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Abstract

In the past few decades there have been an overabundance of models describing inflation, a period where

the universe expands exponentially quickly. This led to the rise of the cosmological bootstrap, which aims

at constraining cosmological observables in a model independent way. This is achieved by directly imposing

physical principles such as unitarity, locality, symmetry, and analyticity on cosmological correlators.

In this thesis we explore the consequences of two such principles: unitarity and analyticity. We show

that unitarity implies a set of consistency relations among wavefunction coefficients in perturbation theory,

and these relations can be generalized to fields with any mass and integer spin. Unitarity, alongside locality

and scale invariance, also implies the vanishing of four-point parity odd correlators at tree level, and we

show this is not true at loop level.

Analyticity in the S-matrix is linked to causality and serves as the backbone for the S-matrix bootstrap,

which provides non-perturbative constraints for scattering. We show that analyticity in the wavefunction

is also linked to causality. We study the analytic structure of the wavefunction in detail and demonstrate

the relation between singularities in amplitudes and a subset of singularities in the wavefunction. Finally,

we write down the dispersion relations of the wavefunction, which serves as a first step towards a non-

perturbative bootstrap in cosmology.
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Chapter 1

Introduction

With the advances of science in the past centuries, the quest to understand the origin and history of

everything in our universe is no longer restricted to the domain of philosophy and religion. We now know

that the universe is not static: in fact, it is expanding. We now know there are countless galaxies out

there, and our Milky Way galaxy plays no privileged role in the universe. We now know that most of the

matter content in our universe are dark energy and dark matter, which our eyes cannot directly observe.

It is understood that while the universe is mostly homogeneous and isotropic, there must be small

deviations from exact homogeneity and isotropy in its primordial history, otherwise our universe will be

completely homogeneous and quite boring. Currently the most widely accepted explanation of the origin

of these small deviations is a period of accelerated expansion in the early universe, commonly referred to as

inflation [5,6]. During this expansion period, small quantum fluctuations in the curvature of spacetime get

stretched to cosmological scales and become frozen. We learn from general relativity that these curvature

perturbations cause matter to collapse, and eventually this give rise to the rich structure of the universe

we observe today.

Inflation is not the only theory which attempts to explain the origin of primordial perturbations. What

distinguishes inflation from other theories is its success in matching experimental results. In cosmology

the main arenas for testing theories are the remnant light from the hot big bang, also known as cosmic

microwave background (CMB), and the distribution of galaxies, also known as large scale structure (LSS).

In particular, the scalar curvature perturbation ζ(k) evolves linearly in the hot big bang, and so any

perturbations we can measure in a cosmological survey, including temperature fluctuations in the CMB

and overdensities of matter, which we collectively refer to as δ(k), can be related to ζ(k). More specifically,

if we measure the correlation function of δ(k), then:

⟨δ(k1) . . . δ(kn)⟩ =

[
n∏

i=1

T (ki)

]
⟨ζ(k1) . . . ζ(kn)⟩ + O(ζn+1). (1.0.1)

Here T (k) is a transfer function which can be derived from the standard hot big bang model. In

particular, the O(ζn+1) terms are only important due to gravitational collapse, so the correlations in the

CMB should be linearly related to the statistics of ζ(k). If we extrapolate the CMB power spectrum (i.e.

two point correlation function) to the end of inflation, we observe a mostly Gaussian spectrum which is

scale invariant, and this matches the expectation of inflation very well (see figure 1.1). Most alternatives
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Figure 1.1: The primordial power spectrum extrapolated from the CMB. The x-axis labels the momentum
k (or the angular momentum mode l), and the y-axis labels the size of the power spectrum (in log scale).
Taken from [10]

to explaining the origin of structure in our universe fail at some hurdle. They fail at explaining certain

features of the CMB spectrum (an example would be cosmic strings, which fail at explaining the phase

coherence of the CMB power spectrum [7]1), or they require exotic ingredients to work (for example

bounce cosmology requires abandoning general relativity as the theory of gravity, or introducing ghost

fields, see [9] for more details). Coupled with the fact that inflation was able to explain the flatness of

our universe, as well as how CMB from different parts of the universe are correlated2, inflation has been

widely accepted as part of standard cosmology.

Model building in inflation Despite all its success, our understanding of inflation is far from complete.

The most common model for inflation used in textbooks is the single field slow roll inflation. In this model,

inflation is driven by a scalar field commonly called the inflaton. Initially the inflaton undergoes a slow

roll phase, where it rolls down a potential that is almost flat and the universe expands exponentially (see

figure 1.2). Eventually the inflaton exits the slow roll phase (for example, it gets trapped in a well), and

inflation ends. The universe then reheats, i.e. standard model particles are created, then the rest of the

cosmic history is matched with the standard hot big bang story.

This common textbook story has left a lot of room for interpretation. For starters, aside from the

fact that the potential supports a slow roll phase, not much else was specified about the potential itself.

This means in principle there could be a vast landscape of potentials which support inflation, and each of

them may have their own exotic feature that distinguishes one model from another. This story can also

be extended to multiple scalar fields: one could write down a multi-field potential, and have the field(s)

roll down the potential in certain direction (for example see [11, 12]). This is before we even consider

other fields, each with their own mass and spins, that can couple in different ways to the infalton (for

1While cosmic strings cannot be the primary source of primordial perturbation, they can still contribute to structure
formation, for example see [8].

2Naive considerations from the hot big bang would tell us different parts of the CMB are generally not in causal contact,
and could have wildly different temperatures in principle. However, the observed CMB is isotropic and homogeneous up to
small deviations of order O(10−5), and this is known as the horizon problem. Inflation tell us that the horizon in the early
universe is shrinking, and these seemingly disconnected parts are in causal contact in the early universe, thus explaining the
homogeneity and isotropy.
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Figure 1.2: Illustration of a slow roll potential for inflation. Taken from [11]

example [13,14]).

This seemingly infinite number of possibilities is an enticing prospect for a theorist: given enough

imagination and time, it seems one could construct a model of inflation with suitable features, and use it

to explain any phenomenon or embed it in another theory. And over the past few decades, theorists have

indeed taken full advantage of this, and created an incredibly huge list inflationary models. For example,

we have:

• Models which comes from modified gravity. Because f(R) gravity can be written as Einstein gravity

coupled to a scalar field, it would be natural to understand inflation in the framework of scalar

tensor theories. One of the most famous example is Starobinsky inflation [15, 16], where f(R) =

R + R2/µ2 for some mass parameter µ, and this give rise to an inflation potential of the form

V ∼
(

1 − exp
(
−
√

2/3ϕ
))2

.

Naturally, since the Higgs field is the only elementary scalar field in the standard model, people also

considered scalar tensor theories where the scalar field is the Higgs field. These models are referred

to as Higgs inflation [17–21]. These models often express predictions for cosmological measurements

(usually the spectral tilt ns or the primordial tensor-to-scalar ratio r) in terms of parameters from

particle physics (for instance the Higgs mass), and this usually provides constraints on these models.

• Models which comes from string theory. Inflation is considered as an EFT from some UV theory

of quantum gravity, and since string theory is the leading candidate of quantum gravity, naturally

people are interested in understanding how inflation works from the perspective of string theory. For

example, inflation can be driven by the dynamics of branes (for example DBI inflation, see [22,23]);

it can be driven by string axions (for example axion monodromy, see [24, 25]); or it can arise from

uplifting AdS vacuum to a metastable dS ground state (this is known as KKLT inflation, see [26]).

A nice overview of inflation in string theory can be found in [27].

• Models for creating excess primordial black holes. If the size of the primordial curvature perturbation

is sufficiently large, this could create a large over-density of matter after inflation ends. This over-

density of matter could then collapse and form primordial black holes. The number of primordial

black holes created this way depends on the tail end of the distribution of curvature perturbation.

For most inflation models, which give an almost Gaussian distribution of curvature perturbation,
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the number of primordial black holes created this way is very small, but one could come up with

some inflation models which enhances the tail end of the distribution. One could introduce local

features in the potential, for example introducing small steps and bumps (which breaks the slow roll

condition briefly during inflation and increases the amplitude of primordial fluctuation for certain

scales) [28–31], or create a barrier for the inflaton to tunnel through (which modify the tail end of

the distribution from Gaussian to exponential) [32]. Alternatively one can modify the sound speed

of the inflaton so that it oscillates, which give rise to peaks in the primordial curvature perturbation

distribution [33,34].

• Models which include dissipation effects during inflation. It is commonly assumed that interactions

between the inflaton and other particles are small, and we can treat it as an isolated system. However

there are models where this assumption is dropped. These models are commonly referred to as warm

inflation [35,36]. Since the inflaton is no longer an isolated system, naturally one needs to understand

the effects of dissipation, and in general thermal noise from dissipation contributes to the primordial

fluctuations on top of the usual vacuum fluctuations [37, 38]. In addition, these models also leads

to particle production during inflation, and can be used in place of reheating as a mechanism for

producing a thermal bath of particles after inflation [39–41]. More generally dissipative effects can

be understood by studying inflation as an open quantum system, see [42–44].

This is by no means an exhaustive list (a comprehensive list is presented in [45]), and each model is

interesting in its own way. However, at some point we still have to pursue the answer to an important

question:

How should we test for inflation itself?

At the end of the day, inflation is a scientific theory. Therefore it must have a set of predictions,

commonly present in any inflation models, that can be directly tested. This question is particularly

relevant as we probe the CMB and LSS with increasing precision. One particularly important testing

grounds for the different models of inflation is the deviation from Gaussian statistics in the early universe,

commonly referred to as primordial non-Gaussianities. While it has not been observed as of today, the

bounds on its size has been improving over the years. Each inflation model give rise to different non-

Gaussianities, and if our only way of understanding inflation is through explicit models, then verifying or

falsifying inflation would require testing all possible models. This is an arduous (if not impossible) task.

However, if we can find properties which must be present in the statistics and correlation of the primordial

fluctuations from inflation, this would make testing for inflation much more reasonable.

In addition to this problem, there are two other issues with approaching inflation from a model building

perspective:

• Field redefinition. Since inflation is described in the framework of quantum field theory, the

common model building procedure involves writing down a Lagrangian, where the field content as

well as their interactions are specified. This allow us to compute correlators, which we extrapolate

and compare to correlators in the CMB and LSS. However, one could always make a field redefinition:

for example, given a scalar field ϕ, we can take σ = ϕ + ϕ2, and write the interactions in terms of

these new σ fields. However, if we are working with physical degrees of freedoms, the observables

should be independent of field redefinition (up to boundary terms). At the end of the day, we need
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to link our results to measurements in the cosmological survey, say the distribution of galaxies or

temperature fluctuations of the CMB, and these clearly do not share the same ambiguity in field

redefinition as the inflaton. This is not manifest in the Lagrangian formalism, and it is not always

manifestly clear that Lagrangian for different models are not related to each other by some clever

field redefinition.

• Time evolution. The Lagrangian formalism described above is essentially describing the details

of time evolution of the fields during inflation. For practical purposes this is in fact a redundancy:

we cannot directly observe anything in the bulk inflationary spacetime, since the only observable

we have access to are the correlators at the end of inflation. So this begs the following question: is

there a way to understand features of correlators at the end of inflation if we are only given some

very general features about the bulk inflationary spacetime?

All of these issues point towards the need of a model-independent way of understanding inflation. This

leads us to the idea of bootstrapping.

Bootstrapping The idea of bootstrapping dates back to the early 1960s, when physicists were struggling

to find a physical model to describe strong interactions. To deal with this problem, the S-matrix bootstrap

was born. The idea is simple: rather than working with Lagrangians and doing perturbative calculations,

one should write down the S-matrix, which is the physical observable3, and impose constraints on the

S-matrix directly by physical principles such as Lorentz invariance, locality, causality and unitarity.

The original goal of the S-matrix bootstrap was ambitious: to find the S-matrix for strong interaction

simply by imposing physical constraints [46,47]. This goal was not achieved, and eventually people found

QCD, the physical model for describing strong interaction. However, the S-matrix bootstrap program

was not a fruitless exploration. The bootstrapping idea has given us an alternative way of understanding

quantum field theories, and it has yielded many interesting results. Here we list a few examples:

• Recursion relation for amplitudes. For tree level amplitudes, locality implies singularities are

simple poles, and unitarity implies factorization of the corresponding residues into lower point am-

plitudes. By using a suitable set of momentum shifts known as BCFW momentum shifts, one could

start with contact amplitudes and reconstruct every tree level amplitude for theories such as Yang-

Mills theory [48–51]. In certain cases, such as N = 4 super Yang-Mills, the full amplitude can be

constructed in this manner.

• Color-kinematics duality and double copy. Graviton amplitudes can be expressed roughly as

the square of an amplitude in Yang-Mills theory. This can be achieved by a suitable replacement

of color factors with kinematics factors [52]. This is not limited to Yang-Mills and gravity: similar

relations have been found for bi-adjoint scalars and Yang-Mills, and a few other theories as well (a

summary is included in [50]). Notably, these relations are much easier to read off from the ampli-

tude itself, usually written in terms of spinor-helicity variables, rather than the usual perturbative

expansions from Feynman rules.

• Analyticity of S-matrix and dispersion relations. Physical properties of the S-matrix often

give rise to constraints on the analytic structure of the S-matrix. We will give an overview of this in

3More precisely this is a meta-observable: the actual observables are things that can be computed from the S-matrix,
such as cross sections and decay rates.
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section 5.1. Notably, this give rise to a set of dispersion relations, which relates the amplitudes to

integrals their discontinuities. In the context of effective field theories (EFT), this can be used to link

properties of the EFT to properties of the UV completion of the theory. This allow us to construct

bounds on the EFT based on physical constraints on the UV theory, for example see [53–60]. This

can also be used to explore regions between the region of validity of the EFT and a known UV

completion. For instance, this can be used to understand strong interactions for energies above the

regime of validity of chiral perturbation theory, but below the regime of validity of perturbative

QCD [61–64].

A similarly successful idea is the conformal bootstrap, which focuses on constraining conformal field

theories with symmetries and physical principles. The conformal bootstrap was able to provide a set of

constraints known as the conformal bootstrap equations, which can be solved numerically using linear

programming. This provides constraints on the scaling dimensions of operators in a theory, and allow us

to explore critical phenomena without relying on perturbation theory. For details see [65–69].

Bootstrapping in cosmology Given the success of bootstrapping in other areas of physics, it makes

sense to attempt bootstrapping in cosmology. Since inflationary spacetime is well approximated by de

Sitter(dS) spacetime, early attempts at bootstrapping in cosmology generally includes full dS isometry as

an input [70]. The isometry of dS generally give rise to Ward identities, a set of differential equations

which the cosmological wavefunction (which we will introduce in section 2) has to satisfy, and bootstrapping

involves solving those differential equations. These equations have been extended to include fields with

different masses and spins [71,72], and different cosmological spacetimes as well [73]. There has also been

considerable effort in understanding the connection of observables and constraints in dS in terms of AdS

correlators [74–79], as well as the connection of the cosmological wavefunction to polytopes [80–85].

However, from a phenomenological perspective, inflationary theories which admits full dS isometry may

not be the most interesting. This is because correlators for scalar curvature perturbations from theories

which admits full dS isometry are slow roll suppressed [86]. Therefore, there has been a great deal of effort

in understanding the bootless bootstrap, where invariance under special conformal transformations (or dS

boosts) are not assumed [87–91], and these methods have been extended to encompass a wide range of

interesting scenarios [92–96].

This thesis will be dedicated to covering some of the new and exciting developments in the cosmological

bootstrap. In section 2 we will first give an overview of the cosmological wavefunction, the object that is

constrained by the bootstrap. We will discuss the constraints coming from unitarity in section 3. We will

study parity odd correlators in section 4 where we explore if the bootstrap constraints on tree level parity

odd correlators continue to hold for one loop correlators.

The rest of the thesis will focus on exploring the analyticity of wavefunction. In section 5 we will discuss

the locations of singularities of the wavefunction, which can be derived from the ”energy conservation

condition”. We will discuss the amplitude representation of the wavefunction in section 6, where we find

some of the singularities in the wavefunction can be linked to singularities of an amplitude. Section 7 will

discuss EFT, dispersion relations and UV/IR sum rules for the wavefunction. Finally we will provide some

conclusions and outlook in section 8.
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Notations and conventions Our conventions for the Fourier transform is:

f(k) =

∫
ddk

(2π)d
eik·xf(x). :=

∫

k

eik·xf(x). (1.0.2)

We label external momenta by k and internal momenta by p. In addition, for flat space we can define the

energy as:

Ω =
√
|k|2 +m2, (1.0.3)

where m is the mass of the particle.

We use the notation {k} to denote the collection of all external momenta and similarly for other

quantities, for example {Ω} denotes the collection of all energies.

Sometimes in our computation it is convenient to work directly with the loop integrand. For the

wavefunction coefficients (which is defined in 2.1.3), we will write the following:

ψL-loop
n ({k}) =

∫

p1...pL

IL-loop
n ({k}, {p}). (1.0.4)

In addition, in loop calculations momentum entering the vertex is p.

Generally we write a wavefunction in terms of its (off-shell) external energies ω and its external mo-

menta (we will elaborate on what we mean by on-shell and off-shell in section 2). For a general n-point

wavefunction coefficient or correlator, we write:

ωT =

n∑

a=1

ωa . (1.0.5)

In addition, we commonly write our results in terms of symmetric polynomials of external energies.

For instance, for three point correlators or wavefunction coefficients, we have:

e2 = ω1ω2 + ω1ω3 + ω2ω3 , e3 = ω1ω2ω3. (1.0.6)

For four point correlators or wavefunction coefficients we will also make use of the following notation:

ωL = ω1 + ω2 , ωR = ω3 + ω4 , s = k1 + k2 = −(k3 + k4) , (1.0.7)

e4 = ω1ω2ω3ω4 , p± = p1 ± p2 . (1.0.8)

This is not to be confused with the notation EL and ER (which is k1 + k2 + |s| and k3 + k4 + |s|) that

is commonly used in the literature (where ki = |ki| and pi = |pi|, and ki = ωi when the particles are

on-shell). In particular, the wavefunction coefficients and correlators take a particularly compact form

when written using the following differential operators (see e.g. [70, 97,98])

O
(i)
k = 1 − k∂ωi

, (1.0.9)

where i = L,R an ωL,R were defined in (1.0.7).
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Chapter 2

Brief overview of the cosmological

wavefunction

Before going into the details of the bootstrap, we need to specify the object we are bootstrapping. For the

cosmological bootstrap, we commonly work with the cosmological wavefunction. We will first define this

object and explain how to compute it. We will then explain what we mean by the off-shell wavefunction

coefficients, and elaborate on the need to define such an object. We will also explore how the cosmological

wavefunction can be related to the in-in correlators, which can be extrapolated to correlators in the cosmic

microwave background.

2.1 The cosmological wavefunction

Given a quantum field theory (and some cosmological background), the field-theoretic wavefunction, or

just the wavefunction in short, is a state in the field theory projected onto the field basis at a given time.

For a theory with a single field, it can be written as follow:

Ψ[ϕ0, η0] = ⟨ϕ0, η0|ψ⟩. (2.1.1)

We will be looking exclusively at the Bunch-Davies vacuum state, i.e. the vacuum where the mode

functions (solutions to the free equation of motion, see (2.2.2)) are conformally related to plane waves, so

from here on Ψ labels the Bunch-Davies vacuum state. Also notice the wavefunction has an explicit time

dependence. For cases where we study the wavefunction in flat space, we will take the surface t = 01. For

dS, since we are generally interested in the end of inflation, we will take η0 = 0, i.e. the future conformal

boundary of dS.

Readers familiar with canonical quantum gravity may wonder if this wavefunction is related to the

wavefunction of the universe, and it is possible that one can obtain the field-theoretic wavefunction by

some appropriate WKB expansion (for example, looking at the large volume limit of the wavefunction2).

We will not explore this connection further in the rest of the thesis, and instead will focus on looking at

1This choice is taken for convenience, since Minkowski spacetime is time translation invariant.
2Interested readers may look at [99], where the Hartle-Hawking wavefunction for single field inflation is studied in the

large volume limit.
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quantum field theories with a fixed cosmological background.

One can show that the wavefunction can be obtained from a path integral. For example, for a theory

with a single scalar, the wavefunction is simply:

Ψ[ϕ0, η0] =

∫ ϕ(η0)=ϕ0

BD

DϕeiS[ϕ]. (2.1.2)

This is reminiscent to the way in-out correlators in flat space can be computed by a path integral. The

proof can be found in [100].

The wavefunction is usually expanded in terms of a set of wavefunction coefficients:

Ψ[ϕ0, η0] = exp

( ∞∑

n=2

1

n!

∫

k1...kn

δ(3)(
∑

i

ki)ψn({k})

n∏

i

ϕ(ki)

)
. (2.1.3)

The generalization to multi-fields and spinning particles are straightforward: just add the relevant indicies

and labels on the fields and the wavefunction coefficients, and sum over all the indicies in (2.1.3).

2.2 Computing the wavefunction

In this section we will explain how to compute the wavefunction coefficients in perturbation theory. Ideally

we would like to follow the standard procedures in QFT textbooks, and write down a generating functional

Z[J ] for the theory (here J is some source). From this, we can determine our object of interest (in our

case, wavefunction coefficients) by taking derivatives of J . However, in defining the wavefunction we have

introduced a constant time surface, and the field on this surface is fixed to have some value ϕ0. This is a

different boundary condition from the usual path integral, and we need to implement this carefully.

Mode function and propagators Let us change the integration variable for the path integral (2.1.2)

in the following way:

ϕ(k, η) = ϕ̃(k, η) + φ(k, η). (2.2.1)

The integration variable is now φ, and ϕ̃ satisfies the free equation of motion in Fourier space:

E ϕ̃(k, η) = 0. (2.2.2)

For example, in flat space, we have:

E = ∂2t + k2 +m2. (2.2.3)

In addition, ϕ̃ satisfies the boundary condition:

ϕ̃(η0) = ϕ0, lim
η→−∞(1−iϵ)

ϕ̃(η) = 0. (2.2.4)

We may now write the path integral (2.1.2) as3:

Ψ[ϕ0, η0] =

∫ φ(η0)=0

BD

Dφ exp

(
iSbdy[ϕ0] + i

∫ η0

−∞(1−iϵ)

dη

∫

k

1

2
φ(k, η)Eφ(k, η) + Lint[ϕ̃+ φ]

)
. (2.2.5)

3Here I omitted dependence on the time derivatives of ϕ̃ and φ. For a careful treatment see [101]
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The boundary term comes from integrating the bulk Lagrangian by parts. For our case it does not have

to vanish for an arbitrary time surface at time η0, therefore we have to keep track of it.

Now one can follow the standard derivations in QFT textbooks (for example, see [102]) to obtain the

following expression [101]:

Ψ[ϕ0, η0] = N exp (iSbdy[ϕ0]) exp

(
i

∫ η0

−∞(1−iϵ)

dη

∫

k

Lint

[
ϕ̃− i

δ

δJ(k)

])

× exp

(
−i
∫ η0

−∞(1−iϵ)

dη

∫

k

J(k)E−1(k, η)J(−k)

)
. (2.2.6)

Here N is just some normalization. Crucially, Lint is written in terms of ϕ̃− i δ
δJ(k) , rather than −i δ

δJ(k)

alone. This means we need to keep track of time evolution from ϕ̃, and this introduces an additional

propagator into our perturbative calculation.

Fortunately all propagators in our calculation can be written in terms of the mode functions, which are

solutions to the free equation of motion (2.2.2). Generally E are second order differential operators, and

hence there are two linearly independent solutions. Since we are interested in the Bunch-Davies vacuum,

we pick one of the solution (which we label as ϕ+) as the solution which conformally looks like a plane

wave, i.e.

lim
η→−∞

ϕ+(k, η) ∼ 1

a(η)
eikη. (2.2.7)

We can pick the other solution, which we label as ϕ−, to be the solution which is linearly independent of

ϕ+. Usually this is the complex conjugate of ϕ+, however there may be some subtleties with branch cuts.

We will see this in section 3.2

We can now write down the two type of propagators in our calculation. The first one is the bulk-to-

boundary propagator K(k, η), which keeps track of the time evolution of ϕ̃. It is defined in the following

way:

ϕ̃(k, η) = K(k, η)ϕ0(k). (2.2.8)

The bulk-to-boundary propagator satisfies the following:

EK(k, η) = 0, lim
η→0

K(k, η) = 1, lim
η→−∞(1−iϵ)

K(k, η) = 0. (2.2.9)

The second one is the bulk-to-bulk propagator G(k; η, η′), which comes from doing the functional derivatives

with respect to the source J(k). The bulk-to-bulk propagator satisfies the following:

EG(k; η, η′) = δ(η − η′), lim
η→0

G(k; η, η′) = 0, lim
η→−∞(1−iϵ)

G(k; η, η′) = 0. (2.2.10)

Given the mode function ϕ+, the bulk-to-boundary propagator is given by:

K(k, η) =
ϕ+(k, η)

ϕ+(k, η0)
. (2.2.11)
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The bulk-to-bulk propagator is given by:

Gp(η, η′) = i

[
θ(η − η′)

(
ϕ+p (η′)ϕ−p (η) − ϕ−p (η0)

ϕ+p (η0)
ϕ+p (η)ϕ+p (η′)

)
+ (η ↔ η′)

]
. (2.2.12)

Here θ(η1 − η2) is the Heaviside step function. For real k we can also express the bulk-to-bulk propagator

in terms of the bulk-to-boundary propagator as:

G(k; η1, η2) = iPk (K∗(k, η1)K(k, η2)θ(η1 − η2) + (η1 ↔ η2) −K(k, η1)K(k, η2)) , (2.2.13)

where the power spectrum Pk is given by:

Pk = |ϕ+(k, η0)|2. (2.2.14)

Notice that the bulk-to-bulk propagator is simply a Feynman propagator with an additional homogeneous

term, which ensures the boundary conditions (2.2.10) are satisfied.

Feynman rules for the wavefunction We are now in a position to state the Feynman rules. Given a

Feynman diagram,

• Label every vertex by a time ηi. For every vertex, write down
∫ η0

−∞
dηi

a(ηi)d+1F (ηi, {k}), where

F (ηi, {k}) corresponds to the vertex factors from the interactions.

• For each loop in the diagram, write down
∫

ddpl

(2π)d
, where pl is the loop momentum.

• For every internal line, write down G(p, ηl, ηr), where ηl, ηr are the time labels of the verticies the

propagator is attached to and p refers to the momentum of the internal line.

• For every external line, write down K(k, ηi), ηi refers to the time label of the vertex the propagator

is attached to and k refers to the momentum of the external line.

• Multiply by an overall factor of iL−1 where L is the number of loops, then carry out the time

integration as well as the loop momentum integration.

Let us compute the wavefunction coefficients in two simple cases.

Contact diagram Let us compute the following three point contact diagram for a single massless scalar

in dS, which is given by the interaction gϕ3:

(2.2.15)

The mode function for a massless scalar field in dS satisfies:

(
∂2η − 2

η
∂η + k2

)
ϕ+ = 0. (2.2.16)

The solution is simply:

ϕ+(k, η) =
1√
2k3

(1 − ikη)eikη. (2.2.17)
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Here I set H = 1 for convenience, and set the spacetime to have (3 + 1) dimensions. Since the contact

diagram only contains external lines, we only need to know the bulk-to-boundary propagators, which we

can easily write down with the mode function. The wavefunction is:

ψ3(k1, k2, k3) = ig

∫ η0

−∞(1−iϵ)

dη

η4

3∏

i=1

(1 − ikiη)

(1 − ikiη0)
eikT (η−η0). (2.2.18)

Here we defined kT = k1 +k2 +k3. Notice here we also added an iϵ prescription to ensure the convergence

of the integral as η → −∞.

To compute this integral, expand the product and carry out integration by parts. In the limit η0 → 0,

this gives:

ψ3(k1, k2, k3) = 6g

[
i

3η30
+
ik2T
3η0

− ie2
3η0

+

(
e3 − kT e2 +

k3T
3

)
(log(−ikT η0) + γE + . . . )

]
. (2.2.19)

where e2 and e3 are defined in (1.0.6) (with ω replaced by k). In the computation we evaluated a time

integral (which is an exponential integral) in the limit η0 → 0:

∫ η0

−∞(1−iϵ)

dη

η
eikT η = γE + log(−ikT η0) + . . . . (2.2.20)

Notice all the terms in (2.2.19) are divergent as η0 → 0, so let’s discuss them. The first three terms are

all imaginary, and we need to add counterterms to remove them. Since Ψ ∼
∫
Dϕ eiS , to remove them we

need to modify the action with real counterterms, which is what we usually do in QFT. Also notice these

terms can be expressed in terms of fields and their derivatives in position space.

There is also a term that diverges logarithmically in (2.2.19). This is an example of a secular IR

divergence that is common in field theories in dS. This divergence arises because the interaction term

Lint = g
η4ϕ

3 diverges as η → 0. This type of divergence is often absent when we consider interactions

with derivatives. For instance, if we compute the same diagram with Lint = gϕ̇3 (where the dot denotes
d
dt = η d

dη ), we obtain the following instead:

ψ3(k1, k2, k3) = ig

∫ η0

−∞

dη

η4

3∏

a=1

(
η∂ηK(ka, η)

)

= ig

∫ η0

−∞
dη k21k

2
2k

2
3η

2eikT (η−η0)

= 6g
k21k

2
2k

2
3

k3T
. (2.2.21)

Exchange diagram As a second example let us compute the following four point exchange diagram for

a single massive scalar in flat space.
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Following the Feynman rules, we obtain the following expression:

ψ4 = g2
∫ 0

−∞
dt1

∫ 0

−∞
dt2K(Ω1, η1)K(Ω2, η1)G(Ωs, η1, η2)K(Ω3, η2)K(Ω4, η2). (2.2.22)

Since we are looking at flat space, the mode function is simply a plane wave, so here K(Ωi, t) = eiΩit. We

also have Ωs =
√

(k1 + k2)2 +m2. A straightforward calculation yields:

ψ4 =
g2

2ΩsΩTEL
+

g2

2ΩsΩTER
− g2

2ΩsELER
=

g2

ΩTELER
, (2.2.23)

where we introduced the shorthand notation EL = Ω1 + Ω2 + Ωs, ER = Ω3 + Ω4 + Ωs and ΩT =

Ω1 + Ω2 + Ω3 + Ω4.

An interesting feature of this calculation is that there are cancellations of the Ωs poles. Moreover, we

can express the wavefunction coefficient for a four point exchange diagram in flat space as:

ΩTψ4 =
g2

ELER
= ψcontact

3 (Ω1,Ω2,Ωs)ψ
contact
3 (Ω3,Ω4,Ωs). (2.2.24)

In words, the exchange wavefunction coefficient is related to the product of two contact wavefunction

coefficients. This is an example of a recursion relation for the flat space wavefunction, and we will explore

this in detail in section 5.3.

2.2.1 Off-shell wavefunction coefficient

In the examples of the previous section we find that the wavefunction coefficients are expressed as functions

of energies of internal and external lines. In general a scalar wavefunction coefficient can be written as

follow:

ψn({Ωk}, {k}). (2.2.25)

For flat space the energies are fixed to be Ωk =
√
|k|2 +m2, while for dS (or general cosmological space-

time) the ”energies” are fixed to be Ωk = |k|4. For theories with derivative interactions the wavefunction

coefficients depend explicitly on the momentum k, as they appear in the vertex factors5.

For the purpose of bootstrapping the wavefunction coefficients, fixing the energies in terms of mo-

mentum is often too restrictive. In particular we are often interested in the analytic continuation of the

wavefunction coefficients in terms of its kinematics: even though such procedures often bring us to un-

physical kinematics, they often give us new insight into physical observables. If we choose to analytically

continue in k, then it is easy to see that the analytic continuation of the wavefunction coefficients would

have highly undesirable properties. For every energy variable, we introduce a new branch cut due as the

energy is related to the square root of the momentum. Now we need to keep track of these branch cuts

on top of additional branch cuts from the functional form of the wavefunction, for instance logarithmic

branch cuts from UV divergences in loops or secular divergences due to time dependence of interactions.

4Technically this is an abuse of notation: there is no time translation symmetry for dS or general cosmological backgrounds.
While the wavefunction are expressed as function of these ”energies”, we should not interpret this as some sort of conserved
quantity.

