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Abstract : The theory of scaling violations in deep inelastic scatter­
ing is presented using the parton model language ; intuitive physical 
arguments are used as far as possible . In the comparison between 
theory and experiments particular attention is payed to the conse­
quences o f  the opening of  the threshold for charm production. 

Resume : On utilise ici le language du modele a partons pour expo ­
ser la theorie de la violation de la loi d'echelle dans la diffusion 
tres inelastique, en employant autant que possible des arguments 
intuitifs . On compare ensuite theorie et donnes experimentales en 
etudiant avec attention particuliere· les c onsequences de l 'overture 
du seuil pour produire du charm. 
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1. - INTRODUCTION(x) 

axo� /Ml.1fTJat <;; , -r:av-r:a 
(o )  �yro rr;eo-r: i1Mfw 

(H eracleitus )  

I think that deep inelastic scattering is one of the b est processes which 

can be used to test our theoretical understanding of strong interactions. The 

success of the Bjorken scaling law and the ability of the parton model to ex-
plain the experimental data are the main historical motivations for our pr_:: 

s ent belief in the quark model. 

It has now been realiz ed that the naive quark-parton model is inconsi 

stent and that small violations of the scaling law must b e  present : more 

accurate data seem to agree with this conclusion. The standard theoretical 

arguments which are used to study scaling violations are mainly based on 

sophisticated field theory techniques such as Wilson expansion at short di ­

stances dnd on the light cone, anomalous dimensions, bilocal operators . . . .  

All this theoretical ma.chinery has been ess ential to derive unambigous and 

correct results ,  however we have departed from the physically intuitiv e ap ­

proach which makes the standard parton model so appealing. 

In this introduction to the violations of the scaling law, we try to recci_ 

ver the physical interpretation of the theory ; to this end the language of the 

parton model will be used to deriv e and interpret the theoretical results . We 

hope that this paper will partially fill the gap between the conclusions of th« 

parton model (which are physically motivatl:d but incorrect) and the conclu ­

sions of a field theoretical analysis (which are corre_ct but whose intuitive 

interpretation has been lost som ewhere (+) . 

2 ,  - THE PARTON MODEL 

Let us briefly review the main ideas :ivhich are behind the parton mo ­

del ( G )  in order to1understand how they must
-�e

· 
modifi2d to account for the 

violations of the BJorken scaling law, 

(x) - Part of the results presented here hav e· been obtdined by the author in 
collaboration with G. Altarelli and R. Petronzio ( l - 3 ) . 
(o ) - The things of which there is s eeing and hearing and parc eption, these 
do I prefer. 
(+) - This point of view is not new : a similar approach has been advocated 
by Polyakov (4 )  and by K ogut and Susskind(5 ) .  



In a deep inelastic process an highly virtual photon of mas s Q2 inter ­

acts with the pointlike constituents (partons ) of the hadron. In the Breit fra-

me the photon carries no energy and the proton has a momentum P propor ­

tional to (Q2 ) 1 /2 . For high Q2 , P is large and the proton looks like a highly 

Lorentz contracted pancake ; the time (-r) of interaction is proportional to 

(Q2 ) - l /2 . For  small -r we can safely suppose that the photon scatters in-

coherently on each parton ; the cross s ection for deep inelastic scattering 

depends on the parton distribution seen when we look inside the hadron with 

a resolution time -r .  
The cross section for longitudinaly (aL ) and transverse (aT ) polarized 

photons can be written using two independent structure functions ( 7 ) : F1 (x , Q2 ) ,  
F2 ( x ,  Q2 ) ,  x being equal t o  2 M v /Q2 . 

(2 . 1 ) 
For spin 1 /2 partons : 

:Si· e2 x N . (x, -r )  · i i 

where Ni (x ,  -r )  is the number of partons of the i - th type,  having charge ei 
and carrying longitudinal momentum xP ; aL/aT is proportional to ( p:> /Q� 

( 2 . . where p .L )  is the mean squared value of the transverse momentum carried 

by the partons. 

This is quite general : we have only assumed that the electromagnetic 

current couples to point - like constituents and that the final state interaction 

does not change total cross sections at very high energies : after the inter­

action with the photon the system evolves in time with i ts own hamiltonian. 

(2 . 2 ) 

The Bjorken scaling law follows from the assumption that : 

lim N ( x , -r )  = N ( x) f 0 . 
'!: -'> 0 

In very short times partons cannot modify their distribution inside the had ­

ron : they move slowly and they can b e  considered free on a short time scale. 

Two main assumptions are thus involved in the derivation of the: BJor­

ken scaling law : 

a) The hadron interacts with an highly virtual photon via some point-like 

constituents (partons) .  F inal state interactions can be neglected. 

b )  The constituents cannot change their momentum too fast : their interac ­

:ions can b e  negle;cted in the limit -r � 0. 
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However what is the rationale for these assumptions? In any reasona­

ble quantum !'ield theory in 4 dimensional space-time the first one is valid, 

the second one is false (S - 9 ) . 

For example in quantum electrodynamics the validity of both assump­

tions would imply that the radiative corrections scale with the energy and 

are the same both for ee and µ,"[i scattering. Anyone working in high ener­

gy physics knows that this is not the case and that radiative corrections show 

a logaritmic dependence on E /m. 

If the first hypothesis is true, even in presence of scaling violations ·  

the parton model inequalities in  deep inelastic scattering (e. g. 1 / 4 :'.$ 
:::;, F�(x, Q

2
) /F� (x, Q2 ) ""  4) are unchanged. The failure of the second hypo­

thesis implies that the Bjorken scaling law is no more valid and that more 

complicated scaling laws are satisfied. These new scaling laws depend on 

the detailed dynamics  of the strong interactions and their verification would 

be quite important. 

Before discussing what happens in the strong interaction case, I want 

to clear up the situation in a more familiar casf', i. e. quantum electrody­

namics. This will be done in sections 3 and 4. In section 5 I will present 

the theoretical results based on a coloured gauge theory of strong interac ­

tions. In sections 6 and 7 I will compare the theoretical results with the ex 

perimental data on electron and neutrino scattering. 

3. - TH�: COSTIT UENTS OF THE ELECTRON 

sv 08 µ,ir;i s t  xr;iar:iovav :rrnr;iv:nJ.oµ,€vo i o  xvx). 0 1, 0 ,  xa! 

