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Abstract

The sending-or-not-sending (SNS) protocol of the twin-field (TF) quantum key distribution
(QKD) can tolerant large misalignment error and its key rate can exceed the linear bound of
repeaterless QKD. The original SNS protocol and all variants of TF-QKD require perfect vacuum
sources, but in the real world experiments there is no practical perfect vacuum source. Instead,
experimenters use extremely weak sources to substitute vacuum sources, which may break the
security of the protocol. Here we propose an SNS protocol with imperfect vacuum sources and
give the non-asymptotic decoy-state analysis of this protocol. Our numerical simulation shows
that when the imperfect vacuum sources are close to perfect vacuum sources, our protocol can
obtain similar key rate as that with perfect vacuum sources. This is the first result that closes the
potential security loophole due to imperfect vacuum of TF-QKD.

1. Introduction

Quantum key distribution (QKD) provides a method for unconditionally secure communication [1—4]
between two parties, Alice and Bob. Combined with the decoy-state method [5-7] and
measurement-device-independent (MDI) QKD protocol [8, 9], QKD can overcome the security loophole
from the nonideal single-photon sources and imperfect detection devices and is demonstrated in several
experiments [10—16]. So far, the maximum experimental distance of MDIQKD has reached to 404 km [17]
using the four-intensity protocol [18, 19] with parameter optimization [18—21]. With the decoy-state
method, the BB84-like QKD has reached a distance of record of 421 km [22]. But the key rate of BB84,
MDIQKD protocol, or any modified version of these protocols cannot exceed the linear bounds of
repeaterless QKD, the PLOB (Pirandola, Laurenza, Ottaviani, and Banchi) bound [23].

Recently, a new protocol named twin-field (TF) quantum key distribution (TFQKD) was proposed [24]
whose key rate dependence on the channel transmittance 7 is R ~ O(,/7). Since then, the key rate
advantage of TFQKD has been extensively demonstrated [25-35]. The efficient protocol for TFQKD,
named the sending-or-not-sending (SNS) protocol [36], has the advantage of unconditionally security
under coherent attacks and it can tolerant large misalignment error, and the SNS protocol has been widely
studied in theories [37—44] and experimentally [25, 26, 29-32, 35]. Notably, the SNS protocol has been
demonstrated in the 511 km field test [31], the farthest field experiment to date, linking two metropolitans
Jinan and QingDao, and long distance laboratory experiment with vibration detection [35].
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Figure 1. A schematic of the setup for the SNS protocol. IM: intensity modulator; PM: phase modulator; BS: beam-splitter;
Dy & Dg: single-photon detector in the measurement station of Charlie.

In the real world experiments, there is no perfect vacuum source [21, 45, 46]. In the existing TF-QKD
experiments, the vacuum sources required in the theoretical protocols are replaced by extremely weak
sources, which are attenuated from normal lasers and the extinction ratio is imperfect, e.g., in the
magnitude order of 50 dB. If these imperfect vacuum sources were used and the final key was still distilled
through the original protocol, security loopholes might occur. To avoid the potential security loopholes, we
propose an SNS protocol which is secure with imperfect vacuum sources. In this protocol, when Alice (Bob)
decides not to send, she (he) actually sends a phase-randomized coherent state with an extremely small
intensity. In the view of photon-number space, when sending this coherent state, she (he) sends no photon,
i.e. a vacuum state, with a probability close to 1 and sends one or more photons with a very small
probability. We will show that even with such imperfect vacuum sources, our protocol is secure with good
performance, taken the finite-size effects [38, 41, 47—49] with imperfect devices [45, 46, 50, 51] into
consideration. Then we will give the formulas of parameter estimation and the secure key rate in this
protocol.

This paper is arranged as follows. In section 2, we present the procedures of our SNS protocol with
imperfect vacuum sources. In section 3, we analyze the security of our protocol and give the formulas of the
secure key rate according to the decoy-state method. We show the results of numerical simulation of this
SNS protocol with imperfect vacuum sources compared with the original four-intensity SNS protocol in
section 4. The article ends with some concluding remarks in section 5.

2. SNS protocol with imperfect vacuum sources

The schematic of our protocol is shown in figure 1. We shall also add the actively odd parity pairing
(AOPP) in the data post-processing [40—42]. In the decoy-state analysis part, we can apply either
three-intensity method or four-intensity method. Here, we take the four-intensity method as an example to
introduce the detailed procedures of this protocol as follows.

In each time window, Alice (Bob) randomly decides to prepare and send a phase-randomized weak
coherent state (WCS) of intensity 1, with probability p,, a extremely WCS of intensity 1, with probability
p,» a WCS of intensity 1, with probability p, and a WCS of intensity y, with probability p,. Surely,
p,+p, +p.+p,=1,and a coherent state of intensity 1 with phase ¢ is ’\/ﬁ e’). The value of 4, is very
small. Here, the intensities are required to satisfy:

[y > iy > iy = 0. (1)

We first consider the case that Alice and Bob are able to control the intensity p, precisely. The special case
that the intensity p,, is fixed but unknown will be discussed later.
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Then Alice and Bob send their pulses to Charlie; Charlie is assumed to perform interferometric
measurements on the received pulses and announce the measuring results to Alice and Bob. If only one of
the two detectors clicks, Charlie would announce that this pulse pair causes a click and whether the left
detector or the right one clicks. Alice and Bob take it as a one-detector heralded event.

