FERMILAB-SLIDES-24-0053-PPD-V

)

N O~

‘e_,_@_s’ Queen Mary

University of London

Measurement of the Triple Ditferential Muon-Antineutrino
Charged-Current Inclusive Cross Section in the NOVA Near
Detector

Prabhjot Singh, on behalf of the NOVA Collaboration

Fermilab Joint Experimental-Theoretical Physics Seminar

This document was prepared by the NOvA Collaboration using the resources of the Fermi National

2 2 M arc h 2 02 4 Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High
Energy Physics HEP User Facility. Fermilab is managed by Fermi Researc h Alliance, LLC (FRA),

acting under Contract No. DE-AC02-07CH11359.



Why Neutrino Cross sections are Important? - Oscillations

R(x)=¢(E) X ok ,x)Xelx) X Plv, = Vp)

 /

Event rate
(Measured in detector)  Neutrino flux Detector response

Neutrino-nucleus Oscillation probability

interaction (@ = [ neutrino flavor oscillation)
Cross section

To deduce physics observations, such as the CP-violation by neutrinos (5Cp), oscillation mixing angles, and
the mass ordering of neutrino masses, we need to infer neutrino oscillation probabilities from the event rate

This can be done with a good understanding of:
- neutrino beam flux

- detector responses (selection efficiencies)

- neutrino-nucleus cross section modeling
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Why Neutrino Cross sections are Important? - Uncertainties

In the current era of neutrino
experiments, we are no longer
statistically-limited

NOVA: PhysRevD.106.032004
B Without p_Bins With p._Bins

Systematic uncertainties have
become very important to derive
physics conclusions from the
data collected by the experiments

Detector Calibration

Neutron Uncertain

Neutrino Interaction Model

Near-Far Difference

Detector Response

Lepton Reconstruction

Beam Flux

Uncertainties due to neutrino Total Syst. Unc. |

interaCtiOn mOdeling iS one Of the -0.02 0.00 0.02 -0.02 0.00 0.02 0.2 0.0 0.2
dominant source of uncertainties
and can be reduced by the cross
section measurements

Uncertainty in sin’0,,, Uncertainty in Am3, ( x10”° eV?) Uncertainty in 8, / m
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Why Neutrino Cross sections are Important? - Nuclear Physics

Neutrino cross section measurements can
be used to study nuclear physics \Y il

70

Charge
exchange

o

In heavy nuclel, the interactions of
nucleons within the nucleus affect the
neutrino scattering by the nucleus

Elastic
scattering

Physics conclusion can be drawn by
comparing various nuclear physics models
to the cross section measurement results

By T. Golan

This can further help us to reduce neutrino
interaction uncertainties in the future
neutrino experiments
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Neutrlno Interactions
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https://indico.fnal.gov/event/43209/contributions/187826/attachments/129093/158555/NOvA_LCremonesi_Neutrino2020.pdf

Neutrino Interactions
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Neutrino Interactions

lepton -
//J P
Q — Quasi-Elastic .
NS (QE)
Nucleon’ Nucleon” N N'

v Y ) lepton 1.
—J =0 Resonant
—_—py - pion (RES) W )
Nucleon’ e A+
Nucleon” N N’

J lepton

Deep §
J —i —3 pions Inelastic w
Nucleon’ Scattering

(DIS) N x

J Nucleon”

By Linda Cremonesi, Neutrino 2020

W Queen Mary  Prabhjot Singh >eminar 22 March 2024

University of London


https://indico.fnal.gov/event/43209/contributions/187826/attachments/129093/158555/NOvA_LCremonesi_Neutrino2020.pdf

Neutrino Interactions
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Nucleons’ Meson exchange currents (MEC) is a dominating

. . . model to describe 2p2h process
By Linda Cremonesi, Neutrino 2020
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Nuclear Effects
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Final state interactions due to
intra-nuclear re-scattering can

the outgoing particles

Meson exchange currents (MEC) is a dominating
model to describe 2p2h process
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Neutrlnc Interactions | n NOVA ND

RevModPhys.84.1307
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model to describe 2p2h process

By Linda Cremonesi, Neutrino 2020
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e NOVA uses total energy of all

Avallable Energy B Eavail observable final state hadrons to

NOVA Simulation distinguish various interaction
| | ' ' | ' ' ' 77 QE types

MEC
RES

os— o All particles that deposit visible

\ gfhher energy in the detector contribute to
§ the available energy including

> daughter particles of the primary

,,,,,,,,,,,,,,,,,,,,,,,

neutrons

,,,,,,,,

7

o I

avail

I QE

< 100 MeV is dominated by

Fractional Contribution to Signal
o
O

M " 1 " ‘ l‘ :
A VA A A A A A A A A A VA A A A A A A AL VA A A A A AL VA A

avail

> 1GeV mostly has DIS

e 0.1 to 1 GeV are dominated by
RES

Pioneered by MINERVA (Phys. Rev. Lett. 116, 071802 (2016))
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https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.116.071802