<f!{Nvs t  E l ,;  aU11).a xal av�sr:at iv µ,{r;is t  aro11,; 
(x) 

(Empedocles )  

Pure quantum electrodynamics is a good place to study the violations 

of the Bjorken scaling law. They show up in very simple and familiar for­

mulae : the equivalent number of photons in an electron on energy E (mome!?:. 

tum P � E) is : 

(3 .  1 )  

(x) - In turn they ( elements )  get the upper hand in the revolving cycle, and 
perish into one another and increase in the turn appointed by their fate. 



where x is the fraction of longitudinal momentum carried by the photon. If 
- I ( I 2 l 1 /2 . - h we interpret 1 P -' 1 Q as the resolut10n time T, we obtain that t e 

e quivalent number of photons in the electron is : 

( 3 .  2 )  a 4 2 N y (x, T ) = - - ln ( l /m 0 T )  + O (a ) , 2n: x ,_ 
r m  << 1 e 

This quantity goes to infinity when T -" 0 and the assumption b) ( eq. 2 .  2 )  
of the last section i s  violated. Moreover for each photon of momentum xP 
there must be an electron of momentum ( 1 -x)P ; the momentum distribution 

of the electrons inside the electron is : 

( 3 .  3 )  N (x, r )  = o (x- 1 ) + 2a [-14 - 2 C o (x - l )l ln ( l /m r )  e n - x  -l e 

The constant C is fixed by the condition that the total number of elec -

trans i s  not changed by the  interaction : 

( 3 .  4) 1 . 
Stricly speaking C is logaritmi cally divergent ( C  
divergences in eq. ( 3 .  4 )  cancel each other. 

1 2 j �� ) The two 
0 1 -x · 

However eqs. ( 3 .  1 )  and (3 .  3 )  cannot b e  used directly to study the limit 

T -+ 0 : the neglected higher order terms b ecome important when a ln T :e 1 . 
Let us first study the effect of  multiple photon emission ( s ee F ig. 1 ) . The 

key step is to  concentrate one ' s attention on the time derivative of  the nu!!!: 

ber of electrons ; the variable L = - 2 ln(me T )  is introduced for convenience. 

( 3 .  5 )  

From eq. ( 3 .  3 )  we find : 

2 d ln T 

fig.1 

a 2 2 n: 1 - x C o (x- 1 )  = � p (x) . 2n:  ee 

FIG. 1 -A typical diagram contributing to multiple photon emission. 
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Eq. (3 .  5 )  suggests that the transition probability for electron bremsstrahl-

ung is independent of L. However the electron distribution is L dependent : 

the change in time of the electron distribution must be the product of the 

transition probability p and the actual electron distrib ution at " time" L. 

One is led to the following "master " equation : 

(3. 6 )  
a 
2.:rr 

1 

J x 

__'..:_ [ C N  (x, L ) + 2.:rr L e 

dv I -"-- N (y, L ) p (x y) 
y e ee 

1 J Ne(y, L ) / (y-x) dyJ . 
x 

The first term arises from the decrease of Ne(x, L) due to the bremsstra� 

lung of ele�trons staying at the point x :  it is naturally proportional to Ne(x, L ) .  

The second term represents the increase in  the number of  electrons at the 

point x due to bremsstrablung of electrons carrying mom<entum y > x, the 

relative loss of electron momentum being x/y. 

Eq. ( 3 .  6 )  can be easily solved by computer ; qualitative statements can 

be made studying the L dependence of the moments : 
1 

( 3 .  7 ) J. dx xN N (x, L )  x e 
0 

Substituting eq. ( 3 .  6 )  in the derivative of eq. ( 3 .  7 ) we obtain : 

( :l .  8 )  dL 

1 
a r 
2 .:rr J 

0 

whose solution is : 

( 3 .  9 )  

a N N - M A 2.:rr e ee 

dx xN N (x, L )  x e y p (y) J _cl}: N 
y ee 

0 

AN > 0 (N > 1 )  , ee 

M 1 is the total number of electrons in the system and it is a constant, 

l\!1'2 is the-total momentum in P units carried by the electrons and it goes 

exponentially to z ero : the whole mon1entum :s transferred from the electron 

to the photon system. In creasing L, N e(x, L )  shifts towards x c 0 and 

asymptotically it is concentrated at this point. 



Eqs. (3 .  6 -3 .  9 )  are valid in the so called leading logaritm approxima­

tion (terms proportional to (aL )n are retained and terms proportional to 

a (aL )n are neglected). 

The transition probabilities  Pee contain higher orders in  a ; however 

these new terms are not L dependent and no qualitative conclusion is chang 

ed ; to neglect them is a good approximation for all values of L if a is not 

too large. 

A similar equation can be written for the photons : 

( 3 .  1 0 )  
a 
2n; 

The following relation holds : 

1 

J � N (y, L ) p (x/y) . y e )'e 
x 

( 3 .  1 1 )  p (x) � p ( 1 -x) ye  ee 

However the situation is not so simple : the photon its elf may split in 

a ee pair, each of the new born e or e may emit a photon and so on. The 

whole process is quite similar to the evolution of an electromagnetic show 

er in lead. A typical diagram is shown in F ig. 2 .  

fig. 2 
FIG. 2 - A  typical diagram contributing to the formation of the " show2r " .  

It  i s  clear that we must introduce i n  the game the distributions of the 

e, e and )' inside the electron ; using the same arguments as in the previous 

case a more complicated master equation can be derived : 

dN (x, L )  e a 
dL 23);  

dN-(x, L )  
( 3 .  1 2 )  e a 

dL 2n; 

1 

J 
x 

1 

� [N (y, L) p (x/y) + NJ' (y, L) p (x/v� , y e ee e )' · 

J � G-(y, L ) p __ (x/y) + N)' (y, L ) p_ (x/y)l y e ee e )' 
x 
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where : 

( 3. 1 3 ) 

1 
a 
2.it J .c; l N y (y, L )p

ry(x / y )  + 
x 

p ( 1 - y )  y e 

p (y) = p y ( l -y) e y e 

py y (y) = - C y cl (y - 1 ) , 

+ fN (y,  L) + N _ (y, L )l p ( x /y )  I , L e e J Ye \ 

1 [ 2 2 ] 
2 y + ( 1 -y) ' 

C y = � Jdy [P e y( y )  + P ; : ) Y l] 3 

T h e  m eaning of th e s e  equations is qui t e  c l ear. T h e  last equation impl i e s  that 

the numb er of photons which disappear a t  the point x it i s  equal to the num -

b e r  of new b o rn e e pairs carrying total mom en turn x. T h e  functions p e y 

and p y e a r e  r elated to the long1tudmal d1sl ribut10ns of b r e m s s trahlung 

photons and of Dalitz P'llr e l e c t rons (x) . 

