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Abstract
By an analysis of field equations of the SU(2) Yang-Mills-Higgs system, we obtain the effective
field theory describing low energy interaction of BPS dyons and massless fields. This effective theory
manifests electromagnetic duality and broken scale symmetry, and reproduces the multimonopole
moduli space dynamics.

It is a fascination that non-singular magnetic monopoles arise as classical soliton solutions in certain
spontaneously broken Yang-Mills gauge theories[1]. These monopoles are extended objects with definite
mass and couple effectively in low energies to the electromagnetic fields. Recently, a number of exact
results have been obtained in a class of supersymmetric gauge theories by exploiting the electromagnetic
duality symmetry[2]. Magnetic monopoles relevant in this supersymmetric gauge theories are so called
BPS monopoles[3]. In the BPS limit, there is a Bogomol’nyi bound on the static energy functional
and we have degenerate static multimonopole solutions that saturate the bound. Originally this was a
semiclassical result at most; but, in the supersymmetric gauge theories, Witten and Olive[4] showed that
this result may continue to be valid even after quantum corrections are included.

To study the duality and other issues, various authors discussed the interaction of slowly moving BPS
monopoles, mainly following the work of Manton[5]. The central point is that the moduli space of static
N-monopole solutions is finite dimensional and possesses a metric coming from the kinetic energy terms
of the Yang-Mill-Higgs Lagrangian. He suggested that low energy dynamics of a given set of monopoles
and dyons may be approximated by geodesic motions on the moduli space. The metric for the two
monopole moduli space was determined by Atiyah and Hitchin[6]. More recently[7], the knowledge on
the metric has been used in theories with extended supersymmetry to show the existence of some of the
dyonic states required by the electromagnetic duality conjecture of Montonen and Olive[§].

While Manton’s approach is believed to give a valid approximate description, it deviates from the
viewpoint of modern effective field theory; it is not based on all relevant degrees of freedom at low energy.
Dynamical freedoms in Manton’s approach are restricted to collective coordinates of monopoles, but the
freedoms associated with photons and massless Higgs particles are also relevant at low energy. Instead of
looking into the dynamics of collective coordinates of all monopoles, we will here obtain our effective field
theory by studying how the collective coordinates of a single monopole get involved dynamically with
soft electromagnetic and Higgs field excitations in the vicinity of the monopole. This effective theory
can describe the low energy interaction of monopoles with on shell photons and Higgs particles, and
in the appropriate limit produces the result of Manton as well. Moreover, it has distinctive advantage
that underlying symmetries of the theory, the electromagnetic duality and spontaneously broken scale
invariance, are clearly borne out.

First we shall recall the basic construct of the BPS dyon solution in an SU(2) gauge theory spontaneously
broken to U(1). The Lagrangian density is (a = 1,2, 3)

L= —1GI Gy, = 5(Dud)a(D"6), 1)
where
GHY = QF AL — OV A + eeqpc Al AY, (2)
(Dpt)a = Ouda + e€ane Al ¢°. (3)
The field equations read
(DuG*)a = —e€ane(D"$) 0", (4)
(DuD*¢)a = 0. ()
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Without any nontrivial Higgs potential in the Lagrangian density, this is a classically scale-invariant
system. For this system, spontaneous symmetry breaking is achieved by demanding the asymptotic
boundary condition

|| = \/baba = f >0, asr — oo. (6)

The unbroken U(1) will be identified with the electromagnetic gauge group below.

The above system admits static soliton solutions in the form of magnetic monopoles (or, more
generally, dyons), the stability of which is derived from the topological argument. They will carry some
nonzero charges with respect to long-ranged fields.

To obtain static solutions to field equations (4)and (5) with the lowest possible energy M = f+/g> + ¢
for given g = F4nn/e (n: positive integer) and ¢ = gtan 3, it suffices to consider solutions to the first-
order Bogomol’'nyi equations[11]

Bi = Fcos f(Dig)?, Ef = FsinB(D;$)*, (Do¢p)® = 0. (7)

These are equations relevant to BPS dyons and for § = 0 reduce to the Bogomol’nyi equations for
uncharged monopoles. Actually all dyon solutions to (7), denoted as (¢ (r; 3), A%(r; 3), A&(r; 3)), can be
obtained from the static monopole solutions (¢%(r; 3 = 0), A%(r; 8 = 0)). This is achieved by the simple
substitution[13]

Qi_)a(r; ﬂ) = an(rcosﬂ; 0)7
(r; B) = cos BAY(r cos 3;0)],
&(r; B) = F sin 8% (r cos 3; 0). (8)
The n = £1 solutions to (7) with 3 = 0 are well-known[3]:
rj

Al (p:0) =€, (1 — —¥
a(r;0) 6‘Wer( sinh m,r”’

Myt

$a(r;0) = £7, f(cothmyr — ). (9)

myr
These describe BPS one-(anti-)monopole solution, centered at the spatial origin, with g = F47 /e and mass
M = gsf = 4w f/e. If the substitution (8) is made with these solutions, the results are the (classical)
BPS dyon solutions with g = F4n/e, ¢ = F4rtan /e and mass M = g,f = 4nf/(ecosf). Being a
Bogomol’nyi system, there are also static multi-monopole solutions satisfying (7). But, physically, they
may be viewed as representing configurations involving several of the fundamental n = 1 monopoles
described above. The latter interpretation is supported by the observation that the dimension of the
moduli space of solutions with g = F4mn/e is 4n [12]; this is precisely the number one would expect for
configurations of n monopoles, each of which is specified by three position coordinates and a U(1) phase
angle associated with dyonic excitations.