5For integer spinning fields their wavefunction coefficients also depend on polarization tensors. Naturally they are con-
tracted with other polarization tensors or k
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For this reason, we will study the off-shell wavefunction coefficients, which are defined as:

ψn({ω}, {k}). (2.2.26)

The essential difference is that the energy variables ω are no longer fixed in terms of the momentum

k. To recover the usual on-shell wavefunction coefficients, where the energies are fixed in terms of the

momentum, simply substitute ω = Ωk.

Every bootstrap rule can be written in terms of the off-shell wavefunction coefficients, and usually

doing so results in less ambiguity in the bootstrap rules. For instance, the following expression:

∂

∂k1
ψ3(k1, k2, k3,k1,k2,k3) (2.2.27)

is ambiguous: k1 is the norm of k1, therefore we need to properly state the action of the derivative on

k1
6. However, the following is unambiguous:

∂

∂ω1
ψ3(ω1, ω2, ω3,k1,k2,k3). (2.2.28)

We will encounter many instances where we take derivatives with respect to the energies and/or analytically

continue them. In the rest of this thesis we will implicitly assume the wavefunction coefficients are all

off-shell to avoid any ambiguities.

LSZ definition for the off-shell wavefunction coefficients There is a way to define the off-shell

wavefunction coefficients in terms of in-out correlators. The idea is to modify the LSZ reduction formula

used for S-matricies.

Recall that perturbatively, by considering the Feynman rules, we can write an amplitude as:

Sn({ω}, {k}) =

[
V∏

v=1

∫ +∞

−∞
dtve

iωvtv

][
L∏

ℓ=1

∫
d3pℓ

(2π)d

]
I∏

i=1

GF
i ({k}, {p}), (2.2.29)

One can show that this expression can be written as:




n∏

j=1

∫ +∞

−∞
dtj e

iωjtjEj


 ⟨Ωout| T Φ̂k(t1)...Φ̂kn

(tn) |Ωin⟩c = Sn ({ω}, {k}) δ
(3)
D (k1 + ...+ kn) . (2.2.30)

T represents the time ordering of operators, and the subscript c reminds us to only consider the connected

components. The details of the derivation are provided in most QFT textbooks, for example see [103].

(2.2.30) can be interpreted as follow: the operators E amputates the in-out time ordered correlator, and

by putting the energies on-shell this recovers the amplitude.

Notice how (2.2.29) looks similar to the expression for the off-shell wavefunction coefficient. It seems

reasonable that we can define an LSZ procedure in flat space. Let us consider the case in flat space, where

6This is because we can write k1 = k1k̂1. Differentiating k̂1 gives zero if k̂1 is independent of k1. But now we have to
worry about how to define k̂1, and whether we can define it independently of k1. By going off-shell we avoid this ambiguity
altogether.
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in perturbation theory the wavefunction coefficients can be written as:

ψ({ω}, {k}) =

[
V∏

v=1

∫ 0

−∞
dtve

iωvtv

][
L∏

ℓ=1

∫
d3pℓ

(2π)d

]
I∏

i=1

Gi({k}, {p}) . (2.2.31)

There are two key differences between amplitudes and wavefuntion coefficients:

• The out-state is not in the asymptotic future, but rather a state at t = 0. Therefore the time

integration domain is −∞ < t < 0.

• Bulk-to-boundary propagators are used rather than Feynman propagators. While this does not affect

the amputation procedure (as the difference between the Feynman and bulk-to-bulk propagator is a

term which vanishes after the action of E), the difference is reflected in the out-state we choose. In

particular, since we chose G→ 0 as t→ 0, we should choose a state with zero field fluctuation.

Based on this, we can show that the wavefunction coefficient as:




n∏

j=1

∫ 0

−∞
dtj e

iωjtjEj


 ⟨ϕ(0) = 0| T Φ̂k1

(t1)...Φ̂kn
(tn) |Ωin⟩c = ψn ({ω}, {k}) δ̃

(3)
D

(
n∑

a

ka

)
, (2.2.32)

where |ϕ(0) = 0⟩ is the field eigenstate annihilated by Φ̂k(t) at t = 0.

We can also write down the dS wavefunction in a similar manner: just use E for the equation of motion

in dS, and replace eiωjtj with the bulk-to-boundary propagators Kωj
(η).

2.3 In-in correlators

We do not measure the wavefunction directly from cosmological observations. This priviledge belongs to

in-in correlators. They are defined as follow:

in⟨0|O1(k1, η1) . . . On(kn, ηn)|0⟩in. (2.3.1)

Here O(x, η) are field operators and |0⟩in is the vacuum state in the far past (and we usually take the

Bunch-Davies vacuum). In cosmology we are interested in the case O(k, η) = ζ(k), since these are the

correlation functions which are eventually extrapolated to the correlations of the CMB and LSS.

Notice that the correlator is sandwiched by two in vacuum state, rather than one in vacuum and one

out vacuum state (which is the object computed in everyone’s first QFT course), hence the name in-in

correlator. These objects have an incredibly rich history in condensed matter physics, where it is used to

study out-of-equilibrium systems [104]. The formalism for computing these in-in correlators is commonly

referred to as in-in formalism, or Schwinger-Keldysh formalism, and they are necessary under the following

context7.

• The system has dissipation and hence time evolution is not unitary. If we consider inflation as

an EFT, where there are higher energy degrees of freedoms, in principle energy can flow from the

inflaton to these extra degrees of freedom. However we will not explore this in depth here.

7In cases where interactions can be turned off in the far past and future, and in cases where there is thermal equilibrium,
one can simply obtain the in-in correlator from an in-out correlator, see [105].
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• Interactions cannot be turned off in the far future. This is always true in our case even if we consider

a single field scalar in dS, as the effects from the expanding background cannot be ignored. For

example, a ϕ3 theory in dS has Lint = g
η4ϕ

3, which diverges as we move towards the boundary

η → 0.

2.3.1 Feynman rules for in-in correlators

In-in correlators has its own Feynman rules, which we will state here [106].

• Draw vertices corresponding to the interaction terms in the action.

• Label each vertex as time ordered or anti-time ordered. Time-ordered vertices are drawn as shaded

circles, and anti-time ordered vertices as open circles. Also assign to each vertex a conformal time

ηa with a = 1, . . . , I labelling the I internal lines. Diagrams with opposite labelling are related by

complex conjugation as in (4.4.4).

• In addition to factors of i arising from spatial derivatives, each time-ordered vertex carries another

factor of −i and each anti-time ordered vertex a factor of i. Since all possible time orderings are

summed over, if a diagram contains an even number of spatial derivatives in total, only its real

part appears in the final correlator. Similarly, with an odd number of spatial derivatives, only the

imaginary part appears.

• Draw internal lines connecting the vertices pairwise. Assign each internal line a 3-momentum p.

For each ϕ(ki) in the correlator, draw one external line, connecting a vertex to a horizontal line

representing the asymptotic future. Label each external line with its associated 3-momentum ki.

Write down a 3-momentum conserving δ distribution for each vertex. The total number of lines

meeting at each vertex is fixed as usual by the fields appearing in the relevant interaction.

• With fk(η) the mode function for a given field, for each line, write down a propagator as follows:

= G++(p, η1, η2) = fp(η1)f∗p (η2)θ(η1 − η2) + f∗p (η1)fp(η2)θ(η2 − η1) (2.3.2)

= G−−(p, η1, η2) = f∗p (η1)fp(η2)θ(η1 − η2) + fp(η1)f∗p (η2)θ(η2 − η1) (2.3.3)

= G+−(p, η1, η2) = f∗p (η1)fp(η2) (2.3.4)

= G−+(p, η1, η2) = fp(η1)f∗p (η2) (2.3.5)

= G+(k, η) = f∗k (η)fk(ηf ) (2.3.6)

= G−(k, η) = fk(η)f∗k (ηf ) (2.3.7)
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• Integrate over all momenta of internal lines and over the conformal times ηi of the vertices, with

a factor of a1+d(ηi), where a is the scale factor and d the number of spatial dimensions, for each

conformal time ηi.

• Multiply by a combinatorial factor depending on the number of ways of contracting fields in the

vertices to produce the same diagram.

Notice the number of Feynman diagrams increases as 2V , where V is the number of verticies. For example, a

tree level exchange process requires four Feynman diagrams. This is one of the main advantages of working

with wavefunction coefficients: the number of diagrams do not increase exponentially with V .

2.3.2 In-in correlators from the wavefunction

Since in-in correlators are the physical observables, we would like to relate the wavefunction coefficients,

which are the objects we bootstrap. This is given by the Born rule, which is simply:

⟨ϕ(k1, η0) . . . ϕ(kn, η0)⟩ =

∫
Dϕ0|Ψ[ϕ0, η0]|2ϕ0(k1, η0) . . . ϕ0(kn, η0) (2.3.8)

By expanding |Ψ|2, we can express in-in correlators in terms of wavefunction coefficients. Concretely, let

us define:

ρn({ω}, {k}) = ψn({ω}, {k}) + ψ∗
n({ω},−{k}) (2.3.9)

Since we are expanding the modulus of Ψ, the in-in correlators are written in terms of ρn. For a parity

even theory ρn is simply 2 Reψn. At tree level an n-point in-in correlator is given by ρn and lower point

wavefunction coefficients. For example, let us consider the two point function (i.e. the power spectrum):

⟨ϕ(k1)ϕ(k2)⟩ = (2π)dδ(d)(k1 + k2)Pk. (2.3.10)

Then we have the following:

Pω =
1

ρ2(ω)
. (2.3.11)

There are similar relations for higher point functions. Let us define:

⟨ϕ(k1) . . . ϕ(kn)⟩ = (2π)dδ(d)

(
n∑

a=1

ka

)
Bn({k}, {ω}). (2.3.12)

Then, for three point and four point correlators at tree level are given by:

B3(ω1, ω2, ω3) = −ρ3(ω1, ω2, ω3)∏3
a=1 ρ2(ωa)

(2.3.13)

B4(ω1, ω2, ω3, ω4) = − 1∏4
a=1 ρ2(ωa)

[
ρ4 −

ρ3ρ3
ρ2

]
(2.3.14)

At loop level this is more complicated. We can obtain new loop contributions from integrating tree level

wavefunction coefficients. Diagrammatically this can be interpreted as taking tree level wavefunction
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coefficients and gluing external legs together to form loops. For example, at one loop order,

B4(ω1, ω2, ω3, ω4) = ρ1L4 (ω1, ω2, ω3, ω4) +

∫

p

Ppρ
tree
6 (ω1, ω2, ω3, ω4, ωp, ωp) (2.3.15)

Notice there is a contribution from ρtree6 , i.e. the tree level wavefunction coefficient ψ6. Another example

would be the one loop power spectrum, which schematically can be written as:

P 1L
ω = (P tree

ω )2ρ1L2 (ω) +
1

4!

∫

p

Ppρ
tree
4 (ω, ωp, ωp, ω) +

1

2

1

(3!)2

∫

p

Pp1Pp2ρ
tree
3 (ω, ωp1 , ωp2)ρtree3 (ω, ωp1 , ωp2),

(2.3.16)

where p1 = p and p2 = k − p. Similarly at two loops one would expect the in-in correlator to get

contributions from the one loop and tree level wavefunction coefficients as well.
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Chapter 3

The consequences of unitarity

One of the most essential features of quantum mechanics is the ability to interpret the overlap between

states as probability of a measurement. For this to be true, we require two features:

• Norm of states are positive. This is obvious as negative probabilities do not make sense.

• Norm of states are preserved. Probability of all possible measurements need to add up to one, and

for this reason we commonly normalize the initial states to have unit norm. However, if the norm

of a state changes over time, we cannot interpret overlap of states as probabilities as they no longer

add up to one.

These features are collectively known as unitarity. In this section we will explore the consequences of

unitary time evolution in perturbation theory: namely, the wavaefunction coefficients must obey a set of

consistent relations known as the cosmological optical theorem. Graphically, they are represented as a

set of cutting rules which relate larger and more complicated Feynman diagrams to smaller and simpler

diagrams. We will explain how to prove the cosmological optical theorem for fields with any mass, integer

spin and in any FLRW spacetime (which admits a Bunch-Davies vacuum), and provide some simple

examples. In the end we will briefly discuss extensions of the cutting rules to loop level as well as beyond

perturbation.

3.1 The cosmological optical theorem

In quantum mechanics, time evolution is governed by a time evolution operator Û(t, t0), i.e. we have

|ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩. In order for the norm of the state to be preserved under time evolution, these

time evolution operators must satisfy the following relation:

Û†Û = 1. (3.1.1)

As long as the norm of states at some time t0 are all positive, they will continue to have positive norm

at any given time t. We are interested in exploring the consequences of this constraint in perturbation

theory, and to do this let us move to the interaction picture. Here the time evolution operator for the
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states is given by:

Û(t, t0) = T exp

(
−i
∫ t

t0

dt′ Ĥint(t
′)

)
, (3.1.2)

where T denotes time ordering of operators. Since we are in perturbation theory, we can expand the

exponential and obtain a series in terms of Ĥint. Schematically, we can write the following:

Û = 1 + δÛ . (3.1.3)

Therefore, (3.1.1) implies the following:

δÛ + δÛ† = −δÛ†δÛ . (3.1.4)

(3.1.4) is a non-linear equation which links different orders of perturbation theory together. This is

telling us that different orders in perturbation theory are not completely independent under unitary time

evolution. Now we need to understand how to convert this formal expression into a relation between

wavefunction coefficients in perturbation theory.

Review: optical theorem for amplitudes To get a hint on how to proceed, let us review perturbative

unitarity for amplitudes. In this case we can write (3.1.4) as:

⟨k1 . . .kn|δÛ |k1′ . . .km′⟩ + ⟨k1 . . .kn|δÛ†|k1′ . . .km′⟩ = −⟨k1 . . .kn|δÛ†δÛ |k1′ . . .km′⟩. (3.1.5)

Here |k1 . . .kn⟩ is an n-particle state. Here we recognize the term on the left hand side is in fact a n to m

amplitude plus its conjugate:

Am→n = −i⟨k1 . . .kn|δÛ |k1′ . . .km′⟩, A∗
n→m = i⟨k1 . . .kn|δÛ†|k1′ . . .km′⟩. (3.1.6)

By inserting the identity operator
∑∫

X
|X⟩⟨X| (here

∑∫
X

simply denotes summing over all intermediate

states), the right hand side can also be expressed in terms of a product of amplitudes as well. More

concretely,

2Im Am→n =
∑∫

X

A∗
n→XAm→X . (3.1.7)

This is known as the optical theorem. This result can be used to relate decay rate to scattering amplitudes

given by exchange processes, relate forward scattering amplitude to the total cross section, etc (for more

details see any QFT textbook, for example [103]). The goal for the rest of this section is to derive a similar

relation for wavefunction coefficients.

Cosmological Optical Theorem: first derivation This discussion follows the derivation presented

in [100]. Let us consider the simple case of Hint = λϕ3 in dS. To proceed, let us follow the derivation of

the optical theorem for amplitudes, but replace the ket state with |0⟩:

⟨k1 . . .k3|δÛ |0⟩ + ⟨k1 . . .k3|δÛ†|0⟩ = −⟨k1 . . .k3|δÛ†δÛ |0⟩. (3.1.8)
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Now we write the left hand side as wavefunction coefficients. We have:

⟨k1 . . .k3|δÛ |0⟩ = ψ3(ω1, ω2, ω3,k1,k2,k3). (3.1.9)

However,

⟨k1 . . .k3|δÛ†|0⟩ ≠ ψ∗
3(ω1, ω2, ω3,k1,k2,k3). (3.1.10)

Let us consider the leading order O(λ) and see what ⟨k1 . . .k3|δÛ†|0⟩ is. In terms of Feynman diagrams

this correspond to a contact diagram, i.e. a diagram with no internal lines. We have:

⟨k1 . . .k3|δÛ†|0⟩ = λ∗
∫ η0

−∞

dη

η4

3∏

i=1

K(ωi, η). (3.1.11)

Now we exploit a crucial property of the bulk-to-boundary propagators for fields satisfying Bunch-Davies

initial condition:

K(ω, η) = K∗(−ω∗, η). (3.1.12)

We refer to this property as Hermitian analyticity, and we refer to K∗(−ω∗, η) as the Hermitian analytic

image of K(ω, η). We will explore this property in detail in section 3.2. For now, to convince ourselves

that this is indeed true, let us look at two simple examples. For massless scalars we have:

K(−ω∗, η) =
[
(1 + iω∗η)e−iω∗η

]∗
= (1 − iωη)eiωη = K(ω, η). (3.1.13)

Similarly, for conformally coupled scalars we also have:

K(−ω∗, η) =

[
η

η0
e−iω∗η

]∗
=

η

η0
eiωη = K(ω, η). (3.1.14)

If the bulk-to-boundary propagator is Hermitian analytic, we can write:

⟨k1 . . .k3|δÛ†|0⟩ = λ∗
∫ η0

−∞

dη

η4

3∏

i=1

K∗(−ω∗
i , η) = ψ∗

3(−ω∗
1 ,−ω∗

2 ,−ω∗
3). (3.1.15)

Let us look at the right hand side of (3.1.8). After inserting the identity operator, it becomes:

−
∑∫

X

⟨k1 . . .k3|δÛ†|X⟩⟨X|δÛ |0⟩. (3.1.16)

Conveniently, at O(λ) this is zero. Therefore we have the following result:

The cosmological optical theorem (for contact diagram)

ψ3(ω1, ω2, ω3) + ψ∗
3(−ω∗

1 ,−ω∗
2 ,−ω∗

3) = 0. (3.1.17)

Generalizing this result for more complicated diagrams proved to be a challenge. This is because if we

look at (3.1.16), we notice that ⟨k1 . . .k3|δÛ†|X⟩ is not simply a wavefunction coefficient or its complex

conjugate. It is entirely possible to work in canonical quantization and express this object in terms of a
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combination of wavefunction coefficients (and this is how the cosmological optical theorem was derived

for an exchange diagram in [100]1), but as the Feynman diagram grows more complicated, the derivation

becomes more cumbersome. Let us explore a different path forward.

The Disc operator Let us define the Disc operator as follow:

Disc
ω1...ωi

f(ω1 . . . ωi, ωi+1 . . . ωn, {k}) = f(ω1 . . . ωi, ωi+1 . . . ωn, {k}) − f∗(ω1 . . . ωi,−ω∗
i+1 · · · − ω∗

n,−{k}).

(3.1.18)

There are a few things to note about this Disc operator:

• The argument in f∗ is changed, and so this cannot be interpreted as the usual discontinuity (which

is limϵ→0+ f(x+ iϵ) − f(x− iϵ)).2 We are only calling it ”Disc” because its role in the cosmological

optical theorem is reminiscent of a discontinuity.

• If an energy argument appears below the Disc operator, it remains unchanged. Otherwise the energy

is analytically continued to −ω∗. Note that this implies that we are allowed to analytically continue

the function from ω to −ω∗. We will see in section 5.2 that we can always analytically continue

ψn(ω) in this way for external energies ω, as wavefunction coefficients are always analytic in the

lower half complex plane. However, for internal energies this is less clear. For tree level diagrams

we expect this to be true (at least for flat space and dS), since the bulk-to-bulk propagators are

expressed in terms of Hankel functions (which only has a branch cut in the negative real axis). We

leave a detailed study of analyticity in internal off-shell energy to the future.

• The momentum in f∗ is always flipped: in particular we always have to flip the momentum even if

it corresponds to the momentum of an internal line (regardless of whether its corresponding energy

is flipped or not). This is enforced by momentum conservation.

Based on our experience with the contact diagram, the expectation is that we can express the left hand side

of (3.1.4) as the Disc of some wavefunction coefficients. Therefore, instead of trying to work everything out

directly from (3.1.4), let us ask the following question directly: given a Feynman diagram corresponding

to a wavefunction coefficient ψn, what is Discψn?

In the remainder of the section we will proof the following for a wavefunction coefficient ψn+m from a

general tree level diagram:

The cosmological optical theorem (for any tree level diagram)

Discωs
iψn+m({ω};ωp1

, . . . , ωs, . . . , ωpI
; {k}) = −iPωs

Discωs
iψn+1(ω1, . . . , ωn, ωs; {ωp}; {k})

× Discωs
iψm+1(ωn+1, . . . , ωm+n, ωs; {ωp}; {k}) .

(3.1.19)

Here ωp and ωs are energies for internal lines (which we have taken off-shell and analytically continued).

It is much easier to understand this expression in terms of Feynman diagrams, where it manifests itself as

a set of cutting rules, see figure 3.1.

1An alternative derivation from the perspective of Schrödinger equation is also presented in [107]
2Nonetheless, this can be treated as the usual discontinuity in the variables ω2

i+1 . . . ω
2
n. To see this, take ω = |ω| − iϵ (so
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=

k1 k2 . . . kn S S kn+1 kn+2 . . . km+n

k1 k2 . . . kn

S

kn+1 kn+2 . . . kn+m k1 k2 . . . kn

S

kn+1 kn+2 . . . kn+m

≡ PS

DiscS

DiscS DiscS

Figure 3.1: Diagrammatic representation of the single-cut rules defined in (3.1.19) demonstrating the
interpretation of the right-hand side as the cutting of an internal line in the diagram on the left-hand side.
A cut line is pushed to the bounday, i.e. it is substituted by two external lines and a factor of the power
spectrum. The discontinuity should be taken of each of the two resulting diagrams. The circles represent
an arbitrary tree-level diagram with any number of internal lines.

Proof of the cosmological optical theorem For simplicity we will consider theories with scalar fields.

We will generalize to spinning fields in section 3.3.

Consider a general tree-level diagram representing a perturbative contribution to ψn. Applying the

Feynman rules for a wavefunction coefficient, the diagram translates into the following expression:

ψn({ω}; {ωp}, ωs; {k}) = −i
∫ ( V∏

A

dηAFA(k,p)

)(
n∏

a

Kωa

)(
I−1∏

i

Gωpi

)
Gωs , (3.1.20)

where we have written the momentum for internal lines as p. We would like to compute Disc
ωs

ψn({ω}; {ωp}; {k}),

where ωs is an (off-shell) internal energy. To do this we would need to know the Hermitian analytic image

of ψn({ω}; {ωp}; {k}). We have:

ψ∗
n({−ω∗}; {−ω∗

p}, ωs; {−k}) = i

∫ ( V∏

A

dηAF
∗
A(−k,−p)

)

×
(

n∏

a

K∗
−ω∗

a

)(
I−1∏

i

G∗
−ω∗

pi

)
G∗

ωs
, (3.1.21)

Now we use the following:

we have ω2 = |ω|2 − iϵ), then (−ω∗)2 = |ω|2 + iϵ, so Disc f(ω) = −discω2f(ω2) = limϵ→0+ f(ω
2 − iϵ)− f∗(ω2 + iϵ)

32



• Unitarity Since U = exp
(
−i
∫
dηHint(η)

)
, unitarity implies Hint is Hermitian. In terms of Feynman

rules this translates to the follwing:

FA(k,p) = F ∗
A(−k,−p). (3.1.22)

This is simply the multivariable versrion of the statement that if we have a real function f(x), its

Fourier transform f(k) necessarily obeys f(k) = f∗(−k).3

• Bunch-Davies vacuum Bulk-to-boundary propagators for fields satisfying Bunch-Davies initial

condition are Hermitian analytic, i.e. K(ω, η) = K∗(−ω∗, η). In addition, this also implies the

following for the bulk-to-bulk propagator:

Gωp
(η, η′) = G∗

−ω∗
p
(η, η′). (3.1.23)

Once again we will postpone the discussion of this condition to section 3.2.

• Factorization of bulk-to-bulk propagator We will also need the following:

Im Gωs
(η, η′) = 2Pωs

Im K(ωs, η)Im K(ωs, η
′). (3.1.24)

The imaginary part of the bulk-to-bulk propagator factorizes. This is the crucial property which

allow us to ”cut” internal propagators, and can easily be proven from (2.2.13).

From the properties above, it is very easy to see the following:

ψ∗
n({−ω∗}; {−ω∗

p}, ωs; {−k}) = i

∫ ( V∏

A

dηAFA(k,p)

)

×
(

n∏

a

Kωa

)(
I−1∏

i

Gωpi

)
G∗

ωs
. (3.1.25)

Therefore, the Disc of the wavefunction is:

Disc
ωs

iψ∗
n+m({ω}; {ωp}, ωs; {−k}) = −

∫ ( V∏

A

dηAFA(k,p)

)(
n∏

a

Kωa

)(
I−1∏

m

Gωpm

)
2Im Gωs

= −
∫ (VL∏

A

dηAFA(k,p)

)(
VR∏

B

dηBFB(k,p)

)(
n∏

a

Kωa

)(
m∏

b

Kωb

)

×
(

IL∏

i

Gωpi

)


IR∏

j

Gωpj


 4Pωs

Im K(ωs, ηl)Im K(ωs, ηr), (3.1.26)

where we have used VL(VR) to denote the collection of verticies on the left (right) side of the cut line (and

similarly for IL(IR)). It is straightforward to see that the right hand side is simply Pωs
Disc
ωs

ψn+1Disc
ωs

ψm+1,

which completes the proof of (3.1.19).

3Another simple way to see this is that when we take derivative of fields we get ∂i → iki, so the minus sign of k cancels
with the minus sign from complex conjugate.
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The cosmological optical theorem continues to hold true even if the interaction involves time derivatives

(in which case we have to take derivative of the propagators) [1]. For details see appendix A.

3.2 Hermitian analyticity

Our derivation relies heavily on the fact that bulk-to-boundary propagators for fields satisfying the Bunch-

Davies initial condition obeys Hermitian analyticity, i.e. K(ω, η) = K∗(−ω∗, η). We will now demonstrate

that this is true for a massive field in a fairly generic FLRW background spacetime, assuming the equation

of motion for the free field is also Hermitian analytic.

Bulk-to-boundary propagator We will consider here scalar fields with a quadratic action of the form

S =

∫
dη d3x a2(η)

(
1

2
ϕ′2 − c2s(η)

2
(∂iϕ)2 − 1

2
a2(η)m2(η)ϕ2

)
. (3.2.1)

This is the most general quadratic action of a real scalar field to leading (quadratic) order in derivatives.

The mode functions ϕ(k, η) satisfy a second order differential equation of the form4

ϕ′′k(η) + p(k, η)ϕ′k(η) + q(k, η)ϕk(η) = 0 , (3.2.2)

where

p(k, η) =
2a′

a
, q(k, η) = c2s(η)k2 + a2(η)m2(η) , (3.2.3)

and the prime denotes time derivative. We will assume that cs, a, a′

a and m are real and analytic functions.

Generically this equation has two independent solutions, and following the procedure described in 2.2 we

take the solution which satisfies

lim
η→−∞

ϕ+k (η) ∝ a−1(η)eicskη (3.2.4)

and construct the bulk-to-boundary propagator K(k, η) = ϕ+k (η)/ϕ+k (η0). Proving Hermitian analyticity

amounts to proving the following:

ϕ+k (η) = A(k, η0)[ϕ+−k∗(η)]∗. (3.2.5)

In other words, ϕ+k (η) and [ϕ+−k∗(η)]∗ are linearly dependent. It is well known [108] that two solutions of

the same differential equation are linearly dependent if their Wronskian, namely

W (k, η) ≡W
(
ϕ+(k, η),

[
ϕ+−k∗(η)

]∗)
= ϕ+k (η) ∂η

[
ϕ+−k∗(η)

]∗ −
[
ϕ+−k∗(η)

]∗
∂ηϕ

+
k (η), (3.2.6)

vanishes everywhere. Furthermore, if two functions both satisfy the same differential equation of the form

in (3.2.2) and their Wronskian is zero at some point ηi then, because the Wronskian is given by

W (k, η) = W (k, ηi)e
−

∫ η
ηi

p(k,η′)dη′
, (3.2.7)

4Here we will express the energies as k, i.e. on-shell energy, but it is natural to extend the derivation to off-shell quantities.
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it must vanish everywhere (see e.g. [109]) by virtue of the assumption that p and q are analytic on this

domain.

First let us show that
[
ϕ+−k∗(η)

]∗
is indeed a solution to the same equation of motion under the

assumption that p and q are Hermitian analytic. We take the complex conjugate of (3.2.2) and replace

k → −k∗ everywhere to give

∂2η
[
ϕ+−k∗(η)

]∗
+ p∗(−k∗, η)∂η

[
ϕ+−k∗(η)

]∗
+ q∗(−k∗, η)

[
ϕ+−k∗(η)

]∗
= 0 . (3.2.8)

This equation of motion coincides with (3.2.2) if p and q are Hermitian analytic.

Since cs and a are real, it is very straightforward to see that:

lim
η→−∞

W (k, η) = 0. (3.2.9)

With this we have shown that the bulk-to-boundary propagators are Hermitian analytic if the equation of

motion is also Hermitian analytic.

We would like to understand when it is valid to impose Bunch-Davies initial condition. A careful

analysis reveals the following:

• cskη diverges in the infinite past, otherwise the mode function does not behave like a plane wave.

In other words,

lim
η→−∞

csk ̸= 0. (3.2.10)

• (3.2.4) has no dependence on m or a (except through the prefactor of a−1). By rewriting (3.2.2) as

(a(η)ϕk(η))′′ +

(
c2s(η)k2 + a2(η)m2(η) − a′′(η)

a(η)

)
a(η)ϕk(η) = 0, (3.2.11)

we see that the last two terms multiplying aϕk must be negligible compared to c2sk
2 in this limit,

lim
η→−∞

am≪ csk , (3.2.12)

lim
η→−∞

a′′

a
≪ c2sk

2. (3.2.13)

.

• For the solution to behave like a plane wave cs needs to be approximately constant. To quantify this

we insert this asymptotic solution into the differential equation which gives

lim
η→−∞

c2sk
2

(
−2

c′s
cs
η −

(
c′s
cs
η

)2

+ 2i
c′s
cs

1

csk
+ i

c′′s
cs

η

csk

)
eicskη = 0 . (3.2.14)

For this to be an asymptotic solution, we generically require that each of the terms in the bracket
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vanishes individually and so

lim
η→−∞

d log(cs)

d log(η)
≪ 1 , (3.2.15)

lim
η→−∞

d2 log(cs)

d log(η)
2 ≪ cskη . (3.2.16)

One can also show this by making a WKB approximation (see e.g. [109]) of the mode function in a general

flat FLRW spacetime, where we can see generically that ϕ± = eikσ±(k,η)/a, where σ is Hermitian analytic.

The details are included in Appendix B.

Bulk-to-bulk propagators In order to extend our results to diagrams with more than one internal line

we also need to prove that for a generic background

G∗
−p∗(η, η′) = Gp(η, η′). (3.2.17)

In general the mode function ϕ+k (η) may have branch cuts in terms of k which may create complications

when we try to prove the Hermitian analyticity of Gp(η, η′): namely, we may have A∗(k, η0)
[
ϕ−−k∗(η)

]∗ ̸=
ϕ−k (η). To proceed, we can bypass these issues by writing ϕ−k (η) purely in terms of ϕ+k (η). To do this we

need to know the Hermitian analytic properties of ϕ−k (η) (i.e. the complex conjugate of ϕ+k (η)) in addition

to those of ϕ+k (η), which we have already established. To determine these, consider that ϕ±k (η) are defined

to have a Wronskian

Wk(η) ≡ a2(η)
(
ϕ+k (η)∂ηϕ

−
k (η) − ϕ−k (η)∂ηϕ

+
k (η)

)
= −i. (3.2.18)

We can treat this as a differential equation in ϕ−k (η),

∂ηϕ
−
k (η) − ∂ηϕ

+
k (η)

ϕ+k (η)
ϕ−k (η) = − i

a2(η)ϕ+k (η)
, (3.2.19)

which can be formally solved:

ϕ−k (η) = −ϕ+k (η)

∫ η

η0

i

a2(η′)ϕ+k (η′)2
dη′ +

ϕ+k (η)

ϕ+k (η0)
ϕ−k (η0). (3.2.20)

If the above assumptions are valid we can then exploit the Hermitian analytic properties of ϕ+k (η) to give

[
ϕ−−k∗(η)

]∗
= A(k, η0)ϕ+k (η)

∫ η

η0

i

a2(η′)ϕ+k (η′)2
dη′ +

ϕ+k (η)

ϕ+k (η0)

[
ϕ−−k∗(η0)

]∗
(3.2.21)

= A(k, η0)
ϕ+k (η)

ϕ+k (η0)
ϕ−k (η0) −A(k, η0)ϕ−k (η) +

ϕ+k (η)

ϕ+k (η0)

[
ϕ−−k∗(η0)

]∗
, (3.2.22)

where A was defined in (3.2.5). The bulk-to-bulk propagator (2.2.13) can be expressed in terms of the

mode functions as:

Gp(η, η′) = iθ(η − η′)

(
ϕ+p (η′)ϕ−p (η) − ϕ−p (η0)

ϕ+p (η0)
ϕ+p (η)ϕ+(η′)

)
+ (η ↔ η′), (3.2.23)
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and its Hermitian analytic image is

G∗
−p∗(η, η′) = −iθ(η − η′)

[
ϕ+−p∗(η′)

]∗
(
[
ϕ−−p∗(η)

]∗ −
[
ϕ−−p∗(η0)

]∗
[
ϕ+−p∗(η0)

]∗
[
ϕ+−p∗(η)

]∗
)

+ η ↔ η′ . (3.2.24)

Using the relationships in (3.2.5) and (3.2.22) we find this is equal to Gp(η, η′) and so the bulk-to-bulk

propagator has to be Hermitian analytic whenever the bulk-to-boundary propagator is.

