropriate complex conjugates to cancel these mon-
odromies. For the logarithm, one can deduce from eq. (2.56) that for the complex

conjugate G, (z) = G, ()
MG, (z) = G (T) — 27, (2.59)
such that the linear combination
Geoy(2) + Gy (Z) = 2Re(Gey (2)) = log(|z]?) (2.60)
has a trivial monodromy
Molog(|z[*) = log(|z[*) (2.61)

and is therefore single-valued. A similar situation is found for the weight-one poly-
logarithm Lij(x) = —Ge, (z) = —log(1 — x) and the monodromy at one. Generali-
sations to higher-weight polylogarithms Li,(z) = —Gegael(x) with n > 1 have for
example been introduced by Ramakrishnan [88], which has lead to the definition of

the following family of real and single-valued functions on C\{0,1}

L£o(x) = Re, (i 2 /fk logk(|x|)Lin_k(x)> | (2.62)

where Re,, denotes Re for even n and Im for odd n, and By, is the k-th Bernoulli
number. The k-th Beurnoulli number is the constant term B, = By(0) of the

Bernoulli polynomial By (z) defined in the expansion in ¢ of the following generating

series
text tk
Y Bl (263)
k>0
the first examples are
BO(.CE) = 1,
Bix) =z~
1x) = 9 )
1
Bz(x):$2_$+6,
1
Bs(r) = 2° — §$2 + 3%

The functions £, (z) above are linear combinations of a more general class of func-
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tions D, () introduced by Zagier [89]. These are the single-valued polylogarithms

a+b—1 _ 910 . atb—l—n
Das(@) = (=17 3 (Z—D( (il+gz§|—|)1)—n)1 Li, ()

n=a

a+b—1 a+b—1-n
LD (Z:;) <_(2alig£|f|)1)_n)! Li, (2), (2.64)

n=>b

which satisfy D,,(z) = Dy 4(2). Yet another family of single-valued polylogarithms
has for example been introduced by Wojtkowiak [90], the functions £, (z) are simple

modifications of this class [91].

Before the class of single-valued multiple polylogarithms is introduced, gener-
alising the above construction for polylogarithms to multiple polylogarithms, an
important function from the class £,(x) is pointed out. Some of its rich and beau-
tiful properties will be discussed in section 2.4. It is the single-valued version of the
dilogarithm Lis(x), the second simplest polylogarithm after the logarithm or Li;(x),
respectively. Its single-valued version is called the Bloch—Wigner dilogarithm and

deserves a distinct notation given by
. . 1
D(z) = Im (Liy(x) — log(|z|) Liy (z)) = La(x) = 3 Im (D 5(x)) - (2.65)

The Bloch—Wigner dilogarithm is continuous on the Riemann sphere and real ana-

lytic except at the points 0, 1 and oo, where it is defined to vanish.

2.3.2 Single-valued multiple polylogarithms

In ref. [37], single-valued versions of MPLs have been constructed by cancelling the
monodromies of all MPLs as in example (2.61) using the monodromies (2.57) of
the generating series. It is also shown that every single-valued version of (univari-
ate) multiple polylogarithms, including the single-valued polylogarithms £,,(x) and
Dy p(z) from egs. (2.62) and (2.64), is contained in this class.

The single-valued multiple polylogarithms are constructed from the generating
series of MPLs Lg(x) defined in eq. (2.34). For a word w € £*, let w denote the
reverse word and linearly extend the action of the operator ~, which inverts words, to
C{E)). Let & = (e, €}) be an alphabet to be determined below with e, ¢} € C({(E)),
i.e. ep, €] are formal series in eg, e;. Then, the following product of generating series
of MPLs is defined:

Le(x) = Le(z)Le (). (2.66)

The monodromies of L¢(x) can be deduced from the ones of Lg () given in eq. (2.57),
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which leads to

MoLe(x) = Le(z)e®™ =2 L, (7)
M1£g(£)ﬁ) = Lg(flf)(bg1627riel (bgq)gle_Qﬂiellq)g,lEgl ([i’) . (267)

Upon requiring vanishing monodromies, these equations impose the conditions

/
€y = €0,

Pee @) = Dle; e (2.68)

on the alphabet &’. These constraint equations can be solved for ¢} € C({(E)) recur-
sively in the length of words in eq, 1, leading to a unique solution [36]. Therefore,
choosing & = (e, €}) such that the conditions (2.68) hold (which is assumed from

here on), the monodromies of L¢(x) are trivial, i.e.

MoLe(x) = Le(x),
M Le(x) = Le(x), (2.69)

such that the series

Le(r) =Y wly(x) (2.70)

weEX

and its coefficients £, (z), are single-valued functions on C\{0,1}. The latter are
called single-valued multiple polylogarithms and Lg(x) their generating series. A
theorem in ref. [37] states that the single-valued MPLs satisfy analogous proper-
ties as the MPLs, described around eq. (2.31): the single-valued MPLs form the
unique family of single-valued linear combinations of products G, (z)Gy,(Z) for

words wy,wy € £, which satisfies

1 1
aasﬁeow(x) = Eﬁw(x) s 8££61w<x> = T _ 1‘Cw($)7 (271)
such that for all n > 0
_log"(|z]?)
'Ceg( )_ n' (272)
and for w # e
lirr(l) Ly,(xz)=0. (2.73)

The functions £, () satisfy shuffle relations and are linearly independent over OO,

where O = Clz, 1, -15] denotes the ring of regular functions on C\{0,1}. Fur-

(S

thermore, any single-valued linear combination of functions G, ()G, (Z) can be
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expressed as a unique linear combination of functions £, (z).

2.3.3 Single-valued multiple zeta values

Values of the single-valued MPLs at one are called single-valued multiple zeta val-
ues [36] and defined in analogy to MZVs (cf. eq. (2.39)) for words of the form

w=ep ey el ey, ny>1, (2.74)
as
Coo(w) = (—1)"Ly(1). (2.75)

Single-valued MZVs associated to words ending with e; are defined using the same

shuffle regularisation as for MZVs and

Csv(el) =0. (276>

Similar to the MZVs, single-valued MZVs satisfy shuffle, stuffle and further rela-
tions [36]. A rigorous framework to study their algebraic properties is provided by
the motivic versions of the single-valued MZVs introduced in ref. [36], where for
example the generating series of single-valued MZVs was shown to be given by the

Deligne associator [78].

2.4 Functional relations

The properties of MPLs and in particular their functional relations are an active field
of research. The motivic versions of MPLs form a graded Hopf algebra [69,82,92],
which can be exploited to study their functional relations [93]. Moreover, the Du-
val algorithm [94] yields a basis of MPLs evaluated at the same argument with
respect to the shuffle product. Further relations between MPLs with different ar-
guments can be investigated using the coproduct or symbol map, respectively, see
e.g. refs. [68,95-100]. Such functional relations may simplify calculations in scatter-

ing amplitudes and in particular the corresponding numerical evaluations [101-105].

The functional relations discussed below are constant linear combinations of
MPLs Gy (x;), where the arguments of the MPLs are rational functions in one or
more variables z; € C(t,s,...). An important object to study these functional
relations are the Bloch groups [91, 106, 107]. However, for the sake of brevity, we
will not discuss Bloch groups here and instead consider functional relations of the
Bloch-Wigner dilogarithm D(z). On the one hand, this is a very important and
mathematically rich example of such relations, on the other hand, it has been gen-

eralised to the elliptic version of the Bloch-Wigner dilogarithm [49] and to the
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elliptic multiple polylogarithms [1], which will be discussed in chapter 3. Recently,
such elliptic analogues of MPLs have appeared in higher-loop calculations of string
corrections and Feynman integrals. Thus, the study of their functional relations
became relevant for physics, which motivated the project [1]. In this section, the
foundations at genus zero for the discussion of the elliptic functions and functional

relations further below are introduced.

2.4.1 The five-term identity

The functional relations of the Bloch—-Wigner dilogarithm D(z) defined in eq. (2.65)
are well-understood, highly non-trivial and offer a beautiful glimpse into the math-
ematical richness of this topic ranging from cluster algebras [41-43|, hyperbolic
volumes [44,45] and symbol calculus [46,47] to functional identities generated by
rational functions on the Riemann sphere [49]. The latter will be discussed in the
subsequent subsection, while in this subsection the simplest examples and in partic-

ular the important five-term identity are presented.

The simplest functional relations of the Bloch-Wigner dilogarithm are the sym-

metry relations

p0=0(1- ) =p(+1) =-p(1) = pas
:—D<1_—_tt) (2.77)

and the duplication relation
D(t*) =2D(t) +2D(—t) . (2.78)
They can be derived from the fundamental properties of the logarithm and the

dilogarithm.

The next-to-simplest and very non-trivial functional relation is the five-term

identity

1—ts

D(t)+D(s)+D( )+D(1—ts)+D(1_s>_0 (2.79)

1—ts

for s,t,st ¢ {0,1}. This important identity appears in various fields of mathe-
matics. For example, it follows from the periodicity of a cluster algebra [43] or it
expresses an equality between volumes of hyperbolic three-simplices [44,45]. This
geometric interpretation leads to an illustrative construction [67,99] of the Bloch
group [91,106,107]. The Bloch group, in turn, is related to the Dedekind zeta func-

tion of an algebraic number field [106, 108] and, thus, a crucial object in algebraic
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K-theory® [106, 108]. Moreover, many functional relations of the dilogarithm or
Bloch-Wigner dilogarithm, respectively, can be obtained from a finite number of
applications of the five-term identity [91,97,99]. In physics, on the other hand, the
five-term identity and in particular its interpretation in terms of splitting a volume
into several polyhedra has been used in calculations associated to various Feynman
diagrams, see e.g. refs. [103,104]. This importance of the Bloch-Wigner diloga-
rithm and its five-term identity motivates the investigation of analogous structures

at genus one, presented in section 3.5.

2.4.2 The classical Bloch relation

A formalised concept to generate functional relations of the Bloch-Wigner diloga-
rithm (and its elliptic generalisation) has been put forward in ref. [49]. The identities

are parametrised by principal divisors and, thus, brings us back to rational functions.

The functional relations are generated by non-trivial rational functions on the

Riemann sphere f € C(z) satisfying

f(0) = f(oo) = 1. (2.80)

According to eq. (2.3), these are finite products of linear factors to some integer

power

f) =[] —a)™, (2.81)

i
where the distinct zeros and poles a; € C and the corresponding multiplicities
d; € Z\{0} are restricted by

Y di=0, [Ja=1. (2.82)

The product representation of 1 — f(z) is of the form
1= f(@) =b] (= =)<, (2.83)
J

where b,b; € C and e; € Z depend non-trivially on a, and d;, respectively. The

corresponding divisors (2.11) of these functions are

div(f) = difai), div(l=f) =3 e;(by). (2.84)

J

In ref. [49] the following statement is shown: for any rational function f as above,

5See e.g. ref. [67] for an extensive overview of the five-term identity, Bloch groups and the
connection to algebraic K-theory.
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the Bloch—Wigner dilogarithm satisfies

Y die;D (a—) ~0. (2.85)
irj bj

Equation (2.85) is called the classical Bloch relation.

Varying the zeros and poles a; of f subject to the constraint (2.82), the classical
Bloch relation is a functional relation in a;. For distinct rational functions satisfying
eq. (2.80) in the first place, a whole class of functional relations for the Bloch-Wigner
dilogarithm is generated. However, this class is not independent: it is conjectured
to be generated by the single example of the five-term identity, cf. the discussion
below eq. (2.79).

In ref. [1], the classical Bloch relation (2.85) has been extended to holomorphic
generalisations of the dilogarithm at genus one, which involves elliptic functions

instead of rational functions. The corresponding results are discussed in section 3.5.

Generating the five-term identity

As an example, the rational function which leads to the five-term identity is pre-
sented following ref. [67]: let a,b € C be a zero and a pole parametrising the rational

function

(x —a)(z —d)(z —bb)

I = @ =)@ —aa) (2.86)
with f(0) = f(o0) =1, where @’ =1 —a and ' =1 —b. Then
) — (bb' — aa’)x?
V=10 = e = —aa) (2.87)
such that the principal divisors
div(f) = (a) + (a') + (00) — (b) = (V) — (aa’),
div(l — f) = 2(0) + (00) — (b) — (V') — (ad’) (2.88)

can be read off. Bloch’s relation can be applied, which yields the identity
/

D(%)+D(%)+D(g)+D(2—Z>+D(%/>—o, (2.89)

where D(0) = D(1) = D(oc0) = 0 and the symmetry relations (2.77) have been
used to simplify and cancel various terms. Finally, the change of variables ¢t = a/b,
s = a' /i leads to the five-term identity (2.79).



Chapter 3

Elliptic multiple polylogarithms

While MPLs and MZVs are sufficient to describe open-string corrections at genus
zero, further classes of functions and values appear at higher order. In particular at
genus one, the integrands of the string corrections are defined on the torus and, thus,
elliptic. Upon integration, this leads to elliptic MPLs and elliptic MZVs, which are

motivated and described in this chapter.

It essentially follows the same outline as the previous chapter: in section 3.1,
the torus and its relation to the elliptic curve are introduced. Afterwards, the
meromorphic functions on the torus, i.e. elliptic functions, and their integrals are
reviewed, which leads to the elliptic MPLs in section 3.2. In section 3.3, some
properties of their values at one, the elliptic MZVs, and their generating series,
the elliptic KZB associator, are presented. A few examples of single-valued elliptic
MPLs are given in section 3.4. Finally, in section 3.5, some results from ref. [1]
are presented, giving an answer to question 1: the single-valued elliptic MPLs are
related to the elliptic MPLs leading to functional relations among different elliptic
generalisations of MPLs. Additionally, the classical Bloch relation (2.85) is stated
in terms of the elliptic Bloch-Wigner dilogarithm and, thereby, extended to genus
one.

3.1 Meromorphic functions on the torus

In this section, the parametrisation of the torus on the complex plane, meromorphic
functions defined on the torus and its relation to the elliptic curve are reviewed!'.
Moreover, having introduced the torus and the elliptic curve, a third equivalent

description is given, the so-called Tate curve.

1See ref. [109] for a thorough review of these well-known mathematical concepts. The outline of
the following discussion is closely related to the presentation in ref. [63], where these mathematical
concepts are related to the physical objects described in this thesis.

32
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3.1.1 The torus

A torus C/A is the complex plane modulo a two-dimensional lattice
A= w1Z+w2Z, (31)

where the periods wq,ws € C are linearly independent over R. For simplicity, we
often identify a point z + A on the torus by its representative z = aw; + bws with

0 <a,b < 1in the fundamental parallelogram
Py={aw; +bwy | 0<a,b< 1}. (3.2)

Two distinct representatives z; and zy of z + A are identified using the notation
21 = 2. The complex plane may always be rescaled by one of the periods, say 1/wy,
without changing the geometry of the torus. This defines an isomorphic torus with

periods
T = wy/wy (3.3)
and one, the corresponding lattice is denoted by
AN =Z+7Z. (3.4)

Without loss of generality? the modular parameter 7 is assumed to be an element of

the upper half plane
Te€H={z€C|Im(z) >0}, (3.5)
such that the fundamental parallelogram can be depicted as in figure 3.1. The

straight line [0, 1] + A, is called the A-cycle and [0, 7] + A, the B-cycle of the torus.

1T /Il+T

] 0 1
/ /
/ /

Figure 3.1: A torus can be parametrised by the modular parameter 7 € H as
the quotient C/A, of the complex plane divided by the lattice A, = Z 4+ 7Z. In
the parametrisation on the right-hand side, the fundamental parallelogram P, _ is
depicted, which is bounded by the A-cycle (blue) and the B-cycle (red).

20therwise, the role of w; and wy can be interchanged.
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Two tori defined by modular parameters 7 and 7’ are isomorphic if they are

related by a modular transformation®

/
T T =

ar +b a b
c

— g d) € SL(2,Z). (3.6)

Such a transformation may define another fundamental parallelogram, but does not

change the geometry of the torus.

3.1.2 Elliptic functions

In this thesis, we generally work with properly rescaled tori defined by a lattice
satisfying eqgs. (3.4) and (3.5). Similarly, functions with two independent periods
are always pulled-back with the appropriate rescaling, such that their periods are
one and 7 € H. Such a function is called A, -periodic. Moreover, a function is called
elliptic on C if it is A,-periodic and meromorphic. The set of elliptic functions
(relative to the lattice A;) is denoted by

C(A;) ={f: C — C meromorphic | f(z +w) = f(z) for all w € A, }. (3.7)

Therefore, the canonical extension of an elliptic function to the quotient space C/A
is single-valued on the torus and, thus, meromorphic functions on the torus are
simply the elliptic* functions. They are the genus-one analogues of the rational

functions, which are the meromorphic functions on the Riemann sphere, cf. eq. (2.9).

The two canonical examples of elliptic functions are the Weierstrass o-function®

1 1 1
p(z) = p(z,7) = 22 * (m,r%;(op) ((Z +m+nr)?  (m+ nT)Q) (38)

and its derivative ¢'(z) = 0,p(z). The Weierstrass p-function is even and has a
double pole at the lattice points. The derivative ¢’, in turn, is odd and has a triple
pole at the lattice points. The three zeros of ¢’ in the fundamental domain are the
half periods 1/2, 7/2 and (1+7)/2. The two zeros of p depend highly non-trivial on
7 (see e.g. [110]). The Weierstrass p-function and its derivative satisfy the partial

3Despite the richness of this mathematical topic, we will not investigate the modular properties
of the functions introduced below. Various aspects related to modular transformation can be found
in the corresponding references.

4By a slight abuse of conventions, the generalisations of MPLs to the torus, leading to the
meromorphic functions introduced in section 3.2 are also called elliptic (MPLs). This is justified
by the fact that a multi-valuedness is introduced anyway from non-vanishing residues as in the
case of the logarithm at genus zero. Thus, the quasi-periodicity of the corresponding integration
kernels ¢(*) of the elliptic MPLs with respect to 7 is only an additional source of multi-valuedness.

5While most of the quantities related to tori depend via the modular parameter 7 on the
particular geometry, the explicit argument 7 is often omitted for the sake of notational simplicity.
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differential equation

0'(2)" = 4(p(2) — e1)(p(2) — e2)(p(2) — €3) = 4p(2)* — @2p(2) — g5, (3.9)
where the roots ey, s, e3 are defined by the values of @ at the half periods®

61:p(%), 62:96), egzp(l—;T). (3.10)

The Weierstrass invariants g, and g3 can be expressed in terms of the holomorphic
7

FEisenstein series

1
GO - —1 5 ng - Z m 5 ngfl == O, (312)
(m,n)#(0,0)

where k € Z~(. They are given by
92 =060Gy, g3=140Gs (3.13)

and satisfy together with the roots the relations

1 1
e1+es+e3=0, ejes+ esesz+eze; = _ZQQ, e1€9€3 = Zgg. (3.14)

In fact, even the Weierstrass p-function can be expressed in terms of Gg: the holo-
morphic Eisenstein series appear in the coefficients of the Laurent expansion around
z=0:

o(z2) = % + Z(k — 1) Gy 22, (3.15)

k>4

Having recalled the definition and two important examples of elliptic functions,
let us summarise some of their properties. Ellipticity restricts® the zeros and poles

of an elliptic function F' in the fundamental parallelogram P, _ according to

Z ord, (F) =0, Z ord, (F)z € A, (3.16)

ZEPAT ZEPAT

6The six possible permutations of the indices of the roots correspond to the six possible assign-
ments of the half-periods in eq. (3.10) to each root. This and further such redundancies are related
to the modular transformations from eq. (3.6), see e.g. ref. [1,109]. For the numerical examples in
this thesis, the explicit choices from the presented definitions are used.

"For G the Eisenstein summation prescription is assumed

N M

> amp= Jm m 30 3 o (311)
(m7n)7é(070) n=—N m=—M

8See e.g. ref. [109] for the derivation of equation (3.16) and the following statements about
elliptic and Weierstrass functions.
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where ord,(F') is the order of vanishing of F' at z from eq. (2.6). Moreover, due to
Cauchy’s residue theorem an elliptic function can not have a single simple pole: in-
tegration along the fundamental parallelogram, where the (reversed) parallel paths
cancel pairwise due to the A -periodicity, the sum of the residues of an elliptic func-
tion has to vanish. This excludes single simple poles. The restrictions (3.16) can
be shown by the same cancellation of the integration along the fundamental par-
allelogram using the generalised argument principle. Another property expressing
the restrictive nature of ellipticity and the close relation to meromorphic functions
on the Riemann sphere or rational functions, respectively, is the fact that elliptic
functions are determined up to scaling by their zeros and poles: Liouville’s theorem
can be used to deduce that since the quotient of two elliptic functions with the
same zeros and poles including their multiplicities is an entire bounded function,
this quotient is constant. Thus, the two elliptic functions are proportional to each
other. Furthermore, this implies that any elliptic function is a rational function in
the Weierstrass p-function and its derivative ¢’: on the one hand, since p and @
are elliptic, any rational function in g and ¢’ is elliptic as well. On the other hand,

any elliptic function F' can be decomposed into an even F'™ and an odd part F~:

FH(z) = 5(F() + F(=2)), F(2) =
F(z)=F"(2)+ F (2). (3.17)

If Af are the zeros and poles of F(z) with multiplicities d;, then

Fr(z) = a* [J(o(2) — (4™ (3.18)

for some constant a™ € C, since the right-hand side is elliptic and has by construction
the same zeros and poles as F7(z). A similar statement holds for the even function
F~(2)/¢'(2), such that

Fo(z) = a ¢'(2) [ [(p(2) = p(A7))% . (3.19)

for some a~ € C and the zeros and poles A; of F~(z). Therefore, the elliptic

functions are indeed the rational functions in p and g’

C(A-) = Clp(2), ¢'(2)) (3.20)

and can be written in the form
F(2) = Ri(p(2)) + ¢'(2)Ra(2), Ry, Ry € C(x) . (3.21)

Equation (3.20) is analogous to eq. (2.9) at genus zero, which states that any mero-
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morphic function on the Riemann sphere can be written as a rational function on
the complex plane.

Another description of elliptic functions is based on the Weierstrass (-function

1 1 1 z
== 3.22
¢(z) z+ Z (z—m—n7+m+n7+(m+nr)2)’ (3:22)
(m,n)#(0,0)
which is the negative odd primitive of the Weierstrass p-function, i.e. ((—z) = —((z)
and
9:((2) = —p(2) (3.23)

It defines the Weierstrass o-function

o(2) = 50 exp < / a4z g(z')> | (3.24)

where the scaling factor and base point sg, 29 € C are chosen such that ¢'(0) = 1.

The Weierstrass (-function is the logarithmic derivative of the Weierstrass o-function

0. log(a(2)) = ((2) (3.25)

The functions ¢ and ¢ are meromorphic, but neither of them is A -periodic, thus,
they are not elliptic: while the Weierstrass (-function has only a single simple pole in
the fundamental parallelogram, the Weierstrass o-function has only one simple zero
at the lattice points but no poles, such that the conditions (3.16) are violated. The
non-periodicity of the Weierstrass (-function follows from integrating the equation
(2 4+ w) = p(2), where w € {1, 7} is one of the periods, which implies that ¢ changes

by some integration constant
C(z+w)=C((2)+2n, (3.26)

i.e. it is quasi-periodic with the quasi-periods n, = ((w/2). This quasi-periodicity of
the Weierstrass (-function determines the behaviour of the Weierstrass o-function

under a lattice displacement, which reads
o(z+w) =exp (2%2’ + §w>a(z) : (3.27)

where &, is a further integration constant” (see e.g. ref. [109]).
As an alternative to the representation (3.21) in terms of rational functions in @
and ', the functions ¢, o and in particular eq. (3.27) can be used to represent any

elliptic function F as follows: let {A;} be representatives of the zeros and poles of

9Note that the integration constants &, with w € {1,7} in eq. (3.27) determine sy and 2¢ in
eq. (3.24) and vice-versa.
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F such that the conditions (3.16) are of the form

where d; = ord4,(F'). Then, the product!'”

[To (- 4" =exp (Z d; /0 ; idz’((z’)) (3.29)

is elliptic. First, it is meromorphic since the Weierstrass o-function is meromorphic.

Second, for w € {1, 7}, the transformation behaviour (3.27) implies that
Ha (z4w—A)% = exp (Z d;(2n.(z — A;) + @)) Ha (z— A"
=[[o (- A", (3.30)

where we have used the conditions (3.28) on the zeros and poles for the last equality.
Thus, this product of Weierstrass o-functions is also A -periodic and, hence, indeed
elliptic. Moreover, the function o(z — A;) has only simple zeros at A; + A,, such
that the elliptic product in eq. (3.29) has exactly the same zeros and poles, including
multiplicities, as the original elliptic function F'. Therefore, the former has to be

proportional to the latter, i.e. the elliptic function F' is given by

F(z)=sa H o(z—A)% = s exp (Z d,-/ i dz’ C(z')) (3.31)

.
0
for some scaling factor s, € C.

Similar to the rational functions from the previous chapter, according to the
representation (3.31), the elliptic functions are also determined up to an overall
constant by their zeros and poles. Again, this motivates the introduction of the group
of divisors of C/A, (or subsets thereof), which is the free abelian group generated
by points of the fundamental parallelogram P, _ and denoted by Div(C/A.). Thus,
in analogy to eq. (2.10) at genus zero, a divisor D € C/A; is of the form

D= > n.2)), (3.32)

z€EPA .

where all but finitely many of the integer coefficients n, € Z are zero. Asineq. (2.11)

for rational functions, a divisor can be associated to each elliptic function F' € C(A,)

10Note that compared to the definition of the Weierstrass o-function (3.24), the factors of sg
from the product on the left-hand side of eq. (3.29) multiply to one and the base point zy of the
integrals in the exponential can be shifted to zero due to the condition )", d; = 0 in eq. (3.28).
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according to'!

div(F) = > ord.(F)(2) (3.33)

ZEPAT

and a divisor D € Div(C/A;) is called principal if and only if there exists an elliptic
function F(z) € C(A,) such that D = div(F’). Due to the conditions (3.16), this is
equivalent to being of the form D = )" d;(A;), where

Therefore, two elliptic functions are equal up to scaling if and only if they have the

same divisors.

3.1.3 The elliptic curve

The description of elliptic functions as rational functions in g and ¢’ leads to another
representation in terms of rational functions on a complex projective algebraic curve,

the elliptic curve'?

E(C)={(z.y) | y* = 42’ — gow — g3} U {00}, (3.35)

where ¢, and g5 are the Weierstrass invariants (3.13), which defines the relation to
the tori via the 7-dependence of go, g3. Modular transformations (3.6) of the torus
are related to changes of variables of the algebraic equation defining the elliptic
curve and, thus, represent the same geometry and elliptic curve, respectively. This
algebraic equation is of Weierstrass form and called Weierstrass equation. It is
exactly the same as the differential equation (3.9) of the Weierstrass p-function.
This observation leads to the following isomorphism of Riemann surfaces from

the torus to the elliptic curve

C/A- — E(C),
Ore:S0#£ 24+ A — (p(2),0(2), (3.36)
0+ A, — 00 .

The addition on the elliptic curve, with the unity being oo, is given by the chord-

tangent construction described in appendix A.

"By a slight abuse of notation, any non-vanishing term ord,(F)(z) in a divisor div(F) of an
elliptic function can be represented by any other representative z’ = z of z + A, than z € Py_ in
the fundamental parallelogram, by identifying ord, (F')(z) with ord,, (F)(z’) if and only if 2’ = z.

12We choose to work with the dehomogenised form of the projective elliptic curve E (C) = {[X :
Y : Z] € C}|IY?Z = 4X3 — g2XZ% — 9323} C P?(C) using the non-homogeneous coordinates
x=X/Z,y=Y/Z, Z =1 and denoting co = [0:1:0].
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Solving the differential equation (3.9) of the Weierstrass p-function leads to an
integral representation of the inverse of the isomorphism ¢, g, called Abel’s map: let
P = (xp,yp) € E(C). If yp =0, then zp + A, with (p(zp), ¢'(zp)) = (zp,0) is one
of the half periods w;/2 € {1/2,7/2, (1 + 7)/2} modulo the lattice A, and, according
to eq. (3.10), the z-coordinate of P has to be one of the roots e; € {ej, e, e3}. The
i-th root satisfying xp = e; in turn, determines the appropriate half period w;/2 by
o(wi/2) = e;. If yp # 0, the differential equation has to be solved, leading to

zp

zp:i/ A, (3.37)
o Y

where the sign is determined by the requirement ©'(zp) = yp.

To summarise, according to the identification

r=p(z), y=¢(2) (3.38)

and the representation (3.20) of elliptic functions in terms of rational functions in
o and @', the elliptic functions are the rational functions in x and y on the elliptic
curve E(C), i.e.

C(A;) = C(z,y)/{y* = 42° — gow — g3}
={f e C(x,y) | v* =42® — goz — g3} . (3.39)

At this point, let us make a comment on how to obtain the modular parameter
7 of an appropriately rescaled torus given an arbitrary elliptic curve in Weierstrass
form E : y* = 42® — gox — g3. In general, the Weierstrass invariants g, and g5 are not
chosen such that there exists a 7 € H satisfying eq. (3.13). Rather, they correspond
to a not yet rescaled lattice A = wiZ + w»Z such that

g2=60 Y _ g3 =140 ) _ (3.40)

10 6
s 00) (mwy + nwy) s 00) (mwy + nwy)

The roots e; of the Weierstrass equation still satisfy the relations (3.14), which can
be used to determine the roots from the Weierstrass invariants. Having the roots
e; = e;(g2, g3) at hands, Abel’s map (3.37) yields the following relation'® to calculate
the lattice periods from the roots [111]

e2 4 e2 4
w1:2/ o= / L (3.41)
e Y o Y

This, in turn, leads to the modular parameter 7 = ws/w; of the appropriately

rescaled torus.

13This is valid for the specific choices of the roots in eq. (3.10). See also the footnote above
eq. (3.10) for a brief note on possible other choices.
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3.1.4 The Tate curve

Another equivalent description of the torus, which nicely relates to the concepts
introduced so far, can be obtained by considering the exponential of the modular

parameter
_2miT
g=eT". (3.42)
This exponential map induces the isomorphism

C/A,  — C/g"
Gryg . (3.43)
P VI e L

The codomain C*/¢%, with a multiplicative group structure inherited from addition
on the torus via the exponential, is called Tate curve'*.

The description of elliptic functions on the Tate curve offers yet another connec-
tion to rational functions than their description on the torus and on the elliptic curve
via egs. (3.20) and (3.39), respectively. One of its advantages is that the genus-zero
limit 7 — 200 can be implemented using the g-expansion of functions depending on
the modular parameter, i.e. expanding them in ¢, and taking ¢ — 0.

The relation of elliptic functions to functions on the Tate curve is thoroughly
described in ref. [49] and based on the same class of rational functions discussed
in subsection 2.4.2, which appears in the classical Bloch relation. These are the
non-trivial meromorphic functions on the Riemann sphere f : C — C such that
f(0) = f(oo) = 1, which are of the form (2.81) and their zeros and poles a; with
multiplicities d; satisfy eq. (2.82). Forming the infinite product

F(z) =[] f(ed) (3.44)

IEZ

of such a function f yields a meromorphic function which obeys the transformed

A,-periodicity condition (pulled back via the exponential to the Tate curve)
F(zq) = F(z). (3.45)
Therefore, F' is a well-defined meromorphic function on the Tate curve

C*/¢* —C
F T (3.46)
r-¢¢ — F(x).

We refer to the function F' as elliptic average of f and call any meromorphic func-

MThorough introductions to the Tate curve can be found in ref. [112], appendix A.1.2,
or ref. [113], section 4.3.
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tion satisfying eq. (3.45) elliptic (on the Tate curve), which is justified in the next
paragraph. Properties of such functions on the Tate curve are discussed in detail in
ref. [49].

The condition f(0) = f(co) = 1 ensures on the one hand that in the genus-zero

limit ¢ — 0 the original rational function is recovered

(1]1_% F(z) = f(x). (3.47)
On the other hand it implies that representatives A; of the zeros and poles of the

function
F o gr(z) = F(*) (3.48)

can be found, which satisfy the condition (3.28) and such that a; = €™, As
argued in subsection 3.1.2, these two conditions (modulo lattice displacements) are
not only necessary, but also sufficient to be the zeros and poles of some elliptic
function. Therefore, the function F o ¢, , in eq. (3.48) is elliptic and any elliptic
function with divisor ), d;(A;) can be written up to scaling in the form (3.48)
where F is the elliptic average of the rational function f with div(f) =, d;(e*™4)
and f(0) = f(oo) = 1. The divisor div(F) = ). d;i(A;) of an elliptic function
expressed on the Tate curve is simply the divisor of the corresponding rational
function div(f) = >, d;(e*™4).

3.2 Elliptic multiple polylogarithms

In this section the class of functions obtained from integrating elliptic functions is
identified. It turns out that the description of elliptic functions as rational functions
on the elliptic curve is a convenient tool for this purpose. This will lead to the
elliptic multiple polylogarithms and elliptic multiple zeta values. While the elliptic
MPLs considered are meromorphic and multi-valued on the torus, other elliptic
generalisations of MPLs have been proposed. Certain classes of elliptic MPLs on
the Tate curve, including a particular single-valued but non-meromorphic class, will
be discussed later in this chapter. In particular, in section 3.5 some results of ref. [1]
are presented, where singled-valued elliptic MPLs are related to meromorphic elliptic

MPLs and the genus-zero Bloch relation is generalised to the torus.

3.2.1 Integrating elliptic functions

Identifying the class of functions obtained from (iterated) integrations of elliptic

functions is more subtle than for the rational functions on the Riemann sphere. The
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approach shown below is similar to the construction of elliptic multiple polyloga-
rithms in ref. [63] and leads to integrals closely related to the functions introduced
in ref. [8].