For ease of presentation, we define a time window to be an Ir window if Alice sends out a coherent state
of intensity £; and Bob sends out a coherent state of intensity . In particular, we define all those time
windows of zv, vz, vv, and zz as Z windows and all those time windows of xx as X windows.

After Alice and Bob repeat the above process many times, Alice (Bob) announces those time windows
when she (he) has decided to send a WCS of intensity yu, and those when she (he) has decided a WCS of
intensity y,.. They use Z windows for bit value encoding, in particular, in a Z window when Alice (Bob)
decides to send a WCS of intensity 1, i.e., decides sending, she (he) puts down a bit value 1 (0);ina Z
window when Alice (Bob) decides to send a WCS of intensity (,), i.e., decides not-sending, she (he) puts
down a bit value 0 (1). Correspondingly, in Z windows, the sending probability of Alice or Bob is

Pz

€= —. (2)
pz+pv

A Z window when one party decides sending and another party decides not-sending is named as a Z
window. In Z windows, only those one-detector-heralded events are regarded as effective events that
contribute for final key distillation, and the events when Charlie announces two clicks or no click would be
discarded. We denote the total number of one-detector-heralded events in Ir windows as #;,. Here are some
more definitions: a Z window or Z window producing an effective event is named as an effective Z window
or an effective Z window. Since the phases in Z windows are never announced, the pulses sent in Z windows
can be regarded as the mixture of different Fock states. For those discarded windows without correct
heralding at Charlie’s station, they announce which intensity they choose at each window. For those X
windows, they announce the phases of the WCS they sent, 6, and 65. Among X windows, the window in
which the phases satisfy

1—|cos(0s —Op)| < A (3)

is defined as an X; window. Here A is a positive number close to 0 and its value is determined by Alice and
Bob according to the result of channel test and calibration in the experiment to obtain a satisfactory key
rate. The data of X; windows are used to estimate the phase-flip error rate of untagged bits. The data of
other windows are used to perform the decoy-state analysis.

In our protocol, the untagged event is defined by: (1) it is an effective event in a Z window; (2) one of
Alice and Bob chooses the intensity 1, and he/she actually sends a one-photon pulse, and the other of them
chooses the intensity j,, and he/she actually sends a vacuum pulse. The bits from these untagged events are
defined as untagged bits.

Finally, Alice and Bob perform the postprocessing and obtain the final key with length [38]

2 1
Nf = nt[1 — H(ePY)] — fnyH(E) — lo —2log,——. 4
F=nyl (eh”")] — fnzH(Ez) 82— gzﬁgmé (4)
With the key length formula equation (4), the security coefficient of the whole protocol [47, 48] is
€tol = Ecor T 2 + €pa +41/€e + €4y - (5)

Here, n® is the lower bound of the number of untagged bits; e P s the upper bound of the phase-flip error
rate of untagged bits; f is the error correction inefficiency; 1 is the number of effective events in Z
windows; Ez is the bit-flip error rate of effective events in Z windows;

H(x) = —xlogy(x) — (1 — x)logy(1 — x) is the Shannon entropy; €., is the failure probability of error
correction; epy is the failure probability of privacy amplification; ¢ is the coefficient while using the chain
rules of max- and min-entropy [38]; €. is the failure probability of the estimation of phase-flip error rate;
and ¢, is the failure probability of the estimation of the number of untagged bits.

To further improve the secure key rate and distance, we apply AOPP [40—42] here: Alice does AOPP for
her bits from effective Z windows (she makes odd pairs of her bits from effective Z windows randomly) and
then takes parity check with Bob for each pair. Those pairs with odd parity values at Bob’s side will survive.
They take one bit randomly from every survived pair and then distill the final key with the following key
length
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N{ = n[1 — H(eP™)] — fny, H(E}) — 2 <1ogzi - zlog2%> , (6)
Ecor \/EEPA&f
where 7/, and e are the number and the phase-flip error rate of survived untagged bits after AOPP,
respectively, and n/, and E,, are the number and the bit-flip error rate of all survived bits after AOPP,
respectively. Note that the finite-key analysis in references [38, 41, 42] still works in this protocol.

The quantum communication part of our protocol above is identical to that of the original SNS
protocol, except that the exact vacuum is replaced by the supposed vacuum, the coherent state with
intensity x,,. However, without using any vacuum in the SNS protocol, it is unknown so far how to
efficiently verify the lower bound of untagged bits and upper bound of phase-flip error rate of
single-photon bits, i.e., the lower bound of #), and the upper bound of e in equation (6) above. Now we
show this.

3. Decoy-state analysis

Since the phases of the WCS in Z windows are never announced, these states can be regarded as the mixture
of different Fock states, i.e. the density matrix of the WCS with intensity j; can be written as

p() = Z L [m) (m]|, (7)
m=0

m

where [, = e 1 :T}' Thus, in Z windows, the TF state sent by Alice and Bob is

o= Z Lty |mn) (mn|, Ir = vv,vz,zv, zz. (8)

m,n=>0

For simplicity, we assume that Alice’s and Bob’s intensities of sources v are the same in this section. In
general, they can be different, i.e., Alice and Bob have their own intensities z,, and g, 5. But this will not
affect the security and the decoy-state analysis here still works except that the formulas are more
complicated. We will give the formulas with asymmetric i, in the appendix.

