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Abstract

Questions about the origin and structure of the universe have been asked for a long
time. Our current understanding of the universe is that it is dominated by dark matter
and dark energy. Most of the matter and energy in the universe are invisible, and their
origin is still a mystery. We aspire to discover the origin of these dark components in
our universe and answer the questions.

Gravity plays an important role in the evolution of the universe. The general theory
of relativity (GR), as proposed by Einstein in 1915, is a theory of gravity which de-
scribes gravitation in terms of curved geometry of spacetime. GR has established itself
as the most successful theory of gravity to date through experimental and observa-
tional tests. GR is, however, not considered to be a complete theory today. One of the
serious theoretical problems is the occurrence of singularity under general conditions,
which brings about mathematical failure. Furthermore, modification of GR is consid-
ered necessary in order to make it renormalizable in quantization. In addition, in the
context of cosmological observations, it is anticipated that the mystery of accelerated
expansion (dark energy) may be solved by modifying GR. As implied above, after 100
years of the proposal of GR, the search for a more correct theory of gravity is strongly
motivated from various theoretical and observational aspects.

The purpose of this thesis is to improve our understanding of gravity. We use
two classes of extended gravity theories in this thesis: generic higher-curvature gravity
(HCG) and generic linear massive gravity (MG). HCG is a theory that adds higher-
order terms of spacetime curvature as a correction at low energies to the Einstein-
Hilbert action. Some of its variants are known to be renormalizable and/or appear
in the low-energy limit of superstring theory. Thus, it is one of the candidates for
quantum gravity at low energies. When expanded around a flat background, the linear
dynamical degrees of freedom (DOFs) in this theory are identified as massless spin-2,
massive spin-2, and massive spin-0 modes. MG is a theory that adds mass to the spin-
2 graviton of GR, and it is pointed out that it can be related to the late accelerated
expansion of the universe. Generic linear MG loosens the Fierz-Pauli tuning for the
Lorentz-invariant mass term so the spin-0 ghost is allowed to propagate. These extra
DOFs create physical effects that are not present in GR.

Recently, human beings have acquired a direct and very powerful tool for testing
theories of gravity – the observation of gravitational waves (GWs). GWs are a ripple
of spacetime, which are modally decomposed into physical DOFs called polarizations.
Since the contents of polarization modes differ depending on the theory of gravity, it
is possible to test the correctness of a theory by observing the polarizations. Although
the present-day GW observations have not succeeded in determining the polarizations
due to the smaller number of available detectors than necessary and insufficient obser-
vational accuracy, it is expected to be achieved in the near future. In this thesis, we
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identify the polarizations of GWs in generic HCG and generic linear MG. In generic
HCG, we have shown that (i) the massless spin-2 is the ordinary graviton with 2 tensor-
type (helicity-2) polarisations, (ii) the massive spin-2 breaks down into 2 tensor-type
(helicity-2), 2 vector-type (helicity-1) and 1 scalar-type (helicity-0) polarizations, (iii)
the massive spin-0 provides 1 scalar-type (helicity-0) polarization. Therefore, GWs in
generic HCG exhibit 6 massive polarizations on top of the ordinary 2 massless ones.
The generic linear MG with generic mass terms of non-Fierz-Pauli type consists of
spin-2 and spin-0 modes, the former breaking down into 2 tensor (helicity-2), 2 vector
(helicity-1), and 1 scalar (helicity-0) components, while the latter just corresponding
to a scalar. We also find convenient representations of the scalar-polarization modes
connected directly to the theory parameters of HCG. They are utilised to determine
those parameters by GW-polarization observations.

Non-relativistic stars such as white, brown, and red dwarfs can be powerful probes
of gravitational interactions. In general, modifications to GR would change the hydro-
static equilibrium condition in stars, thus having a large impact on the stellar radius
and mass. In this thesis, we study the structure of static spherical stars made up of a
nonrelativistic polytropic fluid in generic HCG and generic linear MG. We first formu-
late the modified Lane–Emden (LE) equation for the stellar profile function, finding it
boils down to a sixth-order differential equation in the generic case. In special cases, it
reduces to a fourth-order equation reflecting the number of additional massive gravi-
tons arising in each theory. Moreover, the existence of massive gravitons renders the
nature of the boundary-value problem unlike the standard LE: some of the boundary
conditions can no longer be formulated in terms of physical conditions at the stellar
centre alone, but some demands at the stellar surface necessarily come into play. We
present a practical scheme for constructing solutions to such a problem and demon-
strate how it works in the cases of the polytropic index n = 0 and 1, where analytical
solutions to the modified LE equations exist. As physical outcomes, we clarify how the
stellar radius, mass, and Yukawa charges depend on the theory parameters and how
these observables are mutually related.

In conclusion, if GW polarizations become observable in the future, we may confirm
whether or not HCG or MG provides a theory beyond GR. Observations of stellar radii
will be helpful to examine the constraints based on GW observations.
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Preface

Organization of this thesis: In Chapter 1, we will provide an overview of theories
of gravity, including general relativity, higher-curvature gravity (HCG), and massive
gravity (MG). We will explain why we require theories beyond GR and introduce
gravitational waves (GWs) and non-relativistic stars as tools for testing gravity. In
Chapter 2, we will study the number of physical degrees of freedom (DOFs) in MG
and HCG. We will identify GW polarization modes and show how the physical DOFs
propagate in Minkowski spacetime. We will subsequently discuss the methodology for
determining theory parameters from GW observations with laser interferometers and
pulsar timing arrays, such as LIGO and NANOGrav. In Chapter 3, we will study
non-relativistic stellar structure in MG and HCG. We will derive a master equation
that provides the stellar profile function and find exact solutions. We will then show
how to determine the theory parameters through stellar observations. In Chapter 4,
we will conclude this thesis.

Notations: Throughout the thesis, we will work with natural units with c = 1.
Greek indices of tensors such as µ, ν, · · · are of space-time, while Latin ones such as
i, j, · · · are spatial. We employ the Einstein summation convention, such as

AµB
µ =

3∑
µ=0

AµB
µ = A0B

0 + A1B
1 + A2B

2 + A3B
3 ,

ai b
i =

3∑
i=1

ai b
i = a1b

1 + a2b
2 + a3b

3 .

(1)

We introduce background coordinates (x0, x1, x2, x3) = (t, x, y, z) in which Minkowski
metric is

ηµν = diag(−1, 1, 1, 1) . (2)

The partial differentiation is

∂µ =
∂

∂xµ
= (∂0, ∂i) . (3)

□ ≡ ηµν ∂µ∂ν is the d’Alembertian and △ ≡ δij ∂i∂j the Laplacian. We denote the
curved spacetime metric by gµν(x) and its determinant by g . The Christoffel symbol
is

Γρµν =
1

2
gρσ(∂µgσν + ∂νgσµ − ∂σgµν) . (4)

The Riemann tensor is defined as

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + ΓµαρΓ

α
νσ − ΓµασΓ

α
νρ . (5)
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The Ricci tensor is Rµν = Rα
µαν , and the Ricci scalar is R = gµνRµν . The energy-

momentum tensor for the matter field is defined from the variation of the matter action
SM under a change of the metric gµν → gµν + δgµν , according to

δSM =
1

2

∫
d4x

√
−g T µνδgµν . (6)

Parentheses around tensor indices denote symmetrisation such as

T(µν) ≡
1

2
(Tµν + Tνµ) , (7)

while square brackets denote antisymmetrisation such as

T[µν] ≡
1

2
(Tµν − Tνµ) . (8)

Our conventions of the Fourier transform for a function of time and its inverse are

f̃(ω) =
1√
2π

∫ ∞

−∞
dt eiωt f(t) ,

f(t) =
1√
2π

∫ ∞

−∞
dω e−iωt f̃(ω) .

(9)
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Chapter 1

Introduction

1.1 General theory of relativity

The general theory of relativity (GR), which describes gravity in the language of space-
time geometry, was proposed by Einstein in 1915. This is the most successful theory of
gravity to date having passed various observational tests. The predictions of GR are in-
credibly consistent with observations from the sub-millimetre scale to the solar-system
scale. Observational evidence includes Mercury’s perihelion shift, light bending, and
Shapiro time delay caused by the Sun. In 2015, gravitational waves (GWs) propagating
as dynamical fluctuations in spacetime were directly observed [A+16a]. This has given
us one more piece of evidence supporting GR.

However, GR is not the only theory of gravity, and there are many alternatives that
extend and modify GR. The history of the modification of gravity goes back to Weyl
in 1919 [Wey19], just after the proposal of GR. Modifying gravity is considered to have
two main motivations: to overcome the cosmological problems in GR and to construct
a quantum theory of gravity.

The present standard cosmological model is the Big Bang model originally pro-
posed by Gamow in 1946, which states that the universe began explosively as a high-
temperature and high-density state and, through the expansion, the temperature and
density decreased to the values in the present universe [Gam46, ABG48]. The Big Bang
model was developed on the basis of general relativity as a theory capable of treating
the whole universe. It also assumes the cosmological principle that the universe is
not uneven and has no special direction, i.e., the metric of spacetime and distribution
of matter in the universe are uniform and isotropic. One of the predictions of the
Big Bang model is that there be the Plank-distributed cosmic microwave background
(CMB) radiation in the present universe. This is because a universe that began in
a hot state should be filled with thermally distributed radiation. In fact, CMB was
discovered by Penzias and Wilson in 1965 [PW65], and the Big Bang model became
the present standard cosmological model. However, the Big Bang model left several
problems. In particular, the horizon problem and the flatness problem are significant
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unsolved problems.
From the beginning of the decelerated universe until a certain time, only matter in

a finite region of the universe can causally interact with a given point, and the edge of
this causal region is called the particle horizon. In an expanding universe, the horizon
continues to expand with time, so the size of the horizon becomes smaller if we go back
to the early universe. The CMB is observed as a thermal radiation of 2.73 Kelvins
coming isotropically from all directions on the celestial sphere [M+94], but the horizon
of the cosmic recombination period, when the CMB was last scattered, is only about
2 degrees on the present celestial sphere. This means that all regions that have been
causally independent of each other before the recombination of the universe should
have different temperatures. It is unnatural for regions of the universe that have never
been causally connected to each other to be in the same state, and this is called the
horizon problem.

Observations show that the present universe is extremely flat in space [A+16b]. The
natural initial value of curvature at the birth of the universe at the Planck temperature
is considered to be about (Planck length)−2 = 1066 cm−2 . However, if we go back to
the Planck temperature from the presently observed value of 10−56 cm−2 or less, we
would find its initial value around 108 cm−2 or less. Comparing the two, the flatness
problem is the need to set an initial condition that is at least 58 orders of magnitude
smaller than the natural value.

The inflation theory is expected to solve these problems of the Big Bang model. It
was proposed around 1980 by Sato [Sat81] and Guth [Gut81]. The simplest mechanism
for inflation to occur is an exponential expansion due to the energy of a scalar field
(inflaton). Apart from the introduction of scalar fields, Starobinsky has already pointed
out in 1980 that an exponential expansion of the universe occurs by introducing a higher
order curvature term into the action [Sta80]. Inflation theory is an essential part of the
modern standard cosmological model, but its realization mechanism is still unknown.

Observations of Type Ia supernovae (SN Ia) tell us that the current universe
is undergoing accelerated expansion. It was achieved by two independent research
teams, High-redshift Supernova Search Team (HSST) [R+98] and supernova Cosmol-
ogy Project (SCP) [P+99], in 1998. This fact has been confirmed by many subsequent
observations (LSS, BAO, and CMB). The unknown energy component that causes this
late accelerated expansion of the universe is called dark energy, which, assuming a
positive energy density, has a negative pressure and is, therefore, completely distinct
from ordinary matter (baryons and radiation). The equation of state of dark energy
is expressed as w = P/ρ, where P is pressure and ρ is energy density. The theoretical
value of w depends on the model; in the case of a cosmological constant, w = −1,
which is constant over time, but in many other models, the value of w changes over
time. Since the cosmological constant can cause this accelerated expansion within the
framework of general relativity, which is the standard theory of gravity and is consis-
tent with observations, many people believe that the cosmological constant is the true
identity of dark energy. Considering the possibility that the origin of dark energy is
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not a cosmological constant, we can assume that its equation of state is of the form

w(a) = w0 + (1− a)wa (1.1)

as a function of the scale factor, where a = 1 is the current value. Then, the constraints
are given by

w0 = −0.957± 0.080 , wa = −0.29+0.32
−0.26 . (1.2)

In fact, this shows that considering the cosmological constant (w0 = −1 and wa = 0) to
be dark energy is consistent with observation [A+20]. In addition, the ΛCDM model,
which is the standard model of cosmology, assumes a cosmological constant as the
origin of dark energy, and it is estimated that dark energy accounts for approximately
70% of the total energy in the current universe.

As mentioned above, adding a cosmological constant to the framework of general
relativity is consistent with observations and seems natural. However, the observed
dark energy density is extremely small as ρΛ = 10−47 GeV4, and it is unclear how such
a fine-tuning is achieved. On the other hand, from the viewpoint of particle physics,
the cosmological constant is interpreted as the energy density of the vacuum, and its
value is estimated to be ρvac = 1074 GeV4, which is approximately 10121 times larger
than the observed value. It remains a big mystery. If the cosmological constant is
causing the late accelerated expansion of the universe, we must find a mechanism that
allows us to obtain a value of dark energy density that agrees with the observations (the
cosmological constant problem) [Wei89]. Because of these problems, it is quite possible
that dark energy is not a cosmological constant. Furthermore, it has recently been
pointed out that in observations of the Hubble constant, the values obtained from low-
redshift surveys and those obtained from CMB observations are significantly different.
This discrepancy may suggest an origin of dark energy other than the cosmological
constant.

Modifying gravity is also considered as a bottom-up approach to constructing the
quantum gravity. In this context, higher-curvature gravity is an old idea as an effective
field theory model for more fundamental string or quantum gravity theories. For ex-
ample, in the 1960s and later, attempts were made to remove the quantum divergence
by modifying the action. In 1962, Utiyama and DeWitt showed that renormalizability
at one loop requires that the Einstein-Hilbert action be supplemented by higher order
curvature terms [UD62], and in 1977, Stelle showed that the higher order action is
indeed renormalizable [Ste77]. We introduce these higher-curvature models in the next
section.

Recently, Chern-Simons gravity [JP03] is also considered, as reviewed in [AY09].
It can arise in various anomaly cancellation schemes in the standard model of particle
physics, in cancelling the Green-Schwarz anomaly in string theory, or in effective field
theories of inflation [Wei08]. Einstein-Gauss-Bonnet gravity is also taken into account
in the above motivations. It has been reviewed in [MS07], for instance.
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1.2 Higher-curvature gravity

In this thesis, we consider gravity theories whose Lagrangian can be written in a generic
form

L =
1

2κ
f(Rµ

νρσ, gµν) , (1.3)

where gµν is the space-time metric, Rµ
νρσ the Riemann tensor and κ the bare gravi-

tational constant. The scalar function f is almost generic but we here conservatively
assume that, when Taylor expanded around Rµ

νρσ = 0, it only gives positive powers
of the Riemann tensor so that Minkowski spacetime is a solution of the full theory.
Studies of such models date back to Weyl [Wey19], who suggested

f = Cµνρσ C
µνρσ , (1.4)

where Cµνρσ is the Weyl curvature tensor defined by

Cµνρσ = Rµνρσ − gµ[ρRσ]ν + gν[ρRσ]µ +
R

3
gµ[ρgσ]ν . (1.5)

Relatively modern motivations also come from the developments in string theories, e.g.,
[GW86]. Einstein’s general relativity is defined by the linear function f = R , while
the presence of any higher-order terms characterizes how the theory differs from GR.

Higher-curvature gravity (HCG) generically exhibits more dynamical degrees of
freedom (DOFs) than GR does. For instance, the theory with

f = R + β R2 , (1.6)

can be shown to be equivalent to a scalar-tensor theory [SF10], which can be generalized
to the case of a generic function f of the Ricci scalar, called f(R) gravity. As a
cosmological application, the R + β R2 model was utilized by Starobinsky to realize
inflation [Sta80]. A generic class of f(R) gravity has provided candidates for the dark
energy [DFT10] , although such theories with negative powers of curvature are out of
our scope in this thesis. Also, it was shown by Stelle [Ste78] that in the theory with

f = R− αCµνρσ C
µνρσ + β R2 , (1.7)

there arises another massive spin-2 particle on top of a zero-mass graviton, which was
utilized to render the quantum theory renormalizable [Ste77]. Afterwards, a general
Hamiltonian analysis of f(Riemann) gravity, keeping f undetermined, was done in
[DSSY10]. Recently conducted research on quadratic-curvature gravity (QCG) includes
the study of QCG-specific black hole solutions [LPPS15] .

We would like to mention the problem that arises in HCG. Some modified gravity
theories produce ghost fields that violate theoretical consistency. A ghost field is a DOF
that gives rise to a Hamiltonian non-bounded underneath, and when the ghost field
interacts with a normal field bounded underneath, they transfer energy to each other,
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and the fields become unstable. In particular, ghost fields arising from theories that
include higher-order derivatives in the Lagrangian are called Ostrogradsky ghosts, and
in HCG, it is known that ghost fields emerge when the action includes higher-order
terms of the Riemann or Ricci tensors [Sal18]. Thus, sometimes HCG may not be
considered as a consistent theory. However, it can happen that HCG avoids instability
because the ghost field can sometimes be separated from the normal fields, at least
within the linear approximations. The basis for determining the presence or absence
of ghosts is Ostrogradsky’s theorem reviewed in [Woo07] and [Sal18].

We begin with discussing perturbative degrees of freedom in this HCG in the
Minkowski background. If the Lagrangian f consists only of terms that have smooth
behavior around Rµνρσ = 0, its expansion in curvature tensors up to the quadratic
order can be arranged as

f = χR−αCµνρσ Cµνρσ+β R2+γ
(
Rµνρσ R

µνρσ − 4Rµν R
µν +R2

)
+O(Rµνρσ)

3 , (1.8)

where χ, α, β and γ are constants. The combination in the parentheses, the so-called
Gauss–Bonnet invariant, is topological in four dimensions and can be discarded in the
action integral. Then we find that the generic higher-curvature action expanded up to
the second order in the metric perturbation hµν

SHCG[hµν ] =
1

2κ

∫
d4x

(
−χ
2

(1)Gµν h
µν − α (1)Cµνρσ

(1)Cµνρσ + β (1)R2
)
, (1.9)

where (1)Gµν is the linearized Einstein tensor

(1)Gµν ≡ −1

2
□hµν + ∂(µ∂

λhν)λ −
1

2
∂µ∂νh+

1

2
ηµν (□h− ∂ρ∂σhρσ) , (1.10)

(1)Cµνρσ and (1)R are the linear perturbations of the Weyl tensor and Ricci scalar,
respectively, whose expressions are presented in Appendix A. When χ = 0, the theory
cannot be seen as GR with corrections and, moreover, as we will see in Appendix A,
there arise instabilities in the tensor and scalar parts. So, hereafter, we assume χ ̸= 0.

1.3 Massive gravitons

As first shown by Stelle [Ste78] in Minkowski, there is an equivalence of the action (1.9)
to GR “minus” massive gravity. In this formalism, the original metric perturbation is
given by

hµν = ϕµν + ϕ̃µν . (1.11)

Then, the quadratic action (1.9) can be arranged into the form

SHCG[ϕµν , ϕ̃µν ] = χSGR[ϕµν ]− χSMG[ϕ̃µν ]

=
χ

4κ

∫
d4x

[
−(1)Gµν [ϕ]ϕ

µν + (1)Gµν [ϕ̃] ϕ̃
µν +

m2

2

(
ϕ̃µν ϕ̃

µν − (1− ϵ) ϕ̃2
)]

,

(1.12)
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where we introduced m2 ≡ χ/(2α) and ϵ = 9β/(2α+12β). For the discussion extended
to Einstein manifolds, see [NNZ+]. Clearly, we need to assume α ̸= 0. The case with
α = 0 can be treated in a similar manner by means of a conformal transformation,
after which the theory takes the form of a scalar-tensor theory; See [MBM19] for an
example.

As seen from the structure of the action (1.12), the dynamical contents in this
theory are ϕµν as a massless spin-2 field and ϕ̃µν as a mixture of a massive spin-2 and a
spin-0 fields. It is worth mentioning that, while ϕµν field has the same gauge symmetry
as GR, ϕ̃µν is not subject to gauge transformations.

Massive gravity (MG), the idea to give a mass to the graviton, has been studied
based on several motivations. One is to offer a candidate for the cosmic acceleration
mechanism. MG gives rise to a large-distance modification of gravity because a massive
graviton only propagates over a finite distance. Another is a theoretical interest because
the theory of massive graviton is an extended version of GR which is the theory of
massless spin-2 graviton.

When deviation from the flat space-time, hµν ≡ gµν−ηµν , is small, the second-order
perturbed action of a generic linear theory for massive gravitons is

SMG[hµν ] = SGR[hµν ]−
m2

8κ

∫
d4x

[
hµν h

µν − (1− ϵ)h2
]

=
1

4κ

∫
d4x

[
−(1)Gµν h

µν − m2

2
(hµν h

µν − (1− ϵ)h2)

]
,

(1.13)

where SGR is thesecond-order GR action

SGR[hµν ] = − 1

4κ

∫
d4x (1)Gµν h

µν , (1.14)

m corresponds to the mass of the spin-2 graviton and ϵ is a nondimensional parameter.
This is the most generic extension of linear general relativity that incorporates Lorentz-
invariant mass terms. For ϵ = 0, the action reduces to that of the Fierz–Pauli theory
[FP39], where the graviton is pure spin-2, otherwise a spin-0 “ghost” graviton emerges,
as we shall confirm below.

A crucial observation associated with the FP theory with a matter field was made
by van Dam and Veltman and by Zakharov in 1970 [vDV70, Zak70]. They added a
minimally coupled matter source

Sint =
1

2

∫
d4xhµν T

µν (1.15)

to the gravitational action (1.13) with ϵ = 0. Their discovery was that the prediction
for the bending angle of light due to a massive body in the massless limit of the FP
theory differs from GR by a factor of 3/4, a phenomenon called the van Dam–Veltman–
Zakharov (vDVZ) discontinuity. Rather than rejecting the FP theory, however, the
discovery has stimulated inspections of “screening” mechanisms in MG that can cancel

6



the discrepancy and make predictions on the solar-system scale consistent with GR.
One of the most notable proposals was made by Vainshtein [Vai72], who considered a
non-linear kinetic self-interaction and found recovery of consistency with GR within a
certain radius. See [Hin12] for historical overviews and recent developments.

1.4 Scalar-tensor theories

There are many models of modified gravity theory, but the scalar-tensor theory has been
attracting particular attention as a promising candidate to explain the late accelerated
expansion of the universe without requiring a cosmological constant. Applications
of various modified gravity theories to cosmology are comprehensively reviewed in
[CFPS12].

A simplest model of the scalar-tensor theory is the Brans–Dicke (BD) theory with
a scalar potential

S =
1

16π

∫
d4x

√
−g

[
φR− w

φ
gµν∇µφ∇νφ− V (φ)

]
. (1.16)

Dirac suggested that gravitational coupling may not be constant, at least in a cosmolog-
ical context (Dirac’s giant number hypothesis) [Dir37], and Jordan developed this idea
[Jor59]. Later, Brans and Dicke proposed the action (1.16) without scalar potential
V (φ) [BD61]. While philosophical motives predominated in the past, modern motives
include more physical ones, such as dark energy or implications from string theory.
The BD theory, sometimes called massive dilaton gravity as proposed by [O’H72], with
a scalar potential with w = 0 is equivalent to the f(R) gravity, where the Lagrangian
is an arbitrary function of the Ricci scalar. Therefore, BD theory is often investigated
in conjunction with f(R) gravity theory. The literature reviewing f(R) gravity and
BD theories and their applications to cosmology includes [DFT10, SF10, CDL11] . In
particular, a theory with w = 0 and V (φ) = 1

4β
(φ− 1)2 is equivalent to f = R + βR2

gravity (β is a constant). This is known as the Starobinsky model [Sta80] and it is a
promising inflation model to explain the accelerated expansion (inflation) of the early
universe.

One of the features of BD theory is that gravitational coupling is not constant.
According to [Wil14], the current value of gravitational coupling is

Gtoday =
4 + 2w

3 + 2w

1

ϕ0

, (1.17)

where ϕ0 is a constant such that the potential takes the minimum value V (ϕ0) = 0. The
original BD theory has a constraint w > 4 × 104 from Cassini’s observation [Wil14],
but this is not the case if a potential exists. The gravitational constant in GR is
about Gtoday = 6.67430 × 10−11 m3 kg−1 s−2 . This is an overwhelmingly low precision
compared to other fundamental constants because the gravitational interaction is very
weak, and there is no negative mass, so shielding is impossible.
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1.5 Gravitational waves

Since the first observation of gravitational-waves (GWs) in 2015, the development of
gravitational wave astronomy has been remarkable [A+16a]. GWs have a physical
degree of freedom (DOF) called polarization, which represents the modes of oscillation
of GWs, and in general relativity, there are two polarizations called plus (+) mode
and cross (×) mode. At present, the type of polarization has not been identified, but
it is expected to be achieved in the near future, considering the recent remarkable
improvements in observation accuracy. The successful observation of polarization is
expected to provide evidence for the correctness of general relativity or to suggest
some kind of its correction.

It was argued in [ELL+73b, ELL73a] that GWs in a certain generic class of gravity
theories can have maximally six polarizations. Although there has been no contradic-
tion with the hypothesis of only two polarizations in the GW experiments [A+18] in-
cluding the observed orbital decay rate of a neutron star binary PSR B1913+16 [TW82],
the ongoing progress in the construction of the worldwide GW-observatory network has
motivated the developments of various methods for detecting those beyond-Einstein
polarization modes [HN13, IWMP15, IPW17, TNM+18]. In practice, however, a com-
plete decomposition into the possible six polarizations and determination of each am-
plitude in an observed GW signal cannot be done with the limited number of detectors
that we currently have, so there have been only weak constraints on the existence
of non-GR polarizations; An example is the constraint on the vector-type polariza-
tions obtained by a method to detect scalar and vector polarizations with four in-
terferometers of LIGO (Hanford and Livingston), Virgo, and KAGRA developed in
[HEIA18, HEI+19, HEI+20]. In this regard, there are still open and wide theoretical
possibilities to explore.

A representative example of extended gravity theories is the linear massive gravity
(MG), in which gravitational waves acquire masses. Adding a generic combination of
possible two mass terms to GR breaks its four linear gauge symmetries and gives rise
to six DOFs in total. A special class of MG introduced by Fierz and Pauli (FP) [FP39]
with a single mass parameter m is known to avoid the appearance of the spin-0 mode
that would have a negative kinetic term, see e.g. [Hin12] for a review.

If GWs are massive, their group velocity cg deviates from the speed of light c due
to the modification of the dispersion relation. The multi-messenger analysis of the
GW event GW170817 [A+17b] has put a tight constraint on the deviation, |cg− c|/c ≲
O(10−15) [A+17a], which can be interpreted as an upper limit on the mass.

1.5.1 Geodesic deviation

GWs have the property of inducing a change in the spatial distance between two distant
points. The principle of GW observation using laser interferometers and pulsar timing
arrays is to measure the spatial separation of a proper distance. As long as we are
considering a single geodesic line, we cannot measure the curvature of spacetime, but
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if we consider two geodesic lines slightly apart, we can determine the curvature of
space-time by observing changes in the distance between them. Therefore, we consider
a geodesic congruence xµ(λ , σ), which is a collection of geodesic curves that exist
continuously in a finite region of space and time. λ is an affine parameter of the
geodesic lines, and σ is a parameter that distinguishes each trajectory. Two vectors

kµ =
∂xµ

∂λ
, Zµ =

∂xµ

∂σ
(1.18)

locally characterise the geodesic bundle, where kµ and Zµ represent the tangent vector
of a geodesic line and the vector connecting adjacent geodesic lines that are infinitesi-
mally apart, respectively. Because geodesic bundles cover a finite space-time volume,
these vectors can be considered as fields that exist continuously in spacetime. The
variation of the vector kµ along the geodesic line is the geodesic equation

kν∇νk
µ =

Dkµ

∂λ
= 0 . (1.19)

D is a differential operator that gives the change due to parallel translation of a vector
over an infinitesimal distance δxµ defined as

DAi := Aµ(x+ δx)− Ãµ(x+ δx)

= Aµ(x+ δx)− Ai(x) + ΓµνλA
νδxλ

= (∂λA
µ + ΓµνλA

ν)δxλ ,

(1.20)

where we defined the infinitesimal translation as

Ãµ(x+ δx) ≡ Aµ(x)− Γµνλ(x)A
ν(x)δxλ . (1.21)

We want to know how the vector Zµ , called the Jacobi field, changes along the geodesic
line. So, we take the differential of Zµ in the kµ direction to get

kν∇νZ
µ =

DZµ

∂λ
= Zν∇νk

µ .
(1.22)

Considering the further differential in the kµ direction, we have

D2Zµ

∂λ2
= kα∇αk

ν∇νZ
µ

= −Rµ
ανβk

αkβZν .