As a concrete example let us consider a massive scalar field in dS. The mode functions are:

ϕ+k (η) = +ie−iπ
2 (ν+ 1

2 )√πH
2

(−η)
3
2H(2)

ν (−kη) , (3.2.25)

ϕ−k (η) = −ie+iπ
2 (ν+ 1

2 )√πH
2

(−η)
3
2H(1)

ν (−kη) . (3.2.26)

Here ν =
√

9
4 − m2

H2 . Hankel functions H
(2)
ν (z) have a branch cut −∞ < z ≤ 0, so we have to be careful

when we take k → −k∗. We take k to have a small imaginary part, and send −kη → eiπ(−kη):

[ϕ+−k∗(η)]∗ = −ie+iπ
2 (ν∗+ 1

2 )√πH
2

(−η)
3
2H

(2)
ν∗ (eiπ(−kη)) , (3.2.27)

[ϕ−−k∗(η)]∗ = +ie−iπ
2 (ν∗+ 1

2 )√πH
2

(−η)
3
2H

(1)
ν∗ (eiπ(−kη)) . (3.2.28)

When ν is real we will recover the original Hankel functions but when ν is purely imaginary we pick up a

minus sign, this cancels with the sign change in the exponential factor as

H
(1)
−ν (z) = e±iπνH(1)

ν (z) , (3.2.29)

H
(2)
−ν (z) = e−iπνH(2)

ν (z) , (3.2.30)

With this we can drop the complex conjugation on ν. We would like to change the argument in the Hankel

function back to −kη, and we have to be careful about the branch cut of the Hankel function when we do

so. Concretely, in our case we have (see Section 10.11 of [110]):

H(1)
ν (eiπz) = −e−iπνH(2)

ν (z), (3.2.31)

H(2)
ν (eiπz) = eiπνH(1)

ν (z) + 2 cos(πν)H(2)
ν (z), (3.2.32)

which gives the following:

[
ϕ+−k∗(η)

]∗
= iϕ+k (η), (3.2.33)

[
ϕ−−k∗(η)

]∗
= iϕ−k (η) + 2 cos(πν)ϕ+k (η). (3.2.34)

Notice that we have A∗(k, η0)
[
ϕ−−k∗(η)

]∗ ̸= ϕ−k (η), contrary to naive expectations. Instead it is a combi-

nation of ϕ−k (η) and ϕ+k (η). When we substitute this into the Hermitian analytic image of (3.2.24), we
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obtain:

G∗
−p∗(η, η′) = −iθ(η − η′)

[
ϕ+−p∗(η′)

]∗ [
ϕ+−p∗(η)

]∗
(
ϕ−−p∗(η)

ϕ+−p∗(η)
− ϕ−−p∗(η0)

ϕ+−p∗(η0)

)∗

+ (η ↔ η′)

= iθ(η − η′)ϕ+p (η′)ϕ+p (η)

(
ϕ−p (η)

ϕ+p (η)
− 2i cos(πν) − ϕ−p (η0)

ϕ+p (η0)
+ 2i cos(πν)

)
+ (η ↔ η′)

= Gp(η, η′). (3.2.35)

Therefore the bulk-to-bulk propagator is still Hermitian analytic.

3.3 Spinning fields

In this section we discuss the generalization of the cosmological optical theorem to integer spin fields.

The ingredients we will need to proof the cosmological optical theorem for spinning fields are the same

as the scalar case: Hermitian analyticity of the bulk-to-boundary propagator as well as reality of the

vertex factors. For concreteness we focus on the very general class of free theories for such fields that was

developed in [111]5

S =

∫
d3xdt a3

1

2s!

[
(Φ̇i1...is)2 − c2s

a2
(∂jΦ

i1...is)2 − δc2s
a2

(∂jΦ
ji2...is)2 −m2(Φi1...is)2

]
, (3.3.1)

where Φi1...is is a totally-symmetric, traceless tensor with only spatial indices, i1 = 1, 2, 3. This theory

arises in generic models of inflation where the background of the inflaton selects a preferred time foliation

of spacetime into spatial hypersurfaces. The above expression can be written in a covariant way by using

the Goldstone boson π of time translations to upgrade the spatial tensor Φi1...is to a covariant spacetime

tensor. The coupling of Φi1...is to π is also dictated by this constructions but we will not need this

here. Notice that Φi1...is has (2s + 1) components, which each create states (“particles”) with helicities

0,±1, . . . ,±s, respectively.

Hermitian analyticity of the propagators The equation of motion for the field Φi1...is is given by:

Φ′′
i1...is + 2

a′

a
Φ′

i1...is − c2s∂
2Φi1...is − δc2s∂i1∂jΦj...is +m2a2Φi1...is = 0. (3.3.2)

The field can be separated into two parts:

Φi1...is = ΦT
i1...is + ΦR

i1...is , (3.3.3)

where ΦT
i1...is

is the transverse part of the field, obeying

∂jΦ
T
j...is = 0, (3.3.4)

and ΦR
i1...is

is the remainder. It is straightforward to see that ΦT has 2 degrees of freedom and represents

the components with helicity ±s, while ΦR has 2s− 1 components with lower helicities.

5For theories which cannot be described by this particular action, one can simply repeat the procedures described in this
section to check if the propagators are Hermitian analytic.
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For ΦT , the penultimate term in (3.3.2) vanishes, and the equation of motion becomes:

ΦT ′′

i1...is + 2
a′

a
ΦT ′

i1...is − c2s∂
2ΦT

i1...is +m2a2ΦT
i1...is = 0. (3.3.5)

This equation is in the same form as (3.2.2), therefore we can directly apply the analysis in Section 3.2 to

show that the propagators of ΦT are Hermitian analytic. For ΦR we can take the divergence of (3.3.2),

which gives us:

(∂jΦ
R
j...is)′′ + 2

a′

a
(∂jΦ

R
j...is)′ − (c2s + δc2s)∂2(∂jΦ

R
j...is) +m2a2(∂jΦ

R
j...is) = 0. (3.3.6)

Once again the equation is in the same form as (3.2.2), but with c2s replaced with c2s + δc2s. We can again

directly apply the analysis in Section 3.2. Working in Fourier space, this tells us that ikjΦ
R
j...is

is Hermitian

analytic. Since ik is Hermitian analytic, and ikjΦ
R
j...is

has exactly 2s − 1 degrees of freedom, we deduce

that the propagators of ΦR are also Hermitian analytic. We conclude that the propagator of the full field

Φ must be Hermitian analytic, which establishes the crucial property of our derivation of single-cut rules

for free fields of any integer spin (in the spontaneously boost-breaking theories of [111]).

Helicity basis and the diagonalization of propagators For practical calculations, we would like

to work in a basis where the propagators have a simple form. This can be achieved by looking at the

helicity basis of the fields. These are irreps of ISO(3), the isometry group of a flat FLRW spacetime. As

we show below, fields of different helicities decouple from each other and the corresponding propagators

in this basis become diagonal.

The only non-diagonal term in the action is

kjΦji2...is(k)klΦli2...is(−k) = Φi1...iski1kj1δi1j1 . . . δisjsΦj1...js (3.3.7)

≡ Φi1...is(k)Mi1...isj1...js(k)Φj1...js(−k). (3.3.8)

We are guaranteed to be able to diagonalise this term because it is real and symmetric in i’s and j’s.

To understand this diagonalisation procedure, let’s start by looking at the vector case, s = 1, for which

the tensor equation can be understood as a matrix multiplication, and so is diagonalised by finding the

eigenvalues, λh, and eigenvectors, ϵh, of M ,

Mij(k)ϵhj (k) = λh(k)ϵhi (k), (no sum on h). (3.3.9)

The eigenvalues of M are

λ± = 0, λ0 = k2. (3.3.10)

We define the eigenvectors so that they satisfy the inversion relationship ϵh(−k) = ϵh(k)∗,

ϵ±i = (k× (k× n̂) ± i|k|k× n̂)i , (3.3.11)

ϵ0i = iki (3.3.12)

for some normal vector n̂ that is perpendicular to k.
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Here we will make the following prescription: when we take the wavefunction off-shell, we do not

analytically continue |k| → ω in the polarization tensor. This ensures these eigenvectors are not functions

of off-shell energies. This prescription will be helpful in showing the Hermitian analyticity of the interaction

vertex in the helicity basis.

These eigenvectors are orthogonal to each other,

[
ϵhi (k)

]∗
ϵh

′

i (k) = Ch(k2)δhh
′
, (no sum on h), (3.3.13)

where Ch(k2) is a polynomial in k2 (so is guaranteed to be Hermitian analytic) that comes from the nor-

malisation of the eigenvectors. We can therefore express M and the identity in terms of these eigenvectors

as

Mij = kikj = ϵhi (k)
1

Ch(k2)
λh(k)

[
ϵhj (k)

]∗
(3.3.14)

δij = ϵhi (k)
1

Ch(k2)

[
ϵhj (k)

]∗
(3.3.15)

We can then see that in the so called ”helicity basis”,

Φh(k) ≡ Φi(k)ϵhi (k), (3.3.16)

the action diagonalises,

S2 =
1

2

∫
d3k

(2π)3
dηa2

∑

h=±,0

{
(Φh(k))′∂τ − Φh(k)

[
c2sk

2 −m2 + δc2sλ
h
]} 1

Ch(k2)
Φh(−k). (3.3.17)

This also makes it clear why we imposed that ϵh(−k) = ϵh(k)∗ as it ensures that

Φh(−k) = Φi(−k)
[
ϵhi (k)

]∗
. (3.3.18)

Now that we have our eigenvectors for the spin-1 case this procedure can be generalised to arbitrary

spin. To keep the symmetries of our field manifest we define a symmetric, traceless basis containing 2s+ 1

tensors which are constructed from the symmetrised direct product of s copies of the vector ϵh,

ϵsi1...is = ϵ+i1 . . . ϵ
+
is
, (3.3.19)

ϵs−1
i1...is

= ϵ+(i1 . . . ϵ
+
is−1

ϵ0is), (3.3.20)

ϵs−2
i1...is

= ϵ+(i1 . . . ϵ
+
is−2

ϵ0is−1
ϵ0is) +

1

3
ϵ+(i1 . . . ϵ

+
is−2

δis−1is), (3.3.21)

...

ϵ0i1...is = ϵ0i1 . . . ϵ
0
is +

s!

6
ϵ0(i1 . . . ϵ

0
is−2

δis−1is) (3.3.22)

...

ϵ−s
i1...is

= ϵ−i1 . . . ϵ
−
is
. (3.3.23)

The tracelessness of these terms relies on the relationship ϵ+ = ϵ−
∗

which ensures that any contractions

40



like ϵ±i ϵ
±
i vanish by orthogonality. It can be shown that these tensors inherit the orthogonality of the

vectors so

Mi1...isj1...js = ϵhi1...is(k)
1

Ch(k2)
λh(k)

[
ϵhj1...js(k)

]∗
, (3.3.24)

δi1j1 . . . δisjs = ϵhi1...is(k)
1

Ch(k2)

[
ϵhj1...js(k)

]∗
. (3.3.25)

where Ch is given, as for the vector case, by

[
ϵhi1...is(k)

]∗
ϵh

′

i1...is(k) = Chδhh
′
, (no sum on h). (3.3.26)

The action is therefore exactly that given in (3.3.17) but with h running from −s to s. As this is diagonal,

it gives a separate differential equation for each helicity mode6,

(a2Φh′(k))′ − a2Φh
[
c2sk

2 −m2 + δc2sλ
h
]

= 0, (3.3.27)

which ensures that the propagators are diagonal in this basis,

Khh′

k (η) = δhh
′
Kh

k (η) (no sum on h), (3.3.28)

Ghh′

p (η) = δhh
′
Ch(k2)Gh

p(η) (no sum on h). (3.3.29)

Here, Kh
k and Gh

p are constructed from the positive energy modefunctions that satisfy (3.3.27) subject to

the Bunch-Davies initial condition (3.2.4) with the substitution

cs →
√
c2s +

λh

k2
δc2s. (3.3.30)

This is k independent because λh ∝ k2 for all h. The proof that these propagators are Hermitian analytic

therefore follows similarly to the scalar case.

Interaction verticies The helicity basis is particularly useful in showing the reality of the vertex factors.

In the helicity basis, a generic interaction vertex has the following form when we take the energies off-shell:

Sn = gn
∑

{ha}

∫
dηa4(η)

∫ n∏

a=1

[
d3ka
(2π)3

]( n∏

a=1

Φha
ωa

(η)

)
F {ha}({ka}). (3.3.31)

The interaction vertex is constructed by taking various contractions of ϵha
i1...is

(ka) and ika (the latter

comes from a spatial derivative). Clearly ik is Hermitian analytic since (i(−k))∗ = ik. Next, we look

at the Hermitian analytic image
[
ϵhi1...is(−k)

]∗
. Under our prescription, when we take the energies off-

shell, the polarization tensors do not depend on the off-shell energies ω, hence it is easy to see that

FA(k,p) = F ∗
A(−k,−p)7.

6The contribution from Ch(k2) factorises out.
7In [1] a slightly different prescription is used: all polarization tensors ϵhi1...is should be factorized outside all the Disc’s.

This is because in the paper the Disc is taken with respect to k (which is on-shell), and hence the Disc operator also acts on
the polarization tensors. In our prescription we take the polarization tensors to only depend on on-shell quantities and we
take the Disc of off-shell energies, and so this issue is bypassed.
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With the reality of the interaction vertex and the Hermitian analyticity of the propagators, we can

simply replicate the proof of the cosmological optical theorem for the scalar case and extend it to integer

spinning fields. Due to the form of the propagator, polarization tensors associated with bulk-to-bulk

propagators must also come with a sum over helicities. Therefore, we have the following single-cut rules:

Discωs
iψ

{ha}{hb}
n+m ({ω};ωp1

. . . , ωs, . . . , ωpI
; {k}) =

∑

h

− iPh
Φ(ωs)Discωs

iψ
{ha},h
n+1 ({ωa}, ωs; {ωp}; {ka})

×Discωs
iψ

{hb},h
m+1 ({ωb}, ωs; {ωp}; {kb}) . (3.3.32)

Here Ph
Φ is the power spectrum of the exchanged field,

Ph
Φ(ωs) = Ch|Φh(ωs)|2, (3.3.33)

where Ch is defined in (3.3.26) and we take the positive energy mode functions for the fields.

Spin-1 example For spin-1, the action (3.3.1) reads:

S =

∫
d3xdt a3

1

2

[
(σ̇i)2 − c2s

a2
(∂jσ

i)2 − δc2s
a2

(∂iσ
i)2 −m2(σi)2

]
. (3.3.34)

This action encompasses a large class of spin-1 fields. For instance, consider the dS invariant action a

massive spin-1 field in dS:

S =

∫
d4x

√−g
[
−1

4
FµνF

µν − 1

2
(m2 + 3H2)AµA

µ

]
. (3.3.35)

Spinning fields in dS are irreducible representations of the full dS isometry group SO(1,4). Each represen-

tation is labelled by a scaling dimension ∆ (or the mass of the field), which labels the SO(1,1) subgroup,

as well as l, which labels the SO(3) subgroup [112]. Naturally by considering the SO(3) subgroup we can

write down a helicity basis for the fields, and so we expect the propagators for spinning fields in dS to be

Hermitian analytic.

In the context of effective field theory of inflation (see [113]), (3.3.35) is indeed a special case of (3.3.34).

Generally speaking we would like to construct an effective field theory using building blocks which are

invariant under rotation, and so we should be looking at three vectors (rather than four vectors) as our

fundamental building block. In unitary gauge this is particularly easy to achieve, as the Goldstone modes

for time diffeomorphism obeys π = 0 (this is the gauge where constant time slices corresponds to slices of

constant inflaton) and we have8:

A0 = ϕ, Ai =
1

a
σi. (3.3.36)

8For general cases we need to write Aµ in terms of both σi, ϕ, π to preserve diffeomorphism invariance. See section 3
of [111] for more details.
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If we expand the action (3.3.35) in terms of these fields, we obtain:

S =

∫
d3xdta3

1

2

([
(σ̇i)2 − 1

a2
(∂jσ

i)2 −m2(σi)2
]

+

[
− 1

a2
(∂iϕ)2 +

2

a2
(σ̇i −Hσi)∂iϕ− (m2 + 3H2)ϕ2)

])
. (3.3.37)

The terms in the first line corresponds to the terms in (3.3.34), with c2s = 1 and δc2s = 0. It is also easy

to see that ϕ is in fact an auxiliary field as it does not have a kinetic term. We could integrate it out and

this give rise to non-local interaction terms in σi.

Let us return to (3.3.34) and study its mode functions. They are given by [111]:

σh
ω(η) = H

√
π

2
e

iπ
2 (ν+ 1

2 )(−η)3/2H(2)
ν (−chωη). (3.3.38)

Here c21 = c2s and c20 = c2s + δc2s. Based on our discussion for massive scalar fields, it is straightforward to

see that these mode function are Hermitian analytic9.

Spin-2 examples For spin-2, let us look at explicit examples involving massive gravity and general

relativity.

The simplest case is that of general relativity. In this theory, the (massless) graviton has the same

(positive energy) mode functions as massless scalar field in dS, so when we take the energies off-shell we

have:

γij(ω,k) =
∑

h

ϵhij(k)
H

MPω3/2
(1 − iωη)eiωη , (3.3.39)

where now h = ±2 since the lower-helicty modes are removed by diff invariance. As we have seen for the

scalar field, the propagators corresponding to this mode function must be Hermitian analytic.

As an example of an interaction, consider the cubic graviton interaction induced by the spatial Ricci

scalar R(3) [114]:

Fλ1λ2λ3(k1,k2,k3) = i2
(
k2 ik2 jϵ

λ1
ij (k1)

)
ϵλ2

lm(k2)ϵλ3

lm(k3)

− 2i2
(
ϵλ1
ij (k1)k3 l

)
ϵλ2

li (k2)
(
k2mϵ

λ3
jm(k3)

)
+ (cyclic) . (3.3.40)

The two spatial derivatives are Hermitian analytic thanks to factor of i2 in front, and the polarization

tensors can be taken to obey Hermitian analyticity because of our prescription.

As a more interesting example, we also look at the propagators in a theory of massive gravity (see [115]

9In the case of dS invariant spin-1 fields, we could also study the equation of motion (∇2 −m2 − 3H2)Aµ = 0 directly
without referring to the action (3.3.35). The solution can be diagonalised in helicity modes, and the equation of motion for
each helicity mode is Hermitian analytic. This also applies for integer spin-l representations of dS. See appendix A of [14].
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for more details):

S =
1

4

∫
d4x

[
−∇ρhµν∇ρhµν − (m2 + 2H2)hµνh

µν + ∇ρhρµ∇νh
νµ

−∇µh∇νh
µν +

1

2
∇µh∇µh+

1

2
(m2 −H2(d− 2))h2

]
, (3.3.41)

As shown in the paper, the mode function for the helicity mode +2 and +1 are found to be:

γ+2
ω (η) = (−ωη)3/2H

(2)
iµ (−ωη), (3.3.42)

γ+1
ω (η) = η(−ωη)1/2

(
2ωηH

(2)
iµ−1(−ωη) − (3 + 2iµ)H

(2)
iµ (−ωη)

)
. (3.3.43)

We immediately notice that the +2 helicity has a Hermitian analytic propagator. For the +1 helicity

mode, we use the recurrence relation of Hankel function to rearrange the mode function as:

γ+1
ω (η) = η(−ωη)1/2

(
−3 + 2η

d

dη

)
H

(2)
iµ (−ωη), (3.3.44)

from which we see that this mode function will give rise to a Hermitian analytic propagator.

3.4 Examples

Let us verify the cosmological optical theorem with a few simple examples.

3.4.1 Contact diagram

Let us first consider three point contact diagrams:

Since there are no internal lines, the expectation is that ψ3(ω) + ψ∗
3(−ω∗) = 0. We will look at two

examples:

Single massless scalar in dS We have computed ψ3 for a single massless scalar for the three point

contact diagram, and the expression is given by (2.2.19). We go off-shell (i.e. replacing ka with ωa) and

compute ψ∗
3(−ω∗):

ψ∗
3(−ω∗

1 ,−ω∗
2 ,−ω∗

3) = 6g

[
− i

3η30
− iω2

T

3η0
+
ie2
3η0

−
(
e3 − ωT e2 +

ω3
T

3

)
(log(−iωT η0) + γE + . . . )

]
. (3.4.1)

Here we made use of the following fact: by placing the branch cut of the logarithm on the negative real

axis, for r = |r|eiθ, we have:

(log(−r∗))∗ = (log |r| − i(π + θ))∗ = log r + iπ. (3.4.2)
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Since log(−iωT η0) = log(−ωT η0) + iπ2 , we have:

log
(
− i(−ω∗

T )η0
)∗

= log(−iωT η0). (3.4.3)

By comparing with (3.4.1), we find that:

ψ∗
3(−ω∗

1 ,−ω∗
2 ,−ω∗

3) = −ψ3(ω1, ω2, ω3), (3.4.4)

so the optical theorem holds.

Massless scalars with a vector field in dS Let us consider the same contact diagram, but with the

following interaction:

Lint = gϕ1∂iϕ2A
i, (3.4.5)

ϕ1 and ϕ2 are massless fields in dS and Ai is a massless vector. To compute this diagram, first let us write

down the bulk-to-boundary propagator for a massless vector, which is:

Kλλ′

ω (η) = eiω(η−η0)δλλ′ . (3.4.6)

The wavefunction coefficient is given by:

ψλ
3 (ω1, ω2, ω3,k1,k2,k3) = ig

∫ η0

−∞

dη

η4
η2(k2 · ϵλ(k3))

(1 − iω1η)(1 − iω2η)

(1 − iω1η0)(1 − iω2η0)
eiωT (η−η0)

= g(k2 · ϵλ(k3))

[
− 1

η0
− i(ω1 + ω2) + i

ω1ω2

ωT
+ iω3 log(−iωT η0)

]
. (3.4.7)

Let us see if the optical theorem holds. We have (ϵλ(−k))∗ = ϵλ(k), and from the discussion of the

massless scalar calculation the logarithm term is Hermitian analytic. All of the terms inside the bracket

remains unchanged, while the momentum k2 outside gains a minus sign. Therefore it is straightforward

to see that:

ψλ
3 (ω1, ω2, ω3,k1,k2,k3) = −(ψλ

3 (−ω∗
1 ,−ω∗

2 ,−ω∗
3 ,−k1,−k2,−k3))∗. (3.4.8)

3.4.2 Exchange diagram

Let us now consider wavefunction coefficients for an exchange diagram:

We would like to verify (3.1.19). Let us consider the following:

Scalar in flat space We have computed ψ4 for this diagram, and it is given by (2.2.23). We have:

Disc
ωs

iψ4 =
g2

ωT (ωL + ωs)(ωR + ωs)
− g2

ωT (ωL − ωs)(ωR − ωs)
=

2g2ωs

(ω2
L − ω2

s)(ω2
R − ω2

s)
. (3.4.9)
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Here ωL = ω1 + ω2 and ωR = ω3 + ω4. Since we have:

Disc
ωs

iψ3(ω1, ω2, ωs) =
g

ωL + ωs
− g

ωL − ωs
=

2ωsg

ω2
L − ω2

s

, (3.4.10)

and Ps = 1
2ωs

, we can easily see that

−PsDisc
ωs

iψ3(ω1, ω2, ωs)Disc
ωs

iψ3(ω3, ω4, ωs) =
2g2ωs

(ω2
L − ω2

s)(ω2
R − ω2

s)
, (3.4.11)

so (3.1.19) is clearly true.

Massless graviton in dS In the effective field theory of inflation one can construct operators from

extrinsic curvature and compute graviton correlators. Let us pick a simple one from [116] and compute

the four graviton exchange trispectrum. For simplicity we pick the following term in the action:

SI =
1

3!

∫
d3xdt a3γ̇ij γ̇jkγ̇ki (3.4.12)

= − 1

3!

∑

λ1,λ2,λ3

∫
dηd3k ϵλ1

ij (k1)ϵλ2

jl (k2)ϵλ3

li (k3)
1

Hη
∂ηγ

λ1

k1
∂ηγ

λ2

k2
∂ηγ

λ3

k3
. (3.4.13)

where we have set the coupling constant to unity to simplify our notation. Let us set MP = 1 for simplicity.

The mode function and bulk-to-boundary propagator of the graviton are

γλω(η) =
H√
ω3

(1 − iωη)eiωη (3.4.14)

Kλλ′

ω (η) = δλλ
′
Kω(η) = δλλ

′
(1 − iωη)eiωη. (3.4.15)

With this, we can easily obtain the wavefunction coefficient ψλ1λ2λ3
3 as

ψλ1λ2λ3
3 = 2ϵλ1

ij (k1)ϵλ2

jl (k2)ϵλ3

li (k3)
ω2
1ω

2
2ω

2
3

Hω3
T

. (3.4.16)

It is straightforward to obtain the bulk-to-bulk propagator

Gλλ′

p (η, η′) = 2δλλ
′
Gp(η, η′) (3.4.17)

= 2iδλλ
′
(
θ(η − η′)

H2(1 + ipη)(1 − ipη′)
p3

e−ip(η−η′)

+θ(η′ − η)
H2(1 + ipη′)(1 − ipη)

p3
eip(η−η′) − H2(1 − ipη)(1 − ipη′)

p3
eip(η+η′)

)
. (3.4.18)

46



Then we find

ψλ1λ2λ3λ4
4 = −i

∑

λ

∫ 0

−∞
dη

∫ 0

−∞
dη′

ηη′

H2
2iϵλ1

ij (k1)ϵλ2

jl (k2)ϵ∗λli (ps)ϵ
λ3
mn(k3)ϵλ4

np(k4)ϵλpm(ps)

eiωLηeiωRη′
ω2
1ω

2
2ω

2
3ω

2
4∂η∂η′

[(
θ(η − η′)

H2(1 + iωsη)(1 − iωsη
′)

ω3
s

e−iωs(η−η′)

)

+

(
θ(η′ − η)

H2(1 − iωsη)(1 + iωsη
′)

ω3
s

eiωs(η−η′)

)
−
(
H2(1 − iωsη)(1 − iωsη

′)
ω3
s

eiωs(η+η′)

)]
. (3.4.19)

Evaluating the integral gives us the following:

ψλ1λ2λ3λ4
4 =

∑

λ

2ω2
1ω

2
2ω

2
3ω

2
4ωs

ω5
T

ϵλ1
ij (k1)ϵλ2

jl (k2)ϵ∗λli (ps)ϵ
λ3
mn(k3)ϵλ4

np(k4)ϵλpm(ps)

×
[(

24

ER
+

12ωT

E2
R

+
4ω2

T

E3
R

− 24

ωs

)
+

(
24

EL
+

12ωT

E2
L

+
4ω2

T

E3
L

− 24

ωs

)
+

(
4ω5

T

E3
RE

3
L

)]
. (3.4.20)

Here EL = ωL + ωs, ER = ωR + ωs. Adding the Hermitian analytic image reads:

Discωs
iψλ1λ2λ3λ4

4 =
∑

λ

2iω2
1ω

2
2ω

2
3ω

2
4ωs

ω5
T

ϵλ1
ij (k1)ϵλ2

jl (k2)ϵ∗λli (ps)ϵ
λ3
mn(k3)ϵλ4

np(k4)ϵλpm(ps)

×
[(

24

ER
+

12ωT

E2
R

+
4ω2

T

E3
R

+
24

EL − 2ωs
+

12ωT

(EL − 2ωs)2
+

4ω2
T

(EL − 2ωs)3

)

+

(
24

EL
+

12ωT

E2
L

+
4ω2

T

E3
L

+
24

ER − 2ωs
+

12ωT

(ER − 2ωs)2
+

4ω2
T

(ER − 2ωs)3

)

+

(
4ω5

T

E3
RE

3
L

)
+

(
4ω5

T

(ER − 2ωs)3(EL − 2ωs)3

)]
. (3.4.21)

The power spectrum is given by:

P γ
ωs

= 2⟨γλ(ps)γ
λ(−ps)⟩′ =

2H2

ω3
s

. (3.4.22)

Therefore, we have:

∑

λ

−iP γ
ωs

Discωs
iψλ1λ2λ

3 (k1, k2, ps,k1,k2) Discωs
iψλλ3λ4

3 (k3, k4, ps,k3,k4)

=
∑

λ

8iω2
1ω

2
2ω

2
3ω

2
4ωsϵ

λ1
ij (k1)ϵλ2

jl (k2)ϵ∗λli (ps)ϵ
λ3
mn(k3)ϵλ4

np(k4)ϵλpm(ps)

[(
1

(EL − 2ωs)3
1

E3
R

)

+

(
1

E3
L

1

(ER − 2ωs)3

)
+

(
1

E3
L

1

E3
R

)
+

(
1

(EL − 2ωs)3
1

(ER − 2ωs)3

)]
. (3.4.23)

With this, it is straightforward to verify the single-cut rule for this interaction.

3.5 Extensions beyond tree level

The cosmological optical theorem described so far is quite limited in scope: it only works for tree level

in perturbation theory. Ideally we would like to extend this to work for loops, and eventually to beyond
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Figure 3.2: Taking the Disc relates the wavefunction to all possible ways of cutting the diagram. This
diagram is taken from [117].

perturbation theory. Here we will explore extensions of the optical theorem beyond tree level.

Loop level This has been achieved in [117]. Their result relates the Disc of the wavefunction to the

Disc of all possible cuts of the Feynman diagram. As an example see figure 3.2.

More precisely, the result is:

i Disc
internal
lines

[
i ψ(D)

]
=
∑

cuts




∏

cut
momenta

∫
P




∏

subdiagrams

(−i) Disc
internal &
cut lines

[
i ψ(subdiagram)

]
, (3.5.1)

The proof of this result relies on understanding how the Disc operator acts on a product of bulk-to-bulk

propagators. Notice that they do not analytically continue the energy for any bulk-to-bulk propagator.

This is because in a loop diagram, the energies p depend on the loop momentum which is integrated over,

and naively analytically continuing the energies (or trying to bring them off shell) would create ambiguity.

Because of this, the Disc operator acts on every bulk-to-bulk propagator in the perturbative expansion,

which causes the proliferation of diagrams.

If we want to avoid this issue, we need to come up with an analytic continuation procedure which

leaves the propagator unchanged under the Disc operation. Here we will describe an incomplete attempt

at creating such a procedure.

Analytic continuation of internal energies for loops The idea is to use analytically continue in a

way which allows the following:

Disc iψn({ω}, {k}) = 0 (3.5.2)

for any diagram in perturbation theory. In doing so, we can replicate the proof of the single cut rule:

the Disc operator will commute through the propagators and the vertex factor, hitting only the subset of

propagators which we want to cut, and this will work even if the rest of the diagram contains loops.
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Let us first look at the simplest case, the one site loop:

. . .