According to eq. (3.21) or eq. (3.39), respectively, any elliptic function can be

written as
F(2) = Ri(p(2)) + ¢'(2)Ra(2) = Ri(z) + yRa(z), Ry, Ry € C(x), (3.49)

where x = p(2) and y = ¢/(2). Since

@@ _ —dz 3.50
y (3.50)

integrating such an elliptic function or rational function on the elliptic curve, re-

spectively, leads to integrals which are linear combinations of

/ Ri(p(2))dz = / iRl(:ﬁ)dx (3.51)
and

/p’(z)Rg(p(z))dz: /Rg(x)dx. (3.52)

As for the rational functions, which lead to eq. (2.14), the second integral (3.52)
can be reduced using partial fractioning to a C-linear combination of integrals of

the form

(z—c)' ™% _ (p(x)=p(z))" 7% .
/d_f“ ) e itk 71, (3.53)
(x — )" log(z — ¢;) if k=1,

where ©(z;) = ¢;. Thus, for k # 1, an elliptic function is recovered. Again, for k = 1,
the class of elliptic function is surpassed, such that integrals of the differential forms
dz ¢ (2)

A Cry R 6 e 820

have to be included in any class extending the elliptic functions which is closed
under integration. The function on the right-hand side can be expressed as a linear

combination of Weierstrass (-functions

ﬂ_ Z— Z; 2 —z) — P
o) = () ST+ 2) - () (3.55)

since the linear combination of Weierstrass (-functions on the right-hand side is odd,

elliptic and has simple poles at z = +z; and z = 0 with resy,, = 1 and resy = —2,
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respectively. The same holds for the left-hand side, such that the difference between
the left- and the right-hand side has to vanish and, thus, both agree. For reasons
explained below, it is more convenient to express the above linear combination in

terms of a slight modification of the Weierstrass (-function,

gV (2) = gW(z,7) = ((2) — 2m2=, (3.56)
which leads to

o'(2)

o) = ola) 9V (z = 2) + 9V (z — z) — 29V(2). (357)

Subtracting a linear shift including the half-period 7; from ((z) ensures that, ac-

cording to eq. (3.26), g (2) is one-periodic
gV (z+1) =gW(2) (3.58)
in contrast to ((z). Moreover, it is still an odd function

gV (=2) = —gW(2). (3.59)

However, a T-periodicity can not be restored without violating the meromorphicity:
since ((z) or g(V)(2), respectively, is meromorphic and has only a simple pole at each
lattice point, it can not be elliptic. But it shows the best possible behaviour: it is

quasi-periodic in 7
gV (z+71) =gV (2) — 2mi. (3.60)
Its g-expansion is given by [27]

gV (2, 7) = meot(mwz) + 4m Z sin(27kz)q™ . (3.61)
k>0

To summarise, iterated integrals of the differential form (3.54) have to be included to
describe (iterated) integrals of elliptic functions of the form (3.52). They are linear
combinations of iterated integrals of the integration kernel g(")(z) and are defined

in analogy to the Goncharov polylogarithms (2.15) for z,. # 0 by

(L tizT) =/ dz' g (2 — 2, 1)T(L = L2 7)),
0

I(Gz71)=1. (3.62)

Indeed, the integration kernel g\V)(z, 7) is the best possible genus-one generalisation
of the genus-zero kernel 1/z: it is odd, meromorphic, has a simple pole at each

lattice point, is one-periodic and quasi-periodic in 7. The simple poles lead to the
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same necessity for a regularisation of the functions (3.84) in the case z, = 0 at
the lower integration boundary of the innermost kernel, which already appeared for
Goncharov polylogarithms, cf. eq. (2.28). This can be implemented using a similar
subtraction of the corresponding logarithmic divergence from the lower integration

boundary, which lead to eq. (2.16), giving in this case

f(é;zm)zlim(

e—0

/ dz' g (', 1) + log(27rie)>

€

. 1
= log(1 — ™) — miz + 4n Z Py (1 — cos(2mkz)) ¢** . (3.63)
k>0

The g-expansion on the second line can be deduced from the g-expansion (3.61) of

the integration kernel. Moreover, for multiple labels the definition

. 1 /-~ r
P(§m6527) =~ (F(é;z,f)) (3.64)
N——~ r!

is used. Thus, the function f( 33 2,7) is the genus-one analogue of the logarithm

e—0

lim ( / ’ d?‘c + log(e)) = log() . (3.65)

Having discussed integrals of the form (3.52), the remaining integrals (3.51) have
to be considered to determine if even more integration kernels are required. With
integration by parts and partial fractioning on the elliptic curve, such an integral can

be reduced to integrals of the form (3.52) and integrals of the three new differential

forms
dx dz
—1\C4, dx = - )
il ) = Y T o — (@)
po(z)de = v dz,
é(z)da = % = o(2)dz. (3.66)

The function appearing in the first differential form can be expressed in terms of
gM(2) as [63)]

o(2) _1 o(z) - p/(lzi) (90 (z + 2) — gW (2 — z) +290(2)) , (3.67)

which follows from a similar analysis as eq. (3.55). Upon integration, the second

differential form leads to powers of z and the corresponding integration kernel is
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simply denoted by

g0(z) = 1. (3.68)
The third differential form includes the derivative of g(¥)(2)

o(z) =— Zg(l)(z) — 21 . (3.69)

Hence, in addition to the differential form g(V)(z)dz in the family of integrals (3.84),
the forms ¢ (2)dz = dz and 9,¢9V)(2)dz have to be included as well. While ¢ ()
is genuinely new, using integration by parts on the torus, the derivative 9,9 (2)

can be expressed in terms of a product of kernels g(!)(z), for example

/dz/ (8Z/g(1)(z, — 20, 7—)) f(zll o er ; Zl; T)
= g(l)<z - Z077—> f(2:11 zlr 3 % 7-)

— /dz'g(l)(z’ — 20; T)g(l)(z’ — 21;7) f‘( s ). (3.70)

Here, a major difference to the construction of Goncharov polylogarithms can be
observed: in the genus-zero case, partial fractioning (2.21) ensures that any such
product of two kernels is again a linear combination of the kernels 1/(z — ¢;). How-
ever, the function g (z — 2;,7) does not satisfy partial fractioning, but a similar
identity which involves infinitely many functions ¢*)(z — z;, 7) for k > 0. Thus, all

of these infinitely many kernels have to be included as well.
The functions g*)(z,7) for k > 0 are generated by the Eisenstein—Kronecker

series'® F(z,n,7) [8,114]

01(0,7)61(z +n,7)
F — 1 ) 1)
) = e

(3.71)
where

0n(zm) =g (22 =) [JO -2 [JO -’27 (3.72)

is the odd Jacobi #-function and 0 (z,7) = 0.0,(z, 7). The periodicity properties of

the Jacobi #-function imply the quasi-periodicity of the Eisenstein—Kronecker series

F(z+1,n,7)=F(z,n,7), F(z+7n,7)=e""F(2,n,7). (3.73)

5 Even though the same symbol F is used as for a generic elliptic function, the Eisenstein—
Kronecker series is not elliptic, which will be explained below. It is always clear from the context
or the arguments of the function, whether F' denotes a generic elliptic function or the Eisenstein—
Kronecker series.
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Similarly, the antisymmetry
F<Z7777 T) = _F(_Zv _7]77—) (374>

can be shown. Moreover, the Eisenstein—Kronecker series satisfies the mixed heat

equation
2mi0, F(z,m,7) = 0,0,F (2,1, 7). (3.75)
The functions ¢*)(z, 7) are the coefficients in the expansion with respect to 7

nF(zn,7) =Y g™ (", (3.76)

k>0

where the index k is called the weight of ¢*). The first two functions ¢®© = 1
and g™ indeed agree with eqs. (3.68) and (3.56), respectively. For general k, the
functions ¢ inherit various properties from the Eisenstein-Kronecker series. For

example, they are one-periodic
g (z+1,7)=gW(z, 1), (3.77)
but not periodic with respect to 7 and satisfy the symmetry property
g™ (=z1) = (=1 (z,7) (3.78)
as well as the mixed heat equation
2mid g™ (2, 7) = kg% (2, 7). (3.79)

Their g-expansions can be deduced from the g-expansion of the Eisenstein—Kronecker
series and can be found in appendix B.1. For k > 2, the functions ¢ are polyno-
mials of degree k in g™ where the subleading terms are such that the poles at the
integers of the leading term (gM)*/k! cancel. Thus, they are holomorphic on the

real line, in contrast to ¢! which has a simple pole at each lattice point.

The identity analogous to partial fractioning (2.12) at genus one, which was
mentioned above, is the Fay identity

Fri(m) Frj(n2) = Fri(m +n2) Fij(n2) + Fiei(m + n2) Fyi(m) (3.80)
where we have used the short notation
Fij(n) = F(Zijvﬁ:T) y  Rij = Rij = R — Zj . (3.81)

Expanding both sides of eq. (3.80) leads to the Fay identity for the integration
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kernels
m n m m-+n a m—+r— 1 m—+r n—r
P A C L SR DI WA VA
r=0
- m—r [ T +7r— 1 (n+r) (m—r)
e (el (3.52)
where
9 = g™ (25, 7). (3.83)

By means of the Fay identity and integration by parts, the iterated integral
in eq. (3.70) can be expressed as a Q-linear combination of iterated integrals over
the kernels g% (z — 2, 7) with k € {0,1,2} times the kernels themselves. This
statement turns out to be true in general and leads to the following generalisation
of the definition (3.62) to iterated integrals over the kernels ¢g®)(z — z;,7) with
k>0 [8,27]: for k. # 1, the elliptic multiple polylogarithms with shifts z; (eMPLs
with shifts) are defined'® by

Tk bz 7) =/ Az’ g® (2 — 2, ) D(2 o k2l 7)),
0

I'Gz71)=1. (3.84)

The number r is called the length and Y, k; the weight of the eMPL. In the case
k, = 1, the functions I" are defined by eqs. (3.63) and (3.64), respectively, and all
the remaining cases can recursively be defined using tangential base-point regulari-
sation analogously to the Goncharov polylogarithms, which results in the following
prescription: they are polynomials of eMPLs (with shifts) of the form (3.84) or (3.64)
and of lower length such that the shuffle algebra of iterated integrals

[(Ay, As, . .. JAj 2, T)(By, By, ..., By 2, T)
=T ((A1, Ay, ..., Aj) w (By, By, ..., Bi); 2, 7) (3.85)

is preserved for any combined letters 4; = %i.

In ref. [63], it was shown that the eMPLs with shifts including their integration

kernels indeed close the elliptic functions under integration and differentiation: let
Anver = (9% (2 =20, 7) D(E o brizom) | 120,k 20,2 € Chen,y (3.86)

denote the C(A;)-algebra generated by the eMPLs with shifts and their integration

16For modified definitions based on A,-periodic, but non-holomorphic integration kernels see
e.g. refs. [8,27,115]. These different definitions can be related to each other by forming linear
combinations of the eMPLs and their complex conjugates.
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kernels over the field of elliptic functions C(A,) associated to a torus with modular
parameter 7 with the multiplication given by the shuffle product. Then, the algebra
A%\ pr is closed under differentiation and integration, i.e. for every f € A7 py,, there
exists a F' € Alypy, such that f = 0,F and vice-versa. Moreover, it is graded by
the total length | = ko +1r

T _ T
eMPL — @ AeMPL,l ’

1>0
Aovpr = (g0 (2 — 2, 7) T(B o Bz ) | 7> 0,k > 0,2 € Coko+7 = e,y -
(3.87)

3.2.2 Elliptic multiple polylogarithms

While the eMPLs with shifts (3.84) are the genus-one analogues of the Goncharov
polylogarithms (2.15), the eMPLs without shifts (z; = 0), simply called eMPLs from
here on, are the analogues of the MPLs (2.24). Tt is exactly this class of iterated
integrals that appears in the open-string integrals at genus one, since the torus
symmetry can be gauged in the string corrections by choosing one external state to
be at z; = 0 = 1, while the others are integrated over and rather correspond to the

integration variables such as 2’ in the iterated integrals (3.84).

These elliptic multiple polylogarithms (eMPLs) can be denoted by the set of all
words X' generated by an infinite alphabet X = (xg,z1,22,...) as follows: the

empty word corresponds to the empty integral f‘(; z,7) = 1 and a non-trivial word
W= Tpy Ty - - - Thy Tpsp, € X (3.88)

to the iterated integral defined by eq. (3.84) and the corresponding shuffle regulari-

sation, i.e.
Lu(z) =T(% o brsz,7). (3.89)

In analogy to the polylogarithms (2.27), the subclass of elliptic polylogarithms (ePLs)
is defined by words of the form w = 2, with n > 1 and denoted by

Ly(m;2) =Th(m;z,7) = fxg—lxm(Z) =T(8~9m;2,7), (3.90)

where the subscript n indicates the number of integrations over the integration kernel
g™ For latter convenience, the integration kernels are sometimes denoted as ePLs

as well, with n = 0 number of integrations

To(m;z) = g"™(z). (3.91)



50 CHAPTER 3. ELLIPTIC MULTIPLE POLYLOGARITHMS

The g-expansions of the ePLs can be calculated by multiple integrations of the ¢-
expansion of the integration kernels, the results are given in appendix B.1. For any
words w', w” € X, the shuffle algebra (3.85) reduces for the eMPLs to the algebra

fw/(z) qu(z) = Fw/mu//(z) . (392)

The eMPLs associated to words of the form x,w € X' satisfy the partial differential
equation
0. Topu(2) = g™ (2) Tw(2) . (3.93)

Moreover, the regularisation of the eMPLs implies that

limTy(2) =0, if w#al (3.94)

z—0
for any n > 0, while words of the form 27 lead to the products
~ 1 ~ n 1 = 0 n
Duy(s) = = (T () == (Dhi=m) (3.95)

whose asymptotic behaviour for z — 0 is dominated by the simple pole of the

integration kernel g™ at zero and can be deduced from its g-expansion (3.63):

~ 1
Lon(z) ~ ] log"(—2miz) . (3.96)

1

3.2.3 Elliptic multiple zeta values

The genus-one analogues of the MZVs from eq. (2.39) can be defined by certain
values of the eMPLs. These elliptic multiple zeta values (eMZVs) [27,115,116] are
defined by the regularised iterated integrals I, evaluated at z = 1, associated to
words w = Ty, ... T,, € X\r1X, with ny # 1:

wi = wa(T) = wng, ..., ny;7) = Tu(1,7) = TG 7851, 7), (3.97)

where @ is the word w reversed and w(;7) = 1 is assigned to the empty word.
Similar to the MZVs, this definition can be extended to all words w € X', including
words of the form zw € ;X by regularising the singularity of 'y, (2, 7) at z = 1,
see e.g. ref. [1]. The result is that for n > 1

wep =0 (3.98)

and the remaining cases can recursively be related to (already) well-defined eMZVs
by the shuffle algebra

W Wy = Wy'ww! - (399)



3.2. ELLIPTIC MULTIPLE POLYLOGARITHMS 51

This regularisation preserves the shuffle algebra, the properties implied by the Fay
identity and some further properties inherited from the eMPLs such as the reflection
identity

wng,...,ny) = (=)™ ™w(ng, ... ng) (3.100)

due to the symmetry (3.78). Further relations between eMZVs are given in ref. [117].

The eMZVs defined by the ePLs (3.90) are called elliptic zeta value (eZV) and
denoted by

The even zeta values are recovered from the elliptic zeta values with n =1
wi(2m) = —2Com, (3.102)

which can be seen from the g-expansion in eq. (B.7).

3.2.4 Further elliptic generalisations of polylogarithms

The definition of the eMPLs T introduced in the context of high energy physics
in ref. [27] is based on the definitions and concepts from ref. [8]. Further elliptic
generalisations of (multiple) polylogarithms have been proposed both, in mathe-
matics and physics literature, e.g. in refs. [6,7,15,118-120] to only mention a few of
them. In this section a certain class of elliptic polylogarithms introduced and inves-
tigated in the context of the sunrise and kite integral in refs. [15,17,19] is discussed,
which happens to appear in the connection of single-valued elliptic polylogarithms

to elliptic polylogarithms established in ref. [1].

This elliptic generalisation of the polylogarithms is based on the sum represen-
tation (2.26) of the multiple polylogarithms Li,, . and defined for two variables

t,s (and q) by

.....

th s
ELi, . (t,s,q) = Eﬁqkl (3.103)
k,1>0
and similarly for more variables. Note that this defines a multi-valued function on
the Tate curve. Since the eMPLs T, only depend on z (and 7), we will restrict

ourselves to one variable (and ¢) using the following combination of ELi,, ,,

E,m(z,q) = — (ELiym(z,1,q) — (—=1)"" ELi,m (2, 1,q)) - (3.104)



52 CHAPTER 3. ELLIPTIC MULTIPLE POLYLOGARITHMS

The functions E,, ,,,(z, ¢) satisfy the partial differential equation [19]

0 1
% Emm(I, Q) - E En_l’m(l’, Q) : (3105>

In ref. [1], it is shown that for n > 1 and m < 0 the value at = 1 is finite and a

linear combination of eZVs:

B (1.q) im|!(27i) 1= Iml Z,ZJO dogy1Wnt1—2k(|m| + 1;7) n+m odd,
n,—|m|\1; =
0 n + m even.

(3.106)

The coefficients dj, € Q are determined by the sequence

-1 k=1,
dp =<0 k even, (3.107)
_%_ﬁ_..._dgf k odd,
such that e.g.
1 1 1 1 1 1 1

=30 =5 73mr T n T 5m 3w T ame (G108

Not only the values E,, _j,,(1, ¢), but the full functions E,, _,,,(, ¢) can be expressed
on the torus in terms or ePLs. A derivation of the corresponding result in eq. (3.175)

below from [1] is summarised in subsection 3.5.2.

For latter convenience, we define for m = 0 the following subclass

1

B, (2, q) = — (5 Li, () — (_1)"% Lin(x)) + Enolz.q). (3.100)

The functions E,, still satisfy the partial differential equation

0 1

with finite initial value for n > 1 given by a linear combination of eZVs [1]:

Ea(1,0) = = (5L~ (CD) Lin(D) + (1 = (1)) ELina(1,1,0))

(n=1)

_Jeri) T Y denweran(157) nodd, (3.111)

0 n even.

Again, also the functions E,(z,¢) can be written on the torus using the ePLs [1].

The derivation of the resulting eq. (3.171) is given in subsection 3.5.2.
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3.3 The elliptic KZB associator

Similar to the MPLs and MZVs, the eMPLs and eMZVs can also be described in
terms of generating series [115,121]. On the one hand, such a description offers a
possibility to rather deal with only one function instead of an infinite class. This
may considerably simplify the derivation of certain properties of all functions in the
corresponding class. On the other hand, an auxiliary alphabet has to be introduced
to define the generating series. The relevant definitions and conventions are given

in this section.

3.3.1 Generating series of elliptic multiple polylogarithms

The construction of the generating series of eMPLs is completely analogous to the
construction in eq. (2.32) and below for the MPLs at genus zero: the generating
series of eMPLs [121] is the unique holomorphic solution I'y(z) = Lx(z,7) on the

fundamental parallelogram P, _ with values in C{(X)'7 of the differential equation
0.Tx(2) = (Z T g“”(z)) Tx(2) (3.112)
k>0

such that

lim (—27iz) ™ Ty(2) = 1. (3.113)

z—0

The function Iy (z) is indeed the generating series of eMPLs

Tr(z) = > wlu(2), (3.114)

weX X

"Tn contrast to the original construction in ref. [121], the alphabet X’ consists of a priori inde-
pendent letters, which e.g. are neither nested commutators of certain Lie algebra generators nor
do they satisfy any non-trivial relations.
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since the right-hand side of eq. (3.114) satisfies the partial differential eq. (2.32) due
to the partial differential eq. (3.93) of the eMPLs:

0, Z w fw(z) = Z w@sz(z)

wEX X wEX®
= Z Z 23w 0, Ty (2)
k>0 weX
=Y > mwg®(z)Fu(z)
k>0 weX x
= (Zm g(k)(z)> Z w Toyp(2). (3.115)
k>0 wEX

Moreover, its asymptotic behaviour as z — 0 is according to egs. (3.94) and (3.96)

also given by

S w Fle) o S 82T gy (3.116)

n!
wEX X n>0

which agrees with the initial condition (3.113).

3.3.2 The elliptic KZB equation and associator

The differential equation (3.112) is called elliptic Knizhnik-Zamolodchikov—-Bernard
(KZB) equation [122,123], it is the genus-one analogue of the KZ equation (2.32).
In ref. [2], the following fact has been exploited: two regularised boundary values of a
solution of the elliptic KZB equation can be related to each other via the generating
series of eMZVs, the elliptic KZB associator, which is exactly the same mechanism
that lead to the genus-zero associator equation (2.50). The derivation according

to ref. [2] is reviewed in this subsection.

Consider the alphabet YV = (yo,v1,92,...) = (—zo, 21, —T2, %3, —Z4,...) Ob-

k+1

tained from X = (xg, z1,25) by yp = (—1)"t'z; and the corresponding function

Ty(l—z)= Y wly(l-2). (3.117)

Its asymptotic behaviour for z — 1 can be deduced from egs. (3.94) and (3.96), it

is given by

Ty(1l— 2) ~ Zx’flogn(_QZf(l =) (Zomi( — 2 (3.118)
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The function T'y(1 — z) satisfies the partial differential equation

0.Ty(1—2)= Y wd.Ty(l - z)

weYX

= — Z Z (—1)kl’kwaz fykw(l - Z)

k>0 wey X

:ZZ Yeaw g™ (1 — 2)Typ(1 — 2)

k>0 weyXx

—ZZkag Ty(l—2)

k>0 weY

<Zxkg ) Z wTy(l—2), (3.119)

k>0 weYX

were we have used the one-periodicity (3.77) and the symmetry property (3.78) of
g™ (2) such that g™ (1—2) = (—=1)¥¢®)(z). Thus, the function I'y(1—z) satisfies the
same elliptic KZB equation (3.112) as T'x(z). The product

d7 = ([y(1 — 2)) ' Tr(2) (3.120)

is independent of z and called elliptic KZB associator. It was originally constructed
in ref. [40] for a specific alphabet X'. The z-independence is true for any product of
an inverse of a solution multiplied with any other solution of the same elliptic KZB
equation (with the same alphabet X'), which can be shown the same way as in the
genus-zero scenario mentioned below eq. (2.46). Thus, the elliptic KZB associator
®7, can be rewritten by evaluating the right-hand side of eq. (3.120) in the limit
z — 1. Using the asymptotics (3.118), it turns out that the result is exactly the
generating series of eMZVs [115,116]: the inverse of (I'y(1—2z))~! implements the
appropriate regularisation (3.98) of the eMZVs (3.97), such that

2% = lim(Fy(1 - 2)) ' Ta(2)

= lim(—2mi(1 — 2)) ™™ Ta(2)

z—1

1
=1+ z9 — 202 + 5560900 — [20, 21]w(0, 1) — Co{wo, 22}

+ [z1, 2] (w(0, 3) — 2w(0,1)) — [zo, 23] w(0, 3)
+ Ca(—{wo, 24} + Baawy — 214) + ..., (3.121)

where for the last equality, relations among eMZVs have been used [117].

Similar to the Drinfeld associator, the elliptic KZB associator relates two regu-
larised boundary values of any solution L7(z) of the elliptic KZB equation (3.112).
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The two regularised boundary values

CF(L7) = lim(=2miz) " L7(2), CT(L) = lim(=2ri(1 — ) "' L7(z)  (3.122)

are connected by the elliptic KZB associator according to the genus-one associator

equation
CI(LT)=®% CJ(L7). (3.123)

In analogy to the genus-zero associator eq. (2.50), this equation is obtained using the

asymptotics (3.116) and (3.118) as well as the z-independence of an inverse solution

times a solution of the elliptic KZB equation (cf. the explanation below eq. (2.46)):
¢%, CF(L7) = lim ®% (—2miz) "1 L7 (z)

z—0

= lim(Fy(1 - 2)) 'L (2)
= lim(Fy(1 - 2)) 'L (2)

= lim(—2mi(1 — 2)) "™ L7(z)

z—1

= CT(L7). (3.124)

This genus-one associator equation has been used in refs. [2,3] to obtain the a/-
expansion of open-string integrals at genus one from the genus-zero string integrals,
given in full detail in eq. (5.98) below and schematically described in eq. (1.7),
which is one of the main result of this thesis and explained in detail in chapter 5.
Using a slightly more sophisticated notation than in eq. (1.7), it can be summarised
as follows: for each n > 3 a (n—1)!-dimensional vector of iterated integrals Z7 ,
satisfying an elliptic KZB equation with some generators X, = (g, €10, Z2n,- - - )
(square matrices) has been constructed, such that the regularised boundary values
include the (n+1)-point, genus-zero and the (n—1)-point, genus-one string integrals

F% and F)”7 | respectively

CS(Z:L,Q) = lefln,o’ CI<Z;,2) = sz—eln,l . (3-125>

Hence, eq. (3.123) yields a relation using matrix algebra to calculate the (n—1)-

point, genus-one integrals F”'; from the (n+1)-point, genus-zero integrals F57

FP =& FP7, . (3.126)

The explicit expression of the matrices xj, and the detailed construction as well
as the fully appropriate notation will be discussed in section 5.3. Together with
the genus-zero recursion (2.53), eq. (3.126) can be used to calculate the n-point,

genus-one string integrals by the elliptic KZB associator times a product of Drinfeld
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associators. This reveals the origin of eMZVs and MZVs in the genus-one corrections.

3.4 Single-valued elliptic polylogarithms

The eMPLs presented so far are not single-valued. First, simple poles of the in-
tegration kernels ¢®) at the lattice points lead to a dependence on the integration
path. This is analogous to the multi-valuedness of the genus-zero MPLs. However,
at genus one, there is a second issue: the kernels ¢*) are not well-defined on the
torus since they are only one-periodic, but not 7-periodic. The advantage of the
kernels ¢*), on the other hand, is that they are meromorphic and have simple poles.
Certain constructions of generalisations are based on the opposite choice: they de-
fine single-valued eMPLs, which however are not meromorphic. Two such classes
are presented in this subsection and related to the multi-valued ePLs ', (m; z) from
eq. (3.90) in subsection 3.5.2. An approach to define single-valued eMPLs general-
ising the construction from ref. [37] of single-valued MPLs, cf. subsection 2.3.2, to

genus one is not yet known.

The first class of single-valued elliptic polylogarithms is obtained by an elliptic
average over the Tate curve of Ramakrishnan’s single-valued polylogarithms £, (z)
from eq. (2.62). Since the functions £, (x) are neither rational nor do they satisfy the
conditions (2.80), the elliptic average can not be constructed multiplicatively as in

eq. (3.44). But a summation over the Tate curve leads to the elliptic generalisation

£r@) = 3 Laled)

Iez
— 2B
_ k A z
= Z e Re, (Zlog (|zq"|) Lin_g(zq")
k=0 >0
+ (—1)7171 Z 1ogk(]g;flql‘) Linfk(xilql)>
1>0
Tt (3.127)

introduced in ref. [89] and investigated in ref. [67]. In particular, the function

D"(z) = L3(z) = > D(xq) (3.128)

lEZ

is called elliptic Bloch—Wigner dilogarithm and plays an analogous role in the con-
struction of elliptic dilogarithm functional relations [49] as its genus-zero cousin
D(z), cf. subsection 3.5.1. Certain properties of the classical Bloch-Wigner diloga-

rithm carry over to the elliptic version, in particular from eqgs. (2.77) and (2.78) the
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inversion
D"(z7') = —D"(z) (3.129)
and the duplication relation
D™ (z*) = 2(D7(x) + D"(21/q) + D" (—z) + D" (—2/q)) , (3.130)
respectively.

In ref. [1], it has been shown that the functions £ (z) turn out to be related to

the functions E,, _,(x,¢q), defined in eq. (3.104), according to

£1e) = = 32 () 3 ot e g ) Rew (i (.0

+ L(x). (3.131)
For example, the elliptic Bloch-Wigner dilogarithm is given by
D7(x) = —Tm (Ex(, ¢)) + log(|z[) Im (E: (2, ¢)) + log([g]) Im (Ey, 1 (7, 9)) . (3.132)

Equation (3.131) and the relation of the functions E,,_; _(, ¢) to the meromorphic

ePLs I',,(m; z), which will be discussed in subsection 3.5.2 and given in eqs. (3.171)

and (3.175), ultimately relates the single-valued ePLs L7 (z) to the meromorphic
ePLs T',(m; 2).

A more general class of single-valued elliptic polylogarithms was introduced
in ref. [89]. This class has been extensively used in the context of closed-string
amplitudes at one loop [124]. Tt is based on the single-valued elliptic polylogarithms
D, p(x) from eq. (2.64). Again, it is a sum over the Tate curve and given by [89]

D7p(@) =Y Daplg) + (1) Day(z'q)

1>0 1>0
(47 Im(7))2+o—1
(a+ b)!

Bayy(u), (3.133)

where By, is the k-th Bernoulli polynomial (2.63), u is defined by = = €*™* with
z=ut +vand u,v € [0,1]. The functions L], are contained in the class Dy ,, which
is called single-valued elliptic polylogarithms (single-valued ePLs). For example, the
elliptic Bloch-Wigner dilogarithm is given by

D (z) = —% Im(D3, (2)) (3.134)

The single-valued ePLs Dy, can also be expressed in terms of the sums E,, _,,, which
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yields the expression [1]

—~ \a—1/(a+b—-1-n)
a+b—1—n
a+b—1—n a+b—1—n—m m
2 ( N )1og 2l log™ () En (2, 1,9)
m=0
a+b—1 1
n—1 (_2>a+b 1-n
—1)°
(=1 ; <b—1>(a+b—1—n)!
a+b—1—n

a_'_b_l_n a+b—1—n—m m .
(T o el o () B L)

(47 Im(7))2+o-1
(CL +2)| Ba—i—b(u) .

m=0

+ Da,b(x) +

(3.135)

This ultimately leads to a relation to the meromorphic ePLs I',,(m; z). Thus, the
single-valued ePLs Dy, are a linear combination of the functions E, _,, and com-
plex conjugates thereof. Again, using eqs. (3.171) and (3.175) below leads to an

expression of D, in terms of the ePLs T, (m; z) on the torus.

3.5 Functional relations of elliptic polylogarithms

Functional relations of elliptic multiple polylogarithms may be derived using the
symbol map [125]. Another approach used to define elliptic analogues of the Bloch
group has been considered in [67]. The latter approach is motivated by the elliptic
analogue of the classical Bloch relation, the elliptic Bloch relation, which yields a
class of relations for the elliptic Bloch-Wigner dilogarithm [49]. While the elliptic
symbol calculus has been extensively discussed in ref. [125], we will focus on the
elliptic Bloch relation and derive it essentially using methods from the symbol cal-
culus of iterated integrals. The main results of ref. [1] are presented in this section:
after formulating the elliptic Bloch relation, the single-valued ePLs, including the
elliptic Bloch-Wigner dilogarithm, are related to the multi-valued ePLs. This leads
to an expression of the elliptic Bloch relation in terms of ePLs, which can be used
to give a very compact proof and motivates holomorphic analogues of the elliptic

Bloch relation in terms of multi-valued ePLs.

3.5.1 The elliptic Bloch relation

The elliptic version of the classical Bloch relation (2.85) can be stated as follows:

let Kk € C and F be an elliptic function on the Tate curve, i.e. a function of the
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form (3.44), with divisors
div (F) =) di(a;) (3.136)
and'®

div(k — F) =Y e;(b;). (3.137)
J
Then, the following sum vanishes
Q;
> die; DT (-) =0. (3.138)
irj bj

This identity is referred to as the elliptic Bloch relation and can be proven via the
classical Bloch relation and the representation (3.44) of the elliptic function in terms
of rational functions using sophisticated limits [49]. We will give an alternative proof
in subsection 3.5.3. This relation can be stated for elliptic functions on the torus
via composition with the exponential map, i.e. the isomorphism (3.43), and on the
elliptic curve via an additional composition with Abel’s map gb;};, the inverse of the
isomorphism (3.36). The former leads to the elliptic Bloch relation on the torus: for

F € C(A;) with
div (F) =) di(A;) (3.139)
and
div(k — F) =Y e;(B)), (3.140)

2miA 2miB

where a; = ™ and b; = e“™"¢, the following expression vanishes

> die; D7 (2 AB)) = 0. (3.141)

1,

For a rational function on the elliptic curve F' € C(x,y)/{y* = 42> — gox — g3} with

div (F) =) _di(P) (3.142)

18Note that in eq. (3.137), the number & is not restricted to x = 1, in contrast to eq. (2.84)
used for the classical Bloch relation (2.85). This discrepancy illustrates that taking a limit such as
7 — 100 of the elliptic Bloch relation to recover the classical Bloch relation is highly non-trivial,
since the validity for x # 1 is lost in this limit.
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and

div (k — F) = Z e;(Q;), (3.143)

where 4; = ¢, ;(P;) and B; = ¢, ;;(Q;) the same identity holds: the elliptic Bloch

relation on the elliptic curve states that

Y die, D7 (eQMZE(PFQﬂ) ~0. (3.144)

]

It is expected that the elliptic Bloch relation (3.138), the inversion relation (3.129)
and the duplication relation (3.130) generate the functional relations of the ellip-
tic Bloch-Wigner dilogarithm [67]. However, unlike for the classical Bloch relation
and the five-term identity, the functional identities generated by the elliptic Bloch
relation are generally independent of each other and parametrised by the elliptic

functions upon varying their zeros and poles.

A divisor on y? = 423 — 4x + 1

A representative example of the elliptic Bloch relation (3.144) on the elliptic curve
from ref. [67] is the elliptic curve E(C) defined by the Weierstrass equation

E:y? =42 — 4o +1 (3.145)

with go = 4 and g3 = —1, the number £ = 1 (appearing in eq. (3.137)), and the

rational function

F(x,y) = yTH (3.146)
on E(C). The three zeros of F' are
Pi=(0,-1), Po=(1,-1), Py=(-1,-1) (3.147)
and since F' expressed on the torus F(p(z), ¢’ (2)) = % has a triple pole at the
lattice points, the order of the only pole at
Py =0 (3.148)

is orde (F) = —3. Similarly, the zeros of Kk — F' =1 — F are

Qi=—-P, Q=-bP, @Q=-D (3.149)



62 CHAPTER 3. ELLIPTIC MULTIPLE POLYLOGARITHMS
and the only pole of order three is
Q4= 00. (3.150)

According to the addition on the elliptic curve from appendix A, the zeros of F' and

1 — F are multiples of each other, since (more generally)

=3P =(-1,-1)=F, -2P=(1,1)=Q, — P =(0,1)=0Q,

P1:<0,—1), 2P1:<1,—1):P2, 3P1:(—1,1),
11
4P = (2,5) , 5P = (17 Z) : 6P, = (6,—29) .  (3.151)

Thus, the only point that has to be mapped to the torus and ultimately to the Tate

curve is P, = (0, —1). This can be done as follows: the roots of
y? =42 —dr+1=4(z — e))(x — e3) (7 — e3) (3.152)
are
ep = 0.8375654352, ey = 0.2695944364, e3 = —1.1071598716. (3.153)

Therefore, the periods of the corresponding torus can be calculated according to
eq. (3.41), which yields

wy = 2.9934586462, wo = 2.9934586462 + 2.4513893819: (3.154)

with the modular parameter

=22 1408189153991 € H. (3.155)

w1
The point 2z in the fundamental parallelogram P, of the lattice A = w;Z+w,Z which
corresponds to P; = (0, —1) on the elliptic curve F(C) is determined by Abel’s map

from eq. (3.37) and given by

2y = /°° d +wy —w
P 0 VA —er)(z —e2)(z —e3) ? !
= 2.0638659408 + 1.22569470567 . (3.156)

Its representative in the fundamental parallelogram of the rescaled torus with mod-

ular parameter 7 is

/
2p = P = 0.6894586481 + 0.4094577022i . (3.157)

w1
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By exponentiation, this point is mapped to the representative
rp, = ™ = —0.0283399159 — 0.0708731874i (3.158)
on the Tate curve C*/q”. The parameter g of the Tate curve, in turn, is given by
q = e*™ = 0.0058261597 . (3.159)
The elliptic Bloch relation (3.138) states that

—8D7 (xp,,q) —7D7 (a:?;l,q) +8D" (a:‘?’;l,q) +D7 (:z;‘}:l,q) — D7 (a:?gl,q) =0,
(3.160)

where the inversion relation (3.129) has been used to cancel several terms. This can
be tested numerically by truncating the series defining the elliptic Bloch-Wigner
dilogarithm and approximating it by

Di(z,q) = Y _ D(xq'). (3.161)

Already for k = 10, eq. (3.160) can be shown to hold with a precision of up to 1077.

Lines on the projective elliptic curve

In the above example, the elliptic Bloch relation is evaluated for a fix elliptic func-
tion, leading to a vanishing linear combination (3.160) of complex numbers. If
classes of elliptic functions are considered, rather than numeric relations, func-
tional relations are obtained. A prime example are lines on the elliptic curve

E :y? = 423 — gox — g3, which are rational functions of the form
Lope(z,y) =azx +by +c (3.162)

with (a,b) # (0,0). The poles of the lines are located at co and of multiplicity two

if b = 0 and three otherwise, i.e. my = 20y + 30p£0. The cubic equations

) N2
(%x%—%) = 42° — gox — g3, (%x—i—cbl{) = 42° — gox — g3 (3.163)

lead to expressions of the zeros of L, . and K — L, . which depend algebraically on

a, b, c and k, i.e.

P, = Pj(a,b,c), Q;=Qi(a,b,c, k) (3.164)
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for i = 1,2,3. The divisors are therefore given by

div(Lose) = (P1) + (o) + (Py) — meu(o0)
div (K = Lose) = (Q1) + (Q2) + (Qs) — mas(0). (3.165)

Hence, the elliptic Bloch relation on the elliptic curve (3.141) leads in this case
to a functional relation with variables a,b, ¢, k. However, these variables are not
independent, but restricted by the requirement of being the zeros of L,;. and of

Kk — Lap.e, respectively.

3.5.2 Relations among classes of elliptic polylogarithms

Functional relation between the ePLs I',(m; z) from eq. (3.90) and the functions
E,m(z,q) defined in eq. (3.104) on the Tate curve have been derived in ref. [1] with
the following result: the functions E, ,,(z,q) = E, _n(e*™#, ™) with m > 0,
and E, for m = 0, defined in eq. (3.109) are up to polynomials in z equal to the
n-fold iterated integral of the integration kernels g™+ (z, 1), which are the ePLs
fn(m + 1;z). Below, a summary of the main steps in the derivation is given, the
details can be found in ref. [1].

This statement can be proven starting with the case m = 0 and the functions
E,.(z,q) defined in eq. (3.109). In order to do so, the Eisenstein—Kronecker series is

expressed on the Tate curve in the variables

T = e27riz’ qg= 6271'2'7'7 w = 6271'2'77 (3166)
as follows [126]:
_ ; z 1 k1 A
F(z,n,7) = 27T@<1_x+1_w+klz>0(xw rtw g™ ] . (3.167)

Then, the integration kernel of weight one can be represented by the limit

g(l)(z,T) = lim (F(z,n,7) — 1/n) , (3.168)
n—0
which leads to'’
Eo(z,q) = 1 g (z,7) (3.169)
O\ 27 e '

The weight-one ePLs on the torus are recovered from eq. (3.169) and iteratively inte-

grating the differential equation (3.110) composed with the exponential map (3.166),

19This connection has been shown in ref. [127]. It was the motivation to consider the general-
isations for E,, _,,(¢,1,¢) with n,m > 0 in the subsequent paragraphs. Similar calculations have
been worked out in ref. [118].
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1.e.

0 . .
e E,(e*™, q) = 2mi E,_1(e*™,q) . (3.170)
z

The result is

Ea(x,q) = (2i)" " (Tl 2 7)
1254

+ 3 D o (L) Taiai(02,7)), (3171)

j=0 k=0

where by definition

~ n

To(0;2,7) = — (3.172)

n!

and the coefficients dj, € Q are given by the sequence defined in eq. (3.107). Equa-
tion (3.171) expresses the z dependence of E,(z,¢) on the torus in terms of ePLs

with at most weight one.

