AN INTRODUCTION TO SCALING VIOLATIONS

G. PARISI
Laboratori Nazionali di Frascati
Frascati (Italy)

Abstract: The theory of scaling violations in deep inelastic scatter-
ing is presented using the parton model language ; intuitive physical
arguments are used as far as possible. In the comparison between
theory and experiments particular attention is payed to the conse-
quences of the opening of the threshold for charm production,

Resumé : On utilise ici le language du modeéle a partons pour expo-
ser la théorie de la violation de la loi d'échelle dans la diffusion
trés inélastique, en employant autant que possible des arguments
intuitifs, On compare ensuite theéorie et donnés expérimentales en
étudiant avec attention particuliére les conséquences de l'overture
du seuil pour produire du charm.
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1. - INTRODUCTION ¥

Gowy oyig axol) padmorg, ravve dpd meovipie
(Heracleitus)

I think that deep inelastic scattering is one of the best processes which
can be used to test our theoretical understanding of strong interactions. The
success of the Bjorken scaling law and the ability of the parton model to ex-
plain the experimental data are the main historical motivations for our pre
sent belief in the quark model.

It has now been realized that the naive quark-parton model is inconsi
stent and that small violations of the scaling law must be present: more
accurate data seem to agree with this conclusion. The standard theoretical
arguments which are used to study scaling violations are mainly based on
sophisticated field theory techniques such as Wilson expansion at short di-
stances and on the light cone, anomalous dimensions, bilocal operators....
All this theoretical machinery has been essential to derive unamhigous and
correct results, however we have departed from the physically intuitive ap-
proach which makes the standard parton model so appealing.

In this introduction to the violations of the scaling law, we try to reco
ver the physical interpretation of the theory; to this end the language of the
parton model will be used to derive and interpret the theoretical results. We
hope that this paper will partially fill the gap between the conclusions of the
parton model (which are physically motivated but incorrect) and the conclu-
sions of a field theoretical analysis (which are correct but whose intuitive

(+).

interpretation has been lost somz=where

2, - THE PARTON MODEL
Let us briefly review the main ideas which are behind the parton mo-
del(a) in order to/understand how they must be modified to account for the

violations of the Bjorken scaling law,

(x) - Part of the results presented here have been obtained by the author in
collaboration with G. Altarelli and R. Petronziot! -3

(o) - The things of which there is seeing and hearing and parception, these
do I prefer.

(+) - This point of view is not new: a similar approach has been advocated

by Polyakov(4) and by Kogut and Susskind(5 :



In a deep inelastic process an highly virtual photon of mass Q2 inter-
acts with the pointlike constituents (partons) of the hadron. In the Breit fra-
me the photon carries no energy and the proton has a momentum P propor-
tional to (Qz)l/z. For high Qz, P is large and the proton looks like a highly
Lorentz contracted pancake; the time (7) of interaction is proportional to
@)%

coherently on each parton; the cross section for deep inelastic scattering

For small 7 we can safely suppose that the photon scatters in-

depends on the parton distribution seen when we look inside the hadron with
a resolution time 7.

The cross section for longitudinaly (OL) and transverse (OT) polarized
photons can be written using two independent structure functions(7) : Fl(x, Q2),
F2(x,Q2), x being equal to 2 Mw/Q2.

For spin 1/2 partons:

2. 1) 7,0 Q%) - 5 el xN(x 7, v- @),

where Ni(x, 7 ) is the number of partons of the i-th type, having charge =
and carrying longitudinal momentum xP ; °L/°T is proportional to (pi)/QZ,
where (pi) is the mean squared value of the transverse momentum carried
by the partons.

This is quite general: we have only assumed that the electromagnetic
current couples to point-like constituents and that the final state interaction
does not change total cross sections at very high energies : after the inter-
action with the photon the system evolves in time with its own hamiltonian.

The Bjorken scaling law follows from the assumption that:

(2.2) lim N(x,7) = N(x) # 0

70
In very short times partons cannot modify their distribution inside the had-
ron: they move slowly and they can be considered free on a short time scale.

Two main assumptions are thus involved in the derivation of th: Bjor-
ken scaling law :

a) The hadron interacts with an highly virtual photon via some point-like
constituents (partons). Final state interactions can be neglected.
b) The constituents cannot change their momentum too fast: their interac-

:ions can be neglected in the limit 7 — 0,
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However what is the rationale for these assumptions? In any reasona-
ble quantum field theory in 4 dimensional space-time the first one is valid,
the second one is false(g"g).

For example in quantum electrodynamics the validity of both assump-
tions would imply that the radiative corrections scale with the energy and
are the same both for e€ and up scattering, Anyone working in high ener-
gy physics knows that this is not the case and that radiative corrections show
a logaritmic dependence on E/m,

If the first hypothesis is true, even in presence of scaling violations’
the parton model inequalities in deep inelastic scattering (e.g. 1/4 <
< Fg(x,Qz)/Fg(x,Q2) < 4) are unchanged. The failure of the second hypo-
thesis implies that the Bjorken scaling law is no more valid and that more
complicated scaling laws are satisfied, These new scaling laws depend on
the detailed dynamics of the strong interactions and their verification would
be quite important.

Before discussing what happens in the strong interaction case, I want
to clear up the situation in a more familiar case, i. e. quantum electrody-
namics, This will be done in sections 3 and 4. In section 5 I will present
the theoretical results based on a coloured gauge theory of strong interac-
tions. In sections 6 and 7 I will compare the theoretical results with the ex

perimental data on electron and neutrino scattering.

