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Abstract
The sending-or-not-sending (SNS) protocol of the twin-field (TF) quantum key distribution
(QKD) can tolerant large misalignment error and its key rate can exceed the linear bound of
repeaterless QKD. The original SNS protocol and all variants of TF-QKD require perfect vacuum
sources, but in the real world experiments there is no practical perfect vacuum source. Instead,
experimenters use extremely weak sources to substitute vacuum sources, which may break the
security of the protocol. Here we propose an SNS protocol with imperfect vacuum sources and
give the non-asymptotic decoy-state analysis of this protocol. Our numerical simulation shows
that when the imperfect vacuum sources are close to perfect vacuum sources, our protocol can
obtain similar key rate as that with perfect vacuum sources. This is the first result that closes the
potential security loophole due to imperfect vacuum of TF-QKD.

1. Introduction

Quantum key distribution (QKD) provides a method for unconditionally secure communication [1–4]
between two parties, Alice and Bob. Combined with the decoy-state method [5–7] and
measurement-device-independent (MDI) QKD protocol [8, 9], QKD can overcome the security loophole
from the nonideal single-photon sources and imperfect detection devices and is demonstrated in several
experiments [10–16]. So far, the maximum experimental distance of MDIQKD has reached to 404 km [17]
using the four-intensity protocol [18, 19] with parameter optimization [18–21]. With the decoy-state
method, the BB84-like QKD has reached a distance of record of 421 km [22]. But the key rate of BB84,
MDIQKD protocol, or any modified version of these protocols cannot exceed the linear bounds of
repeaterless QKD, the PLOB (Pirandola, Laurenza, Ottaviani, and Banchi) bound [23].

Recently, a new protocol named twin-field (TF) quantum key distribution (TFQKD) was proposed [24]
whose key rate dependence on the channel transmittance η is R ∼ O(

√
η). Since then, the key rate

advantage of TFQKD has been extensively demonstrated [25–35]. The efficient protocol for TFQKD,
named the sending-or-not-sending (SNS) protocol [36], has the advantage of unconditionally security
under coherent attacks and it can tolerant large misalignment error, and the SNS protocol has been widely
studied in theories [37–44] and experimentally [25, 26, 29–32, 35]. Notably, the SNS protocol has been
demonstrated in the 511 km field test [31], the farthest field experiment to date, linking two metropolitans
Jinan and QingDao, and long distance laboratory experiment with vibration detection [35].
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Figure 1. A schematic of the setup for the SNS protocol. IM: intensity modulator; PM: phase modulator; BS: beam-splitter;
DL & DR: single-photon detector in the measurement station of Charlie.

In the real world experiments, there is no perfect vacuum source [21, 45, 46]. In the existing TF-QKD
experiments, the vacuum sources required in the theoretical protocols are replaced by extremely weak
sources, which are attenuated from normal lasers and the extinction ratio is imperfect, e.g., in the
magnitude order of 50 dB. If these imperfect vacuum sources were used and the final key was still distilled
through the original protocol, security loopholes might occur. To avoid the potential security loopholes, we
propose an SNS protocol which is secure with imperfect vacuum sources. In this protocol, when Alice (Bob)
decides not to send, she (he) actually sends a phase-randomized coherent state with an extremely small
intensity. In the view of photon-number space, when sending this coherent state, she (he) sends no photon,
i.e. a vacuum state, with a probability close to 1 and sends one or more photons with a very small
probability. We will show that even with such imperfect vacuum sources, our protocol is secure with good
performance, taken the finite-size effects [38, 41, 47–49] with imperfect devices [45, 46, 50, 51] into
consideration. Then we will give the formulas of parameter estimation and the secure key rate in this
protocol.

This paper is arranged as follows. In section 2, we present the procedures of our SNS protocol with
imperfect vacuum sources. In section 3, we analyze the security of our protocol and give the formulas of the
secure key rate according to the decoy-state method. We show the results of numerical simulation of this
SNS protocol with imperfect vacuum sources compared with the original four-intensity SNS protocol in
section 4. The article ends with some concluding remarks in section 5.

2. SNS protocol with imperfect vacuum sources

The schematic of our protocol is shown in figure 1. We shall also add the actively odd parity pairing
(AOPP) in the data post-processing [40–42]. In the decoy-state analysis part, we can apply either
three-intensity method or four-intensity method. Here, we take the four-intensity method as an example to
introduce the detailed procedures of this protocol as follows.

In each time window, Alice (Bob) randomly decides to prepare and send a phase-randomized weak
coherent state (WCS) of intensity μz with probability pz, a extremely WCS of intensity μv with probability
pv , a WCS of intensity μy with probability py and a WCS of intensity μx with probability px. Surely,

pz + pv + px + py = 1, and a coherent state of intensity μ with phase θ is
∣∣√μ eiθ

〉
. The value of μv is very

small. Here, the intensities are required to satisfy:

μy > μx > μv � 0. (1)

We first consider the case that Alice and Bob are able to control the intensity μv precisely. The special case
that the intensity μv is fixed but unknown will be discussed later.
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Then Alice and Bob send their pulses to Charlie; Charlie is assumed to perform interferometric
measurements on the received pulses and announce the measuring results to Alice and Bob. If only one of
the two detectors clicks, Charlie would announce that this pulse pair causes a click and whether the left
detector or the right one clicks. Alice and Bob take it as a one-detector heralded event.

For ease of presentation, we define a time window to be an lr window if Alice sends out a coherent state
of intensity μl and Bob sends out a coherent state of intensity μr. In particular, we define all those time
windows of zv, vz, vv, and zz as Z windows and all those time windows of xx as X windows.

