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dilepton channel is challenging, due to the production of two neutrinos. In order to circumvent this
difficulty, the mT2 variable is used. The mT2 variable is used in pair production events with two missing
particles and represents a lower bound to the parent particles mass.
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Introduction

The standard model of particle physics is an attempt to answer one of the ancient questions of hu-
mankind: what are the basic components of matter?

In the standard model, matter is composed of quarks, leptons, and bosons. The top quark is part
of the standard model of Particle Physics. It was predicted by Kobayashi and Maskawa in 1973 [20]
and discovered by the CDF collaboration in 1995 [5]. The top quark is the heaviest known elementary
particle in the standard model, with a measured mass of mtop = 173.2 ± 0.9 GeV according to the latest
Tevatron measurement [36].

The value of the top quark mass is an unkown parameter of the standard model, i.e. it cannot be
obtained by theoretical calculations. As the heaviest elementary particle in the standard model, the top
quark produces a significant contribution to the electroweak radiative corrections. A precise measure-
ment set constrains on the hypothetical Higgs boson mass, as well as other particles predicted by physics
models beyond the standard model [31].

The objective of this thesis is to measure the top quark mass in the dilepton channel, using data
provided by LHC and the ATLAS detector. The method used is based on the mT2 variable (also known as
the stransverse mass) [8]. The mT2 variable is used mainly in exotic particle searches in pair production
events with two undetected particles and represents a lower bound to the parent particle mass. A tt̄ event
decaying through the dilepton channel would have the same signature, as each parent particle decays
into a b-jet, a lepton, and a neutrino. Therefore, the mT2 variable can be used in this decay channel.

The first chapter of this thesis is the theoretical background. At first, an introduction to the standard
model is given. Afterwards, the properties of the top quark are discussed in some details, including the
top dilepton decay channel. At the end of the first chapter, a discussion of the mT2 variable, the pleptons

T
variable, and data combination is presented.

The second chapter is devoted to the LHC and the ATLAS detector. A general description of the LHC
and the ATLAS detector can be found here.

The methodology is found in the third chapter. First, a description of the method used to measure the
top quark mass is given. Afterwards, the event selection is discussed. Finally, more technical details
about the computation of mT2, the computer tools used, the samples used, and the process used to obtain
the mT2 and pleptons

T distributions and calibration curves is shown.
Chapter four contains a discussion about the systematic uncertainties that affects the mass measure-

ment.
Finally, the analysis and results can be found in the fifth chapter. It contains many histograms and

plots that were produced using the methodology described in the former chapters. From the analysis of
these plots, the top quark mass is measured, as well as the uncertainty in its computation.

The last chapter contains the conclusions and recommendations. It summarizes the thesis’ main
results and points out possible ways to improve these results.
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Chapter 1

Theoretical background

1.1 The standard model of particle physics

This section is a compact summary of the standard model based on the information found in [15, 30].
The standard model is a theory of particles and their interactions. As a theory of particles, the standard

model states that all matter is composed of elemental spin 1
2 particles (fermions): quarks and leptons.

Each of these particles has its own antiparticle, which has the same mass but opposite charge 1.
As a theory of fundamental interactions, the standard model is a perturbative quantum field theory;

i.e., interactions are understood as an exchange of mediator particles. The mediators in standard model
are integer spin particles (bosons). These mediators can be split in three groups, which correspond to
the three interactions that standard model considers: strong, weak, and electromagnetic.

The standard model is considered an incomplete theory of fundamental interactions, as it does not
consider one of the four fundamental interactions: gravity. Nevertheless, this does not stop it from
being a very successful theory, as the contribution of gravity is negligible at the current energy scale
used in particle physics.

1.1.1 Leptons

There are six leptons in the standard model, divided in three generations. Each generation is composed
of a negatively charged lepton, and a neutrally charged neutrino named after its corresponding charged
lepton. The names and symbol are shown in Table 1.1.

Generation
Charged lepton Neutrino

Name Symbol Mass Name Symbol
First electron e 511.0 keV electron neutrino νe

Second muon µ 105.7 MeV muon neutrino νµ
Third tau τ 1.777 GeV tau neutrino ντ

Table 1.1: Lepton names and their respective symbols

The leptons are particles that are not affected by the strong interaction, but are affected by the other
interactions. All leptons can be found as isolated particles.

All negatively charged leptons have the same charge (−1), but different masses2. The neutrinos are
very difficult to detect: they are stable, neutral, and almost massless particles(mν < 2 eV); therefore,
neutrino detection must rely mainly on weak interaction processes.

1In this thesis, the term charge is to be understood as electrical charge.
2Lepton anti-particles have charge +1

3



Chapter 1 Theoretical background

1.1.2 Quarks

There are also six quarks in the standard model divided in three generations. Each generation has one
particle with charge + 2

3 and one particle with charge −1
3 . The names and symbol are shown in Table

1.2.

Generation
Charge +2

3 Charge − 1
3

Name Symbol Mass Name Symbol Mass
First up u 1.7 − 3.3 MeV down d 4.1 − 5.8 MeV

Second charm c 1.3 GeV strange s 101 MeV
Third top/truth t 173.2 GeV bottom/beauty b 4.2 GeV

Table 1.2: quarks names and their respective symbols

Unlike leptons, quarks are affected by the strong interaction, as well as the other interactions. Fur-
thermore, the charge is not an integer multiple of the electron charge, and no isolated quark has been
observed.

1.1.3 Mediators

The standard model considers that any fundamental interaction between two particles is done by the
exchange of a mediator. Each interaction has different mediators, as shown in Table 1.3.

Interaction mediators names symbol Charge Mass
Electromagnetic photon γ 0 0

Weak
W+ boson W+ +1 80.4 GeV
W− boson W− −1 80.4 GeV
Z0 boson Z0 0 91.2 GeV

Strong gluon (8 types) g 0 0

Table 1.3: mediators in the standard model

The electromagnetic interaction is probably the most known fundamental interaction. It is responsible
for the interaction between electrical charges, and keeps the electrons around the nucleus. An example
of an electromagnetic interaction is shown in Figure 1.1a.

The weak interaction is responsible for various decays, particularly the beta decay, where a neutron
decays into a proton, a lepton and its corresponding antineutrino (See Figure 1.1b). This interaction
allows quarks to decay into a lighter quark and leptons, a phenomenon that could not be explained
without the existence of the weak interaction.

The strong interaction is the force responsible for holding the nucleus together. The physical theory
that studies the strong interaction is called chromodynamics. In addition to the electric charge, there is
a "color charge" that acts at short distances. This interaction affects only quarks (and other gluons) and
keeps them confined. The existence of this interaction is used to explain why quarks hadronize, and
why a single isolated quark cannot be found. Figure 1.1c shows the process of gluon fusion and further
decay to a tt̄ pair.

4



1.2 The top quark

e− e−

e− e−

γ

(a) Electron-electron scattering (t-channel)

u u
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d
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d

e−

νe

W−
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(b) Beta decay

t

t

g

g

g

(c) Gluon fusion with tt̄ pair production

Figure 1.1: Examples of interactions studied in the standard model

1.2 The top quark

The top quark is the heaviest known elementary particle in the standard model. The world’s best mea-
surement of its mass is provided by the Tevatron. The latest Tevatron measurement assigns to the top
quark a mass of mtop = 173.2 ± 0.6(stat) ± 0.8(syst) GeV using 5.8 fb−1 of data [36].

Due to its huge mass, its lifetime is very short, of the order of 10−24 s [32]. This has two consequences:

• The top quark decays before it can be detected.

• The top quark decays before it can hadronize [29].

The first consequence means that instead of direct detection, its production has to be inferred from its
decay products.

In order to understand the second consequence, it is good to revise the concept of hadronization.
When a free quark or gluon is produced, it does not remain free due to color confinement. Instead, it
combines with quark antiquark pairs produced from the vacuum, producing hadrons. This process is
called hadronization. Hadronization produces highly collimated jets formed by many particles. As the
top quark decays before it can hadronize, tt̄ events have a characteristic signature, which helps in the
candidate selection process. This also also allow us to measure its charge, spin, polarization, and other
observables that cannot be measured easily in other quarks.

The top quark decays 99+9
−8 % to a W boson and a bottom quark. The bottom quark usually hadronizes

and forms a b-jet, while the W boson decays hadronically (68%) and or leptonically (32%) [16].
Therefore, for a tt̄ pair production, the tt̄ pair decays mainly in three channels, depending on how the

W boson decays. This is shown in Table 1.4.

5



Chapter 1 Theoretical background

Decay channel W decays Jets Leptons Probability
Full hadronic Both hadronically 4 0 0.46
Semileptonic One hadronically and one leptonically 3 1 0.44

Dileptonic Both leptonically 2 2 0.10

Table 1.4: tt̄ decay channels

Note that in an experiment, the number of jets and leptons shown in Table 1.4 is modified by other
physical processes, such as the initial state radiation, the final state radiation, pile-up effects, etc.

As this study describes a measurement of the top quark mass, it is interesting to show the results
obtained from other ATLAS studies, as well as other experiments like CMS, CDF, and D0. A summary
is shown in Table 1.5.

Experiment CDF and D0 [36] CMS [11] ATLAS [23] ATLAS [24]
Collision particles proton-antiproton proton-proton proton-proton proton-proton

Channel Many, combined Dilepton Lepton+jets Lepton+jets
Center-of-mass Energy 1.96 TeV 7 TeV 7 TeV 7 TeV

Luminosity 5.8 fb−1 36 pb−1 35 pb−1 0.70 fb−1

Mass measurement 173.2 GeV 175.5 GeV 166.4 GeV 175.9 GeV
Statistical uncertainty 0.6 GeV 4.6 GeV 4.0 GeV 0.9 GeV
Systematic uncertainty 0.8 GeV 4.6 GeV 4.9 GeV 2.7 GeV

Table 1.5: Different top quark mass measurements

1.2.1 The dilepton channel

The top dilepton channel is defined as follows: given a tt̄ pair production, each t quark decays into a W
boson and a bottom quark. The bottom quarks form two b-jets, while the W bosons decay leptonically.
This situation is depicted in Figure 1.2.

l−

ν l

νl

l
+

b

b

W−

W+

t

t

g

Figure 1.2: Feynman diagram for the top dilepton channel

For decays into electrons or muons, the events give a clear signature: two leptons, two jets, and
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1.3 The mT2 variable

missing transverse momentum3.
If the W decays into a tau, the situation is different. Due to the high mass of the tau, the tau has a very

short lifetime, and therefore it decays before it can be directly observed. The tau decays most of the
times hadronically (65%). But when they decay leptonically(35%), the final signature looks the same as
the decay into electrons or muons. There is no way to determine whether the electron or muon comes
directly from the W boson decay or from a tau decay.

Therefore, depending on the final signature, the top dilepton channel is subdivided into three decay
modes, shown in Table 1.6.

Decay mode Symbol Final signature
electron-electron ee two electrons, two jets, missing transverse momentum
electron-muon eµ one electron, one muon, two jets, missing transverse momentum
muon-muon µµ two muons, two jets, missing transverse momentum

Table 1.6: Top dilepton channel decay modes

Note that in all cases, the electrons or the muons could have been actually produced by a tau decay,
rather than from a W decay.

1.3 The mT2 variable

The mT2 variable, also known as the stransverse mass, is a kinematic variable used in pair-production
events where each parent particle decays into visible particles and one undetected (invisible) particle [22,
8]. The top dilepton channel is an example of such a decay (See Figure 1.2).

The motivation to use the mT2 variable to measure the top quark mass is the fact that mT2 depends on
the parent particle mass. As a matter of fact, it represents a lower boundary to the parent particle mass.
The proofs and further discussions on this property can be found in [8, 12].