3, - THE COSTITUENTS OF THE ELECTRON

J \ ’ ’ 7 ’ Ay
v 0c wéoetL %0aTEovov MEQURAOMEVOLO XVXA0LO, %ai
(x)

oBiver el GAAnia xal adfevar dv péost alomg

(Empedocles)

Pure quantum zlectrodynamics is a good place to study the violations
of the Bjorken scaling law. They show up in very simple and familiar for-
mulae: the equivalent number of photons in an electron on energy E (momen

tum P =E) is:

(3. 1) N,(x, P) = — fln (P/mg) + O(a?)

¥

(x) - In turn they (elements) get the upper hand in the revolving cycle, and
perish into one another and increase in the turn appointed by their fate.



where x is the fraction of longitudinal momentum carried by the photon. If
1/2

we interpret 1/P = (1/Q2) /° as the resolution time 7, we obtain that the

equivalent number of photons in the electron is:

. o4 2 .
(3.2) Ny(x,7) = anln(l/mer)+0(a ), Tm <1,

This quantity goes to infinity when 7 —>0 and the assumption b) {eq. 2. 2)

of the last section is violated. Moreover for each photon of momentum xP
there must be an electron of momentum (1-x)P; the momentum distribution

of the electrons inside the electron is:
(3.3) N (x,7) = 8(x-1)+ %= [i-zc 86e- 1)l In(1 /m_7) .
. e’ 2m LL1-x A €

The constant C is fixed by the condition that the total number of elec-

trons is not changed by the interaction:

1
(3. 4) [N (xwdx = 1.
0

Stricly speaking C is logaritmically divergent (C = 2 J;)l li—)j:) The two
divergences in eq. (3. 4) cancel each other.

However egs. (3. 1) and (3. 3) cannot be used directly to study the limit
t — 0: the neglected higher order terms become important when aln7 x 1,
Let us first study the effect of multiple photon emission (see Fig, 1), The

key step is to concentrate one's attention on the time derivative of the num

ber of electrons; the variable L = -2 ln(me'r) is introduced for convenience,

From eq, (3.3) we find:

dN(x, L) ] W),
(3.5) dL T Tame T oo2m 1k Cokkl) =

a
27 pee(x) )

Attt

fig1

FIG. 1 -A typical diagram contributing to multiple photon emission,

87



88

Eq. (3.5) suggests that the transition probability for electron bremsstrahl-
ung is independent of L. However the electron distribution is L dependent:
the change in tirﬁe of the electron distribution must be the product of the
transition probability p and the actual electron distrib ution at "time" L.

One is led to the following "master" equation:

1
dN (x, L) a dy ] )
(3. 6) —S " am | 3 Ve BIpe /)
X
1
= ga,} -CN _(x, L)+ / N (v, L)/(y-x) dyJ.
X

The first term arises from the decrease of Ne(x, L) due to the bremsstrah
lung of electrons staying at the point x: it is naturally proportional to Nel(x, L).
The second term represents the increase in the number of electrons at the
point x due to bremsstrahlung of electrons carrying momentum y > x, the
relative loss of electron momentum being x/y.

q. (3. 6) can be easily solved by computer; qualitative statements can

be made studying the L dependence of the moments:

1
N ~ dx N
(3.7) Me (L) = j vl Ne(x,L) .
0

Substituting eq. (3. 6) in the derivative of eq. (3. 7) we obtain:

d'VIN(L) ! !
3 8) ;_3___~ = .g_ r % XNN (X L) i‘}_ vN ( ) =
3. dL 2@ j o ox e’ \a Peety
0 0
7_aMN N; Al -0 AN>0(N>1),
2 e ee ee ee
whose solution is :
N N T o N
(3.9) Me(L) = ME(LO) exp - 2ﬂAee(L_L‘O)] .

I‘VI1 is the total mmber of electrons in the system and it is a constant,
I\'I2 is the-total momentum in P units carried by the electrons and it goes
exponentially to zero: the whole momentum is transferred from the electron
to the photon system. Increasing L, Ng(x, L) shifts towards x=0 and

asymptotically it is concentrated at this point,



Egs. (3.6-3.9) are valid in the so called leading logaritm approxima-

tion (terms proportional to (aL)n are retained and terms proportional to
a(aL)n are neglected).

The transition probabilities p,, contain higher orders in a; however
these new terms are not L. dependent and no qualitative conclusion is chang
ed; to neglect them is a good approximation for all values of L if a is not
too large.

A similar equation can be written for the photons:

dN},(x,L) a
(3. 10) —_ = =

& L
dL o ¥ N (. L)p

7,e(X/y) .

XR»—-

The following relation holds:

(3.11) pre(X) = pee(l—x)

However the situation is not so simple: the photon itself may split in
a eé pair, eachof the new born e or & may emit a photon and so on. The
whole process is quite similar to the evolution of an electromagnetic show

er in lead. A typical diagram is shown in Fig, 2.

m

m

kbt

fig.2
FIG. 2 - A typical diagram contributing to the formation of the "shower".

It is clear that we must introduce in the game the distributions of the
e,e and 7Y inside the electron; using the same arguments as in the previous

case a more complicated master equation can be derived:

dNe(x, L) o ! dy N
—aL " om f —;[Ne(y, L)pee(X/Y)+N,,(y, L)pe?(x/V)J,
X
dN_(x, L) v
—e e [dyf, [
(3. 12) - s ] e Lipgse/y) ¢ Ny (5, Lipg (6/3) |
X

89



90

1
dN, (x, L)
_r' . e [ &
dL. ZnJ % %I\Iy(y’l‘)prr(x/y)+
X

+ E\Ie(y, L) + Né(y, L)] pye(x/y)f s

where :
P t¥) = Py v) = pye(l— ) = },e(l v),
- _ 12 2
péy(y) = pey(y) = pey(l-y) =5 [y +(1-y) ] ,
(3. 13)
P”(y) =-Cuoly-1),

- %fdy ':per(y) ’ pé"'(y)] ) % .