NOVA Experiment

* NOVA is a long-baseline two-detector neutrino
oscillation experiment

 Both detectors are filled with liquid scintillator and
composed of 67% C, 16% chlorine, 11% H, 3% O,
3% Ti by mass

* Functionally identical
detectors to reduce B
systematic uncertainties ey 5250

:"', / | 4

”‘5 o Ry 7 S ,_ S

G PR b .
et e S fETTTN — '

——f—i== Ash River, MN, 810 km
from neutrino source

1 km from neutrino
source
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NOVA Experiment

* NOVA is a long-baseline two-detector neutrino
oscillation experiment

* Both detectors are filled with liquid scintillator and Nz | o
composed of 67% C, 16% chlorine, 11% H, 3% O, i\ 74", _
O " Minneapolis ® 4 ‘ - ASh Rlver, MN, 810 km
3% Ti by mass *,

from neutrino source
* Functionally identical
detectors to reduce
systematic uncertainties

Antineutrino beam NOVA Simulation
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detectors
 Neutrino beam peaks heutrino energy (GeY) e
around 2 GeV H|gh punty Ij/xt beam source
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Beam EXpOSu re Current Analysis Dataset

Antineutrino POT 12.5 X 10V in ND

30 Weekly neutrino beam —— Accumulated beam
Weekly antineutrino beam —— Accumulated neutrino beam
— Accumulated antineutrino beam [4°
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» TJotal protons on target recorded so far 39.6e20 1MW, here we come! - Thanks to the hard

work of many people, in front and behind
 New power record 950+ kW in FY23 the scenes
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Event Display - Near Detector
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Near Detector sees
high intensity
neutrino beam due
to Its close
proximity to the
neutrino target

We use this
opportunity to do
high statistics
Cross-section
measurements



Slmulatlon Model - GENIE 3. O O ° Local Fermi Gas (LFG): Spherica

symmetric density of nucleons.

Initial State Degenerate gas up to Fermi
Interactions momentum
Local Fermi | Valencia + Z-expansion | Valencia Berger- Bodek-Yang hN semi-
Gas (LFG) Sehgal (BS) | +Pythia | classical * Valencia model: Includes random
intranuclear phase approximation
cascade mode

* Berger-Sehgal: Lepton mass
effects in single pion production
by neutrinos

* We simulate neutrino interactions using a custom

model configuration of GENIE 3.0.6 tuned to external ¢ Bodek-Yang: To describe

and NOvVA ND data scattering at low momentum
fcransfe_rs by modeli_ng d_eep
+ MEC and FSI are adjusted to produce a NOVA- inelastic cross sections in the few
GeV regions

specific neutrino interaction model tune

 hN (FSI): Calculate cross section
for many possible interactions
Inside nucleons
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Beam Flux

* Uncertainties from the hadron production

- Hadron production model is constrained with

external measurements on thin target data (NA49) 5

al

- We use Package to Predict the Flux (PPFX) to =
evaluate Hadron production uncertainties (Phys. g
Rev. D94, 092005) (\E

- It results into a ~10% normalization effect §><,’
L

 Beam focusing (hardware)

- Includes uncertainties such as the horn current =
amperage, the beam spot size on target, the beam T
position on target, uncertainties related to the T

magnetic field used in the beam, and so on

- Sub-dominant
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NOVA Simulation

NuMI Beam at NOVvA ND
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v energy (GeV)
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Overview of the Analysis

« Signal is Eﬂ CC interaction having interaction vertex in the ’7/4 H
fiducial volume of the Near Detector
- Processisv, +A — 1"+ X, Ais the target nucleus and X
represents all other final state particles /w
* Benefit of inclusive analysis: A A
- High statistics

- Unaffected by the final state interactions inside nucleons
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Overview of the Analysis

o Signalis Eﬂ CC interaction having interaction vertex in the ’7/4 ur
fiducial volume of the Near Detector
» Processis v, + A — u" + X, Ais the target nucleus and X
represents all other final state particles /%
* Benefits of inclusive analysis: A A
- High statistics @ T

- Unaffected by the final state interactions inside nucleons ¥ p;Ey 0, )

e Deliverables are

v triple differential cross sectionin 7, cos 0, and E,,,;;

Ehad < EA\rai

By Travis Olson
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Overview of the Analysis

o Signalis Eﬂ CC interaction having interaction vertex in the ’7/4 ur
fiducial volume of the Near Detector
» Processis v, + A — u" + X, Ais the target nucleus and X
represents all other final state particles /w
* Benefits of inclusive analysis: A A
- High statistics @ T