Correspondingly, the density matrix of all pulses in Z windows is

Pz = (1 - 6)207;7; + €zpzz + 6(1 - 6)(puz + pzv)- (9)
With equation (8), we have
vz + Al ~
% = voz1pu + (1 — voz1) Pus (10)

where p, is the density matrix of the TF states of untagged bits

_ [10) (10] + Jo1) (01]
2

u (11)
and it is easy to prove that p, is also a density matrix. So p, is a classical mixture of the state p, and some
other states. According to the tagged model [52, 53], we can regard bits from the state p, in Z windows as
untagged bits and those from other states in Z windows as tagged bits. As long as we can estimate the lower
bound of the number of untagged bits and the upper bound of the phase-flip error rate of untagged bits
with the decoy-state method, we can use the formula in equation (4) to calculate the secure key length.

For convenience, we introduce some virtual sources that emit pulses of a certain photon number, and
the corresponding states are p,, = |m) (m|. The subscript Ir introduced above can be generalized to the
combination of these virtual sources. For example, p,; denotes the TF state when Alice sends pulses of WCS
with intensity 1, and Bob sends pulses containing one photon; p,; denotes the TF state when both Alice
and Bob send pulses containing one photon.

We define the counting rate of a TF state from real sources as S, = n;,/Nj,, where Nj, is the total number
of pulse pairs Ir sent by Alice and Bob and n;, is the number of one-detector heralded events caused by pulse
pairs Ir. Similarly, we define the counting rate of a TF state from virtual sources as s, = 1y, /N, where at
least one of / and r is a virtual source. Note that values of S, can be observed in the experiment, but s,
cannot. The expected values of Sj, (s;,) are defined as (S} ({s;;)), and the relation among them is given by
Chernoff bound [48, 54] shown in the appendix. In the following, we will show how to estimate the lower
bound of (so;) and (s19).
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According to the decoy-state method [5-7], we have

(Sov) = vo(s00) + v1{s01) + v2(s02) + Z U (Son)>»

n=3

(Sox) = %0 (s00) + x1(S01) + x2(502) + an<50n>)

n=3

(s0y) = yo{so0) + 1 (som) +y2(s02) + Y yulson)-

n=3

By eliminating the terms (soy) and (sp,), we can get

vo[ (200 —}’0112)<50x> — (xup — x0U2)<50y> — (y2x0 — yoxz)<5m;>

(so1) = ] + &,

(210 — yov2) (X100 — x01) — (X200 — X002) (Y100 — YoU1)

X-L Hu et al

(12)

(13)

and the term £, can be proved to be non-negative (detailed derivation is given in the appendix). Thus, we

can obtain the lower bound of (s;)

(so1) = (sa1)t =

Uo[()/ﬂ}o —}’0U2)<50x>L — (xu9 — X0U2)<50y>U - (yzxo - y0x2)<50u>U]

(210 — yov2) (100 — X001) — (%200 — X002) (Y100 — YoU1)

>

(14)

assuming that we know the bounds of (so.), (o), and (s¢,). Here, the superscript L stands for the lower
bound of this quantity and U stands for the upper bound of this quantity. Similarly, we can obtain the lower

bound of (s9):

(s10) = (s10)" =

Uo[(}’zvo - )/OUZ)<5xO>L — (v — xovz)<5y0>U - (szo - )’oxz)<Svo>U]

(}/2110 —}’ovz)(xﬂfo — xov1) — (%00 — Xovz)()/ﬂfo - yO'Ul)

assuming that we know the bounds of (s.0), (s,0), and (sy0).
With the expansion of (S,,)

<S'1;'1;> = Vo <507;> + v <517;> + Z (% <5n1z>

n=2

= vo{sov) + 11 <U0<510> +3° vm<slm>> + ) valsm)

m=1

we can easily get
1 1
<5011> < *<S1w> — U1 <510> < *<S'1;7;> — U1 <510>L~
Vo Vo

Thus,

1
<5011>U = ;O<S1111> — U1 <510>L~

Similarly, we have

<51’0> = <va> Ul<501> 5
Vo
1 V1)o L
— (S, — ,
(soy) v0< 7) % (510)
1 V1)o L
— —(s,,) — 2
(50) v0< o) % (so1)

With the expansion of (S,,) and (S.)

<va> = Vo <50x> + v <51x> + Z Un <5nx>>

n=2

<Sxx> = Xo <50x> + X1 <51x> + an <5nx>)

n=2
by eliminating (s;,), we can get
X1 <S'1;x> — U <Sxx>

L_
e = o — o

>

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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Similarly, we have
X1 <va> — U1 <Sxx>

X1UVp — XpU1

(sx0)" = (22)

Combining equations (14), (15), (18), (19), (21) and (22), and substituting /,, = e’“l%,l =0,X, ), we

can obtain (so; )% and (s;0)":