Formally, the mT2 variable can be defined as follows [3]:

mT2(minvis) = min
~p(1)

T , ~p(2)
T

[
max

[
mT (minvis, ~p

(1)
T ),mT (minvis, ~p

(2)
T )

]]
(1.3.1)

where

~p(1)
T + ~p(2)

T = ~pmiss
T (1.3.2)

mT (minvis, ~p
(n)
T ) =

√
m2
vis + m2

invis + 2(Evis
T Einvis

T − ~pvisT · ~p
(n)
T ) (1.3.3)

such that all the visible and invisible particles in Eq. 1.3.3 come from the same parent particle.
Here, ET is the transverse energy4, m is the mass, ~pT is the transverse momentum, and ~pmiss

T is the
missing transverse momentum; vis represents the sum of all detected particles in each decay, and invis
stands for the undetected particle in each decay.

The definition might seem a little confusing and complicated at first sight, but its meaning and moti-
vation will soon become clear, as we apply the mT2 variable on the top dilepton channel.

3Defined in appendix A
4Defined in appendix A
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Chapter 1 Theoretical background

1.3.1 The mT2 variable in the top dilepton channel

As mentioned in Subsection 1.2.1, the top dilepton channel signature is two leptons, two jets and missing
transverse momentum, where each parent particle produces one lepton (visible), one jet(visible) and one
neutrino(invisible). In this situation, the mT2 variable can be used.

When only one neutrino is produced, its transverse momentum can be associated with ~pmiss
T . But when

two or more neutrinos are present, the invisible particles transverse momentum cannot be inferred from
~pmiss

T individually. In this case, ~pmiss
T is associated with the vectorial sum of the transverse momentum

of all invisible particles. For the dilepton channel, this requirement is set with the constrain shown in
Eq. 1.3.2, where the superscripted number identifies which neutrino is considered. For the sake of
argumentation, let us consider the first one coming from the top quark, and the second one coming from
the antitop quark.

Considering the neutrinos mass negligible, the invisible mass term in Eq. 1.3.3 is zero. Furthermore,

Einvis
T = ||~pinvis

T || (1.3.4)

The values tagged with vis can be deduced from the visible particles four-momentum, defined as:

P(n)
vis = P(n)

lepton + P(n)
b-jet (1.3.5)

For the invisible particles, things are not that straightforward. As stated before, the values for ~p(n)
T

cannot be measured directly. Instead, their values are asigned according to Eq. 1.3.1 subject to the
constrain given by Eq. 1.3.2.

In order to understand Eq. 1.3.1, a more detailed discussion on its components is needed. Eq. 1.3.1
states that the mT2 variable is the minimum value of the maximum between two mT distributions. Figure
1.3 shows how mT behaves with ~p(n)

T . In the dilepton channel, the invisible particles are neutrinos, and
we can consider ~p(1)

T = ~pνT . For two given mT distributions, they can either intersect or not intersect.
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Figure 1.3: mT distribution

• If they do not intersect (Figure 1.4a), the maximum between the two mT distributions is the same
as the mT distribution that has the higher mT value at every point (colored surface).
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1.4 Leptons transverse momentum norm

• If they do intersect (Figure 1.4b). the maximum between the two mT distribution is a surface
formed by the points with the higher mT value.
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Figure 1.4: mT distribution possible configurations

Given the solution surface for the maximum between two mT distributions, the mT2 value is given by
the minimum mT value on this solution surface.

Note that ~p(1)
T and ~p(2)

T are not independent. Therefore, the minimization is made varying one of them
and using Eq. 1.3.2 to obtain the other. This means that the two mT values in Eq. 1.3.1 can be obtained
as a function of ~p(1)

T (or ~p(2)
T ).

If the mass of the invisible particle is unknown, a trial mass value is used. An interesting feature of
mT2 arises in this case, as the mT2 distribution on this trial mass shows a kink structure when the trial
mass value is close to the invisible particle’s real mass value.

1.4 Leptons transverse momentum norm

The norm of the transverse momentum of the leptons in the dilepton channel is defined as the norm of
the vectorial sum of the transverse momentum of each lepton taking place in the event. That is:

pleptons
T = ‖~p(lep1)

T + ~p(lep2)
T ‖ (1.4.1)

The dependence of this quantity with the particle’s top mass is obvious: when a particle decays, its
energy is used to produce the new particles and their momenta. If the number of particles produced is
fixed (by choosing a given channel), then a more massive particle would produce particles with higher
momenta, and, in this particular case, the leptons would have in average a higher transverse momentum.

The dependency of pleptons
T with the parent mass makes it useful as a second top mass measurement.

As it will be seen later, this variable is used to improve the top quark mass measurement made with the
mT2 variable by means of a measurement combination5.

5See appendix B
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Chapter 2

Experimental setup

2.1 The LHC accelerator

LHC is the acronym for Large Hadron Collider, a circular superconducting accelerator located in the
border between France and Switzerland, close to the city of Geneva, Switzerland (See Figure 2.1).

Figure 2.1: LHC location and overall layout( c©2011 CERN)

The LHC is designed as a proton-proton collider. Each proton beam contains up to 2808 bunches,
where each bunch contains 1.15 × 1011 protons. The protons in each bunch can be accelerated up to
7 GeV, giving a total of 14 TeV center of mass energy. These bunches are brought into collision in four
collision points.

The protons are accelerated in a series of steps (For spatial reference, see Figure 2.2):

1. The protons are produced from a hydrogen source and accelerated to an energy of 5 MeV using
the Linear Accelerator (LINAC).

11
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2. These protons are sent to the Synchrotron Booster (BOOSTER) where they acquire an energy of
1.4 GeV.

3. The Proton Synchrotron (PS) accelerates them to an energy of 25 GeV.

4. To further increase the energy, the protons are accelerated in the Super Proton Synchrotron (SPS),
up to 450 GeV.

5. The protons are sent to the LHC ring, where radio frequency (RF) cavities accelerates the protons
up to 7 TeV.

Figure 2.2: Schematic view of CERN’s accelerator complex ( c©2011 CERN)

Currently, the LHC is running at half its designed beam energy (3.5 GeV each beam, for a total of
7 GeV center of mass energy), but it will eventually reach its designed energy after the technical stop
taking place on 2012. For complete details about the LHC, please read [9].

The LHC is considered a top quark factory, producing tt̄ pairs mainly by gluon fusion (See Figure
2.3). The gluons participating in the fusion are provided by the two colliding protons.
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Figure 2.3: Gluon fusion leading order Feynman diagrams
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2.2 The ATLAS detector

The 27 km long storage ring houses the LHC four main experiments: ATLAS, CMS, ALICE, and
LHCb (See Figure 2.2. Each one of those experiments are located in one of the four collision points.
ATLAS and CMS are general-purpose detectors, while ALICE is a heavy-ion detector [4], and LHCb is
devoted to precision measurements of CP violation and rare decays of B hadrons [7].

2.2 The ATLAS detector

This thesis uses data collected by the ATLAS detector (See Figure 2.4). ATLAS stands for A Toroidal
LHC ApparatuS, and it is a general-purpose detector for the LHC, designed to accomodate a wide range
of studies. It consists of four main components: the inner detector, the electromagnetic calorimeter, the
hadron calorimeter, and the muon spectrometer [2]. These provide information used for vertex location,
particle charge determination, jet reconstruction, ~pmiss

T determination, energy and momentum measure-
ment, and so on. Additionally to these four components, the trigger system decides which events are to
be recorded.

Figure 2.4: Overview of the ATLAS detector

In the following subsections, a brief description of the main components of ATLAS is given. For a
complete description of the detector, please refer to [1].

2.2.1 The inner detector

The inner detector provides information that allow the measurement of the momentum and charge of
each charged particle. It is located inside the central solenoid, which provides a 2 T magnetic field.

In order to achieve the high resolution needed for precision measurements, fine-granularity detectors
are needed. The highest granularity is obtained using pixel detectors. Nevertheless, the number of pixel
detectors introduced is limited, due to the material they introduce in the system as well as the high cost
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Figure 2.5: ATLAS Inner detector layout(ATLAS Experiment c©2011 CERN)

involved in their production. Therefore, the system consists only of 3 barrels and 5 end-caps disks on
each side covering the whole region with |η| < 2.5.

These three barrels and five disks are formed by approximately 1500 barrel modules and 700 disk
modules. Each pixel module is 62.4 mm long and 21.4 mm wide, and contains 46 080 pixel elements
with 16 readout chips.

The semiconductor tracker system (SCT) is located behind the pixel detectors. The SCT barrel is
formed by eight silicon microstrip detectors layers. Each silicon detector is 64.0 mm long and 63.6 mm
wide, containing 768 readout strips. The SCT system contains a surface of 61 m2, covered by silicon
detectors, with 6.2 million readout channels. The system consists of 4 barrel layers and 9 end-cap
wheels on each side, the former providing coverage for |η| < 1.4, and the later providing coverage for
1.4 < |η| < 2.5.

Both the SCT and the pixel system require very high dimensional and thermal stability. This re-
quirement is fulfilled by using materials with low thermal expansion coefficient, as well as a carefully
designed cooling system.

The transition radiation tracker (TRT) is the outermost layer in the inner detector. It provides more
tracking capabilities, as well as electron identification, providing further discrimination between elec-
trons and hadrons. The system is designed to be able to withstand high hit rates and a good performance
in pattern recognition is also achieved.

The barrel module is built with modules containing between 329 and 793 axial straws each, where
each straw has a diameter of 4 mm. This barrel covers the |η| < 0.7 region. The two end-caps are formed
by 18 wheels each, and covers the area corresponding to 0.7< |η| <2.5.

Figure 2.5 shows the spatial layout of these three systems.
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2.2 The ATLAS detector

2.2.2 Calorimeters

The ATLAS calorimeters are responsible of measuring the energy of the particles. Calorimetric methods
imply the total absorption of the particle energy in a bulk of materials, followed by the measurement of
the total energy deposition. Figure 2.6 shows the layout of the calorimeters in ATLAS.

Figure 2.6: ATLAS calorimeter layout (ATLAS Experiment c©2011 CERN)

Electromagnetic calorimeter

At high energies (E > 100 MeV), electrons lose their energy almost exclusively by bremsstrahlung
radiation, while photons lose their energy in electron-positron pair production. These two processes feed
each other, producing electron-photon cascades, which are fundamental in electromagnetic calorimeters
functioning. The length scale of a shower is set by the radiation length, which depends on the calorimeter
material.

By measuring this cascade, the particle’s energy can be determined. This measurement is done by
interleaved active material. When the cascade’s electrons and protons go through the active material,
the material gets ionized. The level of ionization is then measured by collecting the charged particles on
electrodes.

The ATLAS electromagnetic calorimeter (EMCal) is a lead/liquid argon (LAr) detector with accor-
dion geometry. The lead plates are used as absorber, while the LAr is used as the active medium.

The EMCal is divided into a barrel part and two end-caps part. The barrel part covers the region
corresponding to |η| < 1.475, while the end-caps covers the region corresponding to 1.375 < |η| < 3.2.
The barrel is formed by two identical half-barrels, separated by a 6 mm gap. Each end-cap is divided
into two coaxial wheels, covering the regions given by 1.375 < |η| < 2.5 and 2.5 < |η| < 3.2 respectively.
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Hadron calorimeter

The hadron calorimeters works with the same principle as electromagnetic calorimeters, but the lon-
gitudinal development is determined by the average nuclear interaction length. The average nuclear
interaction length is much larger than the average radiation length; therefore, hadron calorimeters need
to be much larger than their electromagnetic counterparts.

When designing a hadron calorimeter, its thickness has to be considered, as it has to provide good
containment of hadronic showers and reduce punch-through into the next system.

The ATLAS hadron calorimeter is formed by three main components. A scintillating tile calorimeter
is used in the barrel region, that is |η| < 1.7. The hadron end-cap LAr calorimeter (HEC) covers the
region 1.5 < |η| < 3.2 Finally, the forward calorimeter (FCal) covers the range 3.1 < |η| < 4.1.

The barrel region is subdivided in two regions: the barrel (|η| < 1.0) and two extended barrels (0.8 <
|η| < 1.7). All three use iron as the absorber and scintillating tiles as the active material.

