

Properties of Cosmic Deuterons Measured by the Alpha Magnetic Spectrometer

Carlos Delgado^{a,*}

^a*CIEMAT,*

Avda. Complutense 40, Madrid, Spain

E-mail: carlos.delgado@ciemat.es

Precision measurements of the cosmic ray D flux are presented as function of rigidity from 1.9 to 21 GV, based on 21 million D nuclei. We observed that over the entire rigidity range D exhibits nearly identical time variations with p, ^3He , and ^4He fluxes. Above 4.5 GV, the D/ ^4He flux ratio is time independent and its rigidity dependence is well described by a single power law $\sim R^\Delta$ with $\Delta_{D/{}^4\text{He}} = -0.108 \pm 0.005$. This is in contrast with the $^3\text{He}/{}^4\text{He}$ flux ratio for which we find $\Delta_{^3\text{He}/{}^4\text{He}} = -0.289 \pm 0.003$. The significance of $\Delta_{D/{}^4\text{He}} > \Delta_{^3\text{He}/{}^4\text{He}}$ exceeds 10σ . In addition, we found that above ~ 13 GV the rigidity dependence of D and p fluxes is identical with a D/p flux ratio of 0.027 ± 0.001 . These unexpected observations show that, contrary to expectations, cosmic deuterons have a sizeable primary component.

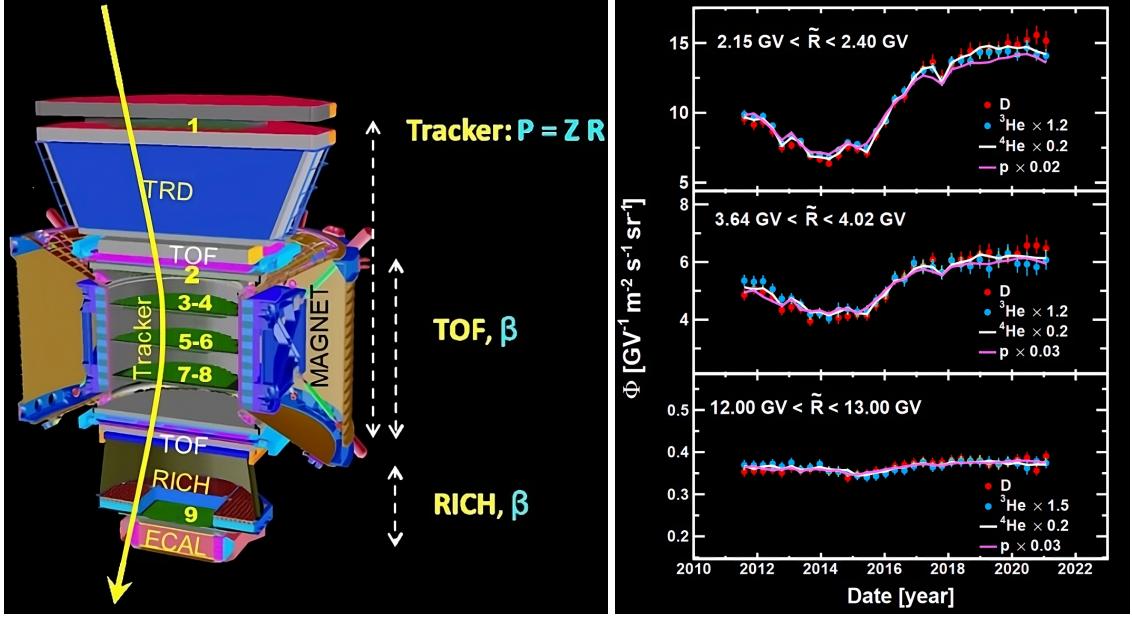
42nd International Conference on High Energy Physics (ICHEP2024)
18-24 July 2024
Prague, Czech Republic

*Speaker

1. Introduction

Hydrogen nuclei are the most common species in cosmic rays. These nuclei include two stable isotopes: protons (p) and deuterons (D). Big Bang nucleosynthesis predicts minimal deuterium production, and over time, the abundance of D decreases from its primordial level. The observed D/ p ratio in the interstellar medium is approximately 2×10^{-5} [1]. Unlike primary cosmic rays such as p and ^4He , which are accelerated in supernova remnants, deuterons are mainly produced by He interactions with the interstellar medium. Deuterons, along with ^3He , are classified as secondary cosmic rays, and previous research has shown that these cosmic rays, including Li, Be, and B, share a similar rigidity dependence [2–4].