The meaning of tﬁese equations is quite clear, The last equation implies that
the number of photons which disappear at the point x it is equal to the num -
ber of new born e e pairs carrying total momentum x. The functions pGY

and p?’e are related to the longitudinal distributions of bremsstrahlung
photons and of Dalitz pair electrons(x).

It is interesting to note that the derivative of the difference of the num

ber of electrons and positrons does not depend on the y distribution:

(3. 14) AN(x,L) = N_(x, L) -N_(x, L) ,
dANxL. f—“—ANy, x/y

The L evolution of this difference decouples from that of the other functions.
Also this coupled set of equations can be easily solved with a computer : the
knowledge of the three functions Ne’ Né and N}' at a particular value of L
in the region 1> x> x ~ allows us to compute them it any value of L, in the
same x region,

It is possible to study the behaviour of the moments of the distributions;

if one defines a three component vector

(x) - The possibility of using these formulae to compute higher order pro-
cesses in quantum electrodynamics has seen suggested by Cabibbo, Tglli(f
technique has been apE)hed to the study of the reactions e+e , e ep )

+ +
andee~»eeee



(3. 15) MY (L) =f & Ny (x,L) P21 e e
i X i . -
0 1=2<«> e
i=3+> 7
one finds:
N
dM’ (L)
i a N N
1 - _ = L
(3. 16) aL ZnAiK MK( )

N >N
where A is a three by three matrix, If we denote by Z‘a and u, the three
N
eigenvalues and eigenvectors of A", the solution of (3. 16) can be written

using the vectorial notations as:

3
—N N -N e N
(3.17) M (L) = fa M, u  exp - 2n(L'L0”a

. N . >N _ =N
The quantities Ma are fixed by the boundary condition M (L) Lol M °
o

For N =2 one of the eigenvalues is 0, reflecting the conservation of
the total momentum carried by the constituents. When L —> oo the distribu
tions of both electrons and photons shifts towards 0, the ratio of the momen
tum carried by the electrons and the positrons goes to one and the total mo
mentum carried by the "valence" electron goes to zero, while the momen-
tum carried by the sea of e€ pairs and by the photons goes to a constant, In
the limit L > oo an equilibrium situation is reached: the momentum lost by
the electrons via bremsstrahlung is equal to the momentum refilling due to
the creation of Dalitz pairs. The mean value of the momentum carried by
each constituent goes to zero and this degradation of momentum is the ori-
gin of the progressive concentration of the functions N(x, L) near x = 0. Up
to now, we have considered only the distributions in longitudinal momentum.

The transverse momentum distribution can be studied using similar techni-

ques ; one finds(lz) :
g .
L / ~
—_— © = = @(a) .,
G 2
1 p

Unfortunately the situation is not so simple: we have neglected the
possibility that an e € pair annihilate in a photon which subsequently splits
in an ee pair and so on. A typical diagram is shown in Fig. 3.

To study this phenomenum a new concept must be introduced: vacuum
polarization. The effect of these new diagrams can be accounted for, by the

introduction of an effective L dependent coupling constant.

(L)
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fig.3

FIG. 3 -A typical diagram contributing to vacuum polarization,

We prefer to discuss the consequences of vacuum polarization and to
write the final formulae in this section; we postpone to the next section the
discussion on the rationale and on the physical meaning for the introduction
of an effective time dependent coupling constant. The correct formulae are
obtained by s.ubstituting a by a(L) in egs. 3. 12 and 3. 16. The function a(L)

satisfies the differential equation:

da(l.)

(3. 18) iRl LR JE o) I L,

whose solution is:

a(Lo)
L) = —————— L Lo )<<l
(3.19) a(L) [ B Lyjally) a(L), a(l,)
T . i1 (13).
wo different possibilities are open :
a) g >0,
b) g~0

In case a) the effective coupling increases with L, also if we start
from a small value of a, increasing L we are projected in the sfrong coup
ling regime where we cannot justify our approximation of neglecting higher
order in a in the transition probabilities p, What will finally happen in this
case is still an open problem : no general consensus has been reached on
this point,

Case a) is realized in pure QED; the energ.es at which the perturba-
tive expansion become useless are gigantic : they are of the order of the
mass of the L'miverse.

Case b) is better understood: increasing L the effective coupling
constant decreases; also if we start from a relative large value of a we
finally end up with a small value of a(L) (a(L) - -1/8L when L —» o).

In this kind of theory the large L limit can be controlled using a perturba



tive estimate of the transition probabilities, whatever the value of the cou
pling constant in the low momentum region,
There is no problem to solve the modified eq. (3. 12) by computer. Eq.

(3. 16) becomes now :

N
dM (L)
o o i ~ a(lL) N _ N
(3. 20) dL ~ ow Ak Mg
N
whose solution is: Aa
3 T 2mf
>N ~ N -»N
(3.21) M (L) = fa Ma u E— B(L—Lo)a(Lo)]

We now have in our hands the tools which are needed to study the viola
tions of the scaling law in deep inelastic scattering. We are able to compute
how the distribution of the pointlike constituents depends on the resolution
time, We have seen that when the resolution time goes ‘to zero (L = o) a
continuous process of interchange of momentum among the bare constituents
is present, the laws which regulate this phenomenum can be summarized in

the "master" equation (3. 12)*

4, - VACUUM POLARIZATION
It is a common day experience that salt can be easily dissolved in wa
ter but not in oil, This fact is due to the high value of the static dielectric

constant &g = 80 (ss = 1 in vaccum). The force between two charges is:

(4. 1) Fo=

A
e o2
at large distances. However, at distances smaller than the radius of the

water molecule (@), one recovers the more familiar:

1
(4. 2) Fo=qq = r<<d.