Each HEC consists of two independent wheels. The wheel which is closest to the interaction point is
made of 25 mm thick copper plates, while the other wheel is made of 50 mm thick copper plates. Each
wheel has 32 identical modules.

The FCal is designed to withstand a very high level of radiation. It consist of three sections: one made
of copper, and two made of tungsten. In each section, a metal matrix with regularly spaced longitudinal
channels is found. The inside of these channels is filled with concentric rods and tubes, and the space
between the rods and the tubes is filled with LAr, which is used as the sensitive medium.

2.2.3 Muon spectrometer

Muons are particles that easily go through the calorimeters. Therefore, a system that detects and mea-
sures muons is needed: the muon spectrometer.

The ATLAS muon spectrometer is located after both calorimeters, and its operation is based on the
deflection of muons using a magnetic field. By combining the signal from the spectrometer with the
signal from the tracker, the trajectory of a muon through the detector can be reconstructed. The charge
of the muon is determined from the curvature of the reconstructed trajectory.

The muon spectrometer contains high precision tracking chambers, as well as separate trigger. The
large barrel toroidal magnet provides the magnetic field needed for muon track bending in the |η| < 1.0
region. An end-cap magnet is inserted in each end of the large barrel toroid and provides the magnetic
field in the 1.4 < |η| < 2.7 region. In the transition region (1.0 < |η| < 1.4), the magnetic field is
provided by a combination of the barrel and the end-cap fields.

The muon spectrometer can be split in the following parts: the muon chamber, monitored drift-tube
chambers, cathode strip chambers, resistive plate chambers, and thin gap chambers. The location of
these elements are shown in Figure 2.7.

2.2.4 Trigger and data acquisition system

The data production rate at LHC is very high, but often the events are of no interest. Therefore, a trigger
system is used to quickly make decisions, in the "online environment", on whether the event should be
kept or dropped.

The ATLAS trigger system is based on three levels of online event selection, where each level refines
the decision made by the former level.

The level 1 trigger system must reduce the number of events starting from a bunch-crossing rate of
40 MHz to less than 75 MHz, based on measurements made with a reduced number of detectors.
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2.2 The ATLAS detector

Figure 2.7: ATLAS muon spectrometer parts(ATLAS Experiment c©2011 CERN)

The level 2 trigger system reduces this further to approximately 1 kHz, and uses the "region of inter-
est" data provided by the level 1 trigger. In order to make a decision, the level 2 trigger can, if needed,
access the data provided by all the detectors.

The level 3 trigger reduces the output rate by ten times, down to approximately 100 Hz, using offline
algorithms and methods adapted to the online environment.

A diagram showing the design of the trigger and data acquisition system is shown in Figure 2.8.

2.2.5 Event reconstruction

To illustrate how the signals received from various parts of the ATLAS detector are used to reconstruct
an event, the reconstruction of a top dilepton event (See Figure 1.2) candidate is given as an example.

Given a top dilepton event, the top quarks cannot be detected directly, as each of them quickly decay
to a W boson and a bottom quark.

As mentioned in Subsection 1.2.1, in the top dilepton channel the bottom quarks form two b-jets,
while the W bosons decay to a charged lepton and a neutrino.

The neutrinos will escape undetected, while the charged lepton will leave a charged track in the
tracking system. In order to measure the sign of a charged particle, the tracking system is placed inside
a 2 T magnetic field. This way, the sign of the charge can be determined from the track curvature.
Further information from the muon spectrometer helps to identify whether the lepton was an electron or
a muon.

If the lepton is an electron or positron, the electromagnetic calorimeter registers energy deposition in
a region coherent with the tracking system information. The hadron calorimeter should register little or
no energy deposition.

If the lepton is a muon or an antimuon, it will leave almost no energy on both the electromagnetic and
the hadron calorimeter, but the muon chambers should detect the presence of a particle that is coherent
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Figure 2.8: ATLAS trigger levels (taken from [1])

Figure 2.9: Event display of an ee channel dilepton event candidate [35]. (ATLAS Experiment c©2011 CERN)
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with the tracking system information.
On the other hand, the bottom quarks hadronize. When hadronization happens, many particles are

produced in a collimated way. Many of these particles also decay, forming more particles. Kinematic
constraints give these particles a preferred direction, given by the momentum of the hadronizing parent
particle. The group of all these particles is called a jet. If the track information on each particle produced
were to be known with perfect precision, it would be possible to trace all the particles in a jet back to
the particle that hadronized. But in practice the particle tracks precision is limited, and this limits our
ability to reconstruct and identify jets. Instead, those showers are considered as one object. In order to
identify the formation of jets, the anti-kt jet reconstruction algorithm is used [10].

From the former discussion, one can expect a jet signature to be complicated: the tracking system
would detect many particle tracks going towards a preferred direction, the electromagnetic calorimeter
and the hadron calorimeter would register a significant amount of energy deposition, and the muon
chambers might detect particles if muons are formed during the particle decays.

Figure 2.9 shows an event display for an ee channel dilepton event candidate. The electrons are
shown by the green and orange track, on the upper half of the detector. In the electrons’ direction, it can
be seen that the energy deposition in the electromagnetic calorimeter (green area), and that there is no
energy deposition in the hadron calorimeter (pink area). Also, notice on the lower half of the detector
the jet structure formed by the red tracks, and the energy deposition in both the electromagnetic and
hadron calorimeter.
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Chapter 3

Methodology

3.1 Method description

The general description of the method followed to compute the top quark mass is described as the
following series of steps:

• Find an observable which depends on the top quark mass

• Create a calibration curve from Monte-Carlo simulation samples with different top quark mass
input

• Measure the chosen observable in data and obtain the top quark mass value from the calibration
curve

• Consider the systematics effects that could modify the measurement

This thesis project uses the mean value of the mT2 distribution as the top quark mass dependent
observable, which is to be measured in the dilepton channel. Additionally, a second observable is used,
namely the mean value of the pleptons

T distribution in the dilepton channel.
Additionally to the computation of the top quark mass measurement and the systematics effects,

multivariable analysis is applied to minimize the systematic uncertainty. Furthermore, a second mass
measurement is made using the variable pleptons

T defined in Section 1.4 and merged with the measurement
obtained using mT2. This is done in order to reduce the jet energy scale uncertainty, which is the main
source of uncertainty.

3.2 Main background

As mentioned in Subsection 1.2.1, the signature of the tt̄ dilepton channel produces:

• Two leptons (electrons or muons)

• Two jets (from the b-jets)

• missing transverse momentum (from the neutrinos)

Unfortunately, the dilepton channel is not the only decay channel that produces such a signature. This
background comes mainly from the following processes [25]:

• Single top events

• Z+jets events
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• Diboson events

• Fake leptons

The first three events produce a signature with two leptons (See Figure 3.1). Additional jets can be
formed by gluon radiation. This could lead to a signature containing two leptons, and two or more jets.
These events also contain missing transverse momentum, either through neutrino production 3.1a, 3.1c,
through detector resolution, through detector mismeasurement, or through misreconstruction.

Events with fake leptons are events where a hadron is misidentified as a lepton. Therefore, an event
with one lepton and jets could be reconstructed as an event with two leptons and jets. This could lead to
the misidentification of a dilepton event.
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Figure 3.1: Examples of background proccesses

3.3 Event selection

In order to select dilepton events and reduce the background, the following selection cuts are ap-
plied [25]:

• There must be exactly two oppositely-charged leptons (ee, µµ, eµ).

• Each electron must have a transverse momentum1 of at least pT > 25 GeV, and each
muon must have at least pT > 20 GeV

1Defined in appendix A
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3.4 mT2 computation

• There must be at least two jets with pT > 25 GeV and pseudorapidity2 |η| < 2.5.

• The leptons invariant mass3 must satisfy mll > 15 GeV. This is used to reject the
backgrounds coming from bottom quark production and vector-meson decays.

• For events in the ee and µµ channels:

– ‖~pmiss
T ‖ > 60 GeV is required. This is used to reduce multijets background.

– The leptons invariant mass must be outside of a 10 GeV window from the Z mass,
i.e. |mll −mZ | > 10 GeV (mZ = 91 GeV). This is used to reduce the Z+jets events
background.

• For events in the eµ channel:

– The scalar sum of all selected leptons and jets energy4 (HT ) must satisfy HT >

130 GeV. This is used to reduce the Z+jets events background for this channel.

3.4 mT2 computation

The straightforward way to compute mT2 given a set of values is to apply minimization by varying one
invisible particle ~pT , and obtaining the second invisible particle ~pT from Eq. 1.3.2. This proccess may
take time, as it is a two dimensional scan on one of the invisible particle ~pT . Furthermore, the maximum
of two mT distributions is not always differentiable for every ~pT value, and these non-differentiable
points are located close to and at the minimum value. This means that derivative-based minimization
algorithms like MIGRAD cannot be used. Therefore, the calculation must be performed using more
computationally intensive algorithms, or using a different approach.

In this thesis, the mT2 variable is computed using the algorithm created by Cheng and Han [12].
This algorithm computes the mT2 value using a different approach. Instead of scanning on the invisible
particle ~pT two dimensional space, it tests values for mT2 directly.

The basic ideas behind the algorithm are shown below, and more detailed information can be found
in [12].

• For a given mT2 test value, kinematic considerations restrict the possible value for each invisible
particle. For each invisible particle, the allowed ~pT value is constrained to an elliptical region on
their respective px py plane.

• These two elliptical regions are not independent, due to Eq. 1.3.2. Therefore, the two elliptical
region can be put on the same px py plane using Eq. 1.3.2 as transformation function.

• If all the kinematic considerations are to be satisfied, then the two allowed ~pT elliptical regions
must overlap.

• The area of the elliptical regions increase monotonically with the mT2 test input value. Therefore,
the minimum is given by the mT2 value where the two elliptical regions start to overlap. This mT2
test value is equal to the final mT2 value.

2Defined in appendix A
3Defined in appendix A
4Defined in appendix A
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3.4.1 mT2 computation in the dilepton channel

The mT2 computation algorithm created by Cheng and Han [12] demands the following input:

• The missing transverse momentum ~pmiss
T .

• The energy and transverse momentum of the two visible particles.

• The mass of the invisible particle.

The value of the missing transverse momentum is obtained with the algorithm described in ap-
pendix A.

The energy and transverse momentum of the two visible particles are obtained according to Subsec-
tion 1.3.1, where the two highest pT jets are selected as the jets produced by the bottom quarks.

The invisible particles in the top dilepton channel are neutrinos. In my analysis, I consider the neutri-
nos to be massless.

A problem arises when computing the value for the visible particle using Eq. 1.3.5: the lepton-jet
pairing in a reconstructed dilepton event is not known a priori. To circumvent this problem, the mT2
value for both possible pairings is computed, and the pairing that returns the smallest mT2 value is
taken.

3.5 Computer tools

During this study, mainly two computer tools were used: ROOT and MiLiTo.

3.5.1 ROOT

ROOT is an open-source object-oriented data analysis framework written in C++, and maintained by
CERN [33]. As a data analysis framework, it is designed to help the physicist solve the data analysis
challenges in high energy physics. Nowadays, ROOT can be considered the core program for data
analysis in most CERN-related experiments.

ROOT provides a huge number of features and classes that makes data analysis an easier task. In
particular, the following features are important to this study:

• Data reading and storage: data and Monte-Carlo samples are provided using ROOT files. ROOT
files have several advantages including data storage and access optimization, file integrity checks
(provided by the TFile class), corrupted files recovery (provided by the TFile class), and support
for complex data structures (provided by the TTree class).

• Histogram analysis: ROOT is able to draw, edit, and analyse histograms in an easy and relatively
clean way. It provides support for one, two, and three dimension histograms using the classes
TH1, TH2, and TH3 respectively.