(1.23)

This is the geodesic deviation equation, which describes the change in distance between
adjacent geodesics due to space-time curvature, that is, a tidal phenomenon due to
gravity.
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When considering a timelike geodesic bundle, we can take the proper time τ along
the geodesic as an affine parameter without loss of generality. Then, we can impose
kµk

ν = −1 and the geodesic deviation equation becomes

D2ζµ

∂τ 2
= −Rµ

ανβu
αuβζν (1.24)

for kµ = uµ , Zµ = ζµ , λ = τ . If we can know uµ and Rµ
ανβ on each geodesic, we can

find the time evolution of ζµ by solving a set of ordinary differential equations along
that geodesic. Furthermore, introducing local Cartesian coordinates around the point
where ζµ = (0 , ζ i), the Christoffel symbol can be zeroed at any point and we get

d2ζ i

d2τ
= −Ri

αjβu
αuβζj . (1.25)

When gravitational waves are present, the Riemann tensor is no longer zero, and the
distance between each geodesic curve changes. Since its order is O(h), we can set
uµ ≃ (1 , 0 , 0 , 0). From u0 ≃ dt

dτ
≃ 1, we use the relation dτ ≃ dt and get the geodesic

deviation equation up to the first order in h as

ζ̈ i = −(1)Ri
0j0 ζ

j , (1.26)

where the dot denotes the derivative with respect to x0 = t and (1)Ri
0j0 is the linear

Riemann tensor
(1)Ri0j0 = −1

2
ḧij + ∂(iḣj)0 −

1

2
∂i∂jh00 . (1.27)

Thus, the separation of two test bodies would fluctuate in response to the GWs
embodied by hµν , and conversely, by tracking their movements, one could decode the
dynamical contents of the gravitational theory.

Since the Riemann tensor is invariant under gauge transformation (A.8), the Rie-
mann tensor can be written in terms of gauge invariant variables (see Appendix A)
as

(1)Ri0j0 = −Ḧij − ∂(iΣ̇j) + ∂i∂jΨ− δij Φ̈ . (1.28)

It is worth stressing that, despite their apparent advantage, each gauge-invariant vari-
able does not necessarily correspond to a single dynamical DOF in a given gravity
theory. Instead, we generally expect that the gauge-invariant variables become linear
combinations of independent DOFs. In particular, a mixture of different spins occurs
in the scalar part, as we will see in the cases of massive gravity and higher-curvature
gravity.

1.5.2 Polarization basis

The connection between the irreducible decomposition of the Riemann tensor (1.28)
and observables in GW experiments is made explicit by considering a wave solution
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propagating in a fixed direction. As we already noted, we should keep in mind that
each part can contain multiple DOFs.

Suppose a tensor variable Tij(z−cT t) propagates in the z direction with velocity cT .
A conventional orthogonal basis that is compatible with the conditions Ti

i = ∂iT
ij = 0

is the + and × polarizations

e+ij ≡

1 0 0
0 −1 0
0 0 0

 , e×ij ≡

0 1 0
1 0 0
0 0 0

 . (1.29)

Using the basis tensor, we can decompose the tensor variable as

Tij = T+e
+
ij + T×e

×
ij , (1.30)

where the polarization components are defined as

Tλ =
1

2
eijλ Tij , (1.31)

for λ = + ,×. Explicitly, T+ = Txx = −Tyy and T× = Txy = Tyx .
For a vector variable propagating in the z direction with velocity cV ,Vi(z− cV t) , a

polarization basis compatible with the condition ∂iV
i = 0 is

exij ≡

0 0 1
0 0 0
1 0 0

 , eyij ≡

0 0 0
0 0 1
0 1 0

 . (1.32)

Using these, we can decompose the vector part of the symmetric tensor as

∂(iVj) =
1

2
V ′
xe
x
ij +

1

2
V ′
ye
y
ij , (1.33)

where the prime ′ denotes derivative with respect to z .
As for scalar-type polarizations, natural transverse (“breathing”) and longitudinal

polarization bases are

eBij ≡

1 0 0
0 1 0
0 0 0

 , eLij ≡
√
2

0 0 0
0 0 0
0 0 1

 . (1.34)

For a scalar variable propagating in the z direction with velocity cS , S(z − cSt) ,

(∂i∂j −△δij)S = eBijS
′′ , ∂i∂jS = eLijS

′′ . (1.35)

Sometimes, it is also useful to introduce other scalar bases instead of B and L , such as

eTij ≡
√

2

3
eBij+

1√
3
eLij =

√
2

3

1 0 0
0 1 0
0 0 1

 , eTij ≡
1√
3
eBij−

√
2

3
eLij =

1√
3

1 0 0
0 1 0
0 0 −2

 .

(1.36)
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These basis tensors satisfy an orthonormal condition eαij e
β
ij = 2δαβ for α, β =

+,×, x, y,B,L . Seen as a spatial symmetric tensor, the Riemann tensor (1)R0i0j can
be decomposed with the above introduced polarization basis. It is understood from
(1.26) that the amplitude of small oscillation of the distance between two bodies ζ i due
to the α polarization component of GW is proportional to Aα ≡ A eijα

(1)R0i0j , where
A is a constant independent of the type of polarization.

1.5.3 Linearized Einstein field equation

The action of GR expanded around a flat background to the quadratic order is

SGR[hµν ] = − 1

4κ

∫
d4x (1)Gµν h

µν , (1.37)

where (1)Gµν is the linearized Einstein tensor

(1)Gµν ≡ −1

2
□hµν + ∂(µ∂

λhν)λ −
1

2
∂µ∂νh+

1

2
ηµν (□h− ∂ρ∂σhρσ) . (1.38)

The equation of motion (EOM) for hµν in vacuum is obtained as

(1)Gµν = 0 . (1.39)

The GR action (1.37) and EOM (1.39) are invariant under the gauge transformation
(A.14). We can choose the transverse-traceless (TT) gauge hµν → hTT

µν such that

hTT
00 = 0 , hTT

0i = 0 , δij hTT
ij = 0 , ∂ihTT

ij = 0 . (1.40)

Then the EOM (1.39) reduces to a massless Klein–Gordon-type equation for hTT
ij :

□hTT
ij = 0 . (1.41)

We can take a plane-wave solution hTT
ij ∝ eiω (z−t) and obtain the linear Riemann tensor

(1.27) as
(1)Ri0j0 = −1

2
ḧTT
ij =

1

2
ω2
(
hTT
+ e+ij + hTT

× e×ij
)
. (1.42)

The same conclusion can be drawn in the gauge-invariant formulation, in which the
GR action (1.37) is rewritten in terms of the gauge-invariant variables as

SGR[Hij,Σi,Φ,Ψ] =
1

2κ

∫
d4x

[
H ij □Hij +

1

2
∂jΣi ∂jΣi − 6Φ□Φ− 4Φ△(Ψ− Φ)

]
.

(1.43)
The EOMs in a vacuum are

□Hij = 0 , △Σi = 0 , 3Φ̈−△Ψ−△Φ = 0 , △Φ = 0 . (1.44)

These imply Σi = 0 and Φ = Ψ = 0 thanks to the assumed asymptotic flatness.
Therefore, for a plane-wave solution Hij ∝ eiω (z−t), the Riemann tensor (1.28) is

(1)Ri0j0 = −Ḧij = ω2
(
H+ e

+
ij +H× e

×
ij

)
. (1.45)
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1.6 Nonrelativistic stars

This section mostly follows [KWW12]. The polytropic relation P ∝ ρ1+
1
n is often used

as a simple model for the equation of state (EOS) of stars. n = 3 can handle stars
that meet the Eddington standard model (stars like the Sun) and stars that consist
of a completely degenerate relativistic electron gas (white dwarfs or brown dwarfs
consisting of relativistic electrons). n = 1.5 describes a star consisting of completely
degenerate non-relativistic electron gas (white dwarfs or brown dwarfs consisting of
non-relativistic electrons) [Sak15]. In these cases, it is necessary to rely entirely on
numerical calculations.

1.6.1 Coordinates

Most astronomical objects in the universe are composed of fluids, which are general
terms for gases and liquids. Since these generally consist of a large number of particles,
we focus on macroscopic quantities and define physical quantities as average values.
For example, let N be the number of particles contained in the volume dV , and let M
be the mass of one particle. Then, the average number of particles per unit volume
(particle number density) is

n =
N

dV
, (1.46)

and the mass per unit volume (mass density) is

ρ =
MN

dV
= nM . (1.47)

Other macroscopic physical quantities that describe the behavior of fluids include ther-
modynamic quantities such as pressure and temperature and the average velocity and
force of a fluid element. To understand the structure of astronomical objects, it is
necessary to express these physical quantities as functions of space and time coordi-
nates. Although there is a wide variety of fluids, including those with viscosity and
electromagnetic force, we will only consider completely compressible fluids.

There are two ways to describe the behaviour of a fluid: the Eulerian description
and the Lagrangian description. This thesis primarily employs the Eulerian description,
but we can convert the variables to the Lagrangian description.

The Eulerian description is a method for examining the change in state at each
point in space over time. For example, let us consider a spherically symmetric star.
It is natural to introduce a distance r, with the stellar centre considered as the origin
of the spatial coordinates, and R representing its surface. It is necessary to consider
solely the radial direction since it is a spherically symmetric star. If stars evolve over
time, it is imperative to introduce a time coordinate t. Therefore, to characterise a
spherically symmetric star, we may select two independent variables: the distance r
and the time t. For example, mass density is expressed as ρ = ρ(r , t). We define a
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mass m(r , t) contained in a sphere of radius r at the time t. Subsequently, the mass
m varies with respect to the distance r and the time t as expressed by

dm =
∂m

∂r
dr +

∂m

∂t
dt . (1.48)

The first term on the right-hand side is the enclosed mass

∂m

∂r
dr = 4π r2ρ dr (1.49)

in the thin spherical shell dr with the constant time t. The second term on the right-
hand side is the spherical symmetric mass flow

∂m

∂t
dt = −4π r2ρ v dt (1.50)

out of the sphere of constant radius r, with a radial velocity v directed outward during
the time interval dt. Differentiating (1.49) with respect to t and (1.50) with respect to
r and combining two results gives

∂ρ

∂t
= − 1

r2
∂

∂r
(r2ρv) . (1.51)

This is the continuity equation of hydrodynamics for the spherical symmetry case.
The continuity equation in the general case can be derived by considering the fol-

lowing. Let us consider a rectangular parallelepiped with each side dx , dy , dz in a fluid
with density ρ. The mass of fluid dm contained within this region is dm = ρdV . The
difference between the mass flowing in and the mass flowing out through the boundary
S of this infinitesimal volume dV is the difference in the mass of the fluid in dV . When
the volume is fixed, it is a change in density. In the following, we fix the volume and
study the variation of density in dV . Let ρvx be the mass flux flowing into dV from an
infinitesimal area dydz, then the mass flowing out of the same sized infinitesimal area
dydz at a distance of dx is ρvx+

∂
∂x
(ρvx)dx, so the time variation of mass in dV in the

direction x is
∂

∂t
(ρdV ) = − ∂

∂x
(ρvx)dxdydz . (1.52)

Thus, the time variation of mass density in dV is

∂ρ

∂t
= − ∂

∂x
(ρvx) . (1.53)

Similarly, considering the y and z directions, we have

∂ρ

∂t
= − ∂

∂x
(ρvx)−

∂

∂y
(ρvy)−

∂

∂z
(ρvz) = −∇ · (ρv) . (1.54)

This is the well-known continuity equation of hydrodynamics.
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The Lagrangian description is a method for tracking the motion of a fluid, where
an observer follows individual fluid parcels as they move through space and time. As
before, let us consider a spherically symmetric star. There is no possibility of replacing
the time coordinate t with a new one. On the other hand, the spatial coordinate does
not need to be the distance r, and it is possible to take the mass element m as an
independent variable of the new spatial coordinate. The spatial coordinates of a given
mass element do not vary with time. The origin of the mass element is the stellar
centre m = 0, and m = M is the stellar surface. The Lagrangian description has the
advantage when the stellar radius changes dramatically over time, while the mass only
changes by several times. For example, the mass density is expressed as ρ = ρ(m, t),
and the radial distance is also expressed as r = r(m, t). Lagrangian description and
Eulerian description are related by

∂

∂m
=

∂r

∂m

∂

∂r
,(

∂

∂t

)
m

=

(
∂r

∂t

)
m

∂

∂r
+

(
∂

∂t

)
r

.
(1.55)

Using the formula
∂r

∂m
=

1

4π r2ρ
(1.56)

to the first equation, we obtain

∂

∂m
=

1

4π r2ρ

∂

∂r
. (1.57)

The second equation represents the time variation of the substantial hydrostatic equilib-
rium. In the case of Eulerian description, the handling is complicated by the existence
of the first term, so Lagrangian description is also convenient in this respect.

1.6.2 Hydrostatic equilibrium state

The mechanical equilibrium in a star is called the hydrostatic equilibrium state. For
a static spherically symmetric star, the only forces are due to gravity and pressure
gradients. In this thesis, we do not consider stellar rotation, magnetic field, or close
companions. Let us consider a thin spherical mass shell with a thickness dr at a radius
r inside the star. The mass of a unit area of the shell is ρ dr, and the weight of the
shell is −gρ dr. g is the gravitational acceleration at a distance r from the stellar centre
defined as

g =
dϕ

dr
, (1.58)

where ϕ is the gravitational potential.
We assume that Pe = P + dP with dP < 0 for the pressure outside the spherical

shell and Pi = P for the pressure inside the spherical shell, the difference in pressure
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acting per unit area on the spherical shell is given by

Pi − Pe = −dP = −dP

dr
dr . (1.59)

In the hydrostatic equilibrium state, the sum of gravity and pressure gradient is zero,
leading

gρ+
dP

dr
= 0 . (1.60)

Therefore, we obtain the hydrostatic equilibrium condition

1

ρ

dP

dr
= −dϕ

dr
. (1.61)

Next, we consider two timescales that characterise the gravitational phenomena
of stars and explain why we can assume that the hydrostatic equilibrium state exists
for many stars. Here, we employ Lagrangian description. We consider a spherically
symmetric star and its thin mass shell dm at a distance r from the stellar centre. The
pressure gradient per unit area is

fP = −∂P

∂m
dm , (1.62)

and the gravitational force acting per unit area on a thin spherical shell is

fg = − g

4πr2
dm . (1.63)

If the two forces are not equal, the hydrostatic equilibrium is broken, and the mass
element is accelerated. The equation of motion of the mass element is

dm

4πr2
∂2r

∂t2
= fP + fg , (1.64)

and substituting fP and fg , it becomes

1

4πr2
∂2r

∂t2
= −∂P

∂m
− g

4πr2
. (1.65)

Since ∂P/∂m < 0, the pressure gradient term is on the outside, and gravity is responsi-
ble for the acceleration towards the inside. If the left-hand side is zero, that is, all mass
elements are stationary or moving at a constant velocity in the radial direction, then
the equation is strictly hydrostatic equilibrium. Furthermore, if the right-hand sides
cancel each other out and are close to zero, then the left-hand side becomes unimpor-
tant, so that hydrostatic equilibrium is a good approximation. Using this fact, we can
understand that hydrostatic equilibrium is established to a very good approximation in
many stars. If we assume the pressure suddenly disappears in (1.65), the mass element
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falls free. As a characteristic timescale, we define the free fall time τff over the distance
R after the pressure disappears by ∣∣∣∣∂2r∂t2

∣∣∣∣ = R

τ 2ff
, (1.66)

and we get

τff ≈
(
R

g

) 1
2

. (1.67)

Similarly, if gravity suddenly disappears in (1.65), the mass element explodes. As a
characteristic timescale, we define the time τexpl that is required for the sound speed
to propagate from the stellar centre to the surface R after gravity disappears∣∣∣∣∂2r∂t2

∣∣∣∣ = R

τ 2expl
. (1.68)

Using the equation of motion (1.65), we obtain

∂2r

∂t2
= −4πr2

∂P

∂m
= −1

ρ

∂P

∂r
. (1.69)

Therefore, the explosion time is

τexpl ≈ R
( ρ
P

) 1
2
, (1.70)

where (P/ρ)1/2 is the order of the average sound speed. If a state close to hydrostatic
equilibrium is achieved, τff ≈ τexpl. The timescale at which a star becomes dynamically
stable is called the hydrostatic timescale τhydr.

For example, if we assume general relativity as the theory of gravity, the hydrostatic
timescale τhydr is about

τhydr ≈
(
R3

GM

) 1
2

≈ 1

2
(Gρ̄)−

1
2 , (1.71)

where we used g ≈ GM/R2 and ρ̄ is the average density. In the case of the Sun,
it is τhydr ≈ 27min., which is extremely short compared to the lifespan of the Sun.
Therefore, most phases during the lifetime of a star are thought to change slowly
enough to be approximated by hydrostatic equilibrium.

The gravitational potential ϕ is governed by the Poisson equation

∆ϕ = 4π Gρ . (1.72)

The solution is

ϕ = −G
∫ ∞

r

dr′
m(r′)

r′2
(1.73)
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with

m(r) ≡ 4π

∫ r

0

dr′r′2ρ(r′) . (1.74)

Outside the star, the potential becomes

ϕ(r ≥ R) = −GM
r

, (1.75)

since M ≡ m(r ≥ R). ϕ is expanded as

ϕ = ϕ(0) +
2π G

3
ρc r

2 +
π G

3
ρ′c r

3 +
π G

10
ρ′′c r

4 +O(r5) (1.76)

around r = 0.
Substituting the gravitational potential in GR into the hydrostatic equilibrium

condition
1

ρ

dP

dr
= −dϕ

dr
(1.77)

yields
1

ρ

dP

dr
= −Gm

r2
(1.78)

In Lagrangian description, it is represented as

dP

dm
= − Gm

4π r4
. (1.79)

Let us roughly estimate the pressure and temperature at the stellar centre. For
(1.79), replace the right-hand side with the average pressure gradient (P0 − Pc)/M
where P0 = 0 and Pc are the pressure at the stellar surface and center respectively, and
replace m and r in the left-hand side with rough mean values represented as M/2 and
R/2, then we get

Pc ≈
2GM2

π R4
. (1.80)

Because the average density of a spherically symmetric star is

ρ̄ =
3M

4π R3
, (1.81)

and the equation of state of the ideal gas is (E.19), we obtain the temperature at the
stellar center

Tc =
µ

R

Pc
ρc

≈ 8

3

µ

R

GM

R

ρ̄

ρc
, (1.82)

where µ is the dimensionless mean molecular weight and R = 8.315 × 107ergK−1 g−1

is the gas constant. Generally, the density increases from the surface to the center, so
we have ρ̄/ρ < 1. Hence, the temperature becomes

Tc ≤
8

3

Gµ

R

M

R
. (1.83)

18



For the Sun with the radius R⊙ = 6.96 × 1010 cm and the mass M⊙ = 1.989 × 1033 g,
we can roughly estimate as

Pc ≈ 7× 1015 dyn/cm2 , Tc ≤ 3× 107 K . (1.84)

The numerical culculation result is Pc = 2.4× 1017 dyn/cm2 , Tc = 1.6× 107 K.

1.6.3 Virial theorem

We explain the Virial theorem, which is useful for investigating the global stability of
stars. Multiplying 4πr3 on both side of (1.79) and integrate over dm, we obtain∫ M

0

dm 4π r3
dP

dm
= −

∫ M

0

dm
Gm

r
. (1.85)

The left-hand side can be integrated as∫ M

0

dm 4π r3
dP

dm
=
[
4π r3 P

]M
0

− 3

∫ M

0

dm
P

ρ
, (1.86)

and the first term vanishes because the pressure is zero at the stellar surface P (R) = 0.
Thus, we have

3

∫ M

0

dm
P

ρ
=

∫ M

0

dm
Gm

r
. (1.87)

The right-hand side can be interpreted as the gravitational energy

Ω ≡ −
∫ M

0

dm
Gm(r)

r
. (1.88)

To understand the left-hand side, let us consider an ideal gas. Using Mayer’s relation

cv(γ − 1) =
R

µ
(1.89)

to the equation of state of an ideal gas

P =
R

µ
ρT , (1.90)

we get
P

ρ
= cv(γ − 1)T = (γ − 1)u , (1.91)

where cv ≡ CV /(nµ) is the specific heat at constant volume, cp/cv is replaced by γ ,
and u is the internal energy per unit mass of the perfect gas. Thus, the left-hand side
can be evaluated as

3

∫ M

0

dm
P

ρ
= 3(γ − 1)

∫ M

0

dmu = 3(γ − 1)U , (1.92)
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where we defined the total internal energy of the star

U ≡
∫ M

0

dmu . (1.93)

Therefore, the integrated hydrostatic equilibrium condition (1.85) is expressed as

Ω + 3(γ − 1)U = 0 , (1.94)

and is called the Virial theorem.
The total energy

E = Ω+ U (1.95)

of the star is the sum of its gravitational energy Ω and its internal energy U . Thus, we
have

E = −(3γ − 4)U =
3γ − 4

3(γ − 1)
Ω . (1.96)

If γ is larger than 4/3, the total energy of the star is negative E < 0, and the star is
gravitationally bound. On the other hand, if γ is smaller than 4/3, the stellar total
energy is positive E > 0, and the star is not gravitationally bound and is unstable.

As the star loses energy with luminosity L, its internal energy increases, and its
gravitational energy decreases, since

−L ≡ dE

dt
= −(3γ − 4)

dU

dt
=

3γ − 4

3(γ − 1)

dΩ

dt
< 0 . (1.97)

A decrease in gravitational energy means the star is more deeply bound, and an increase
in internal energy means an increase in temperature. Therefore, when a star loses
energy, its temperature increases, and thus, stars are said to have negative specific
heat.

The timescale in which an astronomical object loses its thermal energy via radiation,
called Kelvin–Helmholtz timescale, can be defined as

τKH =
|Ω|
L

≈ U

L
, (1.98)

since L is on the order of |dΩ/dt|. The gravitational energy is roughly estimated as

|Ω| ≈ Gm̄2

r̄
≈ GM2

2R
, (1.99)

where m̄ and r̄ denote the mean values and we have replaced them by M/2 and R/2.
Thus, we obtain

τKH ≈ GM2

2RL
. (1.100)

In the case of the Sun, given the luminosity of the Sun L⊙ = 3.827 × 1033 erg/s, the
Kelvin–Helmholtz timescale is estimated as τKH ≈ 1.6× 107 years. However, stars like
the Sun have lifetimes much longer than the Kelvin–Helmholtz timescale because they
glow with the energy of nuclear reactions. The actual lifetime of the Sun is said to be
about 109 years based on nuclear physics.
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1.6.4 Lane–Emden equation

The hydrostatic equilibrium condition

1

ρ

dP

dr
= −dϕ

dr
(1.101)

depends on density and pressure, not explicitly on temperature. Generally, when den-
sity (or pressure) is rewritten using the equation of state ρ = ρ(P , T ), it depends
explicitly on temperature. However, the equation of state of stars, such as the adi-
abatic state of an ideal gas or a completely degenerate electron gas, often does not
depend on temperature. Therefore, we adopt the polytropic relation (a relationship in
which pressure is proportional to the power of density) as the stellar equation of state.

Operating 1
r2

d
dr
r2 to the hydrostatic equilibrium condition

1

r2
d

dr

(
r2

ρ

dP

dr

)
= − 1

r2
d

dr

(
r2
dϕ

dr

)
, (1.102)

and using the Poisson equation

∆ϕ =
1

r2
d

dr

(
r2
dϕ

dr

)
= 4π Gρ (1.103)

for a spherically symmetric star, we have

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4π Gρ . (1.104)

Adopting the polytropic relation

P = Kρ1+
1
n , (1.105)

we obtain the equation

1

r2
d

dr

[
r2

ρ

d

dr

(
Kρ1+

1
n

)]
= −4π Gρ (1.106)

in terms of density only. Therefore, by giving boundary conditions at the centre and
solving this differential equation, we determine the internal structure of the star. How-
ever, this equation requires boundary conditions to be given and resolved for each star
with a different mass or radius. Hence, by performing the following variable transfor-
mation, we can make it dimensionless and make it into a convenient form.

Introducing a parameter

ℓ ≡

√
(n+ 1)Pc
4π Gρ2c

(1.107)

21



with the dimension of length, where ρc ≡ ρ(0) , Pc ≡ P (0) = Kρ
1+ 1

n
c , and define the

dimensionless radius, mass density, and pressure as

ξ ≡ r

ℓ
, ρ = ρcθ

n , P = Pcθ
n+1 . (1.108)

The formula (1.106) is then transformed into a dimensionless form

∆ξθ + θn = 0 . (1.109)

This is the Lane–Emden (LE) equation.
Let us consider the boundary conditions. Since the LE equation is second-order

in differential equations, two independent conditions are required to solve it. The
dimensionless density θ is normalised at the stellar center θc ≡ θ(0) = 1 since the real
central density is ρc . The hydrostatic equilibrium condition can be written as

θ′ = − 1

4πGρc ℓ

dϕ

dr
(1.110)

in terms of the dimensionless variables. Using the expanded gravitational potential
(1.76), we find

θ′c ≡ θ′(0) = − 1

4πGρc ℓ
lim
r→0

dϕ

dr
= 0 . (1.111)

This means that at the center of the star, the pressure gradient is zero, and therefore
the gravitational acceleration is zero. Also, the higher-order differential coefficients are

θ′′c ≡ θ′′(0) = − 1

4πGρc
lim
r→0

d2ϕ

dr2
= −1

3
,

θ(3)c ≡ θ(3)(0) = − ℓ

4πGρc
lim
r→0

d3ϕ

dr3
= 0 ,

θ(4)c ≡ θ(4)(0) = − ℓ2

4πGρc
lim
r→0

d4ϕ

dr4
=
n

5
.

(1.112)

The behavior of θ at the center of the star is

θ = θc + θ′c ξ +
1

2
θ′′c ξ

2 +
1

6
θ(3)c ξ3 +

1

24
θ(4)c ξ4 +O(ξ5)

= 1− ξ2

6
+

n

120
ξ4 +O(ξ5) .

(1.113)

Since the stellar radius is R = ℓnξR, we get

R =

√
(n+ 1)K

4π G
ρ

1−n
2n
c ξR . (1.114)

It is worth noting that when n = 1, the radius of the star does not depend on the
central density ρc. Therefore, for a star with n = 1, the polytropic constant K (stellar
composition) can be found if the radius of the star is observed.
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The stellar mass is given by

M = 4πℓ3ρcωR

= 4π

(
(n+ 1)K

4π G

) 3
2

ρ
3−n
2n
c ωR ,

(1.115)

where

ωR ≡
∫ ξR

0

dξ ξ2θ(ξ)n = −ξ2R
dθ

dξ

∣∣∣∣
ξR

, (1.116)

and where ξR ≡ R/ℓ . We used the LE equation for the second equality. From this, we
can see that M does not depend on the central density ρc when n = 3. Therefore, for
a star with n = 3, the polytropic constant K (stellar composition) can be found if the
stellar mass is observed.

Eliminating ρc from the formula of R and M , we find

ξn−3
R

ωn−1
R

=
1

4π

[
(n+ 1)K

G

]n
Rn−3

Mn−1
. (1.117)

For a general polytropic index n, the polytropic constant K can be found from this
formula.

Consider the mass of the star with n = 3 , for which

M =
4

√
π G

3
2

K
3
2 ωR . (1.118)

The Eddington standard model satisfies the polytropic relation with n = 3

P = K ρ
3
4 (1.119)

with

K =

(
3R4

a µ4

) 1
3
(
1− β

β4

) 1
3

, (1.120)

where a is the radiation density constant a = 7.564×10−15 erg cm−3 K−4 , β ≡ Pgas/P ,
and P is the total pressure consisting of the gas pressure Pgas and radiation pressure
Prad. Substituting this, we get

M =MEdd

(
1− β

β4

) 1
2

, (1.121)

where

MEdd =
4

√
π G

3
2

ωR

(
3

a

) 1
2
(

R

µ

)2

(1.122)

is called Eddington mass.
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The exact solutions to the LE equation are known for n = 0 , 1 , and 5. In particular,
when n = 0 and 1, the LE equation is linear in θ, so one would expect it to be solvable
analytically.