Let us write down the integral for the wavefunction coefficient, which is:

ψn({ω},Λ) =
1

2π2

∫ Λ

0

dp p2
n∏

i=1

K(ωi)G(p, η, η), (3.5.3)

where I have introduced a cutoff Λ to regulate any potential UV divergences. Now observe the following:

ψ∗
n({−ω∗},−Λ) =

1

2π2

∫ −Λ

0

dp p2
n∏

i=1

K∗(−ω∗
i )G∗(p, η, η)

= − 1

2π2

∫ Λ

0

dp (−p)2
n∏

i=1

K∗(−ω∗
i )G∗(−p, η, η)

= −ψn({ω},Λ). (3.5.4)

We redefined p→ −p when going from the first line to the second line, and Hermitian analyticity is used

when going from the second to the third line10. For example, in flat space we can compute this diagram

to obtain (see appendix D.2 for details):

ψn =
1

16π2ωT

[
2Λ(Λ − ωT ) + ω2

T log

(
2Λ

ωT

)]
. (3.5.5)

It is easy to see that ψn(ω,Λ) + ψ∗
n(−ω,−Λ) = 0.

It shouldn’t be surprising that there exist a procedure for this loop diagram: these diagrams usually

shift the mass or the coupling constant, and clearly the Disc operator should commute with a coupling

constant or mass in a unitary theory.

More surprisingly, we can still do something similar for the two site loop:

k1 k2 k3 k4

ωRωL

Let us illustrate this once again by using a hard cutoff. The integrand can be written as (we leave the

10There are potentially subtleties with iϵ prescriptions when I go from p to −p if there are branch cuts in the bulk-to-bulk
propagators. We leave a careful study of this to the future
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details in appendix D.3):

ψ4(ω1, . . . , ω4, ωs,Λ) =
g2

2π2

∫
dη1dη2 a

4(η1)a4(η2)

4∏

i=1

K(ωi)

×
∫ Λ

ωs

dp+

∫ ωs

−ωs

dp−
p2+ − p2−
ωs

G(p1, η1, η2)G(p2, η1, η2) (3.5.6)

In writing down the expression, we have taken s = |k1 + k2| off-shell. There is no ambiguity in doing so:

s is not being integrated over.

By manipulating the integrand, one can show the following:

ψ4(ω1, . . . , ω4, ωs,Λ) + ψ∗
4(−ω∗

1 , . . . ,−ω∗
4 ,−ωs,−Λ) = 0. (3.5.7)

One can verify with explicit examples, for instance (5.3.51). There is a good reason why analytically

continuing s to ωs should give us the right answer. ψ4 can always be written as:

ψ4(ω1 . . . ω4, s, t, u, {Λ}). (3.5.8)

Here t = |k1 + k3| and u = |k1 + k4|. This is purely from kinematics, and holds non-perturbatively.

Therefore it is reasonable that our procedure should involve analytically continuing off-shell versions of

s, t, u.

More generally, given ψn, we write down all intermediate energies, for example s12 = |k1 + k2|,
s123 = |k1 + k2 + k3| and so on. We then define off-shell energies for these variables. We hypothesize the

wavefunction coefficients should satisfy:

The contact COT hypothesis (for all orders in perturbation theory)

Disc iψn({ωe}, {ωi}, {k}, {Λ}) = 0 (3.5.9)

Here ωe are off-shell external energies, ωi are off-shell intermediate energies.

To prove this hypothesis we need to understand the integral measure for an arbitrary diagram. In

general the measure is given by (the square root of) the Cayley-Menger determinant (see D.4 as well

as [118, 119]), and to prove the hypothesis we need to how to properly analytically continue and flip the

external energies within the measure11. In addition it would be nice to properly understand how this

procedure works for dimensional regularization and potential issues with branch cuts and iϵ prescriptions.

If we are able to prove this hypothesis, then we could extend the single cut rules to loop diagrams. For

11After the submission of the original version of the thesis in May, [120] was published, where the authors showed how to
properly analytically continue the integration measure. See section 7 of the paper for details.
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instance, consider the following diagram:

k1 k2 k3 k4 k5

Let sl = |k1 + k2| and sr = |k4 + k5|. Since the diagram can be written as:

ψ5({ω}, ωsl , ωsr ,Λ) =

∫
dη1dη2dη3 a

4(η1)a4(η2)a4(η3)

5∏

i=1

K(ωi)

×
∫ Λ

ωsl

dp+

∫ ωsl

−ωsl

dp−
p2+ − p2−
ωsl

G(p1, η1, η2)G(p2, η1, η2)G(ωsr , η2, η3), (3.5.10)

it is easy to see that Disc
ωsr

ψ5 corresponds to only cutting the right internal propagator. It would be nice

to understand how this works for more complicated diagrams.

Beyond perturbation theory One of the ideas for generalizing the cosmological optical theorem, at

least in dS, is to use holography. It is known that wavefunction coefficients in dS can be written as CFT

correlators which lives on the future conformal boundary of dS [121]. The hope is to use ideas from the

conformal bootstrap to provide non-perturbative constraints to the wavefunction coefficients.

Naively one may try to impose reflection positivity on the wavefunction coefficients. Reflection positiv-

ity is a constraint coming from the positivity of norms of states. Roughly speaking, in Euclidean signature

a CFT correlator is reflection positive if it obeys:

⟨O(−x1,−τ1) . . . O(−xn,−τn)O(xn, τn) . . . O(x1, τ1)⟩ > 0. (3.5.11)

A reflection positive correlator in Euclidean signature gives states with positive norm once we Wick rotate

back to Lorentzian signature. This is also where we see why this idea doesn’t work for wavefunction

coefficients: the future conformal boundary of dS is Euclidean. There is no reason to Wick rotate to

Lorentzian signature, therefore naturally this idea does not apply.

Another idea is to understand bulk unitarity of dS in terms of properties of the operator product

expansion of the boundary CFT. For example, the equation (3.1.19) looks reminiscent to the relation

between conformal blocks for four point CFT correlators g∆,l(u, v) and coefficients for three point CFT

correlators fϕϕO [66]. However, this is only true for tree level, and this is not clear by looking at (3.5.1)

that this idea works in general.

The main problem in using holography as a guide to generalize the COT is that many properties

of the boundary field theory are poorly understood. For instance, it is unclear if the state operator

correspondence exists [122], and it is unclear if an operator product expansion converges [123]. There are

also very few concrete examples to experiment with (one of the few being [124]). As a result progress on

generalizing the COT using holography has been slow.

There has been development in understanding unitarity non-perturbatively using in-in correlators [122,
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123]. The main idea is to write down a spectral representation of an in-in correlator, then demand the

spectral density to be positive (which translates to the positivity of the norm). While the wavefunction

coefficients has been helpful in understanding perturbative unitarity, it may be possible that we need to

look to the in-in correlators to properly understand non-perturbative unitarity12.

12Alternatively, one may use some procedure as in [105] to define an in-out object from in-in correlators, then study the
consequence of unitarity by looking at this new in-out object.
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Chapter 4

Applying the bootstrap to parity odd

correlators

One of the more interesting consequences of the cosmological bootstrap is its constraints on parity odd

correlators. By geometric considerations, parity odd signals are absent from the power spectrum and

the bispectrum, hence the leading signal would come from the trispectrum. In particular parity odd

trispectrum has attracted attention due to hints of detection from galaxy surveys [125, 126]. On the

theoretical side it is beneficial to understand parity odd signals from the primordial universe, as they may

hint towards exotic physics [127–131].

It has been noted previously that parity odd trispectrum for massless scalars is always zero in tree level

in-in calculations [132], however more recently it is discovered that the vanishing of in-in correlators is in

fact a consequence of the cosmological bootstrap [133]. In this section we will briefly review how unitarity,

locality and scale invariance force the parity odd tree level trispectrum to be zero for a massless scalar,

with interactions mediated by scalars and massless spinning particles. We will then explore the validity of

this claim beyond tree level. By computing explicit examples of one loop diagrams, we will see that the

one loop parity odd trispectrum is non-zero in general, even if the interaction involves only scalars.

4.1 Review: Tree level no-go theorem for parity odd
trispectrum

Let us first quickly review the no-go theorem for tree level parity odd trispectrum of massless scalars in

dS. The argument is taken from [133], and relies on the the following properties:

• Unitarity. We covered this extensively in section 3.

• Manifest locality. This is the requirement that interactions are built out of fields and their derivatives

in the same spacetime point [134]. It can be shown that for massless scalars, this gives the following

constraint known as the manifestly local test (MLT):

∂

∂ωe
ψn({ω})|ωe=0 = 0, (4.1.1)
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where ωe is the energy of an external leg.

• Scale invariance. This means that for three spatial dimensions, the wavefunction of a massless scalar

obeys:

ψn({λω}, {λk}) = λ3ψn({ω}, {k}). (4.1.2)

Then the proof can be summarized as follow:

• For parity odd interaction ρPO
4 (k) = 1

2 (ρ4(k) − ρ4(−k)). Using the definition (2.3.9) this means the

parity odd part of ρ4 must be pure imaginary. As a consequence ψ4 must have an imaginary part

for the parity odd part of ρ4 (and subsequently the trispectrum) to be non-zero.

• Let us consider ψ4 from a contact diagram. The contact COT is given by:

ψ4({ω}, {k}) + ψ∗
4({−ω}, {−k}) = 0. (4.1.3)

Combined with (4.1.2) (where we set λ = −1), this implies ψ4 for a contact diagram is purely real,

and cannot contribute to the parity odd part of ρ4. Using the same argument, ψn for a contact

diagram is real for any n.

• The single cut COT allow us to express the partial energy poles of an exchange ψ4 in terms of ρ3

computed from a contact ψ3, and by imposing the MLT, one can fully fix the exchange ψ4 in terms of

contact ψ3 (see [134]). Notice that the constraint equations (4.1.1) are real. Combined with the fact

that the contact ψ3 (and hence ρ3) is always real or purely imaginary if the interaction is mediated by

scalars or massless spinning fields1, this implies the exchange ψ4 is also real, and cannot contribute

to parity odd part of ρ4.

Hence, we arrive at the conclusion:

Tree level parity odd trispectrum for a massless scalar is zero for a local,

unitary theory with (IR-finite) interactions mediated by scalars or

massless spinning fields.

4.2 More about scale invariance

The above derivation heavily relies on the assumption of scale invariance. Suppose we we modify the

scaling behaviour of the wavefunction coefficient to be in the following way2:

ψn({λω}, {λk}) = λ3+δψn({ω}, {k}). (4.2.1)

1In the case of scalars ψ3 is always zero due to momentum conservation. For massless spinning fields the scaling has
integer dimension, and so ψ3 is always either real or purely imaginary. In addition, since this result comes from considering
the overall scaling, ψ3 cannot go from real to purely imaginary by changing the interactions involved, assuming the fields
involved are the same. For massive spinning fields this is no longer true, so one can break parity by coupling to massive
spinning fields.

2The author would like to thank Ayngaran Thavanesan for many fruitful discussions regarding this point.
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Let us see what this means for the contact ψn. Combining our new scale invariance condition with the

COT, this implies:

ψn({ω}, {k}) − ψ∗
n({ω}, {k}) = [eiπδ − 1]ψ∗

n({ω}, {k}). (4.2.2)

There is a non-zero imaginary component for the contact wavefunction coefficient if δ is non-zero. Because

the exchange ψ4 is fixed in terms of the contact ψ3 this also implies the exchange ψ4 will get an imaginary

part.

This result is significant in the following way:

• Cosmological measurements tell us the power spectrum scales approximately as k3, however there

are corrections to the scaling dimensions. These corrections (commonly written as ns − 1) are

proportional to the slow roll parameters. The argument above tell us that the parity odd trispectrum

is slow roll suppressed, on top of any additional suppression coming from the interaction vertices.

• When we have IR secular divergences, this will generally generate additional logarithmic terms. This

breaks scale invariance, and so the no-go theorem no longer holds. See [133] for more details.

• Last but not least, when we regulate UV divergences, this will result in violation of (4.1.2). This is

particularly easy to see in the case of dimensional regularization, where we compute the trispectrum

in d = 3+δ instead. Therefore in general we expect an imaginary part in the wavefunction coefficient

in dimensional regularization, and it is multiplied by powers of the regulator δ. This is not a harmless

term that vanishes as δ → 0: since there is a UV divergence, we expect terms which goes as 1/δ,

and so we will obtain a finite imaginary contribution to the wavefunction coefficient in the end.

The last statement is why the no-go theorem generally fails beyond tree level. In the remainder of the

section we will make this argument precise. However, before we do this, we need to learn more about

dimensional regularization in de Sitter.

Prescription for dimensional regularization In de Sitter spacetime, dimensional regularization is

not as straightforward as in flat space (see [135–137] for pioneering work on loop contributions in de Sitter).

Naively, we would only analytically continue the number of spatial dimensions in the momentum integral

from 3 to d = 3 + δ. However, doing so breaks scale invariance, and this is manifest in the appearance of

logarithmic terms of the form log(k/µ) in loop diagrams, even in the absence of IR divergences. To ensure

manifest scale invariance, the authors of [138] suggested to analytically continue the mode functions

as well. In Minkowski this would be inconsequential because the mode functions are always eiΩt with

Ω =
√
k2 +m2 in any number of dimensions. Conversely, in de Sitter the number of spatial dimensions

appears in the index of the Hankel function, which must be carefully tracked.

Working with Hankel functions Hν with a general complex index ν(d) is possible but leads to compli-

cated algebraic manipulations. To avoid this while maintaining manifest scale invariance, we will employ

a trick used in [117]: we analytically continue both the number of spatial dimensions and the mass of the

field in such a way that the index of the Hankel function is always ν = 3/2. For scalar fields, this results
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in the following mode functions

fk(η) = (−Hη)δ/2
Hη√

2k
eikη (conformally coupled scalar), (4.2.3)

fk(η) = (−Hη)δ/2
H√
2k3

(1 − ikη)eikη (massless scalar), (4.2.4)

where δ should be taken to zero at the end of the calculation. For later convenience, notice that we can

write the mode functions also as

fk(η) = − 1√
2k

(iH∂k)1+δ/2eikη (conformally coupled scalar) (4.2.5)

fk(η) =
H2

√
2k3

(iH∂k)δ/2(1 − k∂k)eikη (massless scalar) . (4.2.6)

This will be useful to simplify some of the calculations.

4.3 One site loop

We will first look at the simplest loop diagram: the diagram where the loop has a single interaction vertex

and hence a single bulk-bulk propagator. Interestingly, for both parity even and parity odd interactions, the

contribution of these diagrams to correlators vanishes in dimensional regularization (dim reg) in Minkowski

and in de Sitter spacetime, if the fields in the loop are massless. This is somewhat analogous to what

happens for amplitudes. Conversely, one-loop one-vertex diagrams with massless fields generate non-

vanishing contributions to wavefunction coefficients in general. A detailed cancellations among different

terms in the wavefunction when computing correlators then ensures that these two results are compatible.

As we will discuss, the physical reason is that for correlators there is no energy-momentum flow inside the

loop, while for wavefunction coefficients the total energy of the diagrams flows from the boundary into the

loop.

Moreover, we generalize our analysis to massive fields running in the loop and present several explicit

results. Our finding are summarised in Table 4.1.

As a last remark, we notice that one-loop one-vertex diagrams cam be made to vanish by fiat by

applying normal ordering to all interactions. While this is a possible way to bypass the calculations in this

section, we find it nevertheless interesting to discuss what happens for non normal ordered interactions

for at least two reasons: first this gives us a simple toy model of an exact cancellation of a term in the

wavefunction when computing correlators, which could be an instance of a more general phenomenon, and

because normal ordering would not remove similar contributions at higher loop order.

4.3.1 Correlators

Let’s start computing a simple one-loop, one-vertex contribution to a correlator. For concreteness we

focus on a four-point function, but the same discussion applies for any n-point function. For simplicity of

exposition, we consider a single scalar field.

Minkowski spacetime We start in Minkowski, and then discuss de Sitter spacetime. To use the

Feynmann rules to compute correlators we need the bulk-boundary and bulk-bulk propagators, which in
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de Sitter Minkowski

m = 0 m =
√

2H m ̸= 0,
√

2H m = 0 m ̸= 0

ψ
(1L)
4 IR divergences? log k complicated log k logm

B
(1L)
4 0 0 analytic 0 analytic

Table 4.1: Summary of the results of the one-loop one-vertex diagrams. Here log k denotes schematically
the logarithm of some combination of external kinematics; correlators marked ‘analytic’ are analytic in the
external kinematics; where logarithms appear during regularisation of loop integrals, they can be removed
entirely by a judicious choice of the renormalisation scale. The non-analytic terms in ψ4 cancel out with
other non-analytic terms related to tree-level wavefunction coefficients when computing correlators.

. . .

Figure 4.1: one site loop diagram for a n-point correlator.

Minkowski are simply

G+(t, k) =
eiΩt

2Ω
, G+−(t1, t2, p) = G∗

−+(t1, t2, p) =
eiΩ(t1−t2)

2Ω
, (4.3.1)

G++(t1, t2, p) =
eiΩ(t2−t1)

2Ω
θ(t1 − t2) + (t1 ↔ t2) . (4.3.2)

where Ω =
√
k2 +m2 is the on-shell energy and the labels ± refer to interactions in the time ordered

time evolution of the ket or anti-time ordered time evolution of the bra in the in-in correlator. Since our

results will not depend on the number of spatial or time derivatives, we consider a simple polynomial

interaction,

Lint =

∫

x

λ

6!
ϕ6 . (4.3.3)

For the diagram in Figure 4.1 we have

B4 = 2 Re

[
iλ

2

∫

p

∫ 0

∞
dtG++(t, t, p)

4∏

a

G+(t, ka)

]
. (4.3.4)

The crucial point is that, since the bulk-bulk propagator is evaluated at coincident times, the oscillat-

ing exponentials cancel each other and the dependence on loop momentum is only given by the overall

normalization factor

G++(t, t, p) =
eiΩ(t−t)

2Ω
=

1

2
√
p2 +M2

M→0−→ 1

2p
. (4.3.5)

For a massless scalar this reduces to a power law dependence, G++ ∝ 1/p. Notice that the dependence

would still be a power law in the presence of time and space derivatives from local interactions. Now we
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regulate the loop integral in p using dim reg. Since the integral is a power of p, it vanishes in dim reg3

∫
dpd pα = 0 (dim reg) . (4.3.6)

This is intuitive because there is no scale in the integrand with which to write a dimensionally correct

result. We conclude that a loop of a massless particle with a single vertex does not contribute to Minkowski

correlators. This would remain true if we computed the correlator at unequal times.

If the field running in the loop is massive the momentum integral no longer vanishes in dim reg. Instead

we have the following:

B4 =
1

8Ω1Ω2Ω3Ω4

∫

p

λ

4ΩpΩ
(4)
T

, (4.3.7)

where Ωp =
√
p2 +m2 and Ω

(4)
T = Ω1 + Ω2 + Ω3 + Ω4 is the total energy entering the diagram. This

integral can be evaluated to give:

B4 =
1

8Ω1Ω2Ω3Ω4

λm2

16π2kΩ
(4)
T

(
1

δ
+ log

m

µ
+ (analytic)

)
, (4.3.8)

where µ is a renormalization scale. Notice that the result is analytic in the external kinematics.

Massless scalars on de Sitter spacetime Something very similar happens for massless fields in de

Sitter spacetime. The in-in correlator is given by:

B4 = 2 Re

[
iλ

2

∫

p

∫ 0

−∞

dη

ηd+1
G++(η, η, p)

4∏

a

G+(η, ka)

]
. (4.3.9)

At coincident times, the bulk-to-bulk propagator reads:

G++(η, η, p) =
H2

2p3
(1 − ipη)(1 + ipη)eip(η−η) =

H2

2p3
(1 + p2η2). (4.3.10)

The propagator is simply a polynomial in p, so in dim reg this vanishes just like the Minkowski correlator.

A similar cancellation also occurs for conformally coupled scalars in de Sitter as well. The vanishing of

this contribution is familiar from scattering amplitudes and is usually described by saying that there is

no flow of energy or momentum through the loop from the external kinematics. In the absence of both a

mass and external kinematics, the loop has no way to satisfy dimensional analysis and must hence vanish.

Massive scalars on de Sitter spacetime Similarly to the case of massive scalars on Minkowski

spacetime, the one-loop one-vertex diagram on de Sitter is not expected to vanish for massive fields. The

mode function for a massive scalar on de Sitter in the dim reg procedure described in Section 4.2 is

fk(η) =
i
√
πH1+ δ

2

2
(−η)

3+δ
2 H(1)

ν (−kη), (4.3.11)

3Had we used a cutoff regularization we would have found power law divergences, to be removed by renormalization, but
no left over logarithmic running
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with ν =
√

9
4 − m2

H2 and H(1) the Hankel function of the first kind. The one-loop trispectrum for a massive

scalar with a λϕ6/6! interaction at conformal time ηf is then given by the following integral:

B4 = Re

(
iλ
π4H8+4δ

256
(−ηf )2(3+δ)H(1) ∗

ν (−k1ηf ) . . . H(1) ∗
ν (−k4ηf )

∫

p

∫ ηf

−∞
dηa4+δ(η)(−η)2(3+δ)H(1)

ν (−k1η) . . . H(1)
ν (−k4η)

πH2+δ

4
(−η)3+δ

∣∣∣H(1)
ν (−pη)

∣∣∣
2
)
. (4.3.12)

As H
(1)
ν (x) ∼ x−ν as x→ 0, we must rescale the correlator in order to find a finite value as ηf → 0. The

resulting correlator is

B′
4 = Re

(
iλ
π4H8+4δ

256

(
2νΓ(ν)

π

)4

∫

p

∫ 0

−∞
dηa4+δ(η)(−η)2(3+δ)H(1)

ν (−k1η) . . . H(1)
ν (−k4η)

πH2+δ

4
(−η)3+δ

∣∣∣H(1)
ν (−pη)

∣∣∣
2
)
. (4.3.13)

Since the momentum integral vanishes in dim reg for massless and conformally-coupled scalars, and

because it contains fewer Hankel functions, it is reasonable to attempt that integral first:

Ip =

∫
d3+δp

(2π)
3

∣∣∣H(1)
ν (−pη)

∣∣∣
2

. (4.3.14)

For ν = 3
2 (massless) and ν = 1

2 (conformally-coupled), the integrand is a sum of power laws in p and

vanishes in dim reg. Strictly, however, Ip converges only for Re(δ) < −2 and −3 − δ < Re(2ν) < 3 + δ

(due to the behavior of the Hankel function as p→ ∞ and p→ 0 respectively). Then,

Ip =
22+δ csc(πν) sec

(
πδ
2

)

(2π)3+δ (−η)
3+δ

Γ(− 1
2 − δ

2 )

[
−Γ

(
3 + δ

2
− ν

)
2F1

(
3+δ
2 , 3+δ

2 − ν, 1 − ν; 1
)

Γ(1 − ν)
sin

(
πδ

2
− πν

)

+ Γ

(
3 + δ

2
+ ν

)
2F1

(
3+δ
2 , 3+δ

2 + ν, 1 + ν; 1
)

Γ(1 + ν)
sin

(
πδ

2
+ πν

)]
. (4.3.15)

When Re(δ) < −2 this expression can be simplified as:

Ip =
22+δπ csc(πν) sec

(
πδ
2

)
Γ(−2 − δ)

(2π)3+δ (−η)
3+δ

Γ(− 1
2 − δ

2 )Γ(− 1
2 − δ

2 − ν)Γ(− 1
2 − δ

2 + ν)

[
sin
(
πδ
2 − πν

)

cos
(
πδ
2 − πν

) − sin
(
πδ
2 + πν

)

cos
(
πδ
2 + πν

)
]
.

(4.3.16)

We analytically continue this expression in δ and study its behavior as δ → 0. One can check that this

expression indeed gives zero for a massless or a conformally-coupled scalar, as expected. More generally,

the Γ(−2 − δ) term in the integral will contribute a δ−1 divergence in dim reg.

From the factors of Hδ in the time integral and the δ−1 divergence in the momentum integral, terms

like log H
µ will appear in the final correlator. However, as long as the time integral is IR-convergent, i.e.

Re ν < δ+3
4 , scale invariance is unbroken, which fixes the form of the correlator and precludes any log k

µ

terms, where k stands for some combination of the external momenta. As on Minkowski spacetime, the

resulting trispectrum must then be analytic in the external kinematics.
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4.3.2 Wavefunction coefficients

Now let’s try and perform the same calculation using the wavefunction formalism.

Massless scalar in Minkowski spacetime Let’s start with massless scalars. In flat spacetime the

wavefunction propagators are

Kk(t) = eikt , Gk(t1, t2) =
1

2ik

(
eik(t2+t1) − eik(t2−t1)

)
θ(t1 − t2) + (t1 ↔ t2). (4.3.17)

With an interaction λϕ6/6!, the relevant wavefunction coefficients are4

ψtree
6 (k1, . . . ,k6) = i

∫ 0

−∞(1−iε)

dt eik
(6)
T tλ (4.3.18)

=
λ

k
(6)
T

, and (4.3.19)

ψ
(1L)
4 (k1, . . . ,k4) =

∫ 0

dt
λ

2
eik

(4)
T t

∫

p

1

2ip

[
e2ipt − 1

]
. Performing the time integral first, (4.3.20)

=

∫

p

λ

−4p

[
1

k
(4)
T + 2p

− 1

k
(4)
T

]
. (4.3.21)

This last integral is UV divergent and needs to be regularized. In dimensional regularisation, the second

term in brackets in ψ
(1L)
4 (k1, . . . ,k4) vanishes; while the first term in MS, gives

ψ
(1L)
4 (k1 . . .k4) = − 6λ

32π2
k
(4)
T ln

k
(4)
T

µ
. (4.3.22)

This non-vanishing result is intriguing because we had just found that a similar 1-loop 1-vertex contri-

bution vanishes for correlators. We will show shortly show that the two results are compatible and that

indeed the term in (4.3.22) cancels exactly with another term when computing B4. Here we would like

to make some general remarks. Notice that in the wavefunction calculation there is a flow of energy from

the external kinematics though the loop. This is visible in the denominator k
(4)
T + 2p in (4.3.21) arising

after performing the time integrals. This is naively surprising because we are computing a diagram that

is identical to that for the correlator where we stated that there is no energy-momentum flow through the

loop. The resolution is that the wavefunction, in contrast to a correlator, provides the answer to a bound-

ary value problem where ϕ has been specified at some time, which we take to be t = 0 here. This explicit

boundary condition breaks time translation invariance and energy can flow from this boundary. Indeed, it

is precisely the total energy that flows into the loop, because the boundary is attached to all external legs.

Also, since the boundary does not break spatial translations, there is no flow of spatial momentum through

the loop, only energy. At the mathematical level, the origin of the energy flow through the loop is the

boundary term in the wavefunction’s bulk-bulk propagator G, which is absent in the correlator’s bulk-bulk

propagator G++. A more colorful way to say this is that the bulk-bulk propagator in the loop represents

the quantum fluctuation of a virtual particle. In the correlator, such fluctuations are unconstrained, but

4Notice that given our definition of the bulk-bulk propagator in (4.3.17), which includes a factor of i, the correct Feynman
rule is to introduce a factor of i1−L, where L is the number of loops, and no factor of i on the vertices, which simply result
in a factor of λ.
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in the wavefunction they must obey the boundary condition that ϕ takes some fixed value at t = 0. This

requires the quantum fluctuation to turn off as the interaction vertex is pushed toward t = 0, which in

turn requires knowledge of this fix boundary and hence a breaking of time translations. This mechanism is

actually closerly related to how the recursion relations for the Minkowksi wavefunction were derived in [80].

Now use the wavefunction coefficients to find the trispectrum. Performing the average over ϕ in the

Born rule we find

B4 =
1∏4

a 2 Reψ2(ka)

[
ρ(1L)({k}) +

∫

p

ρtree({k},p,−p)

2 Reψ2(p)

]
(4.3.23)

where {k} = {k1, . . . ,k4} and ρ denotes the coefficient of the diagonal part of the density matrix |Ψ|2,

ρ(1L)({k}) = ψ
(1L)
4 (k1, . . . ,k4) + ψ

(1L)
4 (−k1, . . . ,−k4)∗ (4.3.24)

ρtree({k},p,−p) = ψtree
6 (k1, . . . ,k4,p,−p) + ψtree

6 (−k1, . . . ,−k4,−p,p)∗ . (4.3.25)

The free power spectrum in Minkowski is 1/2k and so Reψ2 = −k. For the parity even contribution in

(4.3.3) we can simply drop the minus sign on the momenta. Then, the first contribution to B4 in (4.3.23)

is

− 1∏4
a 2 Reψ2(ka)

ρ(1L)({k}) =
1

16e4
2 Reψ

(1L)
4 (k1, . . . ,k4) (4.3.26)

=
1

8e4
· −6λ

32π2
k
(4)
T ln

k
(4)
T

µ
. (4.3.27)

The second is

− 1∏4
a 2 Reψ2(ka)

∫

p

ρtree({k},p,−p)

2 Reψ2(p)
=

1

16e4

1

2

∫

p

1

2p
2 Reψtree

6 (k1, . . . ,k4,p,p) (4.3.28)

=
1

8e4

1

2

∫

p

1

2p

λ

k
(4)
T + 2p

. (4.3.29)

The momentum integral is just −1 times that of ψ
(1L)
4 (k1 . . .k4), so the two contributions to the trispec-

trum cancel.

The cancellation of the logarithmic term in the one site loop diagram is an example of a more general

result. Namely, the total energy branch point from the wavefunction always cancels when computing the

in-in correlator. We will discuss this further in section 6.4.

Massive scalar in Minkowski spacetime For massive scalars we no longer expect the contribution

from ρ(1L) and ρtree to cancel. Let us calculate ψ
(1L)
k1...k4

explicitly. We have:

ψ
(1L)
k1...k4

=

∫ 0

dt
λ

2
eiΩ

(4)
T t

∫

p

1

2iΩp
[e2iΩpt − 1]

=
λ

2Ω
(4)
T

∫

p

1

Ω
(4)
T + 2

√
p2 +m2

. (4.3.30)
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In the regime m > Ω
(4)
T this integral can evaluated easily, since we can write the integral as:

ψ
(1L)
k1...k4

=
λ

8π2Ω
(4)
T

∫ ∞

0

dp
p2+δ

√
p2 +m2

∞∑

n=0

(
−Ω

(4)
T

2
√
p2 +m2

)n

. (4.3.31)

Evaluating this integral gives

ψ
(1L)
k1...k4

=

∞∑

n=0

λ

16π2Ω
(4)
T

(
−Ω

(4)
T

2

)n

m2−n−δ Γ( 3
2 )Γ(n

2 + δ − 1)

Γ(n+1
2 )

=
λ

16π2Ω
(4)
T

(
m2 − (Ω

(4)
T )2

2

)(
1

δ
+ log

m

µ
+ (analytic)

)
. (4.3.32)

Compared to B4 we have an extra contribution of the form Ω
(4)
T logm, and we expect this to be cancelled

by the term from ρtree. Indeed, we find that for m > Ω
(4)
T :

1∏4
a 2 Reψ2(ka)

∫

p

ρtree({k},p,−p)

2 Reψ2(p)
=

1

16e4

1

2

∫

p

1

2Ωp
2 Reψtree

6k1...k4pp

=
1

8e4

λ

2

∫

p

1

2
√
p2 +m2

1

Ω
(4)
T + 2

√
p2 +m2

=
1

8e4

∞∑

n=0

λ

32π2

(
−Ω

(4)
T

2

)n

m1−n+δ Γ( 3
2 )Γ(n−1

2 − δ)

Γ(n
2 + 1)

=
1

8e4

λ

16π2

Ω
(4)
T

2

(
1

δ
+ log

m

µ
+ (analytic)

)
. (4.3.33)

Therefore, using (4.3.23), the contributions of the form Ω
(4)
T logm cancels in B4, and we obtain the ex-

pression in (4.3.8).