It is int e r e s ting to note that t h e  d e rivativ e of the diff e r e n c e  of the num 

b e r  of electrons and p o s itrons does not depend on the y dis tribution : 

(3. 1 4 )  

dLI N ( x ,  L)  
dL  

1 
J � LI N (y, L) p (x/y) y e e  x 

T h e  L evolution of this diff e r e n c e  d e c ouples from l ha l  of the oth e r  f unc tions. 

A ls o  this coupled set of equa1 ions can b e  easily s o lv e d  with a c o mputer : the 

knowledge of the thr e e  functions N e ' N e and N y at a par I icular value o r  L 
in the r e gion 1 > x > xm allows us to compute them ctt any value of L, in the 

same x r e gion. 

It  is p o s s ib l e  lo study the behavio u r  of the moments of the distribution s ;  

i f  o n e  defines a thr e e  c omponent vector 

(x)  - T he p o s s i b ility of us ing th e s e  f o rm ulae lo compute high e r  o r d e r  p r o ­
c e s s e s  i n  quantum electrodynamics h a s  b e en s ugges t ed by Cabibbo. T(1is 
technique has b e en apflied lo the s tudy of l h e r ea c t ions e+e - , e+e - (l I O ) 

and e + e - - -> e + e - e + e - 1 1 ) . 
, 



M
N

(L )  
1 

xN N . (x, L )  (3 .  1 5 )  Jo 
dx 1 ._.._,. e 

l x 1 i = 2 ........ e 
3 �  l' 

one finds : 

dMN (L)  
� A

N M� (L )  ( 3 .  1 6 )  
1 

dL 2n iK 

where A is a three by three matrix. If we denote by .l. N 
and i!N the three a a 

eigenvalues and eigenvectors of AN, the solution of (3 .  1 6 )  can be written 

using the vectorial notations as : 

( 3 .  1 7 )  

N --> ',/  "'N 
The quantities Ma are fixed by the boundary condition M (L )k=Lo 

= M (L0 ) . 

F or N = 2 one of the eigenvalues is 0,  reflecting the conservation of 

the 1.otal momentum carried by the constituents. When L -+ oo the distribu 

tions of both electrons and photons shifts towards 0,  the ratio of the mome� 

tum carried by the electrons and the positrons goes to one and the total m� 

mentum carried by the "valence" electron goes to zero, while the momen­

tum carried by the s ea of e e pairs and by the photons goes to a constant. In 

the limit L ·� oo an equilibrium situation is reached : the momentum lost by 

the electrons via bremsstrahlung is equal to the momentum refilling due to 

the creation of Dalitz pairs. The mean value of the momentum carried by 

each constituent goes to z ero and this degradation of momentum is the ori­

gin of the progress ive conc entration of the functions N (x, L) near x = O. Up 

to now, we have considered only the distributions in longitudinal momentum_ 

The transverse momentum distribution can be studied using similar techni­

ques ; one finds ( l Z ) : 
2 aL <._P,_ ) 

0 ( a ) . '·' a 2 T p 

Unfortunately the situation is not so simple : we have neglected the 

pos sibility that an e e pair annihilate in a photon which subs equently splits 

in an e e pair and so on. A typical diagram is shown in F ig. 3. 

To stud:v this phenomPnum a new conc ept must be introduc ed : vacuum 

polarization. The effect of thes e new diagrams can be accounted for, by the 

introductiou of an effective L dependent coupling constant. 
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fig.3 
F IG. 3 -A typical diagram c ontributing to vacuum polariz ation. 

We p r ef er to dis cus s the cons equen c e s  of vacuum polarization and to 

write the final formula e in this s e c tion ; we p o stpone to the n ext s e ction the 

discussio n  on the rationale and on the physical meaning f o r  the introduction 

of an effective time dep endent c oupling c on s tant. The c o r r e c t  formula e a r e  

obtained b y  substituting a by a (L) in e q s .  3.  12 a n d  3 .  16. T h e  function a(L)  
satisfies t h e  diff er ential equation : 

( 3 .  1 8 )  -d a(L) 11 2 
r 3 ,1 

dL 
= p a (L) + 0 _a (L)J 

who s e  solution is : 

( 3 .  1 9 )  a (L) 

a )  

b )  

( 1 3 )  T wo differ ent p o s s ibilities a r e  o p en 

fl � 0 

fl ' 0 

L » 1 ,  

In c a s e  a )  the eff ectiv e c o upling inc r e a s e s  with L, also if we start 

from a small value of a,  inc r e asing L we a r e  projected in the st rong c ouf'_ 

ling r egime where we cannot jus tify our approximation of neglecting higher 

o r d e r  in a in the transition probabilities p.  What will finally happen in this 

c a s e  is still an o p en problem : no general consensus has b e en r eached on 

this point. 

C a s e  a) is reali z e d  in pure QED ; the en ere,,es al which the p erturba ­

tiv e expansion b e c o m e  u s e l e s s  a r e  gigantic : they a r e  of the order of the 

mass of the univ e r s e. 
' 

C a s e  b) is better understood : increasing L the eff e ctiv e c o upling 

constant d e c r eas es ; also if we start from a relative large value of a we 

finally end up with a small value of a (L)  ( a (L )  � - l /fl L  when L co). 
In t h i s  kind of theory t h e  la r g e  L limi t c a n  be c ontrolled us ing a p erturb'.':. 



tive es timate of the trans ition probabilitie s ,  whatever the value of the c o u  

pling cons tant i n  t h e  l o w  momentum r egion. 

T h e r e  is no p r oblem to solve the modified eq. ( 3 .  1 2 )  by computer. E q. 

( 3 .  1 6 )  b e c o m e s  now : 

( 3 .  2 0 )  
dMN ( L )  

l 

d L  

who s e  solution is : 

(3 . 2 1 )  ->N M ( L )  

_c:_(!:'.2_ A N MK
N ( L )  2 n; iK 

We now hav e in our hands the tools which a r e  n e e d e d  to study the viol� 

tions of the s caling law in d e e p  inelastic s catte ring. We a r e  able to compute 

how the distribution of the pointlike c onstituents depends o n  the r e s olution 

time. We have s e en that when the r e s olution time goes to z e ro (L .- oo) a 

c ontinuous p r o c e s s  of interchange of momen.tum among the bare constituents 

is p r e s ent, the laws which r e gulate this phenom enum can be summariz ed in 

the " ma s t e r " equation ( 3 .  1 2 )· 
4. - V A C UUM POLARJZA TION 

It i s  a common day experience that salt can be eas ily diss o lv e d  in w� 

t e r  but not in oil. This fact is due to the high value of the static dielectric 

cons tant B s = 80 ( B S = 1 in vaccum). T h e  fo r c e  b etween two charges is : 

(4. 1 )  F 

at large distanc e s .  However, at distan c e s  smaller than the radius of the 

water molecule ( a ) ,  one r ec ov e r s  the more familiar : 

(4. 2 )  r < <  d . 

