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Abstract This article evaluates the stability constraints of
higher-dimensional geometry of thin-shell wormholes devel-
oped from the two equivalent copies of inner and outer d-
dimensional charged anti-de Sitter black holes bounded by
a cloud of strings and quintessence. Such geometrical struc-
tures are built using a cut-and-paste method that joins two
identical forms of black hole solutions at the hypersurface.
We develop the equation of motion for the constructed worm-
holes and then use the linear radial perturbation approach to
examine the stable configuration. The stability constraints
depend on the dimensions of the black holes, cloud, and
quintessence parameters. It is worth mentioning that the
possibility of a stable structure is greatest for the choice
of d-dimensional charged anti-de Sitter black holes with
quintessence and a cloud of strings.

1 Introduction

Among various fascinating solutions of general relativity
(GR), the wormhole (WH) solutions are considered the most
interesting and have become the center of attraction for
numerous researchers. In accordance with GR, the existence
of such exotic objects is made possible by the deformable
spacetime evolved by energy/matter. The structure of the
WH acts as a bridge, tunnel, or connection between different
points at a manifold. Generally, WHs are characterized by
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asymptotically flat geometry, and the concept of WHs was
first introduced by Flamm [1] and then presented by Einstein
and Rosen [2]. The geometry proposed in [2] is known as
the Einstein–Rosen bridge, and it is considered a vacuum
solution of the equations of GR. These WHs are generated
through the solution of two Schwarzschild black holes (BHs)
combining two different domains of metrics. The appearance
of singularity evidences the non-traversable geometry of a
WH. Fuller and Wheeler [3] implemented Kruskal coordi-
nates in 1962 to explore the geometry of a Schwarzschild WH
exhibiting a non-traversable structure. They showed that the
open geometry of a WH would close so rapidly that nothing
would pass across it.

Following the theoretical information of Schwarzschild
WHs along with Einstein–Rosen bridges, several researchers
have been inspired to analyze the appearance of traversable
WHs. The primary model of traversable WH geometry is pre-
sented by Morris and Thorne [4] as a tunnel that combines
two domains of the similar universes or two distinct cosmos
with the help of a throat which allows the movement from one
domain to another. To pass by this domain, the matter com-
prising such geometries must defy the usual energy bounds
[4–7]. In light of GR, an exotic component disobeying the
standard energy bounds is necessary to obtain a traversable
WH geometry. Obviously, it is a huge issue to consider such
sort of matter content that has not been inspected directly.
In order to deal with this problem, thin-shell WHs were sug-
gested, where the exotic component can be minimized in the
throat, creating such WH geometry that disobeys the energy
bounds only in this domain [8,9]. The formation of this WH
geometry is accomplished by adopting the well-known cut-
and-paste methodology, where cutting and pasting is done
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with the two manifolds to construct a completely new one
having a shell placed in the joining region. During this pro-
cedure, the exotic component necessary for the occurrence is
engrossed in the WH throat. We can concentrate our research
on a thin-shell structure, as the exotic component cannot be
fully ignored. At the WH throat, the constituents of the sur-
face stress–energy tensor are computed by implementing the
Darmois–Israel conjecture [10,11], which yields the Lanc-
zos equations [12–14]. Employing the solution of the Lanc-
zos equation, one can discuss the dynamics of WH geome-
try through the equation of state (EoS) describing the exotic
component on the thin shell.

However, in alternative theories of gravity, the junction
conditions for the thin-shell WHs are extended by inducing
some new sorts of geometrical entities, except an extrinsic
curvature. It is observed that the contributions from the cur-
vature tensors allow the presence of WHs incorporated by
normal matter. In this respect, Richarte and Simeone [15]
adopted the generalized Darmois–Israel condition for the
Einstein–Gauss–Bonnet (GB) gravity to create a thin-shell
WH. They found that for some specific choices of param-
eters, WHs could be assisted by normal matter not violat-
ing the energy constraints. Mazharimousai [16] investigated
the stability of thin-shell WH geometry bounded by ordi-
nary matter in five-dimensional Einstein–Maxwell GB grav-
ity and obtained the stable regions for negative choices of GB
parameters. In the context of Dvali, Gabadadze, and Porrati
(DGP) gravity, Richarte [17] constructed a five-dimensional
WH geometry incorporating the normal matter not disobey-
ing the energy constraints. Richarte et al. [18] examined the
mechanical stability of traversable thin-shell WHs in Bose–
Einstein condensate and emergent gravity. They observed
that WHs with a finite radius do not defy the null/strong
energy constraint. In light of Rastall gravity, Lobo et al. [19]
constructed thin-shell WHs sourced by an anisotropic fluid
and checked the energy constraints at the WH’s throat corre-
sponding to the traversability condition. They observed that
all energy constraints are satisfied corresponding to the par-
ticular choice of Rastall parameter.