<501>L — g3(g1 <S11x> + g2 <Sx'1;>) - [g4(g1 + g2)<sxx> + gS(gl <S'1;y> + g2 <Sy'1;>) + g6(g1 + g2)<s1w>] (23)
&%
L _ g3(gl<sx1z> +g2<s11x>) - [g4(g1 +g2)< > +g5(gl< y1z> +g2< '1;y>) +g6(gl +g2)<s1w>]
(s10)" = (24)
$-
if g2 — g7 > 0, where
& = (ty — o) (i — fo) (fty — fix),
g = oy — uﬁ),
= e/’/x“!‘,“z (:u IJ"[Zx))
’ [
= ezﬂxi’u(ﬂz _ /*Lzz)’
g4 Hx — Mo 4 /
g — e#erun(NZ _ NIZ;))
g = M (g — ).
Thus, the counting rate of the untagged pulse pairs in state p, is:
L Ls, —s
ot = Ll ool Sy =S (25)
2 & — &
where (5.0 4 (Su)
vX J’_ XU
Sy = gsf (26)
e (5,) + (5,)
v + v
S_ = gu(Sw) + gSA + 6(Suu)- (27)

2

If gl — g2 <0, (so1)* = (s10)* = (s4)' = 0 and thus no final key will be obtained. In the calculation of
equations (23), (24), (26) and (27), we can use the joint constrains of statistical fluctuation [20] to reduce
the effects of statistical fluctuation.
With equations (9) and (10), we can obtain the lower bound of the expected number of the untagged
bits:
()Y = 2Nze(1 — €)vozy (su)", (28)

where Ny is the number of Z windows. In equation (25), if we set 11, = 0, which means that we have perfect
vacuum sources, the formula of the counting rate of the untagged pulse pairs is exactly the same as that in
the original four-intensity SNS protocol [37].

As proved in reference [37], the density matrix of the TF state in X; windows can be written as a
mixture of n-photon TF states

o=y (2’;;‘)"0,1 (29)
n=0
and these n-photon TF states are
on= g [0 () + o ) (0 0 0 (30)

where ¢ = arccos(1 — \),

\/_ elm6

+
|¢ (5) \/2—,1 Z \/m'(T [m) [n —m), (31)
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and

1 i (_l)mmeimé
V2" —~ vml(n —m)!

We can find that 0y = py, and 0, = p,. So the single-photon state in X; windows and that in Z windows
have the same density matrices. With this relations, the phase-flip error rate ¢ can be estimated
asymptotically through the single-photon state o; in X; windows.

We define the error counting rate of a set C as T¢c = mc/N¢, where N is the total number of instances
in the set C and mc is the number of wrong one-detector heralded events in the set C. We use the lowercase
tc when the sources in the set C are virtual sources. The expected values of T¢ and #¢ are defined as (T¢)
and (f¢), respectively.

The error counting rate of X; windows can be written as

[0, (8)) = |m) |1 — m) . (32)

() = |{tog) + 2ltn) + 30 X041, (3)
n=2 ’

Using the relations oy = py, and o; = p,,, we can have

T a2y L
() < <tu>U - : X1>2Mxee—2ux<t00> ’ (34)

With the expansion of (S,,) and (S.)

(Suw) = v (s00) + vov1({so1) + (s10)) + Z U Un (Smn)>

m,n=>0
m—+n>1
(35)
(See) = x5 (s00) + x0x1 ((S01) + (510)) + > XonXn(Spn)»
i
by eliminating ((so1) + (s10)), we can get
L 24 Hx 2ty Ho
spo) = et ———(8,,) — e ————(Su)- (36)
{s00) ux—uv< ) /~Lx_,uv< )

Using the fact that the error rate of vacuum pulses is 1/2 asymptotically [55], i.e. {foo) = (s00)/2, we can
obtain the upper bound of the phase-flip error rate of untagged bits:

<€Eh>U _ <

(T gt (Sd — €00 () (37)

2y €72 (5, )L

After obtaining the bounds of (so1), (so1), and <eﬁh> in equations (23), (24) and (37), we can use the
method proposed in references [41, 42] to calculate the bounds of 7], and e:fh after AOPP, and then
substitute them into equation (6) to calculate the final key length. The related formulas are shown in the
appendix.

3.1. A special case with an unknown intensity of source v

The intensity p, is so low that in a real experiment this intensity may not be controlled precisely. When
using the source v, Alice (Bob) may send a WCS state with an unknown intensity p, (44,5). But they can
evaluate their devices to give a convincing upper bound of this unknown intensity, fi,. That is to say, the
actual intensities 1/, and i are in a range [0, fi, ].

Using the revised key rate formulas with asymmetric p, in the appendix, given the observed data and
other source parameters, we can regard the final key length as a function of Alice’s and Bob’s intensities fi,,
and fu,p, 1.e. N{(foa, ftoB). We scan Ni(gipa, pos) over the range fiya, s € [0, fi, ], find the minimum value
as the worst case. Since Ny . < Ni(puy, 5, tty) and N{(p,, i1, is a secure key length, we can regard

fmin @S a secure key length as well. In this way, we can guarantee the security of the final key even if we do
not know the exact value of the intensity of source v.

According to our numerical results, the worst case always occurs when one of y,, and i, is the
minimum and the other is the maximum of the range, i.e. iya = 0, ftyp = fiy OF fiya = [, s = 0.
Compared with the numerical results with known intensities ft,o = (4,5 = [iy, this special case introduces
about 1% extra loss to the final key rate.