- Unaffected by the final state interactions inside nucleons

e Deliverables are

v triple differential cross sectionin 7, cos 0, and E,,,;;

v single differential cross section in E and Q*
By Travis Olson
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* Hits associated In time and space are used to reconstruct tracks and showers
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* Fully contained tracks and showers are selected
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 Boosted decision tree with muon dE/dx and scattering input variables is used to select
candidate muons
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 Boosted decision tree with muon dE/dx and scattering input variables is used to select
candidate muons

 BDT provides excellent separation of signal from backgrounds
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* Finally, we apply phase-space
selections in 7, and cos 0, to only

select bins with at least 200 signal
events, giving at most 7% statistical
uncertainty

e We select >900k events
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o
G 1.5/
2 |
— 1.0

085 0.6 0.7 0.8 0.9 1.

0.00 <E,,, (GeV) <0.10

vvvvvvvvvvvvvvvvvvvvvv

cos6,

0.60 <E,,,; (GeV) < 1.00

00
cos6,

\c:,_@_s’ Queen Mary

University of London

0.10<E,,,, (GeV) <0.30

22%

B

-{10000

iSOOO

0
.0

o~

085 0.6 0.7 0.8 0.9 1
cos6,

Prabhjot Singh

2 5¢
<S20f
o |
B 1.5
= |
—"1.0f

035 0.6 0.7 0.8 0.9 1.

Seminar

0.30 <E, ,, (GeV) < 0.60

vvvvvvvvvvvvvvvvvvvvvv

)
cos6,

Majority of events are

E_, . region and at high

forward angles
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Purity

e Purity is shown only in the

phase-space region e NOVA Simulation
o[ 050 <cosf, <074 ¢ 0.74 < cos§, < 0.80 | 0.80 < cosf, < 0.85 | 0.85<cosf, <0388 -
e It reduces with £, ., ::C{_ tebr =i BT | _
because the wrong sign 0.5 T T T ;
component increase at : I I I i
higher £, s > :';—_:0.885<'c0'89/;<'05.91' T o.91-<c6séﬂéo’.l94 1094 <00, <096 | 096<c030, <098
* Further reduction in purity In 0l 1 T fﬁ :
the 1-2 GeV E_ ;IS : I
because of the presence of 098 <c0s0, <099 | 099<cosf, <100 |
NC interactions at higher b B i R = e
g F _l_‘_‘:‘_'_;i | 010<E__ (GeV)<0.30
E avail 0.5:— — ——— 030<E,  (GeV)<0.60
_ 1 | ——060<E,, (GeV)<1.00
o T : : oob——mr— . . L O S S ] —— 1.00<E,_ (GeV)<2.00
Overall it is a high purity T cey 2 T con 2
sample with 90% purity
b
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Selection Efficiency

Efficiency reduction with
Tﬂ, and at higher scattering

angles due to muons
escaping containment

» Reduction at higher £

because there Is more
hadronic activity and
showers in the detector
making it harder for the
muon to be properly
reconstructed

avail

e Qverall, 32% selection
efficiency

\aQ_s' Queen Mary

University of London

Efficiency

1.0~

alNa

1.0

0.5

n N

1.0

0.5

0.0—

Prabhjot Singh

NOVA Simulation

0.5

L 0.50 < cos 921 <0.74 '_——_' 0.74 < cos éﬂ <080 -—_ () 80 < cosG <0.85 1 0. 85 < cosH <0, 88 |
g s - =1 -
s il [ Bs i % :
" =l—‘ . . ; ; ; . ; ; ; ; ; ; : ﬁ_' ; ; ; ! ; - ' ; : - : ; : ! ; ;

L (.88 < cos Gﬂ <091 091 <cosf. <094 | 094 < cos@ <096 | 0.96 < cos Hﬂ <098 .
) a8 Rl 4
_: + :%z.ﬁ { t | ;.E:i.zl i T T 1 . . A :'|:| l 1 l L ! l l h 2 _'l_
10.98 <cos, <099 1 099 <cosf, <100 -
N 1 1 ——000<E,__ (GeV)<0.10
7’_‘_"'—\_‘x :rhﬁ_'_“-—\_‘ﬁ : 0.10 <E, . (GeV) < 0.30
::’_‘—H_‘_‘_'_‘:_'—— _% ——— 0.30<E,, (GeV)<0.60
: H—ﬁ _‘_lz —— 0.60<E,_ (GeV)<1.00

S | P — . ] ——1.00<E,_, (GeV)<2.00

1 2 1 2

T, (GeV) T, (GeV)
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Measurement Strategy