• Graph analysis: The ROOT class TGraphErrors provides tools that are useful for data points
analysis. These tools include built-in data error management, which allows the user to set each
data point with its respective uncertainty value. This is necessary in order to properly weight each
data point during the fitting process. Like the histogram classes, the graph analysis classes also
allow the user to draw, edit an analyse data in an easy way.
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• Four-vector computing: The TLorentzVector class in ROOT provides very useful tools that covers
practically most four-vector computations. These functions free the researcher from the burden
of having to program all these operations by himself.

• Other analysis tools: ROOT provides many features. Some functions that deserves especial men-
tion:

– Mean value of a histogram distribution.

– RMS of a histogram distribution.

– Integral of a histogram distribution.

– Correlation factor in a two dimensional histogram distribution.

– Built-in n-degree polynomial fitter.

– Histograms and graphs stacking.

The ROOT version used is 5.28.00.

3.5.2 MiLiTo

MiLiTo stands for MInimal Library for TOp studies. It is the main analysis software framework used in
our group.

It implements the large amount of recommendations and corrections from the ATLAS top reconstruc-
tion group in a collective and organized way, in order to provide a common framework that takes care
of these burdens at framework level. This allows the user-programmer to only deal with the problems
that are specific to his/her own research.

MiLiTo is built on SFrame (available at http://sourceforge.net/projects/sframe/) , which is a C++

ROOT-based framework devoted to particle physics analysis, allowing the user to easily run analyses on
a computing cluster.

MiLiTo provides built-in standard cutflows, including the standard cuts for dilepton channel discussed
in Section 3.3. It also provides built-in functionality to evaluate systematic uncertainties, including the
ones discussed in Chapter 4.

mT2 computation features were first included by Duc Bao Ta, and afterwards improved and adapted
by me to use the mT2 computation algorithm created by Cheng and Han (See Section 3.4).

The MiLiTo version used is the release 16, revision 961.

3.6 Samples

3.6.1 Monte-Carlo samples

The samples used can be divided in four groups: tt̄ samples, tt̄ mass variation samples, background
samples, and initial state radiation (ISR) and final state radiation (FSR) variation samples.

All tt̄ samples without mass variation have a nominal input top quark mass of 172.5 GeV. The standard
tt̄ sample of this analysis is the sample no. 105200. The other central mass value samples are used to
estimate systematic uncertainties. All central mass value samples used are listed in Table 3.1.

The tt̄ mass variation samples are all generated with MC@NLO+HERWIG and are listed in Table
3.2.

The background samples are samples corresponding to other events that can be misreconstructed as
dilepton events. They are listed in Table 3.3.

25



Chapter 3 Methodology

Input top quark mass (GeV) Sample Number Generators
172.5 105200 MC@NLO+HERWIG+JIMMY
172.5 105860 POWHEG+HERWIG+JIMMY
172.5 105861 POWHEG+PYTHIA+JIMMY
172.5 105205 ACER+PYTHIA

Table 3.1: Central mass value (172.5 GeV) tt̄ Monte-Carlo samples

Input top quark mass (GeV) Sample Number Generators
140 117207 MC@NLO+HERWIG+JIMMY
150 117208 MC@NLO+HERWIG+JIMMY
160 106203 MC@NLO+HERWIG+JIMMY
165 106208 MC@NLO+HERWIG+JIMMY

167.5 106205 MC@NLO+HERWIG+JIMMY
170 106201 MC@NLO+HERWIG+JIMMY
175 106206 MC@NLO+HERWIG+JIMMY

177.5 106207 MC@NLO+HERWIG+JIMMY
180 106202 MC@NLO+HERWIG+JIMMY
190 106204 MC@NLO+HERWIG+JIMMY
200 117205 MC@NLO+HERWIG+JIMMY
210 117206 MC@NLO+HERWIG+JIMMY

Table 3.2: Mass variation tt̄ Monte-Carlo samples

Background name Sample Number Generator
Single top 108340 - 108346 ALPGEN+JIMMY

Z+Jets (Z0 → ee) 107650 - 107655 ALPGEN+JIMMY
Z+Jets (Z0 → µµ) 107660 - 107665 ALPGEN+JIMMY
Z+Jets (Z0 → ττ) 107670 - 107675 ALPGEN+JIMMY
Z+bb (Z0 → ee) 109300 - 109303 ALPGEN+JIMMY
Z+bb (Z0 → µµ) 109305 - 109308 ALPGEN+JIMMY
Z+bb (Z0 → ττ) 109310 - 109313 ALPGEN+JIMMY

Diboson(ALPGEN) 107100 - 107111 ALPGEN+JIMMY
Diboson(HERWIG) 105985 - 105987 HERWIG

Drell-Yan (ee) 116250 - 116255 ALPGEN+JIMMY
Drell-Yan (µµ) 116260 - 116265 ALPGEN+JIMMY
Drell-Yan (ττ) 116270 - 116275 ALPGEN+JIMMY

Table 3.3: Background Monte-Carlo samples
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3.7 Computation of mT2 and pleptons
T distributions from samples

The ISR and FSR variation samples are tt̄ samples used to estimate the systematic uncertainty due to
our limited knowledge in the modelling of ISR and FSR. All these variation samples use the same input
events, but different ISR and FSR parameters in PYTHIA. They are listed in Table 3.4.

Name Sample Number Generator
Minimum ISR 117255 ACER+PYTHIA
Maximum ISR 117256 ACER+PYTHIA
Minimum FSR 117257 ACER+PYTHIA
Maximum FSR 117258 ACER+PYTHIA

Minimum ISR and FSR 117259 ACER+PYTHIA
Maximum ISR and FSR 117260 ACER+PYTHIA

Table 3.4: tt̄ Monte-Carlo samples with modified initial state radiation and final state radiation

The Monte-Carlo sample production used is MC10b, although MC10a samples were used for prelim-
inary analysis before the MC10b samples were available.

In order to compare with data, the Monte-Carlo samples luminosity is weighted down to the data
luminosity.

3.6.2 Data samples

The data used come from proton-proton collisions at 7 TeV, measured by the ATLAS detector. In order
to organize and separate different running time and conditions, the data samples are split in periods. The
data from 2011 are split in 12 periods, corresponding to the letters: A, B, D, E, F, G, H, I, J, K, L, M.

This study uses 2011 data from period B2 until period K, giving a total integrated luminosity of
2.047 fb−1. The details of these data samples are shown in Table 3.5.

Period
Date Run number Luminosity

Start Stop Start Stop (pb−1)
B2 2011-Mar-22 2011-Mar-24 178044 178109 11.27
D 2011-Apr-14 2011-Apr-29 179710 180481 152.23
E 2011-Apr-30 2011-May-03 180614 180776 42.04
F 2011-May-15 2011-May-25 182013 182519 124.51
G 2011-May-27 2011-Jun-14 182726 183462 459.95
H 2011-Jun-16 2011-Jun-28 183544 184169 240.35
I 2011-Jul-13 2011-Jul-29 185353 186493 304.84
J 2011-Jul-30 2011-Aug-04 186516 186755 212.21
K 2011-Aug-04 2011-Aug-22 186873 187815 499.97

Total 2011-Mar-22 2011-Aug-22 178044 187815 2047.37

Table 3.5: Data samples used in this study

3.7 Computation of mT2 and pleptons
T distributions from samples

MiLiTo is used to produce histogram files with the mT2 and pleptons
T distributions from the different

Monte-Carlo sample files. All histogram files from background samples (Table 3.3) are merged together
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into one total background (TotBg) histogram file. The TotBg histogram file is then merged with a tt̄
histogram file to produce a final signal+background (sbg) histogram file.

For simplicity, the following terminology and notation will be used:

• Given the TotBg histogram, the histogram produced by merging it with the histogram produced
from sample N, will be called the sbg(N) histogram.

• Unless explicitly stated as data histograms or data samples, the terms "sample" and "histogram"
will refer to Monte-Carlo samples and the histograms obtained from those Monte-Carlo samples
respectively.

3.8 Calibration curve and top quark mass value

The points in the calibration curve are obtained by extracting the value of an observable and its corre-
sponding statistical error from twelve sbg histograms corresponding to the twelve mass variation sam-
ples (Table 3.2).

Then a second degree polynomial curve is fit to these points using ROOT, in order to obtain the
calibration curve parameters. To obtain the top quark mass value, the quadratic formula is used as
follows:

mtop(p0, p1, p2,Y) =
−p1 ±

√
p2

1 − 4p2(p0 − Y)

2p2
(3.8.1)

where each pn is the calibration parameter corresponding to the n − th degree term coefficient, and Y
is the measured observable.

As an example, Figure 3.2 shows a calibration curve, which is obtained from the mass variation
Monte-Carlo samples (See Table 3.2), associating the mean value of the mT2 distribution to the corre-
sponding input top mass.
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Figure 3.2: mT2 calibration curve at truth level
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Systematic uncertainties

To ensure proper treatment of the systematic uncertainties, the ATLAS collaboration provides some
common tools. The estimation of my mass measurement systematic uncertainties is based on the ATLAS
top reconstruction group’s final recommendations for release 16 [37].

In order to determine the measurement’s systematic uncertainty, the following sources of systematic
uncertainties are considered.

• Systematic uncertainty from the fit of the calibration curve

• Objects1 systematic uncertainties:

– Jets

∗ Jet energy scale

∗ Jet energy scale additional pile-up uncertainty

∗ b-jet energy scale

∗ Jet reconstruction efficiency

∗ Jet energy resolution

– Muon

∗ Muon trigger

∗ Muon top-Id efficiency

∗ Muon reconstruction efficiency

∗ Muon momentum scale

∗ Muon momentum resolution

– Electrons

∗ Electron trigger efficiency

∗ Electron reconstruction efficiency

∗ Electron identification

∗ Electron energy scale

∗ Electron energy resolution

– Missing transverse momentum

∗ CellOut and soft jet uncertainty

1Defined in appendix A

31



Chapter 4 Systematic uncertainties

∗ Pile-up uncertainty

∗ Liquid argon problem

• Other systematic uncertainties:

– Monte-Carlo generator systematic uncertainty

– Parton shower and fragmentation model systematic uncertainty

– Initial and final state radiation modelling systematic uncertainty

4.1 Systematic uncertainty from the fit of the calibration curve

The fit of the calibration curve is affected by insufficient statistics in the Monte-Carlo mass variation
samples, and the use of a simplified fit model. In order to account for these systematic uncertainties, an
uncertainty associated with the calibration point fit is introduced.

To estimate this uncertainty, error propagation is used (Eq. B.0.7). Replacing Eq. 3.8.1 in Eq. B.0.7,
the uncertainty from the fit is given by:

σ2
mtop

=

2∑
i, j=0

[
∂mtop

∂pi

] [
∂mtop

∂p j

]
Vi j (4.1.1)

where λ has been replaced by mtop, given by Eq. 3.8.1, yi has been replaced by the fit parameters, pi,
and Vi j is the covariance matrix of the fit parameters.

The fit parameters covariance matrix is supplied by ROOT. Although the partial derivatives can be
computed analytically, in this study they are computed numerically, using:[

∂mtop

∂pi

]
=

mtop(pi + δ
2 ) − mtop(pi −

δ
2 )

δ
(4.1.2)

where mtop(pi + ε) is the result of Eq. 3.8.1 with the i-th fit parameter modified by +ε, while keeping
the other fit parameters constant. The Y value is obtained from the sbg(105200) distribution.

4.2 Systematic uncertainties related to jets

4.2.1 Jet energy scale uncertainty (JES)

The jet energy scale (JES) systematic uncertainty accounts for the jet energy calibration, and is the
dominant experimental uncertainty in this study.

To estimate the JES uncertainty, the jet energy is varied according to [17]. These recommendations
are implemented using the JESUncertaintyProvider package, provided centrally by the ATLAS collab-
oration [37]. this package returns a scale factor based on the measured jet ~pT and η values.