It is well known that astronomical entities have huge sig-
nificance if they exhibit stability against external oscillations.
In this regard, several researchers have analyzed the stability
of WH geometries and thin-shell WHs under linear pertur-
bations preserving the real symmetries. Poisson and Visser
[20] discussed the stable geometry of Schwarzschild thin-
shell WHs without considering the EoS for exotic matter.
Lobo and Crawford [39] inspected the stability of thin-shell
WHs with the inclusion of a cosmological constant (�) and
demonstrated that the stable solutions of a WH appear only
for positive values of �. Many researchers have discussed
thin-shell WH structures and their stability by incorporat-
ing various scenarios such as charge, �, and various other
physical factors [21–32]. For cylindrical spacetime, the same

scenario has been observed by several authors [33–35]. Sim-
ilarly, using various EoSs, the stability of distinct thin-shell
WH structures has been inspected in [36–42].

It is more significant to discuss the different cosmolog-
ical and astrophysical scenarios in higher dimensions. In
this respect, Kaluza and Klein combined gravity and elec-
tromagnetism through a five-dimensional theory. By the
Kaluza–Klein paradigm, when low-energy physics is taken
into account, the additional dimensions compress to a smaller
radius of about the Planck length. M-theory/string theory
indicates the presence of additional dimensions at small
energy levels and gave rise to the idea of Braneworlds.
Such conjectures act as crucial participants for a quan-
tum theory and also for the fusion of gravity and quantum
effects. In Braneworlds [43–46], the general particles model
is restricted to a 3-brane in which just gravity is permitted
to pierce the additional dimensions. In this regard, the four-
dimensional cosmos is observed as a hypersurface known as
the “brane,” which is endorsed in an additional dimensional
spacetime labeled “the bulk.” To further study the behavior
of gravity in more dimensions, numerous significant solu-
tions corresponding to Einstein field equations have been
discussed in the literature [47–53].

The investigation of WHs, and particularly thin-shell WHs
in higher-dimensional spacetimes, has become a very inter-
esting subject for researchers. In higher dimensions, there
exist various captivating scenarios related to Euclidean and
Lorentzian WHs. Jianjun and Sicong [54] and Gonzales-Diaz
[55] discussed the geometry of Euclidean WHs. Cataldo
et al. [56] observed the structure of Lorentzian WHs in
N -dimensional Einstein gravity. Cataldo and his collabora-
tors [57] also inspected WHs in (N + 1) dimension cor-
responding to polytropic EoS. On the same ground, vari-
ous authors presented their results related to WHs in higher
dimensions [58–62]. In higher-dimensional gravity, thin-
shell WHs along with an electric field and � have also been
examined in [25,63]. The non-asymptotically flat geome-
try of thin-shell WHs in d-dimensional spacetime have been
studied in Einstein–Yang–Mills–dilaton (EYMD) gravity
and Einstein–Yang–Mills–Gauss–Bonnet gravity [64,65].
Motivated by these works, Dias and Lemos [66] examined
the stability of d-dimensional electrically charged thin-shell
WHs with �. Eiroa and Simeone [67] mathematically cre-
ated the shell by utilizing the cut-and-paste method and
observed some interesting aspects of the spherical shell in
d-dimensional spacetime.

The � in Einstein’s equations is utilized to specify the
present cosmic state. Several astrophysical implications indi-
cate that the present rapid cosmic expansion is caused by
some parameter possessing huge negative pressure. To illus-
trate this pressure, the quintessence is characterized as a cru-
cial alternative of � [68,69]. The first ever solution of the
GR equations associated with the quintessence in four dimen-
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sions was evaluated by Kiselev [70]. In a higher-dimensional
metric, Chen et al. [71] demonstrated the outcomes of Ein-
stein’s equation bounded by quintessence. Banerjee et al.
[72] observed the stable geometry of a thin-shell WH in a d
dimension comprising a quintessence parameter. On the other
hand, a one-dimensional entity called a string can also be con-
sidered to characterize the cosmos. Such cosmic strings can
extend to any point in the cosmos and are closely related to
the rapidly accelerating cosmic expansion [73]. String theory
speculates about the presence of quantum gravity by treat-
ing particles and the fundamental forces of nature as vibra-
tions of microscopic super-symmetric strings. Motivated by
this, a series of studies on the gravitational consequences
of matter using string clouds was conducted. Letelier [74]
first presented the general solutions of the string clouds for
spherical symmetry in order to demonstrate the relationship
between the counting string state and the entropy of the BH.
Herscovich and Richarte [75] obtained a BH solution with
string clouds in five-dimensional Einstein GB gravity. They
discussed the thermodynamic properties and observed the
existence of stable BHs corresponding to the small values of
the string cloud density and GB parameter.

In this manuscript, our key objective is to study the d-
dimensional electrically charged thin-shell WH structure for
a spherically symmetric line element with quintessence and a
cloud of strings. The manuscript is presented as follows: Sec-
tion II depicts the basics of a d-dimensional spherically sym-
metric spacetime with quintessence and a cloud of strings.
In Section III, the structure of charged thin-shell WHs corre-
sponding to the abovementioned spacetime is presented by
adopting the cut-and-paste technique. Further, the geodesic
equation related to a test particle is derived directly which
firstly is at rest and moves radially. Section IV analyzes the
stability of WH geometry by implementing the general lin-
earized expansion approach. We also observe the standard
stability criterion for the structure of thin-shell WHs. Section
V investigates some interesting specific cases for BH space-
times with the quintessence and cloud of strings. Moreover,
we explore the stability modes that are investigated corre-
sponding to the quintessence and the cloud of strings. Finally,
in the last section, we summarize our important results.