G(COS ‘9/49 T,w Eavail)i(A COS Hﬂ)i(ATﬂ)i(AEavail)iNtarget¢

( B ) ) P U(N*(cos0,,T,, E,..)iP(cos 0, T, E,.))
dcos0,dl dE,, i

« For differential cross section measurements in Tﬂ, COS 6’”, and £

wail» WE need

* Selected candidate signal events
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Measurement Strategy

G(COS ‘9/49 T,w Eavail)i(A COS Hﬂ)i(ATﬂ)i(AEavail)iNtarget¢

( B ) ) P Ui(N*(cos,,T,, E,..)iPcos 0, T, E,.)
dcos0,dl dE,, i

« For differential cross section measurements in Tﬂ, COS 6’”, and £

wail» WE need

* Selected candidate signal events, sample purity
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Measurement Strategy

B ) 2 Uj(N*(cos 0, T, Epyi)iP(c08 6, T, Eyi))
dcos6,dl dE,

G(COS ‘9”9 T,w Eavail)i(A COS Hﬂ)i(ATﬂ)i(AEavail)iNtarget¢

vail J
I

« For differential cross section measurements in Tﬂ, COS 6’ﬂ, and £ we need

vail’
* Selected candidate signal events, sample purity

* The (reco to true migration): transitions events from reconstructed space to the
true space. We use improved D’Agostini iterative unfolding method to unfold events
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Measurement Strategy

B P Ui(N*(cos0,,T,, E,..)iPcos0,T,E,.p)

d cos HﬂdT,udEavail , €(COS 6’/4’ T,u’ Eavail)i(A COS Hu)i(AT//t)i(AEavail)iNtarget¢

l

- For differential cross section measurements in 7, cos 6, and £, ,;;, we need

* Selected candidate signal events, sample purity

* The (reco to true migration): transitions events from reconstructed space to the
true space. We use improved D’Agostini iterative unfolding method to unfold events

e Selection efficiencies

W Queen Mary  Prabhjot Singh |50 =ElhE 22 March 2024 34
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Cross sections

B ZJ- Ui(N*(cos0,,T,, E,..)iPcos0,T,E,.p)

d cos HﬂdT,udEavail , G(COS 6’/4’ T,u’ Eavail)i(A COS Hu)i(AT//t)i(AEavail)iNtarget¢

l

vail W€ need

- For differential cross section measurements in 7, cos 6, and £,
* Selected candidate signal events, sample purity

* The (reco to true migration): transitions events from reconstructed space to the
true space. We use improved D’Agostini iterative unfolding method to unfold events

e Selection efficiencies

* |ntegrated beam flux, and number of target nucleons
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Cross sections

B ZJ- Ui(N*(cos0,,T,, E,..)iPcos0,T,E,.p)

d cos HﬂdT,udEavail , G(COS 6’/4’ T,u’ Eavail)i(A COS Hﬂ)i(ATﬂ)i(AEavail)iNtarget¢

l

« For differential cross section measurements in Tﬂ, COS 6’ﬂ, and £ we need

vail’
* Selected candidate signal events, sample purity

* The (reco to true migration): transitions events from reconstructed space to the
true space. We use improved D’Agostini iterative unfolding method to unfold events

e Selection efficiencies

* |ntegrated beam flux, and number of target nucleons

 Normalization by bin widths
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Systematic Uncertainties NOVA Simulation

* Flux is dominating systematics, Detecior Response 3 QR 5voce s Mo
followed by detector response | Shape only
(biggest contributor calibration)

Flux
9.9

* Neutrino cross section and neutron

uncertainties are also significant Sec s FS
I .5

 Shape-only shows that flux is
mostly a normalization systematics Neutron
while other uncertainties have a s
shape effect

Statistical
. 1.4
* Overall average fractional
uncertainty within 14%
Total
I .6
lllllllllllllllllllllll|Il|l|

O 2 4 6 8 10 12 14 16 18 20
Average Fractional Uncertainty (%)
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Results for the Triple Differential Measurements
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GENIE Comprehensive Model Configurations (CMC)

GENIE CMC Initial State QE MEC  RES/Coh DIS
Interactions
GENIE 3.0.6 Local Fermi | Valencia + Z- | Valencia| Berger- Bodek- hN semi-classical
(Base Model) Gas (LFG) expansion Sehgal | Yang (BY) | intranuclear cascade
(G18_10;_00_000) (BS) + Pythia mode
G18 10a 02 1la LFG Valencia Valencia BS BY hA2018
GI8 10a 02 11b LFG Valencia Valencia BS BY hA2018
G21 _11a_00_000 LFG SuSAv?2 SuSAv?2 BS BY hA2018
AR23 201 02 11b Spectral Valencia SuSAv2 BS BY hA2018
(DUNE) function
LFG