The interaction cross sections of deuterons and He with the interstellar medium are significantly lower than those of heavier nuclei [5]. Specifically, the D/ ^4He and $^3\text{He}/^4\text{He}$ flux ratios provide insight into diffusion properties at larger distances than those probed by heavier nuclei. These measurements are crucial for refining cosmic ray propagation models [6–11].


2. AMS Detector

The layout of the detector is shown in Fig. 1 (left). The key elements are the permanent magnet [12], the silicon tracker [13], four planes of time of flight (TOF) scintillation counters [14], the array of anticoncidence counters (ACCs) [15], the transition radiation detector (TRD) [16], the ring imaging Čerenkov detector (RICH) [17], and the electromagnetic calorimeter (ECAL) [18]. The AMS coordinate system is concentric with the magnet. The x axis is parallel to the main component of the magnetic field. The (y - z) plane is the bending plane. Above, below, and downward-going refer to the AMS coordinate system. The central field of the magnet is 1.4 kG. On orbit, the magnet temperature varies from -3 to $+20^\circ\text{C}$. The field strength is corrected with a measured temperature dependence of $-0.09\%/\text{ }^\circ\text{C}$.

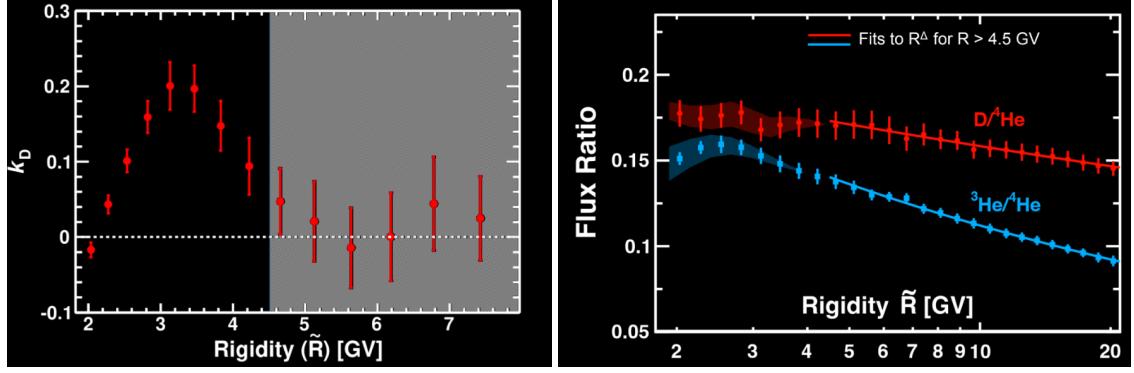
The tracker has nine layers, the first ($L1$) at the top of the detector, the second ($L2$) just above the magnet, six ($L3$ to $L8$) within the bore of the magnet, and the last ($L9$) just above the ECAL. $L2$ to $L8$ constitute the inner tracker. The tracker accurately determines the trajectory of cosmic rays by multiple measurements of the coordinates with a resolution in each layer of $5\text{--}10\ \mu\text{m}$ in the bending (y) direction for different nuclei [19]. Together, the tracker and the magnet measure the rigidity R of charged cosmic rays, with a maximum detectable rigidity of up to 3.5 TV. Each layer of the tracker provides an independent measurement of the charge Z with a resolution. Overall, the inner tracker has a resolution of $0.05 < \sigma_Z < 0.3$ for $Z=1\text{--}28$ [20].