2 d-Dimensional spherically symmetric line element
with quintessence and a cloud of strings

Consider a static spherically symmetric line element in d
dimension with quintessence and cloud of strings as [76]

ds2 = f (r)−1dr2 + r2d�2
d−2 − f (r)dt2, (1)

in which �2
d−2 indicates the metric corresponding to the (d−

2) unit-sphere, and f (r) is characterized as

f (r) = − 2a

(d − 2)rd−4 − 2�r2

(d − 1)(d − 2)
− 2m

rd−3

− α

r (d−1)ωq+d−3
+ Q2

r2(d−3)
+ 1. (2)

The d-dimensional line element depends on the quintessence
factor wq ≤ 0, cloud of string a, the mass m, charge Q,
and �. Different choices of the physical parameters and the
metric function lead to different BHs.

• For a d-dimensional Schwarzschild anti-de Sitter (ADS)
BH with quintessence (Q = 0, a = 0), it can be pre-
sented as

f (r)=−2mr3−d−αr−(d−1)ωq+3−d− 2�r2

(d − 2)(d − 1)
+ 1.

• For a d-dimensional Schwarzschild ADS BH with quintessence
and the parameter of cloud strings (Q = 0, a �= 0), it can be
expressed as

f (r) = −2ar4−d

d − 2
− 2mr3−d − αr−(d−1)ωq+3−d

− 2�r2

(d − 1)(d − 2)
+ 1.

• For a d-dimensional Reissner–Nordström (RN) ADS BH with
quintessence and a = 0, it can be expressed as as [77]

f (r) = −2mr3−d − αr−(d−1)ωq+3−d + Q2r−2(d−3)

− 2�r2

(d − 1)(d − 2)
+ 1.

3 Thin-shell WH structure and the gravitational field

In order to mathematically construct the geometry of a thin-
shell WH, we assume two equivalent forms of the considered
BH solutions and remove the spacetime region from each
copy as �± ≡ {r± ≤ ξ | ξ > rh}, in which ξ indicates the
radius constant which is larger than the event horizon rh in
order to keep the spacetime away from the existence of a
horizon as well as singularities of the line element given in
Eq. (1). The exclusion of the eras from each line element
provides two partially completed manifolds corresponding
to the timelike hypersurfaces as boundary surfaces presented
by ∂�± ≡ {r± = ξ | ξ > rh}. By identifying the timelike
hypersurface ∂�− = ∂�+, in which two eras are joined
through a WH, we obtain a geodesically complete manifold.
The identified era ∂� is known as the WH throat, in which the
exotic component is present. The line element on ∂� yields
the expression as
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ds2 = ξ2(τ )d�2
d−2 − dτ 2, (3)

where τ depicts the proper time on ∂�, and ξ(τ ) indicates the
throat radius acts as a function of the proper time. The sur-
face stresses at the boundary region are evaluated by imple-
menting the Darmois–Israel conjecture. The intrinsic surface
stress-energy tensor Si j using the Lanczos equation is given
by

Sij = − 1

8π

(
κ i
j − δijκ

m
m

)
, (4)

where the factor κi j = K+
i j − K−

i j displays the discontinuity

in the extrinsic curvature K±
i j . The symbols + and − spec-

ify the exterior and interior line elements, respectively. The
second fundamental expression of the extrinsic curvature is
described by

K±
i j = −γν

(
∂2xν

∂ηi∂η j
+ �ν±

αβ

∂xα

∂ηi

∂xβ

∂η j

)
, (5)

in which γν exhibits the unit normal vector at the junc-
tion, whereas ηi symbolizes the intrinsic coordinates. The
parametric equation at the hypersurface ∂� is expressed as
f
(
xμ(ξ i )

) = 0. Employing this expression, the unit normal
vector to ∂� is derived as

nμ = ±
∣∣∣gαβ ∂ f

∂xα

∂ f

∂xβ

∣∣∣
− 1

2 ∂ f

∂xμ
, (6)

where the unitary condition nμnμ = +1 satisfies, while the
discontinuity of the extrinsic curvature κi j can be expressed

as κ i
j = diag

(
κτ
τ , κ

θ1
θ1

, . . . , κ
θd−2
θd−2

)
. Thus, the surface-energy

tensor can be presented by Sij = diag (−σ, P, ..., P), where
P indicates the surface pressure, and σ depicts the surface-
energy density. Implementing the Lanczos equation, it is
observed that

σ(ξ) = − (d − 2)

4πξ

√
ξ3−2d

(
ξd

(
− 2aξ

d − 2
− αξ−(d−1)ωq − 2m

)
+ ξ3Q2

)
− 2�ξ2

d2 − 3d + 2
+ 1 + ξ̇2, (7)

and

P(ξ) = (d − 3)