Special thanks to Kevin Vockerodt, and Colin Weber for generating GENIE CMC predictions

W QueenMary  Prabhjot Singh S 22 March 2024 39

University of London




Data Results: 0 < E, .., < 100 MeV

First £, bin is enhanced

in QE, and MEC interactions

Genie 3.0.6 out of the box is
under-predicting data at
forward angle angles and

higher TM

cross section (x 10°)

Genie predictions tuned to
NOvVA-data are able to
model data because NOVA
tune iIs MEC enhanced

\aQ_s' Queen Mary

University of London

QE

(%)

(%0)

MEC RES DIS Others
(%0)

(%0)

Events: 48%

(%0)

94 | S04 | 44 1961 02 | = NOvA Preliminary
aof 000 <cos), <0.743 0.74 <cosd, <0.80 f 0.80 < cos, <0.85 f 0.85 < cosd), <0.88
60 E T t ‘
40}~ . +
20 . —ﬁ
600~ 0.88 < cos 6, < 0.91] 0.91 < cosd, < 0.94 | 0.94 < cos 6, < 0.96 | 0.96 < cosf, < 0.98 -
400 . R -
200/~ : B + -

- 1
800}-0.98 < cosd, < 0.99 + 0.99 < cos 6, < 1.00 - 0.00 < E 5y < 0.10 (GeV)

600 1 ]

B + Data
400
2003 GENIE Valencia QE and MEC
0 GENIE NOVA MEC-tuned
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Ratios GENIE CMC to Data Results: 0 < £ < 100 MeV

avdl
. 0]
* GENIE CMC ratios to data ((35 I\(Ac;,? ?c;,? ([?)},S; O;t&e)rs
are useful to draw 59.4 | 354 | 44 (06| 0.2 NOVA Preliminary
conclusions about the 157050 <cos§, <074 0.74 <cos0, <00 I 0.80 < cos), < 085 ] 085 <cosf, <0.88
performance of different = o ! | '
interaction models = -};;; """""""""""""""""""""
0.5— —
* Though no model © 911 09 Toos, <004 T
reproduces our a
measurement but the S
SuSA-v2 model for QE S o 1 ! |
agrees better than the & /57098 <cos, <099\ 0.99 <cosf, < 1.00] ‘%::I?;W%*s;:;l’-""IGEV). .
Valencia model for QE | i o
i _ 1 ' i QE-Valencia, MEC-Valencia (G18_10a_02_11a)
e For MEC interactions, both .y O e M e 1y 5.0
Su S A_V2 and ValenC| ) T, (GeV) T, (GeV) QE-Valencia, MEC-SuSAv2 (AR23_20i)

performs the same
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Data Results: 100 < E ., - < 300 MeV

aval
QE MEC RES DIS Others Events: 22%
e In 100-300 MeV £, .1, (%) (%) (%) (%) (%)
there is a significant 2141182 [480184| 41 |  NOVA Preliminary
mixture of QE. MEC. and oof 0-50 < cosf, <0.74 1 0.74 < cos6, <0.80 1 0.80 < cosf, < 0.85 } 0.85 < cosf, < 0.88 _
RES interactions 155 “
10F —+
5 Ed
n_: , ! ' | ' | : ' ':I: : \ ; : : : ! : ;ZI: : 1 | : : | : : : : : : = : : ! ;I
'S 100—_0.88<cosé’ﬂ<0.91_--_ O.91<COSQ”<O.94_"_ O.94<coseﬂ<0.96 .96<cosHﬂ<O.9 -
e At high forward angles, f—(’
GENIE predictions, both = N
c |
tuned and un-tuned start T Lo ol TR L TR\ LA
_acti H 15010.98 < cosf, < 0.99 T 0.99 < cosd, < 1.00- 0.10<E < 0.30 (Ge
to over-estimate data ? 1500098 < cos |
g + Data
° GENIE Valencia QE and MEC

GENIE NOvA MEC-tuned
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Ratios GENIE CMC to Data Results: 100 < E_ - < 300 MeV
QE MEC RES DIS Others

* Same conclusions here (%) (%) (%) (%) (%)
that SuSA—vZ for QE Is 214|182 [480(84] 41 |  NOVA Preliminary
performing better than 10.50 < cos, <0.74 | 0.74 <cosf, <0.80 | 0.80 < cosf, < 0.85 [ 0.85 < cos®), < 0.88 !
Valencia for QE - 1 T 3

091 < cos0, < 0.94] 0.94 < cosf, <0.96 | 0.96 < cosd, < 0.98

qv]
_ © | [ _
* For MEG, both SuSA-v2, s R e
and Valencia show similar S -
performance S | :
\i \ 090 <cosf, < 1.00 | soee o
_________ ;_‘_'_'__‘—'%ir% ::: ;NS:: MEC tuned