A similar result can be derived for m > 0 to relate the functions E,, _,,(z,q) to

m+1)

ePLs up to weight m+1. From the g-expansions of g given in appendix B.1,

the following relation is obtained

Enu(r.0) = M () 4 (14 (1)) Gn) | (3.173)

27-(-2')m+1

Starting from eq. (3.173) and iteratively integrating the partial differential equa-

tion (3.105) composed with the exponential map, which yields

0
—E
0z nm(€

2miz 2miz

9 q) = 271—@ En—l,m(e ) q) ) (3174)

the results for n > 0 are obtained. This leads to the identity

En—m(2,q)
rm!(2m')”*1*m ( Co(m+1;2,7)
+ Z}Zé Z{czo dok+1wajr1—2k(m + 15 7) fn—Zj(O; Z, T)) m odd,
ml(27i)n=1-m ( To(m+ 152, 7)
Rl . .
+ Z]L-:% J Y7o dopriwajiook(m 4+ 1;7) Ty 9;(0; 2, 7')) m even,
(3.175)

which establishes a connection between the sums E,, _,,(z, ¢) on the Tate curve and

the ePLs which are iterated integrals on the torus.
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The examples
Ei(z,q) =T1(1;2,7) — wy(1;7) (3.176)
and
Eo(z, q) = 2mi (f2(1;z,7) —w2(1;7)2> (3.177)
as well as

1 - 1
Eii(7,q) = 3 <F1(2;z,7') —w1(2;7')z> = 5227+ gzz (3.178)

can be used to rewrite the elliptic Bloch-Wigner dilogarithm from eq. (3.132) in
terms of ePLs as follows:

D7 (z) = Im(7) Re (fl(Z; z)) — 27 Re (fQ(l; z)> — 27 Im(2) Im <f1(1; z))
+ 2Re(z) (m Re (we(1; 7)) + ¢ Im(7)) . (3.179)

Using the identity

Re (F2 >+Im ( 1(1; Z))
:—Re< (68,z,7)>+Re( )Re( (3 m)) (3.180)

a slightly modified version including an eMPL, which is not explicitly an ePL is
obtained

D7(xz) = Im(7) Re (F(O,z T)) + 27 Re (F((l] 8,7;,7’)) — 271 Re(z) Re (f(o,z 7'))
+ 2Re(z) (m Re (we(1; 7)) + (o Im(7)) . (3.181)

This second representation of D" (z) is used in ref. [1] to give an alternative proof of

the elliptic Bloch relation, which will be outlined in the next subsection.

Not only the elliptic Bloch-Wigner dilogarithm, but the whole class of single-
valued ePLs L7 () and D ,(7) can be expressed in terms of the meromorphic ePLs
on the torus [1]: starting from eq. (3.131) and using egs. (3.171) and (3.175) leads
to the desired relation for £ (z). The more general class D] ,(z) can be rewritten

similarly, starting from eq. (3.135).

In [63], the eMPLs I',,(z) defined in eq. (3.89) on the torus have been expressed
on the elliptic curve. This direct translation can be used to further translate the
single-valued ePLs L] (x) and Dj,(x) and all the corresponding identities to the
elliptic curve as well [1].
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3.5.3 The holomorphic elliptic Bloch relation on the torus

To finish this chapter, the versions of the elliptic Bloch relation (3.141) in terms
of the meromorphic eMPLs T, on the torus are presented. These relations do
not include complex conjugates of eMPLs and are therefore expressed in terms of
holomorphic quantities on the appropriate domain and, thus, called holomorphic
elliptic Bloch relations. They have been derived in ref. [1], the proof is based on the
differential calculus of the iterated integrals, which is a special case of the elliptic
symbol calculus [125]. While the results are summarised below, an outline of the

derivation is given in appendix B.2.

The holomorphic elliptic Bloch relations on the torus state the following: for an

elliptic function F' and a complex number x € C with divisors
Div(F) =Y di(4;), > di=0, Y diAi=0, (3.182)

and

J

Div(k—F) =Y ¢;(B;), » ¢=0, Y e;B;=0, (3.183)

the following two sums of eMPLs vanish:

i,J

and
> die;T(3:Ai = Bj,7) = 0. (3.185)
,J

Moreover, the following two non-holomorphic combinations vanish as well:

Y die;Re (A, — Bj) Re (f(g;Ai - B;, r)) ~0 (3.186)
1,7
and
Y die; Im (A, — B;) Re (f(});Ai - Bj,r)) = 0. (3.187)
2

According to the representation (3.181) of the elliptic Bloch-Wigner dilogarithm,
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the elliptic Bloch relation (3.141) on the torus is given by

0= Z diej D™ (627Ti(AifBj)’ q)
1,

— 21> die, (Re (r(g) 0. A, — B, 7)) (3.1884)
i,J

+Re (zlm) Re (F(%;Ai - B, T)> (3.188D)

— Re(A; — B;)Re <1~“(5;Ai - Bj,T)) ) . (3.188¢)

Therefore, the holomorphic elliptic Bloch relations (3.184) and (3.185) together with
the non-holomorphic combination (3.186) allow for an alternative proof of the elliptic
Bloch relation showing that the sums (3.188a), (3.188b) and (3.188¢) vanish sepa-
rately. This proof of the elliptic Bloch relation does not use any sophisticated limits
from rational to elliptic functions on the Tate curve compared to the original proof

in ref. [49] and is based on the elliptic symbol calculus of eMPLs, cf. appendix B.2.



Chapter 4

Open-string corrections at genus zero

The aim of this chapter is to investigate and properly formulate the recursion
from ref. [5] to calculate open-string corrections of massless string states at genus
zero, schematically given in eqs. (1.5) and (2.53): it is based on a vector of inte-
grals with an auxiliary point on the Riemann sphere, which satisfies the KZ equa-
tion. The boundary values of this solution of the KZ equation are the (n—1)-
and n-point, open-string corrections. They are related by the genus-zero associator
equation (2.50). Therefore, the Drinfeld associator offers a method to calculate the
o/-expansion of the n-point corrections from the (n—1)-point corrections, which only

requires matrix operations.

The results from ref. [5] will be complemented by various properties of the corre-
sponding class of integrals, which, in turn, are based on the investigations of ref. [4],
where the recursion has been related to twisted de Rham theory. While the connec-
tion to twisted forms and twisted de Rham cohomologies is only briefly mentioned,
it is shown that the matrices in the KZ equation (2.53) are representations of the
generators of the braid group. In particular, they can be computed combinatorially,
such that the same holds for the n-point, open-string corrections. A convenient tool
for these combinatorial properties is a graphical representation of certain products
of rational functions, which has been introduced in ref. [4]. Lengthy calculations are
outsourced to chapter 6, where this powerful graphical machinery is introduced and

exploited.

In section 4.1 open-string corrections at genus zero are presented and related
to two classes of integrals, the Z,- and Selberg integrals, which are referred to as
open-string integrals. In the subsequent section 4.2 these classes of integrals are
generalised even beyond the scope of ref. [4]. This ultimately leads to the recursion
in section 4.3, where the main result from ref. [5] is presented with some supplements

from ref. [4].

69
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4.1 Genus-zero, open-string corrections

The genus-zero worldsheet of n external open-string states is a disk with n punc-
tures located at the boundary. The punctures are the vertex insertion points and
correspond to the external states. This punctured disk can be described by one
hemisphere of the Riemann sphere with the punctures sitting on the real line plus
infinity P'(R) c P!(C), cf. figure 1.2. The SL(2, R)-redundancy from a residual
gauge freedom can be used to fix three of these insertion points, in our case the

points
(1,29, 2,) = (0,1, 00) . (4.1)

The remaining punctures are assumed' to be ordered according to

Amg = An,?)(xi) = {0 =01 < Tpo1 < Tpo < - <3< Ty = ]_}, (42)
cf. figure 4.1.
Ly = OO
Im(x)
Ty = OO
i) =1
xs3
T4 :
Is - >Re(m)
1 =0 Tpn—1 --- Ty Xy4 T3 x9=1

Typ—
5131:0 n—l

Figure 4.1: The punctured Riemann sphere with the three fixed (violet) punctures
x1, Ta, T, and its parametrisation on the complex plane (right-hand side). The n—3
unfixed (blue) punctures zs, ..., z,_1 will be integrated over in the sting corrections
respecting the order x;,; < z;. This defines the corresponding integration cycle
A, 3(x;) (blue line).

The genus-zero string corrections I,y (0; o) are the integral contributions to the

colour-ordered, tree-level superstring amplitudes of n massless, open-string states

AT = YD R o) AT o), (4.3

0ESK_3

I Different orderings lead to permutations of the corresponding labels in the integrals associated
to the integration cycle A, 3, see e.g. ref. [128] for the dependence on the order of the punctures
in such integrals.
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obtained from integrating the unfixed insertion points xs,...,z, 1 over all possi-
ble configurations satisfying the order (4.2) [129,130]. These are iterated integrals

depending on the Mandelstam variables?
Sivoiy = Siy,iy = =0 (kiy + -+ & ))?, 1 <ip<n, (4.4)

where o is the inverse string tension and k; the momentum associated to the i-th
insertion point ;. The n-point, open-string corrections at genus zero are the (n—3)!
integrals [129,130, 133]

n—1k—1

open / oen S
F™(o10!) = R (03 {s)) = /dezKNmmff(HZ ) (45)

Anys = k=3 1=2

where the permutation® o € S,,_3 acts on the labels 3,...,n — 1 of the unfixed

punctures, whose differences is denoted by

Tij = Tijj = Ty — Tj. (46)
The Koba—Nielsen factor
KN, i, = KNiy i (@i, @i5 {si5}) = H EI (4.7)
i,]E{il....lp}
1<)

introduces the dependence on the Mandelstam variables and o/, respectively. It
originates from the plane wave contributions to the vertex operators. Expanding the
Koba-Nielsen factor in the string corrections (4.5) in o, an infinite sum of integrals
weighted by powers of the Mandelstam variables is obtained. A comparison with the
definition (2.39) shows that these integrals are MZVs. The recursion summarised in
section 4.3 affirms this result and offers a method to calculate the o/-expansion of
the open-string corrections where the integrals are already evaluated and assigned

to the appropriate MZVs.

For example, the four-point, open-string correction at genus zero is the Veneziano

2For the sake of generality, momentum conservation is not imposed on the Mandelstam variables.
However, in order to ensure convergence of the integrals in this and the subsequent chapter, the
condition Re(sil,,,ip) < 0 is imposed for consecutive points i1, ..., %, on the boundary of the genus-
zero and genus-one Riemann surfaces [131,132]. Other regions of the parameter space can be
reached by analytic continuation.

3For 0 < k < p < n, permutations o € Sp—r acting on the set {k + 1,k +2,...,p} are often
implicitly extended to permutations o € S,, by the trivial action o(:) = ¢ for 1 < i < k and
p+1 <14 <n,and identified with their image on the sequence (k+ 1,k +2,...,p) or (1,2,...,n),
respectively.
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amplitude [130, 134]

1
_ _ S923 F(l — Slg)r(l — 523)
Fho! :/ dag |z15]| 718 w035 == =
o (&) i 3 w1377 |was] o~ N —

=1 — (2512523 — (3812823(812 + 523) + O((a/)?). (4.8)

4.1.1 Z,-integrals

Another well-known representation of the string corrections is a linear combination
in terms of so-called Z,-integrals defined by the Koba—Nielsen factor and the Parke—
Taylor forms [135]

dxn—l AN dl’n_g VARERIWAY dl’g

T25(3)La(3)o(4) -+ + La(n—2)o(n—1) 7

PT(o) = (4.9)
where ¢ € S,_3 is acting on {3,4,...,n — 1}. The coefficient, i.e. the product
of fractions, in the Parke—Taylor form has a chain-like structure, which facilitates a
convenient graphical representation, which in turn is enormously helpful to structure
and derive various properties of such products. This graphical representation has
been introduced in ref. [4] and is summarised in chapter 6. In the spirit of the
graphical representation, this chain of fractions (beginning at a, and ending at a,)

is denoted by

1 ool
olar,ag, ..., a,) = :H .

LarazLagaz - - - Lap—1ay i—g Tai_1a;

plar) =1, (4.10)

where a; € {1,2,...,n — 1} and a; # a; for ¢ # j. Products of this form are called
chain products and if the factors are fractions such as above, it is called a chain of

fractions. A short-hand notation for a sequence A = (ay,...,a,) is

©(A) =p(a,...,ap). (4.11)

Note that the partial fractioning identity (2.12) generalises to the following shuffle
identity for chains of fractions: for two disjoint sequences B and C, each having

pairwise distinct elements, and a ¢ B, C*
p(a, B)p(a,C) = p(a, BuC), (4.12)

which can be shown via the recursive definition (2.18) of the shuffle product. Further

such properties of chain products can be found in chapter 6, where they are heavily

4A subset or element of a tuple is a subset or element, respectively, of the set of elements of the
tuple.
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used in various calculations and related to graphical identities.

Thus, the Parke-Taylor forms can be written as
PT(0) = ¢(2,0(3,4,...,n—1))dx,—1 Adx, o A--- Adzs. (4.13)

They define the following Z,,-integrals [30]

Zy (o5 {sij}) = / KNip -1 PT(0)

A'n.,3
n—1
:/ [ dei KNisnr 0(2,0(3,4,...,n = 1)). (4.14)
Angs =3
Assembling the string corrections and the Z,,-integrals in (n—3)!-dimensional vectors
B = B () = (F5 03 {sah) (4.15)

and

Z,=Zo({sy}) = (Zalosfsa)) - (4.16)

0ESK_3

they can be related by an invertible transformation®
F%" =B Z,, (4.17)

where B is (up to integration by parts) known as momentum kernel [136,137].
The matrix B can be found up to integration by parts in ref. [133]. Alternatively,
it can be calculated using the algorithm from appendix C.2.2 or simply via eq. (4.46)

below.

The (n—3)! Parke-Taylor forms PT(o) are a basis for the open-string corrections
at genus zero [129,130]. The reason why they span all genus-zero, open-string
corrections is based on the fact that they represent a basis of the twisted de Rham
cohomology® of the moduli space of n-punctured Riemann spheres [142], which is the

configuration space of n-punctured Riemann spheres with three fixed coordinates

M., = Conf, (P'(C))/SL(2,C)
= {(z3,24,...,0p1) € Clz; #0,1,x; for i # j}. (4.18)

5The superscript cha stands for chain, which refers to the chain product from eq. (4.10) defining
the Z,-integrals in eq. (4.14).

6See ref. [138] for a thorough introduction to twisted de Rham theory and e.g. refs. [139-141]
for various applications in string amplitudes and Feynman integrals.
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Its twisted de Rham cohomology is given by

HniS(MO,nu vnf?;) = keI'(vnfB)/ Im<vn73) )
vn—3 = d + d 108; (KN12...n—1) ’dxlzdxgzo A ) (419>

where V,,_3 is an integrable connection [143]. The equivalence classes of the Parke—
Taylor forms PT (o) + Im(V,,_3) are a basis of H"3(Mg,,, V,,_3). In other words,
the Z,-integrals are on the one hand linearly independent with respect to partial
fractioning and integration by parts and on the other hand, all string corrections

can be written in terms of linear combinations of these integrals.

4.1.2 Selberg integrals

Yet another basis of integrals spanning the space of string corrections at genus zero
are the Selberg integrals [144]. We will define Selberg integrals following ref. [142],
where they were originally used to define a basis of H"3(Mg,,, V,,_3). Instead of

chains of fractions, Selberg integrals involve products of the form

p
2 (e(al) e(ap) H e (420)
i—1 e a;)a;
where
1 <e(a;) < ay, (4.21)

a; €{2,3,...,n—1} and a; # a; for i # j. For aset A C {1,2,...,n— 1}, the map
e: A—{1,2,...,n—1} (4.22)

is called admissible (with respect to A), if condition (4.21) holds. In this case, the
product in eq. (4.20) is called admissible product (of fractions). It is independent of

the order of (ai,...,a,), such that for a set A = {ay,...,q,}, the notation
A a ... a
¥ (e(A)) = (e(al) e(app)) (4.23)
is well-defined. Let us define for a set A = {a4,...,a,}, an admissible map e and

i€{1,2,...,n— 1}, the possibly empty subset

AG)={jeA|Tm>0:em(j) =i} C A, (4.24)
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where €™ (j) = e™(e(4)) is the m-fold application of e to j. Then, the following

disjoint decomposition of A is obtained:

A= ] Adi). (4.25)

i€e(A)

Therefore, the admissible product (4.20) can be factorised into several admissible

products

0 (o) = H © (ef;ff?)ﬂ . (4.26)

For example given the set A = {4,5,6,7,8} and admissible map e defined by the

double sequence

(i) =(37585) . (4.27)
the corresponding admissible product is
(T8I = (1.25)
T24T15L36L67L18
The decomposition
A1) =45,8}, A.(2)={4}, A.(3)=1{6,7}, (4.29)

such that As(1) U A3(2) U A9(3) = {4,5,6,7,8}, leads to the decomposition of the

admissible product into three admissible products

e(5756) =03 e(56) - (4.30)

These constructions are related to the string corrections as follows: for the trivial
permutation o = id with 0(3,4,...,n—1) = (3,4, ...,n— 1), the integrand without

the Koba—Nielsen factor in the string correction (4.5) is a sum of admissible products

n—1 k-1 n—1
12X 2= Y TTswse(do i) (4.31)
k3 =2 Uk cadm k=3

1<e(k)<k

where the sum on the right-hand side runs over all the admissible maps w.r.t.
{3,...,n — 1} with e(k) # 1. In the case of an arbitrary permutation o the same
holds: the admissible products can nicely be described in terms of directed tree

graphs, leading to the recursive algorithm in appendix C.2.1. The algorithm can be
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applied to obtain a linear combination of admissible products

(ﬂk;f)_ Z Hseww 3) ”(nln)

e adm
1<e(k)<k
n—1
3 .. n—
= Z H Sea(k),k Z bea7elg0 (e/(3) e/(n—ll)) y (432)
eadm k=3 e/ adm
1<e(k)<k 1<e/ (k)<k
where
e’ (k) = o(e(a(k))). (4.33)

The integers bes o € Z in the transformation of the possibly non-admissible product
on the right-hand side of the first line of eq. (4.32) to admissible products, i.e.

¥ (60:23) 607(17:—11)) = Z beayel@ (e’??)) e’?n_—ll)) ) (434>
lfe/?girik

are determined by the algorithm in appendix C.2.1. In particular, bga . = 0. for
o = id, in agreement with eq. (4.31).
Analogously to the Z,-integrals in eq. (4.14), the Selberg integrals [142,144]

n—1
S (e(3) 7 elmnys {533}) = /A [T dz KNoso 0 () 7 o) (4.35)
n,3 =3

with 2 < e(k) < k span the vector space generated by the string corrections: the

(n—3)!-dimensional vector

Su=Sullsi}) = (8. (&) 7 iy {s})) (4.36)

2<e(k)<k

is related by a basis transformation to the string corrections
Ft = BX™ S, (4.37)

where the entries of the (n—3)!-dimensional square matrix’ Bfldm are given by the
coefficients of the admissible products in the linear combination (4.32) [4]. The
admissible maps e with e(k) = 1 for some 3 < k < n — 1 can be excluded from the
basis in eq. (4.36), since any such integral can be related to the integrals in S,, using

integration by parts and partial fractioning.

Moreover, there is also a basis transformation between the Selberg integrals and

"The superscript adm stands for admissible, which refers to the admissible product from
eq. (4.20) defining the Selberg integrals in eq. (4.35).
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the Z,,-integrals from eq. (4.14). Given a sequence (or set) A and an admissible map
e w.r.t. A, starting from the double sequence (e&)), let us recursively define the

following formal sum of sequences

(A,2) = (4). (4.38)

For the example (§35%%) from eq. (4.27), the following sums of sequences are
obtained:

(1,27560) = (1,5, 27860 w(837861) = (1,5w8) = (1,5,8) + (1,8,5) ,
(2,37561)=(2,(4,23§8%) =(24),
(3,51861) =(,(6,27567) =3, (6,(7,51§§1)) = (3,6,7). (4.39)

Then, the admissible product from eq. (4.26) can be written as a linear combination

of chain products defined in eq. (4.10) as follows

H %0( () ) H w(’, e(Ae ) (4.40)

zGe ZEe

cf. appendix 6.1.4. For our example from eq. (4.30), this leads to the following

representation of the admissible product in terms of chain products

¥
+¢(1,8,5)) ¢(3,6,7), (4.41)

which is nothing but a well-structured notation for the partial-fractioning identity

1 :L<LL+LL) L (4.42)

T24T15T36Le7L18 T4 \T15 T58 T18 g5 /) XT36T67

In particular, the admissible product in the Selberg integrals S, in eq. (4.35) can be

written as a linear combination of chain products ending at 2:
3 ... n—1 3 ... n—1
0 (o) emet)) =2 (20 o3) 7 efm1y) - (4.43)

This linear combination defines the entries of the basis transformation B,, between

the vectors of Selberg integrals and Z,,-integrals, respectively:
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Using the transformation B,, and eq. (4.37), the representation
F" =B S, =B B, Z, (4.45)

of the string corrections shows that the momentum kernel from eq. (4.17) can com-

binatorially be obtained from
B — pxmp (4.46)

According to eq. (4.45), the string corrections, the Selberg integrals as well as the
Z,-integrals are linear combinations of each other. We often use the convention
that the integrals F',}y" are called open-string corrections at genus zero, while the
Selberg integrals S, and and the Z,-integrals Z,, are called (admissible and chain)
open-string integrals at genus zero. Since the Riemann sphere has no moduli, the
genus-zero, open-string corrections are actually already the moduli-space integrals
from eq. (1.4). Therefore, the Z,-integrals and Selberg integrals are often referred to

as moduli-space or configuration-space integrals in the context of string amplitudes.

4.2 Genus-zero, type-(n,p) integrals

The recursion in ref. [5] involves more general integrals than the Z,-integrals and
the Selberg integrals introduced in the previous section. The differential forms of
the Z,-integrals and the Selberg integrals define two different bases of the twisted
de Rham cohomology H"3(Mgn, V,—3) of the configuration space of n-punctured
Riemann spheres with three fixed coordinates. The corresponding generalisations of
these integrals are introduced in the following subsections and defined by bases of
the twisted de Rham cohomology

H" P(Fpps Viap) =ker(V,_p)/Im(V,_,),
Vi—p =d+dlog (KNi2_n1)|dzi=-=dz, 1=0 (4.47)

of the configuration space of n-punctured Riemann spheres with p fixed coordi-
nates [140],

Fop ={(Tp, Tpsr1,.. ., Tp1) €CVP |y F wy,...,xpq, 2, for i # j},  (4.48)

originally described in ref. [142] and introduced in ref. [140] in the context of
string amplitudes. Note that for p = 3, the moduli space of punctured Riemann
spheres is recovered F,, 3 = Mys. We will still work with the fixed punctures

(21,22, 2,) = (0,1, 00), assume the ordering from the integration cycle A,, 3 given in
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eq. (4.2), i.e. x; < x;_1 for 3 < i <n —1, and consider the integration cycles
Npp =0 x)={0=2; <2y <Tpo<- -+ <xp<Tp1}, (4.49)

cf. figure 4.2. Therefore, integrating a basis of H" ?(F, ,, V,.—,) along A, , defines
a class of

dim (H" 7 (Fopu Vi) =

(4.50)

independent integrals. The two relevant classes in the context of string amplitudes,

denoted by Z, , and S, ,, are introduced in the following two subsections.

Tp = OO

Im(x)
N e
Ty, = 00
T = 1
Tp—1 " — Re(z)
:'L. e
p T, = 0l Tp—1 ... Tp Tp—1 ... I3 To = 1

Typ—
5131:0 n—l

Figure 4.2: The p-punctured Riemann sphere associated to the integrals Z,, , and S, ,
introduced in the next subsections. The p unintegrated (red and violet) punctures
are i, T2,...,Tp—1,Ty. lts parametrisation on the complex plane is depicted on
the right-hand side. The n—p integrated (blue) punctures z,,...,z,—1 define the
integration cycle A,, ,(z;) (blue line) from eq. (4.49) and the integrands of Z,, , and
Sp,p are defined on the n-punctured Riemann sphere (violet, red and blue punctures).
The three unintegrated (violet) punctures (1, x2,x,) = (0,1,00) are canonically
fixed, while the p — 3 (red) additional punctures zs, ..., 2z, can be varied on the

interval 0 = x; < 2,1 <--- < w3 <29 = 1.

4.2.1 Type-(n,p) chain integrals Z, ,

The first class generalising the Z,,-integrals are the chain integrals of type (n,p)
Znp (LAY, (p =1, AP s, w15 {5 ))

n—1 p—1
= / H dz; KNi2. 1 H @(ka Ak) ) (4-51)
A k=1

n,p i:p
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where A* are possibly empty subsequences of a permutation of (p,...,n—1),

(AY A% AP Y =0(p,....,n—1), 0 €S,,, (4.52)
with o acting on p,...,n—1. Equation (4.52) defines a partition of the permuted
sequence o(p,...,n—1) into at most p—1 non-trivial subsequences. The twisted
forms

p—1

[Tk A"y Adzyy A Aday, + I (V) (4.53)

k=2

for all possible partitions A* from eq. (4.52) with A! = @ form a basis of the twisted
de Rham cohomology H" P(F, ,, Vn—p). Using integration by parts and partial
fractioning, any other subsequence A7 = @ than A' may be chosen to be empty,
which leads to different bases.

The completeness of the basis (4.53) has an echo in the following differential

equation: the (n—3)!/(p—3)!-dimensional vector®

Zmp(l’g, c. Z'pfl)
Zn,p('r?n" y Lp— 1a{SZJ})
= Z ,p 2 A2 (p — 1, Ap_l); T3y .-y Tp—1; {SZJ})) (A2,..., AP~ Y=o (p,...n—1)

0€ESH_p

(4.54)

of type-(n, p) chain integrals satisfies w.r.t. z; for 3 <1i < p— 1 a partial differential
equation of Fuchsian type [142]

p—1  cha( ir
> it (ey)
(911.Zn,p(x3, e ,I'p_l) = :L'—p Zn,p<~r37 Ce ,ZEp_l) . (455)
r—1 1d
r#i

The square matrices 75" (el) are (n—3)!/(p—3)!-dimensional representations of the
genus-zero braid group with p strands, which is the algebra generated by e;f for

1 <i < j < p satisfying the infinitesimal pure braid relations [142]

e;,j == eji7
ey, el =0 if [{i,j,q,7} =4,
e + el el =0 if [{i,j,q} =3. (456)

cha (

As shown in eq. (6.122) the representations r¢ ejf) can be calculated recursively. In

particular, they are homogeneous of degree one in the Mandelstam variables s;; and,

8Without loss of generality and unless stated otherwise, the entries of the vectors constructed
in this thesis are assumed to be ordered lexicographically.



4.2. GENUS-ZERO, TYPE-(N, P) INTEGRALS 81

therefore, proportional to o/. The Schwarz integrability condition [0,,,0,,]Z,, = 0
can be used to show that the commutation relations (4.56) are indeed satisfied by

re*(el), of. appendix 6.2.4. Knowing the explicit form of the matrices r{*(el)),

the integrals Z,, ,(zs,...,2,-1) can be determined by solving eq. (4.55) using Pi-
card iteration. Recently, this has been worked out for certain linear combinations
of Z, p(xs3,...,2,-1) in the context of open-string amplitudes in [128]. For our
purposes, we do not need to solve for the full integrals, but rather only use the
genus-zero associator eq. (2.50) to relate two boundary values in the case of p = 2,
cf. section 4.3.

The chain integrals of type (n,3) contain the Z,-integrals (4.14) appearing in

the n-point, open-string corrections at genus zero

Zna ((2,A%); {53;}) = Zu(0; {53}) , (4.57)

where 0(2,3,...,n — 1) = (2, 4%).

4.2.2 Type-(n,p) admissible integrals S,, ,

The second class of integrals are the integrals obtained from integrating the fibration
basis [140] of H" P(F,,p, Vn—p) formed by the equivalence classes of the twisted forms
defined by the admissible products

o (egg) - 6{:;11)> Ay Adzpsr A Adtpoy +Im(Va,), 2<elk) <k (4.58)

forp<k<n-—1.

The resulting integrals are called admissible integrals of type (n,p) and defined
by [142]

n—1
[] dz KNos_ o0 (e(’;) N e{;‘;b) ,

n,3 i:p

. n—1
Shp <e(1?p) e(n_1)3 %3, - - - #Cp—l;{sz‘j}) :/

A
(4.59)

where e is admissible w.r.t {p,...,n — 1}. Note that the admissibility ensures that

these integrals can alternatively be defined recursively by

. n—1
Sn,p (e(l;)p) ... e(n—1) y L35+ Tp—1;3 {sij}>

ot da R
= /0 P_Sn,p+1 (e(I;—ri-l) o e(n=1)3T35 -+ -5 Tp—1; {sij}> (4.60)

Le(p)p

and

Spm (T3, Tno15{54}) = KNig o1 . (4.61)
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The (n—2)!/(p—2)! integrals in eq. (4.59) can be reduced to a basis of (n—3)!/(p—3)!
integrals using integration by parts and partial fractioning, which we usually choose
to be the ones with e(k) # 1 for p < k < n — 1. This reproduces the integrals
defined by the fibration basis (4.58) along the cycle A,, ,,.

The vector of type-(n, p) admissible integrals
Smp(l’g, e ,ZL’p_l) == Smp(l'g, e ,.l’p_l; {Sij})
. n—1
= <Sn,p (6(2;) . e(n—1) L3y .. ,xp,l; {Sij}))2<e(k)<k (462)

is related by a basis transformation to the vector of type-(n, p) chain integrals (4.54):
Snp=Bn,Z,,. (4.63)

According to eq. (4.40), the entries of the transformation matrix B,, , are determined
by the linear combination of the corresponding admissible product appearing in the

definition (4.59) in terms of chain products, i.e.

p—1
A Aelk
¥ (G(A)) = H ¥ <k> e(Ae((k)))> ) (4.64)
k=2
where A = (p,...,n— 1) and 1 < e(i) < i. This leads to a linear combination of

any admissible integral in terms of chain integrals

Sn,p (e&) 7 L3y -y Tp—1; {Sij})
= Znp ((1, e(fi&)) N e(e\)) Ja3, o1 {8y }) (4.65)

which yields the basis transformation (4.63).

Similar to the chain integrals from above, the completeness of the fibration basis
leads to the following result for the admissible integrals: the vector of type-(n,p)
admissible integrals S, , satisfies w.r.t. 2; for 3 < i < p — 1 a partial differential

equation of Fuchsian type [142]

p—1 adm(eir)

TTL
O, Sp(T3, . Ty 1) = ZTP Shp(Ts, .. Ty ). (4.66)

r=1
r#i

adm
n

The (n—3)!/(p—3)!-dimensional representation 73™(e}’) of the genus-zero braid

cha

group with p strands is related to the representation 7,

(e}) appearing in eq. (4.55)

via the transformation matrix B,,, from eq. (4.63) as follows:

radm(e;'j) =B,, r;ha(e;';") B, . (4.67)

n
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The matrices radm(e”’) are homogeneous of degree one in the Mandelstam variables

si;, for example r2d™(e") = s;.. They can be calculated’ recursively in p using the

iterative definition (4.60) [140, 142, 145], cf. eq. (6.122). Similarly, validity of the
commutation relations (4.56) satisfied by r29™(el") can be shown recursively in p or

directly, using the Schwarz integrability condition [0,,, 0] Snp = 0.

The admissible integrals of type (n, 3) contain the Selberg integrals (4.35) forming

a basis for the n-point, open-string corrections at genus zero

Sns (e(a) 7 ety {553) = Sn (oiyy) 7 elonys {53) - (4.68)

4.2.3 Examples
Type-(5,4) integrals: Z5 4 and Sj4

Let us consider a simple example, which will be used in subsection 4.3.5 to calculate
the four-point, open-string corrections. It is the class defined by the type-(5,4)
integrals for which the vectors of chain and admissible integrals from eqs. (4.54)
and (4.62) agree:

Z5,4(953) = 55,4(353)

T3 1
:/ dl’4 KN1234 (If‘l) y (469)
0 =

X34

such that the transformation matrix Bj 4 from eq. (4.63) is the identity
B574 == ]12 . (470)

The differential eq. (4.55) for the vector Zs 4(x3) is

Tcha e31 rcha e32
Ors Z5 4(13) = ( 2 9534 ) + 53(_41)> Z54(73) (4.71)

where the matrices are

cha adm —S13 0
5h (eil) = 5d (eil) = ( > )

—S24 —S8134
rha(efR) = ppimef)y = (TR T ) (4.72)
524 —S523 — S24

cf. eq. (6.122) for their recursive construction.

9See ref. [4] for the exact relation to the matrices in ref. [140].
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Type-(6,4) integrals: Zgs 4 and Sg 4

The type-(6,4) integrals are relevant for the five-point amplitudes. They define the

vectors

(
(
Zsa(xs) = /Om3 dzy /OI4 das KN1os45 @E
(
(

T25T54
1

3 T4
= / d1’4 / d$5 KN12345 :v241x35 (473)
0 0

T25T34

T34245

L3554

and

xs3 T4
56,4(333) Z/ dl’4/ dos KNj2sas
0 0

€ € 6 6 € €
[ T N N N NN
W Wk W N N N
O WU NUT =0T WOt Ot
~— O N ' N

&
N
=8
(V]
w

L2435
1

3 T4
= / dl’4 / dl’5 KN12345 :c241x45 . (474)
0 0

T34%25
1

3435

3445

The admissible products in Sg 4(z3) can be rewritten in terms of the chain products

from Zg4(x3) using eq. (4.64), which defines the transformation matrix B4 in

Se4=Bs1Zs4. (4.75)
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It is determined by the calculation

€ € € € € €
A~~~ /N /N /N /S o/
LR W W N N N

O WO NUT Ot WUt Nt

— — — — —

such that

€ € € 6 € €

N N /N /N /S o/~
Qo WOl WOl DO DO DO
O WO NOT Ut WOt Nt
~— N N~

©(2,33) p(2,4wb5)
©(2,5)9(3,3) ¢ (2,4) ¢ (3,5)
| oe230) | e 245)
¢ (3,3)9(2,3) v (3,4) p(2,5)
©(3,33) P (3,4wbH)
©(3,5%) ¢ (3,4,5)
11000 0\ /024,50
00100 0f]e254)
1000 0 0][e@4)0,
00010 0f]e25)03,
00001 1|]e?)e@,4,
00001 0/ \@(2e@3,5,

The vector of admissible integrals S 4 satisfies the KZ equation

where the matrices

Ts

and

adm
T'g

are given by eq. (6.122), where for two non-empty sequences P = (p1, po, . . .

adm(

(

32
€y

31)

) =

o O O O

—51345

0
—S545
S34 + S35

S45

0

adm (31 adm ( 32
ax356,4($3) — (T6 (64 ) r6 (64 )) 56,4(373)7
T3 r3 — 1
—S13 0 0 0 0
—825 —38135 —845 0 0
0 0 —S13 0 0
—So4 — 845 0 S45 —S134 0
0 —S24 0 —S25  —S1345
525 0 —S824 — S25 8525 0
—853 245 535 0 534 0
S25 —524,35 S45 0 S34 + S45
0 S35 —83.245 0 —S35
S24 + 545 0 —S45  —S25.34 S35
0 S94 0 595 —589.345
— 825 0 So4 + S25 S25 0

—52,345

85

, (4.76)

(4.77)

(4.78)

(4.79)

(4.80)

7pl) and
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Q = (q1,q2,---,qmn) the following sum of Mandelstam variables is defined:

Sp1pa-.pr,q142--qm — SP.Q = Z Z Spig; - (4.81)

These matrices, in turn, can be used to calculate the matrices in the KZ equation

of the vector of chain integrals

rte(edt) | ri(ed?

xT3 173—]_

Ovs Zsa(T3) = ( )> Zs4(x3) . (4.82)

They are given by

rg(ei') = Bgarg ™ (ei') Boa

—S13 0 0 0 0 0
0 —S13 0 0 0 0
_ | s = sas —S95 —s135 0 0 0 (4.83)
—So4 —So4— 845 0 —si34 0 0 '
—S24 S25 0 —S25  —S1345 0
524 —S525 —524 0 0 — 51345
and
(€)= By rit™(e) B
—53.245 0 S35 0 534 — 535
0 — 83,245 0 834 —S34 835
_ | S + S45 525 —524,35 0 534 S34 + S45 (4.84)
S94 S94 + Su5 0 —89534 S35t Sus 835 '
S94 — 5895 0 595 —52.345 0
—S94 895 S94 0 0 — 582345

in agreement with eqs. (4.67) and (6.123).