The basic idea of our approach can be captured by considering the low-energy effective theory of
massive vector particles in the BPS limit of SU(2) Yang-Mills-Higgs model. In the unitary gauge with
the Higgs fields aligned as ¢%(z) = da3(f + ¢(x)), the latter model is described by the Lagrange density

L= T By — L [(DFWY — D WP — 10,000 — (f + o) WHIW,

o2
4
where F,, = 0,A, — 0,4, is the electromagnetic field strength, and D,W, (= 9,W, + ieA,W,) the
covariant derivative of charged vector field. The Higgs scalar ¢, which is massless in the BPS limit, plays
the role of dilaton. When the energy transfer AFE is much smaller than the W-boson mass m,, = ef, the
above theory may be substituted by an effective theory with the action Seg, whose dynamical variables
consist of the positions X, (¢) of W-bosons and two massless fields A,, and ¢. Ignoring contact interactions
of ‘heavy’ W-fields and also relatively short-ranged magnetic moment interaction from (10), this low-
energy action Seg is easily identified, viz.,

1 1 1
Seff = /d4${1FuyF‘“j — iF‘“’(auA,, — 8,/14/1/) — 5 u(pa”@} + /dtLeff (11)

+ieFP W, w, + —w,fw, —w,tw,)(writwr —wriwe) (10)
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with Leg given by

L= Z{ (my+gsp Xn,t))\/1—X$L—qn[A0(Xn,t)—Xn(t)-A(Xn,t)]}, (12)

my

where ¢, = e and g; = = e > 0, denoting the electric and dilaton charges of the W-particle,
respectively. While we are eventually interested in the low energy dynamics, it is also usuful to keep the
full relativistic kinetic terms for particles and solitons.

From (12) we see that the low-energy dynamics of W-particles are governed by the force law (here,

—d
V.= 5X,)
V,
{my +9s‘p(xnat)}ﬁ = E(Xn, 1)+ Vi X B(Xp, 1) +9:H(X,, 1)/ 1- V3, (13)
“V¥n
where we have introduced the Higgs field strength H(z) = —Vp(z) together with the electric and

magnetic fields (E, B).

The above effective theory may also be used to derive the effective Lagrangian for a system of slowly
moving W-particles. This effective particle lagrangian results once we eliminate massless fields A,,(z) and
p(z) from the above effective Lagrangian by using their field equations in the near-zone approximation.
Assuming nonrelativistic kinematics for W-particles, we then find the slow-motion Lagrangian of the
form

1 (nm) 95 — nQm
L=— X’ XJ 14
329 + Z e |X X (14)

n,m
with the inertia metric
2
9ij (X) = mvénméij - ﬁ Onm E : | . — X | - |Xn — Xm| 6i]'
2 i j
dndm — g (X _X )(X] _X])

—— =5 1§ n m n m 1—6nm). 15
T X, — X { TR, - X ( ) (15)

One may discuss, for instance, low-energy scattering of two W-particles on the basis of this effective
Lagrangian.

We now turn to the study of low-energy dynamics involving BPS dyons, as dictated by the time-
dependent field equations of the Yang-Mills-Higgs system. Particularly important processes are those
in which a single BPS dyon interacts with electromagnetic and Higgs fields—they give most direct
information on the nature of effective interaction vertices involving these freedoms. Some of these
processes were previously analyzed by two of us[9, 10], and here we shall recall the results obtained
there.

The first case concerns an accelerating BPS dyon in the presence of a weak, uniform, electromagnetic
field asymptotically[10], viz., under the condition that

P my g (o,

r—00: |¢| — (Bo)i, |¢|E |¢|62¢> — (Hop)s, (16)

This generalizes the problem originally considered by Manton [13] some time ago. Due to the uniform

asymptotic fields present, the center of dyon is expected to undergo a constant acceleration, namely,

X (t) = Lat® (the acceleration a to be fixed posteriorly) in the reference frame with respect to which the

dyon has zero velocity at t = 0. To find the appropriate solution to the field equations (4) and (5), the
following ansatz has been chosen in Ref. [10]:

8 (x,1) = 3°(x'3 ),

- (EO)i7

(17)



with

U (x' 8) = ¢°(x's B) + I (x's B),  A}(x'; B) = A} (x's B) + ol (x'; B),

A§(x's B) = Fsin 6" ('; ) + ag (r'; ), (18)
where ' = r — X(t), the functions (¢%(r; 3), A¢(r; 3)) represent the static dyon solution given by (8)
(with ¢ = F4n/e and ¢ = gtan3), and the yet-to-be-determined functions (II%,a%) are assumed to be

"

O(a) (or O(By) or O(Eyp)). Terms beyond O(a) are ignored. Note that the functions (I1*,a.) will account
for the long-range electromagnetic and Higgs fields as well as the field deformations near the dyon core.