When n = 0, the LE equation is

∆ξθ = −1 . (1.123)

This can be easily integrated to give

θ = −ξ
2

6
− A1

ξ
+ A2 . (1.124)

By imposing the boundary conditions, we get

θ = 1− ξ2

6
. (1.125)

The dimensionless radius of the star is ξR such that θ(ξR) = 0, and in this case ξR =
√
6.

When n = 1, the LE equation is

∆ξθ + θ = 0 , (1.126)

and rewritten as
d2

dξ2
(ξθ) = −ξθ . (1.127)

The general solution to this equation is given by

θ = B1
sin ξ

ξ
+B2

cos ξ

ξ
. (1.128)

Imposing the boundary conditions, we obtain a suitable solution

θ =
sin ξ

ξ
. (1.129)

If the gas temperature is constant, that is, it is isothermal, it corresponds to a
polytrope of n = ∞. In this case, the equation of state is

P = Kρ , (1.130)

and substituting this into (1.104), we obtain

K

r2
d

dr

(
r2

d

dr
ln ρ

)
= −4π Gρ . (1.131)

Define

ℓ ≡

√
K

4π Gρc
, ξ ≡ r

ℓ
, ρ = ρce

−ψ . (1.132)
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as dimensionless variables, where ρc ≡ ρ(0). Using these, we obtain the isothermal
Lane–Emden equation

1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= e−ψ . (1.133)

The boundary conditions are
ψc = 0 , ψ′

c = 0 . (1.134)

The solution to this generally needs to be found numerically.
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Chapter 2

Degrees of freedom and
gravitational waves

In this chapter, we study the GW polarizations and show how the dynamical degrees
of freedom (DOFs) propagate in Minkowski spacetime. In Section 2.1, we formulate
the polarizations in linear MG with generic mass terms of non-Fierz–Pauli type. We
show all the independent variables obey Klein–Gordon-type equations and identify the
polarization modes. In Section 2.2, we analyze the linear perturbations of generic HCG.
In the analysis of HCG, we employ two distinct methods; One takes full advantage of
the partial equivalence between the generic HCG and MG at the linear level, whereas
the other relies upon a gauge-invariant formalism. We confirm that the two results
agree. In Section 2.3, we discuss methods to determine the theory parameters by
GW-polarization measurements. It is worth stressing that our method for determining
the theory parameters does not require measuring the propagation speeds, whether
absolute or relative or the details of the waveforms of the GWs.

2.1 Polarization modes from massive gravitons

We first consider GW polarizations in generic linear MG. In order to treat the dy-
namical DOFs efficiently, we use the tensor (T), vector (V), and scalar (S) variables
defined as in (A.9). The second-order perturbed action of a generic linear theory for
non-self-interacting massive gravitons (1.13) is decomposed as

SMG[hµν ] = S
(T)
MG[Hij] + S

(V)
MG[Bi, Ei] + S

(S)
MG[A,B,C,E] (2.1)
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with

S
(T)
MG[Hij] =

1

2κ

∫
d4x

[
Hij □H ij −m2Hij H

ij
]
, (2.2)

S
(V)
MG[Bi, Ei] =

1

2κ

∫
d4x

[
−1

2
(Bi + Ėi)△(Bi + Ėi) +

m2

2

(
BiB

i + Ei△Ei
)]

,

(2.3)

S
(S)
MG[A,B,C,E] =

1

2κ

∫
d4x

[
−6C □C − 4C△(A− Ḃ − Ë − C) (2.4)

− m2

2

(
2ϵA2 +B△B + 6 (3ϵ− 2)C2 + 2ϵE△2E

+ 4 (3ϵ− 2)C△E + 4 (ϵ− 1)A△E + 12 (ϵ− 1)AC
)]
.

(2.5)

Contrary to GR, these vector and scalar actions cannot be solely expressed with the
gauge-invariant variables due to the lack of the gauge symmetries. Thus, in order to
calculate the Riemann tensor (1.28), we have to manipulate the original variables.

The equation of motion (EOM) for the tensor variable Hij is obtained from (2.2)
as

□Hij −m2Hij = 0 . (2.6)

The EOM for the gauge-invariant variable Σi does not directly derive, but the EOMs
for Bi and Ei from (2.3) are

−△(Bi + Ėi) +m2Bi = 0 , Ḃi + Ëi +m2Ei = 0 . (2.7)

Combining these, we find that Σi ≡ Bi + Ėi obeys

□Σi −m2 Σi = 0 . (2.8)

Σi embodies all the dynamical vector-type DOFs as Bi and Ei are dependent upon Σi

via the nondynamical relations

Bi = m−2 △Σi , Ei = −m−2 Σ̇i (2.9)

from (2.7). The most complicated is to find the governing equations for the gauge-
invariant scalars Ψ and Φ. The scalar EOMs from variations of (2.5) with respect to
A,B,C,E are, respectively,

2△C +m2 (ϵA+ (ϵ− 1)△E + 3 (ϵ− 1)C) = 0 ,

△
[
4Ċ +m2B

]
= 0 ,

6□C + 2△(A− Ḃ − Ë)− 4△C +m2 (3 (3ϵ− 2)C + (3ϵ− 2)△E + 3 (ϵ− 1)A) = 0 ,

△
[
−2C̈ +m2 (ϵ△E + (3ϵ− 2)C + (ϵ− 1)A)

]
= 0 .

(2.10)
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Gathering these equations, it is found that the following two combinations

W ≡ A− Ḃ − Ë − C , h ≡ 2A+ 6C + 2△E (2.11)

satisfy Klein–Gordon equations

□W −m2W = 0 , ϵ□h− 3− 4ϵ

2
m2 h = 0 . (2.12)

Observe that W = Ψ − Φ and h = ηµν hµν . The second equation implies that, if the
Fierz–Pauli tuning ϵ = 0 is realised, then the four-dimensional trace h is constrained
to vanish. We assume ϵ ̸= 0 and define m2

0 ≡ 3−4ϵ
2ϵ

m2 as the mass of h. These W and
h are the only dynamical scalar-type DOFs. Indeed, the set of equations (2.10) can be
solved for A,B,C,E in terms of W and h as

A =
2

3m4
△2W +

(
1− ϵ

2
− ϵ

3m2
△
)
h ,

B =
4

3m4
△Ẇ − 2ϵ

3m2
ḣ ,

C = − 1

3m2
△W +

ϵ

6
h ,

E =
1

m2
W − 2

3m4
△W +

ϵ

3m2
h .

(2.13)

Moreover, the gauge-invariant variables are expressed as

Ψ = A− Ḃ − Ë = W − 1

3m2
△W +

ϵ

6
h , Φ = C = − 1

3m2
△W +

ϵ

6
h , (2.14)

where we have used (2.12) to eliminate Ẅ and ḧ. Using these relationships, the scalar
part of the linear Riemann tensor is written as

(1)R
(S)
i0j0 ≡ ∂i∂jΨ− δij Φ̈

= 3∂i∂jW − 1

3m2
△
(
∂i∂jW − δij Ẅ

)
+
ϵ

6

(
∂i∂jh− δij ḧ

)
.

(2.15)

Having found that the variables Hij , Σi , W and h all obey Klein–Gordon-type
equations, we are allowed to consider plane-wave solutions propagating along the z
direction,

Hij ∝ ei (kHz−ωH t) , Σi ∝ ei (kΣz−ωΣt) , W ∝ ei (kW z−ωW t) , h ∝ ei (khz−ωht) (2.16)

with

kI ≡
√
ω2
I −m2 (I = H,Σ,W ) , kh ≡

√
ω2
h −m2

0 . (2.17)

Then the Riemann tensor is calculated as

(1)Ri0j0 = ω2
H (H+ e

+
ij +H× e

×
ij)−

1

2

√
ω2
Σ −m2 ωΣ

(
Σx e

x
ij + Σy e

y
ij

)
− 1

3m2
△W

(
ω2
W eBij −

√
2m2 eLij

)
+
ϵ

6
h

(
ω2
h e

B
ij +

m2
0√
2
eLij

)
.

(2.18)
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This expression tells us that the six separate variables provide different polarizations.
In particular, the information carried by the two scalar variables is distinctive. W , the
helicity-0 mode of the spin-2 graviton, can be split into the transverse, or “breathing”
(B), and longitudinal (L) polarizations based on its different dependences on the fre-
quency: the former is proportional to ω2

W while the latter is m2. Similarly, the spin-0
graviton h, which only exists if ϵ ̸= 0, can be decomposed into the transverse and
longitudinal polarizations. Thus, if the amplitudes of each polarisation are separately
measured in future gravitational-wave experiments, the longitudinal modes will pro-
vide a direct measure of the masses of the spin-2 and spin-0 gravitons. We will come
back to this issue in Section 2.3.

Finally, let us mention the effectively massless case m2 ≪ ω2
I . Resembling the

discontinuity in the bending angle of light [Iwa70, vDV70, Zak70], taking the continuous
limit does not recover the set of polarizations expected in GR, as the vector and the
transverse scalar polarizations would remain.

2.2 GWs in generic higher-curvature gravity

In the studies of linear perturbations of HCG, what is significant would be the equiv-
alence between the quadratic curvature gravity and massive bigravity at the linear
level, which was recently extended to arbitrary background with an Einstein metric
(see Appendix B). This means that the analyses of the extra massive DOFs in HCG
can be done in parallel to MG. On the other hand, we show that a dedicated analysis
based on a gauge-invariant formalism is also useful and that the two results agree.

2.2.1 Massive-bigravity approach

As we mentioned in Section 1.2, there is an equivalence of the action (1.9) to GR
“minus” massive gravity,

S[ϕµν , ϕ̃µν ] = χSGR[ϕµν ]− χSMG[ϕ̃µν ]

=
χ

4κ

∫
d4x

[
−(1)Gµν [ϕ]ϕ

µν + (1)Gµν [ϕ̃] ϕ̃
µν +

m2

2

(
ϕ̃µν ϕ̃

µν − (1− ϵ) ϕ̃2
)]

,

(2.19)
where we introduced m2 ≡ χ/(2α) and ϵ = 9β/(2α + 12β), see Appendix B for the
derivation extended to Einstein manifolds [NNZ+]. Clearly, we need to assume α ̸= 0.
The case with α = 0 can be treated in a similar manner by means of a conformal
transformation, after which the theory takes a form of a scalar-tensor theory; See
[MBM19] for an example.

In this formalism, the original metric perturbation is given by

hµν = ϕµν + ϕ̃µν , (2.20)

and, as seen from the structure of the action (2.19), the dynamical contents in this
theory are ϕµν as a massless spin-2 field and ϕ̃µν as a mixture of a massive spin-2 and a
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spin-0 fields. It is worth mentioning that, while ϕµν field has the same gauge symmetry
as GR, ϕ̃µν is not subject to gauge transformations.

For the massless spin-2, we can choose the TT gauge as in GR treated in Sec. 1.5.3.
The only dynamical DOF is ϕTT

ij = 2Hij with its EOM being □Hij = 0. For the
massive spin-2, the analysis is completely parallel to the case of massive gravity treated
in Sec. 2.1. We decompose ϕ̃µν as

ϕ̃00 = −2Ã , ϕ̃0i = −∂iB̃ − B̃i , ϕ̃ij = 2C̃ δij + 2∂i∂jẼ + 2∂(iẼj) + 2H̃ij (2.21)

and define two scalar variables

W̃ ≡ Ã− ˙̃B − ¨̃E − C̃ , ϕ̃ ≡ ϕ̃µ
µ = 2Ã+ 6C̃ + 2△Ẽ . (2.22)

Then we find the EOMs for the dynamical variables

(
□−m2

)
H̃ij = 0 ,

(
□−m2

)
Σ̃i = 0 ,

(
□−m2

)
W̃ = 0 ,

(
6β

χ
□− 1

)
ϕ̃ = 0 .

(2.23)
In this case, the Fierz–Pauli tuning ϵ = 0 is realized and the spin-0 mode ϕ̃ is required
to vanish when β = 0, or else it acquires a finite mass m2

0 ≡ χ/(6β). Considering plane
wave solutions

Hij ∝ eiωH (z−t) ,

H̃ij ∝ ei (kH̃ z−ωH̃ t) , Σ̃i ∝ ei (kΣ̃ z−ωΣ̃ t) , W̃ ∝ ei (kW̃ z−ωW̃ t)

ϕ̃ ∝ ei (kϕ̃ z−ωϕ̃ t)

(2.24)

with dispersion relations

kI =

{√
ω2
I −m2 (I = H̃, Σ̃, W̃ )√
ω2
I −m2

0 (I = ϕ̃)
, (2.25)

we get the following expression for the Riemann tensor:

(1)Ri0j0 =
∑
λ=+,×

[
ω2
H Hλ + ω2

H̃
H̃λ

]
eλij −

1

2

√
ω2
Σ̃
−m2 ωΣ̃

∑
p=x,y

Σ̃p e
p
ij

− 1

3m2
△W̃

(
ω2
W̃
eBij −

√
2m2 eLij

)
+
ϵ

6
ϕ̃

(
ω2
ϕ̃
eBij +

m2
0√
2
eLij

)
.

(2.26)

To summarize, we have established that the gravitational-wave polarizations in
generic HCG with α ̸= 0 is a sum of those in GR and in MG, with a difference that
the mass parameters m and m0 in this case are given by the expansion coefficients χ,
α and β inherent in the nonlinear Lagrangian f .
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2.2.2 Gauge-invariant approach

The action (1.9) can be rewritten in terms of the gauge-invariant variables as

SHCG[hµν ] = S
(T)
HCG[Hij] + S

(V)
HCG[Σi] + S

(S)
HCG[Φ,Ψ] , (2.27)

where each part is

S
(T)
HCG[Hij] =

1

2κ

∫
d4x

[
Hij □H ij − 2α□Hij □H ij

]
, (2.28)

S
(V)
HCG[Σi] =

1

2κ

∫
d4x

[
1

2
∂jΣi ∂

jΣi − α
(
∂jΣ̇i ∂

jΣ̇i −△Σi△Σi
)]

, (2.29)

S
(S)
HCG[Φ,Ψ] =

1

2κ

∫
d4x

[
−6Φ□Φ− 4Φ△(Ψ− Φ)− 4

3
α (△Ψ−△Φ)2 + β (1)R2

]
(2.30)

with (1)R = −6□Φ− 2△(Ψ − Φ) . As seen in the above expressions, when α = 0, the
tensor and vector parts reduce to the ones in GR. Conversely, the tensor and vector
parts are modified in comparison to GR by the presence of the Weyl-squared term but
unaffected by the Ricci-squared term in the expansion of the Lagrangian (1.8). On
the other hand, the scalar part is affected by both the Weyl-squared and Ricci-squared
terms. In the following, we proceed to the analyses for each part.

First, the tensor part is only affected by the presence of the Weyl term, as seen in
(2.28). The tensor EOM is

□Hij − 2α□2Hij = 0 . (2.31)

When α = 0, the tensor eom reduces to that of GR, and the same result for the
polarizations is obtained. When α ̸= 0, we find that the above EOM admits two
independent solutions Hij = ϕij and Hij = ϕ̃ij which respectively satisfy

□ϕij = 0 , □ϕ̃ij −m2 ϕ̃ij = 0 , (2.32)

where, as before, m2 = 1
2α
. Hence the general solution for Hij is

Hij = ϕij + ϕ̃ij . (2.33)

Considering plane-wave solutions propagating in the z direction,

ϕij ∝ eiωϕ (z−t) , ϕ̃ij ∝ ei (kϕ̃ z−ωϕ̃ t) , (2.34)

where kϕ̃ =
√
ω2
ϕ̃
−m2, and substituting these into (1.28), we obtain the tensor part

of the Riemann tensor as

(1)R
(T)
i0j0 = ω2

ϕ

(
ϕ+ e

+
ij + ϕ× e

×
ij

)
+ ω2

ϕ̃

(
ϕ̃+ e

+
ij + ϕ̃× e

×
ij

)
. (2.35)
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Next, as for the vector part, the EOM from the action (2.29) is

(1− 2α□) △Σi = 0 . (2.36)

When α = 0 , Σi = 0 as expected. When α ̸= 0 , the EOM admits a plane-wave
solution

Σi ∝ ei (kΣ z−ωΣ t) (2.37)

with kΣ =
√
ω2
Σ −m2 . For this, the vector part of the Riemann tensor (1.28) is

(1)R
(V)
i0j0 = −1

2

√
ω2
Σ −m2 ωΣ

(
Σx e

x
ij + Σy e

y
ij

)
. (2.38)

Finally, we analyse the scalar part. As for scalar, counting of the number of DOFs
is a nontrivial task since the action (2.30) contains second-order time derivatives non-
linearly in the Ricci-squared term. Let us first introduce a variable Θ = 2

3
△(Φ − Ψ)

to simplify the scalar action as

S
(S)
HCG[Φ,Θ] =

1

2κ

∫
d4x

[
−6Φ□Φ + 6ΦΘ− 3αΘ2 + β (1)R2

]
. (2.39)

To have an equivalent action with only derivatives lower than or equal to the second
order, we replace the Ricci scalar (1)R = −6□Φ + 3Θ with an auxiliary variable Ξ
introducing a Lagrange multiplier λ as

S
(S)
HCG[Φ,Θ,Ξ, λ] =

1

2κ

∫
d4x

[
−6Φ□Φ + 6ΦΘ− 3αΘ2 + β Ξ2 + λ ((1)R− Ξ)

]
.

(2.40)
The variation of the above action with respect to Ξ gives a constraint λ = 2β Ξ, which
can be used to eliminate λ as

S
(S)
HCG[Φ,Θ,Ξ] =

1

2κ

∫
d4x

[
−6Φ□Φ + 6ΦΘ− 3αΘ2 − β Ξ2 − 12β Ξ□Φ + 6β ΞΘ

]
.

(2.41)
Now, after some manipulation, we obtain three independent equations from the varia-
tions of the above action with respect to each variable,

Θ− 2α□Θ = 0 , (2.42)

β̄ Ξ− 6β2 □Ξ = 0 , (2.43)

Φ = αΘ− β Ξ . (2.44)

The EOMs (2.42) and (2.43) imply that Θ and Ξ are independent DOFs with masses
m2 = 1/2α and m2

0 = 1/6β, respectively. The algebraic constraint (2.44) indicates
that when α ̸= 0 (β ̸= 0), Θ (Ξ) can be eliminated. When both α and β are nonzero,
we can solve (2.42) and (2.43) for Θ and Ξ and obtain Φ via (2.44). We then have the
other gauge-invariant variable

Ψ = αΘ− 3

2
△−1Θ− β Ξ . (2.45)
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Assuming plane-wave solutions

Θ ∝ ei (kΘ z−ωΘ t) , Ξ ∝ ei (kΞ z−ωΞ t) (2.46)

with kΘ =
√
ω2
Θ −m2 and kΞ =

√
ω2
Ξ −m2

0, we arrive at the expression for the scalar
part of the linear Riemann tensor (1.28)

(1)R
(S)
i0j0 = αΘ

(
ω2
Θ e

B
ij −

√
2m2 eLij

)
− β Ξ

(
ω2
Ξ e

B
ij +

m2
0√
2
eLij

)
. (2.47)

Our final task here is to investigate special cases with α = 0 or β = 0. When α = 0,
the EOM (2.42) reduces to a constraint Θ = 0, which implies Ψ = Φ. Equation (2.44)
reduces to Φ = −β Ξ, so the variable Φ represents the spin-0 DOF and obeys the eom

□Φ−m2
0 Φ = 0 . (2.48)

Therefore, recalling Ψ = Φ, we find the scalar-type polarization in (1.28) in this case
as

(1)R
(S)
i0j0 = Φ

(
ω2
Φ e

B
ij +

√
2m2

0 e
L
ij

)
. (2.49)

Also, the vector and tensor perturbations give the same result as in GR. This agrees
with the result of Moretti et al. [MBM19].

When β = 0, the constraint (2.44) reduces to Φ = ᾱΘ , which implies that

Ψ = Φ− 3

2ᾱ
△−1Φ (2.50)

and the EOM for Φ is
□Φ−m2 Φ = 0 . (2.51)

It is clear that Φ, in this case, is the helicity-0 component of the massive spin-2.
Recalling its relation to Ψ as given by (2.50), the scalar-type polarization in (1.28) is
calculated as

(1)R
(S)
i0j0 = Φ

(
ω2
Φ e

B
ij −

m2

√
2
eLij

)
. (2.52)

2.3 Determining theory parameters by observations

In this section, we provide a brief discussion of how one could determine the theory
parameters, namely α and β in HCG. For brevity, below, we collectively call the theory
parameters “masses.” We consider interferometers and pulsar timing arrays (PTAs) as
GW measurement instruments.

To discuss the ability of GW detectors to determine the masses via polarization
measurements, it is necessary to take into account the detector’s response to each po-
larization in a GW propagating from the direction (θ, ϕ) with the polarization angle ψ,
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which is represented by the antenna pattern functions Fα(θ, ϕ, ψ) (α = +,×, x, y,B,L)
summarized in Appendix D. The whole signal takes the form

S(t) =
∑
α

Fα(θ, ϕ, ψ)Aα(t) , (2.53)

where Aα is the waveform of each polarization being proportional to the coefficient of
the polarization basis eαij appearing in the Riemann tensor.

We note that different spin components have different velocities, so it would be
plausible to treat each spin component separately if one is interested in the case of a
short-duration source like a burst from a black-hole merger. Thus, we first concentrate
on the spin-0 GW alone, denoting its velocity as v. A spin-0 GW represented as a
monochromatic plane-wave with frequency ω gives a signal of the form

S(t) = FBAB(t) + FLAL(t) . (2.54)

From (2.47) we see that there is a relationship between the waveforms

AL(t)

AB(t)
=
m2

0

ω2
. (2.55)

Suppose that two detectors respond to a single spin-0 GW. In this case, the signals to
be detected by the two detectors are{

S1(t) = F 1
BAB(t) + F 1

L AL(t) ,

S2(t+∆t) = F 2
BAB(t) + F 2

L AL(t) ,
(2.56)

where ∆t = L/v is the time delay between the arrivals at the two detectors separated
by L along the propagation direction. If the coefficient matrix

F ≡
(
F 1
B F 1

L

F 2
B F 2

L

)
(2.57)

is invertible, it is possible to solve for AB and AL as(
AB(t)
AL(t)

)
= F−1

(
S1(t)

S2(t+∆t)

)
. (2.58)

From this, the ratio of the waveforms R ≡ AL/AB is obtained in terms of observable
signals and, therefore, the spin-0 mass can be determined as

m2
0 = ω2 R . (2.59)

The above argument relies upon the invertibility of the matrix F . Unfortunately,
LIGO-like interferometers have degenerate antenna pattern functions

FB = −1

2
sin2 θ cos 2ϕ , FL =

1√
2
sin2 θ cos 2ϕ , (2.60)
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so it is not possible to use the above method. On the other hand, PTAs have antenna
functions [YS13, LJP+10, QBK21]

FB =
1

2

sin2 θ

1 + v cos θ
, FL =

1√
2

cos2 θ

1 + v cos θ
, (2.61)

which are nondegenerate if the two detectors (pulsars) have different orientations with
respect to the GW, θ1 ̸= θ2 , so they would allow the determination of the spin-0 mass.
A straightforward extension to a setup with more detectors (pulsars) enables us to
decompose a spin-2 GW into polarization modes and, in principle, determine the spin-
2 mass m as well. Such multidetector measurements would also be needed to analyse
GW backgrounds.

In an ideal case in which we know, or can predict, the spectral form of the spin-0
GWs Aα(ω, t), i.e., its frequency dependence, we might be able to determine the mass
even with a single detector. Consider two measurements of a GW at two different
frequencies ω1 and ω2 {

S(ω1) = FBAB(ω1) + FLAL(ω1) ,

S(ω2) = FBAB(ω2) + FLAL(ω2) ,
(2.62)

where we omitted t. Substituting the relationship AL(ω)/AB(ω) = m2
0/ω

2 and solving
for m0 , we obtain

m2
0 =

FB

FL

AB(ω1)/AB(ω2)− S(ω1)/S(ω2)

ω−2
2 S(ω1)/S(ω2)− ω−2

1 AB(ω1)/AB(ω2)
(2.63)

Since the ratio AB(ω1)/AB(ω2) is assumed to be known, m2
0 can be measured. This

method can also be extended to determine the spin-2 mass m.
We emphasise the merit of our methods that the determination of the mass param-

eter m0 (or β) can be carried out without measuring the velocity of the spin-0 GW,
whether absolute or relative to other signals, or analysing the details of the waveforms.
Naturally, this advantage is also enjoyed in the relevant analyses of the spin-2 part.
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Chapter 3

Effects of graviton masses on
astrophysical objects

In this chapter, we study the structure of static spherical stars composed of non-
relativistic matter. In Section 3.1, we show the effects of the massive gravitons on
the stellar structure. Adopting a polytropic equation of state, we construct master
differential equations, the modified Lane–Emden (LE) equations, for the stellar profile
function. In Section 3.2, we study the case of HCG. The method for MG can be
partially applied since the massive gravitons also exist in HCG.

3.1 Non-relativistic stellar structure in massive grav-

ity

In this section, we study the structure of non-relativistic polytropic stars in the Fierz–
Pauli (FP) theory and generic linear massive gravity (MG) theories. Our aim is to study
the effects of the graviton mass m and the “non-Fierz–Pauli” parameter ϵ incorporated
in the MG action (1.13) on the stellar structures. The spin-2 graviton is the only
content in the FP theory with ϵ = 0, while the spin-0 ghost graviton is also included
in generic non-FP MG with ϵ ̸= 0.

3.1.1 Massive gravitational potentials

We begin with summarising the EOMs for the scalar modes in generic linear MG, which
will be relevant to static spherical configurations. Scalar-type metric perturbations are
characterised by four variables as

h
(S)
00 = −2A , h

(S)
0i = −∂iB , h

(S)
ij = 2δij C + 2∂i∂jE . (3.1)

It is well known that one can choose two linearly independent combinations of the above
four variables that are invariant under a small gauge transformation, see Appendix A
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for a summary of linear gauge transformations and invariant variables. In particular,

Ψ ≡ A− Ḃ − Ë , Φ ≡ C (3.2)

correspond to the gravitational potentials in the Newtonian gauge. When the action
(1.13) does not possess the mass term, the scalar sector can be solely written in terms of
the gauge-invariant variables because the massless theory inherits the linearized version
of the gauge symmetry of GR. In the massive case, on the other hand, one cannot take
such advantage because the mass term breaks the symmetry. Indeed, the action (1.13)
is written in terms of the metric perturbations, A, B, C, and E, as

S
(S)
MG =

1

16π G

∫
d4x

[
−6C □C − 4C△(A− Ḃ − Ë − C)

− m2

2

(
2ϵA2 +B△B + 6(3ϵ− 2)C2 + 2ϵE△2E

+4(3ϵ− 2)C△E + 4(ϵ− 1)A△E + 12(ϵ− 1)AC)

]
,

(3.3)

up to surface terms. In a similar fashion, we define the scalar components of the
perturbative energy-momentum tensor Tµν as

T
(S)
00 = ρ , T

(S)
0i = −∂iv , T

(S)
ij = P δij +

(
∂i∂j −

1

3
δij △

)
σ , (3.4)

so the scalar sector of the minimally coupled matter action is

S
(S)
int =

1

2

∫
d4xh(S)µν T

(S)µν

=

∫
d4x

[
−Aρ+B△v + 3C P + E△

(
P +

2

3
△ σ

)]
,

(3.5)

where surface terms have been discarded. We assume the conservation law ∂µT
(S)µν = 0

holds, which settles down in the decomposed form:

ρ̇+△v = 0 , v̇ + P +
2

3
△σ = 0 . (3.6)

Varying the action S(S) = S
(S)
MG + S

(S)
int with respect to A ,B ,C ,E and using the con-

servation law, we obtain the four EOMs

2△C +m2 [ϵA+ (ϵ− 1)△E + 3(ϵ− 1)C] = −8π Gρ ,

△(4Ċ +m2B) = −16π G ρ̇ ,

6□C + 2△(A− Ḃ − Ë − 2C) +m2 [3(3ϵ− 2)C + (3ϵ− 2)△E + 3(ϵ− 1)A] = 24π GP ,

△{−2C̈ +m2 [ϵ△E + (3ϵ− 2)C + (ϵ− 1)A]} = 8π G ρ̈ .
(3.7)
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The derivation of an equivalent set of equations can be found in Ref. [JMM13].
We rigorously proved in Section 2.1 that, in the vacuum case, the scalar-type dy-

namical content in this theory consists of the helicity-0 component of the spin-2 graviton
and the spin-0 graviton, which may be defined as

ϕ2 ≡
1

2
(A− Ḃ − Ë − C) , ϕ0 ≡ −A+

Ḃ

2
− 2C , (3.8)

respectively. In fact, even in the presence of the matter sources, the EOMs (3.7) are
neatly recast into the following two sourced Klein–Gordon-type equations for ϕ2 and
ϕ0 ,

(□−m2
2)ϕ2 = 4π G (ρ+ v̇ −□σ) , (□−m2

0)ϕ0 = 4π G (ρ− 3P ) , (3.9)

where their masses are defined as

m2
2 ≡ m2 , m2

0 ≡
3− 4ϵ

2ϵ
m2 , (3.10)

respectively. By solving ϕ2 and ϕ0 , we can reconstruct the original metric variables A ,
B , C , and E as

A =
4

3m4
2

△2ϕ2 −
(
1− ϵ

ϵ
− 2

3m2
2

△
)
ϕ0 +

8π G

3m2
2

(
−3ρ− 2

m2
2

△ρ+ 2

m2
2

△2σ

)
,

B =
8

3m4
2

△ϕ̇2 +
4

3m2
2

ϕ̇0 +
16π G

3m2
2

(
3v − 2

m2
2

ρ̇+
2

m2
2

△σ̇
)
,

C = − 2

3m2
2

△ϕ2 −
1

2
ϕ0 +

8π G

3m2
2

(ρ−△σ) ,

E =
2

m2
2

(
1− 2

3m2
2

△
)
ϕ2 −

2

3m2
2

ϕ0 +
8π G

3m2
2

(
3σ − 2

m2
2

△σ +
2

m2
2

ρ

)
.