4.3 Genus-zero, open-string recursion

In ref. [5] a recursion'” to calculate the a/-expansion of the open-string corrections
F)'5" from eq. (4.15) has been constructed. It is based on a vector of integrals
with an auxiliary unintegrated puncture, such that differentiating with respect to

this puncture leads to a KZ equation. The corresponding associator equation (2.50)

10A further recursive method based on a Berends—Giele recursion has been introduced in ref. [30].



4.3. GENUS-ZERO, OPEN-STRING RECURSION 87

relates the two regularised boundary values of this vector via the Drinfeld associator.
The boundary values, in turn, contain the n-point and (n—1)-point, open-string
corrections, such that the associator equation facilitates a recursion in the number
of external states. This recursion has been reformulated in twisted de Rham theory
and related to the fibration basis (4.58) in ref. [4]. The recursion and the results of

the reformulation from the latter reference are summarised in this subsection.

4.3.1 KZ equation

In order to calculate the string corrections from eq. (4.5), which is a linear combi-

nation of type-(n,3) admissible or chain integrals, the linear combinations [5]

n-l n—1 n—v /m—1
ﬁ5<07x3> :/A Hdl'z KNlQ...nfl o ( H Z Sjk H (Z Sim S2_m>>

x x
nd =4 ken—pi1 =2 im 2m

(4.85)

of type-(n,4) integrals, where 1 < v < n —3 and o € S,_4 acting on the labels
4,5,...,n — 1 are introduced. The integration domain is bounded by the additional

unintegrated puncture xs

An,4 = An,4($i> = {O LTyl < Tpo <<y < ZL’3} ’ (486>
cf. figure 4.3.
T, = 0o
m(z)
Ty = OO
Ty = 1
T3
s . > Re(z)
.”L’1:O Tp—1 coe Ty T4 :L'2:1

Tp—
£1:0 n—1

Figure 4.3: The four-punctured Riemann sphere associated to the integrals Fg (0;x3)
from eq. (4.85). The four unintegrated (red and violet) punctures are xy, T9, T3, .
Its parametrisation on the complex plane is depicted on the right-hand side. The
n—4 integrated (blue) punctures w4, ...,z,_1 define the integration cycle A, 4(z;)
(blue line) from eq. (4.86) and the integrands of F¥(o;x3) are defined on the n-
punctured Riemann sphere (violet, red and blue punctures). The three unintegrated
(violet) punctures (x1, z3, x,) = (0, 1, 00) are canonically fixed, while the fourth (red)

additional puncture x3 can be varied on the interval 0 = 21 < 3 < x5 = 1.
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The integrals F¥(o;xs) are the starting point of ref. [5]. Using transforma-
tion (4.34), one can rewrite

l‘ I
k=n—v+1 j= 2 tm 2m

— > H Ser (i @ (er(z) " erlm1) )

e adm
1<e(k)<k
k<n—v: e(k)#3

= Z H Seo (k Z beo e p (e/:())s) e/?n_—ll)> ) (487)

e adm e’ adm
1<e(k)<k 1<e/ (k)<k
k<n—v: e(k)#3

where the sum in the second line runs over all admissible maps
e:{4,....n—1} = {2,3,...,n—2} (4.88)

with 1 < e(k) < k and e(k) # 3 for 4 < k < n—v. Therefore, the (n—3)!-dimensional

vector

Fow)=| i |, Fley) = (Flom) (4.89)

~1 0ESn_4

Fn<x3>

is related by an invertible transformation matrix to the type-(n,4) admissible and

chain integrals, respectively:

A~

Fn(.flfg) = Bn Sn74($3) = Bn Bn,4 Zmp(.]fg) y (490)

where the entries of B,, are determined by the coefficients in eq. (4.87) and B,, 4 is

the transformation matrix from eq. (4.63).

According to eqs. (4.66) and (4.55), the vector F,(x3) satisfies a KZ equation
(2.32)

0y B (13) = (f"(eil) 4 (632)) Fo(zs) (4.91)

T3 173—]_

where the matrices 7,(eY) are related by the corresponding basis transformation
to the matrices 72 (e2’) and r"(e?) with j = 1,2 from eqs. (4.55) and (4.66),

respectively [4]:

fn(eil) = Bn T?Ldm(eil)(én)_l = Bn B, 4 rzha(eil)(Bn B, 4)_1 )
Tn 6?12) = Bn Tzdm(eZQ)(Bn)_l = Bn B4 beha(ef)(én Bn,4)_1 (4.92)
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Hence, they are representations of the genus-zero braid group. In ref. [5] it was
shown via direct calculations using integration by parts and partial fractioning that
for n < 10 the derivative 8,,F,(x3) indeed satisfies the KZ equation (4.91). The
method derived in ref. [4] and presented above is a well-structured method based
on integration by parts and partial fractioning to recursively calculate the matrices
Po(e3t) and 7,(ed?) for any n. The results of ref. [5] for n < 10 can be found
in ref. [146].

In order to determine the regularised boundary values (2.49) for z3 — 0 and
x3 — 1, the asymptotic behaviour of the integrals F; (0;x3) is determined in the

following subsections according to ref. [5] (see also ref. [4] for the explicit calculation).

4.3.2 Lower boundary value

For the lower boundary value, a change of variables x; = xsw; leads to

lim 23" FY (0 ) (4.93)

x3—0

fAn,s(wz 7.1_1 dwl KN145 n— 1(w>
( Zk 1 slk> +O(s3;) ifv=n—-3,04)=4, (494

I=4 wyy
O(s35) otherwise,
where
W =0< Wy <Wpo<- - <ws<wy=w3z=1<w,=w, =00, (4.95)
cf. figure 4.4.

Upon comparing with the string corrections (4.5), the integral above is the
(n—2)-point, open-string correction at genus zero for the n—2 distinct punctures
in eq. (4.95). Note that the additional merging of w4 with w3 comes from the fact
that for s3; — 0, the integrand in lim,, o 25"~ 1F”(U x3) with v = n—3 and
o(4) = 4 is a total derivative in wy, such that the only non-vanishing contribution
originates from the boundary wy = ws [4]. Moreover, the regulating factor x5 " Fa(ed)

in the regularised boundary value

Co(F) = lim ;" E (24) (4.96)

xr3—0

acts on the non-vanishing integrals in the limit s3; — 0 in eq. (4.93) simply by
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projecting out the eigenvalue x5 "~ [4,5], such that

Co(F) = Co(Fo({si]i,5 =1,2,...,n—1}))
_ ( o ({sigli g = 14,5, o0 — 1}>+0<s3j>)

O(s35)
_ (Fopen —1-(’)(33])) ’ (4.97)
O(s35)
where
FP5o({sili,j =1,4,5,...,n — 1})
= (S0 T o KN () o (T3 %))MM . (4.98)

with o € 5,_5 acting on the labels 5,6,...,n—1.

Im(x) Im(z)
AP P PP N BRI
Typ = OO A/UJQ = Wy = O
— T3 : : Wy — :
—Re(z) ) —Re(z)
21 =0 Tn—1 -+ Ty T4 To =1 w; =0" Wp_1 ... w;s wy =1

Figure 4.4: The change of variables x; = x3w; and the limit x3 — 0 degenerates
the four unintegrated (red and violet) punctures xi,zs,x3,z, in the integration
domain A, 4(z;) (blue line) on the left-hand side to the three punctures wy, w; and
wy = w, depicted on the right-hand side. In the additional limit s3; — 0, only
certain boundary values survive such that the puncture w, is not integrated over
and merges with ws = 1. This yields the integration domain (blue) A,, 5(w;) on the
right-hand side, given in eq. (4.95).

4.3.3 Upper boundary value

For the upper boundary value as x3—1 = x5 and v = n—3, the asymptotic behaviour

—1k
e | T 3 v (f522)

n424
3#23

(4.99)
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is observed. These are the (n—1)-point string corrections for the n—1 distinct punc-

tures
2 =0<Zp 1 <Tpo<- - <Ty<x3==2x9=1<x, =00, (4.100)

cf. figure 4.5, where the effective Mandelstam variables associated to the puncture at

1 = zy = x3 are the sum §y; = s9; + 53;. Thus, in the limit s3; — 0, the (n—1)-point

string corrections with Mandelstam variables s;; for i,j € {1,2,4,5,...,n—1} are
—in(e32) .
recovered. Again, the regulating factor (e i
Cr(B,) = lim B, () (4.101)
r3—r

projects out the correct eigenvalue z3** [4,5], such that

A~

Ci(F,) = Ci(Fo({syli,j =1,2,...,n—1}))
(Fﬂ%G%Mj:LZQ&”wn—1D+O@w>

FP" o+ O(ss;
_ ( n—1,0 . (83J>> 7 (4102>

where
sz_eln,ﬂ({sij’ivj =1,2,4,5,...,n— 1})

= (fAn,él H?:_j dl’Z KN1245“_71_1 g (Hz_i ?;é Z_]Z)) . (4103)
J#3 0ESn_4

—Re(z) : —Re(x)
:L'l:O Tp_1 --- Ty X4 (L‘2:1 ;1;1:0 Tpn—1 -+ Ty T4 ZL‘3:£L'2:1

Figure 4.5: In the limit 3 — 1, the four unintegrated (red and violet) punctures
Ty, g, T3, T, in the integration domain (blue) A, 4(x;) on the left-hand side merge
to the three punctures xy,x, and xy = x3 depicted on the right-hand side. The
result is the integration domain (blue) A,_;3(z;) on the right-hand side, given in
eq. (4.100).
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4.3.4 Recursion in number of external states

Having a solution Fn(xg) of the KZ equation and its regularised boundary values
Co(F,) and Cy(F,) at hand, the associator equation (2.50)

Cy(F,) = ®g, Co(F,) (4.104)

with the alphabet &, = (7,(e3'), 7,(el?)) can be formed. Its limit s3; — 0 yields the

genus-zero, open-string recursion

Fz{en Fopen
( :“’) :q>gn|53jo< ”O“) : (4.105)

which is the correct and complete formulation of the schematic egs. (1.5) and (2.53).
The recursion (4.105) is the main result of ref. [5] and can be used to calculate
the o/-expansion of the (n—1)-point string corrections from the o/-expansion of the
(n—2)-point corrections and the o/-expansion of the Drinfeld associator in eq. (2.48):

32

since the matrices 7,(e3') and 7,(e3?) are proportional to o, the expansion of the

associator in the word length is simply its expansion in o/, i.e.

De |50 = Loz — Glfn(ed), Pn(€d?)]]sy,—o0

— Glru(ed’) +nler?), [Pu(ed’), u(ed’)]]lsy,—0 + O((a)") . (4.106)

Geometrically, the Drinfeld associator glues a trivalent open-string worldsheet to
some external state of the (n—2)-point interaction leading to an effective (n—1)-point
worldsheet associated to the (n—1)-point interaction, cf. figure 1.3 for an illustra-
tion'! of the four-point calculation. The auxiliary variable x5 in Fn(xg) parametrises
between the (n—2)-point and (n—1)-point string corrections, but is not a puncture
associated to an external state since in particular s;; = 0 in the recursion (4.105).
On the one hand, in the lower boundary value C’o(ﬁ’n) the Mandelstam variables s;4
are associated to the puncture wy = 1, while the variables s;» associated to wy = 00
are absent, cf. eq. (4.97) and figure 4.4. On the other hand, in the upper boundary
value Cl(ﬁ‘n) the Mandelstam variables s;, are present and correspond to the punc-
ture xo = 1, cf. eq. (4.102) and figure 4.5. Thus, the trivalent interaction is glued to
the puncture wy = 1 of the (n—2)-point worldsheet, leading to the two punctures

xy < x9 = 1 of the (n—1)-point worldsheet.

UWith &, ¢ = P,

n41 |53j:0'
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4.3.5 Examples
Four-point, open-string correction

In order to calculate the four-point string correction (4.8), the linear combinations
N E? @3 24 4 st .
Fs(zs) = ( N (mg)) = / dzy KNigss ("”24 S—; ‘”34> = B;s Z54(x3),  (4.107)
0 T2

where

S94 0

Bs = (824 S34> , (4.108)

of the type-(5,4) integrals Z5 4 from eq. (4.69) have to be considered. The matrix
B; is determined by the coefficients in eq. (4.87). The vector F's(x3) satisfies the
KZ equation

) Fy(x3), (4.109)

where the matrices [4]

Ps(ei) = Bs i (el!)(Bs) " = <_8134 o ) (4.110)
0 —S513
and
A A adm N -8 0
7s(ef’) = By 3™ (ef”)(Bs) ' = ( “ ) (4.111)
S24 —S5234

can be calculated from the type-(5,4) matrices from eq. (4.72). The regularised
boundary values (4.97) and (4.101) are

Co(F's) = (1 2253;”])) (4.112)

and

1 —S14 —S24 524 .
Cl(ﬁg)) (fo dzy |ZL’14| |‘r24| 24 + 0(83]))
I'(1—s14)0(1—s24)
_ ( F(1—1i1914—524§4 +O(S3j)> ) (4.113)
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respectively. Therefore, in the limit s3; — 0, the recursion (4.105) yields the relation

T'(1—s14)T(1—s24) 1
I'(1—s14—s524) = (I)55|53j=0 0 , (4114)
where [5]

N ~ —S14 S14 0 0
55|S31=0 = (T5(e§11>|53j=07T5<622)|33J:0) - (( 0 0 ) , <824 —824>> ' (4.115>

Equation (4.114) is the example depicted'? in figure 1.3. The expansion of the
Drinfeld associator from eq. (2.48) and the matrices from eq. (4.115) lead to the
following expansion of the right-hand side of eq. (4.114)

(Ta—Calrs(eq'), 5(e5”)]—Cs ([rs(ed')+rs(ed?), [rs(ed'), rs(es”)]]) + - - - ) lsay=o0 (é)

1 5148 52,894 + S1452
_ N el e i el S (4.116)
0 5145924 514524 -+ 514554

The first entry indeed agrees with the left-hand side, the Veneziano amplitude, whose

expansion is given in eq. (4.8). Higher-point examples can be found in ref. [5].

Type-(6,4) matrices

The calculation of the five-point corrections involves the type-(6,4) vector

3 .
6 (47 57 1'3)
3 .
1313 6 (57 47 $3)
6(x3) F9
131 ( ) FQ _ 6(475;373)
6 'T3 - 6(x3> - A2 5 4
Fl( ) 6 ( ) 7I3)
x A
6\43 1 .
6 (47 57 1’3)
nll .
6 (57 47 $3)
524 534 525 | S35 545
24 T34 x25 35 Z45
525 535 524 534 545
25 35 24 + T34 + T54
x3 x4 ;ﬁ + ;ﬁ + iﬁ iﬂ
25 35 45 24
= / d(L‘4/ d[L‘5 KN12345 S saa s ) sos . (4117)
0 0 was T za T woa ) 7
524 | S25 545
T24 \ T25 + T45
525 ( 524 + 545

z25 x24 X54

2With @4 = Pg, sy, —0-
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The matrix Bg from eq. (4.90), i.e.
Fﬁ(mg) = BG 5674(333) = Bﬁ B6,4 Z674($3> s (4118)

can be calculated according to eq. (4.87). The vectors of chain Zg 4 and admissible
Se.4 integrals are given in eqs. (4.73) and (4.74), and the transformation matrix By 4
between them in eq. (4.77). The result is

S24 | 834 825 | S35 | 845
24 + T34 25 + 35 + T45 ()0(4 5)
s25 4 S35 ) (s24 4 sa4 | sus 22
z25 x35 T24 T34 T54 © ( ‘21 g )
S25 | S35 | S45 | S24 45
z25 + T35 T45 | T24 > 2 (2 4)
— By , (4.119)
524 | S34 | S45 | S25 @ (§ g)
24 T34 T54 25 45
S24 [ s25 | sa5 ¥ ( 3 3)
T24 25 T45 45
s25 ((s24 | sas p(51)
25 24 T54
where [4]
524525 $24535  S24S545 525534 534535 534545
S24S25 + S25545 S24835 —S25545 S25534 S34S35 + S35545 835545
B 594525 524835 524545 0 0 0
6 pr—
594895 + S25545 0 —S95545 S25534 0 0
824825 0 824545 0 0 0
594525 + S25545 0 — 595545 0 0 0
(4.120)
This matrix determines the matrices in the K7 equation
o .31 A (.32
r Te(er) | Te(er’)) &
8m3F6(l'3) = + FG(I‘g) s (4121)
XT3 r3 — 1

according to eq. (4.92), which can be calculated using the matrices rg4™(e3') and

radm(e32) from eqs. (4.79) and (4.2.3), respectively. They are given by [4]

foles') = Bsri™™ (el')(Bs) ™!

—S51345 0 S14 1 S45 515 S15  —S15
0 — 81345 S14 S15 1+ S45 —S14  Su4
_ 0 0 —S135 0 S15 0 (4.122)
0 0 0 —5134 0 S14
0 0 0 0 —s13 0
0 0 0 0 0  —s13




96 CHAPTER 4. OPEN-STRING CORRECTIONS AT GENUS ZERO
and

Ps(e}?) = Beri™(ef?)(Bg) ™!

—s23 0 0 0 0 0
0 —so3 0 0 0 0
_ | s 0 —5934 0 0 0 (4.123)
0 Sa95 0 —S935 0 0
So4  —S24 S5+ Sus S24 — 59345 0
—S825  S25 S25 S24 + S45 0 —52345

For the special case s3; = 0 appearing in the genus-zero recursion (4.105) to calcu-
late the five-point, open-string corrections, the matrices 7g(e3') and 7¢(e3?) indeed
degenerate to the matrices found in ref. [5] via a direct calculation using integration
by parts and partial fractioning. The method derived in ref. [4] and presented above
is a well-structured method to recursively calculate the matrices 7, (e3') and 7, (e3?)
for any type n. They are required to calculate the n-point, open-string corrections at
genus zero via the genus-zero recursion from ref. [5], where so far only the matrices

up to n = 10 have been determined by explicit calculations [146].



Chapter 5

Open-string corrections at genus one

The genus-zero recursion from ref. [5] discussed in the previous chapter yields a
method to calculate the o'-expansion of the open-string corrections at genus zero
solely using matrix operations. Having the combinatorial algorithms at hand to
determine the relevant matrices [4], the calculation is purely combinatorial and
can be implemented straightforwardly in computer algebra systems. Geometrically,
it relates the n-point worldsheet of the tree-level, open-string interaction to the
(n—1)-point worldsheet. The action of the Drinfeld associator on the latter can
be interpreted as a gluing mechanism, where a trivalent interaction is glued to the
external states of the (n—1)-point worldsheet, such that an n-point worldsheet is

obtained.

An extension of the genus-zero recursion to genus one will be shown to incor-
porate gluing together two external open-string states of a genus-zero, (n+2)-point
worldsheet, to obtain an n-point worldsheet at genus one. Starting from the genus-
zero recursion from ref. [5] and the corresponding reformulation in twisted de Rham
theory in ref. [4], such a mechanism has been constructed in ref. [2], which is schemat-
ically given in eqgs. (1.7) and (3.126): acting with the elliptic KZB associator on
(n+2)-point, open-string corrections at genus zero yields the n-point, open-string
corrections at genus one. Again, the algorithm involves matrix operations exclu-
sively. Moreover, the splitting of the corresponding momenta supports the geometric
interpretation in terms of gluing together two external states to obtain a genus-one
geometry. This mechanism will be presented in this chapter, supplemented by ad-

ditional calculations and generalisations.

During the same time, another mechanism to calculate the o/-expansion of open-
string integrals at genus one has been identified in refs. [38,39]. It offers another
perspective on the algorithm of ref. [2]. In ref. [3] both mechanisms have been related
to each other. In particular, the resulting conventions and formulations have been
used to calculate explicit formulas of the relevant matrices and to determine their
properties. Therefore, a purely combinatorial algorithm is available to calculate the
o’-expansion of the open-string integrals at genus one from the open-string integrals

at genus zero.

97
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The structure of this chapter is similar to the previous chapter where the genus-
zero objects have been discussed: in section 5.1 the open-string corrections at genus
one are presented. In section 5.2 these integrals are generalised and some properties
of the resulting classes are summarised. These results are used in section 5.3 to
state the recursion from ref. [2], mainly in terms of the conventions and notation

introduced in ref. [3].

5.1 Genus-one, open-string corrections

A planar!, genus-one interaction of n external open-string states leads to a world-
sheet of cylinder topology with the vertex insertion points on one of the cylinder
boundaries. In analogy to the genus-zero scenario, this punctured cylinder can be
described by one half of a punctured torus C/(Z + 77Z) with modular parameter 7.
Due to the rotational symmetry of the torus one of the punctures can be fixed at

the origin

or lattice points Z + 77, respectively. The remaining n—1 punctures are arranged
in a fixed order on the A-cycle (0,1) C C/(Z + 7Z), which we chose to be

An,l = Aml(zi) = {Zl =0<z, <zp1 < <z;m<l= Zl}, (52)
cf. figure 5.1.
Im(z)
ST =2 J1+7=2
4 > Re(2)
leo,l Zn z23 Z9 /Ilzzl

! !

Figure 5.1: The punctured torus with one fixed (violet) puncture z; and its
parametrisation on the complex plane (right-hand side). The n—1 unfixed (blue)
punctures 2o, ..., 2, will be integrated over in the sting corrections respecting the

order z;11 < z;. This defines the corresponding integration cycle A, 1(z;) (blue line).

!Non-planar interactions lead to vertex insertion points on both cylinder boundaries, i.e. also on
the violet boundary of the topology on the right-hand side at the bottom of figure 1.2. They may
analogously be described as the planar interactions by replacing the elliptic multiple polylogarithms
with twisted elliptic multiple polylogarithms, see e.g. ref. [147]. In this thesis, we restrict ourselves
to planar interactions to omit further technicalities. See e.g. refs. [38,39] for the necessary steps
to include non-planar interactions in this framework.



5.1. GENUS-ONE, OPEN-STRING CORRECTIONS 99

The n-point, open-string corrections at genus one of massless string states are
linear combinations of the configuration-space integrals obtained from integrating
the n—1 unfixed punctures in the genus-one, open-string amplitudes, cf. eq. (1.4).
They depend on the Mandelstam variables and the modular parameter 7. Accord-
ingly, they are the integrals obtained from integrating over the integration cycle
A, 1, but before integrating over the modular parameter. These integrals are of the
form [27,148,149]

FST&Q,;@&,_,%)(U; O/> = Fgﬁf?k%kg,,,,,kn)(a; {Sij})

T k;
- /A Hdzl KNIQ...n Hgg(l),l)o-(z) ) (53)
1=2

n,1 ;=9
where k; > 0 and

k k
g5 =915 = g™ (25, 7) (5.4)
are the integration kernels appearing in the eMPLs, which are the n-coefficients of
the Eisenstein—Kronecker series, cf. eq. (3.76). The permutation o € S,_; acts on

the labels ¢ = 2,3, ..., n of the punctures z;. The genus-one Koba—Nielsen factor is

KNT 5, =KNj i (zis -2, {8i) = H exp (—sij (fzy —w(1, 0))) )

4,5€{i1,..rip}
1<j

IFENCHENRD (5.5)

and comes from the plane-wave contribution of the vertex operators. The genus-
one Green’s function fij —w(1,0) in the exponent involves the real branch of the
regularised ePL fl(l; z), which is the genus-one analogue of the logarithm. The
latter, in turn, is the genus-zero Green’s function.

For example, the four-point, open-string amplitude for massless gluons is [148,
149]

AP (1,2,3,4;d) :slzsgsAZQA/O drF o) (1,2,3,4;0),

4
Ff,li?(rz),o,o)(la 2,3,4; a/) = / H dz; KN71—234 . (56)

A4 ;9

5.1.1 Z’-integrals

Since there are infinitely many functions gi(;) ); 91(]1 )7 QZ(JQ ), ... defined by the series ex-

pansion of the Eisenstein—Kronecker series, eq. (5.3) defines infinitely many inte-
grals FSﬁTkQ,k&._.’kn) labelled by (ka, ..., k,) € Zggl. It turned out [3,38,39] to be
convenient instead of working with such an infinite family, to use finitely many
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generating functions obtained upon replacing the functions ggf) in eq. (5.3) by the

Eisenstein-Kronecker series Fj;(n) at the expense of introducing some auxiliary
variables 77 = (12,73, ...,m,). This defines the (n—1)! distinct n-point, open-string

integrals at genus one, or ZT-integrals [39] for short,
Zn0) = Z, (0577 {si5})

:/ [[d= KN, o7 (1,0(2,3,...,n)), (5.7)
A

n,1 j—=9

where o € S, acts on the labels 2,3,...,n. The integrand involves a chain of

FEisenstein-Kronecker series

@T(ahaQa S 7ap) = @T(alua% s >ap;ﬁ)

= Fal(ZQ (n(lQ + U + nap) tt Fap72ap71 (napfl _'_ nap)Fapflap (nap>

p
= H Faifﬂli (77ai~~~ap> )
=2

@T(al) =1, (58)
associated to a sequence A = (ay,as, ..., a,) with the convention
NA = Nayaz...ap = Tay + Nay + -+ + Nay, - (59)

The chain of Eisenstein—Kronecker series is a chain product, the genus-one analogue
of the chain of fractions from eq. (4.10) satisfying analogous identities such as the
shuffle identity (4.12), which generalises the Fay identity (3.80). These Z -integrals
are the genus-one analogues of the genus-zero Z,-integrals defined in eq. (4.14).
In refs. [38,39] it is shown how their o/-expansion can be calculated using Picard
iteration. An alternative method based on the genus-one associator equation (3.123)
is introduced in refs. [2,3], where all the required ingredients are explicitly calculated.
It is this latter approach, which will be presented in this chapter and in particular

in section 5.3.

The string corrections from eq. (5.3) are recovered? upon expanding all the

Eisenstein—Kronecker series as the coefficient of niggln)nf(”; }n) .. .77(];’(751, which is
denoted by

ot (10D = 122 5Dl ot e (5.10)

2See ref. [39] for a discussion about the extraction of the appropriate coefficient.



5.2. GENUS-ONE, TYPE-(N, P) INTEGRALS 101

The (n—1)!-dimensional vector of all the Z7-integrals is denoted by

Z, = Z3 (7 {si;})
— (Zzisitgsud) - (5.11)

O'ESnfl

Two-point example

If momentum conservation is not imposed, the simplest non-trivial example is the

two-point, open-string integral, which is the single integral

25(1,2):/ dzy KN, Fio(ng) = > my? ' FR(1,250)

0 ka>0

1
FOpeF (12 o) = /0 dzy KNT, g$2) :

KNI, = exp <—312 (f“m —w(l, 0))) . (5.12)

Its expansion in o and the auxiliary variable 7, facilitates MZVs and eMZVs [39]

Z5(1,2)
1 2(0,0,2) 56, ©(0,0,3,0) 4G G
_%[HSIQ(T 2) 4 by (T 2 w(0,0,1,0)4+25 ) + Ost)|

w(0,0,4) 13
2| =26 + 5120(0,3) + 53 (3G:(0,0,2) ( ; ) 12@)+O(s§’2)}

o [—264 + s (w(O, 5)—260(0, 3)) + 0(332)] O, (5.13)

This turns out to be a general feature: expanding the genus-one Koba—Nielsen factor
in the string corrections (5.3) in o/, integrals of the same form as the eMZVs defined
in eq. (3.97) are obtained. The actual structure of the eMZVs and MZVs appearing
in the open-string integrals at genus one can nicely be read off from the recursion

presented in section 5.3.

5.2 Genus-one, type-(n,p) integrals

Similarly to the genus-zero scenario, the genus-one recursion in refs. [2, 3] involves
more general integrals than the ZT-integrals. For a fixed kinematic configuration®

{si;}, their differential forms are defined on the configuration space of n-punctured

3As in the genus-zero case, rather than momentum conservation, the condition Re(s“,__ip) <0
is imposed for consecutive points 41, ...,%, on the boundary of the cylinder to ensure convergence
of the genus-one integrals [3].
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tori associated to the modular parameter 7 with p fixed coordinates, denoted by

Fop = {(zp+1, 2p42, - - 20) € (CHZ+ TZ))" P|2i # 21, . .., 2p, 75 for i # j},
(5.14)

where
z1 =0 (5.15)

is fixed by rotational symmetry. The corresponding integrals Z7 5 and Sy , intro-

duced in the next two subsections are defined for the integration cycle
Anp=08np(z) ={0=21 <2, <21 < < 21 < %), (5.16)

cf. figure 5.2.

It is unclear how these genus-one integrals, the corresponding forms and integra-
tion cycles can be understood in terms of twisted de Rham theory. * However, the
closure of the various partial differential equations discussed below suggests that the

considered classes of integrals may be understood as a complete set of integrals.

’ > Re(z)

1 1
21=0/ 2z, .. Zpr1Zp ... 29 1 1=z
! !

Figure 5.2: The p-punctured torus associated to the integrals Z7 , and 57 , intro-
duced in the next subsections. The p unintegrated (red and violet) punctures are
21, %2, ..., %p. Its parametrisation on the complex plane is depicted on the right-hand
side. The n—p integrated (blue) punctures z,41, ..., 2, define the integration cycle
A, p(zi) (blue line) from eq. (5.16). The integrands of Z]  and S} , are defined on the
n-punctured torus (violet, red and blue punctures). The unintegrated (violet) punc-
ture z; = 0 is canonically fixed, while the other p—1 unintegrated (red) punctures

Za,...,%, can be varied on the A-cycle interval 0 = 21 < 2, < --- < 29 < 1 = 2.

4In ref. [39)], it is conjectured that the vector Z7 defined in eq. (5.11) contains a basis of the
genus-one twisted forms for p = 1.
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5.2.1 Genus-one, type-(n,p) chain integrals zZ,

The generalisation of the open-string integrals at genus one Z7 to p unintegrated

punctures leads to the genus-one chain integrals of type (n,p)®
Z:-;p ((17 Al)a te (pa Ap)7 R2y .+ -y Zp; ﬁ? {52]})

n p
_ / IT d= KN, [] ek, A%), (5.17)
A k=1

np j=p+1
where A* are possibly empty subsequences of a permutation of (p+1,...,n)
(AL A% A =o(p+1,p+2,...,n), 0ES,,, (5.18)

with o acting on p+1,p+2,...,n. These are the genus-one analogues of the type-

(n,p) chain integrals from eq. (4.51)
Equation (5.17) defines®
—1)!
d % (5.19)

independent integrals. The d,, ,-dimensional vector

Z:L’p (22, .., 2p)
= Z:L,p (227 <y Zpy ﬁa {Sij})
= <Z771—,p ((17 A1)7 ey (p7 Ap)7 29y e vy Zp; ﬁ? {81]})) (Al,A27...,Ap)=O'(p+1,p+27...,n) (520)

O’ESnfp

of these integrals satisfies a closed system of differential equations upon varying the

unintegrated punctures z; for i = 2, ..., p and the modular parameter 7. It is given

5The construction of these integrals, the investigation of their differential systems below and
the remaining results in section 5.2 have been worked out by the author of this thesis and will be
published in ref. [65]. In this thesis, no other results from ref. [65] are included except for the ones
solely obtained by the author of this thesis.

5The number d,, , is algebraically very similar to the number of type-(n, p) chain and admissible
integrals at genus zero, which is nothing but the dimension of H" P(F, ,, V,—p) from eq. (4.50),
i.e. dp—2p—2. The shift of two comes from an integration-by-parts redundancy at genus zero and
the fixed puncture at infinity, see also eq. (6.114) for a discussion about this similarity. However,
the number d,, , of genus-one integrals has not yet been interpreted as a dimension of a certain
(twisted) de Rham cohomology in a similar context as at genus zero.
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0.2, , (22, ., 2p)

< Cha +er6ha ij g’LJ )Z;,p (ZQ,--‘?ZP) )

k>0 j=1
JF#i
2mi0 Z], , (2, ..., 2p) = (- D(€D) + Y (1 — k) Grro®(eh)
k>4
—l—Z -1) Z re® (@t 1)grq>ZT (2254 2p) -
k>2 r,g=1
r>q

(5.21)

The d,, ,-dimensional matrices rCha(azg’k ) are homogeneous of degree one in the Man-

delstam variables s;;, hence, linear in o/, and of degree k—1 in the auxiliary variables
Cha(wg) is also homogeneous of degree one in s;; and
contains first derivatives with respect to the auxiliary variables 77. Counting these
o
ch2(€k) are of degree one in s;; and degree k—2

in 17, if the second-order derivatives and (» appearing in the diagonal of rCha(eg)

are counted as degree minus two. The explicit form of the matrices is given by the

7= (n2,...,Mn). The matrix r

cha

derivatives as degree minus one in n;, r&*(x;) is of total degree minus one in the

variables 77. Similarly, the matrices r

closed formulea of the corresponding derivatives in egs. (C.66) and (C.73), derived in
appendix C.3. As in the genus-zero case, having the explicit form of the matrices at
hand, the partial differential equations (5.21) might be solved by Picard iteration,
see e.g. ref. [39] for the case p = 1 and ref. [65] for general p. In order to calculate
the genus-one, open-string corrections, this is not necessary and can simply be done
using the genus-one associator eq. (3.123) and the type-(n,2) integrals, which is

shown in section 5.3.

The system (5.21) is reminiscent of the elliptic KZB system on the p-punctured
torus investigated in refs. [40,116], where a certain set of Lie algebra generators w;,
yf, and e’; is considered: they generate the elliptic braid group t; , of the p-punctured
torus. In particular, the generators of the genus-zero braid group satisfying the in-
finitesimal braid relations (4.56) are recovered from the commutators e/ = [z}, yJ].
Moreover, the elliptic KZB system in ref. [40] incorporates the k-fold commutator
)t =[xl ... [z, yl]...], in the place of our matrices 75 (x"*). However, in
our case, we do not a priori impose any restrictions on the matrices rCha(:c;j’k) and
r;ha(e’;). In particular, our investigations suggest that rCha(a:;f’k) is not a nested
commutator such as the elements :1;;3’“. Thus, it is doubtful and far from clear
whether r&(x¥*) and r*(ek) are indeed representations of the genus-one braid
group. Commutation relations of these matrices may be derived from commuting
partial derivatives, which lead in the genus-zero case to an a-posteriori confirma-

tion that the corresponding matrices satisfy the infinitesimal braid relations (4.56).
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At genus one, this approach is much more technical and only leads to a subset of
the commutation relations satisfied by the elliptic braid group t,,, see for exam-
ple ref. [3] for the case of two punctures p = 2 and ref. [65] for the commutation
relations for general p. Despite these open questions regarding its embedding into
the mathematical literature, the system (5.21) will simply be called an elliptic KZB

system on the p-punctured torus.

The genus-one chain integrals of type (n, 1) are the n-point, open-string integrals

ZT at genus one defined in eq. (5.7), i.e.

Zna (LAY si}) = Zi (0375 {s43}) (5.22)
where (2,...,n) = A!, such that the corresponding vectors agree:
Z5, 1 (5 {sij}) = Z3(7: {s45}) - (5.23)

5.2.2 Genus-one, type-(n,p) admissible integrals Shp

As for the Z]-integrals and the more general type-(n,p) chain integrals Z] , the
genus-one analogues of the Selberg and admissible integrals can also either be de-
scribed in terms of infinitely many integrals or finitely many generating series at
the expense of introducing the auxiliary variables 7. The former approach has been
chosen in ref. [2], which lead to a recursive definition of type-(n,p) integrals with n
punctures, p of which are fixed at distinct values, including the gauge fixed puncture
2 = 0 as well as 29, ..., 2,. These genus-one Selberg integrals of type (n,p) are given

by
S <e(1;3—:—11) - e(% 122500y Zps {Sij}>
= /OZP dzp+1 95?51?)%1 S D1, (s 200 skin) (dﬁé) - e(Y;L);Z27 ey Zpls {Sij}> , (5.24)
where e is again an admissible map, i.e.
1<e(k) <k (5.25)
for k = 2,...,n, and the empty integral is the genus-one Koba—Nielsen factor

Snn (22, 2n; {si5}) = KNI, - (5.26)
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Their generating series contain the auxiliary variables 77 = (12, ...,7,) and are the

dnp distinct genus-one admissible integrals of type (n,p)
T +1 ... n L=
Snp (e(l;Jrl) .. e(n)o 3Ry e 7Zp7 n; {S”LJ})

ZP T 2 n —
—/ dzp1 Fepriyp1(me(p + 1)) Sy i ( (or2) ey 720 va—l-l;n;{Sij})

/ H dz; KN7, ,, " ( (p+1) ( ) 77) (5.27)

”Pz p+1

where for k = 2,...,n, the variable

ne(k) = Z i (5.28)

E|m>0 em (2)=k

is a sum of the auxiliary variables n; such that there exists an integer m > 0 with
e™(i) = e (e(i)) = k. The product

p

O (efan) - elmy) =97 (etiry = elony171) = [ Fetanya (me(as) (5.29)

=2

with 1 < e(a;) < a; is the genus-one analogue of the admissible product of fractions
defined in eq. (4.20), an admissible product of Fisenstein—Kronecker series. The
particular linear combinations 7. (k) of the variables n; in the definition (5.27) follow
straightforwardly from the graphical representation of the corresponding products
of Eisenstein—Kronecker series described in appendix 6.1.2. The components of
the genus-one admissible integrals in the expansion with respect to the auxiliary

variables are the genus-one Selberg integrals of type (n, p):

T p+l .. on Ja..
Sn,p,(kp_H ..... kn) (e(p—i—l) .. e(n)> 72y Zp; {S’LJ})

[ST ( 12)4;11) e&) S22y Zp3 T {s,»j})hkp+ (5.30)

Dt )
In analogy to the genus-zero integrals leading to eqs. (4.64) and (4.65), the genus-one
admissible integrals S} ) may be expressed as a linear combination of chain integrals

based on the identity

@’ e(A _ﬁSO < ) ﬁ@ < Ae(k ) (5.31)

k=1 k=1

of admissible and chain products formed by the Eisenstein—Kronecker series, where
A = (p+1,...,n) and A.(k) is defined in eq. (4.24). The linear combination 7. (k)
of the auxiliary variables 7; in eq. (5.28) ensures that this identity of Eisenstein—

Kronecker series holds. This leads to the following relation between genus-one ad-
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missible and chain integrals:

S;;p(e(A 22y -y 2y 7] { J})
= Z5 (L) oooos (B oy) 52205 20577 {3 ) - (5.32)

Combining the d,, , integrals on both sides into a vector, the linear combination (5.32)

can be written as a matrix transformation
S;p = B;p Z;p (5.33)
where

ST (227 SRR Zp) = S;p (ZQ, . Zp;ﬁ; {Sij}>
(ST ( ;LZ):-ll) e(:Lz) 322y« 5 Zps ﬁ; {Sw})> (534)

1<e(k)<k
is the vector of admissible genus-one integrals and Z7, , the vector of chain integrals
from eq. (5.20). The transformation (5.33) translates the two classes of integrals
defined in refs. [2,3] into each other. Since the conversion of the genus-one products
©" from admissible to chain products in eq. (5.31) is exactly the same as in eq. (4.64)
for the genus-zero products ¢, the genus-one transformation matrix from eq. (5.33)

agrees with the genus-zero matrix from eq. (4.63):
B}, = Bniopi2- (5.35)

The shift in the labels comes from a redundancy of the puncture at infinity and

integration-by-parts identities at genus zero discussed in appendix 6.2.4.