A(4. 3) Fo=

L
e(r) r2 ’

This effect arises from the orientation of the water dipoles in presen-
ce of an electric field. The scale of the phenomenum is naturally given by d.

Equivalently one would define an r dependent effective charge and

write:
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(4. 4) Foroa a5 a,(c) = a /e

A typical plot of q(r) as function of L is shown in Fig, 4.

q(L

L

FIG. 4 -The effective charge in water as function of L = -ln(r/d), r being

the distance and d being the radius of water molecules.

The polarization of water decreases the force among Nat and c1”
ions and allows the solution of salt in water : charged ions in water are near
ly asymptotically free at large distances while they have a strong interac-
tion at short distances.

A more drammatic effect can be found in metals: here &g = 0 and
the effective charge goes to zero exponentially at large distances : the char
ge is completely shielded,

In quantum electrodynamics the role of water is played by the virtual
e € pairs which fill the vacuum. The presence of a charge modifies their
distribution and produces a polarization of the vacuum which alters the
value of the effective charge seen at large distances. The inverse of the
mass of the virtual pair correspnnds to the radius of water molecules: the

shielding effect reaches a constant at distances larger than 1/2 m,. Howe-

ver there is no upper bound to the mass of a virtual pair so that the effecti
ve charge changes its value also at very short distances. At distances of

-100 cm the effective coupling constant becomes of order 1 and non

order 10
linear phenomena in the electric field are quite important, It is not clear
what happens at so short distances, however this problem is not relevant
here,

We hope we have clarified why the effective coupling constant in Quan
tum electrodynamics depends on the distance r and by relativistic invarian
ce also on the resolution time ¢. The fact that the force among different
(equal) sign charges is attractive (repulsive) implies that in all possible ma

terials, vacuum included, eg> 1 and the effective charge at large distances



is smaller than the bare charge: q(ow) < q(0), We can conceive a world in
which the force among charges of the same sign is attractive and among
charges of opposite sign is repulsive. We will call the matter of which this
world is made up "enantion". The static polarizability of the enantion is al-
ways less than 1. Also in this case we can introduce a distance-dependent
effective coupling constant: the effective charge seen at large distances is

always greater that the bare one:

4. 5) aleo) = AL 5 g0 |
Vs

Let us chose a particular kind of enantion in which . 0 and let us
suppose that the radius of the molecules has a continous distribution which
ranges from zero up to a maximum length d. In this case q(o)/q(0) = oo, If
the effective charge seen at large distance is finite, the effective charge at
very small distance must be equal to zero (see Fig, 5). Two ions in enantion
behave as free at short distances while the interaction remains strong at lar
ge distances,

Why are we interested in such a devious system? The reason is sim-
ple: there are models of strong interactions in which the polarizability
properties of vacuum are just the same as those of enantion. These model
belong to case b) of section 3 and have a coupling constant which is asympto
tically zero at short distance, I think that it is interesting to have a concrete
example of a system in which the interaction among pointlike particles fades

at short distances,

q©

FIG. 5 -The effective charge in enaition as function of L =-ln(r/d), r
being the distance and d being the maximum radius of engtion

molecules,
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5. - THE STRUCTURE OF STRONG INTERACTIONS

téooaga Yho mdvtov Ouldpata modTew dxove'X)
{(Empedocles)

In the most popular model of strong interactions the hadrons are com

(14)

posed of 4 quarks (p, n, 4 and p') ; the three different colours of quarks
interact via the exchange of an octet of coloured gluons. Electromagnetic
and week currents are colour singlets; the theory is invariant under the

group SU(3) colour,

The effective coupling constant of the theory satisfies the equation( -
da(L) 25 2 3 2
—_— = . + L = s
(5. 1) aL T2n © (L) +O(a”) ( In Q)

whose solution is:

a(LO)

(5.2) a(L)

25
1+ 1_21_v(L —Lo)a(LO)

The situation is the same as in enantion. Although the coupling con-
stant of strong interactions is large at distances of order 1/my, it is pos-
sible that at rather shorter distances it becomes smaller and smaller and
that a perturbative approach can be used in the deep inelastic region, If
this is the case, it is possible to obtain sharp predictions for the breaking
of the Bjorken scaling law for very high Q2.

We denote by Nqi(x,L) i=1,4, Ngli(x, L)i=5,8 and Ng(x, L) re-
spectively, the longitudinal momentum distributions of quarks, antiquarks
and gluons inside an hadron. The L dependence of these distributien func-
tions can be computed using the transition probabilities for the processes:
q >q+g g—>q+a and g —-> g+ g. The first two are present also in
quantum electrodynamics, while the third is peculiar to non abelian gauge
theories,

The following master equation holds:

AN (x, L), 2 — 5
I R dy
(5.3) oL e fx . quq(X/y)Nqi(y: L)+ pqg<X/y)Ng<y, L)J ,

(x) - Hear first the four roots of all things.