De Sitter spacetime We can consider a similar λσ6/6! interaction of a conformally-coupled scalar on

de Sitter. Since such a field is massive, as η0 → 0 it decays. Formally, to avoid this issue, we consider the

wavefunction of the re-scaled field σ/η0 in this limit; this amounts to factoring out all factors of η0 in the

propagators. With this prescription, and using the scale-invariant dim reg procedure discussed in Section

4.2, the wavefunction propagators are

Kk(η) = (−η)δηeikη (4.3.34)

Gk(η1, η2) = i

(
H2η1η2

)1+ δ
2

2k

[
e−ik(η2−η1)θ(η1 − η2) + (η1 ↔ η2) − eik(η1+η2)

]
. (4.3.35)

The relevant wavefunction coefficients are

ψtree
6 (k1, . . . ,k6) = iλ

∫ 0

−∞(1−iε

dη
1

(−Hη)4+δ
(−η)6+3δeik

(6)
T η (4.3.36)

= − λe2πiδΓ(3 + 2δ)

H4+δ
(
k
(6)
T

)3+2δ
(4.3.37)
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and

ψ
(1L)
4 (k1 . . .k4) =

λ

2

∫ 0

−∞(1−iε)

dη
1

(−Hη)4+δ
(−η)4+2δeik

(4)
T η

∫
d3+δp

(2π)3+δ

i
(
H2η2

)1+ δ
2

2p

[
1 − e2ipη

]
. (4.3.38)

The first term in the brackets yields a power law in p after the time integral is performed, and vanishes in

dim reg. The time integral in the second term is essentially the same as in ψtree
6 :

ψ
(1L)
4 (k1 . . .k4) =

λ

2

∫
d3+δp

(2π)3+δ

H2(1+ d
2 )

2p

Γ(3 + 2δ)e2πiδ

H4+δ
(
k
(4)
T + 2p

)3+2δ
. (4.3.39)

This momentum integral is finite:

ψ
(1L)
4 (k1 . . .k4) =

iλe2πiδ

28+3δπ
3+δ
2 H2

(
ik

(4)
T

)1+δ

Γ(2 + δ)Γ(1 + δ)

Γ( 3+δ
2 )

; (4.3.40)

since it is analytic in the momenta as δ → 0, it could be removed by local counter-terms. Local counter-

terms would then also have to be added to remove the contribution of ψtree
6 to the trispectrum.

More generally, consider either conformally coupled scalars or massless scalar with IR finite interactions,

i.e. the resulting correlators do not diverge as η0 → 0. The integrals encountered when considering the

one site loop diagram for these fields can be grouped into two types: the first type is

I1
m =

∫ 0

−∞
dη ηn+m+2δeik

(4)
T η

∫ ∞

0

dp
p2+m+δ

2p3
, (4.3.41)

which vanishes in dim reg. The second type is:

I2
m =

∫ 0

−∞
dη ηn+m+2δeik

(4)
T η

∫ ∞

0

dp
p2+m+δ

2p3
e2ipη

=

∫ ∞

0

dp
(−i)n+m+δΓ(n+m+ 1 + 2δ)p−1+m+δ

(k
(4)
T + 2p)n+m+1+2δ

, (4.3.42)

where m = 0, 1, 2. By power counting this momentum integral is always convergent for n ≥ 0, which

is always true for IR finite interactions. Hence terms coming from these integrals are always finite and

analytic in k
(4)
T .

When we consider more general massive scalars, the integrals involved are much harder to solve.

Namely, we have to integrate over products of Hankel functions, and we expect the result not to be

analytic in k
(4)
T in general.

4.4 Two site loop: general strategy and a toy model
example

For the rest of the section we will be focusing on the parity-odd trispectrum generated by the two site loop

diagram in Figure 4.2. We will first discuss it in general and then present a series of explicit calculation

in increasing order of complexity, culminating with the case of single-clock inflation.
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k1 k2 k3 k4

ωRωL

Figure 4.2: Two site loop diagram for the trispectrum.

To begin, let’s derive an integral expression for the diagram in Figure 4.2. To this end, consider a

general interaction Hamiltonian of the form

Hint({k}, η) =

∫ 0

−∞
dη [FPO({k}, η) + FPE({k}, η)]ϕ(ka)ϕ(kb)ϕ(kc)ϕ(kd), (4.4.1)

where FPO,PE denote the vertices corresponding to a local interaction with an odd or even number of

spatial derivatives, respectively, of which examples will be given later on. We can use the Feynman rules

outlined in section 2.3.1 to write the trispectrum as:

B4(k1, k2, k3, k4) =
∑

a,b=±

∫ η0

−∞
dη1

∫ η0

−∞
dη2

∫

p

δ(3)(p1 + p2 + s)Ga(k1, η1)Ga(k2, η1)

× FPO(k1,k2, η1)Gab(p1, η1, η2)Gab(p2, η1, η2)FPE(k3,k4, η2)Gb(k3, η2)Gb(k4, η2) , (4.4.2)

where we used

s = k1 + k2 = −k3 − k4 . (4.4.3)

In-in diagrams are related pairwise. If D represents a diagram with a particular choice of vertices on

the + or − contours (from the time evolution of the bra and the ket), and D̄ represents a diagram when

each vertex sit on the opposite contour, + ↔ −, then

D = D̄(−1)n , (4.4.4)

with n the number of spatial derivatives. This ensures that in Fourier space parity-even correlators are

real and parity-odd correlators are purely imaginary, as it should be for Hermitian operators in position

space. Since we are considering a contribution with an overall odd number of spatial derivatives, we only

need the imaginary part of the integral in (4.4.2). We can then write

B4 = B4A +B4B , (4.4.5)

where, for future convenience, we separate the trispectrum into two contributions,

B4A = 2Im

∫ η0

−∞
dη1

∫ η0

−∞
dη2

∫

p

δ(3)(p1 + p2 + s)G+(k1, η1)G+(k2, η1)

× FPO(k1,k2, η1)G++(p1, η1, η2)G++(p2, η1, η2)FPE(k3,k4, η2)G+(k3, η2)G+(k4, η2) , (4.4.6)
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B4B = 2Im

∫ η0

−∞
dη1

∫ η0

−∞
dη2

∫

p

δ(3)(p1 + p2 + s)G+(k1, η1)G+(k2, η1)

× FPO(k1,k2, η1)G+−(p1, η1, η2)G+−(p2, η1, η2)FPE(k3,k4, η2)G−(k3, η2)G−(k4, η2). (4.4.7)

There is one last general result that will be very useful in the following explicit calculations. We will

often encounter integrals of the following form:

∫ η0

−∞
dη (−Hη)n+δeikη = (iH∂k)n+δ

∫ η0

−∞
dη eikη, (4.4.8)

where n is an integer. This tells us that the trispectrum can often be written in terms of derivative operators

acting on a simpler integral. In dimensional regularization, this leads to the following simplification.

Suppose we want to evaluate

2Im (∂k)n(iH∂k)δI(k),

and I(k) is the result of a UV-divergent integral, which can be written as:

I(k) =
I0(k)

δ
+ I1(k) + O(δ).

For the cases we will interested in, where IR divergences are absent, I(k), I0(k) and I1(k) are all real as

consequence of unitarity [133]. Then we can expand the derivative operator in the following way:

(iH∂k)δ = 1 + δ log(iH∂k) + · · · = 1 + δ

(
log(H∂k) +

iπ

2

)
+ . . . .

Here the logarithm is understood as a power series in ∂k. The terms from log(H∂k) acting on I(k) are all

real, so if we want to isolate the imaginary part, we find that:

2Im (∂k)n(iH∂k)δI(k) = π(∂k)nI0(k). (4.4.9)

In other words, only the coefficient of the 1/δ part of the simpler integral I(k) contributes to the final result.

Since we only want the imaginary part when we compute the parity-odd trispectrum, we will only need

to compute the this leading divergence and then multiply by iπδ. This is a great simplification because

it dispenses us from computing the finite term I1(k) of the UV-divergent integral, which is in general

much more complicated. Moreover, these manipulations already tell us that the parity-odd trispectrum

is actually UV-finite! This is important because for the class of theories we consider here the tree-level

contribution vanishes in general [132, 133] and so it would have been impossible to re-absorb the UV

divergence into a counterterm.

4.4.1 Momentum integrals

The mode function of massless scalars and conformally coupled scalars can be written as derivative op-

erators acting on a plane wave as in (4.2.5). Hence, in general, we can recast B4A into the following

form:

B4A = 2Im

∫

p

δ(3)(p1 + p2 + s)F̃ ({k},p1,p2)Iflat, (4.4.10)
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where F̃ is a differential operator which depends on the form of the interactions FPE and FPO, and

Iflat =

∫ η0

−∞
dη1

∫ η0

−∞
dη2e

iωLη1eiωRη2

(
eip1(η2−η1)θ(η1 − η2) + eip1(η1−η2)θ(η2 − η1)

)

×
(
eip2(η2−η1)θ(η1 − η2) + eip2(η1−η2)θ(η2 − η1)

)
, (4.4.11)

is a simpler integral involving only plane waves (hence the label ”flat”). To simplify our notation we will

define

ωL = k1 + k2 , ωR = k3 + k4 kT =

4∑

a

ka = ωL + ωR. . (4.4.12)

The time integral Iflat gives:

Iflat =
1

kT

(
1

p1 + p2 + ωL
+

1

p1 + p2 + ωR

)
. (4.4.13)

It will be convenient to change the integration measure of the momentum integral in the following way:

∫
d3+δp

(2π)3
δ(3)(p1 + p2 + s)f(p) =

1

8π2

∫ ∞

s

dp+

∫ s

−s

dp−
p1p2
s

f(p). (4.4.14)

where p+ = p1 + p2 and p− = p1 − p2. After performing the p− integral, the remaining integral takes two

possible forms. The first is

An =

∫ ∞

s

dp+(p+)δ+nIflat. (4.4.15)

As discussed above, we are only interested in the UV-divergent part of the integral. To find it, first note

that:

An =

∫ ∞

0

dp+(p+)δ+nIflat −
∫ s

0

dp+(p+)δ+nIflat (4.4.16)

For ωL > 0 and ωR > 0, the second integral is finite. The first integral can be written in terms of gamma

functions, and can be simplified to give:

An =
(−1)n

δ

ωn
L + ωn

R

kT
+ (finite). (4.4.17)

The second possible form of the p+ integral is

Zn =

∫ ∞

s

dp+(p+)δ+n log

(
p+ + s

p+ − s

)
Iflat. (4.4.18)

At first glance, this integral looks like it has both UV and IR divergence. However when we evaluate the

integral there is no IR divergence. This is because after we evaluate the integral, we get either log(p+ − s)

multiplied by some power of (p+ − s) (which is convergent) or dilogarithms which are not divergent. As
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an example, consider the case where n = 2. We obtain:

Z2 =
1

2
(−(p+ − s)(p+ + s− 2ωL) log(p+ − s) + (p+ + s)(p+ − s− 2ωL) log(p+ + s)) |p+=s

+ s(s+ ωL) + ω2
L

(
Li2

(
s− ωL

s+ ωL

)
− π2

6

)
+ (ωL → ωR) + (UV divergent terms). (4.4.19)

This is not divergent after substituting p+ = s. A similar story applies to any integer n.

To find the UV-divergent part of Zn, we consider this integral instead:

dZn

ds
=

∫ ∞

s

dp+p
n+δ
+

(
1

p+ + s
+

1

p+ − s

)
Iflat. (4.4.20)

This integral can be simplified by using partial fraction. Since this integral is not IR-divergent, we evaluate

it in the same way as we did for An:

dZn

ds
=

1

kT δ

[
(−ωL)n − (−s)n

−ωL + s
+

(−ωL)n − sn

−ωL − s
+

(−ωR)n − (−s)n
−ωR + s

+
(−ωR)n − sn

−ωR − s

]
. (4.4.21)

This can be simplified into:

dZn

ds
=

(−1)n−1

kT δ

n−1∑

r=0

(ωn−r−1
L + ωn−r−1

R )(sr + (−s)r). (4.4.22)

Therefore we obtain:

Zn =
(−1)n−1

kT δ

n−1∑

r=0

1

r + 1
(ωn−r−1

L + ωn−r−1
R )(sr+1 − (−s)r+1). (4.4.23)

We can compute the out-of-time-ordered part of the trispectrum in a similar way:

B4B = 2Im

∫

p

δ(3)(p1 + p2 + s)F̃ ({k},p1,p2)Jflat, (4.4.24)

where

Jflat =

∫ η0

−∞
dη1

∫ η0

−∞
dη2e

iωLη1e−iωRη2ei(p1+p2)(η1−η2). (4.4.25)

Evaluating the time integral gives us:

Jflat =
−1

(p1 + p2 + ωL)(p1 + p2 + ωR)
. (4.4.26)

For the integral over the loop momentum we will encounter integrals again two different forms. The first

is

Ãn =

∫ ∞

s

dp+(p+)δ+nJflat. (4.4.27)

Applying the same argument as we did for An, we obtain:

Ãn =
(−1)n

δ

ωn
L − ωn

R

ωL − ωR
+ (finite) =

(−1)n

δ

n−1∑

m=0

ωm
L ω

n−m−1
R + (finite). (4.4.28)
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The second possible form is

Z̃n =

∫ ∞

s

dp+p
n+δ
+ log

(
p+ + s

p+ − s

)
Jflat. (4.4.29)

Applying the same argument as we did for Zn, we obtain:

Z̃n =
(−1)n−1

δ(ωL − ωR)

n−1∑

r=0

1

r + 1
(ωn−r−1

L − ωn−r−1
R )(sr+1 − (−s)r+1) (4.4.30)

=
(−1)n−1

δ

n−1∑

r=0

1

r + 1

(
n−r−2∑

m=0

ωm
L ω

n−r−2−m
R

)
(sr+1 − (−s)r+1).

By looking at (4.4.28) and (4.4.30), we notice that if we take enough derivatives with respect to ωL

and ωR we will get zero. For example, if we consider:

(∂ωL
)nL(∂ωR

)nRÃn, (4.4.31)

the result is zero for nL + nR ≥ n. Similarly for Z̃n, we will get zero if nL + nR ≥ n− 1. Since we need to

take derivatives of these master integrals when computing the trispectrum, we will find that B4B vanishes.

Our general strategy for computing the trispectrum will be the following: write down the trispectrum

as a differential operator acting on an integral, recasting the integral in terms of the master integrals An

and Zn, then use our result from (4.4.17) and (4.4.23) to compute the divergent part and hence the final

trispectrum.

4.4.2 A toy model example

As a warm up example, let us consider a parity-odd trispectrum from the following interactions:

LPO = ϵijk∂iσ1∂jσ2∂kσaσb, LPE = (∂iσ3)σ4(∂iσa)σb, (4.4.32)

where all of the fields are conformally coupled scalars. Let’s begin to consider the time-ordered part of

the trispectrum B4A. We have the integral:

B4A = 2i Im

∫
d3+δp

(2π)3

∫
dη1

(−Hη1)4+δ

∫
dη2

(−Hη2)4+δ
(i3(−Hη1)3)(k1 × k2 · p1)

× (i2(−Hη2)2(k3 · p1))G+(k1, η1)G+(k2, η1)G++(p1, η1, η2)

×G++(p2, η1, η2)G+(k3, η2)G+(k4, η2). (4.4.33)

First, we recast this integral in terms of an operator acting on a simpler integral. By counting powers of

η1 and η2, we get:

B4A = 2i Im
(−Hη0)4H5

64k1k2k3k4
(i∂ωL

)3+δ(i∂ωR
)2+δ

∫
d3+δp

(2π)3
i3(k1 × k2 · p1)i2(k3 · p1)

p1p2
Iflat. (4.4.34)

As argued in the previous section, we only need to compute:

B4A = i
2πδ(Hη0)4H5

64k1k2k3k4
(k1 × k2)i(k3)j(∂ωL

)3(∂ωR
)2
∫
d3+δp

(2π)3
(p1)i(p1)j

1

p1p2
Iflat. (4.4.35)
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Here we encounter the following tensorial integral

I
(2)
ij =

∫
d3+δp

(2π)3
(p1)i(p1)j

1

p1p2
Iflat, (4.4.36)

which we can re-write as

I
(2)
ij = I

(2)
0 δij +

sisj
s2

I
(2)
2 . (4.4.37)

Since this integral is contracted with k1 × k2, the term I
(2)
2 does not contribute. Therefore we only need

I
(2)
0 , which is given by:

I
(2)
0 =

1

2
(δijI

(2)
ij +

sisj
s2

I
(2)
ij ). (4.4.38)

More explicitly, the integral is:

I
(2)
0 =

∫
d3+δp

(2π)3
p21 − (p1·s)2

s2

2p1p2
Iflat. (4.4.39)

This integral can be recast into the form:

I
(2)
0 =

1

8π2

A2 − s2A0

6
. (4.4.40)

Putting this back into B4A, we have:

B4A = i
2π(Hη0)4H5

64k1k2k3k4
(k1 × k2) · (k3)(∂ωL

)3(∂ωR
)2
(

1

8π2

A2 − s2A0

6

)

= −i (k1 × k2 · k3)H9η40
64πk1k2k3k4k6T

(ω2
L − 6ωLωR + 3ω2

R − 10s2). (4.4.41)

The procedure for computing B4B is similar, except we replace Iflat with Jflat. This gives us:

B4B = i
2π(Hη0)4H5

64k1k2k3k4
(k1 × k2) · (k3)(∂ωL

)3(∂ωR
)2

(
1

8π2

Ã2 − s2Ã0

6

)
. (4.4.42)

Here we are taking nL = 3 derivatives with respect to ωL and nR = 2 derivatives with respect to ωR.

Since nL +nR = 5 while the index of Ã is 2 and 0, we expect B4B to vanish. This is confirmed by (4.4.28),

which tells us that Ã0 = 0 and Ã2 = kT

δ . Since B4B = 0, the only contribution to the trispectrum is B4A.

In summary, the one-loop two-vertex parity-odd trispectrum is

BPO
4 = B4A = −i (k1 × k2 · k3)H9η40

64πk1k2k3k4k6T
(ω2

L − 6ωLωR + 3ω2
R − 10s2) . (4.4.43)

A few comments are in order:

• The result is UV finite, as anticipated around (4.4.9). This is important because there is no tree-level

counterterm to absorb this divergence.

• The result has the expected scaling B4 ∼ η40/k
5 for the trispectrum of a conformally coupled scalar,

and is indeed parity odd because of the combination k1 × k2 · k3.

• The result is surprising simple: it is just a rational function in the momenta with the usual nor-

malization 1/(k1k2k3k4) and only a total-energy pole at kT = 0. This is the same structure as
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a tree-level contact diagram. The crucial difference is that B4 cannot come from a contact wave-

function coefficient ψ4 that obeys the cosmological optical theorem [100]. To see this, notice that

at tree-level contact order, B4 would need to come from a purely imaginary ψ4 ∼ ik3, but then

ψ4(k,k) +ψ∗
4(−k,−k) = 2ψ4(k,k) ̸= 0. This check could be used to detect whether a given rational

function arises or not as a contact diagram in a unitary EFT.

• Intriguingly BPO
4 in (4.4.43) could be attributed to a contact diagram in a non-unitary EFT. Indeed

the expression in (4.4.43) contains the kinematic structures of a local EFT, which were identified

recently in [139]. Non-unitary EFTs are expected to arise generically in open quantum systems. We

will pursue this elsewhere.

Loop computation with cutoff regularization One may worry if our result is simply an artifact

from dim reg. To show that the result is independent of regularization scheme, let us compute the integral

(4.4.33) with cutoff regularization. The integral in cutoff regularization reads:

B4A = 2i Im

∫
dη1

(−Hη1)4

∫
dη2

(−Hη2)4

∫ Λa(η1) d3p

(2π)3
(i3(−Hη2)3)(k1 × k2 · p1)

× (i2(−Hη2)2(k3 · p1))G+(k1, η1)G+(k2, η1)G++(p1, η1, η2)

×G++(p2, η1, η2)G+(k3, η2)G+(k4, η2). (4.4.44)

Before proceeding, let us note the following:

• The cutoff is Λa(η2) instead of just Λ. This is because we would like to impose a cutoff on the physical

momentum [140], which is the relevant physical quantity, rather than the comoving momentum.

• When computing the nested time integrals, the domain for the time integrals also needs to be

modified as: ∫ 0

−∞
dη1

∫ η1(1+
H
Λ )

−∞
dη2. (4.4.45)

This is because if we allow η2 to be arbitrarily close to η1, we are probing regions that have energy

above the cutoff.

With this in mind, let us compute the integrals. Doing the angular part of the loop momentum integral

give us:

B4A = 2i Im
(Hη0)4H5

64k1k2k3k4
(k1 × k2) · k3(∂ωL

)3(∂ωR
)2

× 1

8π2

1

6

∫ 0

−∞
dη1

∫ η1(1+
H
Λ )

−∞
dη2

∫ Λ
Hη2

s

dp+(p2+ − s2)eiωLη1eiωRη2eip+(η2−η1) + (ωL ↔ ωR). (4.4.46)

Let us define the following:

B4A := 2i Im
(Hη0)4H5

64k1k2k3k4
(k1 × k2) · k3(∂ωL

)3(∂ωR
)2

1

8π2

1

6
AΛ

2 (ωL, ωR). (4.4.47)
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Now we compute AΛ
2 . First we do the momentum integral and obtain:

AΛ
2 =

∫ 0

−∞
dη1

∫ η1(1+
H
Λ )

−∞
dη2

1

(η1 − η2)3
eiωLη1eiωRη2

[
i

H2η22
ei

Λ(η2−η1)
Hη2 (−Λ2(η1η2)2 + 2iHη2Λ(η1 − η2) +H2η22(2 + s2(η1 − η2)2)

+eis(η2−η1)(2i+ 2s(η2 − η1))
]

+ (ωL ↔ ωR). (4.4.48)

The second line is a rapidly oscillating integral as Λ → ∞, and so it averages to zero. Therefore we just

need to integrate the third line. Doing the η2 integral gives:

AΛ
2 =

∫ 0

−∞
dη1e

iωT η1

[−iΛ2

H2η21
+

Λ(s− ωR)

Hη1
− i(ω2

R − s2)Ei

(
iHη1

Λ
(s+ ωR)

)]
+ (ωL ↔ ωR). (4.4.49)

We only want the imaginary part of this integral. The first two terms can easily be seen to be real by

performing a Wick rotation in η1. Notice that the (∂ωL
)3 operator in (4.4.47) bring down factors of η1,

which ensures convergence of the integral. In addition, we know that the exponential integral has an

expansion:

Ei(z) = γ + log(z) +

∞∑

k=1

zk

k k!
, (4.4.50)

where γ is the Euler-Mascheroni constant. The exponential integral Ei(z) is the sum of a logarithm and

an entire function, so we can integrate the series expansion term by term. In particular, we find that since

z = iHη1

Λ (s+ωR) here, the terms in the series are seen to be purely real upon performing a Wick rotation.

Keeping the imaginary part leaves us with:

ImAΛ
2 =

∫ 0

−∞
dη1e

iωT η1π(s2 − ω2
R) + (ωL ↔ ωR) =

π

ωT
(ω2

R − s2 + ω2
L − s2). (4.4.51)

Note again that (∂ωL
)3 ensures convergence of the log η term, which hence does not contribute to the

imaginary part. Notice that the final result is independent of the cutoff Λ. Substituting (4.4.51) into

(4.4.47) and doing the ∂ωL
and ∂ωR

derivatives returns (4.4.43), which is the result from dim reg.

We now move on to cases in which the external legs are massless scalars, which are more directly

relevant for inflationary phenomenology.

4.5 Trispectrum for a massless scalar

4.5.1 Conformally coupled loop

We now compute the contribution from the one-loop diagram in Figure 4.2, where the four external legs

correspond to a single massless scalar denoted by ϕ. First, we show the result in the case in which the

fields in the loop are two conformally coupled scalars σa and σb. This represents a phenomenologically

viable model of inflation with spectator massive fields. Second, we perform the calculation in single-clock

inflation where all lines represent the same massless scalar ϕ.
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Conformally coupled spectator scalars: : ϕϕ → σaσb → ϕϕ Since we would like to consider a

phenomenologically viable model, where the scalar field ϕ can be identified with the Goldstone boson π of

time-translations in the effective field theory of inflation [113,141], we consider interactions where ϕ has at

least one time derivative, which would arise from δg00, or two spatial derivative, which would arise from

perturbations to the extrinsic curvature Kij . For concreteness, we will consider the trispectrum from the

following two interactions:

LPO = ϵijk ∂ilϕ ϕ̇∂jlσa∂kσb, (4.5.1)

LPE = ∂ijϕ∂iσa∂j ϕ̇σb. (4.5.2)

where σa,b are conformally coupled and ϕ is massless. As in the previous section, we want to write down

the corresponding integral as some differential operators acting on a simpler integral. The differential

operator corresponding to the left vertex, which we choose to be the one with an odd number of spatial

derivatives, is given by5

L̂ = i5
[
k1 · (p1 × p2)(k1 · p1)k22O

(L)
k1

+ k2 · (p1 × p2)(k2 · p1)k21O
(L)
k2

]
(−i∂ωL

)(−iH∂ωL
)6+2−4 , (4.5.3)

where we defined O
(i)
k = 1 − k∂ωi . Notice that for both the conformally couple fields and for ϕ̇ we don’t

need a dedicated differential operator because the mode functions are already proportional to a plane wave

and the overall factor of η is captured by the ∂ωL
operator. This can be simplified into:

L̂ = H4(k1 × k2)i
(
k22O

(L)
k1

kj
1 − k21O

(L)
k2

kj
2

)
(∂ωL

)5(p1)i(p1)j (4.5.4)

Similarly for the right vertex, we have:

R̂ = (k3 · k4)
(
k24O

(R)
k3

ki
3 + k23O

(R)
k4

ki
4

)
(−iH∂ωR

)5+2−4(−i∂ωR
)(p1)i (4.5.5)

The trispectrum is:

B4A = (2πiδ)
H19

16k31k
3
2k

3
3k

3
4

(k1 × k2)i
(
k22O

(L)
k1

kj
1 − k21O

(L)
k2

kj
2

)

× (k3 · k4)
(
k24O

(R)
k3

kl
3 + k23O

(R)
k4

kl
4

)
(∂ωL

)5(∂ωR
)4I

(3)
ijl , (4.5.6)

where I
(3)
ijl is given by:

I
(3)
ijl =

∫
d3p

(2π)3
(p1)i(p1)j(p1)l

4p1p2
Iflat. (4.5.7)

where Iflat was given in (4.4.13). Once again we can separate the tensorial integral into scalar integrals

(this can be done more systematically as discussed in Appendix C):

I
(3)
ijl =

(
I
(3)
1

s
(siδjk + sjδik + skδij) +

I
(3)
3

s3
sisjsk

)
. (4.5.8)

5Here we separated −i∂ωL , which accounts for the factor of η in ϕ̇ from all other factors of a−1 = −Hη from
√−g,

derivatives and the conformally coupled mode functions, which are accounted for by (−i∂ωL )4.
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Notice that this expression assumes s = |s| ≠ 0, but it otherwise does not depend on s. For our purposes,

we only need I1 because the other terms vanish once contracted with the epsilon tensor. This is given by

I
(3)
1 =

1

2

(
1

s
siδjlI

(3)
ijl − 1

s3
sisjslI

(3)
ijl

)
. (4.5.9)

More explicitly, we have:

I
(3)
1 =

∫

p

s2p21(p1 · s) − (p1 · s)3
s3p1p2

Iflat. (4.5.10)

Computing this integral gives us:

B4A = (2πiδ)
H19

16k31k
3
2k

3
3k

3
4

(
k22O

(L)
k1

(k1 · s) − k21O
(L)
k2

(k2 · s)
)

(k3 · k4)

×
(
k24O

(R)
k3

k3 · (k1 × k2) + k23O
(R)
k4

k4 · (k1 × k2)
)

(∂ωL
)5(∂ωR

)4
1

32π2

A2 − s2A0

12
. (4.5.11)

Using our general results for the A integrals, this can be further simplified into:

B4A = i
H19

16k31k
3
2k

3
3k

3
4

[
k22O

(L)
k1

(k1 · s) − k21O
(L)
k2

(k2 · s)
]

(k3 · k4)

×
[
k24O

(R)
k3

k3 · (k1 × k2) + k23O
(R)
k4

k4 · (k1 × k2)
] [ 1

16π

3360(18s2 − 3ω2
L + 10ωLωR − 5ω2

R)

k10T

]
. (4.5.12)

Since O
(L)
k and O

(R)
k each provides an extra derivative, B4A has a kT pole of order 12. This matches

with the standard expectation that the order p of the kT pole is [87]

p = 1 +
∑

i

(∆i − 4) = 1 + (10 − 4) + (9 − 4) = 12. (4.5.13)

Similarly, we can compute B4B :

B4B = (2πiδ)
H19

16k31k
3
2k

3
3k

3
4

(
k22O

(L)
k1

(k1 · s) − k21O
(L)
k2

(k2 · s)
)

(k3 · k4)

×
(
k24O

(R)
k3

k3 · (k1 × k2) + k23O
(R)
k4

k4 · (k1 × k2)
)

(∂ωL
)5(∂ωR

)4
1

32π2

Ã2 − s2Ã0

12
. (4.5.14)

Since nL = 5, nR = 4 and n ≥ 2, we have nL + nR > n, so when we take derivatives we find B4B = 0, as

anticipated. In summary the final result is BPO
4 = B4A as given in (4.5.12). The same remark as at the

end of the previous section apply to this surprisingly simple result as well.

Same internal fields Next we want to consider the case in which there is a single spectator scalar,

with a conformally coupled mass. If we simply replace σ1 = σ2 = σ in the above example, the spatial

derivatives for the internal fields in the parity even vertex can all be removed by integration by parts. As

a result the trispectrum vanishes. Instead, by direct investigation we found that the following interactions
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provide a non-vanishing result that is minimal in terms of number of derivatives:

LPO = ϵijk ∂ilϕ ϕ̇∂jlσ∂kσ, (4.5.15)

LPE = ∂ijϕ∂ijσϕ̇σ. (4.5.16)

Consider the left vertex first. We need the differential operator

L̂ = iH4(k1 × k2) · p1

(
k22O

(L)
k1

k1 · p1 − k21O
(L)
k2

k2 · p1

)
(∂ωL

)5

+ iH4(k1 × k2) · p2

(
k22O

(L)
k1

k1 · p2 − k21O
(L)
k2

k2 · p2

)
(∂ωL

)5 (4.5.17)

Since (k1 × k2) · p1 = (k1 × k2) · (−s− p1) = −(k1 × k2) · p2, this simplifies to

L̂ = iH4(k1 × k2)i
(
k22O

(L)
k1

kj
1 − k21O

(L)
k2

kj
2

)
(∂ωL

)5(p1)i[(p1)j − (p2)j ] . (4.5.18)

The right vertex gives:

R̂ = H3
(

(k3 · p1)2O
(R)
k3

k24 + (k4 · p1)2O
(R)
k4

k23

)
(∂ωR

)4 + (p1 → p2). (4.5.19)

So the trispectrum is found to be

B4A = (2πiδ)
H19

16k31k
3
2k

3
3k

3
4

(k1 × k2)i
(
k22O

(L)
k1

kj
1 − k21O

(L)
k2

kj
2

)

×
(
k24O

(2)
k3

kl
3k

m
3 + k23O

(2)
k4

kl
4k

m
4

)
(∂ωL

)5(∂ωR
)4Iijlm, (4.5.20)

where

Iijlm =

∫

p

1

4p1p2
((p1)i(p1)j(p1)l(p1)m + (p1)i(p1)j(p2)l(p2)m

− (p1)i(p2)j(p1)l(p1)m − (p1)i(p2)j(p2)l(p2)m) Iflat. (4.5.21)

Since we can always exchange (p1)i for −(p2)i (as it is contracted with k1×k2), and we can also exchange

p1 for p2 by changing the integration variable from p1 to −p1 − s, the integral simplifies into:

Iijlm =

∫

p

4(p1)i(p1)j(p1)l(p1)m + 2(p1)i(s)j(p1)l(p1)m
4p1p2

. (4.5.22)

With this, we can use the tensor structure results in Appendix C to compute the tensorial integral in

terms of scalar integrals. This yields:

Iijlm =
1

16π2

1

30

[
(δilδjm + δimδjl) (A4 − 2s2A2 + s4A0)

+ (δilsjsm + δimsjsl) (A2 − s2A0)
]
. (4.5.23)
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Putting this back in the trispectrum, we obtain:

B4A =i
H19

16k31k
3
2k

3
3k

3
4

[(
k22O

(L)
k1

k1 − k21O
(L)
k2

k2

)
·
(
k24O

(2)
k3

(k1 × k2 · k3)k3 + k23O
(2)
k4

(k1 × k2 · k4)k4

)

× −1

8π

192(126s4 + ω4
L − 20ω3

LωR + 60ω2
Lω

2
R − 40ωLω

3
R + 5ω4

R − 14s2(3ω2
L − 10ωLωR + 5ω2

R))

k10T

+
(
k22O

(L)
k1

(k1 · s) − k21O
(L)
k2

(k2 · s)
)(

k24O
(2)
k3

(k1 × k2 · k3)(k3 · s) + k23O
(2)
k4

(k1 × k2 · k4)(k4 · s)
)

× 1

8π

1344(18s2 − 3ω2
L + 10ωLωR − 4ω2

R)

k10T

]
. (4.5.24)

To compute B4B , we just need to replace An in (4.5.23) with Ãn. But once again nL = 5, nR = 4 and

n ≥ 4, so nL + nR > n and we have B4B = 0.