After Alice and Bob repeat the above process many times, Alice (Bob) announces those time windows
when she (he) has decided to send a WCS of intensity μx and those when she (he) has decided a WCS of
intensity μy. They use Z windows for bit value encoding, in particular, in a Z window when Alice (Bob)
decides to send a WCS of intensity μz, i.e., decides sending, she (he) puts down a bit value 1 (0); in a Z
window when Alice (Bob) decides to send a WCS of intensity μv , i.e., decides not-sending, she (he) puts
down a bit value 0 (1). Correspondingly, in Z windows, the sending probability of Alice or Bob is

ε =
pz

pz + pv
. (2)

A Z window when one party decides sending and another party decides not-sending is named as a Z̃
window. In Z windows, only those one-detector-heralded events are regarded as effective events that
contribute for final key distillation, and the events when Charlie announces two clicks or no click would be
discarded. We denote the total number of one-detector-heralded events in lr windows as nlr. Here are some
more definitions: a Z window or Z̃ window producing an effective event is named as an effective Z window
or an effective Z̃ window. Since the phases in Z windows are never announced, the pulses sent in Z windows
can be regarded as the mixture of different Fock states. For those discarded windows without correct
heralding at Charlie’s station, they announce which intensity they choose at each window. For those X
windows, they announce the phases of the WCS they sent, θA and θB. Among X windows, the window in
which the phases satisfy

1 − | cos(θA − θB)| � λ (3)

is defined as an X1 window. Here λ is a positive number close to 0 and its value is determined by Alice and
Bob according to the result of channel test and calibration in the experiment to obtain a satisfactory key
rate. The data of X1 windows are used to estimate the phase-flip error rate of untagged bits. The data of
other windows are used to perform the decoy-state analysis.

In our protocol, the untagged event is defined by: (1) it is an effective event in a Z window; (2) one of
Alice and Bob chooses the intensity μz and he/she actually sends a one-photon pulse, and the other of them
chooses the intensity μv and he/she actually sends a vacuum pulse. The bits from these untagged events are
defined as untagged bits.

Finally, Alice and Bob perform the postprocessing and obtain the final key with length [38]

Nf = nL
u[1 − H(e ph,U

u )] − f nZH(EZ) − log2

2

εcor
− 2 log2

1√
2εPAε̂

. (4)

With the key length formula equation (4), the security coefficient of the whole protocol [47, 48] is

εtol = εcor + 2ε̂+ εPA + 4
√
εe + εnu . (5)

Here, nL
u is the lower bound of the number of untagged bits; e ph,U

u is the upper bound of the phase-flip error
rate of untagged bits; f is the error correction inefficiency; nZ is the number of effective events in Z
windows; EZ is the bit-flip error rate of effective events in Z windows;
H(x) = −x log2(x) − (1 − x)log2(1 − x) is the Shannon entropy; εcor is the failure probability of error
correction; εPA is the failure probability of privacy amplification; ε̂ is the coefficient while using the chain
rules of max- and min-entropy [38]; εe is the failure probability of the estimation of phase-flip error rate;
and εnu is the failure probability of the estimation of the number of untagged bits.

To further improve the secure key rate and distance, we apply AOPP [40–42] here: Alice does AOPP for
her bits from effective Z windows (she makes odd pairs of her bits from effective Z windows randomly) and
then takes parity check with Bob for each pair. Those pairs with odd parity values at Bob’s side will survive.
They take one bit randomly from every survived pair and then distill the final key with the following key
length

3
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N ′
f = n′

u[1 − H(e′ph
u )] − f n′

Z H(E′
Z) − 2

(
log2

2

εcor
− 2 log2

1√
2εPAε̂

)
, (6)

where n′
u and e′ph

u are the number and the phase-flip error rate of survived untagged bits after AOPP,
respectively, and n′

Z and E′
Z are the number and the bit-flip error rate of all survived bits after AOPP,

respectively. Note that the finite-key analysis in references [38, 41, 42] still works in this protocol.
The quantum communication part of our protocol above is identical to that of the original SNS

protocol, except that the exact vacuum is replaced by the supposed vacuum, the coherent state with
intensity μv . However, without using any vacuum in the SNS protocol, it is unknown so far how to
efficiently verify the lower bound of untagged bits and upper bound of phase-flip error rate of
single-photon bits, i.e., the lower bound of n′

u and the upper bound of e′ph
u in equation (6) above. Now we

show this.

3. Decoy-state analysis

Since the phases of the WCS in Z windows are never announced, these states can be regarded as the mixture
of different Fock states, i.e. the density matrix of the WCS with intensity μl can be written as

ρ(μl) =
∞∑

m=0

lm |m〉 〈m| , (7)

where lm = e−μl
μm

l
m! . Thus, in Z windows, the TF state sent by Alice and Bob is

ρlr =

∞∑
m, n=0

lmrn |mn〉 〈mn| , lr = vv, vz, zv, zz. (8)

For simplicity, we assume that Alice’s and Bob’s intensities of sources v are the same in this section. In
general, they can be different, i.e., Alice and Bob have their own intensities μvA and μvB. But this will not
affect the security and the decoy-state analysis here still works except that the formulas are more
complicated. We will give the formulas with asymmetric μv in the appendix.

Correspondingly, the density matrix of all pulses in Z windows is

ρZ = (1 − ε)2ρvv + ε2ρzz + ε(1 − ε)(ρvz + ρzv). (9)

With equation (8), we have
ρvz + ρzv

2
= v0z1ρu + (1 − v0z1)ρ̃u, (10)

where ρu is the density matrix of the TF states of untagged bits

ρu =
|10〉 〈10|+ |01〉 〈01|

2
(11)

and it is easy to prove that ρ̃u is also a density matrix. So ρZ is a classical mixture of the state ρu and some
other states. According to the tagged model [52, 53], we can regard bits from the state ρu in Z windows as
untagged bits and those from other states in Z windows as tagged bits. As long as we can estimate the lower
bound of the number of untagged bits and the upper bound of the phase-flip error rate of untagged bits
with the decoy-state method, we can use the formula in equation (4) to calculate the secure key length.

For convenience, we introduce some virtual sources that emit pulses of a certain photon number, and
the corresponding states are ρm = |m〉 〈m|. The subscript lr introduced above can be generalized to the
combination of these virtual sources. For example, ρz1 denotes the TF state when Alice sends pulses of WCS
with intensity μz and Bob sends pulses containing one photon; ρ11 denotes the TF state when both Alice
and Bob send pulses containing one photon.

