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Abstract

By an analysis of �eld equations of the SU(2) Yang-Mills-Higgs system, we obtain the e�ective

�eld theory describing low energy interaction of BPS dyons and massless �elds. This e�ective theory

manifests electromagnetic duality and broken scale symmetry, and reproduces the multimonopole

moduli space dynamics.

It is a fascination that non-singular magnetic monopoles arise as classical soliton solutions in certain

spontaneously broken Yang-Mills gauge theories[1]. These monopoles are extended objects with de�nite

mass and couple e�ectively in low energies to the electromagnetic �elds. Recently, a number of exact

results have been obtained in a class of supersymmetric gauge theories by exploiting the electromagnetic

duality symmetry[2]. Magnetic monopoles relevant in this supersymmetric gauge theories are so called

BPS monopoles[3]. In the BPS limit, there is a Bogomol'nyi bound on the static energy functional

and we have degenerate static multimonopole solutions that saturate the bound. Originally this was a

semiclassical result at most; but, in the supersymmetric gauge theories, Witten and Olive[4] showed that

this result may continue to be valid even after quantum corrections are included.

To study the duality and other issues, various authors discussed the interaction of slowly moving BPS

monopoles, mainly following the work of Manton[5]. The central point is that the moduli space of static

N -monopole solutions is �nite dimensional and possesses a metric coming from the kinetic energy terms

of the Yang-Mill-Higgs Lagrangian. He suggested that low energy dynamics of a given set of monopoles

and dyons may be approximated by geodesic motions on the moduli space. The metric for the two

monopole moduli space was determined by Atiyah and Hitchin[6]. More recently[7], the knowledge on

the metric has been used in theories with extended supersymmetry to show the existence of some of the

dyonic states required by the electromagnetic duality conjecture of Montonen and Olive[8].

While Manton's approach is believed to give a valid approximate description, it deviates from the

viewpoint of modern e�ective �eld theory; it is not based on all relevant degrees of freedom at low energy.

Dynamical freedoms in Manton's approach are restricted to collective coordinates of monopoles, but the

freedoms associated with photons and massless Higgs particles are also relevant at low energy. Instead of

looking into the dynamics of collective coordinates of all monopoles, we will here obtain our e�ective �eld

theory by studying how the collective coordinates of a single monopole get involved dynamically with

soft electromagnetic and Higgs �eld excitations in the vicinity of the monopole. This e�ective theory

can describe the low energy interaction of monopoles with on shell photons and Higgs particles, and

in the appropriate limit produces the result of Manton as well. Moreover, it has distinctive advantage

that underlying symmetries of the theory, the electromagnetic duality and spontaneously broken scale

invariance, are clearly borne out.

First we shall recall the basic construct of the BPS dyon solution in an SU(2) gauge theory spontaneously

broken to U(1). The Lagrangian density is (a = 1; 2; 3)

L = �

1

4

G

��

a

G

a

��

�

1

2

(D

�

�)

a

(D

�

�)

a

(1)

where

G

��

a

= @

�

A

�

a

� @

�

A

�

a

+ e�

abc

A

�

b

A

�

c

; (2)

(D

�

�)

a

= @

�

�

a

+ e�

abc

A

b

�

�

c

: (3)

The �eld equations read

(D

�

G

��

)

a

= �e�

abc

(D

�

�)

b

�

c

; (4)

(D

�

D

�

�)

a

= 0: (5)

1

This work was supported in part by the Korea Science and Engineering Foundation through the SRC program of

SNU-CTP, and the Basic Science Research Institute Program under project No.BSRI-97-2425.

345



Without any nontrivial Higgs potential in the Lagrangian density, this is a classically scale-invariant

system. For this system, spontaneous symmetry breaking is achieved by demanding the asymptotic

boundary condition

j�j =

p

�

a
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! f > 0; as r !1: (6)

The unbroken U(1) will be identi�ed with the electromagnetic gauge group below.

The above system admits static soliton solutions in the form of magnetic monopoles (or, more

generally, dyons), the stability of which is derived from the topological argument. They will carry some

nonzero charges with respect to long-ranged �elds.

To obtain static solutions to �eld equations (4)and (5) with the lowest possible energyM = f

p
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for given g = �4�n=e (n: positive integer) and q = g tan�, it su�ces to consider solutions to the �rst-

order Bogomol'nyi equations[11]
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These are equations relevant to BPS dyons and for � = 0 reduce to the Bogomol'nyi equations for

uncharged monopoles. Actually all dyon solutions to (7), denoted as (
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The n = �1 solutions to (7) with � = 0 are well-known[3]:
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These describe BPS one-(anti-)monopole solution, centered at the spatial origin, with g = �4�=e and mass

M = g

s

f = 4�f=e. If the substitution (8) is made with these solutions, the results are the (classical)

BPS dyon solutions with g = �4�=e, q = �4� tan�=e and mass M = g

s

f = 4�f=(e cos�). Being a

Bogomol'nyi system, there are also static multi-monopole solutions satisfying (7). But, physically, they

may be viewed as representing con�gurations involving several of the fundamental n = �1 monopoles

described above. The latter interpretation is supported by the observation that the dimension of the

moduli space of solutions with g = �4�n=e is 4n [12]; this is precisely the number one would expect for

con�gurations of n monopoles, each of which is speci�ed by three position coordinates and a U(1) phase

angle associated with dyonic excitations.