/
f,min
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Table 1. Devices’ parameters used in numerical simulations. Ny is
the total number of pulse pairs; e4 is the misalignment error in X
windows; d is the dark count rate per pulse of each detector at
Charlie’s side; 774 is the detection efficiency of each detector at
Charlie’s side; fis the error correction inefficiency; € is the failure
probability in the parameter estimation; v is the channel loss.

N, (] d N4 f 5 o

10" 1.5% 10710 50% 1.1 10710 0.2dBkm™!

102 C ;
N iuvzo
o m1x107
" e
@ 10747 . uv—1><10 i
= p=1x10°
& - - -PLOB bound
=
g
7] -6 L 4
2 10
9]
=
%]
g
< 108¢ E
>
)
2
1010k i
s s s s s
0 100 200 300 400 500 600
Distance (km)
Figure 2. The optimized key rates (per pulse pair) versus transmission distance of our protocol with imperfect vacuum sources
with different p,,.

Security in this special case. (a) As stated in reference [39], the constraint for source parameters is only
necessary in the X; windows. Therefore, the asymmetric intensities of sources v do not have to satisfy the
constraint in reference [39] to guarantee the security. (b) In Z windows, we choose the same amount of
pulses in states p,, and p,, to constitute the untagged bits (see equation (B16) in the appendix). So the TF
state of untagged bits p, remains the same as that in equation (11) and thus the previous security proof still
works even if (1,4 # fi,p-

4. Numerical simulation

In this part, we show the results of numerical simulation of our AOPP-SNS protocol with imperfect vacuum
sources, and compare them with the results of the original AOPP-SNS protocol with perfect vacuum
sources [41, 42]. The results will be shown in the form of key rate per pulse, i.e. R = N;/N,, where N} is the
secure key length and N is the total number of pulse pairs that Alice and Bob send. The device parameters
used in the simulation are listed in table 1. We shall estimate what values would be probably observed in the
normal cases by the linear models as previously.

Firstly, we suppose that Alice and Bob know the exact value of the intensity .. We fix the value of p,
and optimize other source parameters (the intensities and the probabilities of choosing each source)
globally to obtain the highest key rate. In figure 2 and table 2, we show the key rates versus transmission
distance with different y,. When 11, becomes larger, the key rate will decrease. Compared with the case with
perfect vacuum sources (1, = 0), as long as /1, is less than 1 x 1074, the decrease of the key rate of our
protocol with imperfect vacuum sources is less than 10%. Even if 1, is as large as 1 x 1072, the key rates of
our protocol can still exceed the PLOB bound a lot.

Some detailed results of this simulation are shown in table 3. According to the data in table 3, we can
find that the decrease of the key rate mainly comes from the increase of the bit-flip error in Z windows
caused by the imperfect vacuum sources, which is inevitable when there is no perfect vacuum source in real
world experiments. The decoy-state analysis of our protocol gives almost the same 7], and e as the case
with perfect vacuum sources. Thanks to the AOPP method [41, 42], the bit-flip error rate can be decreased
a lot. Without AOPP, the bit-flip error caused by the imperfect vacuum will decrease the key rate more.

We consider another scenario: in an experiment, Alice and Bob have already used imperfect vacuum
sources and have got the corresponding observed data. We compare the results with the decoy-state analysis
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Table 2. The optimized key rates (per pulse pair) at some transmission
distance with different p,,.

1Ly 200 km 300 km 400 km 500 km

0 6.99 x107°  6.10x 107°  4.69x 1077 2.44 x 107
1x107°  695x107° 6.06x107° 4.66x 1077 2.41x 1078
5x 107 6.83x10™° 595x10° 455x1077 233 x10°%
1x107%  670x 107> 582x107° 443x107 224x10°%
5x107%  582x10° 499x1077 3.67x107 1.62x10°%
1x107%  489%x107° 4.11x107 289%x107 9.99 x 107°

Table 3. Some data at the transmission distance of 400 km with
different . The device parameters used in the simulation are
listed in table 1. The source parameters are set as: y, = 0.501,
1, = 0.0644, 11, = 0.337, p, = 0.096, p, = 0.004, p, = 0.649,

and p, = 0.251.
1, , e E} R
0 7.68 x 10°  7.61%  1.60 x 107>  4.69 x 1077

1x107°  7.68x10° 7.62%  9.58 x 107>  4.66 x 1077
5x107°  7.67 x10°  7.64%  4.15x 107*  4.55x 1077
1x107*  7.67x10° 7.66% 813 x10™*  4.43 x 1077
5x107*  7.63x10°  7.80% 3.98 x107°  3.66 x 1077
1x107%  758x10° 7.96% 7.91x10° 283 x1077

Table 4. The optimized key rates (per pulse pair) at some transmission
distance with different g, with the decoy-state analysis of our protocol and
that of the original AOPP-SNS protocol in reference [42], respectively.
Assume that the observed data were obtained in the QKD process with
imperfect vacuum sources.

Ly 300 km 400 km 500 km
This work 6.06 x 107°  4.66 x 1077 2.41 x 1078

1x 107 Reference [42] 6.07 x 10°®  4.66 x 1077  2.42 x 10°%
This work 582 x107° 443 x 1077 224x1078

1x10°*  Reference [42] 5.86 x 10°® 447 x 1077  2.26 x 10°%

of the original AOPP-SNS protocol (reference [42]), pretending the non-vacuum source v to be exact
vacuum, and the results of our protocol with imperfect vacuum sources (this work), in table 4. From these
results, we can see that, as long as i, is less than 1 x 107, with given observed data, the decrease of the key
rate of our protocol is less than 1%.