! 8
dN (x, L) —
gl [ ay .
4L an ]x y Lpgg(X/Y)Ng(y; L)+ pg (x/y) fl I\qi(y,L)] s
where
4] 4
=3 -0(y-1)-2 -2y,
qq(Y) 3 |\(1—Y)+ y-1) y:[
b ()= 2 [—3’———2“‘ & ”],
ga 3 y
(5. 4) _
.3 2 2
Dqg(}’) " 16 L2(1—y) + 2y j ,
Py 73 [—L w3 4y(1—y)“— 20(y-1),
g8 (1—y)+ y 1
——(1_;) is a distribution defined by :
+
1 1
l -
(5. 5) / dy 1‘( -~ N(y) = In(1-x)N(x) + f 51}[- - th(y)_N(XEl )
x 7 (1 -=) « y o1 X
y't y

The following consistency conditions are satisfied:

qu(y) = pgq(l—y) ;

(1-y) .
ag Pag ¥

) o= 1-
p_ (¥ pgg( y)

qgs. (5. 3-5. 5) can be directly derived from the standard results of ref, (18-
-20) using the technique employecd in ref, (21),

lligher orders in a have heen neglected. GTA/GT is of order a and is
therefore asymptotically zero,

Let us try to use these formulae to compute .the violations of the scal
ing law in deep inelastic scattering on nucleons,

Electron and neutrino deep inelastic scattering gives us very good in-

formation on the x distribution of quarks inside the nucleon, however no in
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formation is available on the gluon distribution; we only know that gluons
must be present in the nucleon: they carry about 0, 48 of the total momen-
tum. Unfortunately the theoretical predictions for scaling violations dep-
end on the form of the gluon distribution., Two phenomena contribute to the
scaling violations : firstly the shift of the quark and antiquark distributions
due to gluon bremsstrahlung, secondly the creation of quark-antiquark pairs.
Only the second process depends on the distribution of gluons. However it is
quite reasonable that the sea will be negligible for x near to one (x > 0. 5).
Model independent conclusions can be reached only in this region,

If we want to be more quantitative we can try to put upper and lower
bounds on the scaling violations using two extreme models of gluon distribu
tions.

The first unreasonable possibility is that the gluons are concentrated

at x = 0; Ng(x,L) = 0.480(x)/x.

In this case the L derivative of the structure function is(21):
daF, (x, Q%) 2
> — 2
(5.7) 2 - w@) T e +
3n | i 2
dln q = -
! 4 g ATy 57 (
X
- +3)+ [ —
ex [ ayjasd — @) - Jf
X y y

The value of the effective coupling constant a(Qz) appears as a factor.

Using as input(zz)

(5. 8) o) - (1—x)3‘>1.274+0.5989(1—x) . 1.675(1—x)2:l

we obtain curve I of Fig, 6 for a(Qz) = 0, 4. Notice that for such an high
value of a corrections coming from the higher order terms may not be
completely negligible. In this case we have neglected the gluon contribution
which is positive: curve I is a lower bound on the derivative,

A physical motivated upper bound can be obtained supposing that the
gluon distribution is proportional to the quark distribution in the region x
near to one: for example we can assume that the x distribution is exactly

1. 92(1—x)3/x. In this case one obtains the curve IIl of Fig. 6. In the region



FIG, 6 - Curve I, II and III are respectively the predictions for

9
- Glan(x,Qz)/a(an‘) assuming respectively, I the concentration

of all gluons at x =0, II an educated guess for the gluon distribu-

tion, and IIl a distribution (l-x)3 for the gluons; the same pre-

dictions are obtained for the neutron with an accuracy ot 0, 02;

a = 0, 4 has been assumed, ( . )and ( @ ) are respectively the
! 1

2
experimental points for proton and deuterium( 7); ( + ) are the
(28)

experimental points for iron

X

1

99



of large x there is no significant difference between the two curves for the
two extreme choices of the gluon distribution, The difference is concentra-
ted in the region of low x and it is due to the increase of the sea,

An educated guess for the gluon distribution can be obtained as follows:
suppose that at a low value of L only p and n quarks are present in the
proton, Using the master equation (5. 3) one can compute the quark, anti-
quark and gluon distributions for all values of L. If we impose the constra
int that, at a particular value of L, the structure functions coincide with
eq. (5. 8) we are able to fix the quark and gluon distributions at that particu
lar L. Without entering into the details of how it can be done, we show di-
rectly the results: the predictions for the derivative of the structure func-
tions are represented by curve II of Fig, 6.

A consistency check(z) of this model can be done comparing the pre-
dicted quark and antiquark distributions with the experimental data coming
from neutrino and antineutrino scattering at Gargamelle, The agreement is
not bad (see Fig, 7): notice that we have no free parameter and that we have
used as input only data coming from deep inelastic electron scattering.

It seems to me that the predicted antiquark distribution is too conce-
trated near x =0 (better data are needed to prove this conclusion); it is
reasonable to suppose that the predicted gluon distribution has the same
defect and that we are understimating the number of gluons in the large x
region, My personal conclusion is that the correct prediction is between
curve II and III, The ambiguity due to our ignorance of the gluon distribu-
tion is not large and sharp predictions can be made in the real asymptotic
region,

Similar results can be obtained for the neutron structure functions,
The difference among curves I, II and III for the neutron and the proton
would hardly be observable in Fig, 6. It is always less than 0.02,

These predictions are done in the region of very high Q2 where a(Q2)
and IV[Z/Q2 are small numbers., In the next section we shall see that in the
intermediate Q2 region where actual experiments are done, extra ambigui
ties are present which make the comparison between theory and experiments

less straightforward.
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6. - THE COMPARISON WITH EXPERIMENTS
(x)

(Democritus)

C 4 J) ’ < ) / ~ /
apagTins aitin M auadin ToY %0ECCOVOS

When precise data on deep inelastic e-p scattering appeared in 1970

(24)

it was clear that violations of the Bjorken scaling were present

5)

2
violations disappeared when the variable x' was used( ; x and x' are

. These

asymptotically equal; the difference is only relevant at "low" values of Q2.
The amount and the very existence of scaling violations depends on the
choice of the "correct" variable.