(3.11)
Therefore, the gauge-invariant variables are

Ψ = A− Ḃ − Ë = 2

(
1− 1

3m2
2

△
)
ϕ2 −

1

3
ϕ0 +

8π G

3m2
2

(ρ−△σ) ,

Φ = C = − 2

3m2
2

△ϕ2 −
1

3
ϕ0 +

8π G

3m2
2

(ρ−△σ) .
(3.12)

In order to prevent ϕ0 from being tachyonic, the non-FP parameter ϵ is required
to be within the range 0 < ϵ ≤ 3/4 so that 0 ≤ m2

0 < ∞. We will shortly confirm
that both ϕ2 and ϕ0 produce a Yukawa-type potential in the static case and, when
non-tachyonic, ϕ2 is attractive in the remote distances whereas ϕ0 is repulsive. On
the observational ground, the attractive force mediated by the spin-2 graviton must
dominate, so we further restrict the range of ϵ within 0 < ϵ ≤ 1/2 so thatm2

2 ≤ m2
0 . On

the other hand, m2
2 must be so tiny that the speed of gravitational waves is sufficiently

close to the speed of light in light of the observation of GW170817 [A+17a]. Notice
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that, as long as ϵ ̸= 0, vanishing of the spin-2 mass implies simultaneous vanishing of
the spin-0 mass.

From now on, we specialise to static configurations with non-relativistic matter
satisfying ρ≫ |P |. Then, our variables are related to the metric perturbations as

ϕ2 =
A− C

2
, ϕ0 = −A− 2C (3.13)

and they obey the Helmholtz-type equations

(△−m2
2)ϕ2 = 4π Gρ , (△−m2

0)ϕ0 = 4π Gρ . (3.14)

The gauge-invariant variables (3.2) can now be written in terms of ϕ2 and ϕ0 as

Ψ = A =
4

3
ϕ2 −

1

3
ϕ0 , Φ = C = −2

3
ϕ2 −

1

3
ϕ0 . (3.15)

For notational convenience, we introduce

α2 =
4

3
, α0 = −1

3
, β2 = −2

3
, β0 = −1

3
(3.16)

and write the gauge-invariant potentials as

Ψ =
∑
s=2,0

αs ϕs , Φ =
∑
s=2,0

βs ϕs . (3.17)

It will be useful to notice that
∑

s αs =
∑

s βs = 1.
Hereafter, we presume that the system is spherically symmetric. Since asymptotic

flatness requires lim|x⃗|→∞ Ψ = lim|x⃗|→∞ Φ = 0 , ϕs must satisfy lim|x⃗|→∞ ϕs = 0 . The
general solution to the Helmholtz equation (3.14) with two integration constants, C1

and C2 , is

ϕs = −G
r

(σs(r) coshms r − χs(r) sinhms r + C1 sinhms r + C2 coshms r) (3.18)

with the two functions σs and χs with the dimensions of mass being

σs(r) ≡
4π

ms

∫ r

0

dr′ r′ ρ(r′) sinhms r
′ ,

χs(r) ≡
4π

ms

∫ r

0

dr′ r′ ρ(r′) coshms r
′ .

(3.19)

For a star with the finite radius R, likewise, these quantities have a constant value
outside the star:

σs(r ≥ R) = σs(R) ≡ Σs , χs(r ≥ R) = χs(R) ≡ Xs . (3.20)
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In this case, regularity at r = 0 requires C2 = 0, while asymptotic flatness fixes the
other constant as

C1 = Xs − Σs =
4π

ms

∫ R

0

dr r ρ(r) e−msr ≡ Is . (3.21)

Thus, the spin-dependent massive potential is determined as

ϕs = −G
r

(σs(r) coshms r + (Is − χs(r)) sinhms r) . (3.22)

Outside the star, ϕs reduces to a Yukawa-type potential

ϕs(r ≥ R) = −GΣs e
−msr

r
, (3.23)

because σs(r ≥ R) = Σs and Is − χs(r ≥ R) = −Σs . We see that Σs plays a role of a
Yukawa charge.

Let us gain some insights into the massless limit. The limiting value of the enclosed
charge σs(r) is nothing but the enclosed mass,

lim
ms→0

σs(r) = 4π

∫ r

0

dr′ r′2 ρ(r′) ≡ m(r) , (3.24)

which proves that the massive potential (3.22) reproduces the Newtonian potential in
this limit:

lim
ms→0

ϕs(r) =

∫ r

∞

Gm(r′)

r′2
dr′ . (3.25)

A remarkable consequence is that the massless limit of the gauge-invariant potentials
external to an object with mass M ≡ m(R) recovers the Newtonian potential,

lim
m→0

Ψ = − lim
m→0

Φ = −GM
r

, (3.26)

thereby proving the absence of the vDVZ discontinuity in generic non-FP MG.
Notice that the above mentioned recovery of the Newtonian potential is a conse-

quence of the compensating contribution from the spin-0 mode ϕ0 . The contribution
to the gravitational potential from the spin-2 mode ϕ2 alone exceeds the Newtonian
potential by a factor of 1/3 as implied by the coefficient α2 = 4/3 in (3.15). That
excess is exactly cancelled by ϕ0 with the negative coefficient α0 = −1/3, where ϕ0 is
understood to provide a repulsive potential representing its ghost nature.

3.1.2 Stellar structure equation in massive gravity – Modified
Lane–Emden equation

Given the gauge-invariant potential Ψ, the hydrostatic equilibrium condition in the
Newtonian gauge reads

1

ρ

dP

dr
= −dΨ

dr
. (3.27)
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In order to obtain a differential equation for ρ, one supplies an equation of state (EOS)
P = P (ρ) and operates 1

r2
d
dr
r2 on the both sides to find

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −△Ψ . (3.28)

For now, we assume both m2
2 and m2

0 are bounded. Then we can safely use the
Helmholtz equations (3.14) for ϕs’s to obtain

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −

∑
s

αs (m
2
s ϕs + 4πGρ) . (3.29)

Hereafter we adopt the polytropic relation P = K ρ1+
1
n as the EOS for the stellar

matter, where K is a constant and n is another constant called the polytropic index.
Quantities at the stellar centre will be denoted by the subscript “c,” such as ρc ≡
ρ(r = 0) and Pc ≡ P (r = 0) = K ρ

1+ 1
n

c . The stellar mass density and pressure can be
expressed by a single profile function θ as

ρ = ρc θ
n , P = Pc θ

n+1 , (3.30)

which is normalized as θc = θ(r = 0) = 1. We introduce a length scale

ℓ ≡

√
(n+ 1)Pc

4π Gρ2c
, (3.31)

note that ℓ depends on the polytropic index n. Then, the non-dimensional radial
coordinate ξ and graviton mass parameters µs are defined as

ξ ≡ r

ℓ
, µs ≡ ms ℓ . (3.32)

Following the standard derivation of the Lane–Emden equation in GR, we operate

the non-dimensionalized laplacian operator △ξ ≡ 1
ξ2

d
dξ

(
ξ2 d

dξ

)
= ℓ2 △ on the hydro-

static equilibrium condition (3.29) to obtain

△ξθ +
∑
s

αs

(
θn +

µ2
s ϕs

4πGρcℓ2

)
= 0 . (3.33)

Unlike GR, however, this is still an integro-differential equation for ρ since ϕs involve
integrals of ρ in a non-trivial manner as given by (3.22). Since ϕs is a formal integral
of the Helmholtz equation (3.14), it reduces in turn to the source term 4π Gρ by an
operation of the Helmholtz operator △ − m2

s . Thus, operating (△ξ − µ2
2) (△ξ − µ2

0)
and using (3.14), we obtain a sixth-order differential equation for θ :

△ξ

[
(△ξ − µ2

2) (△ξ − µ2
0) θ + α2

(
△ξ − µ2

0

)
θn + α0

(
△ξ − µ2

2

)
θn
]
= 0 . (3.34)
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This is our master equation for the profile function θ in generic linear MG, which is an
extension of the original second-order Lane–Emden equation in GR. The stellar struc-
ture can be constructed upon integration of (3.34) with suitable boundary conditions.
The fact that this is sixth order in differentiation is a consequence of the fact that there
exist three physical degrees of freedom, one from the massive spin-2 graviton, one from
the massive spin-0 and one from the matter. A word of caution is that the overall
laplacian operator on the left-hand side of (3.34) cannot be dropped as in the case
of field equations (3.7) since θ and its derivatives must satisfy non-trivial boundary
conditions at a finite radius r = R, as we shall shortly see.

In terms of the non-dimensional variables, the stellar mass M and charge Σs are
expressed as

M = 4π ℓ3 ρc

∫ ξR

0

dξ ξ2 θ(ξ)n , Σs =
4π ℓ3 ρc
µs

∫ ξR

0

dξ ξ sinhµsξ θ(ξ)
n , (3.35)

where ξR ≡ R/ℓ and is the first positive zero of θ. Unlike GR, M cannot be expressed
in terms of derivatives at the stellar surface.

Now, we move on to discuss boundary conditions for the profile function θ. Since
the master equation (3.34) is sixth order in differentiation, there is a need for six
independent conditions, a priori. We shall demonstrate all such conditions can be
derived as the requirements for the compatibility with the hydrostatic equilibrium
condition (3.27). Here, we take the same strategy as in GR in the sense that we aim
to impose all the conditions on the values of θ and its derivatives at the stellar center.
It will turn out, however, that this is made only partially successful by the massive
nature of the extra gravitational potential.

Let us start by re-expressing (3.27) in terms of θ as

θ′ = − ℓ−1

4π Gρc

dΨ

dr
, (3.36)

where and hereafter, the prime denotes derivative with respect to ξ . The derivatives
at the stellar center θ

(n)
c ≡ dnθ

dξn
(0) are required to be consistent with the behavior of

the potential Ψ =
∑

s αs ϕs evaluated there. Indeed, one finds the expansion of the
potential (3.22) to a sufficient order as

G−1 ϕs = −ms Is +

(
2π

3
ρ(0)− m3

s Is
6

)
r2 +

π

3

dρ

dr
(0) r3

+

(
π

10

d2ρ

dr2
(0) +

πm2
s ρ(0)

30
− m5

s Is
120

)
r4 +O(r5) .

(3.37)

From above, it can be shown that the radial acceleration at the stellar center vanishes,
limr→0 −dΨ

dr
= 0, which implies θ′c = 0 via (3.36). Hence, the following two boundary

conditions have so far been obtained:

θc = 1 , θ′c = 0 . (3.38)
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These two conditions just suffice in the case of the second-order LE equation in GR.
By contrast, four more boundary conditions are required in order to solve the full
sixth-order differential equation (3.34). They are found from derivatives of (3.36) as

θ′′c = − 1

4π Gρc
lim
r→0

d2Ψ

dr2
=
∑
s

αs

(
−1

3
+

1

3
µ2
s ιs

)
,

θ′′′c = − ℓ

4π Gρc
lim
r→0

d3Ψ

dr3
= 0 ,

θ(4)c = − ℓ2

4π Gρc
lim
r→0

d4Ψ

dr4
=
∑
s

αs

(
−3

5
n θ′′c −

1

5
µ2
s +

1

5
µ4
s ιs

)
,

θ(5)c = − ℓ3

4π Gρc
lim
r→0

d5Ψ

dr5
= 0 ,

(3.39)

where we have non-dimensionalized the constants Is (3.21) appearing in the potentials
ϕs such that

ιs ≡
µs Is

4π ℓ3 ρc
=

∫ ξR

0

dξ ξ θ(ξ)n e−µsξ (3.40)

and iteratively applied the conditions arising from lower derivatives to those from higher
ones. It is observed that θ′′c and θ

(4)
c are now related to the stellar global quantities

ιs , which was moreover introduced to guarantee flatness at spatial infinity. The value
of ιs is as yet undetermined until the profile function θ is solved. Therefore, these
expressions of the boundary values should be considered merely formal. Namely, the
problem is not formulated as a simple initial value problem as in GR, but we will have
to perform some matching procedure between the boundary values at the stellar center
and the integrals of the solution over the whole domain. Note that the stellar radius
ξR is simultaneously determined by this procedure.

It might be useful to provide an integro-differential equation equivalent to the mas-
ter equation (3.34). Integrating (3.34) twice, we have

(△ξ−µ2
2) (△ξ−µ2

0) θ+α2

(
△ξ − µ2

0

)
θn+α0

(
△ξ − µ2

2

)
θn = µ2

2 µ
2
0 (1− α2 ι2 − α0 ι0) ,

(3.41)
where we have already utilised the boundary conditions (3.39).

When the mass parameter µ2
0 goes to infinity, i.e., the non-FP parameter ϵ goes to

zero, the massive gravity theory reduces to the FP theory. A little care has to be taken
when one wants to consider such a limit because we have assumed finiteness of the
graviton masses in the derivation of the full equation. Actually, in the massive limit,
the spin-0 Yukawa potential itself must be absent from the beginning. A secure way to
go is to begin by setting α0 = 0 in (3.33), which has the effect of turning off the spin-0
Yukawa potential ϕ0 . Then, operating (△ξ − µ2

2) only, the correct master equation for
the FP theory is found to be

△ξ

[
(△ξ − µ2

2) θ +
4

3
θn
]
= 0 , (3.42)
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where we have restored α2 to 4/3. The reason for this being the fourth order is that
the helicity-0 component of the massive spin-2 graviton, which is absent in GR, is still
at work in addition to the matter DOF. It is interesting to note that this can also be
obtained by taking a formal limit µ2

0 → ∞ in the master equation (3.34) for a generic
theory.

We need four boundary conditions in total, two of which are the same as the Lane–
Emden conditions (3.38). The remaining two are obtained by setting α0 = 0 in (3.39)
as

θ′′c = − 1

4π Gρc
lim
r→0

d2Ψ

dr2
= −4

9
(1− µ2

2 ι2) ,

θ′′′c = − ℓ

4π Gρc
lim
r→0

d3Ψ

dr3
= 0 .

(3.43)

It is useful here to consider an integro-differential equation equivalent to the fourth-
order LE equation (3.42),

(△ξ − µ2
2) θ +

4

3
θn =

4

3
µ2
2 ι2 − µ2

2 . (3.44)

From this, one can deduce that, when the graviton mass parameter µ2 goes to zero,
the master equation reduces to

△ξθ +
4

3
θn = 0 (3.45)

with the boundary conditions θc = 1 , θ′c = 0. This resembles the ordinary Lane–Emden
equation in GR but has a different numerical coefficient, implying that its solutions do
not recover those of GR although the mass parameter µ2 vanishes. This discontinuous
behavior is reminiscent of the vDVZ discontinuity.

Historically, since Vainshtein [Vai72], this kind of discontinuity in the FP theory
has been believed to be cured by a screening mechanism inherent in the nonlinear com-
pletion of the theory, where gravity within some radius rV is expected to mimic GR.
It would be of interest here to compare the stellar radius R, and the screening radius
rV taking its generic expression rV ≡ (rS/m

p)1/(p+1), where rS is the Schwarzschild ra-
dius of a stellar object, m is the graviton mass, and p is a theory-dependent parameter.
p = 4 for the original Vainshtein model [Vai72] and p = 2 for the de Rham–Gabadadze–
Tolley (dRGT) theory [dRGT11], see, e.g., [BD13] for generalisations. Then, the ratio
of the screening radius to the stellar radius reads rV/R = (rS/R)

1/(p+1)/(mR)p/(p+1) .
Although the ratio rS/R in the numerator should be reasonably small for any nonrela-
tivistic stars, the product mR in the denominator is requested to be far more smaller
once one demands the inverse-square force exerted by the object reaches astronomical
distances, which are generically greater than R by tremendous orders of magnitude.
Hence, one can generically expect that rV/R ≫ 1 and, therefore, some screening effect
should work within non-relativistic stellar objects.

Last but not least, we consider the massless limit with a non-vanishing non-FP
parameter ϵ. When ϵ ̸= 0, the doubly massless limit can be taken, where both µ2 and
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µ0 go to zero. Then, our master equation (3.34) becomes

△2
ξ (△ξθ + θn) = 0 . (3.46)

This equation can be integrated four times and imposing the suitable boundary con-
ditions (3.39) yields

△ξθ + θn = 0 . (3.47)

This is the same as the standard Lane–Emden equation in GR. Thus, we can expect
that the solutions to the master equation (3.34) will recover the corresponding solutions
of the standard LE equation in GR. This proves the absence of the discontinuity in the
generic, non-FP MG.

We will present analytical solutions to the FP and non-FP master equations for the
polytropic indices n = 0 and 1. All the differential equations treated in this section
will be a linear homogeneous equation for θ sharing the common form

f(△ξ) θ = 0 , (3.48)

where the characteristic polynomial f(X) is degree 2 in X for the FP theory or 3 for
the non-FP theories. The general solution is characterised by the set of the roots for
the characteristic equation f(X) = 0. It always has X0 = 0 as a root, as is obvious
from Eqs. (3.34) and (3.42). For each root Xi , one finds a fundamental solution by
solving △θi = Xi θi ,

θi =



Ai +
Bi

ξ
(Xi = 0)

Ai
sinh

√
Xiξ

ξ
+Bi

cosh
√
Xiξ

ξ
(Xi > 0)

Ai
sin

√
−Xiξ

ξ
+Bi

cos
√
−Xiξ

ξ
(Xi < 0)

, (3.49)

where Ai and Bi are arbitrary real constants. When there is no degeneracy, the general
solution is just a sum of the fundamental solutions θi . If there are degeneracies, on
the other hand, special but straightforward mathematical treatments such as variation
of constants will be necessary. Later, we will take care of an example of a degenerate
situation.

3.1.3 Case I: Fierz–Pauli theory

We first present the exact solutions to the Fierz–Pauli master equation (3.42) in the
cases of the polytropic indices n = 0 and 1. In this case, only the spin-2 graviton exists.

For n = 0, the fourth-order equation (3.42) reduces to a homogeneous linear equa-
tion

(△ξ − µ2
2)△ξθ = 0 . (3.50)
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The general solution can be found as

θ = A1 +
A2

ξ
+ A3

sinhµ2ξ

µ2ξ
+ A4

coshµ2ξ

µ2ξ
, (3.51)

where A1 , A2 , A3 , and A4 are constants of integration. The set of the boundary
conditions (3.43) determines the constants as

A1 = 1− A3 , A3 = −4

3

(1 + µ2ξR) e
−µ2ξR

µ2
2

, A2 = A4 = 0 . (3.52)

Therefore, we get the exact solution

θ = 1− 4

3

(1 + µ2ξR) e
−µ2ξR

µ2
2

sinhµ2ξ − µ2ξ

µ2ξ
. (3.53)

As anticipated, the solution is parameterized by the stellar radius ξR , the value of which
must be determined by numerically solving θ(ξR) = 0. The analytical expression for
the gravitational potential Ψ can be found as

Ψ =


−4

3

GΣ2

r

m2r − (1 +m2R)e
−m2R sinhm2r

m2R coshm2R− sinhm2R
(r ≤ R)

− 4

3

GΣ2

r
e−m2r (r ≥ R)

. (3.54)

Figure 3.1 shows the profile function θ for several values of µ2 and compares them
with GR. In the massless limit µ2 → 0, the solution reduces to θ = 1 − 2ξ2/9, which
has a different coefficient from the Lane–Emden solution in GR. As a consequence, the
stellar radius shrinks from the GR value of

√
6 to 3/

√
2. On the other hand, in the

massive limit µ2 → ∞, the solution has an infinite radius because gravity no longer
works. The profile best resembles that of GR when µ2 has some finite value around
0.4, but such a large value is physically unreasonable.

The expressions for the stellar mass M and the Yukawa charge Σ2 can be obtained
by substituting the solution to (3.35):

M =
4πℓ3ρc ξ

3
R

3
, Σ2 = 4πℓ3ρc

µ2ξR coshµ2ξR − sinhµ2ξR
µ3
2

. (3.55)

Figure 3.2 shows the dependence of the stellar radius R/ℓ (blue) , the massM/(4πℓ3ρc)
(red) and the charge Σ2/(4πℓ

3ρc) (yellow), each appropriately normalised, on the gravi-
ton mass parameter µ2 . As we explained earlier, when the graviton mass parameter
µ2 goes to zero, the charge Σ2 and the mass M have the same limiting value. One also
confirms that the massless limit of R and M does not converge to their corresponding
GR values indicated by the star symbols. This discontinuous behavior is analogous to
what is predicted for the bending of light. Hence, one could conclude that, in order for
the graviton in the FP theory to acquire a tiny mass, some screening mechanism that
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Figure 3.1: The profile function θ for the polytropic index n = 0 in the
Fierz–Pauli theory and GR.
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Figure 3.2: The dependence of the stellar radius R/ℓ (blue), the mass
M/(4πℓ3ρc) (red) and the charge Σ2/(4πℓ

3ρc) (yellow), each appropriately
normalised, on the graviton mass µ22 for the polytropic index n = 0. The
star symbols indicate the GR values of R (bottom, blue) and M (top, red).
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helps the recovery of GR has to be invoked even inside stars. On the other hand, as
the mass of the graviton increases, each quantity diverges.

For the polytropic index n = 1, the fourth-order equation (3.42) reduces to a linear
homogeneous equation [

△ξ −
(
µ2
2 −

4

3

)]
△ξθ = 0 . (3.56)

We assume µ2
2 < 4/3 since the graviton mass should be small enough to be compatible

with the gravitational-wave experiments. The general solution is obtained as

θ = B1 +
B2

ξ
+B3

sinλξ

λξ
+B4

cosλξ

λξ
(3.57)

with λ =
√

4/3− µ2
2 and B1 , B2 , B3 , and B4 are constants of integration. The

boundary conditions (3.43) determine the constants as

B1 = 1− B3 , B3 =
4

3λ2
(1− µ2

2ι2) , B2 = B4 = 0 . (3.58)

Therefore, the exact solution is

θ = 1 + B3
sinλξ − λξ

λξ
(3.59)

with

B3 = − 4λ(1 + µ2ξR)

3µ2
2 (λ cosλξR + µ2 sinλξR)− 4λ (1 + µ2ξR)

. (3.60)

An expression for the interior gravitational potential can also be found, but we do not
show it because the result is too complicated and not illuminating.

Figure 3.3 shows the profile functions in the Fierz–Pauli theory and GR for n = 1.
Although the functional shapes are different from those for n = 0, the trends with
respect to the change in the mass parameter are similar. When µ2 → 0, the solution
reduces to θ =

√
3/(2ξ) sin 2ξ/

√
3, so the stellar radius ξR shrinks from the GR value

of π to
√
3 π/2 .

Once ξR is determined, the stellar mass M and charge Σ2 can be evaluated via their
expressions for n = 1:

M =
4πℓ3ρc

3

[
ξ3R +

3B3

λ2

(
sinλξR − λξR cosλξR − 1

3
λ3 ξ3R

)]
,

Σ2 =
4πℓ3ρc
µ3
2

[
µ2ξR coshµ2ξR − sinhµ2ξR

+B3 λ

{
sinhµ2ξR

(
1− 3

4
µ2
2 cosλξR

)
− µ2 coshµ2ξR

(
ξR +

3

4
µ2
2 cosλξR

)}]
.

(3.61)
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Figure 3.3: The profile function θ for the polytropic index n = 1 in the
Fierz–Pauli theory and GR.

3.1.4 Case II: Non-Fierz–Pauli generic theories

Now, we would like to tackle the full master equation (3.34) in generic linear MG. The
existence of the two massive gravitons, spin-2 and -0, renders the analysis considerably
messy, but most features of the solutions will be reasonably understood as collective
contributions from these gravitons. As in the FP case, we find exact solutions for the
polytropic indices n = 0, 1.

In the case of n = 0, the master equation (3.34) reduces to

(△ξ − µ2
2) (△ξ − µ2

0)△ξθ = 0 . (3.62)

When µ2 ̸= µ0, the general solution with six arbitrary constants is found to be

θ = C1 +
C2

ξ
+ C3

sinhµ2ξ

µ2ξ
+ C4

coshµ2ξ

µ2ξ
+ C5

sinhµ0ξ

µ0ξ
+ C6

coshµ0ξ

µ0ξ
, (3.63)

where C1–C6 are constants of integration. The boundary conditions (3.39) determine
the constants as

C1 = 1− C3 − C5 , C3 = −4

3
(µ−2

2 − ι2) , C5 =
1

3
(µ−2

0 − ι0) , C2 = C4 = C6 = 0 .

(3.64)
Therefore, the exact solution is

θ = 1− 4

3

(1 + µ2ξR)e
−µ2ξR

µ2
2

sinhµ2ξ − µ2ξ

µ2ξ
+

1

3

(1 + µ0ξR)e
−µ0ξR

µ2
0

sinhµ0ξ − µ0ξ

µ0ξ
.

(3.65)
When µ2 = µ0, the characteristic roots degenerate, and the general solution then is

θ = C̃1 +
C̃2

ξ
+ C̃3

sinhµ2ξ

µ2ξ
+ C̃4

coshµ2ξ

µ2ξ
+ C̃5 sinhµ2ξ + C̃6 coshµ2ξ . (3.66)
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A calculation leads to the solution

θ = 1− (1 + µ2ξR)e
−µ2ξR

µ2
2

sinhµ2ξ − µ2ξ

µ2ξ
, (3.67)

which happens to be identical with the formal µ0 → µ2 limit of the non-degenerate
solution (3.65). The analytical expression for the gravitational potential is found as

Ψ =



−4

3

GΣ2

r

m2r − (1 +m2R) e
−m2R sinhm2r

m2R coshm2R− sinhm2R

+
1

3

GΣ0

r

m0r − (1 +m0R) e
−m0R sinhm0r

m0R coshm0R− sinhm0R
(r ≤ R)

− 4

3

GΣ2

r
e−m2r +

1

3

GΣ0

r
e−m0r (r ≥ R)

. (3.68)

Typical solutions are shown in Fig. 3.4 together with the n = 0 LE solution. As
is obvious from the expression (3.65), the spin-2 graviton mediates an attractive force
while the spin-0 is repulsive. When there is a hierarchy between the graviton masses,
the graviton with lighter mass dominates. It is worth mentioning that the stellar
structure is maintained even in the presence of the ghost spin-0 graviton as long as
µ0 ≳ µ2 . In the case where the graviton masses are comparable, µ2 ≈ µ0 , the spin-2
graviton exceeds because its magnitude is four-fold stronger than the spin-0.
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Figure 3.4: Typical profile functions θ in generic non-FP linear MG for
the polytropic index n = 0 compared with the LE solution in GR.