It then follows that the field equations (4) are fulfilled if the functions (TI?, aj;) satisfy the equations

BY = F(D; + a;)" (cos B¢" + tan Bad), (19)
(D;iD;ao)™ = —e® cos® Beapeerar °¢ o, (20)

where D = (D) yu_, 70, G = (GI%) 4u_, ja, and the suppressed dependent variable is r'.
From these equations and the condition (16), one finds that the acceleration a should have the value
given by
A f

Ma = ¢B E sHy, (M =——). 21
a=g¢gBo+¢Eo+g;Ho, ( ecos/j) (21)

Note that (21) is the equation of motion in the dyon’s instantaneous rest frame, and the corresponding
covariant generalization

d (M —gsX,H")V
("R
can also be secured by further considering the implication as the Lorentz boost of our ansatz (17) is
performed.

We are now ready to write down the action, which incorporates all of our findings on low-energy
processes involving BPS dyons. Noting that the results of our analysis for the dyons differ from those for

W-particles only by the presence of the electromagnetic duality symmetry, the desired low-energy action
is given by the form

) :g(Bo—VXEo)+q(E0+VXB0)+gSH0V1—V2. (22)

Seff

1 1 1
/d%{ZFWFW — 5F"(0uAL — 0, A,) - anaw}

N
+ /dt Z{ —(My + (gs)ne(Xy, 1)) \V 1- X%z,
— @A’ (X, t) =X - A(Xy, )] —gn[C° (X, ) =X,y - C(X,, )] } (23)

where C* = (C°, C), as a function of F*”, are defined by
CH(z) = —/d4x'(n 20) M, 2 )ny, FM (2)) + 0 Ay (). (24)

As one can easily verify, the above action is still invariant under the scale transformation. The desired
effective Lagrangian will result if the fields A#(x) and ¢(z) are eliminated from the action (23) by using
the above effective solutions:

1 1 X =X
L = _Z Mn‘l'_ ZMnxn_— Z (gs)n(gs)mf
2 167 |Xn Xm|
n n n7m(7én)
1 . .
+ D) Z (@ngm = gntm)(Xn—Xm) - w(Xy, Xpn)
n7m(7én)
167 % )((gs)n(gs)m qndm gngm) { |Xn_Xm| + |Xn — Xm|3
1 (95)n(9s)m —qnGm — gngm
=Dy X, —X | (25)
n7m(7én)
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Some comments are in order as regards the slow-motion effective Lagrangian derived above. If the
given system consists of BPS dyons with the same values of charges only (i.e., ¢, = ¢, g» = g and
(9s)n = Vg% + ¢® for all n), all the terms in (25) which are not quadratic in velocities cancel. This
is the case in which static multi-monopole solutions are possible, and for some given initial velocities
the dynamics is governed solely by the kinetic Lagrangian of the same form as found for slowly-moving
equal-charge W-particles.

Our approach, while being consistent with the moduli-space dynamics of Manton, can describe
low-energy interaction of oppositely-charged BPS dyon and also process involving radiation of various
massless quanta explicitly. Our discussion was entirely at the classical level, but, for an appropriately
supersymmetrized system, our effective theory might be generalized to have a quantum significance. The
electromagnetic duality and (spontaneously broken) scale invariance, which are manifest in our approach,
may play a useful role in such endeavor. It would also be desirable to make some contact with the results
of Seiberg and Witten[2]. There are some interesting related problems which require further study. Our
effective action is correct when all monopoles are separated in large distance compare with the core
size. If two identical monopoles overlap, the individual coordinates are not meaningful any more. We
can describe the low energy dynamics by the geodesic motion on the Atiyah-Hitchin moduli space. But
radiation, however weak it may be, should come out from this motion in the moduli space, including the
exchange of the relative charge between two identical monopoles. Our point particle approximation does
not capture this physics. It would be interesting to couple the full moduli space dynamics to the weak
radiation. The present effective field theory approach should be generalized to the case of full, N = 2
or N = 4, super-Yang-Mills system. Especially the spin effect including the electric and magnetic dipole
moments would appear. See Ref.[14] for the corresponding moduli-space description.

Finally, let us mention the recent work by the author and H. Min[16] where some interesting observation
was made as regards to the radiation reaction and the finite-size effect in the dynamics of the BPS
monopole and the duality of these effects against those of the W-particles.
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