It is p o s sible to define a function B ( r )  such that : 

(4 . 3 )  B ( 0 )  1 ' 

This eff e c t  aris es from I.h e ori entation of the water dipoles in p r e s en ­

c e  o f  a n  electric field. T h e  scale o f  the phenomenum i s  naturally given b y  d. 

E quivalently one would define an r dep endent effective charge and 

write : 
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( 4. 4)  F 

A typical plot of q ( r )  as function of L is shown in F ig. 4. 

L 
F IG .  4 - T h e  effective charge in wat e r  as function of L = - ln ( r/ d ) ,  r being 

th e di s tance and d b eing the radius of water molecules. 

T h e  polarization of water decreas e s  the force among Na+ and C l 

ions and allows the s olution of salt in water : charged ions in water a r e  nea£ 

ly asymptoti cally f r e e  at large distan c e s  while they have a strong int erac ­

tion at short distanc e s .  

A more drammatic eff e c t  c a n  b e  found in m etals : h e r e  Es = m and 

the effective charge g o e s  to z ero exponentially at large distanc e s : the char 

g e  is c omplet ely shielded. 

In quantum electrodynamics the role of water is played by the virtual 

e e pairs which fill the vacuum. The p r e s en c e  of a charge modifies their 

dis tribution and produces a polarization of the vacuum which alters the 

value of the effective charge s e en at large distan c e s .  The inv e r s e  of the 

ma s s  of the virtual pair c o r r e s ponds to the radius of water molecule s :  the 

shi elding eff e c t  r ea c h e s  a cons tant at distanc e s  la rger than 1 / 2  m 8 •  Howe -

v e r  there is no upper bound to the mass of a virtual pair so that the effecti 

ve charge chang e s  its value also at v ery short distan c e s .  At distanc e s  of 

o r d e r  1 0 - l O O  c m  the eff e c tive c oupling c onstant b e c o m e s  of order 1 and non 

linear phenomfona in the electric field a r e  quite important. It  is not clear 

what happens at s o  short distanc e s ,  however this problem is not r elevant 

here.  

We hope we have clarif i e d  why the effective c o upling cons tant in Qua� 

tum elec trodynamics depends on the distan c e  r and by r elativistic invaria� 

ce also on the r e s olution tim e -r; .  T h e  fact that the f o r c e  among diffe r ent 

( e qual) sign charges i s  attractiv e ( r epulsiv e )  implies that in all pos sible m!:': 

terials, vacuum i ncluded, E s > 1 and th e effective charge at large distan c e s  



is smaller than the bare charge : q ( co )  < q ( O ) .  W e  can conc eive a world in 

which the force among charges of the same sign is attractive and among 

charges of opposite sign is repulsive, We will call the matt er of which this 

world is made up " enantion " .  The static polarizabHity of the enantion is a l ­

w a y s  l e s s  than 1, A l s o  in t h i s  c a s e  w e  c an introduce a distanc e - dependent 

effective coupling cons tant : the effectiv e charge s e en at large distanc es is 

always greater that the bare one : 

(4. 5 )  q ( co ) > q ( O )  . 

L et us chose a particular kind of enantion in which E s = 0 and let us 

suppo s e  that th e radius of the molecules has a continous dis tribution which 

ranges from z e ro up to a maximum length d. In this c a s e  q ( co ) / q ( O )  = co, If 

the effective charge s e en at large distan c e  is finite, the effective charge at 

v ery s mall distan c e  must b e  equal to z ero ( s e e F ig. 5). Two ions in enantion 

behav e as f r e e  at short distan c e s  while the interaction remains strong at la_i::_ 

gre distan c e s ,  

W h y  are w e  interes ted in such a devious sy stem? T h e  reason is sim ­

ple : there are models of strong interactions in which the polariz ability 

properties of vacuum are j u s t  the same as tho s e  of enantion. T h e s e  model 

b elong to case b )  of s ection 3 and hav e a coupling constant which is asympt_£ 

tically z e ro at short distan c e .  I think that it is int eres ting to have a concrete 

example of a system in which the interaction among pointlike particles fades 

at short distanc e s ,  

�(L) 

L 

F IG. 5 - T h e  effective charge in en a 1tion as funct ion of L = -ln(r / d ) ,  r 

being the distance and d being the maximum radius of en a ition 

molecules, 
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5. - THE STRUCTURE OF STRONG INTERACTIONS 

daaa Qa YaQ n:av-r;ov Qi � wµ, a -r;a n-QwHv ZixovE (x) 
(Empedocles ) 

In the most popular model of strong interactions the hadrons are co� 
( 1 4) . posed of 4 quarks (p, n, ). and p ' )  ; the three different colours of quarks 

interact via the exchange of an octet of coloured gluons. Electromagnetic 

and week currents are colour singlets ; the theory is invariant under the 

group SU(3 ) colour. 
. ( 15 - 17 )  The effective coupling constant of the theory satisfies the equat10n : 

( 5 . 1 )  
da (L )  
dL 

whose solution is : 

( 5 .  2 )  a (L) 

2 5  2 3 
1 2n;  a (L )  + O (a ) ( L  0 ln Q2 ) , 

The situation is the same as in enantion. Although the coupling con­

stant of strong interactions is large at distances of order l /mn;, it is pos ­

sible that at rather shorter distances it becomes smaller and smaller and 

that a perturbative approach can be  used in the deep inelastic region. If 

this is the case, it is pos sible to obtain sharp predictions for the breaking 

of the Bjorken scaling law for very high Q2 . 

We denote by Nqi(x, L )  i 0 11 4, Nqi(x, L) i 0 51 8 and Ng(x, L) re­

spectively, the longitudinal momentum distributions of quarks, antiquarks 

and gluons inside an hadron. The L dependence of these distribution func ­

tions can be computed using the transition probabilities for the processes : 

q -7 q + g, g --? q + q and g ---. g + g. The first two are present also in 

quantum electrodynamics ,  while the third is peculiar to non abelian gauge 

theories. 