We define the counting rate of a TF state from real sources as Slr = nlr/Nlr, where Nlr is the total number
of pulse pairs lr sent by Alice and Bob and nlr is the number of one-detector heralded events caused by pulse
pairs lr. Similarly, we define the counting rate of a TF state from virtual sources as slr = nlr/Nlr, where at
least one of l and r is a virtual source. Note that values of Slr can be observed in the experiment, but slr

cannot. The expected values of Slr (slr) are defined as 〈Slr〉 (〈slr〉), and the relation among them is given by
Chernoff bound [48, 54] shown in the appendix. In the following, we will show how to estimate the lower
bound of 〈s01〉 and 〈s10〉.

4



New J. Phys. 24 (2022) 063014 X-L Hu et al

According to the decoy-state method [5–7], we have

〈s0v〉 = v0〈s00〉+ v1〈s01〉+ v2〈s02〉+
∞∑

n=3

vn〈s0n〉,

〈s0x〉 = x0〈s00〉+ x1〈s01〉+ x2〈s02〉+
∞∑

n=3

xn〈s0n〉,

〈s0y〉 = y0〈s00〉+ y1〈s01〉+ y2〈s02〉+
∞∑

n=3

yn〈s0n〉.

(12)

By eliminating the terms 〈s00〉 and 〈s02〉, we can get

〈s01〉 =
v0[(y2v0 − y0v2)〈s0x〉 − (x2v0 − x0v2)〈s0y〉 − (y2x0 − y0x2)〈s0v〉]

(y2v0 − y0v2)(x1v0 − x0v1) − (x2v0 − x0v2)(y1v0 − y0v1)
+ ξ1, (13)

and the term ξ1 can be proved to be non-negative (detailed derivation is given in the appendix). Thus, we
can obtain the lower bound of 〈s01〉

〈s01〉 � 〈s01〉L =
v0[(y2v0 − y0v2)〈s0x〉L − (x2v0 − x0v2)〈s0y〉U − (y2x0 − y0x2)〈s0v〉U]

(y2v0 − y0v2)(x1v0 − x0v1) − (x2v0 − x0v2)(y1v0 − y0v1)
, (14)

assuming that we know the bounds of 〈s0x〉, 〈s0y〉, and 〈s0v〉. Here, the superscript L stands for the lower
bound of this quantity and U stands for the upper bound of this quantity. Similarly, we can obtain the lower
bound of 〈s10〉:

〈s10〉 � 〈s10〉L =
v0[(y2v0 − y0v2)〈sx0〉L − (x2v0 − x0v2)〈sy0〉U − (y2x0 − y0x2)〈sv0〉U]

(y2v0 − y0v2)(x1v0 − x0v1) − (x2v0 − x0v2)(y1v0 − y0v1)
, (15)

assuming that we know the bounds of 〈sx 0〉, 〈sy 0〉, and 〈sv 0〉.
With the expansion of 〈Svv〉

〈Svv〉 = v0〈s0v〉+ v1〈s1v〉+
∞∑

n=2

vn〈snv〉

= v0〈s0v〉+ v1

(
v0〈s10〉+

∞∑
m=1

vm〈s1m〉
)

+

∞∑
n=2

vn〈snv〉, (16)

we can easily get

〈s0v〉 � 1

v0
〈Svv〉 − v1〈s10〉 � 1

v0
〈Svv〉 − v1〈s10〉L. (17)

Thus,

〈s0v〉U =
1

v0
〈Svv〉 − v1〈s10〉L. (18)

Similarly, we have

〈sv 0〉U =
1

v0
〈Svv〉 − v1〈s01〉L,

〈s0y〉U =
1

v0
〈Svy〉 −

v1y0

v0
〈s10〉L,

〈sy0〉U =
1

v0
〈Syv〉 −

v1y0

v0
〈s01〉L.

(19)

With the expansion of 〈Svx〉 and 〈Sxx〉

〈Svx〉 = v0〈s0x〉+ v1〈s1x〉+
∞∑

n=2

vn〈snx〉,

〈Sxx〉 = x0〈s0x〉+ x1〈s1x〉+
∞∑

n=2

xn〈snx〉,
(20)

by eliminating 〈s1x〉, we can get

〈s0x〉L =
x1〈Svx〉 − v1〈Sx x〉

x1v0 − x0v1
. (21)

5
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Similarly, we have

〈sx0〉L =
x1〈Sxv〉 − v1〈Sx x〉

x1v0 − x0v1
. (22)

Combining equations (14), (15), (18), (19), (21) and (22), and substituting lm = e−μl
μm

l
m! , l = v, x, y, we

can obtain 〈s01〉L and 〈s10〉L:

〈s01〉L =
g3(g1〈Svx〉+ g2〈Sxv〉) − [g4(g1 + g2)〈Sxx〉+ g5(g1〈Svy〉+ g2〈Syv〉) + g6(g1 + g2)〈Svv〉]

g2
1 − g2

2

, (23)

〈s10〉L =
g3(g1〈Sxv〉+ g2〈Svx〉) − [g4(g1 + g2)〈Sx x〉+ g5(g1〈Syv〉+ g2〈Svy〉) + g6(g1 + g2)〈Svv〉]

g2
1 − g2

2

, (24)

if g2
1 − g2

2 > 0, where

g1 = (μy − μv)(μx − μv)(μy − μx),

g2 = μv(μ2
y − μ2

v),

g3 = eμx+μv
μx

μx − μv
(μ2

y − μ2
v),

g4 = e2μx
μv

μx − μv
(μ2

y − μ2
v),

g5 = eμy+μv (μ2
x − μ2

v),

g6 = e2μv (μ2
y − μ2

x).