The basic idea of our approach can be captured by considering the low-energy e�ective theory of

massive vector particles in the BPS limit of SU(2) Yang-Mills-Higgs model. In the unitary gauge with

the Higgs �elds aligned as �

a
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a3

(f + '(x)), the latter model is described by the Lagrange density
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covariant derivative of charged vector �eld. The Higgs scalar ', which is massless in the BPS limit, plays

the role of dilaton. When the energy transfer �E is much smaller than the W-boson mass m

v

= ef , the

above theory may be substituted by an e�ective theory with the action S

e�

, whose dynamical variables

consist of the positionsX

n

(t) of W-bosons and two massless �elds A

�

and '. Ignoring contact interactions

of `heavy' W-�elds and also relatively short-ranged magnetic moment interaction from (10), this low-

energy action S
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with L

e�

given by

L

e�

=

N

X

n=1

�

�(m

v

+g

s

'(X

n

; t))

q

1�

_

X

2

n

�q

n

[A

0

(X

n

; t)�

_

X

n

(t) �A(X

n

; t)]

�

; (12)

where q

n

= �e and g
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= e > 0, denoting the electric and dilaton charges of the W-particle,

respectively. While we are eventually interested in the low energy dynamics, it is also usuful to keep the

full relativistic kinetic terms for particles and solitons.

From (12) we see that the low-energy dynamics of W-particles are governed by the force law (here,
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where we have introduced the Higgs �eld strength H(x) � �r'(x) together with the electric and

magnetic �elds (E;B).

The above e�ective theory may also be used to derive the e�ective Lagrangian for a system of slowly

moving W-particles. This e�ective particle lagrangian results once we eliminate massless �elds A

�

(x) and

'(x) from the above e�ective Lagrangian by using their �eld equations in the near-zone approximation.

Assuming nonrelativistic kinematics for W -particles, we then �nd the slow-motion Lagrangian of the
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One may discuss, for instance, low-energy scattering of two W-particles on the basis of this e�ective

Lagrangian.

We now turn to the study of low-energy dynamics involving BPS dyons, as dictated by the time-

dependent �eld equations of the Yang-Mills-Higgs system. Particularly important processes are those

in which a single BPS dyon interacts with electromagnetic and Higgs �elds|they give most direct

information on the nature of e�ective interaction vertices involving these freedoms. Some of these

processes were previously analyzed by two of us[9, 10], and here we shall recall the results obtained

there.

The �rst case concerns an accelerating BPS dyon in the presence of a weak, uniform, electromagnetic

�eld asymptotically[10], viz., under the condition that
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This generalizes the problem originally considered by Manton [13] some time ago. Due to the uniform

asymptotic �elds present, the center of dyon is expected to undergo a constant acceleration, namely,

X(t) =

1

2
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2

(the acceleration a to be �xed posteriorly) in the reference frame with respect to which the

dyon has zero velocity at t = 0. To �nd the appropriate solution to the �eld equations (4) and (5), the

following ansatz has been chosen in Ref. [10]:
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From these equations and the condition (16), one �nds that the acceleration a should have the value

given by
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Note that (21) is the equation of motion in the dyon's instantaneous rest frame, and the corresponding

covariant generalization
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can also be secured by further considering the implication as the Lorentz boost of our ansatz (17) is

performed.

We are now ready to write down the action, which incorporates all of our �ndings on low-energy

processes involving BPS dyons. Noting that the results of our analysis for the dyons di�er from those for

W-particles only by the presence of the electromagnetic duality symmetry, the desired low-energy action

is given by the form
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As one can easily verify, the above action is still invariant under the scale transformation. The desired

e�ective Lagrangian will result if the �elds A
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(x) and '(x) are eliminated from the action (23) by using

the above e�ective solutions:
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Some comments are in order as regards the slow-motion e�ective Lagrangian derived above. If the

given system consists of BPS dyons with the same values of charges only (i.e., q

n

= q, g

n

= g and

(g

s

)

n

=

p

g

2

+ q

2

for all n), all the terms in (25) which are not quadratic in velocities cancel. This

is the case in which static multi-monopole solutions are possible, and for some given initial velocities

the dynamics is governed solely by the kinetic Lagrangian of the same form as found for slowly-moving

equal-charge W-particles.

Our approach, while being consistent with the moduli-space dynamics of Manton, can describe

low-energy interaction of oppositely-charged BPS dyon and also process involving radiation of various

massless quanta explicitly. Our discussion was entirely at the classical level, but, for an appropriately

supersymmetrized system, our e�ective theory might be generalized to have a quantum signi�cance. The

electromagnetic duality and (spontaneously broken) scale invariance, which are manifest in our approach,

may play a useful role in such endeavor. It would also be desirable to make some contact with the results

of Seiberg and Witten[2]. There are some interesting related problems which require further study. Our

e�ective action is correct when all monopoles are separated in large distance compare with the core

size. If two identical monopoles overlap, the individual coordinates are not meaningful any more. We

can describe the low energy dynamics by the geodesic motion on the Atiyah-Hitchin moduli space. But

radiation, however weak it may be, should come out from this motion in the moduli space, including the

exchange of the relative charge between two identical monopoles. Our point particle approximation does

not capture this physics. It would be interesting to couple the full moduli space dynamics to the weak

radiation. The present e�ective �eld theory approach should be generalized to the case of full, N = 2

or N = 4, super-Yang-Mills system. Especially the spin e�ect including the electric and magnetic dipole

moments would appear. See Ref.[14] for the corresponding moduli-space description.

Finally, let us mention the recent work by the author and H. Min[16] where some interesting observation

was made as regards to the radiation reaction and the �nite-size e�ect in the dynamics of the BPS

monopole and the duality of these e�ects against those of the W-particles.
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