Let us mention some interesting limits. In the limit µ0 → ∞, i.e., ϵ → 0 , the
solution reduces to the one in the FP theory obtained previously. In another special
case where the spin-2 graviton has zero mass, µ2 → 0, the spin-0 mass is simultaneously
zero, µ0 → 0, by definition. The massless limit of the solution (3.65) recovers the n = 0
LE solution θLE,0 = 1 − ξ2/6, so no discontinuity appears when the spin-0 graviton is
included.
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Once ξR is determined, the stellar mass M and charge Σs can be evaluated via
their expressions, which are essentially the same as the one for the FP theory (3.55)
(µ2 → µ0 for Σ0) since n = 0. Figure 3.5 shows the dependences of the stellar radius
R/ℓ (blue) and the mass M/(4πℓ3ρc) (red) on the spin-2 graviton mass µ2

2 for several
values of the non-FP parameter ϵ. A larger value of ϵ leads to a larger gradient. Here,
the Yukawa charges Σs are omitted, but their behavior is similar to the stellar mass M
as seen in Fig. 3.2 for the FP case. In the presence of the spin-0 graviton, the values
of R and M in the massless limit µ2 → 0 both converge to the values of GR, which is
in sharp contrast with the FP case (grey) studied in the previous subsection.
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Figure 3.5: Dependences of the stellar radius R/ℓ (blue) and the mass
M/(4πℓ3ρc) (red), each appropriate normalized, on the graviton mass µ22
for several values of the non-FP parameter ϵ for the polytropic index n = 0.
The grey lines correspond to the FP case with ϵ = 0. The star symbols
indicate the GR values of R (bottom) and M (top).

Figure 3.6 shows contours of the ratio of the stellar radius to the value of GR,
R/RLE , in the (µ2

2 , µ
2
0) plane. On the curve with a ratio R/RLE = 1, the MG solution

has the same radius as GR as a result of competition between the attractive spin-2
and repulsive spin-0. This diagram has a potential usage in constraining the graviton
mass parameters. We do not go into the detailed analysis here, but it is likely that the
regions far from the line with R/RLE = 1, for instance, those with values smaller than
0.9 or greater than 1.1, may be rejected since the discrepancy from GR could be too
large. In particular, when µ2

2 ≪ 1, the spin-0 mass would be constrained as µ2
0 ≲ O(1).

In the case of n = 1, the master equation (3.34) becomes

(△ξ −X1) (△ξ −X2)△ξθ = 0 , (3.69)

where Xi’s are roots of the characteristic equation

f(x) = x2 − (µ2
2 + µ2

0 − 1) x+
1

3
(µ2

2 − 4µ2
0 + 3µ2

2 µ
2
0) = 0 (3.70)
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Figure 3.6: Contours of the ratio of the stellar radius to the value of GR,
R/RLE , in the (µ22 , µ

2
0) plane for the polytropic index n = 0.
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with its discriminant being

D = µ4
2 + µ4

0 −
10

3
µ2
2 +

10

3
µ2
0 − 2µ2

2 µ
2
0 + 1 . (3.71)

In the case when µ2
2 ≪ 1, which is of most importance on the observational grounds,

the above equation has two real roots. A further restriction µ2
2 ≤ µ2

0 forces the two
real roots X1 and X2 to have opposite signs. The positive and negative roots then are
λ2+ = (µ2

2+µ
2
0−1+

√
D)/2 and −λ2− = (µ2

2+µ
2
0−1−

√
D)/2, respectively. The general

solution is

θ = D1 +
D2

ξ
+D3

sinhλ+ξ

λ+ξ
+D4

coshλ+ξ

λ+ξ
+D5

sinλ−ξ

λ−ξ
+D6

cosλ−ξ

λ−ξ
, (3.72)

whereDi’s are arbitrary constants of integration. The set of boundary conditions (3.39)
determines the constants as

D1 = 1−D3 −D5 , D2 = D4 = D6 = 0 ,

D3 =
1

λ2+ (λ2+ + λ2−)

[
1− λ2− − 4

3
µ2
2

(
1 + ι2 (1− λ2− − µ2

2)
)
+

1

3
µ2
0

(
1 + ι0 (1− λ2− − µ2

0)
)]

,

D5 =
1

λ2− (λ2+ + λ2−)

[
1 + λ2+ − 4

3
µ2
2

(
1 + ι2 (1 + λ2+ − µ2

2)
)
+

1

3
µ2
0

(
1 + ι0 (1 + λ2+ − µ2

0)
)]

.

(3.73)
Therefore, the exact solution is

θ = 1 +D3
sinhλ+ξ − λ+ξ

λ+ξ
+D5

sinλ−ξ − λ−ξ

λ−ξ
. (3.74)

Figure 3.7 shows the form of the profile functions θ for several combinations of µ2

and µ0. The trends with respect to the changes of the values of µ2 and µ0 are almost
in parallel to the case with n = 0.

Here, we focus on the limiting case with the vanishing spin-2 mass, i.e., µ2
2 → 0.

Figure 3.8 shows the dependence of the stellar radius R/ℓ on the spin-0 graviton mass
µ2
0 . The first thing to note is that, as is expected, the simultaneous massless limit
µ2
0 → 0 recovers the GR value of π indicated by the star symbol in the figure. As µ0

increases, the repulsive force weakens, so the stellar radius shrinks. The grey dashed
line in Fig. 3.8 indicates the 90% value of the normalized radius in the case of GR, i.e.,
0.9× π ≈ 2.83, which we shall regard as a tentative lower bound. If one demands the
radius should be above 2.83, then µ2

0 should be less than about 2.4. In this manner, at
any rate, the spin-0 mass is constrained to be < O(1) if µ2 ≪ 1.

We conclude this section with some remarks on the screening mechanism in the FP
theory considering the case of the Sun. In the studies of the case with n = 0, 1, we found
that the stellar radius R has a value of the order of the characteristic length scale ℓ as
long as the graviton mass m is smaller than ℓ−1, that is, µ ≡ mℓ ≲ 1. Main-sequence
stars like the Sun, on the other hand, are usually modeled as a polytrope star with
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Figure 3.7: The profile function θ in non-FP generic linear MG and GR
for the polytropic index n = 1.
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n = 3, which we did not consider in this thesis. Nevertheless, we can expect a similar
estimate of R holds for n = 3. Now, if we take the dRGT theory as a specific example
of the nonlinear completion of the FP theory, the screening radius rV ≡ (rS/m

2)1/3 for
the Sun with its Schwarzschild radius rS,⊙ ≈ 3 km and stellar radius R⊙ ≈ 7× 105 km
is evaluated as

rV,⊙
R⊙

=
(rS,⊙/R⊙)

1/3

(mR⊙)2/3
∼ 10−2 µ−2/3 , (3.75)

where we have assumed R⊙ = O(1)× ℓ in the last approximate equality. This implies
that the whole Sun is enclosed within the screening radius if µ ≲ 10−3 and the stellar
calculations then has to be modified by some nonlinear screening effect. In Fig. 3.9,
this situation corresponds to the shaded region, in which the stellar radius R/ℓ (blue)
is below the screening radius rV/ℓ (red). Incidentally, an observational upper bound
on µ may be set if one wishes the linear FP theory is valid over the solar system, where
the inverse-square law has been observationally confirmed to hold. The inverse-square
force by the Sun would not reach, e.g., Pluto’s aphelion rP at a distance of about
7 × 1012 meters unless the Yukawa length rY ≡ m−1 exceeds it, so the graviton mass
m is constrained to be below r−1

P . This leads to an upper bound on the graviton mass
as mℓ ∼ mR⊙ ≲ R⊙/rP ∼ 10−4 represented by the vertical dashed line in Fig. 3.9.

★★

10-5 10-4 0.001 0.010 0.100
m ℓ

2

4

6
8
10

length
ℓ

Yukaw
a

N
ew

ton

 (Non-FP)R/ℓ

Stellar radius  (FP)R/ℓ

GR

Screening

Figure 3.9: A schematic comparison of the stellar radius R/ℓ for the FP
theory (solid blue) and a non-FP theory (dashed blue) with the screening
radius rV/ℓ (red) for astronomical parameters compatible with the solar
system. Some screening effect is expected to work in the shaded region in
the case of the FP theory, the corresponding mass range being mℓ ≲ 10−3.
The rightmost line (grey) represents the Yukawa length 1/(mℓ).
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3.2 Non-relativistic stellar structure in higher-curvature

gravity

Next, we study the structure of static spherical stars made up of a non-relativistic
polytropic fluid in generic HCG. The method for MG can be partially applied because
the massive gravitons also exist in HCG. We first formulate the modified LE equation
for the stellar profile function in a gauge-invariant manner, finding it boils down to
a sixth-order differential equation in the generic case of HCG, while it reduces to a
fourth-order equation in two special cases, reflecting the number of additional mas-
sive gravitons arising in each theory. Moreover, as shown in the previous section, the
existence of massive gravitons renders the nature of the boundary-value problem un-
like the standard LE. As physical outcomes, we clarify how the stellar radius, mass,
and Yukawa charges depend on the theory parameters and how these observables are
mutually related. We obtain reasonable upper bounds on the Weyl-squared correction.

3.2.1 Massive graviton corrections to the Newtonian potential

In order to derive linear EOMs for the scalar modes in generic HCG, we begin with
calculating the second-order perturbation of the gravitational action (1.9) plus a mini-
mally coupled conservative matter. Scalar-type metric perturbations are characterised
by four variables (3.1), and the gauge-invariant linear scalar perturbations Ψ and Φ are
constructed as (3.2), see Appendix A. As the matter source, we adopt a perfect fluid
with mass density ρ and pressure P coupled with scalar-type gravitational perturba-
tions, as introduced in (3.5) with the conservation law (3.6). Thus, the scalar sector of
the second-order perturbative action is then given by

S
(2)
HCG =

1

16π G

∫
d4x

[
−6Φ□Φ− 4Φ△(Ψ− Φ)− 4

3
α [△(Ψ− Φ)]2 + β

(
(1)R

)2]
+

∫
d4x [−Ψ ρ+ 3ΦP ] ,

(3.76)
where

(1)R = −6□Φ− 2△(Ψ− Φ) (3.77)

is the Ricci scalar at the linear order. Varying the action with respect to Ψ and Φ, we
obtain the field equations

△
[
−2Φ− 4

3
α△(Ψ− Φ)− 2β (1)R

]
= 8π Gρ ,

(1)R + 2△Φ +
4

3
α△2(Ψ− Φ) + 2β (−3□+△)(1)R = −24π GP .

(3.78)

In the static case, the coupled equations (3.78) can be reduced and reorganised in
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a neat way. To see this, we introduce an alternative set of gauge-invariant variables

Ψ2 ≡
1

2
Ψ− 1

2
Φ ,

Ψ0 ≡ −Ψ− 2Φ ,
(3.79)

where, as will be clarified shortly, the subscripts refer to the spin s of the massive
gravitons. For later convenience, we denote the inversion of the above as

Ψ = −α2 Ψ2 − α0 Ψ0 ,

Φ = β2 Ψ2 + β0 Ψ0

(3.80)

with

α2 = −4

3
, α0 =

1

3
, β2 = −2

3
, β0 = −1

3
. (3.81)

Note that these coefficients are normalised so that α2+α0 = −1 and β2+β0 = −1. By
taking linear combinations of (3.78) after reducing □ to △, we obtain the decoupled
equations for the gauge-invariant variables Ψs as

△Ψ2 − 2α△2Ψ2 = 4π G

(
ρ+

3

2
P

)
,

△Ψ0 − 6β△2Ψ0 = 4π G (ρ− 3P ) .

(3.82)

One may already notice the similarity of the above two equations. Furthermore, with
the non-relativistic approximation |P | ≪ ρ being the rest mass density of the fluid,
these reduce to exactly the same form(

△−m2
s

)
△Ψs = −4π Gρm2

s (3.83)

with s = 2, 0, where we have introduced the “mass” parameters m2
2 ≡ 1/(2α) and

m2
0 ≡ 1/(6β).
The key property inherent in these fourth-order equations is that the gauge-invariant

potentials Ψs can be expressed as the difference of two variables

Ψs = ψs − ψ̃s , (3.84)

where ψs and ψ̃s are required to satisfy the following Poisson and Helmholtz equations,

△ψs = 4π Gρ , (3.85)(
△−m2

s

)
ψ̃s = 4π Gρ , (3.86)

respectively. An immediate implication of this decomposition being possible is that ψs
is the massless graviton in GR while ψ̃s originates from the extra massive DOF with
spin s arising in HCG. Indeed, these Helmholtz equations are reminiscent of the Klein–
Gordon equations satisfied by the helicity-0 DOFs with the same masses identified in
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2.2. Note, however, that there is a certain difference in the current definition of the
variables from the vacuum case. See also [CS01, CSC01] for an analogous discussion
for decomposing a higher-order equation into second-order equations in the presence
of matter. Since the Poisson equations (3.85) for both s are identical, and so are their
solutions, we may omit the subscript s for ψs: ψ ≡ ψ2 = ψ0. Then, the original
gauge-invariant variables can be represented as

Ψ = ψ + α2 ψ̃2 + α0 ψ̃0 , (3.87)

Φ = −ψ − β2 ψ̃2 − β0 ψ̃0 (3.88)

with the coefficients given by (3.81).
It may be worth mentioning here the “massive” limit with m2

s → ∞. Then, only
terms in proportion to m2

s in the fourth-order equation (3.83) remain, reducing to a
conventional Poisson equation for Ψs . Also, Eq. (3.86) in this limit imposes ψ̃s = 0,
and we have Ψs = ψ. Another interesting limit is the massless limit, m2

s → 0, where
one expects ψ̃s → ψ. However, a caution to be given here is that a vanishingly small
value of the mass parameter m2

s corresponds to a huge absolute value of the expansion
coefficient in the action (1.9) (α or β), for which the validity of the small-curvature
approximation may be questioned.

Our next task is to express the gravitational potentials in a compatible way with ad-
equate boundary conditions; On the one hand, asymptotic flatness requires lim|x⃗|→∞ Ψ =
lim|x⃗|→∞ Φ = 0 , so the boundary conditions to be imposed on Ψs are lim|x⃗|→∞ Ψ2 =
lim|x⃗|→∞ Ψ0 = 0. Also, all these perturbative variables must be bounded in the whole

spatial domain. The same should also hold for ψ and ψ̃s .
Hereafter we specialise in a spherically symmetric configuration, where every quan-

tity becomes a function of the radial coordinate r and the Laplace operator reduces to
△ = 1

r2
d
dr

(
r2 d

dr

)
. We shall impose regularity at the stellar centre r = 0 and flatness

at r → ∞. The solution to the Poisson equation (3.85) satisfying these demands is the
conventional Newtonian potential:

ψs = ψ = −G
∫ ∞

r

dr′
m(r′)

r′2
(3.89)

with the enclosed mass m(r) being

m(r) ≡ 4π

∫ r

0

dr′ r′2 ρ(r′) . (3.90)

If the matter is confined within a finite radius R like a star, ρ(r ≥ R) = 0, then the
enclosed mass is constant outside the stellar radius, m(r ≥ R) = m(R) ≡ M , so the
exterior potential is

ψ(r ≥ R) = −GM
r

. (3.91)

The total massM can be measured at remote distances using Kepler’s law, for instance.
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As shown in the previous section, the formal spherically symmetric solution to the
Helmholtz equation (3.86) fulfilling the asymptotic boundary condition is given by

ψ̃s = −G
r

(σs(r) coshms r + (Is − χs(r)) sinhms r) (3.92)

with

σs(r) ≡
4π

ms

∫ r

0

dr′ r′ sinhmsr
′ ρ(r′) , χs(r) ≡

4π

ms

∫ r

0

dr′ r′ coshmsr
′ ρ(r′) , (3.93)

where the integration constant Is must be so tuned to kill the exponentially growing
mode. When the matter distribution is confined within a finite stellar radius R, these
functions have a constant value outside the star: σs(r ≥ R) = σs(r = R) ≡ Σs ,
χs(r ≥ R) = χs(r = R) ≡ Xs . Then, the integration constant is determined as

Is ≡ Xs − Σs =
4π

ms

∫ R

0

dr r ρ(r) e−msr . (3.94)

Outside the star, it reduces to a Yukawa-type potential characterised by the graviton
mass ms and the total “charge” Σs as

ψ̃s(r ≥ R) = −GΣs e
−msr

r
. (3.95)

As a consequence, the total gravitational potential Ψ within the distance m−1
s from the

star surface acquires Yukawa-type modifications.
Note that the enclosed “charges” σs and χs are both positive-semidefinite for posi-

tive mass density ρ as is the case for the enclosed mass m. They are divergent in the
massive limit, ms → ∞, but the extra potential ψ̃s converges to 0 in this limit. On the
other hand, in the massless limit, ms → 0, the enclosed charge σs tends to the same
value as the enclosed mass as σs = m+O(m2

s), while χs is divergent as χs = O(m−1
s ),

and ψ̃s tends to the conventional potential ψ as expected.
Since these gravitational potentials have been so constructed to satisfy Eq. (3.85) or

(3.86), their derivatives are necessarily continuous up to second order everywhere. On
the other hand, the third derivatives involve dρ/dr, and therefore, are discontinuous
at the stellar surface.

3.2.2 Modified Lane–Emden equation

For the time being, we assume the graviton mass parameters m2
s’s are both bounded,

leaving discussions of the limiting cases to the next subsection, in which either or both
of m2

s’s are taken to infinity.
Given the gauge-invariant potential Ψ, the hydrostatic equilibrium condition in the

Newtonian gauge reads
1

ρ

dP

dr
= −dΨ

dr
, (3.96)
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where the (outward) radial acceleration −dΨ
dr

is obtained by differentiating (3.87) as

−dΨ

dr
= −Gm

r2
− α2

dψ̃2

dr
− α0

dψ̃0

dr
. (3.97)

One can deduce from the above expression that the sign of the coefficient αs is crucial
in determining the direction of the force exerted by the massive graviton of spin s, i.e.,
attractive or repulsive. Due to the reverse signs of α2 = −4/3 and α0 = 1/3 , the two
massive gravitons work in opposite ways.

By supplying an equation of state P = P (ρ) , the hydrostatic equilibrium condition
(3.96) reduces to an equation for the single function ρ. At this stage, however, it is an
integro-differential equation for ρ since the functions m and ψ̃s on the right-hand side
involve radial integrations. In other words, in order to obtain an equivalent differential
equation, one has to extract ρ fromm and ψ̃s. Let us first follow the standard procedure
in GR, i.e., operate 1

r2
d
dr
r2 on the both sides:

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4π Gρ− α2 △ψ̃2 − α0 △ψ̃0 . (3.98)

Since we have assumed both m2
s’s are bounded, we can safely use the Helmholtz equa-

tions (3.86) for ψ̃2 and ψ̃0 to obtain

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −α2m

2
2 ψ̃2 − α0m

2
0 ψ̃0 . (3.99)

Here, a crucial difference from the case of GR is that this is still an integro-differential
equation since ψ̃s involves integrals of ρ in a non-trivial manner. Another striking
difference from GR is that the standard source term −4πGρ has been canceled out.
These would appear to imply a thorough change in the structure of the governing
equation compared to GR. We will see, however, one can take an appropriate limit of
the above equation to find the correct expression in GR.

Hereafter we adopt the polytropic relation P = K ρ1+
1
n as the EOS for the stel-

lar matter, where K is the normalization constant and n is the constant called the
polytropic index. As shown in the previous section, introduce a length scale

ℓ ≡

√
(n+ 1)Pc

4π Gρ2c
, (3.100)

where the quantities with the subscript “c” denote the values at the stellar center, such

as ρc ≡ ρ(r = 0) and Pc ≡ P (r = 0) = K ρ
1+ 1

n
c . The non-dimensional radial coordinate

ξ and graviton mass parameters µs are defined by

ξ ≡ r

ℓ
, µ0 ≡ m0 ℓ , µ2 ≡ m2 ℓ . (3.101)
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The stellar mass density and pressure are conveniently replaced by the non-dimensional
profile function θ(ξ) as

ρ = ρc θ
n , P = Pc θ

n+1 . (3.102)

By definition, θ is normalized to unity at the center, θc ≡ θ(ξ = 0) = 1. The value of
ξ at the first positive zero of θ is denoted as ξR and is related to the stellar radius as

R = ξR ℓ. The laplacian operator is non-dimensionalized as △ξ ≡ 1
ξ2

d
dξ

(
ξ2 d

dξ

)
= ℓ2 △,

and the hydrostatic equilibrium condition (3.99) for the polytropic EOS reads

△ξθ = −α0 µ
2
0 ψ̃0 + α2 µ

2
2 ψ̃2

4π Gρc ℓ2
. (3.103)

Now, let us complete our task to obtain a differential equation for θ from the above
expression. Since ψ̃s as given by (3.92) is a formal integration of the Helmholtz equation
(3.86), it reduces in turn to the source term 4π Gρ by an operation of the Helmholtz
operator △−m2

s . Note that the Helmholtz operators are commutable. Thus, operating
(△ξ − µ2

2) (△ξ − µ2
0) and using the Helmholtz equations for ψ̃2 and ψ̃0 , we obtain a

sixth-order differential equation for θ :

(△ξ − µ2
0) (△ξ − µ2

2)△ξθ + (α0 µ
2
0 + α2 µ

2
2)△ξθ

n + µ2
0 µ

2
2 θ

n = 0 . (3.104)

This is our master differential equation for the non-relativistic stellar structure in HCG.
The fact that this is a sixth-order differential equation, as opposed to the second-order
Lane–Emden equation in GR, is a direct consequence of the existence of three physical
degrees of freedom in generic HCG. For a derivation of (3.104) via a different route,
see [CS01].

While we assumed finiteness of the graviton masses m2
s’s in the derivation of the

full equation (3.104), one would expect it contains various limiting cases corresponding
to subclasses of HCG: when either of the mass parameters µ2

2 or µ
2
0 is taken to infinity,

i.e., either of α or β appearing in the HCG action (1.9) vanishes, the gravity theory
should reduce to “R+R2” (µ2

2 → ∞) or “R+C2” (µ2
0 → ∞), and when both of µ2

s blow
up, i.e., both of α and β go to zero, the theory should recover GR. In particular, in the
last case, the standard LE equation (see below) should be reproduced somehow. As we
confirm shortly, this is indeed the case: taking either or both of µ2

s’s to infinity leads
to correct variants of the LE equation in the corresponding subclasses of gravitational
theories, although one should be fairly cautious when taking such limits since they
lead to changes in the order of differentiation, reflecting the changes in the number of
dynamical DOFs.

As announced, when µ2
0 → ∞ and µ2

2 → ∞, the theory reduces to GR. In this limit,
only terms in proportion to the product µ2

0 µ
2
2 in (3.104) should remain, reducing it to

a second-order differential equation

△ξθ + θn = 0 . (3.105)

This is nothing but the standard LE equation in the Newtonian limit of GR.
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Next, when only µ2
2 → ∞, the theory reduces to “R+R2” gravity. Then, retaining

the terms in proportion to µ2
2 in (3.104) leads to a fourth-order equation

(△ξ − µ2
0)△ξθ − (α2 △ξ + µ2

0) θ
n = 0 . (3.106)

By recalling α2 = −4/3, one can straightforwardly show that the same equation derives
by starting from the “R + R2” action, i.e., (1.9) with α = 0. This equation was first
derived by Chen et al. [CSC01] in 2001, but their paper seems to have drawn little
attention for long. For example, the authors of Ref. [CDLOS11, FDLCO14] have
made attempts to solve an equivalent but relatively more intricate integro-differential
equation.

The other limit µ2
0 → ∞ corresponding to the “R+C2” gravity reduces (3.104) to

a similar fourth-order equation

(△ξ − µ2
2)△ξθ − (α0 △ξ + µ2

2) θ
n = 0 . (3.107)

To our best knowledge, this equation has not been obtained in the literature. A crucial
qualitative difference from (3.106) is the positive sign of the coefficient α0 = 1/3, which,
as remarked before, determines whether the extra gravitational force is attractive or
repulsive.

For later convenience, we shall write the above fourth-order equations in the com-
mon form

(△ξ − µ2
s)△ξθ + ((1 + αs)△ξ − µ2

s) θ
n = 0 , (3.108)

where we have used α2 + α0 = −1.
It might be useful to give a formula for the total stellar mass M in terms of deriva-

tives of the profile function θ evaluated at the stellar surface. By virtue of (3.104), M
can be written as

M = 4π ℓ3 ρc

∫ ξR

0

dξ ξ2 θ(ξ)n

= −4π ℓ3 ρc
µ2
2 µ

2
0

ξ2R
d

dξ

[
(α2 µ

2
2 + α0 µ

2
0) θ

n + (△ξ − µ2
2) (△ξ − µ2

0) θ
]
ξR
.

(3.109)

In the fourth order limit, i.e., either µ0 or µ2 goes to ∞ , the expression reduces to

M =
4π ℓ3 ρc
µ2
s

ξ2R
d

dξ

[
(△ξ − µ2

s) θ + (1 + αs)θ
n
]
ξR
. (3.110)

In the GR limit, it recovers the standard formula

M = −4π ℓ3 ρc ξ
2
R

dθ

dξ

∣∣∣∣
ξR

. (3.111)

Now, we move on to discuss boundary conditions for the profile function θ. Since
the master equation (3.104) is sixth order in differentiation, there is a need for six
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independent conditions, a priori. Here, we take the same strategy as in MG in the
sense that we aim to impose all the conditions on the values of θ and its derivatives at
the stellar center.

Let us express the equilibrium condition (3.27) in terms of θ as

θ′ = − ℓ−1

4π Gρc

dΨ

dr
, (3.112)

where and hereafter, the prime denotes differentiation with respect to ξ. In order for
this condition to hold at a given point, one has to ensure all the derivatives of both
sides match at that position. Therefore, apart from the normalization θc = θ(0) = 1,

the derivatives at the stellar center θ
(n)
c ≡ dnθ

dξn
(0) are restricted to be consistent with

the behaviour of the potential Ψ = ψ + α2 ψ̃2 + α0 ψ̃0 there. Indeed, one finds the
expansion of the potentials to a sufficient order as

G−1 ψ = G−1 ϕ(0) +
2π

3
ρ(0) r2 +

π

3

dρ

dr
(0) r3 +

π

10

d2ρ

dr2
(0) r4 +O(r5) ,

G−1 ψ̃s = −ms Is +

(
2π

3
ρ(0)− m3

s Is
6

)
r2 +

π

3

dρ

dr
(0) r3

+

(
π

10

d2ρ

dr2
(0) +

πm2
s ρ(0)

30
− m5

s Is
120

)
r4 +O(r5) .

(3.113)

From above, it is immediately seen that the radial acceleration at the stellar center
vanishes, limr→0 −dΨ

dr
= 0, which implies θ′c = 0 via (3.36). Hence, the following two

boundary conditions have so far been obtained:

θc = 1 , θ′c = 0 . (3.114)

These two conditions just suffice in the case of the second-order LE equation (3.47).
In this case, all the higher derivatives at the stellar center are readily read off as

θ′′c = −1

3
, θ′′′c = 0 , θ(4)c =

n

5
, θ(5)c = 0 , · · · . (3.115)

By contrast, four more boundary conditions than (3.38) are required in order to solve
the full sixth-order differential equation (3.104). They are found from derivatives of
(3.36) as

θ′′c = − 1

4π Gρc
lim
r→0

d2Ψ

dr2
=

1

3

∑
s=0,2

αs µ
2
s ιs ,

θ′′′c = − ℓ

4π Gρc
lim
r→0

d3Ψ

dr3
= 0 ,

θ(4)c = − ℓ2

4π Gρc
lim
r→0

d4Ψ

dr4
= −1

5

∑
s=0,2

αs µ
2
s +

1

5

∑
s=0,2

αs µ
4
s ιs ,

θ(5)c = − ℓ3

4π Gρc
lim
r→0

d5Ψ

dr5
= 0 ,

(3.116)
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where we have normalized the constant Is appearing in the massive potential ψs to

ιs ≡
µs Is

4π ℓ3 ρc
=

∫ ξR

0

dξ ξ θ(ξ)n e−µsξ (3.117)

and iteratively applied the conditions arising from lower derivatives to the higher ones.
It is observed that some quantities at the stellar centre, θ′′c and θ

(4)
c , are now related

to the stellar global quantity Is , which was moreover introduced to guarantee flatness
at spatial infinity. Of course, the values of Is are as yet undetermined since the pro-
file function θ has not been solved at this stage. Therefore, these expressions of the
boundary values should be considered merely formal; The problem is not formulated
as a simple initial value problem as in GR, but we will have to perform some match-
ing procedures between the boundary values at the stellar center and the integrals of
the solution over the whole domain. Note that the stellar radius ξR is simultaneously
determined by this procedure.

We also derive the boundary conditions for the fourth-order case (3.108), where
four boundary conditions are required in total, two of which are (3.38). The remaining
two are

θ′′c = − 1

4π Gρc
lim
r→0

d2Ψ

dr2
= −1

3
− αs

3
(1− µ2

s ιs) ,

θ′′′c = − ℓ

4π Gρc
lim
r→0

d3Ψ

dr3
= 0 .