Thus, the counting rate of the untagged pulse pairs in state ρu is:

〈su〉L =
〈s01〉L + 〈s10〉L

2
=

S+ − S−
g2

1 − g2
2

, (25)

where

S+ = g3
〈Svx〉+ 〈Sxv〉

2
(26)

and

S− = g4〈Sxx〉+ g5
〈Svy〉+ 〈Syv〉

2
+ g6〈Svv〉. (27)

If g2
1 − g2

2 � 0, 〈s01〉L = 〈s10〉L = 〈su〉L = 0 and thus no final key will be obtained. In the calculation of
equations (23), (24), (26) and (27), we can use the joint constrains of statistical fluctuation [20] to reduce
the effects of statistical fluctuation.

With equations (9) and (10), we can obtain the lower bound of the expected number of the untagged
bits:

〈nu〉L = 2NZε(1 − ε)v0z1〈su〉L, (28)

where NZ is the number of Z windows. In equation (25), if we set μv = 0, which means that we have perfect
vacuum sources, the formula of the counting rate of the untagged pulse pairs is exactly the same as that in
the original four-intensity SNS protocol [37].

As proved in reference [37], the density matrix of the TF state in X1 windows can be written as a
mixture of n-photon TF states

ρX1 = e−2μx

∞∑
n=0

(2μx)n

n!
σn (29)

and these n-photon TF states are

σn =
1

2φ

∫ φ

−φ

1

2

(∣∣ψ+
n (δ)

〉 〈
ψ+

n (δ)
∣∣+ ∣∣ψ−

n (δ)
〉 〈

ψ−
n (δ)

∣∣) dδ, (30)

where φ = arccos(1 − λ),

∣∣ψ+
n (δ)

〉
=

1√
2n

n∑
m=0

√
n!eimδ

√
m!(n − m)!

|m〉 |n − m〉 , (31)

6



New J. Phys. 24 (2022) 063014 X-L Hu et al

and ∣∣ψ−
n (δ)

〉
=

1√
2n

n∑
m=0

(−1)m
√

n!eimδ

√
m!(n − m)!

|m〉 |n − m〉 . (32)

We can find that σ0 = ρ00 and σ1 = ρu. So the single-photon state in X1 windows and that in Z windows
have the same density matrices. With this relations, the phase-flip error rate e ph

u can be estimated
asymptotically through the single-photon state σ1 in X1 windows.

We define the error counting rate of a set C as TC = mC/NC, where NC is the total number of instances
in the set C and mC is the number of wrong one-detector heralded events in the set C. We use the lowercase
tC when the sources in the set C are virtual sources. The expected values of TC and tC are defined as 〈TC〉
and 〈tC〉, respectively.

The error counting rate of X1 windows can be written as

〈TX1〉 = e−2μx

[
〈tσ0〉+ 2μx〈tσ1〉+

∞∑
n=2

(2μx)n

n!
〈tσn〉

]
. (33)

Using the relations σ0 = ρ00 and σ1 = ρu, we can have

〈tu〉 � 〈tu〉U =
〈TX1〉 − e−2μx〈t00〉L

2μx e−2μx
. (34)

With the expansion of 〈Svv〉 and 〈Sxx〉

〈Svv〉 = v2
0〈s00〉+ v0v1(〈s01〉+ 〈s10〉) +

∑
m,n�0

m+n>1

vmvn〈smn〉,

〈Sxx〉 = x2
0〈s00〉+ x0x1(〈s01〉+ 〈s10〉) +

∑
m,n�0

m+n>1

xmxn〈smn〉,
(35)

by eliminating (〈s01〉+ 〈s10〉), we can get

〈s00〉L = e2μv
μx

μx − μv
〈Svv〉 − e2μx

μv

μx − μv
〈Sxx〉. (36)

Using the fact that the error rate of vacuum pulses is 1/2 asymptotically [55], i.e. 〈t00〉 = 〈s00〉/2, we can
obtain the upper bound of the phase-flip error rate of untagged bits:

〈eph
u 〉U =

〈tu〉U

〈su〉L

=
〈TX1〉+ μv

2(μx−μv) 〈Sxx〉 − e2(μv−μx) μx
2(μx−μv) 〈Svv〉

2μx e−2μx〈su〉L
. (37)

After obtaining the bounds of 〈s01〉, 〈s01〉, and 〈eph
u 〉 in equations (23), (24) and (37), we can use the

method proposed in references [41, 42] to calculate the bounds of n′
u and e′ph

u after AOPP, and then
substitute them into equation (6) to calculate the final key length. The related formulas are shown in the
appendix.

3.1. A special case with an unknown intensity of source v
The intensity μv is so low that in a real experiment this intensity may not be controlled precisely. When
using the source v, Alice (Bob) may send a WCS state with an unknown intensity μ′

vA (μ′
vB). But they can

evaluate their devices to give a convincing upper bound of this unknown intensity, μ̄v . That is to say, the
actual intensities μ′

vA and μ′
vB are in a range [0, μ̄v].

Using the revised key rate formulas with asymmetric μv in the appendix, given the observed data and
other source parameters, we can regard the final key length as a function of Alice’s and Bob’s intensities μvA

and μvB, i.e. N ′
f (μvA,μvB). We scan N ′

f (μvA,μvB) over the range μvA,μvB ∈ [0, μ̄v], find the minimum value
N ′

f,min as the worst case. Since N ′
f,min � N ′

f (μ
′
vA,μ′

vB) and N ′
f (μ

′
vA,μ′

vB) is a secure key length, we can regard
N ′

f,min as a secure key length as well. In this way, we can guarantee the security of the final key even if we do
not know the exact value of the intensity of source v.

According to our numerical results, the worst case always occurs when one of μvA and μvB is the
minimum and the other is the maximum of the range, i.e. μvA = 0,μvB = μ̄v or μvA = μ̄v ,μvB = 0.
Compared with the numerical results with known intensities μvA = μvB = μ̄v , this special case introduces
about 1% extra loss to the final key rate.

7
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Table 1. Devices’ parameters used in numerical simulations. Nt is
the total number of pulse pairs; ed is the misalignment error in X
windows; d is the dark count rate per pulse of each detector at
Charlie’s side; ηd is the detection efficiency of each detector at
Charlie’s side; f is the error correction inefficiency; ξ is the failure
probability in the parameter estimation; α is the channel loss.