The following master equation holds : 

(5 . 3 ) 

(x ) - Hear first the four roots of all things. 



w h e r e  

(5 .  4) 

(5.  5 )  

( 5 ,  6 )  

dN (x, L )  

dL 4
a
n; j 

x 

8 
d [- l � p ( x /y ) N (y, L) + p ( x /y )  .I i Nq _ (y, L )  , y gg g gq 1 1 -

p ( y )  
qq 

p ( y )  
gq 

p ( y )  q g  

4 l- 4 - o ( y - 1 )  - 2 - 2 y] 3 { 1 -y ) + 

3 2 2 
-

J 16 � ( 1 - y )  + 2y ' 

- P ( y )  3 l __ 
4
_ + ± + 4y ( l -y )J - 2 o (y - 1 )  

gg U 1 -y )
+ 

y 

1 
( 1 - y)

+ 

J 
1 

x 

is a distribution defined by : 

1 

--- N ( y )  = ln ( l - x ) N (x )  + j 
( 1  - � )  x y + 

T h e  following c o n s i s t ency conditions a r e  satisfi e d : 

p (y) 
qq 

p ( y )  q g  

p ( 1 -y )  gq 

p ( 1 - y )  qg 

p (v)  = p ( 1 - y) . gg 0 gg 

1 r- l 
1 

_ � � ( y )  - N ( x� 
y 

E q s .  ( 5 .  3 - 5 , 5 )  can be dire ctly d e rived f r om the s tandard r e sults of ref. ( 1 8 -

- 2 0 )  u s ing the te chnique employed i n  ref. ( 2 1 ) , 

High e r  o r d e r s  in a hav e b e en n e glect ed, a 1  , Ja T is of o r d e r  a and is 

t h e r efo re asymptotically z e ro. 

L et us try t o  use t h e s e  fo rmulae to compute the violations of the s e a_! 

ing law in d e ep inela s ti c  s c att ering on nucleons, 

E lectron and n eutrino d e ep in elastic s c at t e ring giv es us v e ry good in ­

formation on the x d i s tribution of quarks inside the nucleon, however no in 
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formation is available on the gluon distribution ; we only know that gluons 

must be present in the nucleon : they carry about O. 48 of the total mom en-

tum. Un fortunately the theoretical predictions for scaling violations dep­

end on the form of the gluon distribution. Two phenomena contribute to the 

scaling violations : firstly the shift of the quark and antiquark distributions 

due to gluon bremsstrahlung, s econdly the creation of quark-antiquark pairs. 

Only the s econd process depends on the distribution of gluons. However it is 

quite reasonable that the s ea will be negligible for x near to one (x > 0. 5). 

Model independent conclusions can be reached only in this region. 

If we want to be more quantitative we can try to put upper and lower 

bounds on the scaling violations using two extreme models of gluon distrib.1:!c 

tions. 

The first unreasonable possibility is that the gluons are concentrated 

at x = 0 ;  Ng(x, L )  = O.  48 <5 (x ) /x. 

In this case the L derivative of the structure function is (2 l ) : 

( 5 .  7 )  

2 dF 2 (x, Q ) 

2 d ln q 
i-3 + 4 ln( l -x)l F2 (x, Q2 ) + 
I_ J 

+ x J dy � -2 ( 1 + �) + l � � )  F 2 (y, Q2 ) -
x l y 

The value of the effective coupling constant a (Q2 ) appears as a factor. 
. t (22 )  Using as mpu 

(5. 8 )  F� (x) ( l -x)
3 [i . 2 74 + 0. 5 9 8 9 ( 1 -x) - 1. 6 7 5 ( 1 -x)2 J 

we obtain curve I of F ig. 6 for a (Q2 ) = 0. 4. Notice that for such an high 

value of a corrections coming from the higher order terms may not be 

completely negligible. In this case we have neglected the gluon contribution 

which is positive : curve I is a lower bound on the derivative. 

A physical motivated upper bound can be obtained supposing that the 

gluon distribution is proportional to the quark dis tribution in the region x 

near to one : for example we can assume that the x dis tribution is exactly 

1. 92 ( 1 -x)3 /x. In this case one obtains the curve III of F ig. 6. In the region 



FIG, 6 - Curve I, II and III are respectively th<C predictions for 

- a 1n F� (x, Q2 ) / a(ln Q2 ) assuming respectively, I the concentration 

of all gluons at x = 0, II an educated guess for the gluon distribu­

tion, and III a distribution ( 1 -x )3 for the gluons ; the same pre­

dictions are obtained for the neutron with an accuracy of 0, 02 ; 

a = 0, 4 has been assumed, ( • ) and ( • ) are respectively the 

experimental points for proton �nd deuter�um(Z ? ) ; ( + ) are the 

experimental points for iron(Z S ). 

x 

N 
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of large x there is no s ignificant difference between the two curves for the 

two extreme choices of the gluon distribution, The difference is concentra­

ted in the region of low x and it is due to the increase of the sea, 

An educated gues s  for the gluon distribution can be obtained as follows: 

suppos e that at a low value of L only p and n quarks are present in the 

proton, Using the master equation ( 5 .  3) one can compute the quark, anti­

quark and gluon distributions for all values of L, If we impose the constr� 

int that, at a particular value of L, the structure functions coincide with 

eq. (5, 8) we are able to fix the quark and gluon distributions at that partic.':!c 

lar L. Without entering into the details of how it can be done, we show di­

rectly the results : the predictions for the derivative of the structure func ­

tions are represented by curve II of F ig, 6 ,  

A consistency check(Z ) o f  this model can be done comparing the pre-

dieted quark and antiquark distributions with the experimental data coming 

from neutrino and antineutrino scattering at Gargamelle. The agreement is 

not bad (see F ig, 7 ) : notice that we have no free parameter and that we have 

used as input only data coming from deep inelastic electron scattering. 

It seems to me that the predicted antiquark distribution is too conce­

trated near x � 0 (better data are needed to prove this conclusion) ; it is 

reasonable to suppose that the predicted gluon distribution has the same 

defect and that we are understimating the number of gluons in the large x 

region. My personal conclusion is that the correct prediction is between 

curve II and III, The ambiguity due to our ignorance of the gluon distribu­

tion is not large and sharp predictions can be made in the real asymptotic 

region. 

Similar results can be obtained for the neutron structure functions. 