4πξ

√
ξ3−2d

(
ξd

(
− 2aξ

d − 2
− αξ−(d−1)ωq − 2m

)
+ ξ3Q2

)
− 2�ξ2

d2 − 3d + 2
+ 1 + ξ̇2 + f ′(ξ) + ξ̈

8π
√

f (ξ) + ξ̇2
, (8)

where dots and primes demonstrate the differentiation
according to τ and a, respectively, while the function f (ξ) is
provided in Eq. (2). P and σ satisfy the conservation equation
as

d

dτ

(
σξd−2

)
+ P

d

dτ

(
ξd−2

)
= 0. (9)

The static state of radius ξ = ξ0 leads to ξ̇ = 0 and ξ̈ = 0.
From Eqs. (7) and (8), we can obtain

σ(ξ0) = − (d − 2)

4πξ0

√
−2aξ4−d

0

d − 2
− 2�ξ2

0

d2 − 3d + 2
− 2mξ3−d

0 − αξ
−(d−1)ωq−d+3
0 + Q2ξ6−2d

0 + 1, (10)

and

P(ξ0) = (d − 3)

4πξ0

√
−2aξ4−d

0

d − 2
− 2�ξ2

0

d2 − 3d + 2
− 2mξ3−d

0 − αξ
−(d−1)ωq−d+3
0 + Q2ξ6−2d

0 + 1 + f ′(ξ0)

8π
√

f (ξ0)
. (11)

To inspect the physical objects, energy bounds play a cru-
cial role to investigate their validity. Here, the null (σ + p ≥
0), weak (σ ≥ 0, σ + p ≥ 0), and strong (σ +2p ≥ 0) energy
bounds are fulfilled for usual matter, whereas the defiance
manifests the appearance of exotic substance. For developed
thin-shell WHs, the weak and null energy bounds are not
satisfied (Fig. 1). This suggests the occurrence of exotic sub-
stance at the WH throat.

Now we are going to analyze the repulsive/attractive
behavior of the WH on test particles. For this purpose, we
evaluate the four-acceleration for the static WH (ȧ = 0),
given by aμ = uμ

;νu
ν , where the 4-velocity is uμ = dxμ

dτ
=

( 1√
f (r)

, 0, 0, . . . , 0). The non-vanishing constituent of the
acceleration is presented as

ar = �r
tt

(
dt

dτ

)2

= 1

2
ξ

(
2a(d − 4)ξ2−d

d − 2
− 4�

d2 − 3d + 2

+2(d−3)mξ1−d + α
(
(d−1)ωq+d−3

)
ξ−(d−1)(ωq+1)

−2(d − 3)Q2ξ4−2d
)

.

Taking into account a test particle which is firstly at rest and
moves in a radial direction, for this particle, the equation of
motion yields

d2r

dτ 2 = −�r
tt

(
dt

dτ

)2

= −ar , (12)
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Fig. 1 Behavior of energy conditions through σ(ξ0), σ (ξ0) + P(ξ0), andσ(ξ0) + 3P(ξ0) with red, blue, and green colors for � = 0.02, α =
0.2, a = 0.4,m = 0.4, for ωq = − d−3

d−1 with d = 4 (first plot) and d = 8 (second plot). It is noted that the null and weak energy conditions are
violated

which provides the geodesic equation for ar = 0. This indi-
cates that the WH is of repulsive nature if ar < 0, while it is
of an attractive nature if ar > 0.

4 Linearized Stability Analysis

We can re-express the equations of motion (7) and (9) as

ξ̇2 − 16π2ξ2

(d − 2)2 σ 2(ξ) = − 2a

(d − 2)ξd−4 − 2�ξ2

(d − 1)(d − 2)

− 2m

ξd−3 − α

ξ(d−1)ωq−3+d
+ Q2

ξ2(d−3)
+ 1 , (13)

σ̇ = − ξ̇

ξ
(d − 2) (σ (ξ) + P(ξ)) . (14)

We take into account the linear perturbations about a static
solution having radius ξ0 in order to determine the stability
constraint for our system [20]. The surface energy density
σ(ξ0) for this solution is explicitly expressed in Eq. (10),
whereas the surface pressure P(ξ0) for the static solution is
presented in Eq. (11). Now, by re-expressing Eq. (13), we get
the thin-shell equation of motion given by

ξ̇2 + �(ξ) = 0, (15)

in which the potential �(ξ) is specified as

�(ξ) = − 2a

(d − 2)ξd−4 − 2�ξ2

(d − 1)(d − 2)
− 2m

ξd−3

− α

ξ(d−1)ωq+d−3
+ Q2

ξ2(d−3)
+ 1 − 16π2ξ2

(d − 2)2 σ 2.