The vector Sj, , also satisfies an elliptic KZB system on the p-punctured torus:

T am am ’L k T
0,87, (22, ,2) = ( d +ZZ d ~)>Sn7p(22,...,zp),

k>0 j=1
JFi

2mi0, S, , (22, 2p) = ( — radm(e0) 4 Z (1-— adm(elg)

k>4

+) (k—1) Z podm (grak= 1)grq>ST (22, ..,2) .

k>2 r,q=1
r>q

(5.36)

The corresponding matrices are related by the transformation matrix By, , to the
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system (5.21) satisfied by the chain integrals according to

rn (@) = By, r(2) (B],) "
rm (k) = By (@h) (B],)
radn(eh) = BT, v (eh) (B],) (5.37)

Again, the matrices 5™ (/) and 3™ (ey) are linear in s;; and, up to 73" (e)) with
(o in the diagonal, of degree k—1 and k—2, respectively, in the auxiliary variables
7. In ref. 2], the z;-derivatives of the system (5.37) have been expressed in terms of

the genus-one Selberg integrals S;7p7(kp ) frOM €q. (5.24).

5.2.3 Examples
Type-(3,2) integrals: Z3, and S,

A simple example is the basis vector Z3, = S3, of type-(3,2), which will lead to
the two-point, genus-one string integral from eq. (5.12), cf. eq. (5.106) below. Note

that for this example, the transformation matrix Bj, from eq. (5.33) is the identity:
By, = 1,. (5.38)

The vector is given by

T _ Zg,2((173)7 (2);22) . i ) - F13(773)
) (zg,2<<1>, 2.9 22>> -], o <F23<n3>) o)

and satisfies, according to the closed formulee (C.67) and (C.74) below, the following

partial differential equations

- 1 0 Fou(—
822Z§2(22) _ (312+823)921 5230, So31'21 ((1)773) Z§’2 (zg) 7
’ s13F%1(n3) —(812+513) 991 + 5130y,

S 1 .
2mi0; Z3 5(22) = (5(313 + 823)3775 - 2§23123) Z55(2)

—(812+823)9é21)—313@(773) 3238,,3F21(—773) -
(2) Zs3, (22)
51305 F21(13) —(S12+513)ga1 —S230(13)
(5.40)

Expanding the Eisenstein—Kronecker series and Weierstrass p-functions in the ma-

trices above leads to the elliptic KZB system (5.21) (with 2 = 22"°) on the twice-
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punctured torus:

T cha k T
822Z3,2<22) = (Z 7’3h (5 . k)9§1)> Z3,2(22),

k>0

2mi0, 7 () = (— () + 31— k) Gurg(eh)

k>4

+ 3k — 1) (a3t 1)95’?) Z3, (), (5.41)

E>2
where
cha/, 21,0y adm 21 0 . 5238773 823/773
T ('r'cQ >— 3 - )
513/773 513&73
Tgha(mgl 1) _ ngm 21, 1 — (812 + 523) So3 7
—(s12 + 513)
ha, 21k d 21,k )k_1523
i@y ) = 5t (@, ) =5 , k>2, (5.42)
513 0
and

0
() = i eh) = ( ) R 513



110 CHAPTER 5. OPEN-STRING CORRECTIONS AT GENUS ONE

Type-(4,2) integrals: Z7, and S7,

The type-(4,2) integrals are relevant for the genus-one, three-point amplitudes.

They define the vectors

¥
¥
z2 z3 (p
0 0 '
¥
'

= /xz dxs /ng dzy KNTgs4 F13E773;F24(n4; .

and

F F14(n4)
F Foy(n4)
S Fis(ns) F
_ / dz / dzy KNI, | F13tm) Faaln) | (5.45)
0 0 F3(n3) F14(n4)
Fy3(n3) F2a(1a)
Fy Fs4(ny)

Repeating the calculation (4.77) with the genus-zero admissible and chain products

@ replaced by the genus-one products 7, the transformation matrix in
52,2 - Bz,z ZZ,2 (5'46>
turns out to be exactly the same as in the genus-zero calculation,

B, = B, (5.47)
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in agreement with eq. (5.35). The explicit elliptic KZB system on the twice-
punctured torus satisfied by Z7, and the matrices appearing therein can be found
in ref. [3].

5.3 Genus-one, open-string recursion

Having introduced the above classes of integrals, the recursion from refs. [2,3] can
be conveniently formulated and the schematic eqgs. (1.7) and (3.126) can be written
out properly. Ultimately, it relates the (n—1)-point, genus-one Z”_,-integrals to the
(n+1)-point, genus-zero Z,,i-integrals. This recursion is the genus-one analogue
of the recursion from section 4.3 and based on the genus-one associator eq. (3.123)
involving the elliptic KZB associator. It can either be formulated in terms of the
admissible integrals [2] or the chain integrals [3], in this thesis, the latter approach
is presented. The corresponding translation between the two equivalent methods

follows from the results in subsection 5.2.2.

5.3.1 Elliptic KZB system on the twice-punctured torus

Similar to the genus-zero recursion, instead of working with the genus-one integrals
of type (n—1,1), which yield according to eq. (5.22) the (n—1)-point, open-string
integrals at genus one, they are augmented by an additional unintegrated puncture
in refs. [2,3]. Thus, the d,» = (n—1)! genus-one chain integrals of type (n,2) are

considered,

Z;,Q ((17 Al)? (27 AQ)) = Z;,Q ((1’ Al)ﬁ (27 A2); 223 ﬁ; {Sij})

n

- / [[ds KNG, o (LAY (2,45, (5.48)
Anz =3

where
(A, A*) = 0(3,4,...,n) (5.49)

is a partition into two possibly empty subsequences with ¢ € 5, 5 acting on

3,4,...,n. The integration domain
Amg = An72(22) = {O <2y < Zpo1 < - < 23< 22}, (550)

cf. figure 5.3, does not cover the whole A-cycle of the torus and is parametrised by

the additional unintegrated puncture 0 < z, < 1.
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2] = 0/:’ Zn 23 K 1l=2x

Figure 5.3: The twice-punctured torus associated to the integrals Z7, from
eq. (5.48). The two unintegrated (red and violet) punctures are z; and z;. Its
parametrisation on the complex plane is depicted on the right-hand side. The n—2
integrated (blue) punctures zs, . . ., z, define the integration cycle A, o(z;) (blue line)
from eq. (5.50) and the integrands of Z7 , are defined on the n-punctured torus (vi-
olet, red and blue punctures). The unintegrated (violet) puncture z; = 0 is canon-
ically fixed, while the second unintegrated (red) puncture zy can be varied on the
A-cycle 0 =21 < 29 < 1 = 2.

The vector Z] , (z) formed by these integrals satisfies an elliptic KZB system

on the twice-punctured torus [3]

0.,Z <Z7“Cha > k 921 )Z:L,Q (22) (5.51)

k>0

2mi0; 7, 5 (22) = < — 1 (€3) + ) (1= k) Geryf*(e3)

k>4

+ > (k= (a3 1>g§’?) Z7 (%) (5.52)

k>2

which follows from eq. (5.21). The matrices r<"(z2"*) and r

determined by the partial derivatives (C.67) and (C.74) derived in appendix C.3.

They are homogeneous of degree one in the Mandelstam variables and, thus, linear

cha(ek) are explicitly

in o
deg, (ri™(®3") = 1. (5.53)

Counting the k-th derivative with respect to an auxiliary variable 17 as degree minus
k, reha(x2t%) and reha (k) are homogeneous of degree k—1 and k—2, respectively, in
the auxiliary variables 77 appearing in the chains of Eisenstein—Kronecker series 7.

cha (

Again, one exception is the diagonal of r"®(€J), which contains factors of (s.

In particular, eq. (5.51) is an elliptic KZB equation of the form (3.112), such

that the whole machinery from section 3.3 can be applied: the regularised boundary
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values Cf(Z] ,) and C7(Z7 ,) are related by the genus-one associator equation
Ci(Z5,2) = %,C5(Z,,) (5.54)

with the explicitly known alphabet &, = (reha(x3""), ré(23""),...). The second
partial differential equation (5.52) with respect to 7 will be used to calculate the
boundary values. In the next two subsections, the lower boundary value Cj(Z], ,)
will be shown to contain the (n+1)-point, open-string integrals at genus zero and
the upper boundary value C7(Zj ,) to contain the (n—1)-point, open-string inte-
grals at genus one. Thus, using the linearity (5.53) and expanding the associator
equation (5.54) in o/, it can be used to calculate the o/-expansion of the open-string
integrals at genus one from the open-string integrals at genus zero. The calculation

only involves matrix operations of explicitly known matrices.

5.3.2 Lower boundary value

The asymptotic behaviour as z — 0 of the integrals in eq. (5.48) can be determined
using the change of variables z; = zox; for 1 < ¢ < n, such that ; = 0 and 25 = 1.
Considering the logarithmic divergence of fij in eq. (3.96), the Koba—Nielsen factor

behaves as

KN71—2...n(217 ey Rn; {Sij})
— (_271-@'22>—812...n6812‘..nW(1,0) H "Iij

1<i<j<n

514 O(z2)) , (5.55)

such that in the following regularised limit, a (n+1)-point, genus-zero Koba—Nielsen

factor (4.7) is recovered:

lim (—27izg)*12" KNTy (21, .., 205 {5ij})

20—0

= 52O KNy (21,0, 20 {845)) - (5.56)
The corresponding n+1 punctures on the Riemann sphere are
r1=0<x,<Tp 1< <x3=1<2xp11 =00, (5.57)

where an additional puncture z,,; at infinity has appeared. Geometrically, by
rescaling z; = z9x; and letting zo — 0, the lattice points Z + 7Z of the torus
C/(Z + 7Z) split into the two punctures x; = 0 and x,; = oo on the Riemann
sphere: the lattice point at the origin becomes x; and stays at the origin, while
all the other lattice points merge to infinity, which results in the puncture x,1,
cf. figure 5.4.
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Im(z) , Im(z)
A , /1 + A e
T =21 / T =21
B B R »-- Tp+1 = 0
1 1
1 !
1 1
1 /
1 1
// ( 22 //
- 4 »Re(z) : —Re(z)
Zl:(),’ Zn z3 ,’152’1 x1 =0 T T3 19 =1

Figure 5.4: The change of variables z; = zox; and the limit zo — 0 degenerate
the unintegrated (red and violet) punctures z; and zo in the integration domain
A, 2(z;) (blue line) on the left-hand side to the two unintegrated (red and violet)
punctures z; and o = 1 in the integration domain A, ;;3(x;) (blue line) on the
right-hand side. The other representatives of the congruence class of the puncture
21 + Z + 77 on the torus degenerate in this limit to infinity, which yields the third
unintegrated (violet) puncture x,.;. Hence, a three-punctured Riemann sphere
is recovered with the canonically fixed (violet and red) punctures (xy, 2, Tpe1) =
(0,1, 00). Correspondingly, the Mandelstam variables s;» associated to the auxiliary

puncture 25 is the genus-zero Mandelstam variable of the puncture zo = 1.

The asymptotic behaviour of the differential form in the integral from eq. (5.48)
without the Koba—Nielsen factor is governed by the simple pole of the integration

kernel

1L0() ifk=1,

g9z =1 (5.58)
O(1) otherwise,
for k = 1, such that
1
F(z,n,7)= 2 +0(1). (5.59)

These poles ensure that the genus-zero differential forms, e.g. the Parke—Taylor
forms (4.9), are recovered for z, — 0: the factor z~? from the change of variables
z; = Zox; in the integration measure can only be compensated by the simple poles
in the Eisenstein—Kronecker series in the chains ¢7. This leads to the genus-zero

chains ¢ with respect to the new variables z;, i.e.

P (L, AN (2, 4%) [ daw = (1, Ap(2, A%) [ ] da.- (5.60)
k=3 k=3

To conclude, the genus-one string integral in eq. (5.48) has the following asymp-
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totic behaviour

lim (—2mizy)* 2" Z7 5 (1, AY), (2, A®); 20; 7; {35}

20—0
_ em..nw(l,m/ [T dzx KNus_o (1, AD)ip(2, A7)
An2 =3
= 6512"'""'}(1’0)2”_’_1,2 ((1, Al), (2, AQ), {SU}) ) (56]‘)

where Z,, 112 is a genus-zero chain integral of type (n+1,2) as defined in eq. (4.51).
Using integration by parts and partial fractioning, it can be written as a linear
combination of such integrals with A' = @&. Therefore, the vector Z7, , degenerates
to the basis vector Z,12 from eq. (4.54) of the genus-zero chain integrals of type
(n+1,2) with A' = @, which in turn is nothing but the vector Z,,; of genus-zero
Zn11-integrals from eq. (4.16):

lim (—27izs) "2 Z7] o (2077 {555 }) = € “UOU G oy Zpgr2({555})

22—0

_ 6812"‘"w(1’0)U0,n+1 Zn+1({5ij}) , (5.62)

where Uy 11 is a (n—1)! x (n—2)!-dimensional matrix implementing the integration-
by-parts and partial-fractioning identities among 7,112 ((1, A'), (2, A%); {s;;}) with
Al +£ @ and A' = @. Moreover, the vector Z,,1({s;;}) is related to the (n+1)-point

genus-zero string corrections by the invertible transformation in eq. (4.17).

In the remainder of this subsection, it is shown that the regularised boundary

value

C3(Z},2) = lim (=2mizy) """ D 27 o (203 7 {s5}) (5.63)

20—0

indeed degenerates to the limit in eq. (4.54), such that
OS(Z;,Q) = 6812"'”w(1’0)U0,n+1 Zn-i-l({sij}) ) (5.64)

reproducing the (n+1)-point genus-zero string integrals. This is where the partial
differential equation (5.52) with respect to 7 is used. Equation (5.64) can be shown

by proving the following eigenvalue equations satisfied by the matrix Uy ,,+1 [3]:

TZha(w?’l)Uo,nH = —s12.2Uon+1
rfzha(eg)Uo,nH = 2@ s12.:U0n+1 5
(r;ha(e’;) + rgh%m?”f‘l)) Upns1 =0, k=4, (5.65)

The first of these equations shows that the exponent —r;ha(:ngl’l) in the regularisa-

tion in eq. (5.63) projects out the appropriate eigenvalue s12__, in the exponent of the
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regulating factor in eq. (5.62). The proof of the eigenvalue equations (5.65) makes
use of the continuity of (—2mizy)*12-"271i0,Z} , at 2, = 0 based on the absence of
singular terms in the partial differential equation (5.52). This allows to interchange
the order of taking the limit 2o — 0 and the derivative 27i0, of (—2mizy)*12-"Z] ,,

which leads to the two equations

lim (—27izg)*1> " 2mi0, Z7, , (22)

29—0
_<_7,:Lha( 0) — Gy rha( 21k 1 +Zl_ (cha( k) 4+ cha(wglk 1)>>
k>4
6812”'"w(1’0)U07n+1({Sij}) Z i1 ({5i5}) (5.66)
and

2m10; hm( 2mizg) > 2] o (20)

2o0—0

= 512..0(G2 —2G)e™> IOU G ({845 }) Znga ({5451) (5.67)

respectively, where for k£ > 2 the relation

hm gék) = — Gy (5.68)

among the Eisenstein series G, and the integration kernels ¢*) has been used. Re-
quiring that both lead to the same result and comparing the coefficients of G, indeed

yields the eigenvalue equations (5.65).

Example for Z;,z

The above results can nicely be exemplified on the type-(3,2) basis vector from
eq. (5.39). The limit (5.62) results in

1
lim (—27iz29)*"** Z73 »(22) = e122w(1,0) / dzs KNjo3 <xi3>

20—0 0
23

_ 651230-)(1,0) <Z472((17 3)a (2)7 Z2)>
Z4,2((1)> (27 3)3 Z2>

- ( 1) Zil{s), (5.69)

where Z, is the genus-zero chain integral that is proportional to the Veneziano

amplitude in eq. (4.8):

Zi({sij}) = —LF4(a’ _ _if(l — 513)'(1 — s93) |

593 © so3 (1 — 813 — S93)

(5.70)
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Hence, the lower boundary value from eq. (5.64) evaluates to

1 I'(1 — (1=
CS(Z;,—,Q) — 68123w(1’0)U074 (__ ( 813) ( 323)> ’

5.71
So3 I'(1 — s13 — S23) ( )

where the genus-zero, four-point integration-by-parts matrix is given by

__ 523
Uoi=| ] (5.72)

5.3.3 Upper boundary value

The upper boundary value C7(Z] ,) as zo — 1 can be calculated analogously. First,

n,2

the Koba—Nielsen factor has the following asymptotic behaviour

KNTy (21,5 205 {8i})
= (—2mi(1 — zg)) *12e%1290(10)
[ oo (—gij (fij —w(1, 0))) (1+0(1—2)), (5.73)
ije{1,3.4,...,n}

1<j

where for i,j € {1,3,4,...,n}

Sij ifi<jandi#1,
Sij =4 S1;+S9; fi<jandi=1, (5.74)

Thus, a (n—1)-point, genus-one Koba—Nielsen factor with effective Mandelstam vari-

ables §;; is obtained,

lim (—27i(1 — 22))*2 KNT, (21, .., 2n; {565 })

zo—1

= WO KNy, (21,23, 20, o 203 {835) (5.75)
which is associated to the (n—1) distinct punctures on the torus
21:O<Zn<2n71<"'<22:1§0221, (576)

cf. figure 5.5.
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Im(z) Im(z)
PN , , ™ , /
I T=2 I+ T=2 I T=2 4+ T=2
e Rl T »-- - - »--
1 1 1 1
1 / / /
1 / / /
1 / / /
1 / / /
1 1 1 1
1 Zz %/ 1 1
4 Vi
, —Re(2) f—Re(2)
z1=0" 2z, S 23 J1=2 z21=0/" 2z, S 23 S zm=1l=2z

Figure 5.5: In the limit 2o — 1, the (representatives of the) two unintegrated (red
and violet) punctures z; and z; in the integration domain A, 5(z;) (blue line) on
the left-hand side merge to the single puncture z; + Z + 7Z on the torus. The
result is that the integration domain A, 5(z;) (blue line) with z; = 1 on the right-
hand side, given in eq. (5.76), closes on the A-cycle. Therefore, the effective genus-
one Mandelstam variable s1; = s1; + s9; associated to the puncture 2y +Z + 7Z
acquires an additional contribution to s;; from the genus-zero Mandelstam variable
s9;. This summation of the genus-zero Mandelstam variables to the effective genus-
one Mandelstam variables motivates the geometric interpretation mentioned below

eq. (5.99) and depicted in figure 1.4.

Second, due to the one-periodicity of the Eisenstein—Kronecker series and the
shuffle identity (4.12) of chain products, the product of Eisenstein—Kronecker chains
in Z7, from eq. (5.48) merge to a linear combination of single chains

lim1 (1, A7 (2, A?) = ¢ (1, A" A?). (5.77)
V-
Therefore, the following asymptotic behaviour of the genus-one chain integrals of
type (n,2) is observed’
lim (—27i(1 — 22))8122;2 ((1, AYY), (2, A%); 2077 {Sij})

zo—1
= et [ T ds KNGy (651 700,41 w )
n,2 §=3

— 6812“‘nw(170)Z:—;_171 ((17141 |_|_|A2); {§Z]}) , (578)

which yields a linear combination of type-(n—1,1) integrals, cf. eq. (5.17). Thus,
in this regularised limit the vector Z; , degenerates to the basis vector Z] _,, of

genus-one chain integrals of type (n—1, 1), which in turn is the vector of (n—1)-point,

It is assumed that Re(s1z) < 0 is sufficiently small, such that for any consecutive points
Ziy,-- -, %i, on the A-cycle, the following inequality is satisfied: Re(s;,...;,) < Re(si2) < 0. This
ensures that no rest term appear in this calculation, cf. appendix E in [3]. This assumption holds
without loss of generality, since s15 is only an auxiliary parameter associated to the additional
momentum from the puncture at the point zs. In the recursion below, it will merge with the
genus-one momentum of z; and, therefore, only implements an artificial splitting of the effective
genus-one momentum at zj.
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genus-one string integrals Z, | cf. eq. (5.23). They are related according to

lim (—2mi(1 — 22))*2 Z7], 5 (20 77: {555 }) = e*2*OU 1 Z7 (77 {535})

zo—1

= eSIW(l’O)ULn—l Z, ((1:48451) . (5.79)

where Uy ,,_; is a (n—1)! x (n—2)!-dimensional matrix implementing the linear com-
binations in the shuffle Z7 ;| (1, A" w A%); {5;;}).

The upper boundary value

CT(Z7,5) = lim (=2mi(1 = 25)) 7572 27 o (291 7 {s15) (5.80)
29— ’
degenerates to the limit in eq. (5.79), i.e
Cl(Z}5) = MU,y Z7 (7 {55)) (5.81)

which is a consequence of the first of the following eigenvalue equations of the matrix

U17n_1 [3]

ram (U g = —512U 101
r2 (€U 1 = Uy s (2¢ 512 + r2dm (e Nls,)
(Tadm(eg) +radm(w§1k 1)> Uipr=Us radm ek k>4 (5.82)

n Sij o

where 247 (€})|;,, are the matrices appearing in the partial differential equation (5.21)

with respect to 7 of the genus-one chain integrals Z, 1 ((1, AY);{5;;}) of type
(n—1,1) with the effective Mandelstam variables 3;;. These matrices also appear
in the KZB system of refs. [38,39]. Similar to the lower boundary value, the first
equation ensures that also in the upper boundary value, the exponent —r2d™ (azgl 1)
in the regularisation in eq. (5.80) projects out the appropriate eigenvalue s;5 in the
exponent of the regulating factor in eq. (5.79). The proof is based on the continuity
of (=27i(1 — 22))"22mi0, Z], , at zp = 1, such that the order of taking the limit
2y — 1 and the derivative 2mi0; of (—2mi(1 — 22))*2Z], , can be interchanged. This

leads to the two equations

lim (—27i(1 — 22))*22mi0, Z7, , (22)

zo—1

- <_Tcha(€2) Gy reha (g20A1) +Z (1—k ( cha(eky 4 pcha (g 2Lk= 1)>>

k>4

20Oy ZT ({sy)) (5.83)
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and

2mi0; lim (—27izy)** " Z7 5 (22)

22—0
Sij + 2C1512) + S12 G2 —+ Z 1— Gk ,r,cha ( k)

= Ul,n—l( (rehe cha (€9) )

ez ({si5}) . (5.84)

which follows from the system of differential equations (5.21). Both results can be
equated and the corresponding coefficients of Gy compared, leading to the eigenvalue
equations (5.82).

In order to extract the string integrals Z; , from the boundary value C7(Z7 ,)
in eq. (5.81) a projection can be constructed as follows: the first (n—2)! and last
(n—2)! column vectors of the basis transformation U,, which diagonalises the matrix

cha( 21,1

ré? (x5 ") are determined by the the eigenvalue equations (5.82) and (5.65). They

are the (n—1)! x (n—2)!-dimensional matrices U, ,_; and Uy ,+1, respectively:

cha/,,21,1 —1
Tn (CU ) U dlag( S12y -+ y —81%, . ,\—512.“”, ey —812“.75) Un ,

-

(n—2)! (n—2)!

U, = (Ul,n,1 UO,M) . (5.85)

Accordingly, the (n—2)! first row vectors of U, are the dual vectors of the column

U_l . (Pl,n—1>

Pl,nflUl,nfl = ]1(n72)! . (586>

vectors of Uy ,,_1, i.e.

Therefore, the (n—2)! x (n—1)!-dimensional matrix P, is the correct projection

to extract the (n—1)-point, open-string integrals:

P, 1 C[(Z],) = e M0 Z7 (7 {3,}) - (5.87)

Example for Z;,z

The upper boundary value of the type-(3,2) basis vector from eq. (5.39) leads to
the two-point, open-string integral given in eq. (5.12): the limit (5.79) results in

lim (=27i(1 — 2))** Z3 5 (2; 7; {35 })

zo—1

_ psnaw(10) /O dzs KNT4(3, )<§ iiZi;) (5.88)
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where we have used that for zo = 1 = 0 = 21, due to the one-periodicity, the two
Eisenstein—Kronecker series Fp3(n3) = Fi3(n3) agree and the Koba—Nielsen factor is

given by

KN71—3(§13) = €Xp (-513 (flg —(,d(]_, 0))) y §13 = S192 —I— 513 - (589)

A comparison with the two-point integral

1
Z;(l, 3, 513) = / dZQ KN71—3(§13) F13(773) (590)
0

from eq. (5.12) shows that it is indeed recovered in the upper boundary value (5.81):
C1(Z5,) = e*WOU, 5 Z7(1,3; 513) (5.91)

and the two-point, genus-one shuffle matrix U, 5 is simply

Uy, = G) : (5.92)

Together with the four-point, genus-zero integration-by-parts matrix U4 from

eq. (5.72), the eigenvalue decomposition (5.85) of the matrix r$P®(23"!) from eq. (5.42)
is given by
_ — 0
(S12 + S23) So3 _U, 812 Ugl ’ (5.93)
S13 —(s12 + 513) 0 —s123
where

1 —%23
U3 — (Ul,g U074> - (1 113) . (594)

Therefore, the inverse of the transformation matrix Usj is

U= — ; S13 S23) _ P, (5.95)
’ S$13 + S23 \ —S13  S13 o

which includes the projection

1
P1,2 e —— <813 323) ) (5'96)
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from eq. (5.86), such that

1 1 .
P,,C{(Z3,) = PP (313 823> <1> e 20 77(1,3; 513)
= "2 (0 Z7(1,3; 513) (5.97)

indeed yields the two-point, open-string integral at genus one with effective Man-

delstam variable $13 = s12 + $13, in agreement with eq. (5.87).

5.3.4 Recursion in genus and number of external states

The genus-one recursion from refs. [2,3] is based on the genus-one associator equa-
tion (5.54). Using the results (5.63) and (5.81) for the limits Cf(Z7, ,) and C7(Z7, ,),
respectively, as well as the projection P, in eq. (5.87), the associator equation
expresses the (n—1)-point, genus-one string integrals in terms of the (n+1)-point,

genus-zero string integrals according to the genus-one, open-string recursion

Z;, (71 {5y}) = el 0OPy 1 0% Upnst Zua({545) (5.98)
where X, = (rh(z3"°), reha(a2bh), ... is the alphabet formed by the matrices

determined by the closed formula (C.67). Due to the linearity (5.53) of the matrices

(@3

i in o, the o’-expansion of the elliptic KZB associator is given by its

expansion in word length®

Pl = Z Z rzha(mgl’ml .. .wgl’m’)w(ml, ce,my) . (5.99)

>0 my,...,m;>0

Equation (5.98) is the exact formulation of the genus-one, open-string recursion
schematically described in egs. (1.7) and (3.126). Geometrically, it can be inter-
preted as a gluing mechanism on the level of the worldsheets, depicted” in fig-
ure 1.4 [2]: the elliptic KZB associator effectively glues together two external states
of the (n+1)-point, genus-zero worldsheet to form a (n—1)-point, genus-one world-
sheet. The two external states glued together are the ones that correspond to the
punctures z; and 2o, which follows from their merging in the upper limit 2z — 1
around the A-cycle, depicted in figure 5.5. This interpretation is supported by the
form $;; = s;1+ 842 of the effective genus-one Mandelstam variables associated to the
puncture z; = 2o from eq. (5.74), where s;; and s;5 are the genus-zero Mandelstam
variables, cf. figure 5.4.

In practice, the recursion (5.98) can be employed to calculate the o/-expansion

21,k .
cha on 25" is extended to an algebra homomorphism

to the algebra generated by the symbols :cgl’k

8For notational simplicity, the action of

. This is in agreement with its interpretation in

terms of a representation of the underlying algebra generated by wgl’k

IWith @, 1(a/,7) = el#12nt1=52)0 (MO Py &7, Ug o
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of the (n—1)-point, open-string corrections at genus one as follows:

e First, the minimal order in o/ of the genus-zero string integrals is [30]

0N Zpy1) =2 —n. (5.100)

[0}

e Second, the maximal order of the associator in eq. (5.99) up to words of max-

imal length [, is simply lyax, i.€.

lmax
omax <Z Z cha 21 mro wgl,ml)w(ml, . ,m1)> — lmax . (5101)

=0 m1,...,m;=>0

Thus, in order to calculate the integrals Z7 _,(7;{5;;}) up to a desired order
0o using the recursion (5.98), the words up to order o, +n—2 in the associator

as well as the integrals Z,.({s;;}) up to order o, have to be calculated, i.e.

Z7 ({5} + O((@)™")

6(512...n_512)w(170)

0, +n—2
§ E : cha 21 ,m1 21,my
Pl,n—l ( Ce $2 )w(ml, PN ,m1)> UO,n—l—l

mi,...,m; >0

(Zn+1({sz-j}) +0((a)=>")) . (5.102)

e Third, the sum in eq. (5.102) has still infinitely many terms due to the sum over

ma, ..., my. It has to be reduced to a finite sum as follows: on the one hand, ac-

cording to eq. (5.10) the actual open-string corrections F.*",

-----

appear in Z] _, as the coefficients of the variables 77 = (13, ..., 7,) at total de-

gree
d=hs+ - +hky—n+2. (5.103)
On the other hand, the matrices rn(wgl’k) are of degree k—1 in 17, such that
for each word length I, only words r, (23 "™ ... x5"™) satisfying
mi+--+m—Il=d (5.104)
can contribute non-trivially to F*7 o (03 {si;}).

Putting all together, the (n—1)-point, genus-one open-string corrections can be

calculated up to the order o, using finitely many words of the associator and the
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genus-zero string integrals up to the same order o,:

FP (kaney (03 {Bi3}1) + O(()7 1)

_ (s12...n—512)w(1,0)
= Plig,.. ) (0) | €127
0y +n—2
cha/,,21,m; 21,m;
P, g E rot (s oy T w(my, . my)
=0 mi,...,m; >0

mi+--+my—l=kz+--+kn—n+2

Uoni1 (Zn1({si5}) + O((e)= ) |, (5.105)

where the projection Py, 1, (o) implements the extraction'

of the component
labelled by the permutation ¢ from the vector in the square brackets, form the

expansion in 77 of the corresponding component and takes the coefficient of the

k3—1 ka—1 kn—1

monomial No(34..m) Mo (4.m) =+ o (n) -

5.3.5 Examples
Two-point, open-string correction

To finish this chapter, the two-point, open-string correction ZJ (0)(513) at genus one

is calculated by means of the genus-one recursion (5.98):
Z;(ni%; 513) = 6(813+s23)w(1’0)P1,2 (I)Z\gs U074 Z4({Sij}) , (5106)

which is the example depicted!! in figure 1.4. The matrices appearing in the reduced
elliptic KZB associator Py, ®%, Ug4 are known from the type-(3,2) calculations in
egs. (5.96) and (5.72), and the alphabet X3 from eq. (5.42). The four-point, genus-
zero chain integral Z;({s;;}) is given in eq. (5.70) in terms of the Veneziano am-
plitude. Therefore, the two-point, open-string integral Z7 (ns; §13) can be calculated

from the expansion

_ 1
Z3(ns; 513) = (813 S23> Z Z reha (a2 M w(my, L. my)

S13 1 S23 >0 mq,...,m;>0
_z% (_L [(1 — s3)0(1 — 523)> ' (5.107)
1 s;p D(1—s13— s23)

10See ref. [39] for a discussion on the extraction of the corresponding component. The approach
from [2] works directly with the components and does not require any such extraction or projection
Py, kn)(a), respectively, on the expense of operating with formally infinite matrices and vectors.
11With (13271(0/, T) = 6(313+323)W(I’O)P1)2 (I)sz U0)4.
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The four-point, genus-zero chain integral Z,({s;;}) from eq. (5.70), this reduced
associator acts upon, is proportional to the Veneziano amplitude. Thus, its o'-
expansion is

1 F(]_ — 813)F(1 — 823)

Zi{si}) = ——

So3 T'(1 — s13 — So3)

1 /
i Cas12 + (3512(512 + 523)) + O((o)? (5.108)
23

which can be read of from eq. (4.8). It comprises MZVs and its minimal order in o’
is o%"(Z,) = —1, in agreement with eq. (5.100). Therefore, the expansion (5.107)
reveals the origin of the eMZVs and MZVs in the integral Z] written out in eq. (5.13):
the eMZVs enter via the elliptic KZB associator and the MZVs via the genus-zero
chain integrals. However, using identities among eMZVs to reduce them to a basis
may introduce further MZVs [117].

The actual string correction Fy " (513) to the string amplitude is the coefficient
of n;' in the two-point, open-string integral Z3(ns; 513), cf. eq. (5.10). In order to
calculate it up to and including second order in o/, i.e. 0, = 2, eq. (5.105) can be

used. The projection Py, simply extracts the coefficient of 73 ', which leads to

30 (313) + O((a)?)

(s13+s23)w(1,0)

=e
1 ( > cha/ 21,m1 21,my
—— | S T Ty Xy ) wimy, ..., m
513 + 523 13 923 [Z ml;po 5 (x5 2 w(my 1) B
mi+-- 7+77nl =1 s
__s23 1
( i913> (—S— —+ C2812 -+ C3812(812 =+ 823)) + O((O/)B) . (5109)
23

The contributing sum of the elliptic KZB associator is given by

z Y et mzlwml,...,ml)]

mi,.. ,ml>0
mi—+--+m;— [=—1

= 15 (@50 w(0) + 5 (23" @3 )wl(0,1)

_{_,rgha (wgl ngl ,0,_.21, O‘i‘wgl ,0 gl 0$21 2) (0’ O, 2)_|_T(2:ha( gl Owgl 2,21, O)W(O 2 0)

—1
M3

+T§ha (wgl lwgl 121, O+m§1 ,0 21 13221 1) (07 ]_7 1>+T§ha< 21, 1w§1 ,0 21, 1)&)(1 O 1) B
3

= lim 157 (25) + 1" (w3, @3 )(0, 1)
n3—
#1881 03, 280) (0,0.2) (el 0ad )

1
4+ rgha ([m%l’l, 211 2L0] < Co+ wO 1)2 +§w(0,0,2))], (5.110)
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where identities among eMZVs have been used and the multiplication with n3 from
the left and the limes 13 — 0 simply pick the coefficients of n; ', while trivialising
any remaining derivatives. From eq. (5.42), the commutators appearing above can
be evaluated. For example, the first two yield — if sandwiched between the matrices

P, and Uy 4 — the following results:

1 _ s
. cha 21,0 o
e (313 323) lim ng 5™ (x5 ) 513 | = —g93,
n3—0

S13 + So3 1
; <513 523> lim 73 rgha([:cgl’l, w%l’o]) _z%: = —So3(s13 + s93) . (5.111)
S13 + So3 n3—0 1

Using the sum (5.110) in the expansion (5.110) leads to the o/-expansion

open [~ ~ W(O, 07 2) 5C2
Fyh () = 1+ 85 (5552 + 22 ) + O((@)* (5.112)
where $13 = s12 + s13. These are indeed the lowest order terms appearing in the
coefficient of ™! in eq. (5.13). Further examples up to the genus-one, four-point

integrals can be found in refs. [2,3,39].