The difference among curves I ,  II and III for the neutron and the proton 

would hardly be observable in F ig, 6. It is always less than 0. 0 2 ,  

and 

Thes e predictions are done in the region of very high Q2 where a (Q2 ) 
2 2 

M / Q  are small numbers. I n  the next section we shall s e e  that i n  the 
? 

intermrediate Q� region where actual experirr1ents are done, extra ambigu!: 

ties are present which make the comparison between theory and experiments 

less straightforward. 



6. - THE COMPARISON WITH EXPERIMENTS 

&.µar rd'T/S a lr: tri � &µa1>tri r:ov xe i'a a o v o ,;- (x )  

(Democritus ) 

When precise data on deep inelastic e-p scattering appeared in 1 9 7 0  

i t  was clear that violations of the Bjorken scaling were present(24 ). These 

violations disappeared when the variable x '  was used(2 5 ); x and x '  are 

asymptotically equal ; the difference is only relevant at " low" values of Q2 • 

The amount and the very existence of scaling violations depends on the 

choice of the " correct" variable. 

Up to now no strong theoretical argument has been found which allows 

a choice between x or x' or any other similar variable. However the choi 

ce of the "best" variable can be done using the experimental data plus a 

theoretical criterion of what we mean by the "best" variable. 

In 1 9 70 an experimental proof of Bjorken scaling was strongly desir 

able and the "best" variable was the one for which Bjorken scaling was be_! 

ter satisfied. In 1 9 7 5  it was discovered that it is impossible to find a vari­

able for which the Bjorken scaling law is satisfied both for proton and ne!:!_ 

tron deep inelastic scattering(26 ) . The experi.rnental obs ervation of scaling 

violations in the proton at fixed x ' (O. 5 .:: x' < O.  7) ( see F ig. 8) suggests the 

use of a variable different from x ' ,  on the contrary the lack of scaling viol� 

tions in the neutron at fixed x' would imply that x' is the "best" variable 

(see Fig. 9 ) .  

It is possible to use a new scaling variable x1 9 7 5  for the proton and 

the old x' for the neutron, and this may be a simple phenomenological way 

to summariz e the data. I think that it would be quite hard to find a theoreti -

cal justification in the framework of the parton model for the use of two 

different scaling variables :  the criterion that the "best" variable mtrnt mt� 

miz e the violations of Bjorken scaling, has led us to a dead end. 

A new criterion is needed : we propose that the best variable should be 

such that scaling violations are the same for the neutron and the proton, at 

1 . h 1 . If h . 
1 d (Z 7 '  2 S )  east m t e arge x region. we use t e experimenta ata to com-

(x) - The cause of errors is ignorance of better. 
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FIG. 9 - The experimental'data for the mean value of F� in the interval 
0. 5 � x 1 � 0, 7 plotted against Q2. 



pute the logaritmic d�rivative of the proton and of _ the  neutron s tructure 

functions at fixed x, we find that they are roughly equal ( see  F ig. 6 ). 

How is it possible that the two logaritmic .derivatives at fixed x are 

equal and thos e at fixed x ' are different? The answer can be easily found 

using the identity : 

( 6 .  1 )  a 1n� I a Q x '  I a 1n F  + --­
a x x 

In the x region we are interested in, one find that : 

(6 .  2 )  

n a lnF  
2 

a x  

a ln FP 
. 2 1 .  2 __ a_x __ 

Any change of variable modifies the Q
2 derivative of the neutron data more 

s trongly than the proton data. 

The variable x (and not x ' )  satisfies the new criterion we have propo!: 

ed, and we are going to use it in the rest of the paper ( s ee Fig, 6 ) . We stress 

that, if our intuition is wrong and U:-the predicted s caling violations must be 

compared with the derivative of  the  experimental data a t  fixed x ' ,  the  pres -

ent experimtental evidence excludes that the observed scaling violations come 

from the meci1anism described in this paper, However the data are not ac ­

curate enough to fix unambigously which is the best variable : any variable 

not too far from x would also satisfy our criterion within the experimental 

errors, The problem of the best variable aris es from the existence of scal­

ing violations due to the finite mas s of the nucleons and of the quarks ; thes.f 

violations disappear asymptotically, however in the low Q
2 region it is i� 

pos sible to dis entangle the scaling violations which die as Q
2 is increased, 

from those which survive in the limit Q
2 · >  CD, The theory of thes e mass 

dependent scaling violations is practically lacking : the situation can be cla ­

ritied in the framework of the so called covariant parton model of Lands -
. ( 2 9 )  hoff and Polkrngorne , unfortunately the analy' .is has not been carried 

out in detail. 

Another problem is pres ent : our asymptotic predictions do not distin­

guish among F 1 and F 2 ( aL is a·symptotically zero), however at pres ent 

energies the logaritmic derivative of F 1 is systematically larger than that 
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of F 2 
(2 7

' 
3 O) .  Now it is not clear which function should be compared with 

the theoretical predictions : the chosen function must satisfy the require-

ment of  minimizing the s caling violations due to  finite mass effects. 

The observed Q2 dependence of the function F 2 can be well fitted 

using a �  0, 4 (see F ig, 6 ) ; a simi.lar agreement between theory and expe­

rim <mt would be obtained using F 1 instead of  F 2 : in  this case we would 

get a � 0, 5 ,  

I would like to conclude that the obs erved scaling violations can be 

accounted for by interactions among partons with a coupling constant of 

order 0, 4 - 0, 5 in the few GeV2 range. However there is still another ef_ 

feet which increases the error on the value of a :  the large value of the 

coupling constant changes rather drastically with Q2 . The data in the ce� 
2 2 tral x region have < Q > 3 -6 GeV , while the data at x near to 1 have 

<. Q2> 8 - 1 2  GeV2 . 
2 In principle changing Q , we should also change the value of the effe.<::_ 

tive coupling constant ; in this particular instance this is not true becaus e 

we are changing both Q2 and x togeth�r. The effect we are talking about, 

is of the same order of magnitude as the neglected terms proportional to 
a 2 in the transition probabilities p (eq, ( 5 .  4 ) ) .  We must realiz e that eq, ( 5 ,  3 )  

2 ? is asymptotically correct also if we substitute a (Q ) by a (Q� / ( 1 -x ) ) ; eq. 