4.2.2 Jet energy scale additional pile-up uncertainty (JES pile-up)

The jet energy scale additional pile-up uncertainty (JES pile-up) accounts for the pile-up effects on the
jet energy. The pile-up effects are caused by LHC high instantaneous luminosity, which leads to many
proton-proton collisions almost at the same time. On average, there are 6 extra collisions additional to
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4.2 Systematic uncertainties related to jets

any signal processes during each bunch crossing in ATLAS [1]. This produce extra "pollution" in the
event that affects the measured jet energy.

The JES pile-up uncertainty depends on the jet ~pT and η values. The scale factors for this effect are
provided centrally by the ATLAS collaboration [26] and given in Table 4.1.

pT range (GeV) 0 < |η| < 2.1 2.1 < |η| < 4.5
20−50 0.05 0.07
50−100 0.02 0.03
> 100 0 0

Table 4.1: JES pile-up uncertainty scale factor dependence on the jet ~pT and η values

4.2.3 b-jet energy scale uncertainty (bJES)

The b-jet energy scale (bJES) systematic uncertainty accounts from the uncertainties in the modelling
of b-jets in the Monte-Carlo samples. It is only applied to jets that originate from a bottom quark
at truth level. If a jet does not originate from a bottom quark at truth level, no bJES uncertainty is
applied. The bJES scale factor depends on the b-jet pT and are also provided centrally by the ATLAS
collaboration [39]. These scale factors are presented in Table 4.2.

pT range (GeV) scale factor
20−40 0.025
40−80 0.020
80−210 0.017

210−600 0.011
> 600 0.0076

Table 4.2: bJES scale factor dependency on the b-jet pT

4.2.4 JES, JES pile-up, and bJES systematic uncertainty estimation

The contribution of the JES uncertainty, the JES pile-up uncertainty, and the bJES uncertainty to the top
quark mass measurement are computed simultaneously, where the scale factors of the JES, JES pile-up,
and bJES systematic uncertainties are summed in quadrature and applied to the corresponding jets.

Three different distributions (sbg(105200)) are produced:

• The first distribution is produced with no rescaling and is used as control sample.

• The second distribution is produced by scaling down the jet energies in both the background and
the tt̄ samples.

• The third distribution is produced by scaling up the jet energies in both the background and the tt̄
samples.

The observable value is measured from each sbg(105200) distribution and its corresponding mass
value is computed from the calibration curve, producing three mass measurements.

The mass measurement from the second and the third sbg(105200) distributions are compared with
the mass measurement from the first sbg(105200) distribution. Usually the results of these comparisons
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have opposite signs, and are taken as the positive and negative systematic uncertainty associated to JES,
JES pile-up, and bJES.

In the unusual case that both results are positive (or negative), the strongest contribution is taken
as the positive (or negative) systematic uncertainty, and the systematic uncertainty contribution on the
negative (or positive) sign is taken as zero.

This systematic uncertainty contribution is generally asymmetric.

4.2.5 Jet reconstruction efficiency

The jet reconstruction efficiency (JRE) systematic uncertainty accounts for the effect of the limited
efficiency of the used jet reconstruction algorithm. In this study, the jets are reconstructed using the
anti-kT algorithm. The efficiency of this reconstruction algorithm depends on the jet pT and its η value.

In order to estimate the systematic uncertainty contribution of this effect, jets are randomly removed
depending on the reconstruction efficiency corresponding to their given pT and η values. This proccess
is performed by MiLiTo using the package JetEfficiencyEstimator, provided centrally by the ATLAS
collaboration [18].

In order to estimate the JRE contribution to the total systematic uncertainty, two sbg(105200) are
created:

• The control sbg(105200) distribution is produced with no random jet removal.

• The modified sbg(105200) distribution is produced by removing jets randomly using the JetEffi-
ciencyEstimator package on each event.

The observable value is measured from each sbg(105200) distribution and its corresponding mass
value is computed from the calibration curve, producing two mass measurements. The difference be-
tween these two measurements is then symmetrized and used as the JRE systematic uncertainty estimate.

4.2.6 Jet energy resolution

The jet energy resolution (JER) addresses the experimental inability to perfectly measure the jet energy
in ATLAS. In order to estimate the JER contribution to the total systematic uncertainty, the energy of
each jet is smeared using a gaussian distributed random scale factor.

The smearing factor is computed by generating a gaussian distributed random number. The generating
gaussian distribution mean is zero, and its standard deviation is one. This number is multiplied by a scale
factor, which depends on the jet pT and η. This scale factor is given by the JetEnergyResolutionProvider
package, provided centrally by the ATLAS collaboration [19].

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JRE
systematic uncertainty estimation algorithm(Subsection 4.2.5).

4.3 Systematic uncertainties related to muons

4.3.1 Muon trigger efficiency

As the muon trigger has limited efficiency, a systematic uncertainty related to this limitation must be
considered. In order to estimate this value, each event is reweighted according to its muon content.
The reweighting scale factor is provided by the MuonSF package, produced by the ATLAS collabora-
tion [34].
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4.3 Systematic uncertainties related to muons

In order to estimate the systematic uncertainty, two modified sbg(105200) distributions are produced,
corresponding to up-weighting and down-weighting.

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES
systematic uncertainty estimation algorithm(Subsection 4.2.4).

4.3.2 Muon identification and reconstruction efficiency

The muon identification and reconstruction efficiency systematic uncertainty addresses our inability to
perfectly identify and reconstruct muons.

The muon identification and reconstruction efficiency contributions to the total systematic uncertainty
are estimated together, by reweighting each event twice: once for the muon reconstruction efficiency,
and once for the muon identification efficiency.

The muon identification efficiency is provided by the same package used in the muon trigger efficiency
systematic uncertainty estimation: MuonSF [37].

The muon reconstruction efficiency scale factor is provided by the MuonEfficiencyCorrections pack-
age [27], also provided by the ATLAS collaboration.

In order to estimate the systematic uncertainty, for each systematic uncertainty source, two modified
sbg(105200) distributions are produced, corresponding to up-weighting and down-weighting.

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES
systematic uncertainty estimation algorithm(Subsection 4.2.4).

4.3.3 Muon energy scale and energy resolution

The muon energy scale and energy resolution are correlated. They are both associated to the muons
~pT value. The estimation of the systematic uncertainty from these effects is done by smearing the
muons pT . The smearing using the package MuonMomentumCorrections, provided by the ATLAS
collaboration [28]. This package also provides the correlation matrix between the two components.

Contribution to the systematic uncertainty estimation

The muon energy scale and muon energy resolution correlation is taken care of by the MuonMomen-
tumCorrections. In order to estimate the contribution to the total systematic uncertainty [28], four
sbg(105200) are created corresponding to the smearing runs: MSUP, MSLOW, IDUP, IDLOW. The
options MSUP and MSDOWN smear the measurement from the muon spectrometer, while IDUP and
IDLOW smear the measurement from the inner detector.

The observable value is measured from each sbg(105200) distribution and its corresponding mass
value is computed from the calibration curve, producing four mass measurements. The half-difference
between the minimum and maximum mass value is symmetrized and taken as the estimated systematic
uncertainty:

σ2
mtop

=
m(MAX)

top − m(MIN)
top

2
(4.3.1)

where:
m(MAX)

top = max
[
m(MS UP)

top ,m(MS LOW)
top ,m(IDUP)

top ,m(IDLOW)
top

]
m(MIN)

top = min
[
m(MS UP)

top ,m(MS LOW)
top ,m(IDUP)

top ,m(IDLOW)
top

]
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4.4 Systematic uncertainties related to electrons

4.4.1 Electron trigger efficiency, reconstruction efficiency, and identification
uncertainty

The electron trigger efficiency, reconstruction efficiency, and the electron identification uncertainty are
estimated using the same concept. Nevertheless, these uncertainties are considered uncorrelated and
each of them are computed separately.

In order to estimate each contribution to the total systematic uncertainty, the events must be reweighted
taking into account the electrons in the event.

This reweighting factor depends on the systematic contribution being evaluated, the number of elec-
trons in the event, each electron’s energy, η value, and the measuring calorimeter cells position.

In order to estimate the systematic uncertainty, for each systematic uncertainty source, two modified
sbg(105200) distributions are produced, corresponding to up-weighting and down-weighting.

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES
systematic uncertainty estimation algorithm(Subsection 4.2.4).

4.4.2 Electron energy scale and energy resolution

The electron energy scale and energy resolution systematic uncertainty address issues related to the
electron energy measurement in ATLAS.

To estimate this systematic uncertainty, the energy of the electrons is scaled up or down. The scale
factor depends on the systematic analysis type, the electron energy, and the η value. They are calculated
with the EnergyRescaler package, provided by the ATLAS collaboration [37].

In order to estimate the systematic uncertainty, for each systematic uncertainty source, two modified
sbg(105200) distributions are produced, corresponding to scaling up and scaling down.

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES
systematic uncertainty estimation algorithm(Subsection 4.2.4).

4.5 Systematic uncertainties related to the missing transverse
momentum

There are four systematic uncertainty sources related to ~pmiss
T [37]: the cell-out systematic uncertainty,

the soft-jet systematic uncertainty, the pile-up systematic uncertainty for ~pmiss
T , and the liquid argon hole

problem systematic uncertainty. Except for the cell-out and soft-jet systematic uncertainties, which are
computed together and are 100% correlated, all the other systematic uncertainties are taken as uncorre-
lated.

As pile-up also affects the ~pmiss
T computation, a systematic uncertainty related to this has also to be

taken into account.
About the liquid argon hole problem [21]:

On April 30th 2011, 6 of the front end boards (FEBs) we lost due to a problem with Con-
troller Board in I15L. Unfortunately, this failure occurred after the production of the MC10
Monte Carlo and measures are required to fix this at the analysis level.

In terms of data samples, the 2011 data from period E to H are affected by this problem [14]. The
effects of this fix is a source of systematic uncertainty, and is described in [21].

36



4.6 Other systematic uncertainties

The TopMetTool package provided by the ATLAS collaboration is used to produce varied samples
that accounts for each of the listed systematic uncertainties. In order to estimate the systematic uncer-
tainty, this package rescales the ~pmiss

T value, either up-scaling or down-scaling it.
The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES

systematic uncertainty estimation algorithm(Subsection 4.2.4). It is applied separately on each block of
systematic sources (i.e. cell-out and shoft-jet simultaneously, pile-up in one run, and liquid argon hole
in another run).

4.6 Other systematic uncertainties

4.6.1 Initial and final state radiation

The systematic uncertainty associated with the initial state radiation (ISR) and the final state radiation
(FSR) measures the impact of our limited knowledge on the modelling of these phenomena. Although
the input values given to the Monte-Carlo generators that create the Monte-Carlo samples used are
believed to be a good approximation to reality, but many assumptions and simplifications are made
during the simulation. These assumptions and simplifications are sources of systematic uncertainties
and have be addressed accordingly.

Dedicated samples have been created to account for this problem, namely the ISR/FSR variation sam-
ples (Table 3.4). In order to estimate the systematic uncertainty [37], 7 sbg distributions are produced:

• sbg(105205): control sbg distribution

• sbg(117255): Minimum ISR sbg distribution

• sbg(117256): Maximum ISR sbg distribution

• sbg(117257): Minimum FSR sbg distribution

• sbg(117258): Maximum FSR sbg distribution

• sbg(117259): Minimum ISR and FSR sbg distribution

• sbg(117260): Maximum ISR and FSR sbg distribution

The observable value is measured from each sbg distribution and its corresponding mass value is
computed from the calibration curve. This amounts to a total of seven mass measurements.

The mass measurement from all distributions are compared (by subtraction) to the mass measurement
from the control sbg distribution. The most positive deviation and the most negative deviation are
considered, respectively, as the positive and negative systematic uncertainty. If all the deviations have
the same sign, the systematic uncertainty of the opposite sign is zero.

4.6.2 Monte-Carlo generator

The Monte-Carlo generator MC@NLO(+HERWIG) is used to produce the standard tt̄ sample in this
study, as well as all mass variation samples. In order to account for the differences and a possible bias
produced by choosing MC@NLO over another generator, a systematic uncertainty associated with the
Monte-Carlo generator is introduced.