Permutations One also need to sum over permutations when calculating the correlator. For instance,

it is necessary to also consider the correlator when the left and right verticies are swapped. Notice that

the polynomials and the operators in the final result above are not symmetric under the exchange of ωL

and ωR, hence the correlator does not vanish upon summing over permutations.

Similarly one may worry whether summing over the (s, t, u) channels may result in some cancellation.

However, when considering these permutations, one also needs to redefine ωL and ωR: for the t−channel,

ωL = k1 + k3 while for the u−channel, ωL = k1 + k4. In general, summing over different channels does

not result in cancellation of the correlator as well.

4.5.2 Massless loop

We now consider the case of single-clock inflation, where all lines represent a massless scalar ϕ, to be

identified with the Goldstone boson π of time translations in the EFT of inflation. Conceptually the

calculation is just the same as in previous examples. However the main new difficulty is to find interactions

that give a non-vanishing result when symmetrised. The idea is that we have to include a sufficient

number of derivatives such that all ϕ’s appearing in the parity-odd interaction are distinct from each

other. Furthermore, we also need a sufficient number of derivatives in the parity-even interactions to

ensure that, after the loop integral has been computed, a term of the form k1 × k2 · k3 can be generated.

This results in a large number of derivatives and hence an algebraically more complex result, but no new

conceptual issue emerges.

A minimal choice of interactions that gives a non-vanishing result is

LPO = λPOϵijk∂m∂nϕ∂n∂iϕ∂m∂l∂jϕ∂l∂kϕ, (4.5.25)

LPE = λPEϕ̇
2(∂i∂jϕ)2 (4.5.26)

Let’s follow a by now familiar script and start building the relevant differential operators. For the parity-

odd interaction, the tensor structure of the vertex looks like:

FPO(p1, p2, k1, k2) =
i9

a9
k2 · (p1 × p2)(k1 · p1)(k1 · k2)(p1 · p2) + permutations (4.5.27)

Notice that since p1 + p2 + k1 + k2 = 0, we can always rearrange the cross product to take the form
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±k2 · (p1 × p2). Carefully considering all the permutations, we obtain:

(−ia)9FPO = −2(k1 × k2) · p1 {(k1 · k2)(p1 · p2)(k1 − k2) · (p1 − p2)

+ (p2 · k1)(p2 · k2)p1 · (k1 − k2) − (p1 · k1)(p1 · k2)p2 · (k1 − k2)

+ [(k1 · p2)(k2 · p1) − (p1 · k1)(k2 · p2)(p1 · p2 + k1 · k2)]} (4.5.28)

Note that p1 and p2 can be exchanged by changing the integration variable. Since we also sum over

permutations on the parity-even vertex as well, we have:

(−ia)9VPO = −2(k1 × k2) · p1 [2(k1 · k2)(p1 · p2)(p1 · r) − 2(k1 · p1)(k2 · p1)(p2 · r)

−((k1 · s)(p1 · k2) − (k2 · s)(p1 · k1))(p1 · p2 + k1 · k2)] . (4.5.29)

Here I defined r = k1 − k2. Now we can use p1 · p2 = 1
2 (s2 − p21 − p22) to simplify this further.

The tensor structure for the parity-even vertex is straightforward to obtain. Note that only one internal

line can have a spatial derivative, otherwise it can be shown that the integral gives us zero. The trispectrum

can now be written as:

B4A = (2πiδ)
λPOλPEH

8

8k31k
3
2k

3
3k

3
4

∫

p

L̂R̂
H4

4p31p
3
2

Iflat. (4.5.30)

The left operator is given by:

L̂ = (L(2a) + L(2b) + L(4))(−iH∂ωL
)5O

(L)
k1
O

(L)
k2
O(L)

p1
O(L)

p2
, (4.5.31)

L(2a) = −2(k1 × k2)i
[

3

2
(k1 · k2)rj − 1

2
(k21k

j
2 − k22k

j
1)

]
(s2 − p21 − p22)(p1)i(p1)j , (4.5.32)

L(2b) = −2(k1 × k2)i
[
(k1 · k2)2rj − (k1 · k2)(k21k

j
2 − k22k

j
1)
]

(p1)i(p1)j , (4.5.33)

L(4) = 4(k1 × k2)i(k1)j(k2)l(r)m(p1)i(p1)j(p1)l(p2)m. (4.5.34)

The right vertex becomes:

R̂ = 2
(

(k3)i(k3)jk24O
(R)
k3

O(R)
p1

+ (k4)i(k4)jk23O
(R)
k4

O(R)
p1

)
p22(p1)i(p1)j(−iH∂ωR

)2(−i∂ωR
)2 (4.5.35)

Let us separate the trispectrum into three terms, where each term corresponds to one of the operators

above:

B4A = B2a
4A +B2b

4A +B4
4A. (4.5.36)

The first term is

B2a
4A = (2πi)

λPOλPEH
14

8k31k
3
2k

3
3k

3
4

(−2)(k1 × k2)i
[

3

2
(k1 · k2)rj − 1

2
(k21k

j
2 − k22k

j
1)

]

× 2
(

(k3)l(k3)mk24O
(R)
k3

+ (k4)l(k4)mk23O
(R)
k4

)
(−iH∂ωL

)5(−i∂ωR
)4O

(L)
k1
O

(L)
k2
I2aijlm, (4.5.37)

where

I2aijlm :=
1

8
(δilδjm + δimδjl)I

2a
0 +

1

8s2
(δilsjsm + δimsjsl)I

2a
2 . (4.5.38)
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Similarly, the second term is

B2b
4A = (2πi)

λPOλPEH
14

8k31k
3
2k

3
3k

3
4

(−2)(k1 × k2)i
[
(k1 · k2)rj − (k21k

j
2 − k22k

j
1)
]

(k1 · k2)

× 2
(

(k3)l(k3)mk24O
(R)
k3

+ (k4)l(k4)mk23O
(R)
k4

)
(−iH∂ωL

)5(−i∂ωR
)4O

(L)
k1
O

(L)
k2
I2bijlm, (4.5.39)

where

I2bijlm :=
1

8
(δilδjm + δimδjl)I

2b
0 +

1

8s2
(δilsjsm + δimsjsl)I

2b
2 (4.5.40)

The B4
4A integral can be written similarly:

B4
4A = (2πi)

λPOλPEH
14

8k31k
3
2k

3
3k

3
4

4(k1 × k2)i(k1)j(k2)k(r)l

× 2
(

(k3)m(k3)nk24O
(R)
k3

+ (k4)m(k4)nk23O
(R)
k4

)
(−iH∂ωL

)5(−i∂ωR
)4O

(L)
k1
O

(L)
k2
I4ijklmn, (4.5.41)

where

I4ijklmn =
1

57
(δim(δjkδln + perm) + δin(δjkδlm + perm)) I4a0

+
1

456

(
δim
s2

(sjskδln + perm) +
δin
s2

(sjskδlm + perm)

)
I4a2

+
1

76

(
δim
s4

sjskslsn +
δin
s4
sjskslsm

)
I4a4

+
1

8

(
δim
s2

(δjkslsn + perm) +
δin
s2

(δjkslsm + perm)

)
I4b1

+
1

8

(
δim
s4

(sjskslsn) +
δin
s2

(sjskslsm)

)
I4b3 . (4.5.42)

Each of these terms can be obtained by using the tensor structure formula derived in Appendix C. Then,

we using our general strategy of rewriting integrals in terms of the An and Zn master integrals. Eventually,

it can be shown that:

I2a0 =
1

27720(ωL + ωR)3
[
3404s6 − 44s4

(
142ω2

L + 106ωLωR + 221ω2
R

)

+ 33s2
(
201ω4

L + 623ω3
LωR + 855ω2

Lω
2
R + 229ωLω

3
R + 104ω4

R

)

− 231
(
20ω6

L + 60ω5
LωR + 51ω4

Lω
2
R + 3ω3

Lω
3
R + 11ω2

Lω
4
R + 13ωLω

5
R + 6ω6

R

)]
(4.5.43)

I2a2 =
−7784s6 + 88s4

(
83ω2

L + 38ωLωR + 121ω2
R

)
− 33s2

(
51ω4

L + 203ω3
LωR + 391ω2

Lω
2
R + 121ωLω

3
R + 50ω4

R

)

13860(ωL + ωR)3

(4.5.44)

I2b0 =
172s4 − 24s2

(
11ω2

L + 9ωLωR + 17ω2
R

)
+ 21

(
9ω4

L + 27ω3
LωR + 35ω2

Lω
2
R + 9ωLω

3
R + 4ω4

R

)

1260(ωL + ωR)3
(4.5.45)

I2b2 =
2s2

(
−97s2 + 60ω2

L + 30ωLωR + 87ω2
R

)

315(ωL + ωR)3
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I4a0 =
1

360360(ωL + ωR)3
[
−10212s6 + 156s4

(
142ω2

L + 106ωLωR + 221ω2
R

)

− 143s2
(
201ω4

L + 623ω3
LωR + 855ω2

Lω
2
R + 229ωLω

3
R + 104ω4

R

)

+ 1287
(
20ω6

L + 60ω5
LωR + 51ω4

Lω
2
R + 3ω3

Lω
3
R + 11ω2

Lω
4
R + 13ωLω

5
R + 6ω6

R

)]
(4.5.46)

I4a2 =
1

720720(ωL + ωR)3
[
1168476s6 − 156s4

(
8830ω2

L + 4366ωLωR + 12983ω2
R

)

+ 143s2
(
2865ω4

L + 11075ω3
LωR + 20691ω2

Lω
2
R + 6337ωLω

3
R + 2636ω4

R

)

+11583
(
20ω6

L + 60ω5
LωR + 51ω4

Lω
2
R + 3ω3

Lω
3
R + 11ω2

Lω
4
R + 13ωLω

5
R + 6ω6

R

)]
(4.5.47)

I4a4 =
1

480480(ωL + ωR)3
[
−1122380s6 + 52s4

(
10638ω2

L + 2666ωLωR + 14013ω2
R

)

+ 715s2
(
201ω4

L + 623ω3
LωR + 855ω2

Lω
2
R + 229ωLω

3
R + 104ω4

R

)

−6435
(
20ω6

L + 60ω5
LωR + 51ω4

Lω
2
R + 3ω3

Lω
3
R + 11ω2

Lω
4
R + 13ωLω

5
R + 6ω6

R

)]
(4.5.48)

I4b1 =
−818s6 + 44s4

(
25ω2

L + 16ωLωR + 38ω2
R

)
− 33s2

(
18ω4

L + 59ω3
LωR + 89ω2

Lω
2
R + 25ωLω

3
R + 11ω4

R

)

13860(ωL + ωR)3

(4.5.49)

I4b3 = −2s4
(
−94s2 + 55ω2

L + 22ωLωR + 77ω2
R

)

495(ωL + ωR)3
(4.5.50)

To obtain B4B , we simply replace An with Ãn and Zn with Z̃n. However, in the calculation, we find

that n ≥ 6, while nL ≥ 5 and nR ≥ 4. Hence when we take derivatives, we find B4B = 0 and so only B4A

contributes to the two-vertex one-loop trispectrum.

Signal-to-noise estimates In this section we have computed the parity odd trispectrum for a massless

scalar at loop level, and showed that they are generally non-zero. This is an interesting scenario as usually

loop corrections are smaller than a corresponding tree level contribution when perturbations are under

control. In this case, due to the no-go theorems [132,133], the leading BPO
4 signal arises at one loop order,

and in principle can be as large as allowed by the data. With this in mind, it is worth estimating the

signal-to-noise ratio of the parity odd trispectrum. In particular, we want to know the relative signal-to-

noise ratio compared to the parity even tree level trispectrum, as this tell us whether we can detect parity

odd signals before we detect parity even signals.

The signal-to-noise ratio S/N is an estimate of when a signal becomes observable, which happens when

S/N > 1. To be as general as possible we don’t commit to a specific observable. Instead we assume we

can measure the profile of ϕ(k) in some volume V ∼ k−3
min with a resolution kmax > kmin. For an n-point

function the signal-to-noise ratio is

(
S

N

)2

= V n

∫

k1...kn

⟨∏n
a ϕ(ka)⟩⟨∏n

a ϕ(ka)⟩
⟨∏n

a ϕ(ka)2⟩ . (4.5.51)

For simplicity we consider a model with two interactions:

Hint =
1

Λ9
PO

∂9i ϕ
4 +

1

Λ6
PE

∂6µϕ
4 , (4.5.52)

where ∂9i denotes some unspecified contraction of nine spatial derivatives and ∂6µ that of six temporal or
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spatial derivatives. Here ΛPE,PO are the scales suppressing the respective higher-dimensional interactions.

By scale invariance, B4 ∼ k−9. Therefore we estimate the parity odd trispectrum to be:

BPO
4 ∼

(
H

ΛPO

)9(
H

ΛPE

)6
H4

k9
1

16π2
. (4.5.53)

Here the factor of 1/(4π)2 appears because the leading signal is a one loop diagram. In this model there

is an associated parity even trispectrum at tree level. A rough estimate gives:

BPE
4 ∼

(
H

ΛPE

)6
H4

k9
. (4.5.54)

Provided the instrumental noise for in the parity even and parity odd measurements is comparable, and

both measurements are based on the same dataset, we obtain the following:

(S/N)PO

(S/N)PE

=

(
H

ΛPO

)9
1

16π2
≪ 1 . (4.5.55)

This implies the parity odd signal can only be seen after the parity even signal. However, if the systematics

and the instrument noise are not expected to break parity (or to do so by a small amount), the noises

for the parity odd and parity even measurements can be different. In those cases it can make sense to

search for parity odd trispectrum in the data despite the fact that we have not detected any parity even

trispectrum in the sky yet.
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Chapter 5

Analyticity of the wavefunction

Moving beyond perturbation theory has proved to be a great challenge for the cosmological bootstrap.

Ideas such as the cosmological optical theorem, manifest locality have no obvious extensions beyond

perturbation theory. It is therefore natural to look to other bootstrap programs for ideas. One such

example is the S-matrix bootstrap. In the S-matrix bootstrap, analyticity is the key component for

everything. It has links to physical principles such as causality and crossing, and it also allow us to

construct useful bounds such as the Froissart bound and positivity bounds.

If we are to follow in the footsteps of the S-matrix bootstrap, we will need the analytic structure of the

wavefunction. In the rest of the thesis we will turn our attention to the analytic wavefunction, a program

dedicated to understanding wavefunction analyticity in a similar way to the S-matrix. In this section we

will first briefly review the consequences of analyticity in the S-matrix. We will then briefly argue why

analyticity in the wavefunction is linked to causality. Then, we will study the analytic structure of the

wavefunction in full detail by using a heuristic argument known as the energy conservation condition. We

will then explain why the energy conservation condition is true by using Landau analysis, which is also

employed for amplitudes.

5.1 Analyticity and the S-matrix

Here we give a lightning review on the analytic structure of the S-matrix. The analytic S-matrix (and

S-matrix bootstrap) has been studied extensively since the 1960s, and a complete overview of the subject

would require too much time. Therefore, we will focus on some key results (some of which we have found

analogous results for the wavefunction). Readers interested in learning more about the S-matrix bootstrap

can refer to [50,142–147].

The most extensively studied object in the S-matrix bootstrap is the 2-to-2 scattering amplitude. The

2-to-2 scattering amplitude depends on the Mandelstam variables s, t, u, which obeys s+ t+u = 4m2 (for

external particles with the same mass). If we analytically continue s and study the analytic structure of

the S-matrix in this variable, we obtain figure 5.1.

The key features of figure 5.1 can be summarized as follow:

• Causality Causality implies the S-matrix must be analytic in the upper half plane (or lower half

plane, depending on the convention used) up to some anomalous thresholds which are contained in
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Figure 5.1: The analytic structure of the 2-to-2 scattering amplitude in the complex s plane.

some region |s| < R(t)1. This is proved by Bros, Epstein and Glaser [148], and one of the assumptions

used is microcausality, i.e. [ϕ(x), ϕ(y)] = 0 for spatially separated points x and y.

The link between analyticity and causality is not unique to relativistic theories. This is shown by

Kramers and Kroinig [149, 150], who derived relations between the real and imaginary part of the

refractive indicies. Here causality simply means the response at time t cannot depend on anything

at a later time t′ > t. This type of causality has been studied extensively for in the context of

scattering (for both classical and non-relativistic quantum systems), for more details the readers

can refer to [151]. We will see this causality condition has implications on the analyticity of the

wavefunction as well.

• Unitarity The location of the singularities also encodes the spectrum of intermediate states of the

scattering process. This is a consequence of unitarity. In particular, the optical theorem reads2:

discsT (s, t) =
1

2i
(T (s+ iϵ, t) − T (s− iϵ, t)) =

∑∫

X

T2→XT
†
2→X . (5.1.1)

where X goes over all intermediate states. This interpretation is made even more clear in pertur-

bation theory, where the intermediate states are multi-particle states. One can draw a Feynman

diagram for each process, and the discontinuity operator can be represented as a plane which cuts

the internal lines. For a theory with a single scalar one finds a set of singularities known as normal

thresholds, which corresponds to exchanging n-intermediate particles. The location of the singulari-

ties are given by s = (nm)2. Generally tree level diagrams give rise to poles, and loop level diagrams

give rise to branch points. We will see something very similar for the wavefunction.

1Here we assume t < 0
2This discontinuity operator is not the Disc

s
operator used in the cosmological optical theorem.
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• Crossing symmetry Roughly speaking this is telling us scattering processes in different channels

are in fact described by the same analytic function, and they are connected by analytic continuation.

For instance, electron-positron annihilation and Compton scattering are linked together by crossing.

The pole and branch cuts on the negative real axis in figure 5.1 corresponds to singularities in the

u-channel, and by going in an arc in the upper half plane (for sufficiently large s) one can show

the s−channel amplitude can be analytically continued to the (complex conjugate of) u−channel

amplitude. Unfortunately, we do not have much to say about crossing for the wavefunction.

The S-matrix bootstrap has been used to derive non-perturbative bounds for scattering processes.

These bounds are often derived by studying properties of some general non-perturbative expressions of

the S-matrix, which comes from physical principles and symmetry. These include:

• Partial wave expansion For 2-to-2 scattering, we can always boost ourselves to the center of mass

frame by Lorentz invariance. There we can use representation theory to show that the S-matrix can

be written as [146]:

T (s, t) =
∑

J

aJ(s)P
(d)
J

(
1 +

2t

s− 4m2

)
. (5.1.2)

P
(d)
J is given by some Gegenbauer polynomial (up to some normalization factors). In d = 3 this

reduces to a Legendre polynomial. This representation has been used to derive non-perturbative

unitarity bounds as well as the famous Froissart bound [152], which states that the total cross

section must obey σtot ≤ s(log s)2 as s→ ∞.

Writing down the partial wave expansion for the wavefunction in flat space proved to be a challenge.

This is because in our definition of the wavefunction we are looking at the vacuum state at a particular

time t, and this implicitly chooses a foliation of time, which spontaneously breaks Lorentz boost.

Since boost is broken, one cannot freely go to the COM frame, and this generally means the partial

wave expansion are not diagonal in l, the orbital angular momentum. (for example see [153]).

In dS, we do not have Lorentz invariance to begin with. However one could interpret the dS isometry

group in d + 1 dimension as the Lorentz group in d + 2 dimension , and it may be possible to find

some partial wave expansion reminiscent to (5.1.2).

• Dispersion relation With the analytic structure of the S-matrix, a straightforward application of

Cauchy’s theorem gives us the dispersion relation:

T (0, t) =

∫ ∞

M2
L

ds

2πi

discs T (s, t)

s
+

∫ ∞

M2
L

du

2πi

discu T (s, t)

s
+ C∞ [T ] , (5.1.3)

where C∞ [T ] represents the contour integral for asymptotically large s, and ML represents the mass

of the lightest particle which couples to the external fields. This representation is particularly helpful

for deriving positivity bounds, a series of bounds on the Wilson coefficients of an EFT. Write the

amplitude in the following expansion:

T (s, t) =

∞∑

n=0

sn cn(t), (5.1.4)

where the EFT coefficients cn can be straightforwardly related to the couplings which appear in the
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EFT action. Then it is straightforward to see that:

cn(t) =

∫ ∞

M2
L

ds

2πi

discs T (s, t)

sn+1
+

∫ ∞

M2
L

du

2πi

discu T (s, t)

sn+1
+ C∞

n [T ] , (5.1.5)

where, once again, C∞
n [T ] represents the contour integral for asymptotically large s. Due to the

Froissart bound, C∞
n [T ] usually vanishes. By using unitarity and causality, one can constrain the

right hand side of (5.1.5), and this give us a set of inequalities for the Wilson coefficients [53–60]

(also see [154] where these ideas are applied to the EFT of inflation).

We will see in section 7 that we can also write down dispersion relations for the wavefunction.

5.2 Wavefunction analyticity and causality

In the rest of this chapter we will explore the analytic structure of the wavefunction. Let us address an

important question first:

Which variable’s analyticity are we interested in We need to pick a suitable variable, analytically

continue said variable, then study its analyticity. Naturally there are many choices we can make. While

we would love to pick some sort of Mandelstam variable just like in amplitudes, as mentioned previously

the wavefunction either breaks the Lorentz group spontaneously (in flat space), or does not admit Lorentz

group as a symmetry (in dS), and so we have yet to find the analogue of the Mandelstam variable for the

wavefunction. In addition, in the case of dS we are often interested in cases where dS boosts (i.e. special

conformal transformations) are broken, and those wavefunctions coefficients would likely not obey the full

dS isometry.

The choice we make is the following: given a wavefunction coefficient ψn({ω}, {k}), we analytically

continue in the off-shell energies, and study the analyticity of one of its off-shell energies (say ω1).

This choice is natural for two reasons. The first reason is that most of our bootstrap rules are expressed

in terms of analytically continuing off-shell energies. For instance, the cosmological optical theorem is

defined through the Disc operator, where we analytically continue in ω. The manifest locality test is

defined through taking derivatives with respect to ω. Given most of our operations so far are expressed

in terms of ω, it makes sense to study analyticity in ω, as we may have a chance of understanding the

constraints of these rules in the complex ω plane.

The second reason is that analyticity in ω is linked to causality. We will explore this now.

Analyticity in ω is linked to causality To understand the link between analyticity and causality, let

us study the LSZ expression for the off-shell flat space wavefunction coefficients, given in (2.2.32). First

notice that the time integration domain is from −∞ < t < 0, i.e. the wavefunction is expressed in terms

of responses to sources from the past.

∫ 0

−∞
dt eiωt EΦ̂k(t) =

∫ ∞

−∞
dtΘ(−t) eiωt EΦ̂k(t) . (5.2.1)

These type of response function are necessarily analytic in the lower half complex plane of ω: this is close

in spirit to the Kramers-Kroinig dispersion relations. We can also see it in a different way: if Im ω ≥ 0, the
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integral would not converge properly as t → −∞. From this we obtain our first result for the analyticity

of the wavefunction:

The wavefunction coefficients ψn({ω}, {k}) must be analytic in the lower half complex plane of all

of its external energies ω.

It is easy to see how this result generalizes to some simple cases in dS: since we replace eiωη by the

bulk-to-boundary propagators, we simply need to know their behavior. For massless scalars and spin-2

fields the bulk-to-boundary propagators are (1−iωη)eiωη, so it is easy to see that it is true. For conformally

coupled scalars and massless spin-1 fields their bulk-to-boundary propagators are proportional to plane

waves, so obviously the result also holds. For massive fields the bulk-to-boundary propagators are given

by Hankel functions, which goes as eiωη/η as η → −∞. So it is very likely that this result also holds for

fields with any mass.

Note that the causality we use is not microcausality, i.e. [ϕ(x), ϕ(y)] = 0 for spacelike separated points

x, y. It would be nice to see how to implement microcausality into the picture.

5.3 Energy conservation condition

In the rest of the section we will focus on the flat space wavefunction. Since we are ultimately interested

in applying our results to cosmology, naturally we should address the following question:

How does studying the flat space wavefunction help us? Since inflation is well approximated by

dS, it seems like studying flat space is not helpful for us. However, in simple cases, we can directly relate

the wavefunction in dS to the flat space wavefunction.

Consider ψ3 in dS with the interaction L = gϕ̇3. The wavefunction is:

ψdS
3 = 6g

ω2
1ω

2
2ω

2
3

ω3
T

= ω2
1ω

2
2ω

2
3∂

2
ωT

(
g

ωT

)
. (5.3.1)

Notice that g
ωT

is just the flat space wavefunction for ϕ3 interaction.

In general, under the following assumption, it is possible to write the dS wavefunction in terms of

derivatives of the flat space wavefunction [98]:

• No IR divergence in interactions.

• The theory contains only massless or conformally coupled scalars.

This result is due to the form of the mode function for the massless and conformally coupled scalars, which

can be related to a plane wave by taking derivatives. These assumptions are satisfied for theories with

shift symmetry (for example by the EFToI [113]). It should also be possible to extend this result to loop

integrands (in fact we have utilized this idea extensively in section 4.4).

This is important as these derivative operators give us a controlled way of relating the analytic structure

of the dS wavefunction to the analytic structure of the flat space wavefunction. In particular, taking

derivatives do not change the location of the singularities, it only changes its order (for example it can

change a logarithmic branch point to a pole). As a result, by studying the analytic structure of the flat
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space wavefunction, we can also get the analytic structure for simple theories in dS which satisfy the

assumptions stated above.

It is worth noting that by considering the integral representation of Hankel function, it may be possible

to relate the flat space wavaefunction to the dS wavefunction for fields with arbitrary mass. For instance,

we can use the following [155]:

H(1)
ν (z) =

Γ( 1
2 − ν)( 1

2z)ν

iπΓ( 1
2 )

∫ (1+)

1+i∞
dt eizt(t2 − 1)ν−

1
2 , (5.3.2)

or similar integral representations to relate the mode function of a massive scalar to a plane wave. However,

this give us some integral operators in general, and depending on the contour this may introduce some

new singularities. We will leave a careful study of this procedure to the future.

Working in flat space also has another advantage: for polynomial interactions, there is a purely algebraic

set of recursion relations which simplifies the calculation of the wavefunction significantly. We will review

this now.

Recursion representation of the wavefunction It has been shown in [82] that the wavefunction

coefficients in flat space admit an elegant representation in terms of canonical forms of polytopes. The

relations work diagram by diagram. More in detail, take a diagram contributing to a given wavefunction

coefficient ψn, and remove all external lines. This give a “skeleton” diagram with V vertices and I internal

lines. Associate to each vertex a total vertex energy xA, with A = 1, . . . , V . Also, to each internal line

associate an energy ym, with m = 1, . . . , I. For tree diagrams all ym’s are fixed in terms of external spatial

momenta by momentum conservation at each vertex, but at loop level this is not the case. The dependence

of wavefunction coefficients on vertex energies x and internal-line energies y can now be written as

ψn = ψn(x1, x2, . . . , xV ; y1, y2, . . . , yI) . (5.3.3)

This dependence can be determined by the following recursion relation

(
V∑

A

xA

)
ψn({xA}) =

I∑

m

Cutmψn(. . . , xB + ym, . . . , xB′ + ym, . . . ) , (5.3.4)

where the operation Cutm means that one should remove the m-th internal line and add its energy ym

to each of the vertex energies that that line connected. If after the line is cut the diagram becomes

disconnected one should interpret Cutmψn as the product of the wavefunction coefficients shifted by ym

of the disconnected parts, ψn′ × ψn−n′ with n′ < n. Notice that in the recursion relation all coupling

constants are omitted, but can be easily re-inserted if desired. The recursion relation can be represented

graphically as

=
∑
m

(∑
A

xA

)
ψn ψn′ ψn−n′

+ym +ym
+ ψn

+ym +ym

(5.3.5)
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Using this relation over and over again, one can reduce any diagram to a diagram with one vertex and no

internal lines, for which the initial condition of the recursion is

ψtree
1 (x) = •x =

1

x
. (5.3.6)

Note that (5.3.5) is the perturbative version of the Hamilton-Jacobi equation which determines the time

evolution of the wavefunction, and (5.3.6) corresponds to a Bunch-Davies initial condition (see [107] for a

recent review of this Schrödinger picture3).

Sometimes an example is worth a thousand words. Tree-level examples of the two- and three-site chains

are

ψtree
2 (x1, x2; y) =

ψtree
1 (x1 + y)ψtree

1 (x2 + y)

xT
=

1

(x1 + x2)(x1 + y)(x2 + y)
, (5.3.7)

ψtree
3 (x1, x2, x3; y1, y2) =

ψtree
2 (x1, x2 + y2)ψtree

1 (x3 + y2) + ψtree
1 (x1 + y1)ψtree

2 (x2 + y1, x3)∑3
A xA

=

(
1

x1+x2+y2
+ 1

x2+x3+y1

)

(x1 + x2 + x3)(x1 + y1)(x2 + y1 + y2)(x3 + y2)
. (5.3.8)

For loop diagrams, the recursion relation produce the loop integrand, as opposed to the integral. To make

the distinction clear, we introduce the following notation

ψL-loop
n ({k}) =

∫

p1,...,pL

IL-loop
n ({k}, {p}) , (5.3.9)

where the set of external momenta {k} and internal momenta {p} will be connected to the recursion

relations shortly. Examples of a one-loop diagram with one or two vertices are

I1-loop
1 (x; y) =

1

x
ψtree
1 (x+ 2y) =

1

x(x+ 2y)
, (5.3.10)

I1-loop
2 (x1, x2; y1, y2) =

1

x1 + x2

[
ψtree
2 (x1 + y1, x2 + y1) + ψtree

2 (x1 + y2, x2 + y2)
]

(5.3.11)

=
1

(x1 + x2)(x1 + y1 + y2)(x2 + y1 + y2)

[
1

(x1 + x2 + 2y2)
+

1

(x1 + x2 + 2y1)

]
.

Notice that, loosely speaking, the recursion relation is giving us the result of the integrand expanded in

partial fractions.

From the recursion representation of the wavefunction, we can derive the following result:

The off-shell wavefunction coefficient ψn(ωa,ka) at any order in perturbation theory

is analytic in the complex ω1-plane at fixed real, positive values of (ωa̸=1,ka), except

for singularities along the negative real axis, ω1 ≤ 0. The location of singularities

corresponds to the vanishing of the partial energy of a connected sub-diagram (the

energy-conservation condition).

3In particular, compare (5.3.5) with Figure 2 of [107].

86



The physical picture. In perturbation theory, ψn(ωa,ka) can be represented as a sum over Feynman-

Witten diagrams in which each interaction vertex represent an integral of the schematic form

∫ 0

−∞
dt f∗ω1

(t)...f∗ωn
(t) =

∫ 0

−∞
dt e+iωT t , (5.3.12)

where ωT =
∑n

j=1 ωj is the total energy flowing into the vertex from its n legs. Evaluating these integrals

requires a prescription to handle the limit t → −∞. This comes from imposing that the infinite past the

system is in the Minkowski ground state. This ensures that the effect of interactions become small in the

far past and the integral converges. This is the precise analog of the choice of the Bunch-Davies initial

state in accelerating FLRW spacetimes. In practice, this physical picture is achieved by deforming the

integration contour in the far past to t→ −∞(1− iϵ), such that eiωT t provides an exponential suppression

for each interaction vertex in the infinite past. However, as already recognized in [80], if there is an energy-

conserving vertex at which ωT = 0, then this exponential suppression is removed and such an infinitely

long-lived interactions can produce singularities in the Bunch-Davies wavefunction.