(3.118)

Note that θ′′c differs from that for the sixth-order equation.
For comparison, we would like to clarify the differences between past studies and

ours with respect to the boundary conditions. In the full sixth-order case, Chen and
Shao [CS01] state that they imposed continuity of (an analogue of) the gravitational
potential and its derivatives at the stellar surface r = R. In our construction, on the
contrary, their (dis)continuity is already inherent in Eqs. (3.89) and (3.92) as remarked
at the end of the section. So, we have failed to find a direct analogue of our Eq. (3.116)
in their paper. In the reduced fourth-order case, Chen et al. [CSC01] again mention
continuity at the stellar surface, and we faced the same difficulty. Capozziello et al.
[CDLOS11] (and Farinelli et al. [FDLCO14]) are less talkative about the boundary
conditions except for (3.38).

3.2.3 Case I: Fourth-order limits for “R + R2” or “R + C2”
theories

Next, we discuss the cases where either α or β is zero, for which the gravitational
theory reduces to “R + R2” (α = 0) or “R + C2” (β = 0), respectively. Then, the
sixth-order master equation (3.104) reduces to the fourth-order equation (3.108).

For n = 0, Eq. (3.108) reduces to an inhomogeneous linear equation

(△ξ − µ2
s)△ξθ − µ2

s = 0, (3.119)
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which depends on the mass parameter µs but not on the coefficient αs . The solution,
however, depends on the spin of the massive graviton, i.e., gravitational theory, as αs
appears in the boundary conditions (3.118). A procedure to find a general solution to
equations of the type of (3.119) is summarized in Appendix F. Following it, we find
the general solution

θ = 1− ξ2

6
+ A

sinhµsξ

ξ
+B

coshµsξ

ξ
+ C +

D

ξ
, (3.120)

where A,B,C,D are arbitrary constants of integration. It may be interesting to note
that Eq. (3.119) admits the LE solution in GR as a particular solution, but, as we will
see shortly, it cannot satisfy the boundary conditions at the stellar center.

The “LE” boundary conditions (3.38), θc = 1 and θ′c = 0, are so restrictive than
they appear that three constants can be determined as B = D = 0 and C = −µsA ,
and we are left with the form with only one constant:

θ = 1− ξ2

6
+ A

sinhµsξ − µs ξ

ξ
. (3.121)

One of the two extra conditions (3.118), θ′′′c = 0, has been already satisfied at this stage,
and the last condition on θ′′c plays the role in fixing A . Indeed, the second derivative
evaluated at the centre ξ = 0 is

θ′′c = −1

3
+
Aµ3

s

3
. (3.122)

Comparing this with (3.118), we find the relation between A and ιs as

A = −αs (µ−3
s − µ−1

s ιs) . (3.123)

As already discussed, the value of ιs (3.117) in general involves an integral of the profile
function over the stellar radius, which can never be determined before the solution is
known. In this sense, the determination of A is subject to an appropriate matching
procedure for the overall consistency. In the case of the polytropic index n = 0,
however, constancy of the stellar density, ρ = ρc , makes the matching procedure
considerably simpler, as the integral ιs does not explicitly depend on θ. Nonetheless,
even in this case, evaluation of ιs is not trivial since the undetermined stellar radius
ξR appears in its expression as

ιs =
1− (µsξR + 1) e−µsξR

µ2
s

. (3.124)

At any rate, after eliminating A , the solution satisfying all the boundary conditions is
obtained as

θ = 1− ξ2

6
− αs

(µs ξR + 1) e−µsξR

µ2
s

sinhµsξ − µs ξ

µs ξ
. (3.125)
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This expression indicates there is always non-zero deviation from the n = 0 LE solution.
The above solution is still considered “formal” since the stellar radius ξR must be

fixed by solving the consistency condition θ(ξR) = 0, which cannot be done analytically
even in this simplest case. In each case of the limiting theories, “R+C2” or “R+R2”,
given the corresponding value of αs , the radius ξR becomes a function of the mass
parameter µs . The solution in “R+R2” gravity, with s = 0 and α0 = 1/3, is identical
with Eq. (30) of Ref. [CDLOS11], while the solution in “R+C2” gravity, with s = 2 and
α2 = −4/3, seems to have been undiscovered in the literature. Once ξR is determined,
the stellar mass M and charge Σs can be evaluated via their expressions for n = 0:

M =
4π ℓ3 ρc ξ

3
R

3
, Σs = 4π ℓ3 ρc

µs ξR coshµsξR − sinhµsξR
µ3
s

. (3.126)

For the sake of completeness, we also present the gravitational potential inside the star

Ψ(r ≤ R) = −GM (3R2 − r2)

2R3
− αs

GΣs

r

ms r − (1 +msR) e
−msR sinhmsr

msR coshmsR− sinhmsR
. (3.127)

Before showing numerical results, let us overview some analytical properties of the
solution (3.125). Considering ξ < ξR , it reduces as θ → θLE0 = 1− ξ2/6 when the GR
limit µ2

s → ∞ is taken. When the massless limit µ2
s → 0, at the opposite extreme, is

taken, the profile function reduces as θ → 1 − (1 + αs) ξ
2/6, where the coefficient αs

plays a crucial role. In “R + R2” gravity, α0 = 1/3, the modification to the profile
merely amounts to a moderate shrinkage of the stellar radius ξR from the Lane–Emden
value of

√
6 to 3/

√
2, a decrease by a factor of 1/

√
1 + α0 =

√
3/2. This reflects the

attractive nature of the spin-0 graviton in HCG. On the other hand, in “R + C2”
gravity, α2 = −4/3, the profile function no longer acquires a positive zero, failing to
express a star with a finite radius. This is explained by the repulsive nature of the
spin-2 graviton, whose strength exceeds that of the attractive force mediated by the
ordinary massless graviton. In reality, however, as long as these gravitons have a finite
mass, their effects are restricted within a finite range r ≲ m−1

s , and the stellar radius
remains finite in any case.

Figure 3.10 shows typical examples of the solution (3.125) in each gravity theory
with different mass parameters µ2

s . We see that the stellar radius in “R+R2” gravity is
smaller than the value in GR, whereas larger in “R+C2” gravity. This reveals that, as
anticipated, the massive spin-0 graviton arising from the addition of R2 term provides
an attractive force, and the massive spin-2 from the C2 term provides a repulsive force.

The modifications in the stellar global quantities, i.e., radius, mass, and charge, are
depicted in Fig. 3.11. The top panel shows the normalized stellar radius ξR = R/ℓ
against the mass parameter µ2

s . When µ2
s is increased, R/ℓ quickly converges to the

GR value R/ℓ =
√
6 in both gravity cases, as expected. On the other hand, when

µ2
s is decreased, the difference between the natures of the two theories signifies: in

the massless limit of “R + R2” gravity (red), the limiting value of the radius is finite,
R/ℓ → 3/

√
2, while in the same limit of “R + C2” gravity (blue), in contrast, it

67



0.5 1.0 1.5 2.0 2.5 3.0 3.5
ξ

-0.2

0.2

0.4

0.6

0.8

1.0

θ

R+C2 (s  2, μ2
2  1)

R+C2 (s  2, μ2
2  10)

R+R2 (s  0, μ0
2  1)

R+R2 (s  0, μ0
2  10)

GR

Figure 3.10: The profile function θ in “R+C2” gravity (blue) and “R+
R2” gravity (red) for the polytropic index n = 0. The massive spin-2
(spin-0) graviton provides a repulsive (attractive) force. As the graviton
mass µ2s increases, the profile converges to the n = 0 LE solution in GR,
θLE0 = 1− ξ2/6 (grey).

blows up. The bottom panel shows the dependences of the total mass M and the
total charge Σs, both appropriately normalised, on the graviton mass µ2

s . When µ2
s

goes to infinity, M quickly converges to the values of GR, M/(4π ℓ3 ρc) = (R/ℓ)3/3 =
2
√
6 as expected, whereas Σs increases unboundedly. This is phenomenologically not

problematic because the observable gravitational potential ψs securely converges to 0
in this limit. A similar behavior of the charge is observed in the study of neutron
stars in [BS21]. In the massless limit of “R + R2” gravity (red), the limiting values
of the stellar mass and charge are M ≃ Σs → (

√
3/2)3MLE

0 , while they both grow
unboundedly in “R+C2” gravity (blue) in accordance with the increase in the radius.

Finally, Fig. 3.12 shows the relations between M and R (solid) and Σs and R
(dashed), where the variables are appropriately normalized. The M–R curve repro-
duces the trivial relation for n = 0: M = 4π

3
R3 ρc . Σs diverges when the radius

approaches to the GR value R/ℓ =
√
6 as expected from the bottom panel of Fig. 3.11.

The fact that the value of Σs is comparable to M as long as µ2
s ≲ O(1) implies that

there is a significant modification to the Newton law within distances shorter than m−1
s

from the stellar surface.
The radius R of a polytrope star is in proportion to the length scale ℓ related to the

physical conditions at the stellar centre, such as the central density ρc and pressure Pc ,
see (3.31). In this sense, there is a degeneracy between these physical conditions and
gravity, including any possible modifications to GR, in measurements of stellar radius,
for which it is incapable of quantifying the effects of the massive gravitons indepen-
dently of the properties and individual conditions of stellar matter. Nevertheless, we
here argue that, without going into direct comparisons with observational data, huge
deviations in radius from the GR value with the same physical condition, as represented
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Figure 3.11: The dependences of the stellar radius R (top), mass M
(bottom, solid), and charge Σs (bottom, dashed), each appropriately nor-
malized, on the graviton mass µ2s for the polytropic index n = 0. The
stellar radius and mass are larger in “R + C2” gravity (blue) and smaller
in “R + R2” gravity (red), but they both approach the GR values of

√
6

and 2
√
6, respectively, as the graviton mass µ2s increases. The charge Σs

blows up in the GR limit, but the potential ψs then tends to 0. In the
massless limit of “R + R2” gravity, the limiting values are: R/ℓ → 3/

√
2

and M ≃ Σs → (
√
3/2)3MLE

0 . In “R + C2” gravity, these quantities grow
unboundedly as the spin-2 graviton mass µ22 approaches to 0.
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Figure 3.12: The normalized mass M/(4π ℓ3 ρc) (solid) and the normal-
ized charge Σs/(4π ℓ

3 ρc) (dashed) versus the normalized radius R/ℓ for the
polytropic index n = 0. The mass M and radius R in both gravity cases
approach the values in GR (black star) as the graviton mass µ2s increases.

by ℓ, should be disfavored. For instance, in “R+C2” gravity, we may consider a radius
R which is twice as large as the GR value, RLE =

√
6 ℓ, to be unlikely enough. In order

to have the ratio R/RLE ≤ 2, the spin-2 graviton mass must exceed 0.12, which can be
interpreted as an upper bound on the parameter

√
α/ℓ = 1/

√
2µ2

2 < 2.0.
For the polytropic index n = 1, the fourth-order equation (3.108) reduces to a linear

homogeneous equation

△2
ξθ + (1 + αs − µ2

s)△ξθ − µ2
s θ = 0 . (3.128)

In order to find the solution, we “factorise” the differential operator to rewrite the
above equation as

(△ξ + λ2+) (△ξ − λ2−) θ = 0 (3.129)

with the “roots”

λ± =

√√
(1 + αs − µ2

s)
2 + 4µ2

s ± (1 + αs − µ2
s)

2
. (3.130)

It is obvious from the expression that λ± are positive real irrespective of αs and µ
2
s (as

long as µ2
s > 0). The general solution is a superposition of the fundamental solutions

for the (homogeneous) Helmholtz equations with eigenvalues −λ2+ and λ2−, hence

θ = A+
sinλ+ ξ

ξ
+B+

cosλ+ ξ

ξ
+ A−

sinhλ− ξ

ξ
+B−

coshλ− ξ

ξ
. (3.131)

Let us determine the integration constants one by one. By imposing the LE bound-
ary conditions (3.38), θc = 1 and θ′c = 0, three constants are fixed as B+ = B− = 0

70



and A− = (1− A+λ+)/λ− . Thus we find

θ =
sinhλ− ξ + A+ (λ− sinλ+ ξ − λ+ sinhλ− ξ)

λ− ξ
. (3.132)

As in the case of n = 0, one more boundary condition θ′′′c = 0, being one of the
remaining two in Eq. (3.118), is already satisfied at this stage. On the other hand, the
yet unused second derivative θ′′c is given in terms of the constant A+ as

θ′′c =
λ2− − A+ λ+ (λ2+ + λ2−)

3
. (3.133)

From (3.118), we find the relation between A+ and the stellar global quantity ιs as

A+ =
λ2− + 1 + αs (1− µ2

s ιs)

λ+ (λ2+ + λ2−)
. (3.134)

Here, unlike the n = 0 case, ιs involves integration of θ, Eq. (3.132), so it necessarily
contains the undetermined integration constant A+ . Such an intermediate expression
for ιs looks somewhat tedious, but has a simple linear (since n = 1) dependence on
A+ :

ιs =
λ− − e−µξR (λ− coshλ−ξR + µ sinhλ−ξR)

λ− (µ2
s − λ2−)

+
A+

λ− (µ2
s − λ2−) (µ

2
s + λ2+)

{
−λ+ λ− (λ2+ + λ2−)

+ e−µξR [λ+ (µ2
s + λ2+) (λ− coshλ−ξR + µs sinhλ−ξR)

+ λ− (λ2− − µ2
s) (λ+ cosλ+ξR + µs sinλ+ξR)]

}
.

(3.135)

Substituting this into (3.134) gives back a linear equation for A+ , which can be ex-
plicitly solved as

A+ =

[
λ+ +

λ− (λ2− − µ2
s) (λ+ cosλ+ξR + µs sinλ+ξR)

(µ2
s + λ2+) (λ− coshλ−ξR + µs sinhλ−ξR)

]−1

, (3.136)

where we have used the characteristic equations for λ± to reduce the expression. In
this way, we have found the profile function θ for n = 1 satisfying all the boundary
conditions. One should recall here that this expression is “formal” because it involves
the stellar radius ξR , which can only be found numerically by solving the consistency
condition θ(ξR) = 0. Nonetheless, the expression ceases to contain ξR in the massive
and massless limits. In both gravity theories, the massive limit, µ2

s → ∞, is the n = 1
LE solution in GR, θ → θLE1 = ξ−1 sin ξ. On the other hand, in the massless limit, it
reduces as θ → sin(

√
1 + αs ξ)/(

√
1 + αs ξ). This represents a rescaled LE solution for

“R+R2” gravity with α0 = 1/3, whereas it no longer has a finite radius for “R+C2”
gravity with α2 = −4/3.
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Figure 3.13 compares the n = 1 solutions for “R + C2” (blue) and “R + R2” (red)
theories with different values of µ2

s with the n = 1 LE solution (grey). As in the n = 0
case, in “R+R2” (“R+C2”) gravity, the radius becomes smaller (larger) than GR. In
the GR limit, µ2

s → ∞, they all reduce to the LE solution.
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Figure 3.13: The solutions in “R + C2” gravity (blue) and “R + R2”
gravity (red) together with the LE solution in GR (grey) for the polytropic
index n = 1.

The modification to the stellar radius, mass, and charge is shown in Fig. 3.14, where
we plot the values of the normalized radius ξR = R/ℓ , the normalized massM/(4π ℓ3 ρc)
(solid), and the normalized charge Σs/(4π ℓ

3 ρc) (dashed) against the normalized mass
parameter µs for “R+C2” (blue) and “R+R2” (red). Both curves converge to the GR
value of π as µ2

s blows up. The massless limit for “R + R2” gravity is R/ℓ →
√
3 π/2,

whereas R/ℓ increases unboundedly in “R + C2” gravity as µ2
2 approaches to 0. The

asymptotic value of M in the massive limit, µ2
s → ∞, is the GR value of π. In the

massless limit for “R + R2” gravity (red), M and Σ0 converge to the rescaled LE
mass M ≃ Σ0 → (

√
3/2)3MLE

1 . In contrast, both M and Σ2 grow unboundedly for
“R + C2” gravity (blue) as µ2

2 → 0. These behaviours can be understood in a much
similar fashion to the n = 0 case.

Unlike the n = 0 case, here again, the stellar mass M and charge Σs explicitly
depend on θ, and hence one has to express them by substituting (3.132) together with
(3.136) into (3.90) and (3.19), respectively, and evaluating them at the surface r = R
using the numerical value of ξR for each choice of the mass parameter µ2

s . Fortunately,
in the current case, the integrations can be carried out analytically, giving explicit
expressions for the mass and charge:

M =
4π ℓ3 ρc
λ2+λ

3
−

[
−A+λ

3
−(λ+ξR cosλ+ξR − sinλ+ξR)− λ2+(A+λ+ − 1)(λ−ξR coshλ−ξR − sinhλ−ξR)

]
,

Σs =
4π ℓ3 ρc e

µsξR (λ− coshλ−ξR sinλ+ξR − λ+ sinhλ−ξR cosλ+ξR)

λ+ (λ2+ + µ2s) (λ− coshλ−ξR + µs sinhλ−ξR) + λ− (λ2− − µ2s) (λ+ cosλ+ξR + µs sinλ+ξR)
,

(3.137)
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Figure 3.14: The µs dependences of the stellar radius R/ℓ, the stellar
mass M (solid) and charge Σs (dashed) for the polytropic index n = 1.
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where we have taken advantage of maintaining A+ in the expression of M . Simi-
larly, one can also evaluate the gravitational potential Ψ = ϕ + αs ψs inside a star by
manipulating (3.89) and (3.92), which also have analytical expressions in this case:

ψ(r ≤ R)

= −GM
R

[
1 +

R− r

r

(A+ λ+ − 1)λ2+ (λ− ξ coshλ−ξ − sinhλ−ξ) +A+ λ
3
− (λ+ ξ cosλ+ξ − sinλ+ξ)

(A+ λ+ − 1)λ2+ (λ− ξR coshλ−ξR − sinhλ−ξR) +A+ λ3− (λ+ ξ cosλ+ξR − sinλ+ξR)

]
,

ψ̃s(r ≤ R)

= −Σs e
−msR

r

(λ+ cosλ+ξR + µs sinλ+ξR) sinhλ−ξ − (λ− coshλ−ξR + µs sinhλ−ξR) sinλ+ξ

λ+ cosλ+ξR sinhλ−ξR − λ− sinλ+ξR coshλ−ξR
.

(3.138)

Finally, Fig. 3.15 shows the M–R (solid) and Σs–R (dashed) relations, where the
quantities are appropriately normalized. Similar trends to the n = 0 case show up in
each diagram.
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Figure 3.15: The M–R (solid) and Σs–R (dashed) relations for the poly-
tropic index n = 1.

In the case of “R + C2” gravity, from an argument that n = 1 polytrope stars
should not acquire a radius and mass much larger than those in GR, we can place a
reasonable lower bound on the spin-2 graviton mass. For instance, in order to have
R/RLE < 2, we obtain µ2

2 > 0.12. This can be converted into an upper bound on the
theory parameter α in the “R + C2” action:

√
α < 2.0 ℓ.

3.2.4 Case II: Generic higher-curvature theories

Now, we would like to tackle the full master equation (3.104) in generic HCG. The
co-existence of the two extra DOFs of spin-2 and -0 renders the analysis considerably
messy, but most features of the solutions will be reasonably understood as collective
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contributions from the spin-2 and -0 DOFs. Indeed, in most occasions treated in this
paper, either of the DOFs dominates, and the obtained solution, therefore, mimics
some of those that appeared in the previous fourth-order cases.

In the case of n = 0, the master equation (3.104) reduces to an inhomogeneous
linear equation

(△ξ − µ2
0) (△ξ − µ2

2)△ξθ + µ2
0 µ

2
2 = 0 . (3.139)

The general solutions with six arbitrary constants are found following the procedure
in Appendix F. For non-degenerate eigenvalues µ0 ̸= µ2 , it is

θ = 1− ξ2

6
+A0

sinhµ0 ξ

ξ
+B0

coshµ0 ξ

ξ
+A2

sinhµ2 ξ

ξ
+B2

coshµ2 ξ

ξ
+C+

D

ξ
. (3.140)

Although we are not so much concerned with the degenerate case µ0 = µ2 ≡ µ , the
general solution in such a special case is

θ = 1− ξ2

6
+ A

sinhµ ξ

ξ
+B

coshµ ξ

ξ
+ Ã sinhµ ξ + B̃ coshµ ξ + C +

D

ξ
. (3.141)

As in the fourth-order case, the n = 0 LE solution is again a particular solution but it
will turn out not to satisfy the boundary conditions.

We shall concentrate on the non-degenerate case (3.140). This time we are to impose
six boundary conditions in total as given by (3.38) and (3.116) By imposing first the
LE boundary condition (3.38), we can fix three constants as C = −µ0A0 − µ2A2 and
D = B0 = B2 = 0 , and get a reduced form of the solution

θ = 1− ξ2

6
+ A0

sinhµ0 ξ − µ0 ξ

ξ
+ A2

sinhµ2 ξ − µ2 ξ

ξ
. (3.142)

At this point, the above solution already satisfies two of the four extra conditions in
(3.116), θ′′′c = θ

(5)
c = 0, and we are left with the requirements for θ′′c and θ

(4)
c . These

derivatives are written in terms of the remaining constants A0 and A2 as

θ′′c = −1− A0 µ
3
0 − A2 µ

3
2

3
, θ(4)c =

A0 µ
5
0 + A2 µ

5
2

5
. (3.143)

Then from (3.116), A0 and A2 are related to the stellar integrals ι0 and ι2 as

A0 = −α0 (µ
−3
0 − µ−1

0 ι0) , A2 = −α2 (µ
−3
2 − µ−1

2 ι2) , (3.144)

respectively. Thanks to the constancy of ρ for the polytropic index n = 0, ιs are found
the same, being independent of A0 or A2 , as in the fourth-order case,

ιs =
1− (µs ξR + 1) e−µsξR

µ2
s

, (3.145)

thereby fixing the remaining constants as

A0 = −α0
(µ0 ξR + 1) e−µ0ξR

µ3
0

, A2 = −α2
(µ2 ξR + 1) e−µ2ξR

µ3
2

. (3.146)
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Therefore, we get the solution satisfying all the boundary conditions:

θ = 1−ξ
2

6
+α0

(µ0 ξR + 1) e−µ0ξR

µ3
0

sinhµ0 ξ − µ0 ξ

ξ
+α2

(µ2 ξR + 1) e−µ2ξR

µ3
2

sinhµ2 ξ − µ2 ξ

ξ
.

(3.147)
The remaining parameter ξR is numerically determined by solving the consistency
condition θ(ξR) = 0 for given mass parameters µ2 and µ0 . After all, it is clear from the
above expression that the gravitational effects from individual DOFs are separated and
purely additive in this case. Moreover, due to the specialness of the n = 0 EOS, where
the mass density ρ is constant, the analytical expressions of the total stellar mass M
and two charges Σ2 and Σ0 are identical with the ones in the fourth-order case:

M =
4π ℓ3 ρc ξ

3
R

3
, Σs = 4π ℓ3 ρc

µs ξR coshµsξR − sinhµsξR
µ3
s

. (3.148)

The gravitational potential inside a star is then found as

Ψ(r ≤ R) = −GM (3R2 − r2)

2R3
−
∑
s=0,2

αs
GΣs

r

ms r − (1 +msR) e
−msR sinhmsr

msR coshmsR− sinhmsR
.

(3.149)
Various massive and massless limits of the solution (3.147) can be understood from
the properties of the fourth-order n = 0 solutions. Among others, the spurious double
massless limit θ → 1 seems to reflect some profound aspect of the full purely quadratic
gravity.

Some examples of the solution are shown in Fig. 3.16 together with the n = 0 LE
solution θLE0 = 1 − ξ2/6 (grey). The general tendency is that the lower the spin-2
(spin-0) graviton mass is, the more effectively the repulsive (attractive) force works.
Quantitatively, though, there is a significant difference between these two graviton
effects, which shows up representatively in the case of µ2

2 = µ2
0 = 1 (green): repulsion by

spin-2 graviton is much more noticeable than attraction by spin-0, which was observed
as well in the study of neutron stars [BS21]. This could be understood as a direct
consequence of the ratio of the coefficients being α2/α0 = −4: in the case of comparable
graviton masses, µ2

2 ≈ µ2
0 , the influence coming from the massive spin-2 graviton is

four-fold stronger in magnitude compared to spin-0. Moreover, as the spin-2 mass µ2
2

decreases below O(1), the repulsive force can even overcome the attractive force of the
massless graviton so that a star can puff up unboundedly, whereas the spin-0 attractive
force can merely strengthen gravity by at most a factor of a few, resulting in a bounded
shrinkage of a star.

By solving the consistency condition θ(ξR) = 0 numerically, we have the dependence
of the normalised radius R/ℓ on the mass parameters, some examples being plotted in
Fig. 3.17. In the figure, either of the two masses are varied while the rest is fixed. The
massive limit in this case corresponds to either of the reduced theories, “R + R2” or
“R+C2”, so the radius does not converge to the GR value of

√
6; It is only realised when

the both masses are taken to infinity. The radius remains finite in the massless limit
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Figure 3.16: Examples of the profile functions for the polytropic index
n = 0 compared with the LE solution (grey).

of spin-0 (red and yellow), whereas it blows up as the spin-2 graviton mass approaches
to 0 (blue and green).
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Figure 3.17: The µ2s dependences of the normalized radius R/ℓ for the
polytropic index n = 0.

Figure 3.18 shows typical dependences on the graviton mass µs of the stellar massM
and charges Σs , where they are appropriately normalized. In the top (bottom) panel,
µ2
2 (µ2

0) is varied while µ2
0 (µ2

2) is fixed to 1. The behavior of M can be understood
in a similar way to the radius. As for the charges, when the spin-s graviton mass µ2

s

goes to infinity, the corresponding spin-s charge Σs diverges, while the other charge
Σs′ (s

′ ̸= s) remains finite. These divergences do not matter because the potential ψs
vanishes in the massive limits. On the other hand, in the massless limit of the spin-s
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graviton, the spin-s charge Σs tends to the mass M . The other charge Σs′ has similar
tendency as it is correlated with the stellar mass M .
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Figure 3.18: Typical µs dependences ofM (solid black), Σ2 (dashed blue),
and Σ0 (dotted red) for n = 0. In the top (bottom) panel, µ2 (µ0) is varied
while the other is fixed.

After all, each panel in Fig. 3.19 shows typical relations between M and R (solid
black) and Σs and R (dashed blue and dotted red), where the values are appropriately
normalized. In the top (bottom) panel, µ2

2 (µ2
0) is varied while µ2

0 (µ2
2) is fixed. One

can confirm from the top panel that the possible ranges of the stellar radius R and
mass M for varying µ2

2 are enormously large. On the other hand, for a given value of
µ2
2, the stellar radius and mass can only vary within a rather tiny range as seen in the

bottom panel.
Figure 3.20 shows contours of the stellar radius R in the parameter plane (µ2

0, µ
2
2),

where on each contour, R has a multiple of the GR value RLE =
√
6 ℓ. By demanding

any n = 0 polytrope stars in the universe to have a radius no larger than some multiple,
say 2, of the GR value, one finds a constraint on the combination of the theory param-
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Figure 3.19: Typical relations between M and R (solid black) and Σs
and R (dashed blue for Σ2 and dotted red for Σ0) for n = 0. In the top
panel, µ22 is varied while µ20 is fixed to 1. In the bottom panel, µ20 is varied
while µ22 is fixed to 10 (left) or 1 (right).
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eters (µ2
0, µ

2
2), or equivalently (α, β). Since the radius is sensitive to µ2

2 for R ≳ RLE ,√
α is generally constrained to below a few ℓ, whereas

√
β is virtually not restricted.
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Figure 3.20: Contours of the stellar radius R in the (µ20, µ
2
2) plane for the

polytropic index n = 0. On the contours from top to bottom, the ratio of
the calculated stellar radius to the GR value, R/RLE, is 1, 2, 3, 4.