( 5 .  1 )  implies : 

(6. 3 )  

The difference i s  of order a 
2 . Notic e that < ( 1 -x) Q2 > i s  roughly constant 

in a wide x region in the SLAC sample, 

The effect of the neglected s econd order terms has not been computed 

at the present moment ; it can be easily be of order of 3 0%, expecially in 

the region x � 1 where higher order contributions are expected to be enha� 
. 2 . . ced. Terms proportional to a are not negligible becaus e our preferred 

value for the coupling constant is not small ; they will distort the theoreti ­

cal predictions in the region x .� 1 and they will also change the Q
2 depe� 

dence of the moments of the structure function for N very large. 

In our theoretical predictions we have also neglected the effect of the 
? 

Q� dependence of the r, h. s. of eq, (5 ,  7 ) ; the error we have introduced is 



rather small and can be easily corrected using the data themselves and not 

their scaling fit (5. 8 )  in the r. h. s. of eq. (5. 7 ). 
If I take care of all these ambiguities, I would estimate : 

(6 .  4) 0. 2 5  ,S: a (6 GeV2
) s 0. 5 .  

Correspondly : 

(6 . 5 )  2 O. 4 :::_ a ( 1 GeV ) ::: 1 .  2 . 

The determination of the value of a is based mainly on the SLAC data. 

If high quality data coming from an high energy µ beam becomes available 

in the future for a large interval of Q2 , the determination of a can be i� 

proved. I hope that at that time the theoretical ambiguities will be solved : 
2 the transition probabilities will be computed at order a and the scaling 

violations due to the finite mass of the proton will be understood. 

7.  - SCALING VIOLATIONS AND THE SEARCH FOR CHARM 

The parton model gives rather interesting predictions when it is ap -

plied to neutrino and antineutrino induced reactions. In this paper we con­

centrate our analysis on the charged current processes ; a similar analysis 

can be done for the case of neutral currents. If only V -A currents are pre­

s ent, we find : 

( 7 .  1 )  a = 'll i-Mv + _l M� l I_ q 3 q _ 
a - = 'll 

2 2G MEv r: v l v 
J __ 1' ___ LMq: + 3M q 

\!I
v 
+ 6M� 

1 
q q 

<'.. Y > - = - ----=­
v 4 vrv + 3M� q q 

where a denotes total cross section and y is the ratio between the neutrino 

(the antineutrino) energy and
_
the ener:_gy given to the hadron system Eh : 

, I v v v v v . . y = Eh E . M and M- (M and M-)  are respectively the effective momen 
q q q q -

tum carried by the quarks and the antiquarks which interact with the neutrino 

(with the antineutrino ) . 

In the 4 quark model different results hold below and above the thre­

shold for creation or  charmed particles in  the final state ; below threshold 
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we find : 

(7 .  2 )  

'V 2 M- = M-
q p 

Above threshold, transitions involving the p '  quark are switched on : 

( 7 .  3 ) 

v 2 2 M- = M- + M-:; 
q n ,. 

2 2 M + M  p p ' 

v ') ') 
M- = M'.: + M'.'.. 

q p p ' 

it is commonly assumed that the quark distributions inside the nuc­

leon can be divided into a valence contribution, an SU(3 ) symmetric s ea of 

quarks and antiquarks and a charmed sea. If the target has isospin zero 

we get : 

( 7 .  4 )  
2 

M2 �
+ s2 

p 2 

� 2 M- = S p 

M 2 2 

� + s
2 

n 2 

2 2 M- = S  n 

., 

= 

s2 , Ml 
2 2 M):" = S 

2 c2 , M p ' 

., 
c2 M:: 

p ' 

If we neglect the sea, no antiquarks are present in the nucleon : the 

antineutrino over neutrino total cross s ection ratio is below threshold : 

( 7 .  5 )  1 / 3 cos2 G � O .  3 5 . c 

At Gargamelle energies R = 0. 3 9 (2 3 ) ; only a small contamination of 

antiquarks is present in the nucleon at low energy. The x distributions ot 

quarks and antiquarks are shown in Fig. 7 :  the mean value of x of antiquarks 

( <xs .> ) is much smaller than that of the valence quarks ( < xv) ) . The data 
2 2 2 ' suggests that at Q = 1 GeV (the mean value of Q m the Gargamelle ex-

periment is about 1 GeV2 ) the following relations hold : 

( 7. 6 ) 2 v = o. 46 , s2 = o. o 1 , c2 = o G2 = 0. 48 

Obviously the data give no information about the amount of charmed 

quarks present in the proton ; for simplicity I have assumed that the charmed 



2 
component of the proton can be neglected in the low Q region. The conser 

vation of the total momentum implies the sum rule 

(7 .  7 ) 
2 2 2 2 

V + 6 S + 2 C + G = l  

which has been used to fix the momentum carried by the gluons (G
2
). 

Violations of the Bjorken scaling law are due to the presence of a 

threshold for charm production and to the Q
2 

dependence of the quark distrj_ 

butions. The first effect is characteristic of neutrino s cattering. It will be 

shown here that both effects are needed to  explain the observed violations of 

the scaling law in neutrino deep inelastic scattering : in the framework of the 
. . Q

2 
4 quark model it is not simple to fit the experimental data neglectmg the 

dependence of the parton distributions. 

The Q
2 

dependence of the momentum carried by each component of the 

proton can be easily computed : proceeding as in s ection 3 we can derive from 

eqs. (5. 3 -4 )  an equation having the same form as eq. ( 3 . 2 0 ) ; its solution is ( 3 ) : 

( 7 .  S )  

where 

( 7. 9 ) 

V
2
(Q

2
) = BS 

0 -32 / 7 5 
' 

S
2
(Q

2
) = 

2 +
_.l_

B 0-56 / 75
+ (

__!_
B _ l B )  0 -32 / 75 

56 1 4  0 2 4 1 5 6 s ' 

2
(Q

2
) = _l_ + __!_ B 0-56 / 75 

_ l B 0-32 / 7 5 
c 56 1 4  0 s 1 5 ' 

! B 0-56 / 7 5 
7 0 

1 + 
2 5 

( 
2 

l 1 Q
2 I 2 

1 2 :rt a µ, n µ, • 

The constants B0, BS and B 1 5 can be fixed by requiring that eq. (7 .  6 )  

b e  satisfied a t  Q
2 

= 1 GeV
2
. 

In F ig. 1 0  the results have been plotted for a ( l )  = O. 5 , as functions of 

Q
2
• Since G is a s lowly varying function of Q

2 
we can compute G from an 

effective Q
2 

value 

(7 .  1 0 )  
2 

QEff = 2 M E < x y) 

where < x y >  is the average value of xy, which is different for neutrino 

and antineutrino. At fixed energy E neutrino data involve larger value of 
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Q2 . . d Eff than antmeutrmo ata. 