In addition, we show the key rates versus the intensity y, at a distance of 500 km. Similarly to the
simulations above, here we consider two cases:

(a) The expected observed data are simulated with different intensities y, and other source parameters
have been optimized globally. This case shows how badly i, using in experiments affects the key rates.
Results are presented in figure 3.

(b) In the simulation of observed data, we use fixed source parameters, including p,, = 1 x 107*. In the

calculation of key rate, we assume that p, is unknown and calculate the key rate with different upper
bounds i, using the method in the subsection IITA. Results are presented in figure 4.

From these results, we can find that in both cases, the key rate decreases when (i, becomes larger. When
14, 1s small enough, the key rate is close to that with a perfect vacuum source (p,, = 0).

Similar to references [55—58], we can add ny bits to the final key length in equation (6), where nj is the
number of Alice’s vacuum-related private bits as shown in the appendix. With this term, we have

N{ = ny+ Nj. (38)
Surely, we can also use the following more efficient key-length formula

N = min N7 (Suu)) .
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Figure 3. The optimized key rates (per pulse pair) versus the intensity 1, at a distance of 500 km. The expected observed data
are simulated with different intensities /1, and other source parameters have been optimized globally.
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Figure 4. The optimized key rates (per pulse pair) versus the upper bound fi, at a distance of 500 km. In the simulation of

observed data, we use fixed source parameters: 1, = 1 x 107, 11, = 0.500, 11, = 0.0794, p1,, = 0.460, p, = 0.171, p, = 0.009,

p, = 0.593,and p, = 0.227. In the calculation of key rate, we assume that ;1 is unknown and calculate the key rate with different
upper bound fi,, using the method in the subsection 3.1.

i.e. by scanning (S,,) in its possible range for the worst-case result of N{’ instead of taking worst-case
separately for s, and e, can improve the non-asymptotic key rate a little bit. We have not applied
equations (38) and (39) in our numerical simulation above.

In summary, even if there is no perfect vacuum sources in practice, the SNS experiments are still secure
and give satisfactory key rates.

5. Conclusion

In this paper, we proposed an SNS protocol with imperfect vacuum sources and give the key rate formulas
of our protocol. Our protocol can avoid the security loopholes caused by imperfect vacuum sources in real
world experiments. According to the numerical simulation, as long as the experiments replace the vacuum
source by an extremely weak coherent source and its intensity is less than 1 x 1074, the difference of key
rates between our protocol with imperfect vacuum sources and that with perfect vacuum sources is less
than 10%, and the key rates of our protocol can still exceed the PLOB bound a lot.

The SNS protocol with imperfect vacuum sources with asymmetric channels will be studied in our
future research.

10
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Appendix A. Prooffor&, > 0in (13)

Remind the relation
fy > fhe > [y = 0. (A1)

The formula of £, is

¢ = f: (Ynvo — Youn) (X209 — X0U2) — (X4V0 — XoUn) (20 — YoV2) (5o)
n=3

()’2110 - J’ovz)(xﬂfo — xv1) — (%200 — Xovz)()’ﬂfo - )’0111)

(o @]

-y L (it — ) (2 = p2) = (it — (2 = i)
P n! (,LL% - /1’127)(/1496 - /1417) - (,U/JzC — /1‘127)(/14)/ _ ,uv)

<50n> . (AZ)

The denominator can be rewritten as

(ﬂ)z, - ,U/qz;)(,u/x - ,U/v) - (N’Z‘: - :U’qzz)(:u’}/ - Nv) - (ﬂy - :U’v)(,u/x - /«le)(ﬂy - :U/x) > 0. (AS)

The numerator can be rewritten as

(1 — 1G22 — 1) — (= ) (2 — pi2)
n n
= (1 — 110) (Z M;—ku(;—l> (e — poo) (e + o) + (e — 14) (Z ,Ufz_k:uf;_l> (ty — o) (py + i)
—1 k=1

n
= (e = ) (pty = )Y [+ )ty 1"+ Gy = )l 4

k=1

= (e = 1)y = 1) Y [ty ™ = gyt ™ 4 (™ = ]

k=1
n—2
= (px — 120) (tty — p10) { [ty (™0 = 7D (™ = )]
k=1

+ (py = )y (e — uy)uﬁl}

n—2

= (e — ) (pty — )Y [ty (™70 = 0 o (i — k]

k=1

>0, whenn>3. (A4)

The counting rate of any state must be non-negative, i.e. (sp,) = 0. Thus, we can conclude that & > 0.

Appendix B. Formulas for the special case with asymmetric 1,

In this case, we denote Alice’s and Bob’s intensities as 1,4, and 5, respectively, and the probabilities of
photons of Alice’s and Bob’s sources v as v and v%, respectively. Formulas of the decoy-state analysis are

11
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(sa)t =

e[ (avg — you) (sox)t — (205 — x005) (s0y)Y — (¥2X0 — Yox2) (S00)" ]

(1208 — yovd) (10§ — x0v¥) — (08 — x9v) (10§ — yoo?)