In the case of n = 1, the master equation (3.104) becomes a linear homogeneous
equation, which reads

f(△ξ) θ = 0 (3.150)

with the characteristic polynomial f being

f(x) = x3 − (µ2
2 + µ2

0) x
2 + (µ2

2 µ
2
0 + α2 µ

2
2 + α0 µ

2
0) x+ µ2

2 µ
2
0 . (3.151)

This problem can be treated in parallel to the fourth-order cases, where we factorised
the differential operator into a product of two Helmholtz operators. Here, the sixth-
order differential operator f(△ξ) can be cast into a product of three Helmholtz opera-
tors with eigenvalues given by the three roots of the characteristic equation f(x) = 0,
and these roots characterise the solution of (3.150). Having that the inflection point
of f(x) lies at x = (µ2

2 + µ2
0)/3 > 0 and f(0) = µ2

2 µ
2
0 > 0, the cubic equation f(x) = 0

turns out to have one and only one negative real root, which we denote as x = −λ21
with λ1 being real. Whether the other two roots are positive real or complex depends
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on the sign of the discriminant

D ≡ (µ2
2 + µ2

0)
2 (µ2

2 µ
2
0 + α2 µ

2
2 + α0 µ

2
0)

2 − 4 (µ2
2 µ

2
0 + α2 µ

2
2 + α0 µ

2
0)

3 − 4 (µ2
2 + µ2

0)
3 µ2

2 µ
2
0

− 27µ4
2 µ

4
0 − 18 (µ2

2 + µ2
0) (µ

2
2 µ

2
0 + α2 µ

2
2 + α0 µ

2
0)µ

2
2 µ

2
0 .

(3.152)
The sign of D in the parameter plane is shown in Fig. 3.21. In terms of the area,
having D ≥ 0 (blue) is more likely as it generally realises in the presence of a large
hierarchy between the graviton masses, that is, when µ0 ≫ µ2 or µ0 ≪ µ2 . In this case,
less massive graviton is expected to dominate. The region of D < 0 (red) is only seen
around (to the slight right of) the equality line µ2

0 = µ2
2 , in which the massive gravitons

are expected to compete with each other. In either case, we denote the two remaining
roots as x = λ22 , λ

2
3 , which are positive real if D ≥ 0, or complex and conjugate of each

other if D < 0. Using Viète’s formula, we may write the roots as

−λ21 =
µ2
0 + µ2

2

3
+

2

3

√
P cos

[
1

3
cos−1

(
Q

2P
√
P

)
− 4π

3

]
,

λ22 =
µ2
0 + µ2

2

3
+

2

3

√
P cos

[
1

3
cos−1

(
Q

2P
√
P

)
− 2π

3

]
,

λ23 =
µ2
0 + µ2

2

3
+

2

3

√
P cos

[
1

3
cos−1

(
Q

2P
√
P

)] (3.153)

with
P ≡ µ4

0 + µ4
2 − µ2

0 µ
2
2 − 3

∑
s

αs µ
2
s ,

Q ≡ 2 (µ6
0 + µ6

2)− 3µ2
0 µ

2
2 (µ

2
0 + µ2

2)− 9
∑
s

αs µ
4
s − 18µ2

0 µ
2
2 .

(3.154)

With the use of these roots, the master equation settles down to the form

(△ξ + λ21) (△ξ − λ22) (△ξ − λ23) θ = 0 , (3.155)

which is ready to solve.
For D > 0, the general solution is written in terms of real-valued functions as

θ = A1
sinλ1 ξ

ξ
+B1

cosλ1 ξ

ξ
+A2

sinhλ2 ξ

ξ
+B2

coshλ2 ξ

ξ
+A3

sinhλ3 ξ

ξ
+B3

coshλ3 ξ

ξ
.

(3.156)
In the current case, unlike when n = 0, contributions from the two massive gravitons
do not simply separate, as the eigenvalues λi depend on both of µ0 and µ2 . By
imposing three boundary conditions θc = 1 , θ′c = θ′′′c = 0, we determine four constants
as B1 = B2 = B3 = 0 and A1 = (1 − A2 λ2 − A3 λ3)/λ1 , obtaining the reduced
expression

θ =
sinλ1 ξ + A2 (λ1 sinhλ2 ξ − λ2 sinλ1 ξ) + A3 (λ1 sinhλ3 ξ − λ3 sinλ1 ξ)

λ1 ξ
.

(3.157)
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Figure 3.21: The sign of the discriminant D (3.152).

To determine the remaining constants A2 and A3 , we follow the same scheme as we
employed in the n = 1 fourth-order case as follows. On the one hand, these constants
appear in the yet unused second and fourth derivatives as

θ′′c =
−λ21 + A2 λ2 (λ

2
1 + λ22) + A3 λ3 (λ

2
1 + λ23)

3
,

θ(4)c =
λ41 + A2 λ2 (λ

4
2 − λ41) + A3 λ3 (λ

4
3 − λ41)

5
.

(3.158)

Then the boundary conditions on these derivatives in (3.116) provide us with the linear
relations between the constants and the stellar integrals ιs :

A2 =
λ21 λ

2
3 +

∑
s=0,2 αs µ

2
s [1 + (λ23 − λ21 − µ2

s) ιs]

λ2 (λ21 + λ22) (λ
2
3 − λ22)

,

A3 =
λ21 λ

2
2 +

∑
s=0,2 αs µ

2
s [1 + (λ22 − λ21 − µ2

s) ιs]

λ3 (λ21 + λ23) (λ
2
2 − λ23)

.

(3.159)

On the other hand, ιs may be calculated by substituting the profile function (3.157)
into Eq. (3.40). Thanks to the simpleness of n = 1 polytrope, these integrations can
be analytically done, and we are allowed to express ιs analytically in a form linear in
A2 and A3 , which however, we do not present here as their expressions are too messy
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and not illuminating. Then, substituting them into ιs’s in (3.159) and solving for the
integration constants A2 and A3 just algebraically, we obtain their expressions that
include µs and ξR only. As a result, we arrive at the final analytical expression of the
profile function θ parametrically depending on µs and ξR .

The case with D < 0 can be analysed in parallel, or by means of analytical contin-
uation, so we do not redo the procedure here but only show the general solution. In
this case, denoting the two complex conjugate roots as x = (p + q i)2 , (p − q i)2 , the
general solution in terms of real-valued functions is written down as

θ = A
sinλ1 ξ

ξ
+B

cosλ1 ξ

ξ
+ C1

sinh p ξ sin q ξ

ξ

+ C2
cosh p ξ sin q ξ

ξ
+ C3

sinh p ξ cos q ξ

ξ
+ C4

cosh p ξ cos q ξ

ξ
.

(3.160)

Lastly, in the special case with D = 0 , where the remaining roots degenerate, λ2 = λ3 ,
the general solution is

θ = A
sinλ1 ξ

ξ
+B

cosλ1 ξ

ξ
+ C

sinhλ2 ξ

ξ
+D

coshλ2 ξ

ξ
+ C̃ sinhλ2 ξ + D̃ coshλ2 ξ .

(3.161)
Figure 3.22 shows typical solutions for the polytropic index n = 1 together with

the LE solution in GR (grey). The tendencies can be well understood as consequences
of the competition between the two massive gravitons, viz., attraction by the spin-0
graviton dominates for µ0 ≪ µ2 (red) while repulsion by the spin-2 graviton dominates
for µ2 ≲ µ0 (rest).
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Figure 3.22: Typical solutions and the LE solution in GR (grey) for n = 1.

Shown in Fig. 3.23 are the µs dependences of R (top), M , and Σs (middle and
bottom). Figure 3.24 shows the relationships between M and R (solid black) and Σs

and R (dashed blue and dotted red). All these appearances can be well understood
analogously to the previous cases.
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Figure 3.23: Typical µs dependences of R (top), M , and Σs (middle and
bottom) for n = 1. We believe the appearance of a kink near µ22 = 0 on the
blue curve in the top panel is not physical but due to a lack of numerical
precision in our calculation.
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Two radius contours are plotted in Fig. 3.25, where on each curve the ratio R/RLE

is 1 (top) and 2 (bottom). From this diagram, one can conclude that the parameter√
α cannot exceed a few times ℓ if one requires n = 1 polytrope stars have radius no

larger than 2 or 3 times the GR value.
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Figure 3.25: Contours of the stellar radius R in the parameter plane for
n = 1, on which the ratio R/RLE takes 1 (top) or 2 (bottom). We believe
the appearance of a spot beneath the bottom contour is not physical but
due to a lack of numerical precision in our calculation.
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Chapter 4

Conclusion

In this thesis, we studied GW polarizations and non-relativistic stellar structure in
effective quantum gravity.

In Chapter 2, we studied gravitational-wave polarizations in generic linear MG
and generic HCG in the Minkowski background. We defined and analysed the GW
polarizations in terms of the components of the Riemann tensor governing the geodesic
deviation.

In Section 2.1, we formulated the polarizations in linear MG with generic, non-
Fierz–Pauli-type masses. We identified all the independent variables that obey Klein–
Gordon-type equations. The dynamical DOFs in the generic MG consist of spin-2 and
spin-0 modes; the former breaks down into two tensor (helicity-2), two vector (helicity-
1) and one scalar (helicity-0) polarizations, while the latter just corresponds to a scalar
polarization. We found convenient ways of decomposing the two scalar modes of each
spin into distinct linear combinations of the transverse and longitudinal polarizations
as in (2.18). This expression contains the graviton masses as the coefficients, so we
expect it will serve as a useful tool in measuring the masses of GWs.

In Section 2.2, we analysed the linear perturbations of generic HCG whose La-
grangian is an arbitrary polynomial of the Riemann tensor. When expanded around a
flat background, the linear dynamical DOFs in this theory were identified as massless
spin-2, massive spin-2 and massive spin-0 modes. The massive spin-2 arises from the
Weyl-squared term in the Lagrangian and the massive spin-0 from the Ricci scalar
squared. The massless spin-2 is characterised by the tensor-type (helicity-2) polariza-
tion modes. As its massive part encompasses the identical structure to the generic MG,
GWs in the generic HCG provide six massive polarizations on top of the ordinary two
massless modes. In parallel to MG, we found convenient representations for the scalar
polarizations directly connected to the coupling constants of HCG as in (2.26).

In the analysis of HCG, we used two methods and showed that the two results
agree. One took full advantage of the partial equivalence between the generic HCG
and MG at the linear level, whereas the other relied upon a gauge-invariant formalism
originally developed for cosmological perturbation theories. The present result about
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the scalar part can be compared with the case of inflationary cosmological perturbations
in Einstein–Weyl gravity studied in [DSSY11], where the conformal analogue of the
gauge-invariant variable W = Ψ− Φ becomes dynamical.

In Section 2.3, we gave a brief discussion about possible methods to determine the
theory parameters by means of GW-polarization measurements with emphasis on the
merit that they do not require measuring the propagation speeds, whether absolute or
relative to other signals, or the details of the waveforms of the GWs. In any case, the
full development in this direction is left to future work.

In Chapter 3, we studied the structure of static spherical stars made up of a non-
relativistic polytropic fluid in generic linear MG and generic HCG.

In Section 3.1, we studied the structure of non-relativistic polytropic stars in the
Fierz–Pauli (FP) theory and generic linear massive gravity (MG) theories. Our aim
was to study the effects of the graviton mass m and the “non-Fierz–Pauli” parameter
ϵ incorporated in the MG action (1.13) on the stellar structures. The spin-2 graviton
is the only content in the FP theory with ϵ = 0, while the spin-0 ghost graviton is also
included in generic non-FP MG with ϵ ̸= 0.

First, we formulated useful variables and their governing equations. The scalar-type
metric perturbations on a flat background could be neatly reorganised into the two
helicity variables ϕ2 and ϕ0 as defined in (3.8). These variables constitute the gauge-
invariant potential Ψ as in Eq. (3.15) while obeying the Helmholtz-type equations (3.14)
in static configurations. The negative coefficient in front of ϕ0 in (3.15) illuminates its
ghost nature. We pointed out the absence of the van Dam–Veltman–Zakharov (vDVZ)
discontinuity for the external gravitational potential in the limit of vanishing graviton
masses in non-FP MG.

Then, together with the polytropic EOS, the hydrostatic equilibrium condition
(3.27) leads to the modified Lane–Emden (LE) equation (3.34) and boundary condi-
tions (3.38)–(3.39). The reason for the master equation being a sixth-order differential
equation is the presence of the two extra gravitational DOFs. The boundary conditions
were given in terms of the derivatives at the stellar centre but involved integrals of the
profile function through ιs (3.40). The reduced set of equations for the case of the FP
theory (ϵ = 0) was derived as in Eqs. (3.42)–(3.43), where the master equation was
fourth order because the spin-0 potential ϕ0 had been turned off. As expected, the
massless limit of the master equation for the FP theory did not recover the original LE
equation in GR, signaling the emergence of discontinuity analogous to vDVZ. On the
other hand, as imagined, the doubly massless limit of the non-FP equation smoothly
connected to GR.

We found exact solutions to the modified LE equations (3.34) in the cases of the
polytropic indices n = 0 and 1. Typical solutions in the FP theory (ϵ = 0) were
depicted in Figs. 3.1 (n = 0) and 3.3 (n = 1). As these figures illustrated, the radius
of a star monotonically decreases with the decreasing spin-2 graviton mass µ2 , with
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the minimum value reached in the massless limit being
√
3/2 times the GR value.

Figure 3.2 showed the dependence of the stellar radius R/ℓ (blue), mass M/(4πℓ3ρc)
(red) and Yukawa charge Σ2/(4πℓ

3ρc) (yellow) on µ2 for n = 0. In the limit of vanishing
graviton mass, µ2 → 0, both R and M did not converge to the values of GR, proving
the presence of discontinuities analogous to vDVZ.

Typical solutions in non-FP theories (ϵ ̸= 0) were presented in Figs. 3.4 (n = 0)
and 3.7 (n = 1). Although the attractive spin-2 and repulsive spin-0 competed in these
cases, we could confirm that the solutions had a finite radius within an observationally
reasonable range of parameters. Figure 3.5 showed the dependence of the stellar radius
R/ℓ (blue) and the mass M/(4πℓ3ρc) (red) on the spin-2 graviton mass parameter µ2

2

for several values of ϵ. The convergence to the GR values for ϵ ̸= 0 was observed,
visualising the absence of the vDVZ-like discontinuity. The contour plot of the ratio
R/RLE in Fig. 3.6 told us that there were many possible combinations of the mass
parameters that had the same radius as GR. We argued that, if we demand that the
radius must not deviate significantly from GR, the masses should be constrained to fall
into a region around the R/RLE = 1 contour, say between 0.9 and 1.1. Considering
that the spin-2 mass must be tiny, µ2 ≪ 1, as implied by the GW experiments, the
spin-0 mass was constrained as µ0 ≲ O(1) as was read off from Figs. 3.6 and 3.8.

The presence of the vDVZ-like discontinuity in the massless limit of the FP theory
would again imply the need for some screening mechanism so as to make the FP theory
compatible with any observations which are consistent with the predictions of GR. On
the other hand, the fact that the spin-0 ghost in generic non-FP theories can take a role
in smoothly recovering GR in the doubly massless limit might suggest that the ghost
offers a different mechanism to give a tiny but non-zero mass to the spin-2 graviton. Of
course, one might think the absence of the discontinuity might be at a cost of security
against possible instabilities brought by the ghost. We leave the stability issue to future
work, where our analytical solutions in this study will serve as background on which
stability can be examined.

In Section 3.2, we studied non-relativistic polytropic stars in HCG. We analyzed
the hydrostatic equilibrium condition, starting with the gauge-invariant equations of
motion (3.78) derived from the second-order perturbative action (3.76). In the static
configuration, a particular set of gauge-invariant variables Ψ2 and Ψ0 as defined in
(3.79) turned to be useful to reduce the EOMs into the decoupled form (3.83). These
fourth-order eoms have the general solution in the form of difference of massless part ψ
and massive part ψ̃s , which respectively satisfies the Poisson equation (3.85) and the
Helmholtz equation (3.86). As a result, the gauge-invariant gravitational potential Ψ,
which appears in the hydrostatic equilibrium condition (3.27), was found as in (3.87).
The equilibrium condition is an integro-differential equation at this stage. Applying
an adequate higher-order differential operator on the both sides and adopting the
polytropic equation of state, we obtained a sixth-order differential equation (3.104)
for the Lane–Emden-like variable θ. When either of the graviton masses is taken to
infinity, it reduces to a fourth-order equation (3.108) corresponding to “R + R2” or
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“R+C2” gravity. When both go to infinity, it recovers the second-order Lane–Emden
equation (3.47) in GR.

Then, we solved the fourth-order equation (3.108) imposing (3.118). As shown in
Figs. 3.10 (n = 0) and 3.13 (n = 1), the dimensionless radius of the star increases
(decreases) compared to GR for “R+ C2” (“R+R2”) gravity, reflecting the repulsive
(attractive) nature of the massive graviton. In all cases, as µ2

s → ∞, these solutions
recover the Lane–Emden profile in GR.The massless limit can be understood as a GR-
like theory with a “renormalised” Newton constant (1 + αs)G. In “R + R2” gravity,
α0 = 1/3, it mimics GR with a larger Newton constant 4G/3, leading to shrinkage of
the radius by a factor of

√
3/2, while the same limit of “R + C2” gravity, α2 = −4/3,

is antigravity with negative Newton constant −G/3, leading to an infinite radius. We
have clarified how the stellar radius R, mass M , and charge Σs depend on the graviton
mass µs in Figs. 3.11 (n = 0) and 3.14 (n = 1). Diagrams relating the mass M
and the charge Σs to the radius R were obtained in Figs. 3.12 (n = 0) and 3.15
(n = 1). We argued that, in “R+C2” gravity, upper limits on the parameter α in the
Lagrangian (1.8) can be obtained by requiring the stellar radius R should not exceed
several multiples of the GR values RLE , which generally leads to

√
α ≲ a few× ℓ.

We solved the sixth-order equation (3.104) in generic HCG with the boundary
conditions (3.116). Most of the modification trends as compared to GR arise as a
result of the competition of the opposite contributions from the co-existing massive
gravitons. In particular, when the masses have a large hierarchy, µ2 ≪ µ0 or µ0 ≪ µ2 ,
the graviton with smaller mass dominates. Because the coefficient of the massive
gravitational potential for spin-2, α2, is four times as large in magnitude as that of
spin-0, α0, the contribution from the former is generally more prominent than the
latter when the two graviton masses are at the same order. Typical solutions were
presented in Figs. 3.16 (n = 0) and 3.22 (n = 1). The dependences of R, M , and Σs on
µs were shown in Figs. 3.17–3.18 (n = 0) and 3.23 (n = 1). M–R and Σs–R relations
were shown in Figs. 3.19 (n = 0) and 3.24 (n = 1). The dependence of the stellar
radius R, in the units of the GR value RLE , on the mass parameters (µ2

0, µ
2
2) were

illustrated in Figs. 3.20 (n = 0) and 3.25 (n = 1). These will be useful to find allowed
regions for the QCG parameters (α, β) once an upper bound on the stellar radius of
polytrope stars is established.

Let us give some prospects for future studies. On the theoretical side, the develop-
ment of an additional numerical procedure for imposing the boundary conditions will
become necessary if one wishes to construct solutions for an arbitrary polytropic index
n. For n ̸= 0, 1, since no analytical solution is known, one has to somehow numerically
make a derivative at the stellar centre and integrals of a solution over the stellar radius
match. On the observational side, the observable characteristics such as M–R and Σs–
R diagrams, as well as the radius contours in the parameter plane, should offer a way
to test HCG through comparisons with the distribution of known stellar populations.

Finally, to conclude this thesis, we summarize the gravitational waves and non-
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relativistic stellar structure in generic HCG, a candidate for quantum gravity at low
energies. GWs are powerful tools that can determine the theory parameters α and β in
generic HCG, but it requires more detectors than are currently available. If we assume
that no massive GWs have been observed since 2015, we can place upper bounds on
α and β, but this remains future work. On the other hand, since there are many non-
relativistic stars in the present universe, it is expected that a lot of observational data
will be avaiable soon. However, they will only provide a partial constraint because
only some combinations of α and β can be determined. Moreover, in order to severely
constrain α and β using real observational data, it is necessary to take into account the
effect of stellar rotation, which is left for future work. In conclusion, if GW polarizations
become observable in the future, we will be able to determine the theory parameters α
and β. Any information about the combination of the theory parameters α and β from
observations of the stellar radii will gain or lose confidence in the constraints based on
GW observations.
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Appendix A

Perturbations on a flat background

This appendix presents perturbed geometric quantities on a flat background and con-
structs gauge-invariant variables.

A.1 Perturbations of geometric quantities

Decompose perturbed spacetime into a flat background spacetime ηµν and perturbed
components hµν

gµν = ηµν + hµν . (A.1)

The inverse matrix is

gµν = ηµν − hµν + hµαhα
ν +O(h3) , (A.2)

and gµαg
αν = δµ

ν is satisfied up to the second order of hµν . The up to the second order
of hµν ,

√
−g is expanded as

√
−g = 1 +

1

2
h+

1

8
(h2 − 2hµνh

µν) +O(h3) . (A.3)

The Christoffel symbols in the first and second order are

(1)Γαµν =
1

2
ηαβ(∂νhµβ + ∂µhνβ − ∂βhµν) ,

(2)Γαµν = −1

2
hαβ(∂νhµβ + ∂µhνβ − ∂βhµν) .

(A.4)

The Riemann tensor is

(1)Rα
µβν = ∂β

(1)Γαµν − ∂ν
(1)Γαµβ ,

(2)Rα
µβν = ∂β

(2)Γαµν − ∂ν
(2)Γαµβ +

(1)Γαλβ
(1)Γλµν − (1)Γαλν

(1)Γλµβ .
(A.5)
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The Ricci tensor is

(1)Rµν =
(1)Rα

µαν

= ∂α∇(µhν)α −
1

2
∂µ∂νh− 1

2
□hµν ,

(2)Rµν =
(2)Rα

µαν

= ∂α
(2)Γαµν − ∂ν

(2)Γαµα +
(1)Γαλα

(1)Γλµν − (1)Γαλν
(1)Γλµα .

(A.6)

The Ricci scalar is

(1)R = ηµν (1)Rµν

= ∂µ∂νh
µν −□h ,

(2)R = −hµν (1)Rµν + ηµν (2)Rµν

= −1

4
∂νhαβ∂

νhαβ − 1

4
∂αh∂

αh+
1

2
∂νhαβ∂

αhβν

+ ∂α(h
βν∂αhβν + hαβ∂βh− hαβ∂νhνβ − hνβ∂

νhβα) .

(A.7)

A.2 Gauge transformations and gauge-invariant vari-

ables

In this section, we shall introduce gauge-invariant perturbations. This methodology
effectively isolates the physical degrees of freedom and has been developed within a
cosmological framework.

Let us consider Minkowski spacetime as a background. Decompose the perturbation
spacetime into Minkowski spacetime, and the perturbation components

gµν = ηµν + hµν . (A.8)

The perturbation components are defined as

h00 = −2A ,

h0i = −∂iB − Bi ,

hij = 2(δijC + ∂i∂jE + ∂(iEj) +Hij) ,

(A.9)

where the vector and tensor variables are satisfy

∂iBi = 0 , ∂iEi = 0 , H i
i = 0 , ∂jHij = 0 . (A.10)

Then, the metric of the perturbed spacetime is

ds2 = gµνdx
µdxν

= −(1 + 2A)dt2 − 2(∂iB +Bi)dtdx
i

+ [(1 + 2C)δij + 2∂i∂jE + 2∂(iEj) + 2Hij]dx
idxj .

(A.11)
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To establish gauge invariant variables, it is necessary to contemplate an active trans-
formation of the coordinate system. The coordinates of any point change according
to

xµ → xµ + ξµ(xν) , (A.12)

where ξ is a vector field as small as the perturbation, and the right–arrow means the
active transformation of the coordinate system. Accordingly, the spacetime metric
transforms as

gµν → gµν − Lξgµν , (A.13)

where Lξ is the Lie derivative of gµν along −ξµ. It follows that

hµν → hµν − Lξηµν , (A.14)

of first order in the perturbations. The vector field ξµ can be decomposed into a scalar
and vector part as

(ξ0, ξi) = (T, ∂iL+ Li) , (A.15)

with ∂iL
i = 0. The transformations of the metric perturbations are given as

A→ A− Ṫ ,

B → B − T + L̇ ,

C → C ,

E → E − L ,

(A.16)

for the scalar variables, and as
Bi → Bi + L̇i ,

Ei → Ei − Li ,
(A.17)

for the vector variables. The tensor variable is gauge invariant,

Hij → Hij . (A.18)

Then we construct gauge-invariant scalar and vector variables as

Ψ := A− (Ḃ + Ë) ,

Φ := C ,

Σi := Bi + Ėi .

(A.19)

At this point, we have found six gauge invariant variables out of the original ten in
hµν .
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A.3 Expressions for curvature tensors

and higher-curvature Lagrangian

This appendix delineates the essential expressions about the linear-order curvature
within the Minkowski framework, along with the quadratic-curvature action integrals
expanded to the second order. Due to the topological nature of the Gauss–Bonnet
combination in four dimensions, the Weyl-squared action can be reformulated as fol-
lows:

SC ≡ −α
2κ

∫
d4x

√
−g Cµνρσ Cµνρσ

=
−α
2κ

∫
d4x

√
−g

(
Rµνρσ R

µνρσ − 2Rµν R
µν +

1

3
R2

)
=

−α
2κ

∫
d4x

√
−g

(
2Rµν R

µν − 2

3
R2

)
,

(A.20)

up to irrelevant surface integrals. Therefore, in order to compute the second-order
expansion, it is sufficient to consider only the first-order Ricci tensor

(1)Rµν = −1

2
□hµν + ∂α∂(µhν)α −

1

2
∂µ∂νh ,

(1)Rij = −□Hij + ∂(iΣ̇j) − ∂i∂jΨ− ∂i∂jΦ− δij □Φ ,

(1)Ri0 =
1

2
△Σi − 2∂iΦ̇ ,

(1)R00 = △Ψ− 3Φ̈

(A.21)

and the Ricci scalar

(1)R = ∂µ∂νh
µν −□h = −2△(Ψ− Φ)− 6□Φ . (A.22)

The Weyl-squared action expanded up to the second order is given in terms of the
perturbative variables as

(2)SC =
−α
2κ

∫
d4x

(
2(1)Rµν

(1)Rµν − 2

3
(1)R2

)
=

−α
2κ

∫
d4x

[
1

2
□hµν □hµν −□hµν ∂α∂µhαν

+
1

3
□h ∂µ∂νhµν +

1

3
(∂µ∂νh

µν)2 − 1

6
(□h)2

]
=

−α
2κ

∫
d4x

[
2(□Hij)

2 + (∂iΣ̇j)
2 − (△Σi)

2 +
4

3
[△(Ψ− Φ)]2

]
,

(A.23)

where surface terms have been discarded. The computation of the second-order expan-
sion of the Ricci-squared action

SR ≡ β

2κ

∫
d4x

√
−g R2 (A.24)
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is straightforward:

(2)SR =
β

2κ

∫
d4x (1)R2

=
β

2κ

∫
d4x

[
(∂µ∂νh

µν)2 − 2□h ∂µ∂νhµν + (□h)2
]

=
β

2κ

∫
d4x 4 [△(Ψ− Φ) + 3□Φ]2 .

(A.25)
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Appendix B

Decoupling DOFs in quadratic
curvature gravity on arbitrary
Einstein manifolds

In this Appendix, we describe the equivalence of the quadratic curvature gravity (QCG)
and GR “minus” MG at the linear level on arbitrary Einstein manifolds [NNZ+]. Let
us begin with the generic quadratic curvature action with a cosmological constant

SQCG[gµν ] =
1

2κ

∫
d4x

√
−g

(
R− 2Λ− αCµνρσ C

µνρσ + β R2
)
, (B.1)

where we have dropped the topological Gauss–Bonnet term. This theory admits any
metric ḡµν satisfying

Rµν [ḡµν ] = Λ ḡµν (B.2)

as a solution to the EOM. It is useful to introduce a Lovelock tensor

Gµν ≡ Gµν + Λ gµν , (B.3)

which vanishes when evaluated with ḡµν . The action can be rewritten as

SQCG[gµν ] =
ζ

2κ

∫
d4x

√
−g

(
2Λ− G − α̃

2
Gµν Gµν +

β̃

2
G2

)
, (B.4)

where G = gµν Gµν , ζ ≡ 1 + (8β + 4α/3)Λ, α̃ ≡ 4α/ζ and β̃ ≡ (2β + 4α/3)/ζ and
where we have again discarded the Gauss–Bonnet term. Taking ḡµν as the background
and expanding the action up to quadratic order in hµν ≡ gµν − ḡµν , we obtain the
second-order action for hµν

(2)SQCG[hµν ]

=
ζ

4κ

∫
d4x

√
−ḡ

(
−hµν (1)Gµν [hµν ]− α̃ (1)Gµν [hµν ] (1)Gµν [hµν ] + β̃ (1)G[hµν ]2

)
,
(B.5)
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where
(1)Gµν [hµν ] ≡ (1)Gµν [hµν ] + Λ hµν (B.6)

and (1)G[hµν ] ≡ ḡµν (1)Gµν [hµν ]. As usual, the tensor indices are raised and lowered with
the background metric ḡµν . Replacing (1)Gµν [hµν ] in (B.5) with an auxiliary variable
Aµν and adding a constraint leads to

(2)SQCG[hµν , Aµν , λµν ]

=
ζ

4κ

∫
d4x

√
−ḡ

(
−hµν Aµν − α̃ Aµν A

µν + β̃ A2 + λµν (Aµν − (1)Gµν [hµν ])
)
,

(B.7)

where A ≡ ḡµν Aµν and λ
µν is a Lagrange multiplier. The variation of the above action

with respect to Aµν gives an algebraic constraint

λµν = hµν + 2α̃ Aµν − 2β̃ A ḡµν , (B.8)

which can be substituted back to the action to eliminate Aµν to give

(2)SQCG[hµν , λµν ]

=
ζ

4κ

∫
d4x

√
−ḡ

[
−λµν (1)Gµν [hµν ] +

m2

8

(
(hµν − λµν) (h

µν − λµν)− (1− ϵ) (h− λ)2
)]

,

(B.9)
where ϵ ≡ 1 + β̃/(α̃ − 4β̃) = 9β/(2α + 12β), m2 ≡ 2/α̃ = ζ/(2α) and λ ≡ ḡµν λµν .
Finally, by transforming

hµν → ϕµν + ϕ̃µν , λµν → ϕµν − ϕ̃µν , (B.10)

we arrive at

(2)SQCG[ϕµν , ϕ̃µν ]

=
ζ

4κ

∫
d4x

√
−ḡ

[
−ϕµν (1)Gµν [ϕµν ] + ϕ̃µν (1)Gµν [ϕ̃µν ] +

m2

2

(
ϕ̃µν ϕ̃

µν − (1− ϵ) ϕ̃2
)]

,

(B.11)
where ϕ̃ ≡ ḡµν ϕ̃µν . Equation (1.9) is obtained as the Minkowski version of this.