As seen from Fig. 1 (left), two of the TOF planes are located above the magnet (upper TOF) and two planes are below the magnet (lower TOF). The overall velocity ($\beta = v/c$) resolution has been measured to be $\sigma(1/\beta) = 0.01 - 0.04$ for different nuclei. The pulse heights of the upper and lower planes each provide independent charge measurements with an accuracy of $\sigma_Z/Z \sim 2$.

The RICH is located below the two lower TOF planes. Its radiator is located at its top, which is made of two non-overlapping dielectric materials. The radiator consists of tiles of silica aerogel with a refraction index of 1.05 and, in the central part, of tiles of sodium fluoride with a refraction index of 1.33. Its velocity resolution has been measured to be $\sigma(\beta)/\beta = 1.3 \times 10^{-3}$ for charge 1 particles crossing the aerogel radiator, and $\sigma(\beta)/\beta = 3.2 \times 10^{-3}$ for the sodium fluoride one.

Figure 1: (left) The AMS detector showing the main elements and their functions. (right) The AMS D (red points), ${}^3\text{He}$ (blue points), ${}^4\text{He}$ (white curves), and p (magenta curves) fluxes as functions of time for three characteristic rigidity bins.

Monte Carlo (MC) simulated events were produced using a dedicated program developed by the collaboration based on the GEANT4-10.3 package [21]. The program simulates electromagnetic and hadronic interactions [22] of particles and nuclei in the material of AMS and generates detector responses. The simulated events then undergo the same reconstruction as used for the data.


3. Results

The deuteron (D) fluxes were measured as a function of rigidity from May 2011 to April 2021. To facilitate a comparison of the temporal and rigidity dependence of the D fluxes with those of ${}^3\text{He}$ and ${}^4\text{He}$, the ${}^3\text{He}$ and ${}^4\text{He}$ measurements from Ref.[23] were extended to April 2021 and to the rigidity range of 1.9 to 21 GV.

Figure 1 (right) shows the AMS D flux as a function of time for three characteristic rigidity bins, compared with the AMS p , ${}^3\text{He}$, and ${}^4\text{He}$ fluxes. The p fluxes were extracted from Ref. [24], with the D fluxes subtracted. All these spectra exhibit nearly identical variations with time and the relative magnitude of the variations decreases with increasing rigidity. To study the time variation of the D flux in detail, we fit a linear relation between the relative variations of $\Phi_D/\Phi_{{}^4\text{He}}$ and of $\Phi_{{}^4\text{He}}$ for each rigidity bin i , as of:

$$\frac{\Phi_D^i/\Phi_{{}^4\text{He}}^i - \langle \Phi_D^i/\Phi_{{}^4\text{He}}^i \rangle}{\langle \Phi_D^i/\Phi_{{}^4\text{He}}^i \rangle} = k_D^i \frac{\Phi_{{}^4\text{He}}^i - \langle \Phi_{{}^4\text{He}}^i \rangle}{\langle \Phi_{{}^4\text{He}}^i \rangle} \quad (1)$$

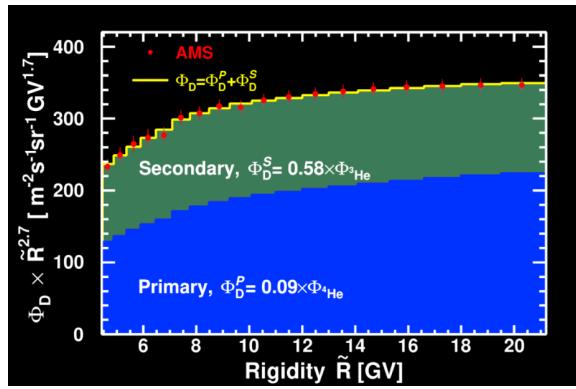

where k_D^i is the slope of the linear dependence for the rigidity bin i . Figure 2 shows that the slope k_D , as a function of the rigidity from 1.9 to 7.8 GV, is compatible with zero above 4.5 GV.