In order to estimate this systematic uncertainty [37], two sbg(105200) distributions are produced:
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• The MC@NLO sample generated sbg distribution (i.e. the sbg(105200) distribution).

• The POWHEG sample generated sbg distribution (i.e. the sbg(105860) distribution).

Comparing the mass measurement calculated from the results of these two distributions estimates the
effect of replacing the MC@NLO generator by POWHEG (keeping HERWIG constant). Therefore, the
systematic uncertainty for the Monte-Carlo generator is estimated as:

∆m = ±|m105200 − m105860| (4.6.1)

where ∆m, m105200 and m105860 are the Monte-Carlo generator systematic uncertainty, the top masses
measured from sbg(105200), and sbg(105860) respectively.

4.6.3 Parton shower and fragmentation model (Parton/Fragmentation)

HERWIG(+MC@NLO) is the second component in the production of the standard tt̄ sample in this
study, as well as all mass variation samples. HERWIG generates the decay and parton shower in the
samples.

In order to account for the differences and a possible bias produced by choosing HERWIG over
another modelling tool, a systematic uncertainty associated to the parton shower and fragmentation
model is introduced.

The procedure to estimate this systematic uncertainty is completely analogue to the one used to es-
timate the Monte-Carlo generator contribution to the systematic uncertainty [37]. Two sbg(105200)
distributions are produced:

• The HERWIG sample generated sbg distribution (i.e. the sbg(105260) distribution).

• The PYTHIA sample generated sbg distribution (i.e. the sbg(105261) distribution).

Comparing the mass measurement calculated from the results of these two distributions estimates the
effect of replacing HERWIG by PYTHIA (keeping HERWIG constant) as decay and parton shower
model.

The estimation of the systematic uncertainty is similar to the estimation of the Monte-Carlo generator
systematic uncertainty, replacing sbg(105200) for sbg(105261).

4.6.4 Fake leptons

A fake lepton is an object that has been misreconstructed as a hard process lepton. Possible sources for
fake leptons include photons, pions, hadron decays, misreconstructed jets, and others.

To estimate the fake leptons rate, the FakesMacros package provided by the ATLAS Collaboration is
used [38]. The fakes estimation performed by this package uses the matrix method, which is described
in detail in [6].

The package also provides systematic uncertainty estimation features. This is done by changing the
normalization by 50 %, in order to account for mismeasurement of the fakes rate.

The algorithm to estimate the contribution to the total systematic uncertainty is analogous to the JES
systematic uncertainty estimation algorithm(Subsection 4.2.4).
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4.7 Optimization cuts

4.7 Optimization cuts

To reduce the effects of the systematic uncertainties described above, additional cuts are applied during
the dilepton selection process.

In order to find a good set of cuts, multivariate analysis was used. The variables used in the analysis
were: number of jets, leading lepton pT , sub-leading lepton pT , leading jet pT , sub-leading jet pT , ~pmiss

T ,
and UT .

The multivariate analysis consists of varying all the cuts in a systematic and ordered way. For each
cut variation, the systematic uncertainty is estimated. The number of cuts tested in each analysis is given
by:

Ncuts =

n∏
i=1

ai

where Ncuts is the number of cuts tested, n is the number of variables taking place in the analysis, and ai

is the amount of different values that the i-th variable takes during the analysis.
The multivariate analysis was made in a series of steps. For the leptons and jets pT cuts, the variation

was performed from pT < 25 to pT < 100 in steps of 5 GeV. For the UT cut, the variation was made
from pT < 0 to pT < 100 in steps of 10 GeV. The mT2 variable was varied from 210 GeV to 300 GeV
in steps of 10 GeV.

Based on this analysis, the following set of extra cuts was selected:

• Leading lepton pT higher than 40 GeV.

• Sub-leading lepton pT higher than 25 GeV.

• UT < 60 GeV.

• mT2 < 220 GeV.

This set of cuts was chosen based not only in the value of the systematic uncertainty estimation, but
also on the amount of events kept after the extra cuts, the goodness of the calibration curve fit, the
estability of the systematic uncertainty to variations in the cuts, and the number of cuts.

To avoid biased results, the whole analysis was made based only on Monte-Carlo samples.
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Analysis and results

5.1 mT2 histograms at truth level

In order to check whether there is a dependency between the mT2 variable and the Monte-Carlo samples
input top mass, some mT2 histograms were created using Monte-Carlo samples with different input top
mass at truth level. Information at truth level means that it is obtained directly from the event generator,
without applying any detector effect like detector efficiency, detector resolution, and so on. Therefore,
the events have perfect reconstruction and measurement.

To produce these histograms, no cuts are applied at all, as they are not needed. Instead, the events are
ensured to be a dilepton event at generator level.

In Figure 5.1, the mT2 histograms are shown. It can be seen that the mT2 value is being shifted to
the right as the input top mass increases. Note that each distribution features a sharp cut-off at the
value of the input top mass, confirming that it is indeed a lower boundary to the parent particle mass, as
mentioned in Section 1.3.
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Figure 5.1: mT2 histograms with different input top mass at truth level

From the mass variation Monte-Carlo samples (See Table 3.2), a calibration curve can be created
at truth level associating the mean value of the mT2 distribution to the corresponding input top mass,
shown in Figure 3.2.

Although this calibration curve is not useful in practice, it shows that there is a dependency of our
observable on the top mass, at least at truth level. This calibration curve has been fit with a second
degree polynomial. From Figure 3.2, we see that the second degree polynomial fits the points extremely
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well. Also note that the error bars have been magnified 10 times in order to be seen.

5.2 Mass measurement using mT2

In the previous section, the mT2 histograms at truth levels were shown. But in order to compare with
the data, mT2 histograms at reconstruction level are needed. Information at reconstruction level means
that the observables from each event are obtained after considering the possible detector effects that
may alter the event’s real values (truth value). These effects include event misreconstruction, detector
efficiency and resolution, particle identification, detector parts that are known to be disabled or have
lower quality, etc.

In order to produce these histograms, all the standard cuts (Section 3.3) and the optimization cuts
(Section 4.7) are applied.

In Figure 5.2, these mT2 histograms are shown. It can still be seen that the mT2 value is shifted
to the right as the input top mass increases, so the mT2 distribution depends on the input top mass at
reconstruction level. Note that the sharp cut-off at the value of the input top mass is not present anymore,
and a long tail is visible instead.
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Figure 5.2: mT2 histograms with different input top mass at reconstruction level

As in truth level, a calibration curve can be created at reconstruction level associating the mean value
of the mT2 distribution to the corresponding input top mass, as shown in Figure 5.3.

Parameter Value Error
p0 137.75 0.22
p1 0.4711 0.0082
p2 0.00088 0.00035

Table 5.1: mT2 calibration curve parameters

Again, the calibration curve is fitted with a second degree polynomial. The fit parameters are shown
in Table 5.1 and the covariance matrix is:
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Figure 5.3: mT2 calibration curve at reconstruction level

V =

 4.7 × 10−02 4.7 × 10−04 −5.2 × 10−05

4.7 × 10−04 6.7 × 10−05 −1.2 × 10−06

−5.2 × 10−05 −1.2 × 10−06 1.2 × 10−07

 (5.2.1)

It must be noted that in order to reduce the effects of the correlation between the parameters, the mass
value is displaced by −170 GeV during calculations. That is:

mcalibration = msample − 170 GeV (5.2.2)

where mcalibration is the mass input used to produce the calibration curve and msample is the nominal top
mass input of each sample.

In order to obtain the mass, the inverse function is used:

mmeasured = m f it + 170 GeV (5.2.3)

where mmeasured is the value of the mass measurement, and m f it is the mass value obtained by applying
Eq. 3.8.1, with Y given in GeV.

To check for consistency between Monte-Carlo simulation and data, a plot comparing their mT2 dis-
tribution is shown in Figure 5.4. The Monte-Carlo samples assume a top mass value of 172.5 GeV.

From the mT2 distribution in data (shown in Figure 5.4), the observable is measured to be:

< mT2 >= 139.01 ± 0.67 GeV (5.2.4)

Using the calibration curve fit, the top mass is computed to be:

mtop = 172.7 ± 1.4 GeV (5.2.5)
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Figure 5.4: Comparison between Monte-Carlo and data mT2 distribution

where the uncertainty shown is the statistical uncertainty, which is obtained using Eq. B.0.7 with the
information given in Eq. 5.2.1, Eq. 5.2.4, and Table 5.1.

5.3 Mass measurement using pleptons
T

The mass measurement using pleptons
T is analogous to the one using mT2. First, a calibration curve is

constructed using pleptons
T distributions at reconstruction level. In order to produce these pleptons

T distri-
butions, only the standard cuts (Section 3.3) are applied. Figure 5.5 shows two of them.

By associating the mean value of the pleptons
T distribution to the corresponding input top mass, the

calibration curve for pleptons
T is built. This is shown in Figure 5.6.

Parameter Value Error
p0 65.57 0.17
p1 0.1705 0.0060
p2 0.00084 0.00027

Table 5.2: pleptons
T calibration curve parameters

The fit parameters for this calibration curve are shown in Table 5.2 and the covariance matrix has the
value:

V =

 2.9 × 10−02 3.0 × 10−04 −3.2 × 10−05

3.0 × 10−04 3.6 × 10−05 −4.4 × 10−07

−3.2 × 10−05 −4.4 × 10−07 7.0 × 10−08

 (5.3.1)
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Figure 5.5: pleptons
T distributions with different input top mass at reconstruction level
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Figure 5.6: pleptons
T calibration curve at reconstruction level
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Chapter 5 Analysis and results

As in the measurement using mT2, the mass value is displaced by −170 GeV during calculations in
order to reduce the effects of the correlation between the parameters.

To check for consistency between Monte-Carlo simulation and data, a plot comparing their pleptons
T

distribution is shown in Figure 5.7. The Monte-Carlo samples have a input top mass of 172.5 GeV.
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Figure 5.7: Comparison between Monte-Carlo and data pleptons
T distributions

From the pleptons
T distribution in data (Figure 5.7), the observable is measured to be:

< pleptons
T >= 66.3 ± 1.1 GeV (5.3.2)

Using the calibration curve fit, the top mass is found to be:

mtop = 174.1 ± 3.0 GeV (5.3.3)

where the uncertainty shown is the statistical uncertainty, obtained using Eq. B.0.7 with Eq. 5.3.2, Eq.
5.3.1, and Table 5.2.

5.4 Measurement combination

In order to combine the top mass measurements obtained with mT2 and pleptons
T , an algorithm is needed.

This algorithm should take into account the statistical significance of each measurement, and the corre-
lation between the two methods.

The measurement combination could have been done with a two dimensional fit. Instead, the method
used to perform the measurement combination in this study is the least squares method1. This alternative
was chosen due to its computational simplicity.

1See appendix B
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5.5 Systematic uncertainty

In order to perform a combination with the least squares method, the correlation between the two
measurements have to be determined. This is done by dividing the tt̄ sample 105200 and all the back-
ground samples in 100 subsamples. Two mass measurements, one using mT2 and another one using
pleptons

T , are made on each subsample, and each mass measurement pair are registered.
The procedure described above produces 100 mass measurement pairs. These mass measurement

pairs are plotted in Figure 5.8, and correlation analysis is applied to calculate the correlation coefficient
between the two measurements.
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Figure 5.8: Correlation between the mass measurements using mT2 and pleptons
T

The computation of the correlation coefficient is done by ROOT, giving the value:

ρ = 0.17 (5.4.1)

Then, this value can be used to compute the weight given by Eq. B.0.6, obtaining:

w = 0.87 (5.4.2)

where the measurement using mT2 is considered the first measurement, and the measurement using
pleptons

T is considered the second measurement, and σi is the statistical uncertainty of the i-th measure-
ment.

Using Eq. 5.2.5, 5.3.3, and 5.4.2 on Eq. B.0.5, the combined top mass value is:

mtop = 172.9 ± 1.2 GeV (5.4.3)

where the uncertainty shown is the statistical uncertainty, obtained using Eq. B.0.8.