Chapter 6

Graph products and integrals

In this chapter a mathematical tool is constructed which is crucial to conveniently
formulate and derive various results presented in this thesis. The content and con-
ventions are new, but based on the graphical formulation introduced in ref. [4] and
heavily used in ref. [3]. It is a graphical tool to describe products of functions
which are antisymmetric and satisfy an identity of the same structure as the Fay
identity (3.80), this e.g. includes partial fractioning (2.12). Two examples of such
functions are the fraction 1/x;; and the Eisenstein-Kronecker series Fj;(n) from
eq. (3.81) depending on the difference z;; = x;—x; of some variables. This tool cap-
tures the combinatoric structure if these identities are applied recursively on such
products. On the one hand, this chapter is intended for readers interested in the
technicalities appearing in the derivation of the closed formulee for the differential
systems satisfied by the genus-zero and genus-one, type-(n,p) integrals introduced
in section 4.2 and section 5.2. On the other hand, it is shown how these classes
of integrals, constructed from the fraction 1/x;; or the Eisenstein-Kronecker series,
respectively, and their properties are generalised to generic totally antisymmetric
functions satisfying a Fay identity. Such a generalisation is expected to be beneficial
for the description of open-string recursions at higher genera and maybe even for

other theories.

In section 6.1 the graphical representation is introduced and two bases of such
products are identified which generalise the chain and admissible products from
egs. (4.10) and (4.20) appearing in the genus-zero, open-string corrections and from
egs. (5.8) and (5.29) at genus one. Moreover, various identities of such products
are shown and the two bases are related to each other. The generalised admissible
and chain integrals of type-(n,p) constructed from totally antisymmetric functions
satisfying a Fay identity are described in section 6.2. In particular, closed formulae
for their partial derivatives are given, which yields a differential system similar to
the elliptic KZB systems from egs. (5.21) and (5.36).

127
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6.1 Graphical representation of generating series

Let us consider a function f(x,n), which is meromorphic in both variables z,n € C,

totally antisymmetric!

fle,n) = —f(=z,—n) (6.1)

and satisfies the Fay identity

f(xkhni)f(xkja 77j) = f(ﬂﬁki,mj)f(fl?ija 77j) + f(-fkj,mj)f(ﬂfju ni) , (6.2)

where x;; is the difference z; — z; and

Nijok =i + 15 + - 1. (6.3)

In practice, such a function will be considered to be a meromorphic function of an
auxiliary variable 7; associated to some puncture x;, while the first argument is a

difference x;; of two points x; # x;. This will be denoted by

fiz(m;) = iz, ;) (6.4)

such that the Laurent series of f;;(n;) with respect to n; generates a family of
(k)

ij

Fim) =D _gint™, me. (6.5)

k>0

meromorphic functions g, = g(k)(a:ij) of the difference z;;:

Two examples of such functions f, relevant for this thesis, are the Eisenstein—

Kronecker series F' defined in eq. (3.71) and the fraction 1/z with trivial n-dependence.

6.1.1 Graphs of generating series

A graphical representation for products of functions f;;(n) satisfying the antisym-
metry (6.1) and Fay identity (6.2) can be constructed as follow: first, a finite tuple
of distinct punctures = (x1,...,x,) € C" defines the vertices, to each of which an

auxiliary variable n; = n(z;) is assigned. The map 7 is defined by its image

7=, m) = (1), n(zn)) = n(7) (6.6)

on the tuple Z. Second, each tree graph v with vertices z(v) C & has edges e;;(7)

from z; to x; # x;, which have a certain weight w;;(y). The weights w;;(y) are

!The same construction can also be defined for totally symmetric functions f(z,n) = f(—x, —n).
Additionally, the meromorphicity in x can be given up as well.
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defined by the auxiliary variables n(z(y)) C 7 associated to the vertices z(7) as
follows: the weight of a non-existing edge is zero and for each connected component
Ci(y) of v =, Ci(7), the outgoing weights w;;(y) and incoming weights w;x(7) at

a vertex x; € x(Cj(vy)) in the component Cj(7y) satisfy the continuity condition

doowyM=m+ Y, wily), (6.7)

ziex(Cy(y)) zr€x(Ci (7))

where the sums run over all vertices z(Cj(y)) of the connected component Cj(7).
Thus, the vertex x; acts as a source and contributes n; plus all the incoming weights
to the outgoing weights: the weights accumulate as one traverses the edges according
to their direction, cf. for example the graphs depicted in egs. (6.13) and (6.22) below.
Summing over all vertices z; € x(Cj(7)), the condition (6.7) leads for each connected

component Cj(7y) to an additional condition on the auxiliary variables

Z n; =0, (6'8>

nj€N(z(Ci(7)))

where the sum runs over all auxiliary variables 7; associated to the vertices in the
connected component C;(7y). The set of directed tree graphs 7 with such weights

—

satisfying the continuity condition (6.7) is denoted by G(Z, 1)

Graph products
To each graph v € G(Z,7), a product of functions f;; can be associated. The
resulting product, defined and denoted by

fn="11 Fiws(), (6.9)

1<i,5<n
w;j (7)#0

is called graph product (associated to ). A graph consisting of one vertex only,
without any edges, is mapped to one and the function f;;(n;) is for example obtained
by?

o) =1 ((ea ) (6.10)

For a graph « with more edges, the definition (6.9) instructs to apply eq. (6.10)
to each edge separately to obtain the graph product f(v). The free abelian group

2If the vertices & are known or generic variables, any vertex z; € & in the graphs is simply
represented by its index 1.
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generated by the image of G(Z,7) under f is denoted® by

Gy(@m) = (f(v) [ v € G(Z M)z (6.11)

=

Now, let us consider the free abelian group (G(Z,1))z generated by the graphs
and the following two actions on any edge and its weight. For a graph v € (G(Z,17))z
the first operation is the reversal a;; : (G(Z, 7))z — (G(Z, 7))z of an edge e;;:

77. _7”.
aij(i.g_.j)z—w;.j, (6.12)

and the second operation is the shuffling Fj;; : (G(Z, 7))z — (G(Z,1))z of two

incoming edges ej; and ey;:

i J ion o J i J
k k k

Both, the reversal a;; and the shuffling F},;; preserve the condition (6.7) on the
weights of the graphs and, thus, are indeed maps to (G(Z,7))z: the reversal of
an edge of a graph v leads to the weight w;;(a;;(v)) = —w;;(7), and the shuffling
t0 Wi (Frii (7)) = wii(7y) + wii () and wyj(Fii;(7)) = 0 for the first graph on the
right-hand side of eq. (6.13) and for the second graph the same with ¢ and j ex-
changed. Thus, the result of both operations preserves the condition (6.7) and can
be applied to any subgraph of a given graph. If the map f is linearly extended to
(G(Z,7))z, the operations (6.12) and (6.13) represent the antisymmetry (6.1) and
the Fay identity (6.2): these identities of f are equivalent to

foaij=1f, foFy;=1Ff (6.14)

—

as maps (G(Z,7))z — G(Z,7). Thus, the operations a;; and Fy;; are also called
antisymmetry and Fay identity (on graphs).

Graphs of f

An equivalence relation on graphs 1,72 € (G(Z, 7))z can be defined by whether 7,
and v, are related by a finite number of applications of the antisymmetry a;; and
Fyi;. In order to capture possibly further identities of a specific choice for f in terms

of operations on graphs as in eq. (6.14), the more restrictive definition

nlr=lely & fn)=fr) (6.15)

3The calligraphic letter G is used to denote objects consisting of graphs, e.g. G(¥,7), and the

non-calligraphic G for products of functions, e.g. G (%, 7)
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is used to construct equivalence classes [y]; on (G(Z,17))z. However, unless specific
examples are considered, it is assumed that f does not satisfy further relations than
the antisymmetry and Fay identity, such that the statements derived below are valid
for generic functions f. The free abelian group generated by all equivalence classes

is denoted by

Ge(@,m) =y [ v € G(& 7))z - (6.16)

By definition, the action of f([y];) on any element [y]; € G;(Z, 1) is well-defined
by its action f(v) on any representative v € [y]y. The group G;(Z,7) is called the
graphs of f and an element [y]f is referred to as the graph of the graph product

f().

If it is known which generating function f is considered, by abuse of notation,

an element [v]; is usually just identified by its representatives 7, such that we

write 71 = v, for [y1]; = [72]f as an identity in G(Z,77). With this identification,
the antisymmetry (6.1) and Fay identity (6.2) can be expressed as the following

—

conditions on the edges of the (equivalence classes of) graphs in G(Z, 1)

U/ —j

je—<+e] = je—>—e] (6.17)
and
i J i J dom J
k k k
respectively.
By construction, f is a group isomorphism
. R
Gy(T, 1) = G (T, 17) (6.19)

and we often also identify the graphs « or [y]y, respectively, with their image under f.
With this identification, the function f;;(n;) can be denoted by a weighted, directed
graph

Fi) = et e - (6.20)

If in addition to f, the assignment 7 is known, such that it is clear which auxiliary
variable n; = n(z;) is related to each vertex x; € 7, the weight is sometimes omitted

from the graphical representation, since it is uniquely determined by the continuity
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condition (6.7). In this case, the function f;;(n;) is represented by
fii(Mj) = e—v—ej - (6.21)

An example for a graph product with three factors and the corresponding graph is

i J
k
Sue(ijie) fri(mi) fij(ny) = = : (6.22)
[
The antisymmetry takes the form
je—<—ej — " je—>—ej (6.23)
and the Fay identity
7 J 7 J 1 J
\/ = Q: + :; : (6.24)

For the vertices x(7) of a graph v € G(Z, 7)), the following conventions are used: a
vertex with no incoming and one outgoing edge is called loose point (e.g. z; and
x; of the graph (6.22)), a vertex with at least one incoming edge and no outgoing
edge base point (e.g. x; in the graph (6.22)), a vertex with more than two attached
(either at least two incoming or two outgoing) edges branch point (e.g. zy in the

graph (6.22)).

In the next two subsections, two sets of generators of the group of the di-
rected, weighted tree graphs G;(Z,7) satisfying the antisymmetry (6.12) and Fay
identity (6.13) are presented. Both of these sets of generators and the correspond-
ing images under f are used to describe the structure of the products of functions

appearing in the string amplitudes at genus zero and one.

6.1.2 Admissible graphs and products

The first set of generators are the admissible graphs. These are graphs v € G(Z,7),
such that their edges satisfy the admissibility condition, which states that for each
vertex x;, there is at most one outgoing edge e;; and, if existing, it points to a lower

vertex ¢ < j:

Vj : w;;(y) = 0 except for at most one ¢ < j. (6.25)
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An admissible graph v defines an admissible map? e as follows: for each vertex
z; € z(y) which has an outgoing edge, the value e(j) = i is defined by the unique

outgoing edge e;;:
e(j) =i < j such that w;;(y) #0. (6.26)

Thus, the admissible graphs are of the following form and denoted by

a; i c. ; a;
0 (6&11) e&pp)) — Y e(ai) = ... = e((lj) . (627)
® c(a)

They are labelled by a double sequence

() = (etan) ~ etay) - el@s) < ai, (6.28)

where A = (a4, ...,a,) are the indices of the vertices z(v) with one outgoing edge.

The set of all such admissible graphs is denoted by
G*m(Z, i) = {v € G(, )|y satisfies admissibility condition (6.25)} (6.29)
and the corresponding free abelian group of equivalence classes by
Gy (@, 1) = (sly € G (@ )z (6.30)

Examples of admissible and non-admissible graphs are for & = (z1, 2, 3, x4) and

= (771,772,7737774)

o (

(6.31)

In appendix C.2, it is shown that the admissible graphs indeed generate the free
abelian group of all the graphs satisfying the antisymmetry and Fay identity:

Gy (@, 1) = G(T,7). (6.32)

The proof is constructive and leads to the actual linear combination, i.e. it is an

algorithm which can be applied to any graph v € G;(,7) and yields a linear com-

4See eq. (4.21) for the definition of admissible maps.
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—\

bination in terms of admissible graphs in G3™(Z, 77):

y= ) MY egHm@y), WMmeZ. (6.33)

v €GRAm (&,17)

The result of the above algorithm, i.e. the right-hand side of eq. (6.33), is denoted
by 6™ (7).

The analogous statements hold for the images under f: the graph products of
admissible graphs are denoted by

05 (efar) - etan) = F( (cfar) = ean) (6.34)

and called admissible products of f. For example, the admissible graph in eq. (6.31)
is mapped by f to the product

©r(333) = fi2(n23a) f23(13) foa(ma) - (6.35)

Further examples are the admissible products of fractions f(z,n) = 1/z and the ad-
missible products of Eisenstein—Kronecker series F' defined in egs. (4.20) and (5.29),
respectively (where the simplified notation ¢ = ¢/, and ¢™ = ¢ has been used).

Defining the isomorphic free abelian group of admissible products
GE™(@,7) = (f(v)ly € G*™ (@, 7))z = GF*™(7,77) | (6.36)

eq. (6.32) states that any linear combination of products f(v) € G(Z, 1) can be

written as a linear combination of admissible products f(y) € G4™(Z,7), i.e.
Gy (Z,17) = G4(Z,7). (6.37)

This statement follows from mapping eq. (6.33) via f to graph products, which leads
to exactly the same linear combination: any graph product f() € G#(Z,7) can be

written in terms of admissible products as

foy =) BM"mfe)ea™@n, whez, (6.38)

7 €GHIm (&)

where bi?lm are the integers from eq. (6.33). For example, eq. (4.34) is nothing but
the transformation (6.38) applied to fractions f(z,n) = 1/x. The right-hand side of
eq. (6.38) is denoted by v*™(f(v)).
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6.1.3 Chain graphs and products

The second set of generators are the chain graphs, which are graphs v € G(&, 7))

having at most one incoming and at most one outgoing edge at each vertex z;:

Vi w;;(y) = 0 and wjk(y) = 0 except for at most one ¢ # j
and at most one k # 1,7 . (6.39)

These chain graphs are denoted by
G (Z,177) = {v € G(Z,7)|y satisfies chain condition (6.39)} (6.40)
and the free abelian group of its equivalence classes by
G, 1) = (sl € 6@, )z - (6.41)

Thus, the connected components of chain graphs are of the form of a chain, denoted

nag...ap napflap nap
SO(A) = 0] &—<«—o------ —<—eolp — (] &—<—@ *—<—eo—«—o Uy (6'42>
Gz  Gp—1 a9 Qp—2 Ap—1

and labelled by a permutation A = (ay,...,a,) of a subtuple of the indices of the

vertices Z. To each chain, the associated product of functions f is denoted by

p
er(A) = Flp(A) = [ ] for sai(0iay) (6.43)
=2
such that the identification of ¢(A) with ¢(A) in G{**(Z,77) leads to
p
Hfaiflyai(naimap> = a <o *——e Uy - (6'44>
=2

Two examples of chain products are the chains of fractions ¢ and the chains of

Eisenstein—Kronecker series ¢” defined in egs. (4.10) and (5.8), respectively.

It turns out that similar to eq. (6.32), all the graphs G¢(Z, ) can alternatively

be represented and, thus, are generated by chain graphs
G (@, 1) = G4(2,17), (6.45)

which is proven in appendix C.2. The images of these graphs under f form the free
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abelian group of chain products of f

GF™ (@, ) = (f(Nly € G (@, 7))z ~ G7(2,7) (6.46)

such that eq. (6.45) implies that any linear combination of products f(v) € G¢(Z,7)

—

can be written as a linear combination of chain products f(v) € G3™ (%, 7):

Gy (T, 77) = G4(Z,7) - (6.47)
Again, for each graph v € G¢(Z,7), the algorithm from appendix C.2 leads to a

linear combination in terms of admissible graphs:

y= Y ey egh @), el (6.48)

v €Gha(Z,)

The same linear combination holds for the graph products:

fy =) () e GPUE T, e (6.49)

v egeha (i)

The right-hand sides of eqs. (6.48) and (6.49) are denoted by b(v) and bha( f(v)),
respectively. If for example the graph v is admissible, this is nothing but the trans-
formation in egs. (4.64) and (5.31) from admissible to chain products, which will be

explained in more detail in subsection 6.1.4.

Graph identities

The chain and admissible graphs satisfy various identities if the antisymmetry and
Fay identity are applied recursively. The following three identities are particularly
useful in subsequent calculations, including the derivation in appendix C.3 of the
closed formule for the elliptic KZB system (5.21). Their derivation can be found in
appendix C.1 and ref. [3]. They can not only be applied to the whole graph, but to

any subgraph and to the corresponding graph products and factors thereof.

The first identity is the reflection property:

gO(A) = U] —«—@ - o—<«—o Up
Gz  Ap—1
= (_1> - a; o—>—e------ o——o Uy
az Ap—1
= (=) p(4), (6.50)
where A = (ay,...,a;) is the reversed sequence A = (ay,...,a,) and |A| = p its

length. It is based on the antisymmetry (6.17) and the condition (6.8) on the

weights. Moreover, the same identity holds for the image under f, which is the
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following identity for chain products:

pr(A) = (=) pp(4). (6.51)

The second identity is the shuffling of two branches with a branch point at the

vertex x,.:
ap e °b;, e 00,
s § : by s § : by
(3] b1 a1 b1
= — , (6.52)
T T

cha/7z -

where the sum on the right-hand side is an element of G§'*(%,7) obtained from
iteratively applying the Fay identity to the initial graph until a sum of chains is left.

The corresponding identity on products of functions is
op(r,A)ps(r,B) = ps(r, Aw B) (6.53)

for A= (ay,...,a,) and B = (by,...,b,).

The third identity can be used to shift two labels 9 and 71 in a chain ¢(rq, A, 71, B)

next to each other:

¢(ro, A,r1, B) = 70 &——@ - 0 o b,

e ® by
e (i1 : ap : by
p+1
=y (—pr W
i=1 To
*ai  eb
Q.a'i—l : ap : bl
p+1 L
I ot
=> (-1 , (6.54)
i=1 To

where for the last equality, the shuffle identity (6.52) has been applied. The analo-
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gous identity on chain products is

QOf(To, A7 1, B)
p+1

= Z(—l)pﬂ’lgof(ro, ar,...,a;i—1)@r(ro,m1, (ap, ap_1, ..., a;) W B). (6.55)
i=1

6.1.4 Admissible and chain products

According to eq. (6.45), the admissible graphs can be written as a sum of chain
graphs. This can be achieved by applying the shuffle identity (6.52) to any branch
point of the admissible graph, effectively folding back all the branches. This process
is described by eq. (4.40): given a double sequence (e&) ) with e(a;) < a; defining an
admissible graph ¢ (6&)) € G*m(F 17) with base point i = e(ay), let us recursively

define the sum of sequences
. A . . A
(7'7 e(A)) - <2a jIéJA (]7 e(A)) > : (656>

e(j)=i

For the example (#333597), the following sum of sequences beginning at 1 is ob-

tained:

(
7)) (6.57)

Further examples are given in eq. (4.39). Then, the admissible graph with one single

base point ¢ can be written as the following linear combination of chain graphs:

e (o) =0 (i fy) € G0(a, 7). (6.58)

The same identity holds for graph products: an admissible product with base point

i can be expressed as a linear combination of chain graphs according to
A ; cha/— =
P (e(A)) = @f (Z7 e(él)) € th (':C77]) (659>

Graphs and products with base points

The above translation from admissible to chain graphs and products, respectively,
can be generalised to admissible graphs with more than one base point. For this

purpose, graphs with n vertices ¥ = (z1,2s,...,2,) and the first p base points
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B ={xy,xq,...,2,} for 1 < p < n are considered. The subset of admissible graphs
with base points B is denoted by

G (17, B) € G*(Z, 1) (6.60)
and the chain graphs with base points B by

G (@, 17, B) € G, 7). (6.61)
Their equivalence classes under the equivalence relation (6.15) are denoted by

Gy'™ (%, 11, B) C Gy™ (@, 1) (6.62)

and

G (&, 17: B) C G§™ (&, 1) . (6.63)

Therefore, generic elements of the admissible graphs with base points B, i.e.
Gm(F i7: B), are of the form

AN _ Ae(1) Ae(p)
o (eln) =¥ <e(Ae(1)>> P (e(Aeg))))

al v aj a -\/ aj
l=e(q;) = =e(a;) p=ela)=-=cea)
€ G (T, 11, B), (6.64)

where e is an admissible map, i.e. 1 < e(aé) < aé < n, and the p disjoint, possi-
bly empty sequences A.(i) = (ai, ... ,af A.()) are defined in eq. (4.24) in terms of
e and the sequence A= (p+ 1,p+2,...,n). On the other hand, an element of
Gha(Z,77; B), the chain graphs with base points B, is of the form

® Qlay ® Q)
{ai I
p(LAY) . oA =T .. € G (Z, 71, B), (6.65)

where this time, the p sequences A’ are defined as in eq. (5.18) by a partition of the
image of some permutation 0 € S,,_, on A= (p+1,p+2,...,n), ie.

(AL, A%, A =a(p+1,p+2,...,n). (6.66)
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The admissible graphs G*™(Z, 7; B) can be written in terms of chain graphs in
gcha(x i7; B) by the application of eq. (6.58) to each connected component with
base point i € {1,2,...,p}:

¢<wﬁ%>—¢<'<i >€9m%>,3% (6.67)

From a combinatorial analysis, both of the sets G*™(Z, 77; B) and G%(Z, 7; B) turn

out to have

%mz(n_?! (6.68)

disjoint elements, which are independent generators of the groups Qadm(w 77; B) and
QCha(x i7; B) (assuming f only satisfies the antisymmetry and the Fay identity, but
no further relations which might decrease the number of generators). Note that this
agrees with the number d,, ,, in eq. (5.19) of type-(n, p) chain and admissible integrals
at genus one and the dimension of the twisted de Rham cohomology of F,,1 2,42 in
eq. (4.50) (the shift of two comes from an integration-by-parts redundancy and from

the point at infinity on the Riemann sphere, see also subsection 6.2.4).

Assembling the elements of G*¥™(Z,17; B) and G"*(Z,17; B) given in eqs. (6.64)

and (6.65), respectively, into d,, ,-dimensional vectors

@™ (2, 71: B) = (SD (ﬁx)))

1<e(k)<k
_ Ae(l) Ae(p)
= (e () 2 (40)) e (6.69)
and
o™ (7,7 B) = (¢ (LAY .0 (0.4%)) (i) (6.70)
0ESn—p
the translation (6.67) leads to a basis transformation
@&, 17, B) = B, (T, 7, B) € (G7"(,17; B)) " (6.71)

between the (generators of the) free abelian groups G2*™(Z, 7; B) and G(%,17; B).
This transformation is invertible, since any graph can be written in terms of admis-

sible graphs via the algorithm in appendix C.2, such that

o(#, 17 B) = Boh g ™(E. 0 B) € (P (@i B)™ . (6.72)

The above definitions and statements have an echo under the image of f: the

subgroups of the admissible and chain products with base points B, which are the
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images of Q?dm(:i’, 77; B) and Q;iha(f, i7; B) under f, are denoted by
GY™ (7,1, B) = f(GF™ (@77, B)) C GF™ (&, 1) (6.73)
and
GF™(&,1; B) = f(G7"(Z,7; B)) C GF™(Z,7). (6.74)
They are generated by the entries of the d,, ,-dimensional vectors
oim(@.7B) = @ B) = (s () ) or (40) L 679
and

O (3,7 B) = [ (77 B) = (7 (LAY .01 (0. A7)) (a1, amymoiny » (6.76)

respectively, where A = (p+ 1,p+ 2,...,n). These vectors are related by the

invertible basis transformation

@7 (7,17 B) = Bu,p (7,77, B) € (G5 (7,17, B)) ™ . (6.77)

The matrix B,,, is the same as in the graphical eq. (6.71) and also the same matrix
as in the transformation (5.33) between the genus-one, admissible and chain inte-
grals and with a shift of two in n and p the matrix from eq. (4.63) at genus zero.
Examples for the calculation (6.77) and the matrix B,, , for fractions f(z,n) =1/z

and Eisenstein-Kronecker series are given in eqs. (4.77) and (5.47).

6.2 Graph integrals

The construction of the type-(n,p) admissible and chain integrals at genus zero in
section 4.2 and genus one in section 5.2, which are based on admissible and chain
products of fractions and Eisenstein—Kronecker series, respectively, can be gener-
alised using other generating functions f(z,n) satisfying the antisymmetry (6.1)
and Fay identity (6.2).

6.2.1 Admissible and chain integrals

For this purpose, functions f(x,n) satisfying the antisymmetry (6.1) and Fay iden-
tity (6.2) are considered, which have an expansion f(z,7) = 3,5, 9" (z)n* ™™ of
the form (6.5), where g(m)(a:) is meromorphic with a simple pole at o = 0 and the
other functions g () for k # m are holomorphic. Note that the antisymmetry of
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f implies that ¢™(z) is odd.

The following two vectors of graph integrals can be constructed with such func-

tions: first, one factor of the integrands consists of the admissible cpi}dm(f, 17; B)

or chain products ¢§**(Z,7; B) with vertices Z = (z1,...,,), auxiliary variables

7 = (m,...,n,) and base points B = {x1,...,x,}. The other factor of the inte-

grand is a function u(Z) satisfying the partial differential equation

J#i

= [—Z@ijfij(n)uf(f)] : (6.78)

J#i n

valid for z; € Z, where «;; are complex parameters with Re(w;;) < 0 and which

involves the function ¢). Moreover, for any x;, xj € ¥, the boundary condition

lim up(@) =0 (6.79)

Tj—Tf

has to be satisfied. For example, a product of exponentials of the form

up(7) = us(7, {ci;})

|;i]
= [ e <—Oﬁjlii% ( / dwg(m)($)+log(€))> (6.80)

1<i<j<n

satisfies these conditions. Other solutions, e.g. associated to different conventions to
subtract the logarithmic divergencies in the integrals appearing in the exponentials,

are possible. Second, the integration domain is the real simplex
Anp=Dpp(ar) ={0 <ap <@y < < Tppa < T}, (6.81)

cf. eq. (5.16).

This defines two types of graph integrals: the type-(n,p) admissible integrals
associated to f are defined by

S).,(B) = 8], ,(Bs7; {a;})

_ /A [ dowus (@ @™ (@ 5 B) (6.52)

np k=p+1



6.2. GRAPH INTEGRALS 143
and the type-(n,p) chain integrals associated to f by
z; ,(B) = Zﬁ,p(B'ﬁ‘ {aij})

:/A H day, up(Z) @F°(Z,17; B) . (6.83)

WP k=p+1

The boundary condition (6.79) ensures that these integrals converge® and that a

total derivative with respect to x; € Z\ B vanishes, i.e.

/ ( [T dewup(@) 3 (@, 7, B))
An,

k= p+1
/ H dIk Uf adm / cha(f’ ﬁ, B)
9iln,p k=p+1
—0, (6.84)

where

8Z-An7p:{0<xn<---<xi+1<xi_1<---<xpandxi:xi_1}

—{0<z, < <@y <o <o <xpand T =T} (6.85)

6.2.2 Closed differential equation

The admissible and chain integrals Snp and Z,J;p satisfy a closed partial differen-
tial equation when differentiated with respect to a basis point x; € B. It can be
expressed explicitly using the chain identities from the previous section. The deriva-
tion is based on the calculations in refs. [2-4], generalising the (n,p) = (n,2) result
from ref. [3], and can be found in eq. (C.61), derived in appendix C.3. The result is

the differential equation

07, ZZ% Yo | Z],(B), (6.86)

k>0 r=1
r#i

where the components of the matrices rf;p(wzi) are explicitly given by the coeffi-

cients in the linear combination in eq. (C.61), from which certain properties of these

®The domain of convergence depending on the real part of the variables «;; from eq. (6.78) is
the same as for the genus-zero integrals from chapter 4. In both cases, the only singularities are
due to the simple poles in ") (z) or 1/x, respectively. Therefore, the condition (6.79) is sufficient
to ensure convergence [132].
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matrices may be deduced: they are homogeneous of degree one in the variables a;;,
dega('r’g,p(:c}j)) =1, (6.87)

and homogeneous of degree k — m in the variables n; € 7,
degn(rg,p(:c’,j)) =k—m, (6.88)

where a [-th derivative 8f7i is counted to be of degree —[. The matrices with k < m
are differential-operator-valued, while for the matrices &, > m with distinct labels
r,i,q,7 and any k, [, the commutation relation

[rd (@)l (@) =0, k1>m|{riqj} =4 (6.89)

’np

holds. By the basis transformation B,,, € Matg, ,(Z) from eq. (6.77) with
deg,(By,) = deg,(B,,) =0, (6.90)

the corresponding result for the admissible integrals is immediately obtained and

given by

k
0,81,(B) = | 33 Buyrl (i) Bl | S1,(8). (6.91)
k>0 77:#1

Having the explicit form of the matrices B,,, and r,{ﬂp(a:};") at hand, the above
partial differential equations can in principle be solved by Picard iteration. The only
task left is the calculation and regularisation of the initial values for converging base

points x; — x;, which depend on the concrete form of the function f.

6.2.3 Genus-one example

A prime example of an antisymmetric function satisfying the Fay identity and having

a simple pole in its expansion is the Eisenstein—Kronecker series

fzm) =F(zm7) =) g% (6.92)

k>0

from eq. (3.71), at a fixed value of 7, where only ¢!’ has a simple pole. Denoting
the vertices by 2’ = (z1,...,2z,), this leads to the corresponding graph products in

Gadm(Z ) and GP2(Z, ) and integrals discussed in section 5.2. The chain and ad-

missible products of Eisenstein—Kronecker series are defined in egs. (5.8) and (5.29)
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and are denoted by

p
0 (A) = op(A) =[] Farras (Mas.oap) (6.93)
=2
and
p
QOT (e(jj‘él)) = ¥r (e(ﬁ&)) = H Fe(ai)ai (nai.‘.ap> ) (694)
i=1
respectively, where A = (ay,...,a,), e is an admissible map, i.e. 1 <e(a;) < a; < n,
and

Ej (77> Z’L]a n,T Z gz] Z g Z’L]a . (695>

k>0 k>0

In agreement with the genus-one string amplitudes, the torus symmetry is used

to fix one of the coordinates
z1=0. (6.96)

If additionally the parameters a;; = s;; are identified with the Mandelstam variables

s;; and the factor up from eq. (6.80) is the genus-one Koba-Nielsen factor
up(l, z2,...,2,) = KNI, ., (6.97)

the type-(n, p) chain and admissible integrals associated to F' are simply the genus-
one chain and admissible integrals of type (n,p) defined in egs. (5.17) and (5.27).
Thus, the corresponding vectors from eqgs. (5.20) and (6.83) as well as eqgs. (5.34)
and (6.82) agree:

Z;P (227 Tt ZP) = Zip(B) )
Sy (22, 2) = 8, ,(B), (6.98)
where the base points are B = {0, 22, ..., 2,}. Accordingly, also the matrices in the

differential egs. (5.21) and (6.86) as well as egs. (5.36) and (6.91) agree, i.e.

rcha(mzi) _ T’F (wzl) (699)

n?p

radm(a:}j) = Bnprnp(zck ) B, 1 (6.100)

n?p
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6.2.4 Genus-zero example

The second example of a function f(z,n) satisfying the total antisymmetry (6.1)
and the Fay identity (6.2) is the fraction

flx,m) = é (6.101)

Since it is independent of 7, the weights 77 do not have to be specified. The cor-
responding graph products have already been introduced in egs. (4.10) and (4.20),

these are the chains of fractions

1
p(A) =p1(A) = (6.102)
E TayarTagas - - - Lay_1a,
and admissible products of fractions
Lol
w<e&>>:w;(eé>)=ﬂx( o (6.103)
i=1 ela;),a;
where A = (ay,...,a,) and e is admissible, i.e. 1 <e(q;) < a; < n.

1 1

Describing a basis of the corresponding graph integrals Zj, and S3, is not
as straightforward as in the previous genus-one case: first, in order to recover the
genus-zero string integrals, three of the punctures x1, x5 and x3 are fixed according

to®
(21,29, x3) = (00,0,1). (6.104)

The fixing of 1 = oo introduces a redundancy, since any graph product containing

the label one will vanish, i.e. for 1 € {a4,...,a,}

o(ay,as,...,a,) =0 (6.105)
and for 1 € {ay,...,a,} Ue({ai,...,a,})

0 (elm)  e(an) =0. (6.106)

Second, for the n vertices ¥ = (xy,...,,), the p base points B = {00,0, 1, x4, ..., 2}

and choosing a;; = s;; as well as the genus-zero Koba-Nielsen factor for the factor

SNote that this is a slightly different convention to eq. (4.1) in section 4.1. They can be related
to each other with the corresponding shift ; — x;41 for 1 <7 < n and z,, — x;. The convention
here is more natural in the construction of the general class of graph integrals and also used in the
context of string amplitudes in refs. [4,140]. However, the conventions from section 4.1 are closer
to the genus-one conventions in chapter 5.
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from eq. (6.80),

ui = KNy, | (6.107)

T

the admissible and chain integrals in Z7; : npand S ip are not independent of each other:
since f(z,m) = 1/z is independent of 7, there are 1ntegrat10n by- parts relations
among the integrals due to eq. (6.78). Thus, the vectors Zﬁp and Snp can be
reduced even more, which is e.g. implemented by the matrix Uy, from eq. (5.62).

To summarise, all integrals with the factors
Ae(1) Ae(p)
4 <e<Ae<1>>> - (e(Ae@))) (6.108)
and
o (LA ... (p, Ay) (6.109)

defined in egs. (6.69) and (6.70), such that A.(1), A; # @ vanish. Moreover, inte-
gration by parts can be used to relate for a particular 2 < iy < p an integral with a
non-empty sequence A, (ig) or A;,, respectively, to the integrals with empty sequence
Ac(ig) = Ai, = @. Therefore, for the choice iy = 2 the independent integrals are the
ones which have a factor of (6.108) or (6.109) with

A =A02) =4 =4=0. (6.110)

1 1
This reduces the d,, ,-dimensional vectors Z; , and S5, to the d,,_2,_o-dimensional

vectors
/ H dxr KNos. ., <90f (3,03(A3)) ... 05 (P, ap(Ap))> (43,.... AP (A)
n P = p+1 Uesnip
(6.111)
and
..,% B n A5(3) Ae(p)
Sn,p - /A H dzy KNos. <90f <6(A5(3))> i <€(Ae(p))>)3§e(k)<k ) (6.112)

nP k=p+1

where A= (p+1,p+2,...,n). Up to the shift (1,2,...,n) — (2,3,...,n,1) in the
indices mentioned in footnote 6, these are exactly the basis vectors Z,,, and S,
of the genus-zero chain and admissible integrals of type-(n,p) defined in eqs. (4.54)
and (4.62).

Note that the reduction of the vector SEIL p to S - , trivially carries over to the

transformation matrix B,,, from eq. (6.71) by snnply deletmg the corresponding

components. The same holds for the reduction from Z mp tO Z . Thus, the matrix
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(6.113)

can be obtained from B, , by deleting the corresponding rows and columns, or,

alternatively, according to the same recursive procedure given in eq. (6.67).

-1 ~1
Each of the vectors S and Z  contains a basis of the twisted de Rham

cohomology H" P(F, p, V,—p) defined in eq. (4.47), with dimension

_ _ n—3)!
dim (H" P(Frp, Vip)) = dn-sp2 = E — 3;! : (6.114)
cf. eq. (4.50). As pointed out in ref. [4], the differential forms
p
H(p (e(AA:)> da, A Adzpi (6.115)
i=3

in the admissible integrals are exactly the fibration basis introduced in ref. [139].

-1 o
Thus, the reduced matrices B, , 7 p(2(’) Bn; in the differential equation (6.91) of

L1
STy 1p), dee,

1 " B, ,7i,(x) B 1
o P TP 0 > z
08 (00,0, Lay,. . mp) = | > | 800,01 ).
i
(6.116)
for 4 <i < p, are the braid matrices [140, 142, 145]
~ 1 Lo~ —1 .
Bnyp 7"7?71)(:662) B’I’L,p = Q;Z’p * (6117)
The braid matrices Q;fp, in turn, are d,_s, o-dimensional representations of the
genus-zero braid group and recursively defined” as follows [140,142,145]: szn n) = ~Sij
“The minus sign in Qz(il n) = —Sij is due to the sign in the definition of the Mandelstam variables

in eq. (1.3).
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and for ¢,r = 3,4, ..., p—1 by the components

(a7 if g =r,q#1,J,
Qo+ Qb ifg=r=1ij#12,
Q1(77]17;0) + Q((]7]1,;0) + QI()g,;v) itg=r=ij=12
QZ)l,p) T Qﬁéi{lvp) itg=r=Jj
Q- 1)er = § —Q0,) itg=ir=j (6.118)
_Ql(i,p) it q=7j,r =1,
in,p) it j=1,r=14,q#1,
Qfé’;p) if j=2,9q=1,7r #1,
0 otherwise ,

\
where 4 <i<p—1,1<j<p—1andi#j.