Up to now no strong theoretical argument has been found which allows
a choice between x or x' or any other similar variable. However the choi
ce of the "best" Vvariable can be done using the experimental data plus a
theoretical criterion of what we mean by the "best" variable,

In 1970 an experimental proof of Bjorken scaling was strongly desir
able and the "best" variable was the one for which Bjorken scaling was bet
ter satisfied. In 1975 it was discovered that it is impossible to find a vari-
able for which the Bjorken scaling law is satisfied both for proton and neu
tron deep inelastic scattering(ZG). The experimental observation of scaling
violations in the proton at fixed x' (0, 5< x'< 0. 7) (see Fig. 8) suggests the
use of a variable different from x', on the contrary the lack of scaling viola
tions in the neutron at fixed x' would imply that x' is the "best" variable
(see Fig. 9).

It is possible to use a new scaling variable X1975 for the proton and
the old x' for the neutron, and this may be a simple phenomenological way
to summarize the data, I think that it would be quite hard to find a theoreti-
cal justification in the framework of the parton model for the use of two
different scaling variables: the criterion that the "best" variable must mini
mize the violations of Bjorken scaling, has led us to a dead end.

A new criterion is needed: we propose that the best variable should be
such that scaling violations are the same for the neutron and the proton, at

. . . 27,28
least in the large x region. If we use the experimental data( ) to com-

(x) - The cause of errors is ignorance of better,
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pute the logaritmic derivative of the proton and of the neutron structure
functions at fixed x, we find that they are roughly equal (see Fig, 6).
How is it possible that the two logaritmic derivatives at fixed x are

equal and those at fixed x' are different? The answer can be easily found

using the identity:

dlnkF
GQZ

0x

Q2 * 6Q2

(6.1)

Xl Xl

In the x region we are interested in, one find that:

2 .
(6. 2) F = 1,2 Fo

dlnF" OlnﬂFg

Any change of variable modifies the Q2 derivative of the neutron data more
strongly than the proton data.

The variable x (and not x') satisfies the new criterion we have propos
ed, and we are going to use it in the rest of the paper (see Fig. 6). We stress
that, if our intuition is wrong and it-the predicted scaling violations must be
compared with the derivative of the experimental data at fixed x', the pres-
ent experimental evidence excludes that the observed scaling violations come
from the meciianism described in this paper, However the data are not ac-
curate enough to fix unambigously which is the best variable: any variable
not too far from x would also satisfy our criterion within the experimental
errors, The problem of the best variable arises from the existence of scal-
ing violations due to the finite mass of the nucleons and of the quarks; thesg
violations disappear asymptotically, however in the low Q2 region it is im
possible to disentangle the scaling violations which die as Q2 is increased,
from those which survive in the limit Q2 > 0. The theory of these mass
dependent scaling violations is practically lacking: the situation can be cla-
ritied in the framework of the so called covariant parton model of Lands-
hoff and Polkingorne(zg), unfortunately the analy«is has not been carried
out in detail.

Another problem is present: our asymptotic predictions do not distin-
guish among F1 and F2 (07, is asymptotically zero), however at present

energies the logaritmic derivative ot F; is systematically larger than that
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of F2(27, 30)

. Now it is not clear which function should be compared with
the theoretical predictions: the chosen function must satisfy the require-
ment of minimizing the scaling violations due to finite mass effects.

The observed Q2 dependence of the function F2 can be well fitted
using a =0, 4 (see Fig, 6); a similar agreement between theory and expe-
riment would be obtained using F; instead of F2 : in this case we would
get a=0,5,

I would like to conclude that the observed scaling violations can be
accounted for by interactions among partons with a coupling constant of
order 0,4 -0.5 in the few Gev? range, However there is still another ef_
fect which increases the error on the value of a: the large value of the
coupling constant changes rather drastically with Q2. The data in the cen
tral x region have -(sz 3-6 GeVz, while the data at x near to 1 have
Q% 8-12 Gev2,

In principle changing Qz, we should also change the value of the effec
tive coupling constant; in this particular instance this is not true because
we are changing both Q2 and x togethér. The effect we are talking about,
is of the same order of magnitude as the neglected terms proportional to
a2 in the transition probabilities p (eq. (5. 4)). We must realize that eq. (5. 3)

2
is asymptotically correct also if we substitute a(Qz) by a(Q”/(1-x)); eq.

(5. 1) implies:

(6. 3) a(@”/(1-x) = a(@) - 2% n(1-x) a*(@)

The difference is of order o’ . Notice that < (1—x)Q2> is roughly constant
in a wide x region in the SLAC sample,

The effect of the neglected second order terms has not been computed
at the present moment; it can be easily be of order of 30%, expecially in
the region x ~1 where higher order contributions are expected to be enhan
ced. Terms proportional to a2 are not negligible because our preferred
value for the coupling constant is not small; they will distort the theoreti-
cal predictions in the region x ~ 1 and they will also change the Q2 depen
dence of the moments ot the structure function for N very large.

In our theoretical predictions we have also neglected the etfect of the

24
Q~ dependence of the r.h, s, of eq. (5. 7); the error we have introduced is



rather small and can be easily corrected using the data themselves and not
their scaling fit (5. 8) in the r.h.s. of eq. (5. 7).