Our predictions for the momentum carried by the charmed quarks 

must be taken cum grano salis : the effects of the large mass of the char-

med quarks has not been taken into account. A more precise analysis would 

be needed to study effects that depend crucially on the amount of charmed 

quarks in the proton. 

The cross sections and the y distribution below and much above the 

threshold for charm production can be easily computed. 

The effects of the threshold may be simulated by a simple Q function 

in the mass W of the produced hadronic system : 

( 7 .  1 1 ) 

where aB is the cross section below the threshold for charm production, 

aC is the asymptotic cross section for producing a charmed final state and 

WT is an effective threshold mass. Simple kinematical arguments , due to 

Barnett, suggest that : 

( 7 .  1 2 )  2 2 I W = m , < x) T p 

where m , is the mass of the charmed quark and <x) is the mean value p 
x of the quarks from which the p ' is produced. Charm is produced by neu-

trinos mainly out of valence quarks, by antineutrinos out of sea quarks. 

Using mp ' = 2 GeV, ( x,/> = O. 25 and < x8 ) = O. 13 we estimate : 

( 7 .  1 3 )  W v '-"' 4 GeV , T w; -:::: 5. 5 GeV . 

The higher value of the effective threshold for antineutrino is caused 

by the exoticity of the hadronic final state (B = l, C = - 1 ). 

In Figs. 1 1  and 12 we show our predictions for <'. y'>
v 

and R respec ­

tively for various values of WT and a .  The data for < y):V come from the 

HPWF collaboration. For simplicity the same threshold has been used for 

neutrino and antineutrino. 

When a =  0 the scaling violations due to the strong interactions are 

absent and when WT = oo the charm threshold never opens. It is apparent 

that both a i 0 and WT <. oo are needed to fit the data for < Y\; ; in this 



case R is predicted to rise with E. If the momentum carried by each quark 

were Q
2 

independent, R would stay almost constant and b e  insensitive to the 

charm threshold ; in fact the increased proportion of momentum carried by 

the sea makes R to behave as in F ig. 1 2 . While this prediction is not sup-
( 32 ) ported by the published data of the Caltech group (although not excluded 

within quoted errors )  a sharp rise of R has been reported by the HPWF 
( 3 3, 3 4 )  group 

In the infinite energy limit very simple predictions are obtained : 

( 7. 1 4 )  a ­v < y) 
v 

If scaling violations were absent, eq. ( 7. 6 ) implies that the fraction 

Ll a/a of charmed final states would not exc eed 1 0% even at infinite energy. 

The predictions with scaling violations included are shown in F ig. 1 3 . If 

charmed particle have an average branching ratio into muons of the order 

of 5% to 1 0%, the observed yield of events with muons of opposite charge 

is obtained(3 5 ,  36 ) · 
( 3 5 )  . Dimuons with equal charge may come from the production of a 

charmed quark-antiquark pair in an event with LlC � 0. A very rough esti­

mate of the order of magnitude of the cross section for the creation of two 

charmed particles is : 

(7 . 1 5 )  a -
cc 

A careful study of  the effects due to  the high p ' mass would be needed 

to understand if this mechanism may explain the observed yield of equal 

sign dimuons. It is also possible that the equal sign dimLwns come from the 
. (3 7 )  decay o f  a massive b quark produced out of a p ' quark. 

A distinctive feature of the scaling violations due to the strong inter ­

action is that the x distributions of quarks and antiquarks shift toward zero 
9 

with increasing Q�. This effect has been observed in electroproduction and 

should also be obs erved in neutrino production. Predictions for the behavi­

our of the structure functions at fixed x can be made using the same techni­

ques as in section 5. However it may be convenient to concentrate on global 

quantities such as < x > . 
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F IG. 1 0 - Momenta carried by the gluons, the valence quarks ,  the SU( 3 )  
sym1netric s ea and the charmed sea, The arrows indicate the 

asymptotic values, G + 2V + 6G + 2C = 1 is identically satisfied. 

The curves have been computed using a ( l  GeV2 ) = a = 0, 5. 
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F IG, 1 1  - Average value of Y;v for different values of a and WT , the 
effective invariant mass for charm threshold. a = 0 corresponds 
to Q2 independent parton distributions. WT - en corresponds to 
neglecting effects for charm production. Both effects s eem ':o be 
needed to reproduce the data. a is the coupling constant at Q2 

2 
1 GeV . The experimental points are taken from ref, ( 3 1 ). 



FIG. 12 - TJ::e ratio o v /o 11 for different values of a ( 1  GeV
2 ) and WT, 

the effective invariant mass for charm threshold. 
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FIG. 1 3  - The prediction for the fraction / J<J  /o of charmed final states 

for neutrino and antineutrino. The dashed line is obtained with Q2 

independent parton distributions, the full lines are obtained as ­

suming a = O. 5 at Q2 = 1 GeV
2

; WT is the effective invariant 

mass for charm production. 
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Evolution equations like eq. ( 7 .  8) can be written also in this case(3 J
. 

This problem will not be studied here : the interested reader can find a 

careful treatment of this and of many other phenomena concerning scaling 

violations in neutrino scattering in the paper of Altarelli presented at this 
. (3 8 )  R encontre d e  Mor10nd . 

8. - CONCLUSIONS 

In this paper we have shown that in relativistic quantum field theory 

the breaking of the Bjorken scaling law can be understood in terms of suc ­

cessive fragmentations of the partons. The parton model relations among 

electron, neutrino and antineutrino scattering are preserved, provided we 

use Q2 dependent parton distributions. 

The scaling violations observed in deep inelastic electron scattering 

can be understood using a strong interaction coupling constant of the order 

O.  4 in the f ew GeV range. Using this value for the strong interaction cou-

pling constant we compute the scaling violations in neutrino and antineutrino 

scattering. The most interesting prediction is a large increase in the mo ­

mentum carried by the sea of antiquarks with increasing energy. The mean 

value of y in antineutrino scattering and the ratio of the total antineutrino 

and neutrino cross sections are consequently affected. Without this effect it 

is hard to understand the present experimental data in the framework of the 

4 quark model. It appears that a correct treatment of the violations of the 

Bjorken scaling law is a necessary ingredient in any successfully analysis 

of neutrino scattering at present energies. 

The author is really grateful to R. K. Ellis for a critical reading of 

the manuscript. 
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