Nt ed d ηd f ξ α

1012 1.5% 10−10 50% 1.1 10−10 0.2 dB km−1

Figure 2. The optimized key rates (per pulse pair) versus transmission distance of our protocol with imperfect vacuum sources
with different μv .

Security in this special case. (a) As stated in reference [39], the constraint for source parameters is only
necessary in the X1 windows. Therefore, the asymmetric intensities of sources v do not have to satisfy the
constraint in reference [39] to guarantee the security. (b) In Z windows, we choose the same amount of
pulses in states ρ01 and ρ10 to constitute the untagged bits (see equation (B16) in the appendix). So the TF
state of untagged bits ρu remains the same as that in equation (11) and thus the previous security proof still
works even if μvA 
= μvB.

4. Numerical simulation

In this part, we show the results of numerical simulation of our AOPP-SNS protocol with imperfect vacuum
sources, and compare them with the results of the original AOPP-SNS protocol with perfect vacuum
sources [41, 42]. The results will be shown in the form of key rate per pulse, i.e. R = N ′

f/Nt, where N ′
f is the

secure key length and Nt is the total number of pulse pairs that Alice and Bob send. The device parameters
used in the simulation are listed in table 1. We shall estimate what values would be probably observed in the
normal cases by the linear models as previously.

Firstly, we suppose that Alice and Bob know the exact value of the intensity μv . We fix the value of μv

and optimize other source parameters (the intensities and the probabilities of choosing each source)
globally to obtain the highest key rate. In figure 2 and table 2, we show the key rates versus transmission
distance with different μv . When μv becomes larger, the key rate will decrease. Compared with the case with
perfect vacuum sources (μv = 0), as long as μv is less than 1 × 10−4, the decrease of the key rate of our
protocol with imperfect vacuum sources is less than 10%. Even if μv is as large as 1 × 10−3, the key rates of
our protocol can still exceed the PLOB bound a lot.

Some detailed results of this simulation are shown in table 3. According to the data in table 3, we can
find that the decrease of the key rate mainly comes from the increase of the bit-flip error in Z windows
caused by the imperfect vacuum sources, which is inevitable when there is no perfect vacuum source in real
world experiments. The decoy-state analysis of our protocol gives almost the same n′

u and e′ph
u as the case

with perfect vacuum sources. Thanks to the AOPP method [41, 42], the bit-flip error rate can be decreased
a lot. Without AOPP, the bit-flip error caused by the imperfect vacuum will decrease the key rate more.

We consider another scenario: in an experiment, Alice and Bob have already used imperfect vacuum
sources and have got the corresponding observed data. We compare the results with the decoy-state analysis

8
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Table 2. The optimized key rates (per pulse pair) at some transmission
distance with different μv .

μv 200 km 300 km 400 km 500 km

0 6.99 × 10−5 6.10 × 10−6 4.69 × 10−7 2.44 × 10−8

1 × 10−5 6.95 × 10−5 6.06 × 10−6 4.66 × 10−7 2.41 × 10−8

5 × 10−5 6.83 × 10−5 5.95 × 10−6 4.55 × 10−7 2.33 × 10−8

1 × 10−4 6.70 × 10−5 5.82 × 10−6 4.43 × 10−7 2.24 × 10−8

5 × 10−4 5.82 × 10−6 4.99 × 10−7 3.67 × 10−7 1.62 × 10−8

1 × 10−3 4.89 × 10−6 4.11 × 10−7 2.89 × 10−7 9.99 × 10−9

Table 3. Some data at the transmission distance of 400 km with
different μv . The device parameters used in the simulation are
listed in table 1. The source parameters are set as: μz = 0.501,
μx = 0.0644, μy = 0.337, px = 0.096, py = 0.004, pv = 0.649,
and pz = 0.251.

μv n′
u e′ph

u E′
Z R

0 7.68 × 105 7.61% 1.60 × 10−5 4.69 × 10−7

1 × 10−5 7.68 × 105 7.62% 9.58 × 10−5 4.66 × 10−7

5 × 10−5 7.67 × 105 7.64% 4.15 × 10−4 4.55 × 10−7

1 × 10−4 7.67 × 105 7.66% 8.13 × 10−4 4.43 × 10−7

5 × 10−4 7.63 × 105 7.80% 3.98 × 10−3 3.66 × 10−7

1 × 10−3 7.58 × 105 7.96% 7.91 × 10−3 2.83 × 10−7

Table 4. The optimized key rates (per pulse pair) at some transmission
distance with different μv with the decoy-state analysis of our protocol and
that of the original AOPP-SNS protocol in reference [42], respectively.
Assume that the observed data were obtained in the QKD process with
imperfect vacuum sources.

μv 300 km 400 km 500 km

1 × 10−5

This work 6.06 × 10−6 4.66 × 10−7 2.41 × 10−8

Reference [42] 6.07 × 10−6 4.66 × 10−7 2.42 × 10−8

1 × 10−4

This work 5.82 × 10−6 4.43 × 10−7 2.24 × 10−8

Reference [42] 5.86 × 10−6 4.47 × 10−7 2.26 × 10−8

of the original AOPP-SNS protocol (reference [42]), pretending the non-vacuum source v to be exact
vacuum, and the results of our protocol with imperfect vacuum sources (this work), in table 4. From these
results, we can see that, as long as μv is less than 1 × 10−4, with given observed data, the decrease of the key
rate of our protocol is less than 1%.

In addition, we show the key rates versus the intensity μv at a distance of 500 km. Similarly to the
simulations above, here we consider two cases:

(a) The expected observed data are simulated with different intensities μv and other source parameters
have been optimized globally. This case shows how badly μv using in experiments affects the key rates.
Results are presented in figure 3.