If I take care of all these ambiguities, I would estimate:

(6. 4) 0.25 € a(6 GeVz)S 0.5.
Correspondly :
2
(6.5) 0.4 2 a(i GeV )= 1.2.

The determination of the value of a is based mainly on the SLAC data,
If high quality data coming from an high energy @ beam becomes available
in the future for a large interval of Q2, the determination of a can be im
proved. I hope that at that time the theoretical ambiguities will be solved:
the transition probabilities will be computed at order a2 and the scaling

violations due to the finite mass of the proton will be understood,

7. - SCALING VIOLATIONS AND THE SEARCH FOR CHARM

The parton model gives rather interesting predictions when it is ap-
plied to neutrino and antineutrino induced reactions. In this paper we' con-
centrate our analysis on the charged current processes; a similar analysis
can be done for the case of neutral currents, If only V-A currents are pre-

sent, we find:

2GiME [ W 1w 2(;21\/1E17 i 15
L1 6, = — M +ZM_ |, 6z —————|M_+=

. v v 7 R q] v 7 [Mq SMQ]

ev”+ M2 v’ +em”

1 a g L«
Y2, 55 Ty e LYt 5
6M +2ML v’ +3m”
qa g q 3

where 0 denotes total cross section and y is the ratio between the neutrino
(the antineutrino) energy and the energy given to the hadron system Eh:

y = Eh/Ey, M: and Mz_: (M: and M%) are respectively the effective momen

tum carried by the quarks and the antiquarks which interact with the neutrino

(with the antineutrino),
In the 4 quark model different results hold below and above the thre-

shold for creation ot charmed particles in the final state; below threshold
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we find:

2 v 2

2 2 2
(7. 2) M” = cos®0 M2+ sin®0 M, MY =M,
q e n c A q
v 2. . 2 v
MY = cosZO Mo+ 311129 M=, M- = ME
q c n c A q p

2 : 2

(7. 3) M? = Mmoo+ Me MY =M +M
a n A P !
v ) 2

MY = M2 M2 MY =M +ME,
q n A g p p

It is commonly assumed that the quark distributions inside the nuc-
leon can be divided into a valence contribution, an SU(3) symmetric sea of

quarks and antiquarks and a charmed sea. If the target has isospin zero

we get:

2 V2 2 2 V2 2 2 2 2 2
. = —+5 MS = —+8%, M, =5 M~ =C”,
(7 4) Mp 9 3 n 9 A 3 pl

2 2 2 2 2 2

Mi):Sz, M- =S 5 MZ:S , M- =C

If we neglect the sea, no antiquarks are present in the nucleon: the

antineutrino over neutrino total cross section ratio is below threshold:

- 2 .
(7.5) R % 65/0, = 1/3cos Oc >~ 0.35

At Gargamelle energies R = 0, 39(23)

; only a small contamination of
antiquarks is present in the nucleon at low energy. The x distributions of
quarks and antiquarks are shown in Fig, 7: the mean value of x of antiquarks
(<xg)> ) is much smaller than that of the valence quarks (< xy> ). The data
2
suggests that at Q2 =1 GeV (the mean value of Q2 in the Gargamelle ex-
periment is about 1 GeVz) the following relations hold:
2

(7.6) VvV =0.46 , Sz=0.01, C2:0 , G2=0.48

Obviously the data give no information about the amount of charmed

quarks present in the proton; for simplicity I have assumed that the charmed



. 2 .
component of the proton can be neglected in the low Q region. The conser
vation of the total momentum implies the sum rule

2 2 2
(7.7) vV +6S +2C2+G =1 ,

which has been used to fix the momentum carried by the gluons (GZ).

Violations of the Bjorken scaling law are due to the presence of a
threshold for charm production and to the Q2 dependence of the quark distri
butions. The first effect is characteristic of neutrino scattering, It will be
shown here that both effects are needed to explain the observed violations of
the scaling law in neutrino deep inelastic scattering: in the framework of the
4 quark model it is not simple to fit the experimental data neglecting the Q2
dependence of the parton distributions,

The Q2 dependence of the momentum carried by each component of the

proton can be easily computed: proceeding as in section 3 we can derive from

(3),

eqgs. (5.3-4) an equation having the same form as eq. (3, 20); its solution is
2 2 -
vi@h =B, 0T
2,2 3 1 -56/15 1 1 -32/75
= 2 4 = - _ =
SHUQ) = 55 T 14 B G *(34B1s "B G ,
(7.8)
2, 2 3 1 -56/75 1 -32/15
~ +—B _ =
cQ) 56 14 oG SBISG ’
2,2 4 4 -56/15
==_.—B
¢°@Q1=2-7B.G ,
where
2, 25 2 2, 2
(7.9) G(Q)=1+T2—na(#)an/lL

The constants BO, B8 and B15 can be fixed by requiring that eq. (7. 6)

be satisfied at Q2 =1 GeVZ.

In Fig. 10 the results have been plotted for a(l) = 0.5, as functions of
Qz. Since G is a slowly varying function of Q2 we can compute G from an
effective Q2 value

2 = z N
(7.10) Qpep = 2MELxy>
where < xy> 1is the average value of xy, which is different for neutrino

and antineutrino. At fixed energy E neutrino data involve larger value of
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2 . .
QEff than antineutrino data.

Our predictions for the momentum carried by the charmed quarks
must be taken cum grano salis: the effects of the large mass of the char-
med quarks has not been taken into account, A more precise analysis would
be needed to study effects that depend crucially on the amount of charmed
quarks in the proton,

The cross sections and the y distribution below and much above the
threshold for charm production can be easily computed.