—0d[(avh — yovd) (sw0)™ — (vp — x005) (5,0)Y — (2%0 — y0%2) (500) V]

L
S =
(s10) (1208 — youd) (x1vf — x9vp) — (X208 — xv2) (108 — yousd)

1 vl
<5017>U = U7<SUU> - LAO <510>L>
0 0
1 vBud
<5v0> - ,U7B<SUU> IBO <501>L)
0 0
1 vy
<50)'> = UT<Svy> 1A <510>L)
0 0
U 1 LYo L
<5y0> - E<Syu> - ?<501> 5
X1 <S'1;x> - UA<Sxx>
sox)! = ———g———,

X105 — Xv)

X1 (Sxv) — V7 (Sw)
x108 — xpvP

<5x0>L =
Combining equations (B1)—(B8), we can obtain

Ay (so1)" = Bi(s10)" = C, — Dy,
A2<510>L - Bz<501>L =G, — Dy,

where we denote

Ay = (py — o) (px — 110B) (R — 1),
Ay = (py — pror) (e — proa) (fy — fx)s
B, = ,U/vA(,U/}zz - N%B)’
B, = ,UzuB(,U/i - M127A)’

C, = elxTHoa Hx ( 2 _ 5 V(S
1 RN Hap) (Sex)

— oHxt L 2,2
CI2 - e/ HuB ,U/x _ NvB (H'y :U’UA)<SX'U>’

H:¥W4%EW%WEQQ+W“N£—%M%%HM“W@—£WM>

P

0 HoB Ly + oy L gy
D, = 62”+(/‘§ _ MiA)<Sxx> 4 el ti IB(,U,ZC _ MiA)<S)/’U> 4 efeaT zB(M)Z, _ Mi)(sw>-

ﬂx NvB

With equations (B9) and (B10), the lower bound of (so;) and (s19) can be calculated:

_ (A2Cy + B1G,) — (A2Dy + BiD;)

L
<501> AA, — BB, N
(s >L _ (B,Cy + A1Cy) — (ByDy + AiD;)
. A1A; — BB, ’

if AjA; — BB, > 0. Then, the lower bound of (s,) is

(so)" + (s10)" S, =S

L_ p—
)™ = 2 2
where A+ B A +B
s, = 2B 1 L e,
A1A; — BB, A1A; — BB,

X-L Hu et al

(B1)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)
(B10)

(B11)

(B12)

(B13)

(B14)
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and

s — A+ B, A1+ B

D,. B15
- AA—-BB, ' AA,—BB, ’ (B15)

If AjA; — BiB, <0, (so1)' = (510)' = (s,)% = 0 and thus no final key will be obtained. The lower bound of
the expected number of the untagged bits is:

L 2Nz€(l — G)U(I;Z] <5u>L if/J/'z;A 2 HoB
(ma)” = s _ : (B16)
2Nze(1 — €)vyzi (su) if foop < o
In calculation of the phase-flip error rate, we have
eunA—HMB = <sz> - ezll/x fod <Sxx> if,Uqu 2 HoB
(s00)" = P Hon P oA (B17)
e#z*A+N:;BL< Suu) — Q2 _ fB (Sie) if fop < flos
,U/x - /~L17B ,U/x - /~L17B
and thus
Hy _ wA 1B —24x Hx
<TX1> + 2(/1x—1?1/uA) <Sxx> el ™oH 2(px—pon) <SUU> if/JmA > HuB
(el = el (B18)
u Uy v vB—2fix 225 ’
(Tx1) + 300, gy Sx) — " e 2] O00) if poa < plon

2ty €72 (5, )T

Appendix C. Related formulas for parameter estimation in AOPP

After obtaining the bounds of (so1), (so1), and (&i") in the decoy-state analysis, we can use the following
related formulas to estimate the bounds of the number of the survived untagged bits after AOPP, n,,.

g

f— 7’ Cl
2104d (C1)
<ﬂ01>L = Nze(1 — €)vpz <501>L, (C2)
(mo)" = Nze(1 — €)vozi (s10)" (C3)
ng, = O (u(ng)", €), (C4)
nyy = O"(u(nyo)", &), (C5)
”% = ”31 + ”Ifo> (Ce)
L2
" = ot <(”l) ,£>, (c7)
2uny
L
T nO ln 5
1’161 = 21’[1 (n_ll‘l — — 271; > 5 (CS)
[k In ¢
1’1/10 = 21’[1 (7;{‘) — — 21’1; > 5 (C9)
Mmin = min(rg;, 1), (C10)

=20t <nmm (1 - ”‘“) ,g) , (C11)
2n}

where 7 is number of raw keys that Alice and Bob get in the experiment, i.e., the number of effective Z
windows; 1, is the number of pair if Alice and Bob perform AOPP to their raw keys; 11,44 is the number of
pairs with odd-parity if Alice randomly groups all the bits in her raw keys two by two; 1z, 11,4, and 1,44 are
observed values; ¢ is the failure probability of parameter estimation; and o'y, &) is the lower bounds while
using Chernoff bound [54], which is shown in equation (D6).