Figure 2: (left) The slope of the linear fit of $\Phi_D/\Phi_{^4\text{He}}$ versus rigidity. The shaded area indicates the rigidity range where the slope is statistically consistent with zero. (right) The time-averaged flux ratios, $D/^{^4\text{He}}$ (red circles) and $^{^3\text{He}}/^{^4\text{He}}$ (blue squares), are plotted as a function of rigidity with total errors. The red and blue lines represent power-law fits for $R > 4.5$ GV.

The time-averaged flux ratios of $D/^{^4\text{He}}$ and $^{^3\text{He}}/^{^4\text{He}}$ as functions of rigidity are presented in Fig. 2 (right). For rigidities above 4.5 GV, these ratios follow a power law of the form $C, (R/4.5, \text{GV})^\Delta$. For the $D/^{^4\text{He}}$ flux ratio, a fit to the data yields: $\Delta_{D/^{^4\text{He}}} = -0.108 \pm 0.005$. For the $^{^3\text{He}}/^{^4\text{He}}$ flux ratio, the fit results in $\Delta_{^{^3\text{He}}/^{^4\text{He}}} = -0.289 \pm 0.003$. The spectral index for the $D/^{^4\text{He}}$ flux ratio differs from that of $^{^3\text{He}}/^{^4\text{He}}$. The condition $\Delta_{D/^{^4\text{He}}} > \Delta_{^{^3\text{He}}/^{^4\text{He}}}$ is confirmed with a significance greater than 10σ . This suggests that cosmic deuterons contain a substantial component with a primary-like spectrum.

We estimate the primary (Φ_D^P) and secondary (Φ_D^S) components of the deuterium flux (Φ_D) by fitting $\Phi_D = \Phi_D^P + \Phi_D^S$ to a weighted combination of a typical primary cosmic ray flux ($\Phi_{^4\text{He}}$) and a typical secondary cosmic ray flux ($\Phi_{^3\text{He}}$) above 4.5 GV. The fitting results in $\Phi_D^P = (0.094 \pm 0.005) \times \Phi_{^4\text{He}}$ and $\Phi_D^S = (0.58 \pm 0.05) \times \Phi_{^3\text{He}}$ as displayed in Fig. 3.

Figure 3: The time-averaged Φ_D (red circles) multiplied by $\tilde{R}^{2.7}$ as a function of rigidity with total errors above 4.5 GV together with the fit to the weighted sum of $\Phi_{^4\text{He}}$ and $\Phi_{^3\text{He}}$ (yellow curve). The contributions of the primary and secondary components are indicated by the blue and green shadings, respectively.

4. Discussion

We reported the precision measurements of the cosmic ray deuteron (D) flux in the rigidity range from 1.9 to 21 GV. Across this range, the D flux exhibits time variations nearly identical to those of the proton, ${}^3\text{He}$, and ${}^4\text{He}$ fluxes. Above 4.5 GV, the rigidity dependence of the flux ratio $\text{D}/{}^4\text{He}$ follows a single power law, $\propto R^\Delta$, with $\Delta_{\text{D}/{}^4\text{He}} = -0.108 \pm 0.005$, different from the ${}^3\text{He}/{}^4\text{He}$ ratio, where $\Delta_{{}^3\text{He}/{}^4\text{He}} = -0.289 \pm 0.003$. The difference between $\Delta_{\text{D}/{}^4\text{He}}$ and $\Delta_{{}^3\text{He}/{}^4\text{He}}$ is statistically significant, exceeding 10σ . These findings suggest the presence of a primary-like component in cosmic deuterons, contrary to prior expectations. Using a method independent of cosmic ray propagation models, we estimate the primary component of the D flux to be $9.4 \pm 0.5\%$ of the ${}^4\text{He}$ flux, and the secondary component to be $58 \pm 5\%$ of the ${}^3\text{He}$ flux.