(16)

As we are considering the linearization about the static solu-
tion ξ0, we therefore expand �(ξ) about ξ0 by employing a

Taylor series up to the second order for the powers of (ξ−ξ0),
which yields

�(ξ) = �(ξ0) + �′(ξ0)(ξ − ξ0) + 1

2
�′′(ξ0)(ξ − ξ0)

2

+O
[
(ξ − ξ0)

3
]
, (17)

where prime manifests the derivatives associated with ξ . The
first-order derivative of �(ξ) is demonstrated as

�′(ξ) = −2a(4 − d)ξ3−d

d − 2
− 4�ξ

(d − 2)(d − 1)

−2(3 − d)mξ2−d − 32π2ξ2σ(ξ)σ ′(ξ)

(d − 2)2 − 32π2ξσ (ξ)2

(d − 2)2

−α
(−(d − 1)ωq + 3 − d

)
ξ−(d−1)ωq−d+2

−2(d − 3)Q2ξ−2(d−3)−1 (18)

Utilizing the conservation equation (14), the above form
becomes

�′(ξ) = −2a(4 − d)ξ3−d

d − 2
− 4�ξ

(d − 2)(d − 1)

−2(3 − d)mξ2−d − 32π2ξσ (ξ)2

(d − 2)2

+32π2ξσ (ξ)(σ (ξ) + P(ξ))

d − 2
− α

(−(d − 1)ωq − d + 3
)

×ξ−(d−1)ωq−d+2 − 2(d − 3)Q2ξ−2(d−3)−1. (19)

Now we introduce a factor η(σ ) = dp/dσ = P ′/σ ′ that
specifies the second differential of the potential. Thus, the
second derivative of the potential leads to

�′′(ξ) = −2a(d − 4)(d − 3)ξ2−d

d − 2
− 4�

d2 − 3d + 2

−2(d − 3)(d − 2)mξ1−d − 32π2σ(ξ)2

(d − 2)2

+96π2σ(ξ)(σ (ξ) + P(ξ))

d − 2
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−α
(
(d − 1)ωq − 3 + d

) (
(d − 1)ωq + d − 2

)

ξ−(d−1)(ωq+1) + 2(d − 3)(2d − 5)Q2ξ4−2d

−32π2(η + 1)σ (ξ)(σ (ξ)+P(ξ))−32π2(σ (ξ)+P(ξ))2.

(20)

As we assume the linearization about ξ = ξ0, we can use
Eqs. (16) and (19) to insert ξ = ξ0 to obtain �(ξ0) = 0 and
�′(ξ0) = 0, respectively. Hence, from Eq. (17), the potential
�(ξ) becomes

�(ξ) = 1

2
�′′(ξ0)(ξ − ξ0)

2 + O[(ξ − ξ0)
3], (21)

and the equation of motion for the WH throat is provided by

ξ̇2 = −1

2
�′′(ξ0)(ξ − ξ0)

2 + O[(ξ − ξ0)
3]. (22)

For a more general scenario, we must consider the
relationship between the BH mass parameter M and the
Arnowitt–Deser–Misner (ADM) massM for ad-dimensional
metric. Further, for a spherical geometry (k = 1), we obtain

M = 16 π �( d−1
2 )

(d − 2)2 π
d−1

2

M. (23)

Hence, the WH structure shows stability just for �′′(ξ0) > 0.
Moreover, �(ξ0) possesses a local minimum at ξ0. To per-
form this inspection, we can discuss the prerequisites for
a stable structure of WHs. In our case, we observe that
this parameter must satisfy. Further, the stability condition
(�′′(ξ0) > 0) can be reduced in terms of η0 given as follows

η0 >
A0

B0
if B0 > 0, η0 <

A0

B0
if B0 < 0, (24)

where

A0 = 1

(d − 2)2

(
(d − 2)

d − 1
ξ

−2dωq−3d+ωq+1
0

×
(

2(d − 1)(d − 3)ξ
(2d−1)ωq+d
0

(
ξd0

×
(
a(d − 4)ξ0 + (d − 2)2m

)

− (d − 2)(2d − 5)ξ3
0 Q

2
)

+ ξ
d(ωq+2)
0

× (
α(d − 2)(d − 1)

(
(d − 1)ωq + d − 3

)

× (
(d − 1)ωq + d − 2

) + 4�ξ
(d−1)(ωq+1)
0

))

+ 32π2
(
(d − 3)(2d − 5)σ (ξ0)

2

+3(d − 3)(d − 2)σ (ξ0)P(ξ0) + (d − 2)2P(ξ0)
2
))

,

B0 = −32π2σ(ξ0)
2 − 32π2σ(ξ0)P(ξ0).

These inequalities help us to determine the constraints of
WH stability under all the parameters of the line element.

5 Stability constraints for some specific cases

In this section, our main focus is to present some spe-
cific cases which are of a higher-dimensional BH with
quintessence and a cloud of strings. We compute the sta-
bility constraints for every choice of four-dimensional BH
geometries by considering the constraints (�′′(ξ0) > 0),
which leads to η0 > 0 by using B0 > 0. For calculating
the constraints, we only present the conditions of a stable
configuration for the case of B0 > 0, while the case B0 < 0
is not written in the present manuscript. Moreover, we cal-
culate the stable structure that is based on the quintessence
and cloud parameters as mentioned in the following cases:

5.1 Four-dimensional Schwarzschild BH with quintessence
and cloud of strings

We assume the four-dimensional spherical symmetric solu-
tion with quintessence and cloud of strings in the absence of
charge and �. For this purpose, we substitute Q = 0,� =
0, andd = 4 with different possibilities of ωq in Eq. (24).