5.5 Systematic uncertainty

To estimate the systematic uncertainty, the methodology described in Chapter 4 is used for the mT2, the
pleptons

T , and the combined mass measurement.
The main sources of systematic uncertainty are shown in Table 5.3. The uncertainties coming from

other sources were below 1 GeV and are presented in a separate table Table 5.5.
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Chapter 5 Analysis and results

Description Estimated systematic uncertainty (GeV)
Name Option mT2 pleptons

T Combined

JES, JES pile-up, and bJES
Down −3.6 +2.2 −2.8

Up +3.6 −2.2 +2.8

Initial and final state radiation

ISR min. −2.5 -3.1 −2.6
ISR max. +0.9 +1.5 +1.0
FSR min. +1.4 −0.60 +1.1
FSR max. −2.1 −1.8 −2.0

ISR and FSR min. −2.0 −3.0 −2.2
ISR and FSR max. −1.6 +0.25 −1.3

Monte-Carlo generator — ±1.2 ±0.42 ±1.1
Parton/Fragmentation — ±0.40 ±1.4 ±0.52

Fake leptons
Down −0.12 +0.40 0.049

Up +0.71 +1.0 +0.74
Fit — ±0.47 ±1.0 ±0.42

Table 5.3: Main contributions to the systematic uncertainty

From these tables, the total systematic uncertainty for each measurement can be computed by sum-
ming all uncorrelated systematic uncertainties in quadrature. The results are summarized in Table 5.4.

Name
Contribution to the total systematic uncertainty (GeV)

mT2 pleptons
T Combined

Negative Positive Negative Positive Negative Positive
JES, JES pile-up, and bJES 3.6 3.6 2.2 2.2 2.8 2.8

ISR and FSR 2.5 1.4 3.0 1.5 2.6 1.1
Monte-Carlo generator 1.2 1.2 0.4 0.4 1.1 1.1
Parton/Fragmentation 0.4 0.4 1.4 1.4 0.5 0.5

Fake leptons 0.1 0.7 0.0 1.0 0.0 0.7
Fit 0.5 0.5 1.0 1.0 0.4 0.4

Other uncertainties 0.2 0.2 0.6 0.5 0.2 0.3
Total 4.6 4.2 4.2 3.4 4.0 3.4

Table 5.4: Summary of systematic uncertainties
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5.5 Systematic uncertainty

Description Estimated systematic uncertainty (GeV)
Name Option mT2 pleptons

T Combined
JRE — ±2.7 × 10−2 ±4.0 × 10−2 ±1.8 × 10−2

JER — ±1.3 × 10−1 ±4.5 × 10−1 ±1.7 × 10−1

Muon trigger efficiency
Down −5.0 × 10−2 −1.4 × 10−2 −4.5 × 10−2

Up +5.6 × 10−3 +2.0 × 10−4 +4.9 × 10−3

Muon identification Down −2.1 × 10−3 +2.2 × 10−3 −1.5 × 10−3

and reconstruction Up +2.1 × 10−3 −2.2 × 10−3 +1.6 × 10−3

MSLOW −1.8 × 10−2 −1.9 × 10−1 −4.0 × 10−2

Muon energy scale MSUP −7.1 × 10−2 +4.7 × 10−2 −5.6 × 10−2

and energy resolution IDLOW +2.4 × 10−2 −2.3 × 10−1 −8.8 × 10−3

IDUP +3.4 × 10−2 +1.8 × 10−1 +5.4 × 10−2

Electron trigger efficiency
Down +3.3 × 10−3 −2.0 × 10−3 +2.6 × 10−3

Up −3.4 × 10−3 +2.0 × 10−3 −2.7 × 10−3

Electron reconstruction and Down +1.9 × 10−2 −1.1 × 10−1 +2.4 × 10−3

identification efficiency Up −1.6 × 10−2 +1.0 × 10−1 −6.7 × 10−4

Electron energy scale
Down −6.1 × 10−2 −3.5 × 10−1 −1.0 × 10−1

Up +1.9 × 10−1 +5.9 × 10−1 +2.4 × 10−1

Cell-out and soft-jet effect on ~pmiss
T

Down +2.2 × 10−2 +6.1 × 10−2 +2.7 × 10−2

Up +1.9 × 10−2 −2.5 × 10−1 −1.5 × 10−2

Pile-up effect on ~pmiss
T

Down +1.0 × 10−2 +7.6 × 10−2 +1.9 × 10−2

Up +5.6 × 10−2 −2.3 × 10−1 +1.9 × 10−2

Liquid argon hole Down −1.9 × 10−1 −2.5 × 10−1 −1.1 × 10−1

jet cleaning effect on ~pmiss
T Up −3.0 × 10−2 −6.8 × 10−2 −3.1 × 10−2

Table 5.5: Other contributions to the systematic uncertainty
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Chapter 5 Analysis and results

5.6 Measurement summary

Summarizing the results from this chapter, the mass measurement using mT2 gives:

mtop = 172.7 ± 1.4+4.2
−4.6 GeV (5.6.1)

while the mass measurement using pleptons
T is:

mtop = 174.1 ± 3.0+3.4
−4.2 GeV (5.6.2)

Combining these two results, we obtain:

mtop = 172.9 ± 1.2+3.4
−4.0 GeV (5.6.3)
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Chapter 6

Conclusions and outlook

This thesis study a method to measure the top quark mass in the dilepton channel using the mT2 variable
with ATLAS data.

Applying this method on 2 fb−1 ATLAS data, a measurement of the top mass is made, giving a value
of 172.7 ± 1.4+4.2

−4.6 GeV. This measurement is dominated by the systematic uncertainty, with the jet
energy scale systematic uncertainty giving the strongest contribution.

The jet energy scale systematic uncertainty is reduced by combining the mass measurement using
mT2 with a mass measurement performed with pleptons

T . An improvement in the value of the systematic
uncertainty is achieved with this measurement combination, yielding a top quark mass value of

mtop = 172.9 ± 1.2+3.4
−4.0 GeV.

In order to further improve the quality of this measurement in the dilepton channel, many approaches
are suggested. The two most promising improvements are to perform optimization on each dilepton
mode separately, and the use of b-tagging.

Further suggestions include the use of stronger cuts that could help reduce the systematic uncertainty
on the measurement. With the ATLAS detector having collected 5 fb−1 so far, using stronger cuts
is a viable option that was not feasible during the analysis stage of this thesis. Lastly, the use and
combination of mass measurements using other observables can improve the final measurement.
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Appendix A

Basic concepts

ATLAS coordinate system

The ATLAS coordinate system is a right-handed coordinate system defined as follows:

• The origin is located at the interaction point.

• The X axis points towards the center of the LHC ring.

• The Y axis points upwards, i.e. against the direction of Earth’s gravitational force.

• The Z axis is along the beam direction, in a direction consistent with a right-handed coordinate
system.

Objects

An object is a particle or group of particles that is measured as one entity. The objects in this thesis are
photons, electrons, muons, and jets.

Transverse momentum (~pT )

In ATLAS, the transverse plane is the plane that is transverse to the beam, i.e. the XY plane. There-
fore, the transverse momentum is defined as the momentum in the XY plane, i.e. disregarding the Z
component of the momentum.

Missing transverse momentum (~pmiss
T )

Due to momentum conservation, the vectorial sum of all momenta of the objects taking place in an event
should be zero. But due to limited resolution, mismeasurements, and particles escaping without being
detected, the sum of the transverse momentum of all objects might be different from zero.

The missing transverse momentum is defined as the vectorial sum of the transverse momentum of all
photons, electrons, and jets.

Transverse energy (ET )

The transverse energy of an object is the energy computed taking the momentum along the beam direc-
tion as zero. That is:

ET =

√
m2 + p2

x + p2
y (A.0.1)
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Appendix A Basic concepts

Pseudorapidity (η)

The pseudorapidity is a one to one relationship between the angle between a given direction and the
beam, given by:

η = − ln
[
tan

θ

2

]
(A.0.2)

The pseudorapidity has some advantages over the angle with respect to the beam (θ). For example,
the difference between two pseudorapidities is invariant to boosts along the beam axis.

Leptons invariant mass (mll)

The invariant mass of two leptons is given by:

mll = P2 =

√
E2 − ~p2 (A.0.3)

where P is the sum of the four-momenta of the two leptons, E is the energy, and ~p is the three dimen-
sional momentum.

The scalar sum of all selected leptons and jets energy(HT )

The scalar sum of all selected leptons and jets in a dilepton event candidate is defined as:

HT = p(lep1)
T + p(lep2)

T + p( jet1)
T + p( jet2)

T (A.0.4)

where p(lep1)
T , p(lep2)

T , p( jet1)
T , and p( jet2)

T are the module of the transverse momentum of the first lepton,
second lepton, leading jet, and sub-leading jet respectively.
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Appendix B

Measurement combination

Two top mass measurements can be combined using the least squares method. The contents of this
section is based on [13], and a more detailed discussion can be found there. Here, only the results for
the particular case that concerns this thesis, (i.e. combining two measurements) will be given.

The least squares method is based in minimizing the following quantity:

χ2(λ) =

N∑
i, j=1

(yi − λ)(V−1)i j(y j − λ) (B.0.1)

where N is the number of measurements, yi represents each measurement, λ is the value of the combined
measurement, and V is the covariance matrix for the N measurements.

For two measurements(N = 2), the covariance matrix has the form:

V =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
(B.0.2)

where σ1 and σ2 are the standard deviations for the first and second measurement, and ρ is the correla-
tion between the two measurements.

Inverting this matrix, we obtain:

V−1 =
1

1 − ρ2

 1
σ2

1
−

ρ
σ1σ2

−
ρ

σ1σ2

1
σ2

2

 (B.0.3)

From Eq. B.0.1 and Eq. B.0.3, we obtain:

χ2(λ) =
1

1 − ρ2

 (y1 − λ)2

σ2
1

+
(y2 − λ)2

σ2
2

− 2
ρ(y1 − λ)(y2 − λ)

σ1σ2

 (B.0.4)

Deriving Eq. B.0.4 with respect to λ, and setting the result equal to zero, the critical value of λ is
obtained:

λ = wy1 + (1 − w)y2 (B.0.5)

where:

w =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2
(B.0.6)

In order to obtain the statistical uncertainty, it is only necessary to use error propagation:

σ2
λ =

N∑
i, j=1

[
∂λ

∂yi

] [
∂λ

∂y j

]
Vi j (B.0.7)
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Appendix B Measurement combination

where the numerical values for the yi are replaced after derivation.
Using Eq. B.0.5 and Eq. B.0.6 in Eq. B.0.7, an expression for the statistical uncertainty is obtained:

σ2
λ =

(1 − ρ2)σ2
1σ

2
2

σ2
1 + σ2

2 − 2ρσ1σ2
(B.0.8)

56



Bibliography

[1] ATLAS detector and physics performance: Technical Design Report. Technical Design Report
ATLAS. Electronic version not available. Geneva: CERN, 1999.

[2] G. Aad et al. ‘The ATLAS Experiment at the CERN Large Hadron Collider’. In: JINST 3 (2008),
S08003. doi: 10.1088/1748-0221/3/08/S08003.

[3] T. Aaltonen et al. ‘Measurement of the top quark mass in the dilepton channel using mT2 at
CDF’. In: Phys. Rev. D 81 (3 2010), p. 031102. doi: 10.1103/PhysRevD.81.031102. url:
http://link.aps.org/doi/10.1103/PhysRevD.81.031102.

[4] K. Aamodt et al. ‘The ALICE experiment at the CERN LHC’. In: JINST 3 (2008), S08002. doi:
10.1088/1748-0221/3/08/S08002.

[5] F. Abe et al. ‘Observation of Top Quark Production in pp Collisions with the Collider Detector at
Fermilab’. In: Phys. Rev. Lett. 74 (14 1995), pp. 2626–2631. doi: 10.1103/PhysRevLett.74.
2626. url: http://link.aps.org/doi/10.1103/PhysRevLett.74.2626.