And the related formulas of e{f’h are:
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L 3 L ont 2

L S it (C12)
ny — 2nj 3
U (24" Eh U
-9 nia) o) (C13)
2n] —r

M, =0V [(n] — re-(1 —e:),&] + 71, (C14)

2M,
(MY = =, (C15)

u

where OY(Y, €) is the upper bounds while using Chernoff bound, which is shown in equation (D5).

Appendix D. Chernoff bound

We can use the Chernoff bound to estimate the expected value with their observed values [54]. We denote
X1, X, ..., X, as n random samples, whose values are 1 or 0, and X as their sum satisfying X = >_"_ | X;. We
denote E as the expected value of X. We have

X
L _
B0 = e (D1)
X
U _
EXO = 15 5o (D2)

where 0;(X, ) and 6,(X, £) are the positive solutions of the following equations:

el ﬁ
((1 +al)1+él> =6 (D3)

e % %
() =6 oy
where £ is the failure probability.

Besides, the Chernoff bound can be used to estimate their real values with their expected values. Similar
to equations (D1)—(D4), the real value, O, can be estimated by its expected value, Y:

oY(Y, &) = [1 + &(Y, )Y, (D5)
OMY,&) = [1 — &5(Y,8)1Y, (D6)

where 01(Y, €) and &5(Y, £) are the positive solutions of the following equations:
Y ¢ (D7)
(A+apta ) 7

—5 Y
L B . (D8)
(1—85)'

Appendix E. Improvement in decoy-state analysis

To complete the calculation, they need observed values for expected values of some quantities at the
right-hand side of equations (23), (24) and (37). If they choose to do the decoy-state analysis after error
correction [58], they can make it more efficiently. As shown in reference [58], assisted by classical
communications, they can actually know those observed numbers of all kinds of events. However, the
announcement of some of these numbers (we name them as the confidential observed numbers) may cause
information leakage such as n,, and n,,. Suppose Bob is the party who computes the positions of wrong
bits. He does not announce these positions. He is able to use them and all the other kinds of observed
numbers. For security, we need deduct a certain amount of bits from the final key. If Bob uses these values,
he does not announce them directly. All information announced is the final key length, which is known to
be upper bounded by N, i.e., the largest possible key length calculated from equation (6) if the decoy-state
analysis is done before error correction or is not done. This means an additional mutual information

14
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between Eve and the key distilled from equation (6), upper bounded by log, N [47]. Theorem: if we use the
following key length formula, Bob can use numbers of whatever kinds of events in decoy-state analysis after
error correction:

NV =l [1 — H(P™)] — fr,H(E,) — 2 (log22 — 2log, L. ) —log, N. (E1)
Ecor V2epné
There are many simple settings for the value of N. For example, we can use 1, which is the number of bits
to be distilled after AOPP, or a bit more tightly, n,[1 — fH(E.)].

Specifically, the observed numbers such as 11, t14, 1y, s Hyys Myzy Mzyy Bz + 1z, and 1, can all be used
for the decoy-state analysis of so; and s,o. The values of n,., 11y, 1y, 1,4, 1y, 1 can be used to verify the
value ranges of (Syx), (Siy)> (Sxv)> (Spv)> (Sw)» and (Sy) used in the right-hand-side of equations (23), (24)
and (25), and also (S,.) and (S,,) which are useful in a protocol with three intensities.

To formulate nj in equation (38) with imperfect vacuum, we introduce the definition of VA-pair similar
to that in reference [58]: a bit pair made by Alice in AOPP, where both bits of Alice are from time windows
when she has actually sent out state p,,. In our protocol, we request that Alice makes all those AOPP pairs
and Bob computes the positions of wrong bits in error correction and corrects his wrong bits privately. Note
that, although Eve and Bob know the parity of Alice’s bits in a VA-pair, Eve and Bob have no idea on which
bit in the VA-pair takes the bit value 0 or 1, since the quantum state sent out for both bits are identical (p,).
If we only take one bit from the VA-pair, the bit is completely Alice’s private bit of which no one outside
Alice’s lab can have any information. Thus, a VA-pair survived through the parity check will contribute one
secure bit for final key distillation. To make such VA-pairs, the state in time windows when Alice decides
sending can be written in another convex form:

pp2) = zogpy + Z ZPn> (E2)

n=1

where zj = ez and z, = e #=(u? — ') /n!. Equation (E2) means that when Alice decides sending, she
sends out p, with a probability of z, and p,, with a probability of z/,. When calculating the number of
untagged bits in equation (28), we have to replace z; by z}.

The value of 1y can be calculated by the number of VA-pairs whose parity values at Bob’s side are odd.
Asymptotically,

€ !
No = Nanot 7 —2¢ * Tlodd (E?’)
1—c¢€
if nanot = Mass, and
HA not € /
ny = Aot T2 * Todd (E4)
I’lA,s 1—¢

if 1A not < Ma,s, Where 1o s (114 not) 1s the number of effective Z windows when Alice decides sending
(not-sending), and 7). 44 is the probability that the parity value at Bob’s side of a VA-pair is odd. To obtain
7oad> BOb can directly make pairs with all those Alice’s not-sending bits from effective Z windows, make
deterministic VA-pairs based on these, and observe the rate of odd parity at his own side and hence verify
the value of 7,44. The non-asymptotic result of 7y can be obtained by using Chernoft bound and the
hypergeometric distribution model.
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