(b) In the simulation of observed data, we use fixed source parameters, including μv = 1 × 10−4. In the
calculation of key rate, we assume that μv is unknown and calculate the key rate with different upper
bounds μ̄v using the method in the subsection IIIA. Results are presented in figure 4.

From these results, we can find that in both cases, the key rate decreases when μv becomes larger. When
μv is small enough, the key rate is close to that with a perfect vacuum source (μv = 0).

Similar to references [55–58], we can add n0 bits to the final key length in equation (6), where n0 is the
number of Alice’s vacuum-related private bits as shown in the appendix. With this term, we have

N ′′
f = n0 + N ′

f . (38)

Surely, we can also use the following more efficient key-length formula

Ñ ′′
f = min

〈Svv 〉
N ′′

f (〈Svv〉), (39)

9
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Figure 3. The optimized key rates (per pulse pair) versus the intensity μv at a distance of 500 km. The expected observed data
are simulated with different intensities μv and other source parameters have been optimized globally.

Figure 4. The optimized key rates (per pulse pair) versus the upper bound μ̄v at a distance of 500 km. In the simulation of
observed data, we use fixed source parameters: μv = 1 × 10−4, μz = 0.500, μx = 0.0794, μy = 0.460, px = 0.171, py = 0.009,
pv = 0.593, and pz = 0.227. In the calculation of key rate, we assume that μv is unknown and calculate the key rate with different
upper bound μ̄v using the method in the subsection 3.1.

i.e. by scanning 〈Svv〉 in its possible range for the worst-case result of N ′′
f instead of taking worst-case

separately for su and e ph
u , can improve the non-asymptotic key rate a little bit. We have not applied

equations (38) and (39) in our numerical simulation above.
In summary, even if there is no perfect vacuum sources in practice, the SNS experiments are still secure

and give satisfactory key rates.

5. Conclusion

In this paper, we proposed an SNS protocol with imperfect vacuum sources and give the key rate formulas
of our protocol. Our protocol can avoid the security loopholes caused by imperfect vacuum sources in real
world experiments. According to the numerical simulation, as long as the experiments replace the vacuum
source by an extremely weak coherent source and its intensity is less than 1 × 10−4, the difference of key
rates between our protocol with imperfect vacuum sources and that with perfect vacuum sources is less
than 10%, and the key rates of our protocol can still exceed the PLOB bound a lot.

The SNS protocol with imperfect vacuum sources with asymmetric channels will be studied in our
future research.
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Appendix A. Proof for ξ1 � 0 in (13)

Remind the relation
μy > μx > μv � 0. (A1)

The formula of ξ1 is

ξ1 =
∞∑

n=3

(ynv0 − y0vn)(x2v0 − x0v2) − (xnv0 − x0vn)(y2v0 − y0v2)

(y2v0 − y0v2)(x1v0 − x0v1) − (x2v0 − x0v2)(y1v0 − y0v1)
〈s0n〉

=

∞∑
n=3

1

n!

(μn
y − μn

v)(μ2
x − μ2

v) − (μn
x − μn

v)(μ2
y − μ2

v)

(μ2
y − μ2

v)(μx − μv) − (μ2
x − μ2

v)(μy − μv)
〈s0n〉. (A2)

The denominator can be rewritten as

(μ2
y − μ2

v)(μx − μv) − (μ2
x − μ2

v)(μy − μv) = (μy − μv)(μx − μv)(μy − μx) > 0. (A3)

The numerator can be rewritten as

(μn
y − μn

v)(μ2
x − μ2

v) − (μn
x − μn

v)(μ2
y − μ2

v)

= (μy − μv)

(
n∑

k=1

μn−k
y μk−1

v

)
(μx − μv)(μx + μv) + (μx − μv)

(
n∑

k=1

μn−k
x μk−1

v

)
(μy − μv)(μy + μv)

= (μx − μv)(μy − μv)
n∑

k=1

[
(μx + μv)μn−k

y μk−1
v + (μy − μv)μn−k

x μk−1
v

]

= (μx − μv)(μy − μv)
n∑

k=1

[
(μxμ

n−k
y − μyμ

n−k
x )μk−1

v + (μn−k
y − μn−k

x )μk
v

]

= (μx − μv)(μy − μv)

{
n−2∑
k=1

[
μxμy(μn−k−1

y − μn−k−1
x )μk−1

v + (μn−k
y − μn−k

x )μk
v

]

+ (μy − μx)μn−1
v + (μx − μy)μn−1

v

}

= (μx − μv)(μy − μv)
n−2∑
k=1

[
μxμy(μn−k−1

y − μn−k−1
x )μk−1

v + (μn−k
y − μn−k

x )μk
v

]
� 0, when n � 3. (A4)

The counting rate of any state must be non-negative, i.e. 〈s0n〉 � 0. Thus, we can conclude that ξ1 � 0.

Appendix B. Formulas for the special case with asymmetric μv

In this case, we denote Alice’s and Bob’s intensities as μvA and μvB, respectively, and the probabilities of n
photons of Alice’s and Bob’s sources v as vA

n and vB
n , respectively. Formulas of the decoy-state analysis are

11
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〈s01〉L =
vB

0 [(y2v
B
0 − y0v

B
2 )〈s0x〉L − (x2v

B
0 − x0v

B
2 )〈s0y〉U − (y2x0 − y0x2)〈s0v〉U]

(y2vB
0 − y0vB

2 )(x1vB
0 − x0vB

1 ) − (x2vB
0 − x0vB

2 )(y1vB
0 − y0vB

1 )
, (B1)

〈s10〉L =
vA

0 [(y2v
A
0 − y0v

A
2 )〈sx0〉L − (x2v

A
0 − x0v

A
2 )〈sy0〉U − (y2x0 − y0x2)〈sv0〉U]

(y2vA
0 − y0vA

2 )(x1vA
0 − x0vA

1 ) − (x2vA
0 − x0vA

2 )(y1vA
0 − y0vA

1 )
, (B2)

〈s0v〉U =
1

vA
0

〈Svv〉 −
vA

1 v
B
0

vA
0

〈s10〉L, (B3)