[6] B Abi et al. Mis-identified lepton backgrounds to top quark pair production for Moriond 2011
analysis. Tech. rep. ATL-COM-PHYS-2011-144. Geneva: CERN, 2011.

[7] A. Augusto Alves et al. ‘The LHCb Detector at the LHC’. In: JINST 3 (2008), S08005. doi:
10.1088/1748-0221/3/08/S08005.

[8] Alan Barr, Christopher Lester and P. Stephens. ‘m(T2) : The Truth behind the glamour’. In:
J. Phys. G29 (2003), pp. 2343–2363. doi: 10.1088/0954-3899/29/10/304. eprint: hep-
ph/0304226.

[9] Oliver Sim Brüning et al. LHC Design Report. Geneva: CERN, 2004.

[10] Matteo Cacciari, Gavin P. Salam and Gregory Soyez. ‘The Anti-k(t) jet clustering algorithm’. In:
JHEP 0804 (2008), p. 063. doi: 10.1088/1126-6708/2008/04/063. eprint: 0802.1189.

[11] Serguei Chatrchyan et al. ‘Measurement of the tt̄ production cross section and the top quark mass
in the dilepton channel in pp collisions at

√
s =7 TeV. oai:cds.cern.ch:1354581’. In: (2011).

[12] Hsin-Chia Cheng and Zhenyu Han. ‘Minimal Kinematic Constraints and m(T2)’. In: JHEP 0812
(2008), p. 063. doi: 10.1088/1126-6708/2008/12/063. eprint: 0810.5178.

[13] G. Cowan. Statistical data analysis. Oxford science publications. Clarendon Press, 1998. isbn:
9780198501565. url: http://books.google.com/books?id=JhL2FiF3hO4C.

[14] Dealing with LAr hardware problems in Monte Carlo. 2011. url: https://twiki.cern.
ch/twiki/bin/viewauth/AtlasProtected/LArCleaningAndObjectQuality#Dealing_
with_LAr_hardware_proble.

[15] D. Griffiths. Introduction to Elementary Particles. New York, USA: John Wiley & Sons, 1987.

[16] K. Hagiwara et al. ‘Review of Particle Physics’. In: Physical Review D 66 (2002), pp. 010001+.
url: http://pdg.lbl.gov.

57

http://link.aps.org/doi/10.1103/PhysRevD.81.031102
http://link.aps.org/doi/10.1103/PhysRevLett.74.2626
http://books.google.com/books?id=JhL2FiF3hO4C
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/LArCleaningAndObjectQuality#Dealing_with_LAr_hardware_proble
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/LArCleaningAndObjectQuality#Dealing_with_LAr_hardware_proble
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/LArCleaningAndObjectQuality#Dealing_with_LAr_hardware_proble
http://pdg.lbl.gov


Bibliography

[17] Jet energy scale and its systematic uncertainty in proton-proton collisions at sqrt(s)=7 TeV in
ATLAS 2010 data. Tech. rep. ATLAS-CONF-2011-032. Geneva: CERN, 2011.

[18] Jet reconstruction efficiency. 2011. url: https://twiki.cern.ch/twiki/bin/viewauth/
AtlasProtected / TopJetReconstructionEfficiency # Jet _ reconstruction _
efficiency.

[19] JetEnergyResolutionProvider. 2011. url: https://twiki.cern.ch/twiki/bin/view/
Main/JetEnergyResolutionProvider.

[20] M. Kobayashi and T. Maskawa. ‘CP-Violation in the Renormalizable Theory of Weak Interac-
tion’. In: Progress of Theoretical Physics 49 (Feb. 1973), pp. 652–657. doi: 10.1143/PTP.49.
652.

[21] LAr Hole. 2011. url: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/
TopETmissLiaison_EPS#LAr_Hole.

[22] C.G. Lester and D.J. Summers. ‘Measuring masses of semiinvisibly decaying particles pair pro-
duced at hadron colliders’. In: Phys.Lett. B463 (1999), pp. 99–103. doi: 10.1016/S0370-
2693(99)00945-4. eprint: hep-ph/9906349.

[23] Measurement of the Top-Quark Mass using the Template Method in pp Collisions at root(s)=7
TeV with the ATLAS detector. Tech. rep. ATLAS-CONF-2011-033. Geneva: CERN, 2011.

[24] Measurement of the top quark mass from 2011 ATLAS data using the template method. Tech. rep.
ATLAS-CONF-2011-120. Geneva: CERN, 2011.

[25] Measurement of the top quark pair production cross section in pp collisions at ?s = 7 TeV in
dilepton final states with ATLAS. Tech. rep. ATLAS-CONF-2011-100. Geneva: CERN, 2011.

[26] MultijetJESUncertaintyProvider for Top. 2011. url: https://twiki.cern.ch/twiki/bin/
viewauth/AtlasProtected/MultijetJESUncertaintyProviderTop.

[27] Muon Monte-Carlo efficiency scale factors. 2011. url: https://twiki.cern.ch/twiki/bin/
viewauth/AtlasProtected/MCPAnalysisGuidelinesEPS2011#AnchorEfficiencies.

[28] Muon momentum scale offset and resolution smearing. 2011. url: https://twiki.cern.
ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales#Muon_momentum_scale_
offset_and_r.

[29] Lynne H. Orr. ‘Decay versus hadronization for top quarks produced in hadron colliders’. In: Phys.
Rev. D 44 (1 1991), pp. 88–98. doi: 10.1103/PhysRevD.44.88. url: http://link.aps.org/
doi/10.1103/PhysRevD.44.88.

[30] D.H. Perkins. Introduction to high energy physics. Cambridge University Press, 2000. isbn:
9780521621960. url: http://books.google.com/books?id=e63cNigcmOUC.

[31] Prospects for the Measurement of the Top-Quark Mass using the Template Method with early
ATLAS Data. Tech. rep. ATL-PHYS-PUB-2010-004. Geneva: CERN, 2010.

[32] Arnulf Quadt. ‘Top quark physics at hadron colliders’. In: Eur. Phys. J. C48 (2006), pp. 835–1000.
doi: 10.1140/epjc/s2006-02631-6. url: http://arxiv.org/abs/hep-ph/0507207.

[33] ROOT Users Guide 5.26. CERN, 2009. url: http://root.cern.ch/drupal/content/
users-guide.

[34] Scale Factors For Use in Rel 16 2011 analyses: EPS and beyond. 2011. url: https://twiki.
cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales.

58

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopJetReconstructionEfficiency#Jet_reconstruction_efficiency
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopJetReconstructionEfficiency#Jet_reconstruction_efficiency
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopJetReconstructionEfficiency#Jet_reconstruction_efficiency
https://twiki.cern.ch/twiki/bin/view/Main/JetEnergyResolutionProvider
https://twiki.cern.ch/twiki/bin/view/Main/JetEnergyResolutionProvider
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopETmissLiaison_EPS#LAr_Hole
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopETmissLiaison_EPS#LAr_Hole
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MultijetJESUncertaintyProviderTop
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MultijetJESUncertaintyProviderTop
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesEPS2011#AnchorEfficiencies
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MCPAnalysisGuidelinesEPS2011#AnchorEfficiencies
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales#Muon_momentum_scale_offset_and_r
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales#Muon_momentum_scale_offset_and_r
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales#Muon_momentum_scale_offset_and_r
http://link.aps.org/doi/10.1103/PhysRevD.44.88
http://link.aps.org/doi/10.1103/PhysRevD.44.88
http://books.google.com/books?id=e63cNigcmOUC
http://arxiv.org/abs/hep-ph/0507207
http://root.cern.ch/drupal/content/users-guide
http://root.cern.ch/drupal/content/users-guide
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopCommonScales


Bibliography

[35] Search for top pair candidate events in ATLAS at sqrt(s)=7 TeV. Tech. rep. ATLAS-CONF-2010-
063. Geneva: CERN, 2010.

[36] Tevatron Electroweak Working Group, CDF and D0 Collaborations. ‘Combination of CDF and
DO results on the mass of the top quark using up to 5.8˜fb-1 of data’. In: ArXiv e-prints (July
2011). eprint: 1107.5255.

[37] Top Systematic Uncertainties 2011 rel 16. 2011. url: https://twiki.cern.ch/twiki/bin/
viewauth/AtlasProtected/TopSystematicUncertainties2011rel16.

[38] TopFakesEPS2011. 2011. url: https : / / twiki . cern . ch / twiki / bin / viewauth /
AtlasProtected/TopFakesEPS2011.

[39] b-jets JES uncertainty. 2011. url: https://twiki.cern.ch/twiki/bin/viewauth/
AtlasProtected/TopJetLiaison#b_jets_JES_uncertainty.

59

https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopSystematicUncertainties2011rel16
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopSystematicUncertainties2011rel16
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopFakesEPS2011
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopFakesEPS2011
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopJetLiaison#b_jets_JES_uncertainty
https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/TopJetLiaison#b_jets_JES_uncertainty




List of Figures

1.1 Examples of interactions studied in the standard model . . . . . . . . . . . . . . . . . 5
1.2 Feynman diagram for the top dilepton channel . . . . . . . . . . . . . . . . . . . . . . 6
1.3 mT distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 mT distribution possible configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 LHC location and overall layout( c©2011 CERN) . . . . . . . . . . . . . . . . . . . . . 11
2.2 Schematic view of CERN’s accelerator complex ( c©2011 CERN) . . . . . . . . . . . . 12
2.3 Gluon fusion leading order Feynman diagrams . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Overview of the ATLAS detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 ATLAS Inner detector layout(ATLAS Experiment c©2011 CERN) . . . . . . . . . . . 14
2.6 ATLAS calorimeter layout (ATLAS Experiment c©2011 CERN) . . . . . . . . . . . . 15
2.7 ATLAS muon spectrometer parts(ATLAS Experiment c©2011 CERN) . . . . . . . . . 17
2.8 ATLAS trigger levels (taken from [1]) . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Event display of an ee channel dilepton event candidate [35]. (ATLAS Experiment

c©2011 CERN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Examples of background proccesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 mT2 calibration curve at truth level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 mT2 histograms with different input top mass at truth level . . . . . . . . . . . . . . . 41
5.2 mT2 histograms with different input top mass at reconstruction level . . . . . . . . . . 42
5.3 mT2 calibration curve at reconstruction level . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Comparison between Monte-Carlo and data mT2 distribution . . . . . . . . . . . . . . 44
5.5 pleptons

T distributions with different input top mass at reconstruction level . . . . . . . . 45
5.6 pleptons

T calibration curve at reconstruction level . . . . . . . . . . . . . . . . . . . . . 45
5.7 Comparison between Monte-Carlo and data pleptons

T distributions . . . . . . . . . . . . 46
5.8 Correlation between the mass measurements using mT2 and pleptons

T . . . . . . . . . . . 47

61





List of Tables

1.1 Lepton names and their respective symbols . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 quarks names and their respective symbols . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 mediators in the standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 tt̄ decay channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Different top quark mass measurements . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Top dilepton channel decay modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Central mass value (172.5 GeV) tt̄ Monte-Carlo samples . . . . . . . . . . . . . . . . 26
3.2 Mass variation tt̄ Monte-Carlo samples . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Background Monte-Carlo samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 tt̄ Monte-Carlo samples with modified initial state radiation and final state radiation . . 27
3.5 Data samples used in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 JES pile-up uncertainty scale factor dependence on the jet ~pT and η values . . . . . . . 33
4.2 bJES scale factor dependency on the b-jet pT . . . . . . . . . . . . . . . . . . . . . . 33

5.1 mT2 calibration curve parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 pleptons

T calibration curve parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Main contributions to the systematic uncertainty . . . . . . . . . . . . . . . . . . . . . 48
5.4 Summary of systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Other contributions to the systematic uncertainty . . . . . . . . . . . . . . . . . . . . 49

63



64