This is precisely analogous to a long-lived (on-shell) internal state producing divergences in a scattering

amplitude. In the amplitude context, the tree-level exchange of a single on-shell line produces a simple

pole and the loop-level exchange of multiple on-shell lines produces a branch cut. For the wavefunction,

the integral representation introduced above makes it clear that tree-level wavefunction coefficients also

possess simple poles, while branch cuts are produced only at loop level. The conceptual difference is

that, rather than being determined by where intermediate lines go on-shell, the non-analyticities in the

wavefunction are determined by where interaction vertices become energy-conserving and hence the factors

in the denominators of (5.3.7)-(5.3.8) or (5.3.10)-(5.3.11) vanish.

This heuristic argument is illustrated in Fig. 5.2, where we summarise our conjectured analytic structure

for the off-shell ψ1, ψ2 and ψ3 by considering the values of ω1 for which there exists a diagram with an

energy-conserving vertex. Before attempting to prove that this simple rule indeed captures all of the non-

analyticities in the perturbative wavefunction coefficients, we will show how it can be used to systematically

generate a list of singular points for any off-shell ψn.

Tree-level poles. The simplest way to enumerate all possible poles in the perturbative wavefunction is

to proceed inductively, beginning with the off-shell ψn=1 with a single external leg and then adding further

external legs one at a time. This is useful because an off-shell diagram with n external legs entering the

same bulk vertex with energies (ω1, ..., ωn) and momenta (k1, ...,kn) is identical to the same off-shell

diagram with a single external leg entering that vertex with energy
∑n

a=1 ωa and momenta
∑n

a=1 ka, and

therefore will give poles that are analogous to those of a lower-point diagram. Because of this we find

it convenient to also include quadratic vertices in our analysis, corresponding to perturbative correction

from the linear mixing of fields. So for the first three wavefunction coefficients,

ψ1: The only tree-level diagram for a single (off-shell) external line carrying energy ω1 is:

(5.3.13)

For an interaction with no derivatives, the corresponding wavefunction coefficient is simply ψ1 ∝ 1/ω1

and contains a simple pole at ω1 = 0. Adding derivatives only produces positive powers of ω1 or k1,
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Figure 5.2: The analytic structure in the complex ω1-plane for the off-shell wavefunction coefficients,
(ψ1, ψ2, ψ3), in a theory with massless particles. In all cases we analytically continue ω1 with the other ωj

and kj held fixed at real positive values, and to provide a concrete order for the singularities we assume
that ωj ≥ kj and ωj > ωj′ if j > j′. Red crosses/lines indicate poles/branch cuts, and for each the diagram
responsible is shown. Solid/dashed lines denote on/off-shell legs.

and so cannot lead to any additional singularities.

ψ2: When two lines carry energies (ω1, ω2) and momenta (k1,k2 = −k1) into the bulk, there are now

two possibilities. Either (a) the two lines both terminate on the same interaction vertex,

(5.3.14)

in which case we find the same result as for ψ1 (with ω1 → ω1 + ω2), or (b) the two lines end on

different vertices,

(5.3.15)

where we have used a solid internal line to denote that this is on-shell (i.e. carries an energy

Ωk1
=
√
k21 +m2, where m is the mass of the field being exchanged). The black vertex carries zero

energy when ω1 = −Ωk1
, and this is a qualitatively new threshold that develops when there is more

than one external line. We have used hatched blob to indicate that the details of the ω2 coupling

are unimportant for this threshold—of course one could relabel the external arguments and similarly

conclude that there is a pole at ω2 = −Ωk2
independently of the coupling to the ω1 external line. So

up to this permutation, there are 2 simple poles which can appear in ψ2, at

ω1 + ω2 = 0 ,

ω1 + Ωk1
= 0 . (5.3.16)
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ψ3: With three lines carrying energy and momentum into the bulk, there are now three options. The

first possibility is that all of the external lines terminate on the same vertex,

(5.3.17)

which produces a simple pole at ω1 + ω2 + ω3 = 0 just like in ψ1 above (with ω1 → ω1 + ω2 + ω3).

The second possibility is that just two of the external lines terminate on the same vertex: this can

happen either as,

(5.3.18)

which produces a simple pole at ω1 = −Ωk1 just like in ψ2 above, or as,

(5.3.19)

which produces a simple pole at ω1 + ω2 = −Ωk3
, again like in ψ2 above (with ω1 → ω1 + ω2 and

k1 → k1 + k2) and up to permutations of the external legs. Finally, there is a qualitatively new

threshold which corresponds to the three external legs terminating on different vertices,

(5.3.20)

which produces a simple pole at ω1 = −Ωk2 − Ωk3 . Again, permuting the labels of the external

energies implies analogous poles also in ω2 and ω3. Overall, up to this permutation of the external

leg labels, ψ3 can therefore have simple poles at 4 locations:

ω1 + ω2 + ω3 = 0 ,

ω1 + ω2 + Ωk3 = 0 , (5.3.21)

ω1 + Ωk2
+ Ωk3

= 0 ,

ω1 + Ωk1
= 0 . (5.3.22)

Based on this recursive pattern, we see that each time n is increased a qualitatively new kind of threshold

appears (in addition to the thresholds which exist for all lower-point coefficients). A simple algorithm for

explicitly listing all of these poles in a given ψn at tree level is the following,
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Energy-conservation condition (at tree-level):

For each partition of the n external legs into q subsets, each with a total energy ωa and

total momentum ka (for a = 1, ..., q), there can be a pole in ψn whenever,

ω1 +

q∑

a=2

√
|ka|2 +m2

a = 0 (5.3.23)

where ma is the mass of any field that can couple to the external legs in subset a.

As an illustration, consider the off-shell four-point coefficient, ψ4. Up to permutations of the particle

labels, this algorithm produces a list of 7 possible poles for every set of masses mj which the exchanged

fields may have:

Partition Pole conditions

{1, 2, 3, 4} ω1 + ω2 + ω3 + ω4 = 0

{1, 2, 3}, {4} ω1 + ω2 + ω3 + Ωk4 = 0

{1, 2}, {3, 4} ω1 + ω2 + Ω|k3+k4| = 0

{1}, {2, 3, 4} ω1 + Ω|k2+k3+k4| = 0

{1, 2}, {3}, {4} ω1 + ω2 + Ωk3
+ Ωk4

= 0

{1}, {2}, {3, 4} ω1 + Ωk2
+ Ω|k3+k4| = 0

{1}, {2}, {3}, {4} ω1 + Ωk2
+ Ωk3

+ Ωk4
= 0

(5.3.24)

where Ωka
=
√
k2a +m2

a is the energy associated with any of the massive fields that can be exchanged in

that channel. This list is indeed exhaustive of all of the poles we will find in explicit examples below.

Loop-level branch cuts. Beyond tree level, the wavefunction is no longer a rational function and can

develop branch cuts in the complex ω-planes. These cuts can be viewed as a continuum of poles which

arise from integrating a rational integrand (determined by the recursion relations reviewed in Sec. 5.3) over

continuous loop momenta. To systematically enumerate all possible branch points that can be generated

by loops, it is again useful to proceed inductively starting from ψn=1,

ψ1: When a single line carries energy ω1 and momentum k1 = 0 into the bulk, it must terminate on an

interaction vertex. At loop level, this vertex may also be connect to internal lines, each of which

carries a momentum qa which is related to the momenta flowing in the loop (and hence integrated

over). For instance, in the diagram,

(5.3.25)

the black vertex conserves energy when,

ω1 = −Ωq1 − Ωq2 , (5.3.26)

where Ωqa =
√
q2a +m2

a is the energy of the internal lines (which have masses ma). Note that

momentum-conservation requires q1 + q2 = 0. Integrating over all values of q1 therefore creates a
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continuum of poles on the negative ω1 axis, which begins at the value,

− min
q1

(q1+q2=0)

(Ωq1 + Ωq2) = −m1 −m2. (5.3.27)

In general, allowing for an arbitrary number I of internal lines to be connected to the black interaction

vertex, there will be a continuum of poles on the negative real axis beginning at,

ω1 = − min
qa

(
∑I

a=1 qa=0)

(
I∑

a=1

Ωqa

)
= −

I∑

a=1

ma, (5.3.28)

where the ma are the masses of the internal lines. Note that when the theory includes massless

particles this branch cut threshold coincides with the tree-level pole, but for gapped theories these

non-analyticities are separated.

ψ2: With two external lines, there are again two possibilities. The first is that the two lines both

terminate on the same interaction vertex, e.g.

(5.3.29)

in which case we have a branch cut (i.e. a continuum of poles) on the negative real axis which begins

at ω1 + ω2 = −∑I
a=1ma, just as for ψ1 (with ω1 → ω1 + ω2). The qualitatively new threshold is

when the two lines end on different vertices,

(5.3.30)

in which case the internal momenta are now constrained as
∑I

a=1 qa = k1 by momentum conserva-

tion. Consequently, the branch cuts from diagrams of this kind begin at

ω1 = − min
qa

(
∑I

a=1 qa=k1)

(
I∑

a=1

Ωqa

)
= −

√√√√k21 +

(
I∑

a=1

ma

)2

. (5.3.31)

Note that when all of the internal lines carry the same mass, the minimum is achieved at qa = k1/I

for every a and this threshold is simply ω1 = −
√
k21 + (Im)2, and again would coincide with the

tree-level pole in any theory which contains massless exchange. This threshold is analogous to the

I-particle threshold for scattering amplitudes, which comes about because with relativistic energy

ω2
1 − |k1|2 = (Im)2 the off-shell particle 1 can decay into I on-shell particles of mass m. As usual,

the freedom to relabel the external leg arguments implies an analogous branch cut in ω2.

ψ3: With three external legs, there are again three possibilities. They could all terminate on the same
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vertex,

(5.3.32)

which reproduces the same ω1 + ω2 + ω3 = −∑I
a=1ma branch cuts as in ψ1 above (with ω1 →

ω1 + ω2 + ω3). Two could terminate on the same vertex, either as

(5.3.33)

which reproduces the same ω1 = −
√
k21 + (Im)2 type branch cuts as in ψ2 above, or as,

(5.3.34)

which produces a branch cut with threshold ω1 + ω2 = −
√
k23 + (Im)2 following the same ψ2 argu-

ment (with ω1 → ω1 + ω2 and k1 → k1 + k2 = −k3). The third possibility is that all three legs

terminate on different vertices,

(5.3.35)

This produces a qualitatively new threshold due to the different momentum conservation conditions

for the qa. For instance, for I = 2 internal lines connected to the black vertex and considering a

single loop momentum p, this threshold occurs at

ω1 = −min
p

(
Ω|k3+p| + Ω|k2−p|

)
. (5.3.36)

The precise value of this minimum depends on the relative size of k3 and k2, but again we note that

in the limit of massless internal lines the branch cut extends all the way to the tree-level pole (which

corresponds to p = 0).

We see that for every tree-level diagram leading to a simple pole there is a corresponding series of loop-level

diagrams (labelled by I) that create a branch cut at related thresholds. When the exchanged fields are

massless all thresholds approach the location of a corresponding tree-level pole. The general conclusion is

therefore:

Energy-conservation condition (at loop level):

When loops of massless fields are included, every pole in ψn becomes a branch point. In

massive theories, for each pole there is an infinite series of branch points at successively

lower negative values of ω1 (with a separation determined by the mass gap).

This closely parallels the analytic structure of scattering amplitudes, for which each tree-level channel

produces a corresponding pole at the single-particle threshold (e.g. s = m2), and then loops in each of

these channels produce branch cuts at the multi-particle thresholds (e.g. s = 4m2, 9m2, ...).
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Altogether, we have shown how a simple heuristic argument that links singularities in the wavefunction

to long-lived interactions in the bulk (i.e. those that have vanishing total energy) can be used to generate

a systematic list of where we expect to find poles and branch cuts in the complex ω-planes. Next, we

will confirm that these lists are indeed an exhaustive classification of the singularities in some concrete

wavefunction coefficients computed in perturbation theory.

5.3.1 Examples: tree level

Since the Minkowski wavefunction coefficients are particularly simple at tree-level (they are given directly

by the recursion relation of Sec. 5.3), for the following examples we allow for arbitrary interaction vertices.

One vertex. Let’s start by considering tree-level diagrams with a single vertex. These are all related

to the starting solution of the recursion relation ψtree
1 (x) = 1/x. For one, two and three external legs

respectively these are given by

ψ1(ω1) = =
F1(ω1)

ω1
, (5.3.37)

ψ2(ω1, ω2;k1) = =
F2(ω1, ω2,k1)

ω1 + ω2
, (5.3.38)

ψ3(ω1, ω2, ω3;k1,k2) = =
F3(ω1, ω2, ω3;k1,k2)

ω1 + ω2 + ω3
, (5.3.39)

where F1, F2 and F3 are vertex factors. We find poles at ω1 = 0, ω1 = −ω2 and ω1 = −ω2 − ω3, in

agreement with the energy-conservation condition of the previous section.

Two vertices. Diagrams with two vertices are a bit more interesting. They are all related to the second

term in the recursion relation, ψ2(x1, x2; y) in (5.3.7), and they only appear for two or more external legs.

For ψ2 with 2 vertices, we find

ψ2(ω1, ω2;k) = ω2ω1 =
FL(ω1;k)FR(ω2;k)

(ω1 + Ωk)(ω2 + Ωk)(ω1 + ω2)
. (5.3.40)

There are poles at ω1 = −ω2, as well as ω1 = −Ωk, which are predicted by the energy-conservation

condition. For ψ3 with 2 vertices, there are two possibilities. We can have ω1 alone on one of the vertices,

which gives:

ψ3 =
ω1ω2 ω3

=
F̃L(ω2, ω3;k1)F̃R(ω1;k1)

(ω1 + Ωk1
)(ω2 + ω3 + Ωk1

)(ω1 + ω2 + ω3)
, (5.3.41)
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and so we find poles at ω1 = −ω2 − ω3 and ω1 = −Ωk1 . We can also have ω1 and another external leg on

the same vertex, which gives:

ψ3 =
ω3ω1 ω2

+ (2 ↔ 3)

=
F̃L(ω1, ω2;k3)F̃R(ω3;k3)

(ω3 + Ωk3
)(ω1 + ω2 + Ωk3

)(ω1 + ω2 + ω3)
+ (2 ↔ 3). (5.3.42)

In addition to ω1 = −ω2 − ω3 we also find ω1 = −ω2 − Ωk3
and ω1 = −Ωk2

− ω3.

Three vertices. For ψ3 with three vertices there are 3 different permutations for the location of external

leg. If ω1 is attached to the vertex on the side we have:

ψ3 =
ω2ω1 ω3

+ (2 ↔ 3)

=
FA(ω1;k1)FB(ω2;k1,k2)FC(ω3;k3)

(
1

ω1+ω2+Ωk3
+ 1

ω2+ω3+Ωk1

)

(ω1 + ω2 + ω3)(ω1 + Ωk1
)(ω2 + Ωk1

+ Ωk3
)(ω3 + Ωk3

)
+ (2 ↔ 3). (5.3.43)

Poles are located at ω1 = −ω2 − ω3, ω1 = −Ωk1 , ω1 = −ω2 − Ωk3 and ω1 = −Ωk2 − ω3.

If ω1 is attached to the middle vertex we have:

ψ3 =
ω1ω2 ω3

=
FA(ω2;k2)FB(ω1;k1,k2)FC(ω3;k3)

(
1

ω1+ω3+Ωk2
+ 1

ω1+ω2+Ωk3

)

(ω1 + ω2 + ω3)(ω3 + Ωk3
)(ω1 + Ωk2

+ Ωk3
)(ω3 + Ωk3

)
. (5.3.44)

Here we find a pole at ω1 = −Ωk2 − Ωk3 as well as ω1 = −ω2 − ω3, ω1 = −ω2 − Ωk3 and ω1 = −Ωk2 − ω3.

All these poles correspond precisely to the list of tree-level singularities predicted by the energy-

conservation condition for ψn with n = 1, 2 and 3. Now we move on to consider loop diagrams.

5.3.2 Examples: one loop

At one-loop, the computation of wavefunction coefficients becomes more involved due to the integration

over the loop momentum. To streamline our presentation, we will therefore now focus on polynomial

interactions. We also give only the final results here in the main text, and describe the technical details

of the computations in appendix D.

One vertex. Consider the following diagram:

in which all external legs are to be attached to the single vertex. Define ω1 to be the total energy entering

the vertex. Since there is only one vertex, the energy-conservation condition predicts a branch point at
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the threshold,

ω1 = −min
p

(2Ωp) = −2M, (5.3.45)

where M is the mass of the internal line forming the loop. This diagram corresponds to the integral,

ω1ψ
1-loop
1 =

∫

p

1

ω1 + 2Ωp
, (5.3.46)

and is evaluated explicitly in App. D.2. The result is,

ω1ψ
1-loop
1 =

2ω1

16π2

√
4M2 − ω2

1arcsin

(√
2M − ω1

4M

)
+ analytic , (5.3.47)

see (D.2.5). Note that the UV divergence is analytic in ω1 (and can therefore be absorbed into local

counter-terms). There is a branch point at ω1 = −2M due to the argument of the arcsin exceeding unity,

but otherwise ω1ψ
1-loop
1 is analytic in the complex ω1 plane.

If the internal field is massless, the branch point is located at ω1 = 0, so the branch cut starts at the

location of the tree-level pole. Indeed, taking the massless limit of (5.3.47) gives,

ψ1-loop
1 = − ω1

16π2
log (ω1) + analytic , (5.3.48)

which has a logarithmic branch point at ω1 = 0 (with the conventional branch cut running along the

negative real axis, ω1 < 0). So this simple example agrees with our energy-conservation condition.

Two vertices. Now consider the following two-vertex one-loop diagram:

ω1 ω2

q2

q1 (5.3.49)

which contributes to ψ1-loop
2 . Define k to be the momentum entering the left vertex and exiting the right

vertex, and ω1, ω2 to be the energies entering each vertex. The energy-conservation condition predicts the

following singularities in the complex ω1 plane:

(i) ω1 = −
√
k2 + (M1 +M2)2,

(ii) ω1 = −ω2 − 2M1.

(iii) ω1 = −ω2 − 2M2.

The diagram in (5.3.49) corresponds to the integral:

ω12ψ
1-loop
2 (ω1, ω2; k) =

∫

p

1

(ω1 + Ωq1 + Ωq2)(ω2 + Ωq2)

[
1

ω12 + 2Ωq1

+
1

ω12 + 2Ωq2

]
. (5.3.50)

where q1 = |p| and q2 = |k − p| are the momenta of the internal lines and ω12 = ω1 + ω2 is the total

energy. This integral is evaluated in detail in App. D.3, and given in (D.3.22) in terms of incomplete
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elliptic integrals. For finite values of M and k, it has a branch point at ω1 = −
√
k2 + 4M2 in the complex

ω1 plane, as predicted by the energy-conservation condition.

The second singularity predicted by the energy-conservation condition appears when either M or k

vanish, as shown in (D.3.35) and (D.3.36). For the case of massless internal edges, the incomplete elliptic

integrals simplify to dilogarithms, and (5.3.50) can be written as,

ω12ψ
1-loop
2 =

1

8π2

[
ω2 log (ω1 + k) − ω1 log (ω2 + k)

ω1 − ω2

− ω12

2k

(
1

2
log2

(
ω1 + k

ω2 + k

)
+ Li2

(
k − ω2

k + ω1

)
+ Li2

(
k − ω1

k + ω2

))
+ analytic

]
. (5.3.51)

The singularities in the complex ω1 plane are4

(i) ω1 = −k, from both log(ω1 + k) and Li2

(
k−ω2

k+ω1

)
.

(ii) ω1 = −ω2, from both Li2

(
k−ω1

k+ω2

)
and Li2

(
k−ω2

k+ω1

)
(while the dilogarithm is finite at that point, it is

not smooth).

This list of singularities matches exactly the predictions of the energy-conservation condition. It is also

worth mentioning that the first line of (D.3.35) is not singular at ω1 = ω2 (at fixed k ̸= −ω2), since this

apparent pole has zero residue.

Three vertices. Let’s move on to the most complicated one-loop diagram we will consider, involving

three vertices:

(5.3.52)

Momentum conservation at each vertex fixes all but one of the internal momenta (which we denote by p),

and also sets k1 + k2 + k3 = 0. This diagram then corresponds to the integral,

ω123ψ
1-loop
3 =

∫

p

1

(ω1 + Ωq12 + Ωq31)(ω2 + Ωq12 + Ωq23)(ω3 + Ωq23 + Ωq31)

6∑

perm.

1

(ω123 + 2Ωq12)(ω23 + Ωq12 + Ωq31)
.

(5.3.53)

which is discussed in App. D.4. The singularities expected from the energy-conservation condition are:

(i) ω1 = −minp(Ωq31 + Ωq12). This gives ω1 = −|k1| for massless internal lines.

(ii) ω1 = −ω2 − minp(Ωq23 + Ωq31). This gives ω1 = −ω2 − |k3| for massless internal lines.

(iii) ω1 = −ω3 − minp(Ωq12 + Ωq23). This gives ω1 = −ω3 − |k2| for massless internal lines.

(iv) ω1 = −ω2 − ω3 −
∑2

a=1Ma. This gives ω1 = −ω2 − ω3 for massless internal lines.

4Recall that the dilogarithm Li2(z) has a branch point at z = 1 and the conventional branch cut goes from z = 1 to
z = ∞ along the real axis.
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Evaluating the integral (5.3.53) in full generality is a difficult task in d = 3 dimensions: the main

complication is that the boundary of the integration region for the {Ωq12 ,Ωq23 ,Ωq31} internal energies is a

non-trivial surface (defined by a hyperelliptic curve).

For simplicity, let us consider here the case where all internal fields are massless and let us further

suppose that one of the external fields carries zero spatial momentum, say k3 = 0 (though note that we are

not fixing ω3). In this limit k1 = −k2 (and so we denote their common magnitude as k), and the integration

region degenerates to the same region encountered in the two-vertex diagram above. Consequently ψ1-loop
3

can be written in a closed form in terms of dilogarithms. The full expression is left in App. D.4 (equation

(D.4.19)), however we notice that it is analytic in the complex ω1 plane (at fixed {ω2, ω3, k}) modulo

branch points at:

(i) ω1 = −k, where ψ1-loop
3 ∼ log (ω1 + k),

(ii) ω1 = −ω2, where ψ1-loop
3 ∼ Li2

(
−ω2−k

ω1+k

)
and Li2

(
−ω1−k

ω2+k

)
,

(iii) ω1 = −ω3 − k, where ψ1-loop
3 ∼ log (ω13 + k),

(iv) ω1 = −ω23, where ψ1-loop
3 ∼ Li2

(
−ω23−k

ω1+k

)
and Li2

(
−ω13−k

ω2+k

)
.

This precisely saturates the list of singularities expected from the energy-conservation condition.

Having established the validity of the energy-conservation condition in a number of examples, we now

turn to a robust “proof” that wavefunction integrals generically possess singularities in these locations.

5.4 Landau analysis: first attempt

In this section, we develop the analogue of the Landau analysis commonly used in amplitude literature.

This provides a list of necessary conditions for a point in kinematic space to be singular. We will see that

the list of singularities from the energy conservation condition is contained within the list of singularities

from the Landau analysis.

From the recursion relations we know that ψn can always be written in the following form:

ψn({ω}, {k}) =

∫

p1,...,pL

F ({ω}, {k}, {p})
∏2V+L−2

j=1 Sj({ω}, {k}, {p})
. (5.4.1)

Here Sj are linear functions of the internal and external energies, and F ({ω}, {k}, {p}) can always be

expressed in terms of a sum of products of Sj times analytic functions of k from derivative interactions.

We would like to find all singular points of ψn without explicitly computing the integral. Similar

technology has been developed in the amplitude literature, leading to a set of conditions for singularity

known as the Landau equations (for a review on Landau conditions for amplitudes, see [142], [156], [146]).

We will review some key ideas used to derive the Landau equations, and show how they can be used to

find singularities for wavefunction coefficients as well.

Singularities: one integral variable. Consider the following expression:

f(z1, . . . , zn) =

∫

C

dw g(z1, . . . , zn, w). (5.4.2)
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Figure 5.3: Usual picture for singularities in the case with one integration variable. Here wr gives an
endpoint singularity, while w1 and w2 gives a pinch singularity.

Here C denotes a contour in the complex w plane. g(z1, . . . , zn, w) contains singularities, and their

positions in the complex w plane are determined by an algebraic equation S(z1, . . . , zn, w) = 0. Changing

z1, . . . , zn corresponds to changing the position of poles in the complex w plane.

Singular points in g(z1, . . . , zn, w) can be avoided by deforming the contour C, and this prevents

singularities from developing in f(z1, . . . , zn). However, contour deformation cannot avoid the following

singularities:

• When a singularity approaches the endpoint of the contour C, which is fixed by the boundary

conditions of the integral. This is known as an endpoint singularity.

• When two different singularities approach the contour from opposite sides and pinch the contour in

between. This is known as a pinch singularity.

Singularities: multiple integral variables. In order to illustrate how singularities can develop in

cases with multiple integral variables, let us consider the case of two complex integral variables:

f(z1, . . . , zn) =

∫

C

dw1dw2 g(w1, w2, z1, . . . , zn). (5.4.3)

The hypercontour C is a two (real) dimensional surface in a four (real) dimensional space. In general the

hypercontour would have a set of boundaries, and each of them would be described by an equation:

S̃i = 0. (5.4.4)

For instance, suppose the integration region is given by:

f(z1, . . . , zn) =

∫ ∞

1

dw1

∫ 1

−1

dw2 g(w1, w2, z1, . . . , zn). (5.4.5)

Then the boundaries of the hypercontour would be given by:

S̃1 = w1 − 1 = 0, (5.4.6)

S̃2+ = w2 + 1 = 0, (5.4.7)

S̃2− = w2 − 1 = 0. (5.4.8)
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Figure 5.4: The hypercontour for the integral (5.4.5), sketched in three of the four (real) directions. The
left figure shows the undistorted integration contour. The boundary S̃2+ and S̃2− is indicated by blue
lines, while the boundary S̃1 is indicated by a teal line. Since the equation for S̃2+ and S̃2− only fixes w2,
they are allowed to deform in the imaginary w1 direction, as shown in the middle figure. The right figure
shows the allowed deformation for the boundary S̃1, which is in the imaginary w2 direction.

Notice that each of the equation S̃i = 0 describe a two (real) dimensional surface in a four (real)

dimensional space. This is less constraining than the single integral variable case: since the hypercontour

C is two dimensional, its boundary should be one dimensional. This implies that the boundary of the

contour is not rigidly fixed: we are allowed to deform the boundary as long as it remains on the surface

described by the equation S̃. See Fig. 5.4.

Since the allowed deformations are all constrained on a surface S̃i = 0, the boundary of the con-

tour cannot be deformed in the normal direction of the surface, which is described by the vector with

components:

∂S̃i

∂w
=

(
∂S̃i

∂w1
,
∂S̃i

∂w2

)
. (5.4.9)

Similarly, the singularities for the function g(w1, w2, z1, . . . , zn) are described by algebraic equations of

the form:

Si(w1, w2, z1, . . . , zn) = 0. (5.4.10)

Once again these are two dimensional surfaces, and their normal vectors are ∂Si

∂w . The singular surface in

general may not be planar, since the equation Si = 0 may not be linear.

Given a set of singular surfaces and boundary constraint surfaces, there are three ways where singu-

larities can emerge from the integral I(z1, . . . , zn):

• A singular surface approaches the boundary of the hypercontour in the normal direction of a con-

straint surface, such that no deformation can be carried out to avoid the singular surface. This is

analogous to the endpoint singularities in the one dimensional case.

• Two surfaces approaches each other from opposite sides of the hypercontour, and they pinch the

hypercontour in between. This is analogous to the pinch singularities in the one dimensional case.

• A single surface may become locally cone-like and pinch the contour in the vertex of the cone, see

Fig. 5.6. It is also a pinch singularity, but unlike the single integral variable case, only one singularity

surface is involved. In this case, the normal vector near the vertex satisfies the following:

∂Si

∂w
= 0. (5.4.11)
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Figure 5.5: As the boundary S̃2+ and S̃2− can be deformed in the imaginary w1 direction (indicated by the
blue arrows in the figure), the contour can be deformed downwards to avoid the red surface approaching
from above (along Imw1). However, the boundary is fixed along Rew2, so the contour cannot be deformed
to avoid the magenta surface approaching from that direction, which results in an endpoint singularity.

Figure 5.6: Consider a contour that can be deformed in the vertical direction (indicated by the blue
arrows). In the left panel, the contour can deform downwards to avoid colliding with the red and magenta
surfaces. However, if the surfaces approach from the opposite side as in the middle panel, a contour
deformation cannot avoid the pinch. Finally, a cone like surfaces, such as that in the right panel, can
pinch a contour on its own.

It is also possible to have multiple surfaces pinching the hypercontour, or multiple surfaces approaching

the boundary of the hypercontour. In general, given a function of the form (5.4.5), a singularity can form

if:

• For a subset I of the singularity surfaces and a subset Ĩ of boundary constraints, the following is

satisfied:

Si = S̃j = 0 (i ∈ I, j ∈ Ĩ). (5.4.12)

For amplitudes the analogous condition gives p2i = m2
i . Here I cannot be an empty set, but Ĩ can

be empty.

• For some real and non-zero choice of ai and ãj , the normal vectors of the singularity surfaces in

subset I and boundary constraints in Ĩ must satisfy:

∑

i∈I

ai
∂Si

∂w
+
∑

j∈Ĩ

ãj
∂S̃j

∂w
= 0. (5.4.13)

In other words, the normal vectors are linearly dependent. For amplitudes, this gives
∑

i αipi = 0.
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These are the necessary conditions for the formation of singularities. However, these conditions are not

sufficient: one needs to check whether the singularities actually appear. This is similar to the pseudo

thresholds in amplitudes: the Landau analysis may predict singular points that are not present for physical

configurations. We will see that something similar also occurs for wavefunction coefficients.

Feynman parameters. The constants ai in the normal vector condition looks suspiciously like Feynman

parameters in the usual Landau analysis. Indeed, if we consider the following integral:

ψn(ω1, . . . , ωn) =

∫

p1,...,pL

[
2V+L−2∏

n=1

∫ 1

0

dαn

]
δ(1 −∑αn)F

(
∑2V+L−2

j=1 αjSj)2V+L−2
, (5.4.14)

we find the condition (5.4.13) again, but with ai replaced by the Feynman parameters αi. Just like for

amplitudes, this does not introduce new singularities [142]. In contrast to ai, which is just restricted to

be non-zero, we have αi ∈ [0, 1]. This provides a stricter criterion for singularities to arise in ψn.

5.4.1 Example: massless two site loop

As a first example let’s consider the massless two-vertex integral, which can be written in the following

form (see D.3):

ψ1-loop
2 (ω1, ω2) =

1

8π2(ω1 + ω2)k

∫ ∞

k

dp+

∫ k

−k

dp−
(p+ + p−)(p+ − p−)

(ω1 + ω2 + p+ + p−)(ω1 + p+)(ω2 + p+)
. (5.4.15)

The singular surfaces are:

S1 = ω1 + p+ = 0, (5.4.16)

S2 = ω2 + p+ = 0, (5.4.17)

S3 = ω1 + ω2 + p+ + p− = 0. (5.4.18)

In addition, the boundary is described by the following equations:

S̃1 = p+ − k = 0, (5.4.19)

S̃2+ = p− + k = 0, (5.4.20)

S̃2− = p− − k = 0. (5.4.21)

As an example, consider:

S3 = S̃2+ = S̃1 = 0. (5.4.22)

Solving this gives ω1 + ω2 = 0. Now we check the normal-vector condition:

a3
∂S3

∂p+
+ ã1

∂S̃1

∂p+
+ ã2+

∂S̃2+

∂p+
= a3 + ã1 = 0, (5.4.23)

a3
∂S3

∂p−
+ ã1

∂S̃1

∂p−
+ ã2+

∂S̃2+

∂p−
= a3 + ã2+ = 0. (5.4.24)

Clearly this can be satisfied if a3 = −ã1 = −ã2+. Going through the procedure for all combinations of the
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surfaces, we eventually find the following list of potential singularities:

S1 = S̃1 = 0 ⇒ ω1 = −k, (5.4.25)

S2 = S̃1 = 0 ⇒ ω2 = −k, (5.4.26)

S3 = S̃2+ = S̃1 = 0 ⇒ ω1 + ω2 = 0, (5.4.27)

S3 = S̃2− = S̃1 = 0 ⇒ ω1 + ω2 = −2k, (5.4.28)

S1 = S2 = 0 ⇒ ω1 = ω2 (if ω2 < −k). (5.4.29)

Notice this list is larger than the list of physical singularities. Let’s examine these extra singularities:

• The ω1 + ω2 = −2k singularity is not found in the full expression (5.3.51). This suggests that the

residue of the pole is vanishing.