100



Appendix C

Pure quadratic curvature gravity

We consider the special case χ = 0 where the Lagrangian is given by pure quadratic
curvature terms. In this case, the theory cannot be seen as GR with corrections and,
moreover, there arise instabilities in the tensor and scalar parts. This class contains
conformal gravity and R2 gravity. At first glance one might expect this is the massless
limit, but it is not. The action is

S
(T)
HCG[Hij] =

1

2κ

∫
d4x

[
−2α□Hij □H ij

]
, (C.1)

S
(V)
HCG[Σi] =

1

2κ

∫
d4x

[
−α

(
∂jΣ̇i ∂

jΣ̇i −△Σi△Σi
)]

, (C.2)

S
(S)
HCG[Φ,Θ,Ξ] =

1

2κ

∫
d4x

[
−3αΘ2 − β Ξ2 − 12β Ξ□Φ + 6β ΞΘ

]
, (C.3)

where we have already introduced Ξ to replace (1)R.
The EOMs for the tensor and vector variables can be easily found:

α□2Hij = 0 , α□△Σi = 0 . (C.4)

When α ̸= 0, these EOMs admit plane-wave solutions

Hij = Aij e
iωA (z−t) + t Bij e

iωB (z−t) , Σi = Ci e
iωC (z−t) , (C.5)

with Aij , Bij and Ci arbitrary constants. The tensor wave indicates the emergence of
an instability.

The scalar part is more involved. The variations of the action with respect to each
scalar variable give a set of equations

β□Ξ = 0 , −6β□Φ + 3βΘ− β Ξ = 0 , αΘ− β Ξ = 0 . (C.6)

If β = 0, then we have Θ = 0 hence Φ = Ψ, but these cannot be determined. If β ̸= 0
but α = 0, then Ξ = 0 and one cannot determine Φ and Θ. If both α and β are nonzero
but α = 3β, we obtain equations for Φ and Ψ as

□Φ = □△Ψ = 0 . (C.7)
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Finally, in the most generic case when both α and β are nonzero and α ̸= 3β, we can
eliminate Ξ and Θ to have the EOM for Φ as

□2Φ = 0 , (C.8)

which suggests that Φ is unstable.
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Appendix D

Detector responses

This Appendix summarizes the angular pattern functions for the six polarizations de-
fined by

Fα(Ω) ≡ D : eα(Ω) , (D.1)

where D is the so-called detector tensor, eα the polarization tensor, Ω the unit vec-
tor pointing the impinging direction of a GW, and the symbol : denotes contraction
between tensors.

In Chapter 2, we used an inertial coordinate system such that a GW propagates
in the z direction. We call it the gravitational-wave frame and denote its orthonormal
basis as (m,n,Ω), where Ω is the unit vector along the z direction. Note that there
is a rotation degree of freedom along the Ω axis, denoted as the polarisation angle ψ.
The polarization tensors for α ∈ {+,×, x, y,B,L,T,T} can be written using the unit
vectors as

e+ = m⊗m− n⊗ n ,

e× = m⊗ n+ n⊗m ,

ex = m⊗Ω+Ω⊗m ,

ey = n⊗Ω+Ω⊗ n ,

eB = m⊗m+ n⊗ n ,

eL =
√
2Ω⊗Ω ,

eT =

√
2

3
(m⊗m+ n⊗ n+Ω⊗Ω) ,

eT =
1√
3
(m⊗m+ n⊗ n− 2Ω⊗Ω) .

(D.2)

To characterise ground-based interferometers or pulsar timing arrays, we introduce
an inertial coordinate system specified by an orthonormal basis (u,v,w) such that w is
the upward normal to the Earth’s surface. We call it the detector frame and introduce
the usual polar angles (θ, ϕ) in this frame to point the GW propagation direction. We
then rotate the detector frame (u,v,w) to (u′,v′,w′) so that w′ points toward the
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GW propagation as shown in Fig. 2 of Ref. [NTH+09]. Their relationship is
u′ = cos θ cosϕu+ cos θ sinϕv − sin θw ,

v′ = − sinϕu+ cosϕv ,

w′ = sin θ cosϕu+ sin θ sinϕv + cos θw .

(D.3)

Finally, introducing ψ as the angle from u′ to m in the plane perpendicular to w′, we
arrive at the relationship between the mediation coordinates and the GW coordinates

m = cosψu′ + sinψ v′ ,

n = − sinψu′ + cosψ v′ ,

Ω = w′ .

(D.4)

Let us consider L-shaped interferometers such as LIGO, Virgo and KAGRA. The
detector tensor, in this case, is [NTH+09]

D =
1

2
(u⊗ u− v ⊗ v) . (D.5)

The antenna pattern functions Fα are calculated as

F+(θ, ϕ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ ,

F×(θ, ϕ, ψ) = −1

2

(
1 + cos2 θ

)
cos 2ϕ sin 2ψ − cos θ sin 2ϕ cos 2ψ ,

Fx(θ, ϕ, ψ) = sin θ (cos θ cos 2ϕ cosψ − sin 2ϕ sinψ) ,

Fy(θ, ϕ, ψ) = − sin θ (cos θ cos 2ϕ sinψ + sin 2ϕ cosψ) ,

FB(θ, ϕ) = −1

2
sin2 θ cos 2ϕ ,

FL(θ, ϕ) =
1√
2
sin2 θ cos 2ϕ ,

FT = 0 ,

FT(θ, ϕ) = −
√
3

2
sin2 θ cos 2ϕ .

(D.6)

The scalar functions are degenerate since they have the same dependence on the angles.
If we consider a pulsar frequency shift as a signal, the detector tensor is [YS13,

LJP+10, QBK21]

D =
1

2

1

1 + vΩ ·w
w ⊗w , (D.7)

where w points in the direction of the pulsar. It was pointed out in Ref. [LJP+10,
QBK21] that there should be a modification factor v representing the subluminal ve-
locity of GWs in the denominator. In the luminal (v = 1) case, the antenna pattern
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functions are

F+(θ, ψ) =
1

2

sin2 θ

1 + cos θ
cos 2ψ ,

F×(θ, ψ) = −1

2

sin2 θ

1 + cos θ
sin 2ψ ,

Fx(θ, ψ) = −1

2

sin 2θ

1 + cos θ
cosψ ,

Fy(θ, ψ) =
1

2

sin 2θ

1 + cos θ
sinψ ,

FB(θ) =
1

2

sin2 θ

1 + cos θ
,

FL(θ) =
1√
2

cos2 θ

1 + cos θ
,

FT(θ) =
1√
6

1

1 + cos θ
,

FT(θ) =
1

2
√
3

1− 3 cos2 θ

1 + cos θ
.

(D.8)

The scalar functions are not degenerate.
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Appendix E

Properties of stellar matter

This Appendix provides an overview of the properties of stellar matter. The treatment
of this Appendix follows [KWW12].

E.1 Eddington standard model

We consider the case where the polytropic coefficient K is a free parameter. If there
is a radiation pressure, the total pressure is given as

P = Pgas + Prad

=
R

µ
ρT +

a

3
T 4 .

(E.1)

Supposing the ratio is constant all over the star

β ≡ Pgas

P
= const. , (E.2)

we have

1− β =
Prad

P
=
a T 4

3P
, (E.3)

where the range of β is 0 ≤ β ≤ 1. Thus, the total pressure is approximately given
by P ∼ T 4. When the ratio takes β = 1, the radiation pressure is zero. On the other
hand, when the ratio takes β = 0, the gas pressure is zero, and the total pressure (E.1)
can be written as

P =
R

µβ
ρT . (E.4)

Using the formula
1− β

β
=
Prad

Pgas

=
a µT 3

3R ρ
, (E.5)
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we obtain the polytropic relation with n = 3,

P =

(
3R4

a µ4

) 1
3
(
1− β

β4

) 1
3

ρ
3
4 . (E.6)

Since β is a free parameter, the polytropic coefficient K is also a free parameter. This
is known as the Eddington standard model for stellar model.

E.2 Degenerate electron gas

The phase space density of an electron is given by

f(p) =
8π p2

h3
for p ≤ pF ,

f(p) = 0 for p > pF ,
(E.7)

where pF is the Fermi momentum. The total number of electrons in the volume dV is
given by

ne dV = dV

∫ pF

0

dp
8π p3

h3
=

8π

3h3
p3F dV , (E.8)

and the pressure of the electron is

Pe =
8π

3h3

∫ pF

0

dp p3v(p) . (E.9)

The special relativity tells that the momentum of the electron is given by

p =
mev√

1− v2/c2
, (E.10)

and thus, the pressure of the electron is

Pe =
8π

3h3

∫ pF

0

dp p3
p/(me c)√

1 + p2/(m2
e c

2)
. (E.11)

We introduce parameters defined by

x ≡ pF
me c

=
vF/c√

1− v2F/c
2
, y ≡ p

me c
. (E.12)

Then, the pressure of the electron is written in terms of these parameters as

Pe =
8π c5m4

e

3h3

∫ x

0

dy
y4√
1 + y2

=
π c5m4

e

3h3

[
x(2x2 − 3)(1 + x2)

1
2 + 3arcsinh x

]
=
π c5m4

e

3h3

[
x(2x2 − 3)(1 + x2)

1
2 + 3 ln

[
x+ (1 + x2)

1
2

]]
.

(E.13)
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Since the parameter x is rewritten as

v2F/c
2 =

x2

1 + x2
, (E.14)

we can evaluate the limiting cases of the pressure of the electron. If x is sufficiently
small x ≪ 1 , i.e., vF/c ≪ 1, all electrons are moving very slowly compared to the
speed of light (non-relativistic motion). On the other hand, if x is much larger than
1 , i.e., x ≫ 1 and then vF/c ≫ 1, all electrons are moving at velocities close to the
speed of light. (relativistic motion). Therefore, the equation of state for a completely
degenerate non-relativistic electron gas is given by

lim
x→0

Pe =
1

20

(
3

π

) 2
3 h2

mem
5/3
µ

(
ρ

µe

) 5
3

(E.15)

and extreme relativistic complete degenerate electron gas is given by

lim
x→∞

Pe =

(
3

π

) 1
3 h c

8m
4/3
µ

(
ρ

µe

) 4
3

(E.16)

Hence, we can see that the non-relativistic electron gas is the polytropic relation with
n = 1.5, and the relativistic electron gas is n = 3. The significant difference from the
Eddington standard model is that the polytropic coefficient K is not a free parameter.
Since the mass of a polytropic star with n = 3 does not depend on the stellar centre
density and the polytropic coefficient K is fixed, an object supported by the degeneracy
pressure of relativistic electrons takes only one mass (Chandrasekhar mass).

E.3 Polytropic relation

The case where pressure P is expressed as a function only of density ρ is called a
barotropic relation P = P (ρ). In particular, when pressure is expressed as a power of
density, as in

P = K ρΓ , (E.17)

it is called the polytropic relation. Although this is a simple expression of an equation
of state, it can be used as an equation of state for many astronomical objects and is
a very useful relation. In this section, we show that Poisson’s equation (polytropic
relationship for ideal gases) can be derived by assuming an adiabatic state for ideal
gases. This allows us to interpret the parameter Γ as the effective specific heat ratio γ.

Let us consider a one-component ideal gas with molecular weight µ. The equation
of state for an ideal gas of n mol is

PV = nR T , (E.18)
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where T is temperature, and R is the gas constant. V is the volume per n mol, but
since it depends on the number of mol and is not convenient, so we express it in terms
of density. Since the molecular weight of the fluid is µ, the mass (molar mass) of 1 mol
of fluid is µ [g]. Therefore, the density of n mol fluid is given by ρ = (nµ)/V , and the
equation of state for an ideal gas can be written as the form

P =
R

µ
ρT . (E.19)

We consider the variation in internal energy dU of an ideal gas. The variation in
internal energy of an ideal gas is determined only by the change in temperature, not
by the change in volume, and is

dU = CV dT , (E.20)

where CV is the heat capacity at constant volume defined as

CV ≡
(
∂U

∂T

)
V

. (E.21)

In the case of an adiabatic process, the change in heat quantity is zero (dQ = 0), so
the change in internal energy is

dU = −P dV (E.22)

from the first law of thermodynamics. Thus, we obtain

CV dT + P dV = 0 . (E.23)

Using the equation of state PV = nRT for the ideal gas, it becomes

CV dT +
nR T

V
dV = 0 . (E.24)

Using Mayer’s relation, which holds for ideal gases

CV (γ − 1) = nR , (E.25)

we get
dT

T
+ (γ − 1)

dV

V
= 0 , (E.26)

where γ is the heat capacity ratio γ ≡ CP/CV and CP is the heat capacity at constant
pressure. Integrating the equation, we have

log T + (γ − 1) log V = const. (E.27)

Therefore, we obtain
T V γ−1 = const. . (E.28)
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Using the equation of state PV = nRT for the ideal gas, it can be written as

P = K ργ , (E.29)

and
T = K ργ−1 . (E.30)

Not only in adiabatic processes, pressure can often be written as a power of density.
Therefore, the specific heat ratio γ can be considered as a parameter Γ, including cases
where there is some heat exchange. In this case, the parameter Γ is interpreted as the
effective specific heat ratio. Also, it can be seen that the closer γ is to 1, the closer it
is to isothermal.
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Appendix F

Solution for higher-order Helmholtz
equations

We consider a linear inhomogeneous equation of the form

f(△)φ = S , (F.1)

where f is an n-th order polynomial, which we call the characteristic function, △ the
flat-space Laplace operator, and S a given source function. Without loss of generality,
using the n roots for the characteristic equation f(x) = 0, x = λi (i = 1, · · · , n), the
problem reduces to solving

n∏
i=1

(△− λi) φ = S . (F.2)

We assume λi ̸= λj for i ̸= j for simplicity, but extending the formula to degen-
erate cases is straightforward. The above equation admits a solution of the form
φ =

∑n
i=1 φi , where each φi solves a single Helmholtz equation

(△− λi) φi = ci S (F.3)
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with the coefficients ci (i = 1, · · · , n) satisfying the following system of n linear equa-
tions

n∑
i=1

ci = 0 ,

n∑
i=2

ci (λi − λ1) = 0 ,

n∑
i=3

ci (λi − λ1) (λi − λ2) = 0 ,

...

n∑
i=k

ci

k−1∏
j=1

(λi − λj) = 0 ,

...
n∑

i=n−1

ci

n−2∏
j=1

(λi − λj) = 0 ,

cn

n−1∏
j=1

(λn − λj) = 1 .

(F.4)

114



Bibliography

[A+16a] B. P. Abbott et al. Observation of Gravitational Waves from a Binary
Black Hole Merger. Phys. Rev. Lett., 116(6):061102, 2016.

[A+16b] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters.
Astron. Astrophys., 594:A13, 2016.

[A+17a] B. P. Abbott et al. Gravitational Waves and Gamma-rays from a Binary
Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett.,
848(2):L13, 2017.

[A+17b] B. P. Abbott et al. GW170817: Observation of Gravitational Waves from
a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119(16):161101, 2017.

[A+18] Benjamin P. Abbott et al. First search for nontensorial gravitational waves
from known pulsars. Phys. Rev. Lett., 120(3):031104, 2018.

[A+20] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters.
Astron. Astrophys., 641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4
(2021)].

[ABG48] R. A. Alpher, H. Bethe, and G. Gamow. The origin of chemical elements.
Phys. Rev., 73:803–804, 1948.

[AY09] Stephon Alexander and Nicolas Yunes. Chern-Simons Modified General
Relativity. Phys. Rept., 480:1–55, 2009.

[BD61] C. Brans and R. H. Dicke. Mach’s principle and a relativistic theory of
gravitation. Phys. Rev., 124:925–935, 1961.

[BD13] Eugeny Babichev and Cédric Deffayet. An introduction to the Vainshtein
mechanism. Class. Quant. Grav., 30:184001, 2013.

[BS21] A Bonanno and S Silveravalle. The gravitational field of a star in quadratic
gravity. J. Cosmol. Astropart. Phys., 2021(08):050, 2021.

[CDL11] Salvatore Capozziello and Mariafelicia De Laurentis. Extended Theories
of Gravity. Phys. Rept., 509:167–321, 2011.

115



[CDLOS11] S. Capozziello, M. De Laurentis, S. D. Odintsov, and A. Stabile. Hydro-
static equilibrium and stellar structure in f(R) gravity. Phys. Rev. D,
83:064004, 2011.

[CFPS12] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantinos
Skordis. Modified Gravity and Cosmology. Phys. Rept., 513:1–189, 2012.

[CS01] Yihan Chen and Changgui Shao. Linearized higher-order gravity and
stellar structure. Gen. Rel. Grav., 33:1267–1279, 08 2001.

[CSC01] Yihan Chen, Changgui Shao, and Xiaogang Chen. Stellar structure treat-
ment of quadratic gravity. Prog. Theor. Phys., 106(1):63–70, 07 2001.

[DFT10] Antonio De Felice and Shinji Tsujikawa. f(R) theories. Living Rev. Rel.,
13:3, 2010.

[Dir37] Paul A. M. Dirac. The Cosmological constants. Nature, 139:323, 1937.

[dRGT11] Claudia de Rham, Gregory Gabadadze, and Andrew J. Tolley. Resumma-
tion of Massive Gravity. Phys. Rev. Lett., 106:231101, 2011.

[DSSY10] Nathalie Deruelle, Misao Sasaki, Yuuiti Sendouda, and Daisuke Yamauchi.
Hamiltonian formulation of f(Riemann) theories of gravity. Prog. Theor.
Phys., 123:169–185, 2010.

[DSSY11] Nathalie Deruelle, Misao Sasaki, Yuuiti Sendouda, and Ahmed Youssef.
Inflation with a Weyl term, or ghosts at work. 2011(03):040, Mar 2011.

[ELL73a] D. M. Eardley, D. L. Lee, and A. P. Lightman. Gravitational-wave obser-
vations as a tool for testing relativistic gravity. Phys. Rev. D, 8:3308–3321,
1973.

[ELL+73b] D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will.
Gravitational-wave observations as a tool for testing relativistic gravity.
Phys. Rev. Lett., 30:884–886, 1973.

[FDLCO14] R. Farinelli, M. De Laurentis, S. Capozziello, and S. D. Odintsov. Nu-
merical solutions of the modified Lane–Emden equation in f(R)-gravity.
Mon. Not. Roy. Astron. Soc., 440:2909–2915, 2014.

[FP39] M. Fierz and W. Pauli. On relativistic wave equations for particles of arbi-
trary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A, 173:211–
232, 1939.

[Gam46] G. Gamow. Expanding universe and the origin of elements. Phys. Rev.,
70:572–573, 1946.

116



[Gut81] Alan H. Guth. The Inflationary Universe: A Possible Solution to the
Horizon and Flatness Problems. Phys. Rev. D, 23:347–356, 1981.

[GW86] David J. Gross and Edward Witten. Superstring Modifications of Ein-
stein’s Equations. Nucl. Phys. B, 277:1, 1986.

[HEI+19] Yuki Hagihara, Naoya Era, Daisuke Iikawa, Atsushi Nishizawa, and Hideki
Asada. Constraining extra gravitational wave polarizations with Advanced
LIGO, Advanced Virgo and KAGRA and upper bounds from GW170817.
Phys. Rev. D, 100(6):064010, 2019.

[HEI+20] Yuki Hagihara, Naoya Era, Daisuke Iikawa, Naohiro Takeda, and Hideki
Asada. Condition for directly testing scalar modes of gravitational waves
by four detectors. Phys. Rev. D, 101(4):041501, 2020.

[HEIA18] Yuki Hagihara, Naoya Era, Daisuke Iikawa, and Hideki Asada. Probing
gravitational wave polarizations with Advanced LIGO, Advanced Virgo
and KAGRA. Phys. Rev. D, 98(6):064035, 2018.

[Hin12] Kurt Hinterbichler. Theoretical aspects of massive gravity. Rev. Mod.
Phys., 84:671–710, 2012.

[HN13] Kazuhiro Hayama and Atsushi Nishizawa. Model-independent test of
gravity with a network of ground-based gravitational-wave detectors.
Phys. Rev. D, 87(6):062003, 2013.

[IPW17] Maximiliano Isi, Matthew Pitkin, and Alan J. Weinstein. Probing Dy-
namical Gravity with the Polarization of Continuous Gravitational Waves.
Phys. Rev. D, 96(4):042001, 2017.

[Iwa70] Yoichi Iwasaki. Consistency Condition for Propagators. Phys. Rev. D,
2:2255–2256, 1970.

[IWMP15] Maximiliano Isi, Alan J. Weinstein, Carver Mead, and Matthew Pitkin.
Detecting Beyond-Einstein Polarizations of Continuous Gravitational
Waves. Phys. Rev. D, 91(8):082002, 2015.

[JMM13] Maud Jaccard, Michele Maggiore, and Ermis Mitsou. Bardeen variables
and hidden gauge symmetries in linearized massive gravity. Phys. Rev.
D, 87(4):044017, 2013.

[Jor59] Pascual Jordan. The present state of Dirac’s cosmological hypothesis. Z.
Phys., 157:112–121, 1959.

[JP03] R. Jackiw and S. Y. Pi. Chern-Simons modification of general relativity.
Phys. Rev. D, 68:104012, 2003.

117



[KWW12] Rudolf Kippenhahn, Alfred Weigert, and Achim Weiss. Stellar structure
and evolution. Astronomy and Astrophysics Library. Springer, 8 2012.

[LJP+10] Kejia Lee, Fredrick A. Jenet, Richard H. Price, Norbert Wex, and Michael
Kramer. Detecting massive gravitons using pulsar timing arrays. Astro-
phys. J., 722:1589–1597, 2010.

[LPPS15] H. Lu, A. Perkins, C. N. Pope, and K. S. Stelle. Black Holes in Higher-
Derivative Gravity. Phys. Rev. Lett., 114(17):171601, 2015.

[M+94] John C. Mather et al. Measurement of the Cosmic Microwave Background
spectrum by the COBE FIRAS instrument. Astrophys. J., 420:439–444,
1994.

[MBM19] Fabio Moretti, Flavio Bombacigno, and Giovanni Montani. Gauge invari-
ant formulation of metric f(R) gravity for gravitational waves. Phys. Rev.
D, 100(8):084014, 2019.

[MS07] Filipe Moura and Ricardo Schiappa. Higher-derivative corrected black
holes: Perturbative stability and absorption cross-section in heterotic
string theory. Class. Quant. Grav., 24:361–386, 2007.

[NNZ+] Yuki Niiyama, Yuya Nakamura, Ryosuke Zaimokuya, Yu Furuya, and Yu-
uiti Sendouda. Non-Fierz–Pauli bimetric theory from quadratic curvature
gravity on Einstein manifolds.

[NTH+09] Atsushi Nishizawa, Atsushi Taruya, Kazuhiro Hayama, Seiji Kawamura,
and Masa-aki Sakagami. Probing nontensorial polarizations of stochastic
gravitational-wave backgrounds with ground-based laser interferometers.
Phys. Rev. D, 79:082002, 2009.

[O’H72] John O’Hanlon. Intermediate-range gravity - a generally covariant model.
Phys. Rev. Lett., 29:137–138, 1972.

[P+99] S. Perlmutter et al. Measurements of Ω and Λ from 42 high redshift
supernovae. Astrophys. J., 517:565–586, 1999.

[PW65] Arno A. Penzias and Robert Woodrow Wilson. A Measurement of excess
antenna temperature at 4080-Mc/s. Astrophys. J., 142:419–421, 1965.

[QBK21] Wenzer Qin, Kimberly K. Boddy, and Marc Kamionkowski. Sublumi-
nal stochastic gravitational waves in pulsar-timing arrays and astrometry.
Phys. Rev. D, 103(2):024045, 2021.

[R+98] Adam G. Riess et al. Observational evidence from supernovae for an
accelerating universe and a cosmological constant. Astron. J., 116:1009–
1038, 1998.

118



[Sak15] Jeremy Sakstein. Testing Gravity Using Dwarf Stars. Phys. Rev. D,
92:124045, 2015.

[Sal18] Alberto Salvio. Quadratic Gravity. Front. in Phys., 6:77, 2018.

[Sat81] K. Sato. First Order Phase Transition of a Vacuum and Expansion of the
Universe. Mon. Not. Roy. Astron. Soc., 195:467–479, 1981.

[SF10] Thomas P. Sotiriou and Valerio Faraoni. f(R) Theories Of Gravity. Rev.
Mod. Phys., 82:451–497, 2010.

[Sta80] Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models
Without Singularity. Phys. Lett. B, 91:99–102, 1980.

[Ste77] K. S. Stelle. Renormalization of Higher Derivative Quantum Gravity.
Phys. Rev. D, 16:953–969, 1977.

[Ste78] K. S. Stelle. Classical Gravity with Higher Derivatives. Gen. Rel. Grav.,
9:353–371, 1978.

[TNM+18] Hiroki Takeda, Atsushi Nishizawa, Yuta Michimura, Koji Nagano, Ken-
taro Komori, Masaki Ando, and Kazuhiro Hayama. Polarization test
of gravitational waves from compact binary coalescences. Phys. Rev. D,
98(2):022008, 2018.

[TW82] J. H. Taylor and J. M. Weisberg. A new test of general relativity: Grav-
itational radiation and the binary pulsar PS R 1913+16. Astrophys. J.,
253:908–920, 1982.

[UD62] R. Utiyama and Bryce S. DeWitt. Renormalization of a classical grav-
itational field interacting with quantized matter fields. J. Math. Phys.,
3:608–618, 1962.

[Vai72] A. I. Vainshtein. To the problem of nonvanishing gravitation mass. Phys.
Lett. B, 39:393–394, 1972.

[vDV70] H. van Dam and M. J. G. Veltman. Massive and massless Yang-Mills and
gravitational fields. Nucl. Phys. B, 22:397–411, 1970.

[Wei89] Steven Weinberg. The Cosmological Constant Problem. Rev. Mod. Phys.,
61:1–23, 1989.

[Wei08] Steven Weinberg. Effective Field Theory for Inflation. Phys. Rev. D,
77:123541, 2008.

[Wey19] H. Weyl. A New Extension of Relativity Theory. Annalen Phys., 59:101–
133, 1919.

119



[Wil14] Clifford M. Will. The Confrontation between General Relativity and Ex-
periment. Living Rev. Rel., 17:4, 2014.

[Woo07] Richard P. Woodard. Avoiding dark energy with 1/r modifications of
gravity. Lect. Notes Phys., 720:403–433, 2007.

[YS13] Nicolás Yunes and Xavier Siemens. Gravitational-Wave Tests of Gen-
eral Relativity with Ground-Based Detectors and Pulsar Timing-Arrays.
Living Rev. Rel., 16:9, 2013.

[Zak70] V. I. Zakharov. Linearized gravitation theory and the graviton mass.
JETP Lett., 12:312, 1970.

120