QE-Val, MEC-Val, RES-BS, DIS-BY, FSI-hA (G18_10a_02_11a)

QE-Val, MEC-Val, RES-BS, DIS-BY, FSI-hA (G18_10a_02_11b)

QE-SuSAv2, MEC-SuSAv2, RES-BS, DIS-BY, FSI-hA (G21_11a_00_000)

T}1 (GeV) QE-Val, MEC-SuSAv2, RES-BS, DIS-BY, FSI-hA (AR23_20i)
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Data Results: 300 < £, < 600 MeV

avai
QE MEC RES DIS Others
e In 300-600 MeV £, ., (%) (%) (%) (%) (%)
phase-space is rich in RES 39 | 12 [680]220] 49 |  NOvA Preliminary
and DIS interactions with 15-0.50 < cos 6, <0.74 0.74 < cos 6, < 0.80 F 0.80 < cos 6, < 0.85 1 0.85 < cos 6, < 0.88 |
RES dominating 101 + i “ ‘

I S

088 <cosf, <091 ] 091 <cosf, <0.94 | 0.94< cosf, <0.96 | 0.96 < cosd, < 0.98

e Here everywhere GENIE 2 N 1 i __ _
predictions are c T R s I
overestimating data 5 | E‘qm%%

% 1 0.98 < cos HM <0991 0.99 < cos Hﬂ < 1.00 | 0.30 < E, < 0.60 (GeV)
A a0f I '
o | . Y~ | Tt D
” %j‘+‘+‘+‘% GENIE Valencia QE and MEC
— 5 : GENIE NOvA MEC-tuned
T, (GeV)
o
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Ratios GENIE CMC to Data Results: 300 < E_ - < 600 MeV

QE MEC RES DIS Others Events: 14%

(%) (%) (%) (%) (%)

59 | 1.2 960 1220] 49 |  NOvA Preliminary
15/-0.50 < cos6), <0.741 0.74 <cos), <0.80 | 0.80 < cosf, < 0.85 | 0.85 < cosd, < 0.88
:_|=I;. I ;—L‘_‘:‘: f -
| e I B = = T =
In the RES enhanced . P I
regions, GENIE tunes |

70.96 < cos 0, < 0.98

02_11a, and 02_11b are = t
performing better than all = P
: e - S =
zero tunes to describe RES %
Interactions in data o A . N F
o 10.98 < cosf, <0.99 N 0.99 < cos6, < 1.00 0:0.<E, g <00 (G
1.5 —— — + T ; Systsﬁ“ogitalga
SR = == GENIE NOVA MEC tuned
[ | P RES-BS, DIS-BY, FSI-hA (G18_10a_02_11a)
0 53_ 1 RES-BS, DIS-BY, FSI-hA (G18_10a_02_11b)
L : 5 : 3 RES-BS, DIS-BY, FSI-hA (G21_11a_00_000)
T, (GeV) T, (GeV) . RES-BS, DIS-BY, FSI-hA (AR23_20i)
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Data Results: 1 < E, <2 GeV

| QE MEC RES DIS Others Events: 5%
¢ 1-2 GeV L, ., region has (%) (%) (%) (%) (%)

only 5% sample of 01 | 0 [239]722] 3.8 NOVA Preliminary

selected events o  050<cosg,<074f  0.74<cosd, <0.80 F 0.80 < cos 6, < 0.85
1 50 Ed kS E
* This region is dominated E Ed HF
: : 0.5]- = + :
by the DIS interaction ™ , ﬁ R 0 P
— f  085<cosf, <08 F = 088<cosf, <091 = 091 <cosf, <094 -
» GENIE predictions are = % 1 T ‘_
within uncertainties to = i i T :
data A S DU SUN RN SUU R :

7 0.94 < cos 6, <0.961 0.96 < cos 6, < 0.98
n ol 1 N 1.00 < E, ,, < 2.00 (GeV)
O : 1 I
B 1% Mﬁ GENIE Valencia QE and MEC
o-— i 2 e 2
T, (GeV) T, (GeV)
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Ratios GENIE CMC to Data Results: 1 < E_ . < 2 GeV
QE MEC RES DIS Others

¢ 1-2 GeV L, ., region has (%) (%) (%) (%) (%)
only 5% sample of 01 | 0 [239]722] 3.8 NOvA Preliminary
selected events b 050<cosd, <0741 074 <cosf, < 0.80 | ~ 0.80 < cosf, < 0.85 -
S LT o T _
* This region is dominated : 1
by the DIS interaction o5 T o T l
o T 085<cos6, <088 | 0.88 < cos 6, < 0.91 0.91 < cos6, < 0.94
. . 4V I
GENIE predictions are o i — b= i b
within uncertainties to 2 | | i _
d ata 8 0'5__: T .—: N R T :
0 1.5 0.94 < cos6, <0.96 0.96 < cos6, <0.98 - 100<E._, <200 Ge¥
» Bodek-Yang + Pythia is T == | e
doing a good job In 1 : e —
mOdel I ng DIS 1 Tp (GeV) 2 1 T“ (GeV) 2 RES-BS, DIS-BY, FSI-hA (AR23_20i)