References

- [1] S. D. Friedman *et al.*, A High-precision Survey of the D/H Ratio in the Nearby Interstellar Medium, [Astrophys. J. **946**, 34 \(2023\)](#);
- [2] B. Coste, L. Derome, D. Maurin, and A. Putze, Constraining Galactic cosmic-ray parameters with $Z \leq 2$ nuclei, [Astron. Astrophys. **539**, A88 \(2012\)](#).
- [3] I. A. Grenier, J. H. Black and A. W. Strong, The Nine Lives of Cosmic Rays in Galaxies, [Annu. Rev. Astron. Astrophys. **53**, 199 \(2015\)](#); P. Blasi, The origin of galactic cosmic rays, [Astron. Astrophys. Rev. **21**, 70 \(2013\)](#); A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Cosmic-Ray Propagation and Interactions in the Galaxy, [Annu. Rev. Nucl. Part. Sci. **57**, 285 \(2007\)](#).
- [4] M. Aguilar *et al.*, Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station, [Phys. Rev. Lett. **120**, 021101 \(2018\)](#).
- [5] Y. Génolini, D. Maurin, I. V. Moskalenko, and M. Unger, Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N, [Phys. Rev. C **98**, 034611 \(2018\)](#).
- [6] N. Tomassetti, Propagation of H and He cosmic ray isotopes in the Galaxy: astrophysical and nuclear uncertainties, [Astrophys. Space Sci. **342**, 131 \(2012\)](#).
- [7] G. Jóhannesson *et al.*, Bayesian analysis of cosmic ray propagation: Evidence against homogeneous diffusion, [Astrophys. J. **824**, 16 \(2016\)](#).
- [8] A. W. Strong and I. V. Moskalenko, Propagation of Cosmic-Ray Nucleons in the Galaxy, [Astrophys. J. **509**, 212 \(1998\)](#).
- [9] C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Ligorini, P. Ullio, and D. Grasso, Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients, [J. Cosmol. Astropart. Phys. **02**, 015 \(2017\)](#).

[10] D. Maurin, F. Donato, R. Taillet, and P. Salati, Cosmic Rays below $Z = 30$ in a Diffusion Model: New Constraints on Propagation Parameters, *Astrophys. J.* **555**, 585 (2001).

[11] A. Putze, L. Derome, and D. Maurin, A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays II. Results for the diffusion model combining B/C and radioactive nuclei, *Astron. Astrophys.* **516**, A66 (2010).

[12] K. Lübelsmeyer *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **654**, 639 (2011).

[13] B. Alpat *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **613**, 207 (2010).

[14] V. Bindi *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **743**, 22 (2014).

[15] Ph. von Doetinchem *et al.*, *Nucl. Phys. B, Proc. Suppl.* **197**, 15 (2009).

[16] Th. Kirn, *Nucl. Instrum. Methods Phys. Res., Sect. A* **706**, 43 (2013).

[17] M. Aguilar *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **614**, 237 (2010); F. Giovacchini *Nucl. Instrum. Methods Phys. Res., Sect. A* **766**, 57 (2014).

[18] C. Adloff *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **714**, 147 (2013).

[19] G. Ambrosi, V. Choutko, C. Delgado, A. Oliva, Q. Yan, and Y. Li, *Nucl. Instrum. Methods Phys. Res., Sect. A* **869**, 29 (2017).

[20] Y. Jia, Q. Yan, V. Choutko, H. Liu, and A. Oliva, *Nucl. Instrum. Methods Phys. Res., Sect. A* **972**, (2020).

[21] J. Allison *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **835**, 186 (2016); J. Allison *et al.*, *IEEE Trans. Nucl. Sci.* **53**, 270 (2006); S. Agostinelli *et al.*, *Nucl. Instrum. Methods Phys. Res., Sect. A* **506**, 250 (2003).

[22] Q. Yan, V. Choutko, A. Oliva, and M. Paniccia, *Nuclear Physics A* **996** 121712 (2020).

[23] M. Aguilar *et al.*, Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer, *Phys. Rev. Lett.* **123**, 181102 (2019).

[24] M. Aguilar *et al.*, Periodicities in the Daily Proton Fluxes from 2011 to 2019 Measured by the Alpha Magnetic Spectrometer on the International Space Station from 1 to 100 GV, *Phys. Rev. Lett.* **127**, 271102 (2021). The new Φ_p data up to April 2021 will be published separately.