For example, the two independent type-(5,4) matrices are

_ 0 _ _
QEy = ( . ) . Qg = ( T ) . (6.119)
—835 —Sa245 535 —834 — S35

These are (up to the shift in the labels) the matrices appearing in the example (4.72),
which agrees with eq. (6.117) since By 4 = 15. For (n,p) = (6,4), they are of the

form

—S24 0 0 0 0 0
—S36 — 8246 —S65 0 0 0
o, - 0 0 a4 0 0 0 6.120)
’ —835 — S56 0 556 —5245 0 0
0 —S35 0 —836  —S52456 0
536 0  —S35 — 83 —S36 0 —S2456
as well as
— 54,356 546 0 S45 0 0
S36 —535,46 S56 0 S45 + S56 — 856
QB _ 0 546 — 54,356 0 —S46  S45 T S46 (6.121)
(6.4) ) :
S35 1 Ss56 0 — 3856 — 836,45 S46 556
0 835 0 536 —53.456 0
— 536 0 S35+ S36  S36 0 —583.456

which are the matrices from eqgs. (4.79) and (4.2.3) with the corresponding shift in
the labels.
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1 ,
Therefore, from rearranging eq. (6.117) the matrices 75 ,(x{’) are explicitly known,

which yields, upon shifting the labels by one, explicit expressions for the matrices

. 1 ~_ . ~
riha(elr) = Fa (@) = B, 2, Ba, (6.122)

and

r2dm (e T = (6.123)

from the KZ equations (4.55) and (4.66) of the genus-zero vectors Z,, ,(zs, ..., Zp-1)

and S, ,(xs,...,z,1), respectively.

The braid matrices satisfy the infinitesimal pure braid relations (4.56). This can
for example be derived recursively from eq. (6.118) or from the Schwarz integrability

condition. The latter calculation goes as follows for a solution of the KZ equation

p
€ZL;i
8=y -8, (6.124)
j=1 "
J#i
where x;; is homogeneous of degree one in some parameter o': for i#je{l,... p},

the following second order derivative is given by

p

00,8 =0, | Y Zug
q=1 qu
qséj

LT €Ti,T; €T, T; €TiT;
2:2: LjqTir g | §:<3q3 iga%ig | Tiitiq | g
—  LigTir LjqTij TjqLiq TjiTiq

#Jz T74.5,q q#]l

T Tt (6.129

Thus, using the functional dependence on the various punctures, the independence

of the integrals S, , and the fact that x;; is proportional to o', the vanishing of the
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commutator
O == [81, 8J]S

p p
_ E E [qu7 wi?‘] S
qg=1 r=1 qumir

q;ﬁj,l T¢i7j7q

Zp: ([qu,azij] P CZTE7 [mjz‘amiq]> g

TjgTij — TjiTig + TijTjq  TjiTig

_l’_
q:. .
q#j5i
Tji — Tij + [Xij, ]

2

7t

p
N Z ([iﬂjqaf’?w‘ + Tig] N [z, + Tsz‘,f'?iq]) g
q=1

Tjqij Tji%ig

S

T

q#j5i

Tji — Tij + [Xij, o]
2

i

- S (6.126)

leads to the infinitesimal pure braid relations
Lij = Lji,

[mir‘7qu] =0 1f|{27]7qar}| :4a
[ij + xjg Tig) = 0 if [{i,j,q}[ = 3. (6.127)



Chapter 7

Conclusion

7.1 Summary of results

In this thesis, the main results of the publications [1-4] have been presented, inter-

related and embedded into the appropriate mathematical background.

Elliptic multiple polylogarithms

Question 1 was addressed in refs. [1,2]. In the former reference, various notions of
elliptic generalisations of polylogarithms have been formulated in terms of the ePLs
[, (m; z) defined in eq. (3.90) as iterated integrals on the torus. The corresponding
expressions are functional relations among different elliptic generalisations of poly-
logarithms. Having such relations at hand paves the way to canonical expressions
for elliptic scattering amplitudes. Additional functional relations among dilogarith-
mic ePLs have been derived, leading to a class of functional relations parametrised
by elliptic functions. Moreover, this approach yields an alternative proof of the
elliptic Bloch relation (3.138). In the latter ref. [2], the elliptic KZB associator
7, as defined in eq. (3.120) has been identified to satisfy the genus-one associator

equation (3.123). Concretely, the following results have been shown:

e The elliptic Bloch-Wigner dilogarithm D7 defined in eq. (3.128) has been
translated from the Tate curve to the torus, leading to the expression (3.179)

in terms of ePLs T, (m; 2).

e Generalising the above result for the elliptic Bloch—-Wigner dilogarithm, the
single-valued ePLs D, defined in eq. (3.133) on the Tate curve and originally
constructed in ref. [89] have been expressed in terms of ePLs ', (m; z) as well.
Again, this yields a translation from the Tate curve to the torus, the final
expressions are obtained from eq. (3.135). Similarly, the subclass of single-

valued ePLs L7 from eq. (3.127) can be expressed on the torus via eq. (3.131).

e Using the translation in ref. [63] of the eMPLs I',,(2) defined in eq. (3.89) from
the torus to the elliptic curve, the single-valued ePLs L] (r) and D;,(z) as

well as all the corresponding identities can be translated to the elliptic curve.

152
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e These translations yield a formulation of the elliptic Bloch relation on the torus
given by the three lines (3.188a), (3.188b) and (3.188¢c). However, these lines
already vanish separately, which yields the holomorphic elliptic Bloch rela-
tions (3.184) and (3.185) as well as the non-holomorphic combinations (3.186)
and (3.187). These identities provide an alternative prove of the elliptic Bloch

relation.

e The elliptic KZB associator I'y(z) as defined in eq. (3.114) with an a-priori un-
specified alphabet X satisfies the genus-one associator equation (3.123). This

is the genus-one generalisation of the genus-zero associator equation (2.50).

Multiple polylogarithms in open-string corrections at genus zero

Question 2 has been answered in ref. [4] by giving for any n a recursive algorithm to
derive the matrices appearing in the alphabet &, required for the genus-zero, open-
string recursion (4.105), which has already been given schematically in eqs. (1.5)
and (2.53). The derivation of these expressions involved a reformulation of the
recursion in twisted de Rham theory. In this thesis, a slightly different notation and
more general classes of integrals have been introduced to present these results. In

particular:

e The vector F,, of integrals from eq. (4.85) and originally constructed in ref. [5]
to formulate the genus-zero, open-string recursion (4.105) has been translated
to the type-(n,4) chain and admissible integrals Z, 4 and S, 4 in eq. (4.90).
The corresponding transformation matrix can be calculated by the algorithm

from appendix C.2.

e The vectors Z,,, and S,,, of the type-(n,p) chain and admissible integrals
from eqgs. (4.54) and (4.62), respectively, contain a basis of H" P(F,,, V,_p),
the twisted de Rham cohomology of the n-punctured Riemann spheres with p
fixed coordinates. In particular, the vector S, , of admissible integrals contains
the fibration basis from ref. [140]. Both vectors satisfy a differential equation
of Fuchsian type given in egs. (4.55) and (4.66). The involved matrices are
shown to be genus-zero braid matrices which can explicitly be calculated by
the recursion from eq. (6.118) and the algorithm from appendix C.2. Thus,

the integrals Z,,, and S,,, can in principle be solved via Picard iteration.

e The above investigations have motivated the introduction of the graphical
representation properly formulated in chapter 6. It was crucial to structure

the combinatorial problems involved in the calculations.

Elliptic multiple polylogarithms in open-string corrections at genus one

Deriving an answer to question 3 by generalising the genus-zero, open-string re-

cursion from ref. [5] to calculate the open-string corrections at genus one was the
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main focus of ref. [2] and this thesis. In ref. [3] the results have been supplemented
by the alternative approach from refs. [38,39] to derive the genus-one, open-string
corrections. This has lead to the genus-one, open-string recursion (5.98), which has
already been given schematically in egs. (1.7) and (3.126). The main steps towards

this recursion were the following:

e Genus-one, type-(n,p) chain and admissible integrals have been defined in
eqs. (5.17) and (5.27), respectively. The vectors Z7  and S , from egs. (5.20)
and (5.34) of these integrals are related by the transformation in eq. (5.33),

where the corresponding transformation matrix is determined by eq. (5.32).

e On the one hand, the genus-one Selberg integrals of type-(n,p) introduced
in ref. [2] are the coefficients in the 7j-expansion of the admissible integrals
in S . cf. eq. (5.30). On the other hand, the Z-integrals in Z] from

n,p’
eq. (5.11) introduced in ref. [39] are exactly the type-(n,1) chain integrals
Z; 1

coeflicients in the 77~expansion of the Z-integrals contain the n-point, genus-

cf. eq. (5.23). Both, the genus-one, type-(n, 1) Selberg integrals and the

one, open-string corrections. Therefore, the type-(n, 1) vectors Z ; and S7 ,

are generating series of the n-point, open-string corrections at genus one.

e The vectors Z;, , and S; , satisfy the elliptic KZB systems on the p-punctured

-
n?p’

the corresponding matrices are explicitly calculated in appendix C.3.1. The

torus given in egs. (5.21) and (5.36), respectively. For the chain integrals Z

matrices appearing in the elliptic KZB system of the admissible integrals S7,
can be obtained from the corresponding transformation given in eq. (5.37).
These matrices can be used to solve the integrals in Z7 , and S|, , via Picard

iteration, cf. ref. [65].

e The type-(n,2) integrals Z], and S7 , satisfy an elliptic KZB system on
the twice punctured torus, where the zs-derivative is an elliptic KZB equa-
tion (3.112). Thus, the two regularised boundary values CJ and CT for zo — 0
and 2o — 1 can be calculated and related to each other via the genus-one
associator equation (3.123). Since Z] , and S , are related by an invertible
matrix, it is sufficient to only consider one of the vectors. In this thesis, we

have focused on Z7 .

e The lower boundary value Cg(Z7, ,) has been shown to contain the genus-zero
type-(n+1,3) vector Z,1 3 which is nothing but Z,;, the vector of Z, -
integrals appearing in the genus-zero, open-string corrections of (n+1)-point
interactions, cf. eq. (4.57). The final expression of the boundary value Cj(Z7, ,)
is given in eq. (5.64). The correct regularisation has been calculated using the
7-derivative (5.52) of the elliptic KZB system satisfied by Z7 ,.
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e The upper boundary value C7(Z] ,) has also been calculated using the 7-
derivative of the elliptic KZB system satisfied by Z7 ,, resulting in eq. (5.81).
It contains the genus-one, type-(n—1,1) integrals Z] _,, and, thus, the gen-
erating series of the genus-one, open-string corrections Z, _, for (n—1)-point
interactions. The appropriate projection to extract Z; _, from the boundary

value C7(Zj, ) is given in eq. (5.87).

e Putting all together, the genus-one, open-string recursion (5.98) has been for-
mulated, where all the involved matrices and expressions are known. It can
be used to calculate the o'-expansion of the open-string corrections at genus

one solely using matrix operations.

e The formulation of the genus-one recursion and the corresponding interpreta-
tion of the Mandelstam variables associated to the auxiliary puncture zy of
Z 5(z) merging in the limits Cj(Z] ,) and CT(Z7, ,) to the puncture z; = 0
and around the A-cycle of the torus to 1 = z;, respectively, motivates a ge-
ometric interpretation: the recursion implements a gluing mechanism, where
the two external states parametrised by z; and 2y in Cf(Z], ,) of a genus-zero
worldsheet are glued together to form a genus-one worldsheet with two fewer

external states.

Graph products and integrals

In chapter 6 a graphical method to describe products of meromorphic functions
f(z,m) which satisfy the antisymmetry (6.1) and Fay identity (6.2) has been intro-
duced. This construction generalises the graphical representation of fractions from
ref. [4] and was used in refs. [3,4] to structure the combinatorics of recursive appli-
cations of the antisymmetry and partial fractioning or the Fay identity to products
of fractions or Eisenstein—Kronecker series, respectively. In this thesis, the following

results were obtained:

e The graphical method has been defined rigorously, based on directed, weighted,
tree graphs G(Z, 1) with vertices Z. The weights of these graphs satisfy the
continuity condition (6.7) and are linear combinations of the auxiliary vari-

ables 7.

e A product of f(x,n) is assigned to each such graph by eq. (6.9). The free
abelian group G (Z, 77) generated by such products, which are images of graphs
from G(Z, 7)), is defined.

e Two sets of generators of G¢(Z, 7)) are presented, the admissible products and
the chain products. Two algorithms to write any elements from Gf(Z,17) in
terms of admissible products or chain products, respectively, are presented in

appendix C.2.
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e Generalisations of the type-(n,p) chain and admissible integrals from genus

2er0 Zy,p, Snp and genus one Z,

f(x,n), which satisfy the Fay identity and have simple poles, are constructed.
This has lead to vectors wa, S,’;p of integrals in egs. (6.83) and (6.82), which

satisfy closed differential systems (6.86) and (6.91) similar to the elliptic KZB

system.

S,., based on antisymmetric functions

e The closed formulee for the matrices appearing in the differential systems (6.86)
and (6.91) are calculated explicitly in eq. (C.61) using the graphical represen-
tation of products of f(z,n) and graphical identities.

e Choosing f(z,n) to be the Eisenstein-Kronecker series, these differential sys-
tems are the elliptic KZB systems satisfied by Z], , S;, ,, such that the corre-

sponding matrices relevant for the genus-one, open-string recursion (5.98) are

readily obtained from the more general expression in eq. (C.61).

7.2 Outlook

The results from refs. [1-4] and this thesis open various discussions and directions
in further research areas, ranging from pure mathematics to particle physics. Some

of the most important aspects are briefly presented in the following paragraphs.

Loop KLT and elliptic single-valued map

Comparing with the genus-zero string corrections, an important question to pursue
in further research projects is the relation of the genus-one, open-string corrections
to the closed-string corrections. As mentioned in the introduction, various efforts
such as in refs. [50-53] have been put forward recently to express the latter in terms
of the former. However, a complete picture such as a genus-one KLT relation or an
elliptic single-valued map is still missing. Extending the knowledge from genus zero
to higher genera is essential to gain insights into the nature of quantum gravity and
its relation to gauge theories.

A possible connection of refs. [2,3] to genus-one, closed-string corrections might
be the following: the appearance of elliptic multiple zeta values in the genus-
one, open-string corrections via the elliptic KZB associator in the genus-one re-
cursion (5.98) is reminiscent of the role of the generating series of multiple zeta
values, the Drinfeld associator, in the genus-zero, open-string corrections given in
the genus-zero recursion (4.105). The Drinfeld associator gives rise to a generating
series of single-valued multiple zeta values, the Deligne associator, which can ulti-
mately be related to closed-string amplitudes [32,132]. This sheds another light on
the (tree-level) KLT relation and leads to the question whether the same game can

be played at genus one. An analogous mechanism at genus one would reveal valuable
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aspects of a conjectural genus-one KLT relation. Moreover, this would nicely fit into
the picture of the geometric interpretation of the recursions (4.105) and (5.98) in
terms of a gluing mechanism on the worldsheets: gluing together two open-string

worldsheets at the boundaries would yield a closed-string worldsheet, cf. figure 1.2.

Higher-genus, open-string recursion

The canonical form of the genus-zero and genus-one, open-string recursions from
eqs. (4.105) and (5.98), respectively, and their geometric interpretations suggest
that such recursions can be found at higher genera as well. It is desirable to have
a recursive method to calculate the open-string corrections F;P™(a/,7) for each
genus g and number of external states m in terms of simpler integrals at lower
genera. Thus, a full recursion in the genus, where the genus-one recursion (5.98)
is the first step is expected to be constructible. The corresponding mathematical
structures and open-string corrections beyond genus one need to be investigated.
The graphical method from chapter 6 might be applicable to higher genera as well

and helpful to derive various results analogous to the ones presented in this thesis.

Feynman integrals

The method of refs. [2,3] to compute (loop) corrections via the recursions from
egs. (4.105) and (5.98) might be applicable to amplitudes in field theories as well.
A convenient connection is the (ambi)twistor string which leads to field-theory am-
plitudes, while the underlying interactions are still describable in terms of vertex-
operation insertions on worldsheets [150,151]. Another point to interconnect the
string mechanism to field theories should be its relation to the Berends-Giele recur-
sion [152], which has a particularly promising origin from a minimal model in the
Batalin—Vilkovisky (BV) formalism [153, 154].

Mathematical aspects

While various mathematical questions have been settled in this thesis, further ques-
tions remain open, which may be crucial for progress concerning the physical aspects
mentioned in the previous paragraphs.

For example, the vectors of iterated integrals constructed in this thesis and the
matrices appearing in their differential systems should be properly embedded into
the existing mathematical literature. This is a crucial step to extract more infor-
mation from the presented results, which might lead to further physical insights.
The relation of the integrals presented in section 5.2 to the theory of the elliptic
KZB system on the p-punctured torus investigated in refs. [40,116] is of particular
interest.

An open question concerning the generalisation of the genus-one, open-string

recursion (5.98) to higher genera is its connection to topological recursions [155,156].
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The genus-one, open-string recursion presented in this thesis may be an example of
one recursive step in a topological recursion. However, its proper mathematical
description in the framework of topological recursions is not clear yet, but may be
crucial for the construction of further recursive steps at higher genera.

The genus-one, open-string recursion (5.98) might be expressible in the BV for-
malism, which may lead to a connection between the integrals in this thesis and
well-known algebraic structures. One starting point to establish such a connection
might be the relation of the genus-zero, open-string recursion (4.105) to the method
to calculate the genus-zero, open-string corrections via a Berends—Giele recursion
from ref. [30]. Such a relation might be generalisable to the genus-one recursion as
well and ultimately lead to a relation to the recursions from ref. [154] formulated in
the BV formalism.

Moreover, in order to calculate the full open-string corrections M7P™(a') intro-
duced in eq. (1.4), the integrals over the modular parameters have to be understood
as well.

Regarding the results of ref. [1] on the functional relations of eMPLs, there is
still a lot to do. We have only scraped on the boundary of the space of functional
relations. Various connections to the algebraic and number-theoretic aspects nicely

summarised and investigated in ref. [67] might be constructible.
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Chapter A

Group addition on elliptic curve

In this section, the additive group structure on the elliptic curve is described. The

following paragraphs are up to a few minor changes formulated in appendix A

of ref. [1].

The geometric picture of the addition on the elliptic curve is that two distinct
points P, = (z1,y1) and Py = (x9,ys) with y; # £y, form a line which intersects
the elliptic curve y? = 423 — gox — g3 at a third point —P; = (3, —3). The sum
P3; = P, + P; is defined as being the projection of —P3; = (x3, —y3) to the negative
y-coordinate Py = (x3,y3), cf. the top left graph in figure A.1. Thus, two points
with their y-coordinate being of the opposite sign are indeed inverse to each other
with oo being the unit element since the line defined by P; and — P; intersects the

elliptic curve only at infinity, cf. the top right graph in figure A.1.

The algebraic description is the following: for P, and P, as above, the line

intersecting them is given by y = Ax + u, where

a2, BT B (A1)
Tog — X1 Ty — T1

The x-coordinate of the third point —P; = (x3, —y3) intersecting the line and the

elliptic curve is the third solution (besides z; and x3) of the cubic equation
Az 4+ p)? = 42° — gow — g3, (A.2)

which is in terms of z; and x5 given by

)\2
Ty = —T1 — Ty + Z . (AB)

The y coordinate of P is then simply the negative of the y coordinate determined
by the line and x3,

Ys = —AT3 — (L. (A.4)
The last case we need to consider is if the points P; and P, are identical and not
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Figure A.1: The geometric picture of the addition on the elliptic curve for the
example E : y> = 2 — 32z + 5. On the top left, the sum of two distinct punctures
P, + P, = Pj is given by the projection (red dashed line) of —Ps to the negative
y-component. —P5 in turn is the third point of intersection of the (red) line, which
goes through P; and P,. As shown on the bottom left, if the two punctures are
the same P, = P, = P, the corresponding line is the tangent to E at P, which
determines 2P. Similarly, the inverse of a point Pj is simply the point with the
y-component of the opposite sign and the unit element is oo, cf. top right. If the
y-component of P is zero, then it is its own inverse, as depicted on the bottom right.

the unit element, i.e. P, = P, = P = (zp,yp). For yp # 0, the above description
of taking the line intersecting P, and P, degenerates to taking the tangent on the
elliptic curve at P, cf. the bottom left graph in figure A.1. The sum of twice the
point P, i.e. 2P = P+ P = (x9p,y2p), is then again the projection of the second
point lying on this tangent and the elliptic curve with respect to the z-coordinate.

Algebraically, this corresponds to

1222, —
)\:21-;92’ UL=1Yyp— Arp (A.5)
Yp
and
2
ZEQPZ—QJIP—FZ? Yop = —ATop — lU (A6)

as before. In the case of yp = 0, the point P is inverse to itself, such that in
particular P+ P = P — P = oo, cf. the bottom right graph in figure A.1.

These addition rules exactly agree with the well-known addition formula of the
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Weierstrass p-function

@(1‘1 + ZE2) = —@(Il) - @(xz) + i (Zgzz; : S((;ll))) (A.7)

for x1 # x5 and similar for its derivative. This ensures that ¢, g defined in eq. (3.36)

is indeed a homomorphism.



Chapter B

Elliptic polylogarithms

In this chapter various properties of ePLs are given following the lines of ref. [1].

They complement certain aspects discussed in chapter 3.

In section B.1 the g-expansion of the integration kernels ¢(™ and the ePLs
I, (m; z) are given. In section B.2 some calculations and derivations of to the main

results from section 3.5 are written out explicitly.

B.1 g-expansions

The g-expansion (3.72) of the Jacobi f-function can be used to deduce the cor-
responding expansion of the integration kernels via eqs. (3.71) and (3.76). This
yields [27]

90 (z7) =1,
gW(z,7) = meot(rz) + 4n Z sin(2rkz) g™,
k>0
21711 2m
g (2,7) = —2(om — 2% Z cos(2mkz) Pkt
k,l>0
7\2m—+1
(2m~+1) _ (2m1) . om ki
g (z,7) = 22—(2m)! kl;)sm(%rkz)l q, (B.1)

where m > 0.

Integrating these g-expansions n times and additionally integrating n—1 times
the g-expansion (3.63) of the regularised integral I'( } ; z, 7) results in the g-expansions
of the ePLs I',,(m; ) defined in eq. (3.90). They have been calculated in ref. [1] based
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on the following iterated integrals of sin(27kz) with k € Z

z 21 22n—1 _1)77,
dz / dzy- - / dzg, sin(2wkzy,) = ( sin(27kz)
/0 Yo T s ’ ’ (27ka)2”
2j—1

(=) 2
+ Z 27Tk‘ 2n+1-2j5 (2] _ 1)

-1 n+1

/o d21/0 dzy- - '/0 dzony1 sin(2mkzo, 1) = (éﬂ'kﬁ cos(2mkz)

(1 2
F 2 gy (P

J]=

and of cos(27kz)

z z1 Zon—1 1)
/ dzl/ d22-~-/ dzo, cos(2mkza,) = (1) cos(27rkz)
0 0 0 ( k)2

»—‘?T‘

1)n+1—j 22 j

- (-
- - (2nk)? % (2))1

Jj=

z Z1 Z2n ( 1)n
/0 dzl/O sz.../O dzani1 cos(2mkzony1) = (2 oy sin(2mkz)

n 2j—1

()7 =z
i ; (2mk)2n+2-2 (25 — 1) (B-3)

where n > 0. The results for the regularised iterated integral of ¢g(*) are

Ton(l32) =T(3 452,7)
——
2n

n Z 1 . Z (=17 Kkl
and

f\271—&-1(1325) f( 007Z T)
\W_/
2n+1

1 G+1 2
— _ L 27rzz J _
(2mi)2n fan1 (€77 + Z (2mi)7 (2n — j)! B (2n+1)!

2n—j Z2n+1

n :
1)+ 1 kz) 17+ ZQJ kl
+(=1)""4r Z (k)T cos(2mkz) + ]Z; 27rk: " . (B.5)

k>0
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For m > 1, the following g-expansions are obtained:
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an(Qm; 2)
=T(§ 8% 27)
2n
ZZn
= -2
(27i)? nd 1)t sz B
+ (=1)"T12 om - 1) Z 27rk‘ (cos (27kz) +Z 27rl<: 1Pm=1gk (B.6)
k> 0 ]:O
and
Cont1(2m; 2)
=T 8% ;27)
2n+1
2n+1
2
27i)? 1 (1) R
+(=1) (2m—1 )l e (2mk)zneT sin(2mkz +; k)12 (2] —1)! 1
(B.7)
as well as
fgn(zm +1;2) (B.8)
— F( .0 2776—1-1 2 7_)
2n
2mi)2m 1 1 n —1) 52j—1
- (—1 n+12 ( in(2nk A l2m kl
(=1) (2m)! 2 Grkyz | ST D+ Q221 )" 1
k, >0 j=1
(B.9)

and

f2n+1 (2m + 1‘ Z)

- F( 8 277%]+1 77—)
2n+1
B (2mi)?2m+L 1 =
= (—=1)"2 @m)! Z CERE cos(2mkz) +Z 27rk

where the convention I'y(m, z) = g™ (z,7) is used.

1+_] z2j

) 1?mg* | (B.10)
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B.2 The elliptic Bloch relation on the torus

In this section, the proofs of the holomorphic Bloch relations (3.184) and (3.185)
on the torus and the non-holomorphic relations (3.186) and (3.187) are given. They
have been described in ref. [1], where the following paragraphs can be found and

only minor changes have been implemented in this version.

The connections between the different notions of elliptic polylogarithms found
in section 3.4 and subsection 3.5.2 can be exploited to translate and to compare
various concepts and structures among them. Below, it is shown how the ellip-
tic Bloch relation (3.138) translates to the torus, which leads to the more general
relations (3.184)-(3.187) thereon and thereby provides an alternative proof of the
elliptic Bloch relation. In doing so, it will be shown how the Bloch relation can be
interpreted in terms of differentials of iterated integrals or, more generally, in terms

of the elliptic symbol calculus introduced in ref. [125].
Let F' be an elliptic function on the Tate curve, cf. eq. (3.44), with the following

Div(F) =Y di(a;), » di=0, [Jaf=1. (B.11)

Formulated on the torus via eq. (3.48), the above equations translate to

divisor

Div(F) =Y di(A;), > di=0, Y diAi=0. (B.12)

2midi and A; are representatives of the zeros of the elliptic function F

where a; = ¢
such that the sum ). d;A; vanishes. Using eq. (3.31), one can express F' in terms

of a product of Weierstrass o-functions

z—A;
F(z)=sa H o(z— A)% = s4exp (Z di/o dz’ Q(z’)) (B.13)

for some scaling s, € C* of F. Similarly, for a given x € C*, k—F can be represented
by

k—F(z) = SBHU(z — Bj)“ = spexp <Z e; /OZ_ ' dz'{(z’)) : (B.14)

where sg € C*. For notational convenience, let us split the set of zeros and poles of
F and k—F, denoted by I and J, respectively, into the zeros of F', I' = {A;|d; > 0},
the zeros of k—F, J' = {Bjle; > 0}, and the common set of poles of " and k—F,
K = {A;|d; < 0} = {Bjle; < 0}. Using these conventions, the elliptic Bloch relation
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(3.141) on the torus can be rewritten by means of eq. (3.181) as

0= Z diej D™ (6271'7:(147;73]')7 q)

:—ZWZdeJ<Re< ($9;Ai — B T)) (B.15a)
+Re <2m)Re (r( ;Ai—Bj,T)) (B.15b)

— Re(A; — B;)Re (f(g);A,- "y 7)) ) , (B.15¢)

where the summation indices (i,7) run over I x J, unless mentioned otherwise.

Equation (B.15) is called the elliptic Bloch relation on the torus.

An alternative proof of equation (B.15) is given in the following paragraphs by
showing that the sums over the single iterated integrals T occurring in the above
formula vanish separately (and for the first two also their imaginary parts, yielding
two holomorphic analogues of the elliptic Bloch relation). Note that since we are
interested in generating functional relations we consider the zeros and poles A; and
B; as well as the scaling factors s4 and sp to be (not independent) variables, e.g.
depending on variable coefficients of the rational function on the elliptic curve that

determine F', cf. the examples in subsection 3.5.1.

Let us start with the first term of the elliptic Bloch relation on the torus,
eq. (B.15a): naturally, the zeros and poles satisfy the constraints >, d;A; = 0 and

> ;€;Bj = 0 as functional identities. Hence, the functional identity

k=r—F(A)=sp]]o(Ai - B~ (B.16)

holds for i € I’, such that taking the total differential of both sides and us-
ing eq. (3.56), i.e. ((2) = gWM(z,7) + 2m 2, as well as the representations (B.13)
and (B.14), the differential equation

> eigM(Ai = Bj)d(A; — By) = —dlog(sp) — 1 Y _ e;B;dB; (B.17)
j J

can be obtained. For k € K, a functional identity involving the residue instead of
the infinite value k—F'(Ay) can be used for a similar calculation: since by convention
0'(0) = 1, the residue of k—F" at Ay is

resy, (k — F —SBH(T (A, — B (B.18)
Jj#k
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which implies that

Z ;g V(A — B;)d(Ay, — B;) = dlog (resa, (k — F)) — dlog(sp) — ¢1 Z e; B;dB;.
j#k J
(B.19)

Two similar differential equations for sums over I can be found, the first one starting
from k = F(B;), where j € J/,

With & € K and using that resy, (F)) = —resy, (k—F'), the last such differential

equation turns out to be

> digM(Ap — A)d(Ap — A;) = dlog (resa, (k — F)) — dlog(sa) —c1 Y diAidA,;.
ik i
(B.21)

Going through the calculations of ref. [1], the four differential equations (B.17),
(B.19), (B.20) and (B.21) can be combined into the differential equation

> " diej(A; — Bj)g"(A; — Bj,7)d(A; — B;) = 0. (B.22)
,J

For integration paths with d7 = 0, the differential of the iterated integral f(}) 0:2,7)

is given by
dT(38;2,7) = 29" (2, 7)dz. (B.23)
Accordingly, eq. (B.22) implies that

Zdiej f(é 8 X Az — Bj, 7') = C2 (B24)
,J

for some constant ¢, € C. In general, the zeros and poles of F' are only constrained
by > .d;A; =0 =), d;, thus, it may be assumed that they can be split in a way
such that the divisor of F' consists of triplets with two of them being unconstrained
and the third one being given by A3 = —A; — Ay. An alternative way of saying this
is that divisors of the form (A;) + (A2) — (0) — (A;+A2) span the set of principal
divisors. Thus, by continuity, the above equation can be evaluated at the point

where all A; = 0 to determine

CQZZij(ég;—Bj,T)ZdiZO. (B25)
i %
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Therefore, we find a holomorphic analogue of the elliptic Bloch relation

> die;T(8: A — By, 7) = 0. (B.26)

Similar arguments apply for the term (B.15c) involving the iterated integral
2T(}; 2, 7) in the elliptic Bloch relation on the torus (B.15). Let i € I’ and write

Ai—B]'
K=K — F(AZ) = Spexp < E ej/ dzg(l)(z77') —|—% E €jBJ2»> 5 (B27)
: 0
J

J

such that

Z e; T(4; Ay — By, 1) = log(k) — log(sp) — %Z e; B — 2mimy, (B.28)
j J

for some my; € Z. For k € K and with o(z) = sgexp (fzzo dzfg(z/)) such that

0'(0) = 1, the same calculation as before leads to

Ap—
resa, (k — F') = spspexp <Z€J/ dZC ))

i#k =0
Ap— 20
= SpSo exXp <Zej/ dzg (2,7) ZBJBZ / dzC(Z))
J#k 0
(B.29)

which implies that

Ag— c
Ze] / dzg (z,7) = log(resa, (k — F')) — log(so) — log(sp) — 51 Z e;B7

£k 0 J

_ / " d2¢(2) — 2mima, (B.30)
0

where mgy € Z, and analogously for the sum over I'\{k}

—A;

Z d; / dz g (2, 7) = log(resa, (F)) — log(sg) — log(sa) — %Z d; A?

i#£k
20
- / dz((z) — 2mims, (B.31)
0
for mg € Z. A similar result holds for j € J',

Z d;T(§; A; — By, 7) = log(k) — log(sa) — %Zdﬁl? — 2mimy, (B.32)

where my € Z. Since log(resy, (F')) = log(resa, (1 — F')) + im, equations (B.30) and
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(B.31) lead to

Zejf(g;Ak—Bj,T)—Zdif(g;Ak—Ai,T)

c
= —im(1 4 2mgy — 2mg3) + log(sa) Zd A? —log(sp) — 51 Z ejBJZ. (B.33)

J
Finally, using the equations (B.28), (B.30), (B.31) and (B.32) all together, the iden-

tities

3 die; Re (A; — B)Re( (1:A; — By, 7 )>_o (B.34)
i,

and
Y " die;Im (4; — B;)Re (IN“(});Ai . Bj,7)> —0. (B.35)
,J

can be obtained [1].

Now, we are left with the term (B.15b) involving I'(%;z,7). Let us take the
partial derivative of eq. (B.28) with respect to 7 and use the mixed heat equation
(3.79) of the integration kernel, i.e. 2mi:2 g (z,7) = £¢®(z,7), to find

Z e;9?(A; — By, 1) = —QWZQE Z

J
. 0
— 27 ; ejg(l)(Ai - Bj, T)E(Az - Bj), (B36>
valid for ¢ € I’. A similar result holds for j € J'

Zdlg(Q)(Al —Bj,T) —27T2222d142

0
-2 d A B; A, — B; B.
mz zg T)a ( ) ( 37)
and for k € K
Y g (A — By) = > dig® (A — A))
j 7
0 C1 a &1
= 21 z——ZdAQ Tim—o > B}
i J
. 0 . 0
— 27 Z ejg(l)(Ak — Bj)g(/lk — B;) + QWZZ dz‘g(l)(Ak — A, )8 (Ar — Bj).
j )

(B.38)
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The equations (B.36), (B.37) and (B.38) imply that for paths with d7 = 0 the

differential equation [1]

d) die;T(3; A= B;,m) =0 (B.39)
ij

holds. By the same argument as for eq. (B.26), we therefore find another functional
identity which can be interpreted as a holomorphic analogue of the elliptic Bloch

relation on the torus:

Y]

To summarise, the elliptic Bloch relation (B.15) has been expressed in terms of
iterated integrals on the torus.

Let us comment on the two holomorphic functional equations (B.26) and (B.40)
respectively, in terms of the iterated integrals T’ on the torus which have the same
structure as the original elliptic Bloch relation: in the language of ref. [49], it turns
out that the iterated integrals ['(}9:z 7) and ['(2;2,7) are Steinberg functions.
However, we have to be careful when using these functional identities: these iterated
integrals are multi-valued and in order to reproduce eqs. (B.26) and (B.40) they have
to be evaluated on the representatives of the zeros and poles of ' and k — F' which
satisfy >, d;A; =0 = Z]‘ e;B;, and not only such that these sums lie in the lattice
A,. These equations have been obtained by differential calculus of iterated integrals,
which is simply the symbol calculus of an iterated integral with depth one. Thus,
together with eq. (B.34) an interpretation of the elliptic Bloch relation using the

elliptic symbol calculus of the iterated integrals I' on the torus is provided.



Chapter C

Closed differential system

In this appendix, various statements from chapter 6 are proven. This includes the
derivation of the closed formule for the elliptic KZB system (5.21) satisfied by the

type-(n, p), genus-one chain integrals Z7 (22, .., 2p).

First, in section C.1 the graph identities (6.50), (6.52) and (6.54) are discussed
in more detail. Second, in section C.2 the algorithm to express any graph in terms
of chain or admissible graphs leading to egs. (6.33) and (6.48) is given. This shows
that the chain and admisisble graphs are generators of the group G¢(Z, 1), proving
eqs. (6.32) and (6.41). Third, the closed formule for the differential system (6.86) of
the chain integrals and, as a special case, the elliptic KZB system from the genus-one

recursion in eq. (5.21) is derived and given in section C.3.

C.1 Graph identities

The antisymmetry (6.17) and Fay identity (6.18) on edges of graphs in G¢(Z, 1) lead
to various useful identities on (sub)graphs. In this subsection, the derivation of the
three identities (6.50), (6.52) and (6.54) are summarised. The detailed proofs can

be found in ref. [3], formulated for their images in G¢(Z,7) under f.