Interactions
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Neutrino Generators

Generators Initial State QE MEC  RES/Coh
Interactions
GENIE 3.4.0 Spectral Valencia | SuSAv2 BS BY hA2018
(2023) function
(DUNE) LFG
AR23 201_02 11b
NuWro 21.09.02 LFG Llewellyn- | Valencia | NuWro BY NuWro FSI model
(2022) Smith (LS) RES
model
NEUT 5.7.0 (2023) LFG Valencia | Valencia| BS/RS BY Custom semi-classical
Intranuclear cascade
GiBUU p3 (2023) | Modified | Dipole Form | Christy | MAID Data BUU transport model
LFG Factor, RPA
corrections

Special thanks to Kevin Vockerodt, and Colin Weber for generating various generator predictions
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Generators to Data Results: 0 < E,_, ., < 100 MeV

QE

 In the QE enhanced
regions, NuWro has a very
different shape and NuWro
IS the only one that is using
Llewellyn-Smith (LS)
models for QE interactions

 Both GENIE 3.4.0, and
NEUT are using Valencia
for QE, only there FSI tunes
are different and NEUTs
tune seems to be doing
better

e GiIBUU seems to be doing
a good job in modeling QE
In data

Prediction/Data

(%)
59.4

MEC RES DIS Others
(%) (%) (%) (%)
354 | 44 |06 | 0.2

Events: 48%

NOVA Preliminary

1.5_— T
e — i —
S T
0.5/ o

£0.50 < cosf, <0741 0.74 < cosd, <0.80 |

080<0089 <085 1 0.85 < cos ), <0.88 |

]}

----------------------------------- rﬂgﬁ-%{

]

"0.88 <cosd, <001 | 091 <cosg, <004 |

"0.96 < cos §, < 0.98

W Queen Mary Prabhjot Singh

University of London

'1 — > '1 — 2
(GeV) (GeV)
ETP Seminar

10.98 < cos6, <099 \ 099 <cosf, < 1.00|

aaaaaaaaaaa

bysts + Stats

GENIE: 3.4.0, (2023)

NuWro: 21.09.2, (2022)

NEUT: 5.7.0, (2023)

GiBUU: (2023)
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Generators to Data Results: 300 < £, < 600 MeV
QE MEC RES DIS Others

* In the RES rich regions, all %) (%) (%) (%) (%)
generators are performing 3.9 | 1.2 |68.022.0] 4.9 NOVA Preliminary
differently (050 < cos, <074 0.74 < cos, <080 [ 0.80 < cos 6, < 0.85 | 0.85 < cos, < 0.88
1 ---------------------------------------------------- L [ e o
- Fetr P

* GiIBUU is mostly under- |
predicting o -__j ‘

17096 < cos 0, < 0.98
* NEUT is generally closer to |
the data. It is using BY for
modeling DIS along with its

custom semi-classical
Intranuclear cascade tune

for FSI

Prediction/Data

0:30 < E,.y <060 (CeV)
Systs. + Stats
________ GENIE: 3.4.0, (2023)
T NuWro: 21.09.2, (2022)
-' NEUT: 5.7.0, (2023)
GiBUU: (2023)
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Generators to Data Results: 1 < £, <2 MeV

avdl
. 0)
* In the DIS rich regions, ((35 I\(Ac;,? Fé;,? (E),f) O;t(;)e)rs
GiBUU is mostly under- 0.1 | 0 [239|722] 38 NOVA Preliminary
predicting  050<cosf, <0741 074 <cosf, <080 ] 0.80 < cos 6, < 0.85 -
| —_‘—|_ ----------------------------------------------------------- ———'1 ------------------------------------------------------- -
» GENIE, NuWro, and NEUT X | ;; |
are using Bodek-Yang 05 1= o :
model for DIS but all three © T 0.85<cos0, < 0.88 T T 088 <c0s 0, < 0oT " 091 <c0s0, < 0.94 "
have different FSI tunes S T— Th— E
= T L
» GENIE’s hA2018 tune 32 - :
seems to be doing a better & o E——

aaaaaaaaaaa

Systs + Stats
— GENIE: 3.4.0, (2023)
NuWro: 21.09.2, (2022)
— NEUT: 5.7.0, (2023)
—— GiBUU: (2023)

job in modeling DIS
Interactions
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2 - Shape and Normalization