• For ωq = −1, the condition of stability is

η0 >
(a − 1)ξ0

2
(
αξ3

0 − aξ0 − 4m + ξ0
)

+ −aξ0 − 3m + ξ0

ξ0
(
αξ2

0 + a − 1
) + 2m

+ 1,

if a > αξ2
0 − 4m

ξ0
+ 1. (25)

• For ωq = − d−2
d−1 , we observe the following constraint:

η0 > −ξ2
0

(
α2ξ2

0 + α(a − 1)ξ0 + (a − 1)2
) − 2mξ0(αξ0 − 2a + 2) + 8m2

2((a − 1)ξ0 + 4m)(ξ0(αξ0 + a − 1) + 2m)
, if α ∈ R ∧ a + 4m

ξ0
> 1. (26)
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Fig. 2 Region plot of η0 versus ξ0 and d of a thin-shell WH for a d-
dimensional RN-ADS BH with quintessence and a cloud of strings. The
brown regions represent the stable regions (η0 > 0), and blues regions

show an unstable configuration (η0 < 0) with Q = 0.2,� = 0.02, α =
0.2, a = 0.4,m = 0.4, for ωq = − d−3

d−1 (first plot), ωq = −1 (second

plot), and ωq = − d−2
d−1 (third plot)

Fig. 3 Region plot of η0 versus ξ0 and d of a thin-shell WH with a
d-dimensional RN-ADS BH with quintessence (a = 0). The brown
regions represent the stable regions (η0 > 0), and blue regions show

an unstable configuration (η0 < 0) with Q = 0.2,� = 0.02, α =
0.2,m = 0.4, for ωq = − d−3

d−1 (first plot), ωq = −1 (second plot), and

ωq = − d−2
d−1 (third plot)

• For ωq = − d−3
d−1 , the stability condition becomes

η0 > − ξ2
0 (a + α − 1)2 + 4mξ0(a + α − 1) + 8m2

2(ξ0(a + α − 1) + 2m)(ξ0(a + α − 1) + 4m)
,

if a + α + 4m

ξ0
> 1. (27)

5.2 Four-dimensional Schwarzschild ADS BH with
quintessence and cloud of strings

Now we observe the stability constraints for the choice of a
four-dimensional Schwarzschild ADS BH with quintessence
and a cloud of strings. For this purpose, we consider Q =

0,� �= 0, and d = 4 with different possibilities of ωq in Eq.
(24).

• For ωq = −1, we get

η0 > − 3(a − 1)ξ0

−2ξ3
0 (3α + �) + 6(a − 1)ξ0 + 24m

+ −3(a − 1)ξ0 − 9m

ξ3
0 (3α + �) + 3(a − 1)ξ0 + 6m

+ 1, (28)

if

ξ0 �= 0 ∧ a >
1

3
ξ2

0 (3α + �) − 4m

ξ0
+ 1.
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Fig. 4 Region plot of η0 versus ξ0 and d of a thin-shell WH with a d-
dimensional RN-ADS BH (a = 0, α = 0). The brown regions represent
the stable regions (η0 > 0), and blue regions show an unstable config-

uration (η0 < 0) with Q = 0.2,� = 0.02,m = 0.4, for ωq = − d−3
d−1

(first plot), ωq = −1 (second plot), and ωq = − d−2
d−1 (third plot)

Fig. 5 Region plot of η0 versus ξ0 and d of a thin-shell WH with a d-
dimensional Schwarzschild-ADS BH with quintessence and a cloud
strings (Q = 0). The brown regions represent the stable regions

(η0 > 0), and blue regions show an unstable configuration (η0 < 0)
with � = 0.02, α = 0.2, a = 0.4,m = 0.4, for ωq = − d−3

d−1 (first

plot), ωq = −1 (second plot), and ωq = − d−2
d−1 (third plot)

• For ωq = − d−2
d−1 , the stability conditions are

η0 >
ξ2

0J1(ξ0) + 6mξ0
(
3αξ0 − 6a + 5�ξ2

0 + 6
) − 72m2

2
(
3(a − 1)ξ0 − �ξ3

0 + 12m
) (

ξ0
(
3αξ0 + 3a + �ξ2

0 − 3
) + 6m

) , (29)

if
α ∈ R ∧ a >

�ξ2
0

3
− 4m

ξ0
+ 1.