The first identity is the reflection property of a chain, which can be proven by
the application of the antisymmetry (6.17) to each edge and the condition (6.8) on

174
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the weights. The result is

P(A) = 0] o—<—e o——<«—eo lp
Q2  GQp—1
nag...ap nap_1ap nap
— 4] &—<—@ - *—<—o—<«—o Up

= (_1) Al &—>—@ - o—>—o > o Up
a9 Qp—2 Qp—1
Nay Nay...ap—>  Tay...ap—
= (_1> A] @—>—@-----ooooe —r—o——o U

= (_1) aA] &—>—@ - o——=o Uy
a2 Qp—1
= (=1)"p(A), (C.1)
where A = (a,,...,a;) is the reversed sequence A = (ay,...,a,) and |[A| = p

its length. Since the antisymmetry (6.17) is compatible with the continuity condi-
tion (6.7) of the weights, the reflection identity (C.1) can be applied to any subgraph
which is of the form of a chain. Thus, the same identity holds for the chain products

pr(4) = (=) (4). (C.2)

The second identity is the shuffling of two branches with a branch point at x,.
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An iterative application of the Fay identity (6.24) leads to the shuffle identity

o oby e *by e * b
a2 : : bQ Qa2 : ; bg a2 ; ; b2
a1 bl a1 bl a1 bl
= +
r T T
o *by e * b
a2 : : b2 a2 : b2
a1 bl a1 bl
- +
r r
ap o °by e * b
ay : : 62 as : b2
3] bl a1 b1
+ +
r r

s : : b2
ai U bl
- w , (C.3)
r

— =

where the sum on the right-hand side is an element of G§"*(Z,7) obtained from
iteratively applying the Fay identity until a sum of chains is left. Due to the com-
patibility of the Fay identity with the continuity condition (6.7) of the weights, the
shuffle identity (C.3) can be applied to all the subgraphs of any graph v € G(Z, 7).
The corresponding identity on products of functions is

pr(r, A)ps(r, B) = ps(r, Aw B) (C.4)

for A= (ay,...,a,) and B = (by,...,b,).

The third identity can be used to shift two labels 9 and 71 in a chain ¢(rg, A, 71, B)
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next to each other. It takes the form

AR
e di1 2 Op » by
p+1 aq 2
ZE :( 1)p—|—1—i
i=1 To
? a; Q bq
e (i1 : Clpu_I » b,
p+1 L a; &
= E (—1)pHt , (C.5)
i=1 To

where for the last equality, we have applied the shuffle identity (C.3). This manip-
ulation is called solving for rq and ry and follows from the antisymmetry, the Fay
identity and combinatorial identities. The proof in terms of its image under f in
G(Z,1) has been derived in ref. [3]. The result is the identity

p+l
pr(ro, A, 1, B) = Z(—l)pﬂ_i%‘(roy ar, - -, @i—1)9f(ro, 11, (ap, @p-1, . .., a;) W B).

i=1

(C.6)

And again, due to the compatibility of the continuity condition (6.7) of the weights,

solving for two vertices can be applied to any chain-like subgraph of any chain in
G (2, 17).

Of course, further identities may be derived upon combining the antisymmetry

and Fay identity. One specific example which will be used below is the identity
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C.2 Generators of graphs

In this section, it is shown that the admissible graphs G3™(Z,7) and the chain
graphs Q}ha(f, 77) indeed span the set of graphs G;(Z,7), such that the same holds
for the graph products under the image of f. A constructive proof is given, which
yields an algorithm to actually calculate the corresponding linear combinations.

In subsection C.2.1 an algorithm to write any graph in terms of admissible graphs

is given, which proves eq. (6.32), i.e.
G (T, 1) = G4 (T,77) - (C.8)

In subsection C.2.2 the analogous eq. (6.45) for chain graphs, i.e.

is derived.

C.2.1 Admissible graphs

Equation (C.8) is proven by a recursive calculation leading to the linear combina-
tion (6.33), i.e.

y= ) MY egEm@y, Wmel, (C.10)
,Ylegadm(f’ﬁ)

—

for any v € G(Z,7)
refs. [4,157]. Tt acts separately on each connected component, thus, without loss

The algorithm is based on a similar construction as in

of generality the graph v € G¢(Z, 1) is assumed to be connected. The various steps
of the algorithm are exemplified on the graph

3 2

4
Yex = \I/ € G(Z,M\G*"™(Z,77) - (C.11)

1

The algorithm consists of two parts:
1. First, using the antisymmetry (6.23), i.e.
(<0 T  je——e ] > (C.12)

the graph v € G¢(&, 77) has to be rewritten such that it has only one base point

and each vertex has at most one outgoing edge. The base point is canonically
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chosen to be the vertex x;, € x(y) with the smallest index i
io = io(y) = min{i | x; € z(y)}, (C.13)

such that the reversal of the remaining edges to obtain one outgoing edge at
each vertex except at the base point x;, is fixed: starting from the base point
and going up the edges e;,;, any edge ex; with k # i is reversed. Repeating
this process iteratively going up the edges from the vertex j leads to the desired
form, after a finite number m of reversing edges. For our example, we obtain

io =1 and

Vex = = <—1)3 . (014)

This procedure proves that there is a non-negative integer m € Z,, an ad-
missible graph 2™ € G2 (Z, 1) and a permutation o with o(iy) = iy acting

on the labels of the vertices and weights of the graph 2™ such that

Y= (_1)m0(7adm) € gf<f7 ﬁ) ) (Cl5>

where m is the number of reversals of a single edge. The graph o(y*™) is

called o-permuted admissible. For e, one can determine
3 4
Yox = (1PTa(13™) e = € G (7, 77) (C.16)
1

where 754 transposes the indices two and four. If ¢ can be chosen to be the
identity or, equivalently, all non-vanishing edges e;;(o(y*4™)) satisfy i < j, the
admissibility condition (6.25), i.e.

Vi wi(o(v*™)) = 0 except for at most one i < j (C.17)
is satisfied and we are done, since then (™) € G2™ (7, 77) and

v = (=1)"e (") € GF(E, ) - (C.18)

Otherwise, the following, second step of the algorithm has to be applied.
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2. Second, the antisymmetry (6.23) and the Fay identity (6.24), i.e
? J ? J 1 J
‘\\/‘/ = Z: + :; (C.19)
k k k

are used iteratively as follows: it starts at the vertex with the highest label

imax Of the graph o(y*¥™) with a non-admissible outgoing edge

Z.max = imax(g(’yadm>)
= max{i | 7; € 2(c(y*™)) and there exists k > i
such that wy(o(y*™)) # 0} . (C.20)

Due to the application of the first step of the algorithm, the vertex k with
Wi, (0(729™)) # 0 is unique and ipyay, k > i9. Thus, there is exactly one j <
k, such that w;x (o (™)) # 0. Then, using the antisymmetry and Fay identity,

adm) consisting of the three vertices k, ima < k and j <

the subgraph of (v
k and the two edges wyi,..(0(7*™)) and w;(o(7*™)) can be rewritten as

follows:

Zmax Zmax Zmax

'\./' T.’_' '_7 (c21)

Each vertex of the resulting two subgraphs on the right-hand side has at most

one outgoing edge.

(a) If j < imax, then they are even admissible.

(b) If imax < j, we can repeat this procedure with & replaced by j < k for
each graph in the above linear combination, until in each graph +' in the
resulting linear combination, the single outgoing edge of the vertex i, to
the unique vertex j' is admissible w;,;, . (7") # 0 with j' < ¢pax. Note that
this iteration terminates after finitely many steps since we only consider

tree graphs, such that j' # i, and at each iteration, j' is decreased.

Once the outgoing edge of iy is admissible in each graph 7’ of the result-
ing linear combination, either each graph ~' is admissible or there are non-
admissible graphs 7/ with imax(7) < tmax(0(724™)). In the latter case, we can

adrn)

repeat the whole second step of the algorithm with (v replaced by ~+'.

Again, this terminates after finitely many steps.

This algorithm leads to the representation of v = (—1)"0(y*4™) € G;(Z,7) in terms
of a Z-linear combination of admissible graphs + € G*™(Z,7) of the form (C.10).
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Thus, the admissible graphs indeed generate G;(Z,77), which proofs eq. (C.8).

Let us complete the second step of the above algorithm for e, = —7o4(729™),
where
3 2
4
Toa(ve™) = - (C.22)
1
The maximal label with a non-admissible outgoing edge iS fmay(T24(729™)) = 3.

adm

Thus, applying eq. (C.21) t0 imax(724(725™)) =3, k =4 and j = 1 leads to

3 2 3 2
4 4
T (V") = — + : (C.23)
1 1
= =

adm

In both graphs 7] and 4, the vertex imax(724(725™)) = 3 is now admissible (i.e. the
point (2.a) of the algorithm applies) and we can proceed with the new iy, (7)) = 2
and imax(74) = 2 repeating step (2) of the algorithm for both graphs 7} and 73. For
the second graph ~4, eq. (C.21) can be applied t0 imax(75) = 2, k = 4 and j = 1,
such that

3 2 3 2 3 2
4 4 4
Ta(Vee™) = — - + (C.24)
1 1 1
;;i :;2,1 =732

with the admissible graphs 74,75, € G*™(Z,7) (the point (2.a) applies and the
graphs have no further non-admissible edge). Thus, we are left with the graph ]
with imax(7]) = 2, k =4 and j = 3, such that eq. (C.21) leads to

3 2 3 2 3 2 3 2
4 4
(™) = ;43 = ié - v + \\I/ . (C.25)
. 1 . 1 ) 1 o 1 )
:;Z,l :;Z,z :754,1 =Y.
But still, the vertex imax(7)) = 2 is not admissible in 7}, and 77, due to the

inequality imax (7)) = 2 < 3 = 7, thus step (2.b) has to be applied, i.e. eq. (C.21) on
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k=3, =1 and ipax(7]) = 2, such that

3 2 3 2 3 2 3 2
(™) = 455 + \17 + 43; - v
. 1 R 1 . 1 R 1 .
Z’;irl,l —’erlz :;i,rzl :;{2,2
3 2 3 2
— +
N 1 4 N 1 /
:;gl =72,
3 2 3 2 3 2 3 2
4
= — 4i »;/ + 43 ; — V + v (C.26)
. 1 N 1 o 1 . 1 )
:7‘1,1 1 :vzrg,l :v‘ira 2 =75,2

The right-hand side of this equation in G¢(Z, 7)) is a linear combination of admissible

graphs ¥} 1 1,791, Vi00: Vo2 € G*™(Z,7), hence for the example 7y, the linear
combination (C.10) is given by

Vex = 71,1,1 - ’71,2,1 + ’71,2,2 - ’Yé,z € g?dm@, 7) (C.27)

or written out in terms of the actual graphs:

3 2 3 2 3 2 3 2 3 2
4 4
_ adm /= =
1 1 1 1 1

(C.28)

To finish, let us consider the image under f(z) = 1/ of the identity (C.28). It
is the following partial fractioning identity in G (Z, 7):
1 1 1 1 1
= - + - . (C.29)

L41734T24 L12723T24 X12X23T34 X12X13T34 212713714

Thus, eq. (C.28) is a well-structured representation for the partial fractioning iden-
tity (C.29).
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C.2.2 Chain graphs

In order to prove eq. (C.9), again, without loss of generality a connected graph
v € G(Z,1) is considered and with the first step of the algorithm in the previous

subsection rewritten as
v = (=) (™), (C.30)

where y*m € Gadm(Z i7) and o (ig(7y)) = io(y), where iy is defined in eq. (C.13).

adm) can be written as a Z-linear combi-

Then, the o-permuted admissible graph o(~y
nation of admissible graphs simply by applying the shuffle identity (C.3) to all the
branch points and effectively folding back any branches. This iterative application
of the shuffle identity can conveniently be described using the following recursive

definition of a sum of sequences associated to the vertices of a graph ~:

(1,7) = (i’wij(”i#o(j’ ), (C.31)

where the shuffle product runs over all vertices 7 with an outgoing edge to ¢ and is

empty if there is no such vertex j.! Using this sum of sequences, the graph o (™)

can be written as a sum of chains

o(v*™) = p(io(y), o (v*™)) (C.32)

which leads to the linear combination (6.48), i.e.

v =(=D)"lio(7),0(y™) = D WY eGP, bt eZ. (C.33)
’Ylegd‘a(f,ﬁ)

Let us again consider the example yex € G(Z,7)\G"*(Z, 7]) from eq. (C.11), for which
the first step of the algorithm in the previous section leads to eq. (C.16), i.e.

3 2

Yox = —Toa (V™) € Gp(Z,77),  T2a (V™) = : (C.34)

!This simply generalises the definition (6.58) to non-admissible graphs. Equivalently, we could
also go through the second step of the algorithm from subsection C.2.1 and express 7 as a linear
combination of admissible graphs, then apply eq. (6.58) to recover a linear combination of chain
graphs. However, this will not be as efficient since various terms generated by the second step
of the above algorithm will again cancel when rewriting the admissible graphs in terms of chain
graphs.
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with g(7ex) = 1. Then,

(4, Taa (V™))
4, (2, Taa (V™)) w (3, T4 (728™)))

4, (2)w(3))

4,2,3) + (1,4,3,2), (C.35)

(1, 21 (728™))

1
1
1
1

(
(
(
(1,

such that

Toa (™) = (L, ma (V™)) \I I/ (C.36)

and, ultimately,

Vex = _90(177_24(72)(3111)) = _90(1747372) - 90<1 4 2 3) € gCha( 1 )’ (037>
i.e.
3 2 3 2 3 2
4
— 4 4 € G (&, 7). (C.38)
1 1 1

For the example f(z,n) = 1/x, the image of eq. (C.38) under f is the identity

Lo+ (C.39)

L4134 24 L14X43T32 L1442 23

C.3 Closed formula

In this last section the closed partial differential equation (6.86) is proven by con-

sidering an element of Z £7P(B),

2,804, 4y = [ ey H pr(b A, (Ca0)

P ag=p+1
where A = (p+1,p+2,...,n) and (A',..., AP) = g(A) for a permutation o € S,,_,.
A closed formula for the derivative of the integral in eq. (C.40) with respect to some

base point x; € B can be calculated as follows:? first, using the antisymmetry of

2The following derivation generalises the calculation from ref. [3]
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fij(n) and integration by parts, any partial derivative may be redirected to only act

on the factor uy, which leads to

02,75 ,(B; (1, AY), ..., (p, A7)

Zi “n,p

[ M| X

P a=p+1 ke(i, Al

p
Onug | [T (b, A%). (C.41)
) b=1

Let us denote for 1 <4 < p the label i = a)), and the elements of A’ by
(i, A") = (aé,a’i,...,a%) (C.42)

and define for a sequence C' = (cy, ¢a, ..., ¢y) a sum of n-variables by
i=1

Note that according to the condition (6.8), auxiliary variables

Ni = —Nai (C.44)

are associated to the unintegrated punctures z; in the product [T7_, ps(i, A’) in the
integrand in eq. (C.40). Moreover, let us define for a sequence C' the subsequence
Cy; by

C = (Cl, ce 7Ci,1,€i,ci+1 e ,Cj,L, Ciy Cjg1 - ,Cm) y (C45)

Ciy=Cyy
with
le‘:@ fOI‘jZi,

Cl,erl - C?
éi' = (Cj_l, Cj—2,... ,Ci) . (046)
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Then, the derivative (6.78) of u; and the antisymmetry of gi(;n) lead to

0,23 o(Bs (LAY, (p, A7)

Zi“n,p
n p
= - Z g / H dxa Uy [fz] (5) H (Pf(b7 Ab)
ke{i, At} Anp a=p+1 b=1 £
j¢{i, A"}
= - Z (Oézrgz(:n)zrjzc,p(Ba A17 s ’ALD>
re{l,...,p}
r#i
| A" n i P
+ Zaia;/ H dzq uy | fiar(§) H@f(l% A)
k=1 Anp g=p+1 L b=1 €0
| A7 n [ P
) / I1 dzauy [£un(©) [ s, A7)
j=1 Anp g=p+1 i b=1 €0
|AT] A n p
D) i / IT daauy [fa;.a; ©) [ [ s 4% ) , (C.47)
k=1 j=1 Anp g=p+1 b=1 €0

where [fi;(€)]o s the order zero coefficient gg-n)

in the &-expansion of f;;(§). Let us
consider the product fa;;a}; (O TTi_, ¢r(b, A%) in the last sum, it corresponds to the

graph
i ar,.
CL\A1| . . |AT]
ai ar al ap
7 S ® Yy ® Yy

1 . p

azi ay aq ay
» Nai { { Nar { {
Faiar (€) [ [ s (b, A%) = (C.48)
b=1

i 1 P

N

p—2

in G¢(Z, 1), where the weights 7; € 77’ are the same as 1, € 7, except for I € {a}, a}.}

which acquire a shift n/; = Mo — ¢ and 77(’lz = 7)oy +&. The connected subgraph with
J

base points i and r can be expressed in G¢(Z,7') such that it has only one base point

and an edge between the two vertices ¢ and 7: first, the identity (C.5) can be used
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to shift aé and aj, next to ¢ and r, respectively,
% T
Aaip @ @ Qan

¢

(Zj 0—4—0: :&k

ai ay
NAi { { nNAr

i T
; ; T
ap  d|A G ag
' . L) .
% % 7 S r T
a4 aj_q Ajtq 41 ap_1 Ag—1
[ )
ik 1 :f L
_ _ 1\ l+k—q ; ; r r
- Z( 1) aj a; ay, aj
=1 ¢=1 ) r

Then, the identity (C.7) can be applied to the vertices i, a’

VR

187

(C.49)

ay, v, which yields upon

applying eq. (C.5) in the reverse direction for the first term and additional shuffie

identities at the vertices i and a} for the second and at the vertices r and aj, for

the third term a sum of chain graphs with an additional edge between the vertices

7 and 7:
i ar,. i ar,.
Yai @ @ Gar Yaig @ @ Gjan
. P . S
AR Gt
a?l N N ag a/?l N N a/71“
Nt Nar Nai =&Y ¢ Y Nar +8
i r - i r
i ai ) r r
a ai] - Gan aq
b4 b b b
7 Yo P Cor Lo r
L R T A e S By T R |
o. [ ]
gt .\\LI‘.I//
J : D < T .
n ( 1)]—l+k—q @/ « ak//r
aj > a;
=1 q=1 7 T]aq...aerrl r
i ai i a?” T
a A7 |Ar| g
° . L) .
i i S r r
a4 a1 511 gy ar_1q Qg1

(C.50)
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The image of this graphical identity under f in G;(Z,17) is

fa}az (f)QOf (iv Ai)gpf(r, AT)

= fzr(g)(pf(za Ai)@f@“: AT)
j ok
S (AT
=1 g=1
P ('ia Alﬁ L (aéw A?j L A;'+1,\Ai|+1) L (a};, AZ:+1,|AT\+1 L A2k>>
j ok
+ Z Z(_1)Jfl+k7qfri(_77A§’|AiHl)Sof(i; AY)

=1 g=1

©f (Ta Aj W (a’;;, Ay ! AZ+1,|AT|+1> W (aév A;+1,|Ai\+l w A?j)) : (C.51)

The zeroth order term |:fa§a2 (©)ps(i, Ay (r, AT)LO in £ can be extracted from the
two double sums on the right-hand side above simply by setting the shift £ = 0 in
the weights 17, i.e. 77 |¢=o = 7], such that both double sums are elements of Gf(Z, 7).
However, due to poles at £ = 0 in f;.(£), all the quantities depending on £ in the first
term [, (&) (i, A)pys(r, A7) € G4(Z,17) on the right-hand side have to be properly
expanded in order to extract the zeroth order term and accountig for the poles. This

introduces derivatives due to the Taylor expansion of ¢;(i, A)ps(r, A") € G¢(Z,1])
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around & = 0. Denoting i = a} and r = ajj, this yields

h=0
J | A7
Hfaﬁm?(ﬁa, aIAl H fal 1al nal a\At)
=1 l=j+1
k |A™|
Hfa‘g*1 ‘1( aar| +¢) H f“q 1 q Nag. "a\TAr\) ]
g=1 q=k+1 €0
m
h _
= [ > ae m)
h=0
j m |Az
(=™ om
(H Z ml| 8nallﬂfa%71al nal a‘Az H fal Lad nal a\Az)
=1 \m;=0 ’ J I=j+1
k m €m ‘AT
H Z m_ faq 1a ( a \A?"\) H faq 1a a \A’"|)
g=1 \mq=0 "% g=k+1 €0
_ (h) _ymi
IR D P D D DI e T
m]f‘f‘“‘-i-mk:mk
J |A?|
H( Ny z al 1al nal a‘AZ ) H fal lal nal a‘Al)
=1 I=j+1
k |A7|
H( faq 1a a \AT > H faq 1ag a \AT\) ) (052)
q=1 q=k+1

where all the sums run over the non-negative integers. Rewriting the result using

the general Leibniz rule and the fact that the partial derivatives 9" and 0, r act

J
trivially on any other factors than the ones they act upon in the last two lines above
leads to

Jir (5) épf(i> Ai)gpf(r, Ar)j

GGf(fﬁ’)

50

- h (_1) mJ am i T
— § :gz(r) E g T k‘@, 1anar gof( Apg(r, A Z, (C.53)
"0 20 €G; (@)

mI+mF=m—h

where in the product of chains of functions ¢ (i, A")p(r, A™) on the right-hand side,
the shift in the weights is set to zero £ = 0, while on the left-hand side, there is
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a sufficiently small non-vanishing shift £&. Putting all together, the integrals in the
double sum on the last line in eq. (C.47) are given by

/A H g uy [a]ak(S)H s (b, A%)

P a=p+1

50

S S D gt g (31,0, A7)
h=0 j

mIlmk! M i Naj,
md mk>0

mi+mF=m—h
7 k

O VT ()

=1 g=1
20,(B: o (6 Ab w (0 A w A ) w (0 Ay arpa w A ) ).
.,(r,Aqq),...)

7 k
l+k—
22 (VT ey )

=1 g=1
z (B;.. (7“ AT (az, zzlgk L A2+17|Ar|+1> L <aj'7 A;+1,|Ai\+1 L AEJ) >’
-a(iaAill)v"'> ) (054)

where any argument not explicitly shown in the integrals Z,J;p on the right-hand side
is the same as on the left-hand side.

The other two sums in eq. (C.47), which are not yet written in terms of the

integrals Z/ . can be calculated similarly. The first of these terms corresponds to

the graph "
* U
* afn)
I’
fiaz (€) » (C.55)
p‘—,2

in Gy (7,77) with the shifted weights 7y = i + (Ok.a; — 0r,4)§ € 77 and 0y, € 77. The
connected subgraph with an edge from aj, to ¢ can be rewritten as follows using
the identity (C.5) and the Fay identity (followed by the reverse of eq. (C.5) for one
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term):

-
Alar| ay
|ai| @ @ *
: : r
o Py G Qg q—1
aj i U i o
k §
_ k—q r r
= § <_1) ay, a;
q=1 7 r
al .
® Hlan
3 a/?“ T CLT
Qi@  ®a 471 !
: : ai| @ @ ¢
o : : r
ai { I a; B
a
S 1
Naiy ¢ Y Nar+ 13 k s
k
e E k—q L r
q=1 i farp T

The image of this graph identity under f in G(Z,77) is

fiap ()i, BY) oy (r, A7) = fir (&) oy (i, A')py(r, A7)

k
+ Z(—l)k_qfri(m;wﬂ)@f(?“, Af,)
q=1

or (1A w (af, Ay parpa w Ay ) )
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. (C.56)

(C.57)

The extraction of the zeroth order in £ in the sum over ¢ can simply be done by

setting & = 0. For the first term, restricting the sum in eq. (C.53) to m? = 0 leads

to

A7) (C.58)

Fr©) gl Aprtn ) =32 al? o on s A%)
h=

€G/ (&7 e Gy (&)
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Therefore, the integrals in the second sum of eq. (C.47) are given by

/ ﬁdxauf [f f[ (b, A%
A b=1

P a=p+1

50

—Zg T O Z1p(Bs (1,AY), . (p, A7)

k
k q
+ > (U frilnar o)
q=1

zt (B;...,(r, AT (i,AiLu (ag,AgmA,.HlLuAgk)) ) . (C.59)

Exchanging the roles of 4, j, m? with r, k, mF leads to the similar result for the

third sum in eq. (C.47)

/A H dxauf [arf)ngf(aAb)

P a=p+1

gO

—Z _ mhzf( S(1LAY), . (p, AP))

|771

J
] k
+ ZXI: frz nA;|A1\+1>

z! <B; (AL, <7’, A" W (a;, Al i W Ag)) . ) . (C.60)

Now, the closed formula of the partial derivative in eq. (C.47) follows from
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eqns. (C.54), (C.59) and (C.60):

0u, 2} ,(B; (1, A1), ..., (p, AP))

Ti=n,p

=— > awgM 7L, (B;(1,AY),... (p, AP))
re{l,...,p}
r#i
| A" m 1
+Za2ak{z Z m h‘ 7’;7: hZf ( ;(17A1)""7(p7Ap))
k
D )
q=1
Zr{,p <B7 (r, Afg) (2 Al (a’,;,A};H Arj A )) ) ) }

|A*] m
h) (_1) m—h Al
+Zaa§r{zg” 7}0,@” Z§ (B; AL, AP)

2y (B i Ao (r A7 (A 23 ) ) }

|AT] | A7 m ) ( 1)mJ

B T

S Sl X S i)
k=1 j=1 h=0 md mk>0
mi4+mF=m—nh

J

+

=1

(=1)7 k=4 (na

™=

;\A’“I-&-l)

Q
Il
—_

vap(B;...,(i,AluLu( AULUAJHW‘H) (aZ,AZ+17‘AT|+1mA2k>),

...,(r,A{q),...)

J

2

=1 q

(1) i

1,|At|+1

] =

Il
—

Rl

X r r AT r % ) At
» (B, e (7" A, (alquk LL'Ak+1,|AT\+1> w (aja Al |41 W Alj)) ;

.,(i,Agl),...)}

Evaluating the derivative of each component of the vector Z £7p(x1, ..., @) accord-
ing to eq. (C.61) and expanding each f,;(n) = >, gfnf)nk*m leads to a partial

(C.61)
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differential equation of the form

0 Z1 (21, ... ZZ% YW |zt (. ). (C.62)

k>0 r=1
r#i

The components of the matrices rf (x') are given by the coefficients in the linear
combination in eq. (C.61), from Wthh certain properties of these matrices may be
deduced: they are homogeneous of degree one in the variables a;; and homogeneous
of degree k — m in the variables 7;, where a [-th derivative 8f7i is counted to be of
degree —[. The matrices with & < m are differential-operator-valued, while for the
matrices k > m with pairwise distinct labels r, 7, ¢, j and any k, [, the commutation
relation

(@)l @) =0, [{riqj} =4 (C.63)

’ n?p

holds.

C.3.1 (Genus-one example

Let us again consider the genus-one example from subsection 6.2.3 with a;; = s;5,

fzm) =Fznr) =) g* - (C.64)

k>0

and the base points B = {0, 2o, ..., 2,}, such that
ZTTl,p (22,0, 2p) = Z’rlj,p(B> (C.65)

is the vector from eq. (5.20).
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z;-derivative

The derivative of a component with respect to an unfixed puncture z; for 2 < <p
is according to eq. (C.61) given by

aZzZ;p«l?Al)? cc (pv Ap))

|A"] |A|
1
- Z [(S“vf"),(nm)gz(r)+Zs(i,Ai)vazana ZS TAT)az

re{l,...,p} k=1
r#i
Znp(B; (1, AY), ..., (p, AP))
|A7] k
+ Z Sza Z qFri(nA;,\ATHl)
q=1
Z’r:,p <B7 MR (T7 qu)’ c (27 AZ L (a};u A7];+17‘A7‘|+1 LU Agk‘)) g .. )
|AY|
+Z arz ’r}A;|Ai|+1)
Jj=1 ’

Z;,p <B77(Z’A7il)77 <T7ATLLI (a;7A;+17|A1‘+1 LUAL)) 7)

AT |AY ik

) _1Viltk—am
S sa;.a;{zz D )
k=1

=1 j=1 =1 g=1

zr, (B; o (z AW ( AjwaAl |Aw+1) (ag, AL g W Agk)) ,

.,(T,A;q),...)
J k

DY T ey )

=1 g=1

T roAT T 7 ) A1
an(B, (7“ Afyw (almAqk; L Ak+1,|Ar\+1) w <aj’ Al i W Alj)) ,

.,(z’,AﬁQ,...)}

where for two sequences P, () the sum of Mandelstam variables spg is defined in
eq. (4.81). This yields explicit expressions for the matrices 7" (x*) in the elliptic
KZB system (5.21), if it is applied to each component of the vector Z] = and the

, (C.66)

P
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Eisenstein—Kronecker series are expanded. For p = 2, it reduces to

8222771—,2«17 Al)v (27 A2>>

|A] |A2]
1 T
= — 3(1,A1),(2,A2)9§1) + Z Sa}c,(2,A2)a7la11€ - Z S(l,Al),a?ana? Zn,Z((]-? Al), (27 AQ))
k=1 j=1
|AY] A2 kg
k+ i—1
S D) IS D) EIEES LN
k=1 j=1 i=1 =1
Zno ((LAL w (ay, (A LUAllq+1,|A1\+1) (a A '-'-'A]+1 |A2\+1))) ) (2714%1))
|AY] A2 E o j
k+j—z‘—l
DD saa ) > (-1 Fa(-na )
k=1 j=1 i=1 =1

Zpo ((17 AL) ) <27 A% w ( (A L A]+1 \A2|+1) w (ay, Ailk L Ai+1,\Al|+1))))

42|

+Z=91a Z Uy ( UAf‘AQ‘H)

Zg,2 <<1a Al ( A2 L A]+1 |A2|+1)> ) (27 A%l))

|AY| k
+Zs Lo 3 (1) B (- Al )
=1
Zio ((LAL), (2 4% w(ah A w AL ) ) - (C.67)

leading to the partial differential equation (5.51) and used for the genus-one recur-

sion, originally derived in ref. [3].

T-derivative

In this genus-one example, there is another parameter than the unfixed punctures
22, .., %p: the modular parameter 7. The 7-dependence of Z] , is governed by the

2miT-derivative in the elliptic KZB system (5.21). Let us give a brief outline how
cha(€k), can be derived. It essen-

tially follows the same steps as the derivation of eq. (C.66) and is a straightforward

the closed formula, which leads to the matrices r

generalisation of the derivation for p = 2 from ref. [3]. In particular, the graphical
formulation can be used to carefully structure and prove each step. For the sake of

brevity, we simply give the crucial results at each step.

First, integration by parts and the mixed heat equation (3.79) are used such that
the derivatives solely act on the Koba-Nielsen factor in Z] ,(A',..., AP). Then the
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identity [39]

1<i<j<n

can be applied. The result is the expression

QWiaTZ;L—,p((lv Al)’ SRR (pu Ap))

= —S12.. n2<2 T ((17A1)a'-~a(paAp))
p A" k-1

Y Y [T e,
r=1 k=1 j=0 Anp g= p+1
p
(9817 Ony = 032000,0) + 92 ) [T &7 (0, A"
b=1
p |AT] A p+1
SDID D) ST N I LA
rqq<r1k 0 7=0 Anp g=2

p
(50 2100~ 0200, 4 92 ) T 0.4 (Co0

where 0>, is one for j > 1 and zero for j = 0.

Second, the antisymmetry, Fay identity and similar relations can again be used to
obtain a closed formula by recovering integrals of the form Z7 ((1, B'),..., (p, B?)).
This leads to the following identities [3]:

|A™] k-1 P
Z Z Saku‘ <ga a T - 9]>1a r + ga a” ) H (p b Ab
k=1 ] =0 b=1
|A"] k-1 »
= Z Sara” [(ana ]>1a + 8&) H (,0 b Ab
k=1 j=0 b=1 I
1 A k-1 p
= b
DY ZZS“ZG§ <a77a2 0210 r) H (b, A7)
k=1 7=0 b=1
T Sayaj Z p(nA{,\AT\+1>(_1>k_l H @™ (b, Ab)
k=1 7=0 l=j+1 27:&1

@ (r, AT, aj A w (ax, Al & Ak+1,|AT\+1)) (C.70)



198 APPENDIX C. CLOSED DIFFERENTIAL SYSTEM

and
|A7| A9
ZZS ( Tq0k>16 T—(93>18,7q +g )HQO bAb
k=0 5=0
|A"| |A9] P
=>.D 5q [(9k>15 o 03210, + 5&) ©) ] ¢ 0.4
k=0 j5=0 b=1 £0
IAT |A9| 2\ »p
= | s@ram), qu)g - = Z Z Sqr (9k>18 g 93'>1a77aq,) H o7 (b, AY)
k 0 j=0 ! b=1
|A"| |A9] kg »
k—i— i— l b
B Z Z Sak“g Z Z ” l JAT|+1 H b A
k=0 j=0 i=1 1=1 b=1
btrg
©"(q, A" (r, AT; w (ay, (A:k L A2+1,\Ar|+1) ( Aq L A;ZH \AQ|+1)))
|AT| |A9] Eoj »
Yeri—i=l - - b
N Z Z Sajaf Z Z Y qu(_nA:,IATHl) H ©"(b, A%)
k=0 j=0 i=1 =1 b—1
b#r,q
©"(r, AL)¢" (g, AL, w ( (Aq w Aq+1 |Aq\+1) w (ag, A:,k L AZ+1,\AT|+1))) ;
(C.71)
where

F(£6) = £0:Fy(£€)
= £0; Zgg“)(i@k—l

k>0

= (k= 1)g (£6)"*. (C.72)

k>0
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The result is the closed form
271'2'87-2:7:’])((1, Al)v ) (p7 Ap))

1 1
- (2 Z (3(1»~~~,p),j)arzzj T3 Z $ij(On; — On,)” — 2C2512.

j—p+1 pH+1<i<j<n

_ (2) zr ( )
S (k,Ak),(q,A0) Ikq .

r,q=1

q<r

p A" k-1

k—l

)IPIP LT Z AL ey ) (D)
r=1 k=1 5=0 I=j+1

Zﬁ,;;( (7‘ Afjaf, A% w (ay, A w AL |AT|+1)> )

p AT |AY Eoj
k+] i— l
Sarat >
+ Z ZZ ak,a? T(WA?,\Aqu)
rq=1 k=1 j=1 i=1 l=1
q<r

Zip (oo (AL W (s (A w Ay ) W (@ A WAL )

(@A) )

p AT A k
k+j—z’—l -
DD I DI Fo(=nag o ,)
r,q=1 k=1 j=1 i=1 I=1
q<r
Zip( oo (@ AL W (@ (AL WAL o) w0k A w AL arp0)))
..,(r,A’“.),...)
p A9 j
—1
+ Z Zsra Z F‘IJ;(HA?JAqu)
r,q=1 j=1 =1
q<r

Zig (o @AL) o (A w (e A w A L))

p A7
+ > ZS“MZ ) Fy (=nag jari 1)
r,q=1 k=1
q<r
zr, ( -, (q, A% (al, AT, UJA;HJAT‘H)) v (AT ) . (C73)

The 2miT-derivative in the elliptic KZB system (5.21) is obtained from this closed
formula by applying it to the full vector Z7 , and expanding the Eisenstein-Kronecker

series as well as the Weierstrass p-functions according to eq. (3.15). This leads to

cha(

explicit expressions of the matrices 712 (e5) and their properties can be read off. By
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specifying to p = 2, the result relevant for the genus-one recursion is recovered [3]:
271—2'87'217;,2((17 Al)? (27 AQ))

1 & 1
= (5 Z(Slj + 595) 05 + 5 Z $ij (O, — Ony)? — 2Ca812.. — 5(1,A1),(2,A2)gg))

j=3 3<i<j<n

Z;,Q((lu Al)? (27 A2)>

|A2] k—1 k
k—1
=D sea plnaz , )(=1)
k=1 j=0 l=j+1
Z;,Z ((17 A1)7 <2 A%]u (l] ) A2 (ai7 Al2k: L Az-ﬁ-l,\AzH-l)))
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S S s 3 ol D
k=1 j=0 l=j+1
ZZ,Q ((1 A%p CL], Al (allga "lelk L A11g+1,|A1\+1)> ) (2a A2)>
|AY] 1A% ko
2D saar 2 (VMR g, )
k=1 j=1 i=1 1=1
Z’;II:,Q ((L A%i L (alf;a ("lelk L Allc+1,|A1|+1) L (%2', AZQJ 8 A§+1,\A2|+1))> ) (2, A%l))
|AY] A2 ko
2D sapar 2L (DT T B (e )
k=1 j=1 i=1 I=1
Zpo ((L A%z) ) <2> A (ai, (12112] L A§+1,\A2|+1> w (a, "Zizl,k: L A11c+1,|A1\+1))>)
|A?| j
X S B, )
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Z;,Q ((17 Al (CL A LLI Aj+1 |A2H—1)) ) (27 A%l))
|A| k
+ Sara Y (DR (- Al )
k=1 i=1
Z:;,Q ((17 A%z) ) (2 A2 (ak> Az kW Ak+1 |A1\+1))> ) (074>

which leads to the matrices in the partial differential equation (5.52) relevant for

the genus-one recursion.
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