〈sv0〉U =
1

vB
0

〈Svv〉 −
vB

1 v
A
0

vB
0

〈s01〉L, (B4)

〈s0y〉U =
1

vA
0

〈Svy〉 −
vA

1 y0

vA
0

〈s10〉L, (B5)

〈sy0〉U =
1

vB
0

〈Syv〉 −
vB

1 y0

vB
0

〈s01〉L, (B6)

〈s0x〉L =
x1〈Svx〉 − vA

1 〈Sxx〉
x1vA

0 − x0vA
1

, (B7)

〈sx0〉L =
x1〈Sxv〉 − vB

1 〈Sxx〉
x1vB

0 − x0vB
1

. (B8)

Combining equations (B1)–(B8), we can obtain

A1〈s01〉L − B1〈s10〉L = C1 − D1, (B9)

A2〈s10〉L − B2〈s01〉L = C2 − D2, (B10)

where we denote

A1 = (μy − μvB)(μx − μvB)(μy − μx),

A2 = (μy − μvA)(μx − μvA)(μy − μx),

B1 = μvA(μ2
y − μ2

vB),

B2 = μvB(μ2
y − μ2

vA),

C1 = eμx+μvA
μx

μx − μvA
(μ2

y − μ2
vB)〈Svx〉,

C2 = eμx+μvB
μx

μx − μvB
(μ2

y − μ2
vA)〈Sxv〉,

D1 = e2μx
μvA

μx − μvA
(μ2

y − μ2
vB)〈Sxx〉+ eμy+μvA(μ2

x − μ2
vB)〈Svy〉+ eμvA+μvB(μ2

y − μ2
x)〈Svv〉,

D2 = e2μx
μvB

μx − μvB
(μ2

y − μ2
vA)〈Sxx〉+ eμy+μvB(μ2

x − μ2
vA)〈Syv〉+ eμvA+μvB (μ2

y − μ2
x)〈Svv〉.

With equations (B9) and (B10), the lower bound of 〈s01〉 and 〈s10〉 can be calculated:

〈s01〉L =
(A2C1 + B1C2) − (A2D1 + B1D2)

A1A2 − B1B2
, (B11)

〈s10〉L =
(B2C1 + A1C2) − (B2D1 + A1D2)

A1A2 − B1B2
, (B12)

if A1A2 − B1B2 > 0. Then, the lower bound of 〈su〉 is

〈su〉L =
〈s01〉L + 〈s10〉L

2
=

S′+ − S′−
2

, (B13)

where

S′+ =
A2 + B2

A1A2 − B1B2
C1 +

A1 + B1

A1A2 − B1B2
C2, (B14)

12
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and

S′− =
A2 + B2

A1A2 − B1B2
D1 +

A1 + B1

A1A2 − B1B2
D2. (B15)

If A1A2 − B1B2 � 0, 〈s01〉L = 〈s10〉L = 〈su〉L = 0 and thus no final key will be obtained. The lower bound of
the expected number of the untagged bits is:

〈nu〉L =

{
2NZε(1 − ε)vA

0 z1〈su〉L ifμvA � μvB

2NZε(1 − ε)vB
0 z1〈su〉L ifμvA < μvB

. (B16)

In calculation of the phase-flip error rate, we have

〈s00〉L =

⎧⎪⎨
⎪⎩

eμvA+μvB
μx

μx − μvA
〈Svv〉 − e2μx

μvA

μx − μvA
〈Sxx〉 ifμvA � μvB

eμvA+μvB
μx

μx − μvB
〈Svv〉 − e2μx

μvB

μx − μvB
〈Sxx〉 ifμvA < μvB

, (B17)

and thus

〈eph
u 〉U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈TX1〉+ μvA
2(μx−μvA) 〈Sxx〉 − eμvA+μvB−2μx μx

2(μx−μvA) 〈Svv〉
2μx e−2μx〈su〉L

ifμvA � μvB

〈TX1〉+ μvB
2(μx−μvB) 〈Sxx〉 − eμvA+μvB−2μx μx

2(μx−μvB) 〈Svv〉
2μx e−2μx〈su〉L

ifμvA < μvB

. (B18)

Appendix C. Related formulas for parameter estimation in AOPP

After obtaining the bounds of 〈s01〉, 〈s01〉, and 〈eph
u 〉 in the decoy-state analysis, we can use the following

related formulas to estimate the bounds of the number of the survived untagged bits after AOPP, n′
u.

u =
ng

2nodd
, (C1)

〈n01〉L = NZε(1 − ε)v0z1〈s01〉L, (C2)

〈n10〉L = NZε(1 − ε)v0z1〈s10〉L, (C3)

nL
01 = OL(u〈n01〉L, ξ), (C4)

nL
10 = OL(u〈n10〉L, ξ), (C5)

nL
1 = nL

01 + nL
10, (C6)

nr
1 = OL

(
(nL

1)2

2unZ
, ξ

)
, (C7)

n′
01 = 2nr

1

(
nL

01

nL
1

−
√
− ln ξ

2nr
1

)
, (C8)

n′
10 = 2nr

1

(
nL

10

nL
1

−
√
− ln ξ

2nr
1

)
, (C9)

nmin = min(n′
01, n′

10), (C10)

n′L
u = 2OL

(
nmin

(
1 − nmin

2nr
1

)
, ξ

)
, (C11)

where nZ is number of raw keys that Alice and Bob get in the experiment, i.e., the number of effective Z
windows; ng is the number of pair if Alice and Bob perform AOPP to their raw keys; nodd is the number of
pairs with odd-parity if Alice randomly groups all the bits in her raw keys two by two; nZ, ng, and nodd are
observed values; ξ is the failure probability of parameter estimation; and OL(Y, ξ) is the lower bounds while
using Chernoff bound [54], which is shown in equation (D6).