• For ωq = − d−3
d−1 , it yields the following condition:

η0 > − 3ξ0(a + α − 1)

6ξ0(a + α − 1) − 2�ξ3
0 + 24m

+ −3ξ0(a + α − 1) − 9m

3ξ0(a + α − 1) + �ξ3
0 + 6m

+ 1, (30)

if

ξ0 �= 0 ∧ a + α + 4m

ξ0
>

�ξ2
0

3
+ 1.
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Fig. 6 Region plot of η0 versus ξ0 and d of a thin-shell WH with a d-
dimensional Schwarzschild-ADS BH with quintessence (Q = 0 = a).
The brown regions represent the stable regions (η0 > 0), and blue

regions show an unstable configuration (η0 < 0) with � = 0.02, α =
0.2,m = 0.4, for ωq = − d−3

d−1 (first plot), ωq = −1 (second plot), and

ωq = − d−2
d−1 (third plot)

Fig. 7 Region plot of η0 versus ξ0 and d of a thin-shell WH with a
d-dimensional Schwarzschild-ADS BH (α = 0 = a, Q = 0). The
brown regions represent the stable regions (η0 > 0), and blue regions

show an unstable configuration (η0 < 0) with � = 0.02,m = 0.4, for
ωq = − d−3

d−1 (first plot), ωq = −1 (second plot), and ωq = − d−2
d−1 (third

plot)

5.3 Four-dimensional RN BH with quintessence and cloud
of strings

Now we observe the effect of quintessence and a cloud of
strings on the stable constraints of a four-dimensional RN
BH; in other words, by setting Q �= 0,� = 0, and d = 4
with different choices of ωq in Eq. (24).

• For ωq = −1, we get

η0 >
ξ2

0

(−2α2ξ6
0 + (a − 1)αξ4

0 + 2mξ0
(
5αξ2

0 − 2a + 2
) − (a − 1)2ξ2

0 − 8m2
) + J2(ξ0)

2
(
ξ0

(
αξ3

0 − aξ0 − 4m + ξ0
) + 3Q2

) (
Q2 − ξ0

(
ξ0

(
αξ2

0 + a − 1
) + 2m

)) , (31)

if

ξ0 �= 0 ∧ αξ4
0 + ξ2

0 + 3Q2 < ξ0(aξ0 + 4m).

• For ωq = − d−2
d−1 , the stability conditions are
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η0 >
ξ2

0

(−ξ2
0

(
α2ξ2

0 + α(a − 1)ξ0 + (a − 1)2
) + 2mξ0(αξ0 − 2a + 2) − 8m2

) + J3(ξ0)

2
(
ξ0(−aξ0 − 4m + ξ0) + 3Q2

) (
Q2 − ξ0(ξ0(αξ0 + a − 1) + 2m)

) , (32)

if

α ∈ R ∧ a > −4m

ξ0
+ 3Q2

ξ2
0

+ 1.

• For ωq = − d−3
d−1 , it yields the following condition:

η0 >
4mξ0 − 5Q2

2ξ0(ξ0(a + α − 1) + 4m) − 6Q2

+ Q2 − mξ0

ξ0(ξ0(a + α − 1) + 2m) − Q2 − 1

2
, (33)

if

ξ0 �= 0 ∧ a + α + 4m

ξ0
>

3Q2

ξ2
0

+ 1.

5.4 Four-dimensional RN-ADS BH with quintessence and
cloud of strings

Finally, we consider a four-dimensional RN-ADS BH with
quintessence and a cloud of strings by taking Q �= 0,� �=
0, andd = 4 with various choices of ωq in Eq. (24).

• For ωq = −1, the condition of stability becomes

η0 >
ξ2

0

(
3(a − 1)ξ4

0 (3α + �) − 2ξ6
0 (3α + �)2 + J6(ξ0)

)
− 3ξ0Q

2
(

10ξ3
0 (3α + �) − 3(a − 1)ξ0 − 30m

)
− 36Q4

2
(
ξ0

(
ξ3

0 (3α + �) − 3(a − 1)ξ0 − 12m
)

+ 9Q2
) (

3Q2 − ξ0

(
ξ3

0 (3α + �) + 3(a − 1)ξ0 + 6m
)) , (34)

if

ξ0 �= 0 ∧ a >
1

3
ξ2

0 (3α + �) − 4m

ξ0
+ 3Q2

ξ2
0

+ 1.

• For ωq = − d−2
d−1 , it leads to the following stability con-

dition:

η0 >
ξ2

0

(
J7(ξ0) + 6mξ0

(
3αξ0 − 6a + 5�ξ2

0 + 6
)

− 72m2
)

− 3ξ0Q
2(ξ0(2ξ0(6α + 5�ξ0) − 3a + 3) − 30m) − 36Q4

2
(
ξ0

(
ξ0

(
−3a + �ξ2

0 + 3
)

− 12m
)

+ 9Q2
) (

3Q2 − ξ0

(
ξ0

(
3αξ0 + 3a + �ξ2

0 − 3
)

+ 6m
)) , (35)

if

α ∈ R ∧ ξ0 �= 0 ∧ a >
�ξ2

0

3
− 4m

ξ0
+ 3Q2

ξ2
0

+ 1.