The effects of the threshold may be simulated by a simple 8 function

in the mass W of the produced hadronic system :

(7.11) UT(x,y) x N o )

(x,y) + 6 _(x,y)0 (W ’— WT

where 0, is the cross section below the threshold for charm production,

B

e is the asymptotic cross section for producing a charmed final state and

WT is an effective threshold mass. Simple kinematical arguments, due to

Barnett, suggest that:

2 2
(7.12) W = mp,/<x> ,

where mp, is the mass of the charmed quark and <x> 1is the mean value
x of the quarks from which the p' is produced. Charm is produced by neu-
trinos mainly out of valence quarks, by antineutrinos out of sea quarks,

Using mp, =2 GeV, < XV> = 0,25 and < xS> = 0, 13 we estimate:

v , v
.13 W_ 4G s x5, .
(7.13) T ev W, ¥ 55 GeV

The higher value of the effective threshold for antineutrino is caused
by the exoticity of the hadronic final state (B=1, C= -1).

In Figs. 11 and 12 we show our predictions for < y>y and R respec-
tively for various values of W

T
HPWF collaboration. For simplicity the same threshold has been used for

and a. The data for < y>$ come from the

neutrino and antineutrino.
When a=0 the scaling violations due to the strong interactions are
absent and when WT = oo the charm threshold never opens. It is apparent

that both @ #0 and WT < o are needed to fit the data for < y}i.' ; in this



case R is predicted to rise with E. If the momentum carried by each quark
2 . - ‘s

were Q  independent, R would stay almost constant and be insensitive to the

charm threshold; in fact the increased proportion of momentum carried by

the sea makes R to behave as in Fig., 12, While this prediction is not sup-

32
ported by the published data of the Caltech group( ) (although not excluded

within quoted errors) a sharp rise of R has been reported by the HPWF
(33, 34)

group .
In the infinite energy limit very simple predictions are obtained:

2
G°ME
(7.14) 0, =05 ="

~3|n

7
Z U = = —
, <¥>, <v>%° 16

If scaling violations were absent, eq. (7. 6) implies that the fraction
Acg/o of charmed final states would not exceed 10% even at infinite energy.
The predictions with scaling violations included are shown in Fig, 13, If
charmed particle have an average branching ratio into muouns of the order
of 5% to 10%, the observed yield of events with muons of opposite charge

is obtained@s’ 36).

(35)

Dimuons with equal charge may come from the production of a
charmed quark-antiquark pair in an event with AC = 0, A very rough esti-
mate of the order of magnitude of the cross section for the creation of two

charmed particles is :

2
(7. 15) 6 = = Co

A careful study of the effects due to the high p' mass would be needed
to understand if this mechanism may explain the observed yield of equal
sign dimuons, It is also possible that the equal sign dimuons come from the

(37)

decay of a massive b quark produced out of a p' quark,

A distinctive feature of the scaling violations due to the strong inter-
action is that the x distributions of quarks and antiquarks shift toward zero
with increasing Qz. This effect has been observed in electroproduction and
should also be observed in neutrino production, Predictions for the behavi-
our of the structure functions at fixed x can be made using the same techni-

ques as in section 5, However it may be convenient to concentrate on global

quantities such as <x>.
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FIG. 10 - Momenta carried by the gluons, the valence quarks, the SU(3)
symmetric sea and the charmed sea, The arrows indicate the
asymptotic values, G+2V +6G +2C =1 is identically satisfied.

The curves have been computed using a(1 GeVz) =a =0,5.
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FIG. 11 - Average value of vy for different values of @ and W, the
effective invariant mass for charm threshold. a = 0 corresponds
to Qz independent parton distributions, W —> o0 corresponds to
neglecting effects for charm production. Both effects seem *o be
needed to reproduce the data, a is the coupling constant at Q2 =

2 . .
=1 GeV". The experimental points are taken from ref, (31).
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FIG. 13 - The prediction for the fraction 46/ of charmed final states
for neutrino and antineutrino. The dashed line is obtained with Q2
independent parton distributions, the full lines are obtained as-
suming a = 0.5 at Q2 =1 GeVZ; W is the effective invariant

mass for charm production.
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(3)

Evolution equations like eq. (7. 8) can be written also in this case'"’,
This problem will not be studied here: the interested reader can find a
careful treatment of this and of many other phenomena concerning scaling
violations in neutrino scattering in the paper of Altarelli presented at this

(38)

Rencontre de Moriond .

8, - CONCLUSIONS

In this paper we have shown that in relativistic quantum field theory
the breaking of the Bjorken scaling law can be understood in terms of suc-
cessive fragmentations of the partons., The parton model relations among
electron, neutrino and antineutrino scattering are preserved, provided we
use Q2 dependent parton distributions,

The scaling violations observed in deep inelastic electron scattering
can be understood using a strong interaction coupling constant of the order
0.4 in the few GeV range, Using this value for the strong interaction cou-
pling constant we compute the scaling violations in neutrino and antineutrino
scattering. The most interesting prediction is a large increase in the mo-
mentum carried by the sea of antiquarks with increasing energy. The mean
value of y in antineutrino scattering and the ratio of the total antineutrino
and neutrino cross sections are consequently affected, Without this effect it
is hard to understand the present experimental data in the framework of the
4 quark model, It appears that a correct treatment of the violations of the
Bjorken scaling law is a necessary ingredient in any successfully analysis

of neutrino scattering at present energies.

The author is really grateful to R, K. Ellis for a critical reading of

the manuscript,
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