And the related formulas of e′ph
u are:
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r =
nL

1

nL
1 − 2nr

1

ln
3(nL

1 − 2nr
1)2

ξ
, (C12)

eτ =
OU(2nr

1〈e
ph
u 〉U, ξ)

2nr
1 − r

, (C13)

Ms = OU
[
(nr

1 − r)eτ (1 − eτ ), ξ
]
+ r, (C14)

(e′ph
u )U =

2Ms

n′L
u

, (C15)

where OU(Y, ξ) is the upper bounds while using Chernoff bound, which is shown in equation (D5).

Appendix D. Chernoff bound

We can use the Chernoff bound to estimate the expected value with their observed values [54]. We denote
X1, X2, . . . , Xn as n random samples, whose values are 1 or 0, and X as their sum satisfying X =

∑n
i=1Xi. We

denote E as the expected value of X. We have

EL(X, ξ) =
X

1 + δ1(X, ξ)
, (D1)

EU(X, ξ) =
X

1 − δ2(X, ξ)
, (D2)

where δ1(X, ξ) and δ2(X, ξ) are the positive solutions of the following equations:

(
eδ1

(1 + δ1)1+δ1

) X
1+δ1

= ξ, (D3)

(
e−δ2

(1 − δ2)1−δ2

) X
1−δ2

= ξ, (D4)

where ξ is the failure probability.
Besides, the Chernoff bound can be used to estimate their real values with their expected values. Similar

to equations (D1)–(D4), the real value, O, can be estimated by its expected value, Y:

OU(Y , ξ) = [1 + δ′1(Y , ξ)]Y , (D5)

OL(Y , ξ) = [1 − δ′2(Y , ξ)]Y , (D6)

where δ′1(Y , ξ) and δ′2(Y , ξ) are the positive solutions of the following equations:

(
eδ

′
1

(1 + δ′1)1+δ′1

)Y

= ξ, (D7)

(
e−δ′2

(1 − δ′2)1−δ′2

)Y

= ξ. (D8)

Appendix E. Improvement in decoy-state analysis

To complete the calculation, they need observed values for expected values of some quantities at the
right-hand side of equations (23), (24) and (37). If they choose to do the decoy-state analysis after error
correction [58], they can make it more efficiently. As shown in reference [58], assisted by classical
communications, they can actually know those observed numbers of all kinds of events. However, the
announcement of some of these numbers (we name them as the confidential observed numbers) may cause
information leakage such as nvz and nzv. Suppose Bob is the party who computes the positions of wrong
bits. He does not announce these positions. He is able to use them and all the other kinds of observed
numbers. For security, we need deduct a certain amount of bits from the final key. If Bob uses these values,
he does not announce them directly. All information announced is the final key length, which is known to
be upper bounded by Ñ, i.e., the largest possible key length calculated from equation (6) if the decoy-state
analysis is done before error correction or is not done. This means an additional mutual information
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between Eve and the key distilled from equation (6), upper bounded by log2 Ñ [47]. Theorem: if we use the
following key length formula, Bob can use numbers of whatever kinds of events in decoy-state analysis after
error correction:

N(1)
f = n′

u[1 − H(e′ph
u )] − f n′

ZH(E′
Z) − 2

(
log2

2

εcor
− 2 log2

1√
2εPAε̂

)
− log2 Ñ. (E1)

There are many simple settings for the value of Ñ. For example, we can use n′
z which is the number of bits

to be distilled after AOPP, or a bit more tightly, n′
z[1 − f H(E′

z)].
Specifically, the observed numbers such as nvx, nxv, nvy, nyv, nvv, nvz, nzv, nvz + nzv, and nzz can all be used

for the decoy-state analysis of s01 and s10. The values of nvx, nvy, nxv, nyv, nvv, nxx can be used to verify the
value ranges of 〈Svx〉, 〈Svy〉, 〈Sxv〉, 〈Syv〉, 〈Svv〉, and 〈Sxx〉 used in the right-hand-side of equations (23), (24)
and (25), and also 〈Svz〉 and 〈Szv〉 which are useful in a protocol with three intensities.

To formulate n0 in equation (38) with imperfect vacuum, we introduce the definition of VA-pair similar
to that in reference [58]: a bit pair made by Alice in AOPP, where both bits of Alice are from time windows
when she has actually sent out state ρv . In our protocol, we request that Alice makes all those AOPP pairs
and Bob computes the positions of wrong bits in error correction and corrects his wrong bits privately. Note
that, although Eve and Bob know the parity of Alice’s bits in a VA-pair, Eve and Bob have no idea on which
bit in the VA-pair takes the bit value 0 or 1, since the quantum state sent out for both bits are identical (ρv).
If we only take one bit from the VA-pair, the bit is completely Alice’s private bit of which no one outside
Alice’s lab can have any information. Thus, a VA-pair survived through the parity check will contribute one
secure bit for final key distillation. To make such VA-pairs, the state in time windows when Alice decides
sending can be written in another convex form:

ρ(μz) = z′0ρv +
∞∑

n=1

z′nρn, (E2)

where z′0 = e−μz+μv and z′n = e−μz (μn
z − μn

v)/n!. Equation (E2) means that when Alice decides sending, she
sends out ρv with a probability of z′0 and ρn with a probability of z′n. When calculating the number of
untagged bits in equation (28), we have to replace z1 by z′1.

The value of n0 can be calculated by the number of VA-pairs whose parity values at Bob’s side are odd.
Asymptotically,

n0 = nA,not
ε

1 − ε
z′0 · ηodd (E3)

if nA,not � nA,S, and

n0 =
nA,not

nA,S
· nA,not

ε

1 − ε
z′0 · ηodd (E4)

if nA,not < nA,S, where nA,S (nA,not) is the number of effective Z windows when Alice decides sending
(not-sending), and ηodd is the probability that the parity value at Bob’s side of a VA-pair is odd. To obtain
ηodd, Bob can directly make pairs with all those Alice’s not-sending bits from effective Z windows, make
deterministic VA-pairs based on these, and observe the rate of odd parity at his own side and hence verify
the value of ηodd. The non-asymptotic result of n0 can be obtained by using Chernoff bound and the
hypergeometric distribution model.
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