• For ωq = − d−3
d−1 , we get the stability constraint as

η0 >
ξ2

0

(
3�ξ4

0 (a + α − 1) − 9ξ2
0 (a + α − 1)2 + 6mξ0

(
5�ξ2

0 − 6(a + α − 1)
) − 2�2ξ6

0 − 72m2
) + J8(ξ0)

2
(
ξ0

(−3ξ0(a + α − 1) − �ξ3
0 − 6m

) + 3Q2
) (

ξ0
(−3ξ0(a + α − 1) + �ξ3

0 − 12m
) + 9Q2

) , (36)

if

ξ0 �= 0 ∧ a + α + 4m

ξ0
>

�ξ2
0

3
+ 3Q2

ξ2
0

+ 1.

5.5 Graphical analysis via regional plots

Further, we study the stability of the created structure through
the region plots of η0 versus ξ0 and d as shown in Figs. 2,
3, 4, 5, 6, and 7. It is very interesting to note that for a sta-
ble configuration, η0 must be greater (less) than zero; oth-
erwise, it represents the unstable configurations for B0 > 0
(B0 < 0). As calculated for different values of d, there is
a possibility of stable configurations (η0 > 0) with certain
conditions on the physical parameters. We are interested in
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observing these stable regions graphically and also analyz-
ing the impact of dimension, charge, quintessence, and cloud
strings on the stability of thin-shell WHs. In Fig. 2, the possi-
bility of a stable geometry of an RN-ADS d-dimensional BH
with quintessence and cloud parameters for three different
choices of ωq , i.e., ωq = − d−3

d−1 ,−1,− d−2
d−1 , is presented.The

same stable regions are found for every choice of ωq , and sta-
ble regions shrink for higher-dimensional BHs. For the case
of an RN-ADS d-dimensional BH with (α �= 0, a = 0) and
(α = 0 = a), stable regions decrease (Figs. 2, 3, and 4). Sim-
ilarly, we also observe the impact of quintessence and cloud
parameters on the stable structure of a thin shell in light of
Schwarzschild ADS d-dimensional BHs (Figs. 5, 6, and 7).
Finally, it is concluded that the chances of a stable structure
are maximum for the choice of an RN-ADS d-dimensional
BH with quintessence and cloud strings. In the absence of
cloud and quintessence parameters, the stability of charged
and uncharged ADS BHs decreases, as shown in Figs. 2, 3,
4, 5, 6, and 7.

6 Conclusions

In this study, we have constructed a d-dimensional thin-shell
WH that is bounded by quintessence and a cloud of strings
by using the cut-and-paste approach and the Darmois–Israel
conjecture. The stress-energy tensor components are deter-
mined from the simplified form of the Einstein field equations
at the hypersurface, which creates the dynamical equations
of these built geometries. A more general model of stability
constraints has been inspected under radial oscillations while
maintaining the spherically symmetric structure in the frame-
work of Schwarzschild (ADS) and RN (ADS) BHs with the
quintessence and cloud of strings. It is noted that the matter
constituents violate the energy constraints, which indicates
the presence of exotic substance. Such type of matter con-
tents plays a remarkable role in stabilizing the rapidly col-
lapsing and expanding behavior of the WH throat. We have
also explored the stability of the developed structure through
a regional plot along the equilibrium shell radius and dimen-
sion of the BH. For a stable configuration, η0 must be greater
or less than zero with respect to the behavior of B0 as B0 > 0
or B0 < 0, respectively. As calculated for different values
of d, there is a possibility of stable configurations (η0 > 0)
with certain conditions on the physical parameters. We have
observed these stable regions graphically and also analyzed
the influences of dimension, charge, quintessence, and cloud
strings on the stability of thin-shell WHs, as shown in Figs.
5, 6, and 7. It is concluded that the stability of thin-shell
WHs increases in the background of the cloud of strings and
quintessence field. Hence, the developed higher-dimensional
charged thin-shell WH with quintessence and cloud of strings
shows maximum stable configurations. The stability con-

straints show that for higher dimension, the stable domain
decreases. This work can be extended for the dynamics of
higher-dimensional thin-shell and gravastar structures with
different types of matter contents. It is also beneficial to study
the thermodynamic properties of the shell around BH and
WH geometries.
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Appendix

J1(ξ0) =
(
−3ξ2

0

(
3α2 − a� + �

)
− 9(a − 1)αξ0

−6α�ξ3
0 − 9(a − 1)2 − 2�2ξ4

0

)
,

J2(ξ0) = ξ0Q
2
(
ξ0

(
−10αξ2

0 + a − 1
)

+ 10m
)

− 4Q4,

J3(ξ0) = ξ0Q
2(ξ0(−4αξ0 + a − 1) + 10m) − 4Q4,

J6(ξ0) = 6mξ0

(
5ξ2

0 (3α + �) − 6a + 6
)

−9(a − 1)2ξ2
0 − 72m2,

J7(ξ0) = ξ2
0

(
−3ξ2

0

(
3α2 − a� + �

)
− 9(a − 1)αξ0

−6α�ξ3
0 − 9(a − 1)2 − 2�2ξ4

0

)
,

J8(ξ0) = 3ξ0Q
2
(

3ξ0(a+α−1)−10�ξ3
0 +30m

)
−36Q4.
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