Shape onl
% GENIE 3.0.6 ooy

e Different generators seems
to show different level of

agreements in the 1, GENIE NOVA tuned

cost,, and E,,;

Space GENIE 3.4.0

3d

; phase

[ |
—
|
. )(2 are calculated using -
covariance matrices to NEUT
account the bin to bin —
correlations for different
generators NUWRO
e — |

e Overall NEUT seems to be
doing a better job In GiBU
modeling data in the overall e

phase-space 0 5 10 15 20 25
x2
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Single Differential E, and Q“ Measurements
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Data Results and Generator Predictions - E

NOVA Simulation

NOVA Preliminary NOVA Preliminary E,
- Shape and Normalization
T -39
! —+—— Data i i1'0 ™ I —9— Data -
GENIE Valencia QE and MEC - B . SEV’:""EO(ARZQ’—ZOLOO—OOO) 1 || | shapeonly
I b - N i
— GENIE NOvA MEC-tuned : B ——— NEUT o
. - . —— GiBUU
c B —_ 0.6
§ L - : B
S 3 — Qo — —— 1 1T -
Z B ; 3— —— 1 s
> B Z B
5 2 N g B L s OvA tuned I
5, B _+_ «E 21— . -
o|ui B = N 4.0
11— — O|u] |
5 = . B
=+ + I
N N S R Em‘
E | .‘4‘ L e S R A ‘p lllllllllllllllll -
= = 5 m
© 1 2 - n
<\% 1 I — ‘\-g L= RO
= f s [—
© 0.8 . ') I_:=:"7 -
5 naF S 0.8 - |
S 0.6 ' ' ' o "E
1 2 3 4 ol 0.6 . .
E, (GeV) : 1 2 3 4
E, (GeV)

 Atlow E , all generators are under predicting data

« GENIE 3.4.0, with QE-Valencia and MEC-SuSAv2 are
modeling data well according to the )(2
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Data Results and Generator Predictions - 02

NOVA Simulation

. . l [ Shape and Normalization
NOVA Preliminary NOVA Preliminary -
39 x10~** Shape only
><110| T 15_{ o —_— Data
15— —— Data . > ————————  GENIE (AR23_20i_00_000)
- GENIE Valencia QE and MEC i g e l
S GENIE NOvA MEC-tuned % ——— GiBUU 1 GENlea.o.s_
©
5 5 -
L - L 10 —
= 3 GENIE NOVA tuned
o o
g g -
> -]
< 4 -
> H < L n
3 8 GENIE 3.4.0
o~ P B lf
s g n
ke, ol
° @]
mnn s e i Y T AR NEUT
- " E 1.4 -
3 1.2F 8 s of B
R e—— fe
L == 5 1
k3] - = NuWRO
B 08 SR S — [
=085 1 15 2 25 5 06k -
&2 (Gev? 0.5 0.5 1 15 5 55
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 For Q2, GENIE, NEUT, and GiBUU, are under-predicting at low Q2

 NEUT, with QE-Valencia and MEC-Valencia are modeling data well
according to the )(2
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Conclusions

We have presented a high statistic Muon-Antineutrino Charged-Current Inclusive Cross
Section in the NOvVA Near Detector

Triple differential cross sections in 1, cos 6’”, and E_, . and single differential cross sections in
E and Q“ are reported

Available energy gives us a good handle of dealing with different interaction types

Current GENIE predictions are able to predict data results in the 0-100 MeV E_, ., region
where QE and MEC interactions are dominating. From E_, ., > 100 MeV, current GENIE

avai
predictions are not able to predict data results due to increase in resonance interaction

All other generators, show different level of agreement with data in different phase-
spaces

We are very excited about our new results and encourage neutrino-interaction model
builders to use our data (when released) for model building
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Backup
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Data Results: 0 < E

] < 100 MeV

aval
| QE MEC RES DIS Others Events: 48%

* GENIE CMC ratios to data (%) (%) (%) (%) (%) -

are useful to draw 504 | 354 | 4.4 | 06| 0.2

conclusions about the

. 1.
performance of different o1 0.98 < cos 9/4 <0.99
interaction models — Systs. + Stats

GENIE NOvA MEC tuned

QE-Valencia, MEC-Valencia (G18 10a_02 11a)
QE-Valencia, MEC-Valencia (G18 10a_02 11b)
QE-SuSAv2, MEC-SuSAv2 (G21_11a_00_000)
QE-Valencia, MEC-SuSAv2 (AR23_20i)

* Though no model
reproduces our
measurement but the
SuSA-v2 model for QE
agrees better than the
Valencia model for QE

e For MEC interactions, both
SuSA-v2 and Valencia
performs the same
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