• For S2 = 0, we must have ω2 < −k. Since we restrict ourselves to positive ω2, the pinch singularity

from (5.4.29) is not visible in the complex ω1 plane. This is linked to the fact that the integral has

a finite value at ω1 = ω2 when ω2 > −k.

Example: massive two site loop

The boundary of integration changes when the internal lines become massive. Consider the case where

both internal lines have the same mass. The integral becomes:

ψ1-loop
2 (ω1, ω2) =

1

8π2(ω1 + ω2)k

∫ ∞

√
k2+4m2

dΩ+

∫ kδ

−kδ

dΩ−
Ω2

+ − Ω2
−

(ω1 + ω2 + Ω+ + Ω−)(ω1 + Ω+)(ω2 + Ω+)
.

(5.4.30)

Here we have:

δ =

√
Ω2

+ − k2 − 4m2

√
Ω2

+ − k2
. (5.4.31)

The details on how to obtain and evaluate this integral are given in D.3. Despite appearances, the boundary

of the integration contour is described by only one equation:

S̃ = (Ω2
+ − k2)(Ω2

− − k2) + 4m2k2 = 0. (5.4.32)

Here we have three singularity surfaces:

S1 = ω1 + ω2 + Ω+ + Ω− = 0, (5.4.33)

S2 = ω1 + Ω+, (5.4.34)

S3 = ω2 + Ω+. (5.4.35)

Going through the Landau analysis again gives us the end-point singularity from a single surface:

S2 = S̃ = 0 ⇒ ω1 = −
√
k2 + 4m2, (5.4.36)

S1 = S̃ = 0 ⇒ ω1 + ω2 = −2m. (5.4.37)

102



We also have an end-point singularity from two surfaces:

S1 = S2 = S̃ = 0 ⇒ ω1 = −k
√
ω2
2 − k2 − 4m2

√
ω2
2 − k2

. (5.4.38)

Here I have picked the negative solution so that S1 can be satisfied, since Ω+ is positive. However, this

singularity is in fact spurious. To see that this is indeed the case, notice that the constraints S1 = S2 = 0

imply

ω2 + Ω− = 0. (5.4.39)

Since |Ω−| ≤ kδ ≤ k, we have ω2 ≤ k in order for the singularity to appear. In fact one can check that

ω2 < k unless we take ω2
1 → ∞. However, from the kinematics of the system, ω2 ≥ k. Therefore, as long

as we restrict ourselves to values of ω2 that are physically allowed, we will not encounter this singularity.

This is verified in table D.3.

Example: three site loop

For more complicated graphs it may prove difficult to write down variables like Ω+ and Ω−. Therefore

it is instructive to understand how to carry out Landau analysis with the loop momentum p, and derive

the singularities from our general arguments. We will use the three vertex integral as an example. The

integral is:

ψ1-loop
3 =

∫

p

1

(ω2 + Ωq12 + Ωq23)(ω2 + ω3 + Ωq12 + Ωq31)

× 1

(ω1 + ω2 + ω3 + 2Ωq31)(ω1 + Ωq12 + Ωq31)(ω3 + Ωq23 + Ωq31)
, (5.4.40)

Here I assume the masses of the internal lines are m. Now we will analytically continue in p. Since we

are integrating over all p there is no boundary to the integration contour. The singularity surfaces are:

S1 = ω2 + Ωq12 + Ωq23 = 0, (5.4.41)

S2 = ω2 + ω3 + Ωq12 + Ωq31 = 0, (5.4.42)

S3 = ω1 + ω2 + ω3 + 2Ωq31 = 0, (5.4.43)

S4 = ω1 + Ωq12 + Ωq31 = 0, (5.4.44)

S5 = ω3 + Ωq23 + Ωq31 = 0. (5.4.45)

Since Ωp =
√
|p|2 +m2, the singularity surfaces are not linear anymore. As a result a single surface can

pinch a contour. As an example consider S3 = 0. The normal vector condition gives:

q31

Ωq31

=
p− k1

Ωq31

= 0. (5.4.46)

This is solved by p = k1, and Ωq31 = m. Putting this back into S3 = 0 gives:

ω1 + ω2 + ω3 = −2m. (5.4.47)
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Similarly, let us write down the rest of the single pinch singularities:

S1 = 0 ⇒ ω2 +
√
|k1|2 + 4m2 = 0, (5.4.48)

S2 = 0 ⇒ ω2 + ω3 +
√

|k1|2 + 4m2 = 0, (5.4.49)

S4 = 0 ⇒ ω1 +
√
|k1|2 + 4m2 = 0, (5.4.50)

S5 = 0 ⇒ ω3 +
√
|k3|2 + 4m2 = 0. (5.4.51)

This list of singularity is related to the list produced from our general argument, up to some permuta-

tion. Naturally, when we take the massless limit, this simply reproduces the list of singularities from the

expression we computed.

5.4.2 Thresholds for general diagrams

Thresholds for massive fields From the recursive relations for the wavefunction (5.4.1), the equations

for the singularity surfaces have the following form:

Si = ω1 +
∑

e∈E

ωe +
∑

i∈I

ciΩi, (5.4.52)

where E is a subset of external legs and I is a subset of internal legs and ci being either 1 or 2. The

form of these singularity surfaces comes from the recursion relations in section 5.3: each external energy

can only appear once within the expression. Internal energy can only appear at most with a factor of 2,

coming from cutting a loop diagram.

We will now show the following for massive fields:

Landau conditions for wavefunction coefficients

Given (5.4.52), the singularities corresponding to the energy-conservation condition are

found by solving:

Si = 0, (5.4.53)

∑

i∈I

ci
∂Ωi

∂pl

= 0, ∀pl ∈ {p}. (5.4.54)

We will analytically continue in the loop momentum pl ∈ {p} and carry out the Landau analysis. Since

the numerator in the expression (5.4.1) is a sum of products of Si and possibly powers of the momenta

from spatial derivative interactions, to find singularities we can simply focus on the denominators, i.e.,

we simplify ψn until the numerator no longer contains any factor of Si, we carry out the Landau analysis

term by term and finally we sum over all the singularities of each individual term.

The full list of singularities from the Landau analysis includes:

• Endpoint singularities. Since we are integrating over all pl, there is no boundary for the hypercontour.

As a result we cannot have endpoint singularities, in these integration variables.

• Pinching the contour with a single surface. By considering the cutting procedure in 5.3, it is clear

that each Si corresponds to the total energy entering a subgraph of the Feynman diagram, and
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so solving Si = 0 corresponds to energy conservation. In terms of the components of the loop

momentum pl, the normal vector condition reads:

∂S

∂pl

= 0 ⇒ ∂

∂pl

∑

i∈I

ciΩi = 0. (5.4.55)

Unlike the amplitude case, this equation can be consistent with setting only one Si = 0 5. In fact

this equation is equivalent to extremizing
∑

i∈I ciΩi with respect to the loop momentum pl. Observe

that for an arbitrary k,
∂2Ω|p+k|
∂pi∂pj

=
δij

Ω|p+k|
− (p+ k)i(p+ k)j

Ω3
|p+k|

. (5.4.56)

Since Ωp > p2 ≥ 0 this is a positive definite matrix. When we take the second derivative of
∑

i∈I ciΩi

we simply get a sum of positive definite matrices (with positive coefficients), and the resulting matrix

is also positive definite. Therefore when we solve (5.4.55), the solution corresponds to a minimum.

Therefore, Si = 0 satisfies:

ω1 = −
∑

e∈E

ωe − min
pl

∑

i∈I

ciΩi, (5.4.57)

where the minimization is with respect to all pl ∈ {p}. This is exactly the type of singularities

obtained by the energy-conservation condition.

• Pinches from multiple surfaces. Given two singularity surfaces S1 and S2 with subset of external

legs E1 and E2, either E1 ⊆ E2 or E2 ⊆ E1. This comes from the cutting procedure used for the

recursion representation of the wavefunction: the set of external vertices in a cut diagram must be

smaller after every cut. This property of Si gives us a nice picture of what a multiple surface pinch

would mean: the energy going into part of a diagram vanishes, and simultaneously the energy going

into a subset of the diagram also vanishes.

At tree level, this type of singularity doesn’t give us new poles in ω1. Instead, it tells us about

non-analyticity in the other ωe. This is because we can just take one of the singularity surfaces, say

S1, to write down:

ω1 = −
∑

e∈E1

ωe −
∑

i∈I1

ciΩi. (5.4.58)

This can then be used to remove any ω1 dependence from the rest of the expression. Any further

non-analyticities of the expression are a result of analytically continuing the other ωe from their

physically allowed values.

In the case of a two-vertex loop with massive fields, we used the Landau analysis and found that it

can only occur for unphysical values of ω2, and by explicitly computing the integral we found that

the singularity is indeed spurious.

However, it is difficult to prove that these multiple surface pinches are always spurious. In amplitudes,

when we look at more complicated graphs, such as the three-vertex graph, we discover that for certain

external kinematics there are singularities known as anomalous thresholds. It might be possible that

5For amplitudes Si = p2i −m2
i = 0, and ∂Si

∂pl
= 2pi = 0. The normal vector condition requires pi = 0 which is not possible

if Si = 0 as well.
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by looking at multiple surface pinches for the three-vertex graph we may discover new singularities

similar to these anomalous thresholds, however we leave this for future work.

Using Landau analysis, we have successfully derived the list of singular points from our physical argu-

ment in section 5.3. Once again, the full list of singularities from Landau analysis is over-complete, but

these extra poles are (likely) removable by considering the external kinematics.

Thresholds for massless fields. If we attempt to directly extend the proof above to the case of massless

particles, we run into the following issues even for single pinch singularities:

• Since Ωpl
= |pl|, when we take derivative to obtain the normal vector condition, we get ∂

∂pl
Ω|pl| =

pl

|pl| . For pl = 0 this is ill-defined. To deal with this problem one needs to regulate Ωpl
properly. An

example would be introducing artificial boundaries of integration so that |pl| never reaches zero, for

example:

S̃ = |pl| − ϵ = 0, (5.4.59)

then take ϵ to zero. However, doing this procedure also introduces spurious singularities, such as the

ω1 + ω2 = −2k pole found in the two-vertex example.

• When we take the second derivative of Ω|p+k|, the result is:

∂2|p + k|
∂pi∂pj

=
δij

|p + k| −
(p+ k)i(p+ k)j

|p + k|3 . (5.4.60)

This is only positive semi-definite, rather than positive definite. Therefore, the solution may not be

a minimum.

For the massless case, the Landau analysis would provide us with a list that matches our physical intuition

in section 5.3, with some extra singularities. This is analogous to the case in amplitudes, where we get

extra soft/collinear singularities for massless particles. The ω1 +ω2 = −2k pole in the two-vertex example

above is one such singularity. In that case the residue is zero, so it does not give rise to new poles or

branch cuts.
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Chapter 6

Amplitude representation of the

wavefunction

The result in the previous section is based on the recursion representation of the wavefunction. While this

representation is convenient for practical calculations, it creates a disconnect in language from existing

amplitude literature. In amplitude literature, singularities are expressed in terms of cutting internal lines,

and in 5.1 we noted this is connected to unitarity cuts (which in turn is related to discontinuity in the

complex s plane. For the wavefunction the location is expressed in terms of circling sub-diagrams, and

unitarity is related to a ”Disc” operator which is not the usual discontinuity. This disconnect makes it

difficult to translate ideas from wavefunction analyticity to amplitude analyticity. For instance, are there

normal thresholds in the wavefunction just like in amplitudes? Are they linked to unitarity in any way?

Are there any anomalous thresholds in the wavefunction?

In this section we bridge the disconnect between amplitude and the wavefunction by using the amplitude

representation of the wavefunction. This representation allow us to write down the wavefunction in

expressions familiar in amplitudes literature. We will then show that this representation recovers a well-

known result: the total energy residue of the wavefunction is given by the amplitude. We will then study

the analytic structure of the wavefunction again by using Landau analysis on the amplitude representation

of the wavefunction. There we will see the singularities of the wavefunction can be divided into two sets:

amplitude-type singularities, which can be mapped to singularities in amplitudes, and wavefunction-type

singularities, which has no analogue in amplitudes. We will conclude by studying the consequences of the

recently discovered cosmological KLN theorem on the analytic structure of in-in correlators: namely, the

wavefunction-type singularities are not present in in-in correlators.

6.1 Amplitude representation of the wavefunction

In order to obtain the amplitude representation of the wavefunction we need to write down the bulk-

to-bulk propagator in a way reminiscent to the Feynman propagators in amplitudes. For flat space the

bulk-to-bulk propagator is given by the following:

G(p, t1, t2) =
1

2Ωp

(
θ(t1 − t2)eiΩp(t2−t1) + θ(t2 − t1)eiΩp(t1−t2) − eiΩp(t1+t2)

)
. (6.1.1)
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This propagator is simply the Feynman propagator plus a homogeneous piece, which enforces the boundary

condition that the bulk-to-bulk propagator vanishes as t1ort2 → 0.

Now we can use the following:

θ(t1 − t2) =

∫ ∞

−∞

ds

2πi

−eis(t2−t1)

s+ iϵ
, (6.1.2)

Unlike the usual case with the Feynman propagator, we also have this extra boundary piece eiΩp(t1+t2),

and we must also convert the boundary piece into an integral form as well. We then obtain:

G(p, t1, t2) =

∫ ∞

−∞

ds

2πi

−eis(t1−t2) + eis(t1+t2)

s2 − Ω2
p + iϵ

. (6.1.3)

Here this s integral is understood as a contour integral which closes in the lower half complex plane. The

first term is simply the Feynman propagator, and the second term is the boundary piece. From now on

I will suppress the integration region for brevity. In addition, I will also sometimes refer to s as internal

energy.

Now we symmetrize with respect to s, and we obtain the following expression1:

G(p, t1, t2) =
1

2

∫
ds

2πi

(eist1 − e−ist1)(eist2 − e−ist2)

s2 − Ω2
p + iϵ

. (6.1.4)

Notice how this looks like a Feynman propagator dressed with exponential factors. This is what allow

us to write the wavefunction in a form similar to an amplitude: take this expression for the bulk-to-bulk

propagator, substitute this into the wavefunction, then carry out the time integral first.

Similar representations have been derived in [159, 160], where it is used to study the wavefunction at

tree level. We shall see that this representation can be used to study the analyticity of the wavefunction

at loop level as well.

Writing down the wavefunction Given a Feynman diagram, we can write down the flat space wave-

function as:

ψn =

∫ [
ds1
2πi

. . .
dsI
2πi

]∏

a

[∫ 0

−∞
dta ie

iωata

] ∫ ∏

l

dDpl
(2π)D

∏

i

(eisitl − e−isitl)(eisitr − e−isitr )

s2i − Ω2
pi

+ iϵ
. (6.1.5)

Here i labels bulk-to-bulk propagators (and I is the total number of bulk-to-bulk propagators), a labels each

vertex, l labels the loop momentum to be integrated over, and tl, tr labels to which vertex the propagator

is attached. Note that the dimension D here labels the boundary dimension, and this expression does

not suggest that the wavefunction enjoys the full (D + 1)−dimension Lorentz invariance. If we take this

expression, integrate over s and then integrate over t, we would obtain the usual recursion expression.

The time integrals on each individual vertex factorize, and are straightforward to do. For a vertex with

m internal propagators attached, it has the form:

D̃a = i

∫ 0

−∞
dta e

iωata

m∏

j=1

(eisjta − e−isjta) =

∫ 0

−∞
dta e

iωata

m∏

j=1


∑

σj=±
σje

iσjsjta


 . (6.1.6)

1This expression was first derived in the context of AdS/CFT, see [157,158].
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We also regulate the integral by sending ω → ω − iϵ. This gives:

D̃a =
∑

σj=±

σ1σ2 . . . σm
ωa +

∑
j σjsj − iϵ

. (6.1.7)

As a simple example consider that case where there are two bulk-to-bulk propagators attached to vertex

a. The time integral has the form:

D̃a = i

∫ 0

∞
dta e

iωata(eis1ta − e−is1ta)(eis2ta − e−is2ta). (6.1.8)

It is not hard to see that this gives:

D̃a =
1

ωa + s1 + s2 − iϵ
− 1

ωa − s1 + s2 − iϵ
− 1

ωa + s1 − s2 − iϵ
+

1

ωa − s1 − s2 − iϵ
, (6.1.9)

which is indeed the (6.1.7) for j = 2.

Putting this back into the expression (6.1.5) gives us:

ψn =
1

2I

∫ [
ds1
2πi

. . .
dsI
2πi

]∏

a

D̃a(ωa, {s})

∫ ∏

l

dDpl
(2π)D

∏

i

1

s2i − Ω2
i + iϵ

. (6.1.10)

This representation for the wavefunction holds for graphs with any topology at any loop order 2. Notice

how the momentum integral resembles the amplitude of the same Feynman diagram in D-dimension, which

is given by:

An =

∫ ∏

l

dDpl
(2π)D

∏

i

1

Ω2
i − iϵ

. (6.1.11)

We will refer to the momentum integral as the amplitude-like part of the wavefunction. Also, when

integrating over s,
∏

a D̃a fixes s in terms of ω, the external energies. For this reason we will call it the

the energy-fixing kernel (or just kernel in short).

Readers familiar with the wavefunction may wonder if this is connected with the fact that the total

energy pole of the wavefunction is the amplitude of the same diagram. We shall see in the next section

that this is indeed the case: when we expand the energy-fixing kernel and do the s-integral, we will obtain

the amplitude for a d+ 1-dimension amplitude alongside some subleading terms.

First example: tree level exchange In order to demonstrate how the formalism works, let us consider

a two site tree level exchange diagram.

ω2ω1

Figure 6.1: Tree level exchange diagram

2In [161] similar ideas have been explored for in-in correlators for conformally coupled scalars in dS. There the authors
were able to express the integrand in a Lorentz invariant expression as well.
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The wavefunction coefficient is:

ψ2 =
(−i)2

2

∫ 0

−∞
dt1

∫ 0

−∞
dt2

∫
ds

2πi
eiω1t1

(eist1 − e−ist1)(eist2 − e−ist2)

s2 − Ω2
p + iϵ

eiω2t2 (6.1.12)

Now do the time integral:

ψ2 =
1

2

∫
ds

2πi

[
1

ω1 + s− iϵ
− 1

ω1 − s− iϵ

] [
1

ω2 + s− iϵ
− 1

ω2 − s− iϵ

]
1

s2 − Ω2
p + iϵ

(6.1.13)

This can be simplified into:

ψ2 =
1

2

∫
ds

2πi

4s2

(ω2
1 − s2 − iϵ)(ω2

2 − s2 − iϵ)

1

s2 − p2 −m2 + iϵ
(6.1.14)

Here 1
s2−p2−m2+iϵ is indeed the usual expression for the exchange diagram in amplitudes. The energy-fixing

kernel is given by 4s2

(ω2
1−s2−iϵ)(ω2

2−s2−iϵ)
.

Let us try and recover the usual recursion expression. We need to remember that the s integral contour

encloses the lower half complex plane, so poles like s = −ω1 + iϵ are not picked up. This gives us the

isolated poles:

ψ2 =
1

2

(
2ω1

(ω2
2 − ω2

1)(ω2
1 − Ω2

p)
+

2ω2

(ω2
1 − ω2

2)(ω2
2 − Ω2

p)
− 2Ωp

(ω2
1 − Ω2

p)(ω2
2 − Ω2

p)

)
. (6.1.15)

Notice this expression can also be written as:

ψ2 =
1

ω1 + ω2

( −ω1

(ω1 − ω2)(ω2
1 − Ω2

p)
+

ω2

(ω1 − ω2)(ω2
2 − Ω2

p)

)
− Ωp

(ω2
1 − Ω2

p)(ω2
2 − Ω2

p)
. (6.1.16)

The total energy pole has been isolated from the rest of the contribution, which only has poles when

ω1 = ±Ωp or ω2 = ±Ωp.There is no folded singularity, i.e. no divergences as ω1 → ω2, since the terms in

the bracket cancel. If we take ω1 + ω2 → 0 we obtain:

lim
ω1+ω2→0

ψ2 =
1

ω1 + ω2

(
1

−ω2
1 + Ω2

p

)
=

1

ω1 + ω2

(
1

−ω2
1 + |p|2 +m2

)
(6.1.17)

We indeed recover the expression for the amplitude as a total energy pole.

We can further simplify this to obtain the usual recursion expression:

ψ2 =
1

(ω1 + ω2)(ω1 + Ωp)(ω2 + Ωp)
. (6.1.18)

In this simple example we can see how the wavefunction can be separated into a total energy pole (and

its residue is the amplitude), and an extra piece which is finite when total energy is zero.

From the Cosmological optical theorem to the optical theorem for amplitude In 5.1 we noted

that the locations of normal thresholds of the S-matrix is linked to unitarity through the optical theorem.

Our result so far makes this connection obscure. On one hand singularities are expressed in terms of

circling subdiagrams, which makes its connection to any sort of discontinuity unclear. On the other hand
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it is unclear how the ”Disc” operator used in the cosmological optical theorem is linked to the usual notion

of discontinuity.

The amplitude representation provide us a way to relate the disc operator defined in the Cosmological

Optical Theorem to the imaginary part of amplitudes. The disc operator used in the COT is defined as

follows [100]:

Disc
k1,...,kn

f(k1, . . . , kn, kn+1, . . . , km, {k}) = f(k1, . . . , kn, kn+1, . . . , km, {k})

− f∗(k1, . . . , kn,−k∗n+1, . . . ,−k∗m,−{k}). (6.1.19)

Now notice the following: the kernel is written as a product of D̃a, and in general the following is true:

• If the number of internal lines attached to the vertex is an odd number, we have:

Disc
{s}

D̃a = 0. (6.1.20)

• If the number of internal lines attached to the vertex is an even number, we have:

Disc
{s}

D̃a = 2D̃a. (6.1.21)

To see this, consider a vertex connected to a single bulk-to-bulk propagator. Then we have:

Disc
s

[
1

ω + s− iϵ
− 1

ω − s− iϵ

]
=

1

ω + s− iϵ
− 1

ω − s− iϵ
− 1

−ω + s+ iϵ
+

1

−ω − s+ iϵ
= 0. (6.1.22)

Another example a vertex connected with two bulk-to-bulk propagators. Here we have:

Disc
s

[
1

ω + s1 + s2 − iϵ
+

1

ω − s1 − s2 − iϵ

]

=
1

ω + s1 + s2 − iϵ
+

1

ω − s1 − s2 − iϵ
− 1

−ω + s1 + s2 + iϵ
− 1

−ω − s1 − s2 + iϵ

= 2

[
1

ω + s1 + s2 − iϵ
− 1

ω − s1 − s2 − iϵ

]
. (6.1.23)

Hence,

Disc
s1,s2

[
1

ω + s1 + s2 − iϵ
− 1

ω − s1 + s2 − iϵ
− 1

ω + s1 − s2 − iϵ
+

1

ω − s1 − s2 − iϵ

]

= 2

[
1

ω + s1 + s2 − iϵ
− 1

ω − s1 + s2 − iϵ
− 1

ω + s1 − s2 − iϵ
+

1

ω − s1 − s2 − iϵ

]
. (6.1.24)

It is easy to see how this generalizes to cases with more bulk-to-bulk propagators attached.

When the disc operator acts on the energy-fixing kernel, it either vanishes or reproduce the energy-

fixing kernel. It can also act on the amplitude like part, which will give us the imaginary part of the

amplitude. We know in amplitudes that the imaginary part of the amplitude is related to cutting internal

lines [103]. As a result this may help us link between the optical theorem in amplitudes and COT.

As an example let us consider the tree level exchange diagram. Here the disc of the energy-fixing kernel
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vanishes. We have (after restoring the coupling constant λ on each vertex):

Disc
Ωp

ψ2 =
1

2

∫ ∞

−∞

ds

2πi

4s2

(ω2
1 − s2 − iϵ)(ω2

2 − s2 − iϵ)
λ2(−2πiδ(s2 − Ω2

p + iϵ)) (6.1.25)

We can use the delta function to do the integral, which gives:

Disc
Ωp

ψ2 =
2Ωpλ

2

(ω2
1 − Ω2

p)(ω2
2 − Ω2

p)
=

λ2

2Ωp
Disc
Ωp

[
1

ω1 + Ωp − iϵ

]
Disc
Ωp

[
1

ω2 + Ωp − iϵ

]
. (6.1.26)

Of course we recover the usual result from the COT. However, this may become helpful in establishing

positivity bounds. For instance, since the imaginary part of the amplitude needs to have a positive residue

by unitarity, we have λ2 positive as well (i.e. λ is real). Therefore we already can establish that Discψ2

must be positive if ω1 > Ωp and ω2 > Ωp, i.e. Disc of ψ2 is positive in the physical regime.

For one loop diagrams there are a few complications: namely, the disc of the energy-fixing kernel may

not vanish (for examples see Appendix E). But in some cases such as the two site loop (i.e. fig. 6.4) we

can still write the disc of the wavefunction as the imaginary part of the amplitude integrated against the

energy-fixing kernel. We leave a systematic study of unitarity and positivity bounds for the wavefunction

at loop level for the future.

6.2 One loop wavefunction as amplitudes

This new representation of the wavefunction becomes a lot more useful when we start tackling loops. It

is known that for tree level, the wavefunction has a total energy pole, and the residue gives the flat space

amplitude [81, 114, 162, 163]. Using this new representation of the wavefunction, we can show that the

wavefunction can be written as an amplitude divided by the total energy, plus some remainder terms which

can be written down explicitly3. Since the wavefunction has a momentum integral, there are potentially

UV divergences. We will see that the amplitude part of the wavefunction is the most UV divergent part,

and every remainder term cannot contribute to UV divergences that are more severe than the amplitude.

6.2.1 Total energy pole

Let us first look at a heuristic argument on why the total energy pole gives the amplitude at one loop.

ω1 ω3

ω5

ωn

ω2

ω4

Figure 6.2: Diagram for an n site one loop wavefunction. External lines have been omitted.

3In [81] a similar representation was written down at tree level from the perspective of the cosmological polytope. One can
then extend the representation to loop level by doing contour integrals over tree level wavefunctions. For our representation
we make no explicit reference to tree level wavefunctions, however it would be interesting to see if similar relations exist in
our representation as well.
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An n site one loop wavefunction has the following form:

ψn =
1

2n

∫ n∏

j=1

dsj
2πi

D̃j

∫

p

n∏

l=1

1

s2l − Ω2
pl

. (6.2.1)

Here D̃j is given by:

D̃j =
1

ωj + sj−1 + sj − iϵ
− 1

ωj − sj−1 + sj − iϵ
− 1

ωj + sj−1 − sj − iϵ
+

1

ωj − sj−1 − sj − iϵ
. (6.2.2)

(and I have set s0 = sn).

If we expand the product of D̃j we find that the wavefunction has the form:

ψn =
1

2n

∫ n∏

j=1

dsj
2πi

1

ωj + sj − sj−1 − iϵ

∫

p

n∏

l=1

1

s2l − Ω2
pl

+ (Remainder) (6.2.3)

We will say more about the remainder terms below.

Now do the sn−1 contour integral. We close the contour in the lower half plane. This picks up the two

poles sn−1 = ωn + sn and sn−1 = Ωp(n−1) separately, and gives:

ψn =
1

2n

∫
dsn
2πi



n−2∏

j=1

dsj
2πi

1

ωj + sj − sj−1


 1

ωn−1 + ωn + sn − sn−2

∫

p

n−2∏

l=1

1

s2l − Ω2
pl

1

(sn + ωn)2 − Ω2
p(n−1)

1

s2n − Ω2
pn

+
1

2n

∫
dsn
2πi



n−2∏

j=1

dsj
2πi

1

ωj + sj − sj−1



∫

p

1

ωn−1 + Ωp(n−1) − sn−2

1

ωn + sn − Ωp(n−1)

n−1∏

l=1

1

2Ωp(n−1)

1

s2l − Ω2
pl

+ (Remainder). (6.2.4)

We can then keep doing the contour integrals successively, i.e. do the sn−2 integral, then the sn−3 integral,

and so on. Now notice the following:

• If we keep picking up the poles only from the kernel, i.e. from the ωj + sj − sj−1, then we will get

an overall ωT =
∑n

j=1 ωj in front. This is because the set of sj − sj−1 are not linearly independent:

when we do the s1 integral, we would get s1 =
∑n

j=2 ωj + sn, and substituting this into ω1 + s1 − sn

gives the total energy pole.

• If we pick up any poles from the propagators, i.e. take sj = Ωpj , then the Ωpj enter into the kernel,

and we would not get a total energy pole at the end.

Let’s look at the total energy pole first. The total energy pole is:

ψn =
1

2n
1

ωT

∫
dsn
2πi

∫

p

n∏

l=1

1

s̃2l − p2n −m2
+ . . . . (6.2.5)

Here s̃l = sn +
∑n

j=l+1 ωj . This is just integrand for an amplitude: energy at each vertex is conserved (see

the diagram 6.3), and we obtain the
∫
dd+1p integral measure for the amplitude by setting sn = p0. Also

worth noting is that the whole integral scales as pD+1−2n in D-dimensions.
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ωn ωn−1

ωn−2

sn

sn−1

sn−2

Figure 6.3: n site one loop diagram. Consider energy flowing clockwise, and let ωl be energy entering the
loop for vertex l. Clearly energy is conserved at each vertex if sn−1 = ωn + sn, sn−2 = ωn−1 + ωn + sn,
and so on.

What about the other poles? As an example let us consider the second line of (6.2.4). If we do the

other integrals and take the poles from the kernel this gives4:

∫

p

1

2Ωp(n−1)(ωT − ωn−1 − Ωp(n−1))

n−1∏

l=1

1

s2l − Ω2
pl

(6.2.6)

This integral scales as pD−2n in D-dimensions. It is less divergent than the total energy pole. A similar

story applies to any other terms which we pick up a pole from the propagators.

The ”remainder” terms Let’s talk about the remainder terms in (6.2.4). In general, each term looks

like: ∫ n∏

j=1

dsj
2πi

1

ωj ± sj ± sj−1 − iϵ

∫

p

n∏

l=1

1

s2l − Ω2
pl

(6.2.7)

• If the set of ±sj ± sj−1 in the kernel of the term are linearly independent, then one can always do

all the s integrals without picking up any poles from the propagator. In this case we would not get

a total energy pole, and the resulting momentum integral scales like pD−2n.

• Whenever we pick up poles from the propagator we get a momentum integral which scales like pD−2n,

for reasons explained above.

As a result the remainder terms can never lead to UV divergences that are more severe than the total

energy pole. For instance, in D = 3 and n = 2, we expect that only the total energy pole has a UV

divergence, while the remainder terms are all finite. We will confirm this soon.

6.2.2 Example: two site loop

Let us look at the simple example of a two site loop. Here we will write down the wavefunction in terms

of the amplitude A2, as well as ψsub
2 , a collection of terms which are subleading as ωT → 0 and are less

UV divergent than the amplitude.

The wavefunction is:

ψ2 =
1

4

∫
ds1
2πi

ds2
2πi

D̃1D̃2

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

, (6.2.8)

where D̃1 is given by:

D̃1 =
1

ω1 + s1 + s2 − iϵ
− 1

ω1 − s1 + s2 − iϵ
− 1

ω1 + s1 − s2 − iϵ
+

1

ω1 − s1 − s2 − iϵ
, (6.2.9)

4One needs to be careful about the iϵ prescription here: For example, take s = p− iϵp, I may get terms like ωj + sj − p+
iϵp − iϵj . Depending on the size of ϵp and ϵj this pole may not be picked up.
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s2

s1

k

ω1 ω2

Figure 6.4: Two site one loop diagram

and D̃2 is obtained simply by replacing ω1 with ω2. We can simplify this expression5 to obtain:

ψ2 =

∫
ds1
2πi

ds2
2πi

1

ω1 + s1 + s2 − iϵ1

[
1

ω2 + s1 + s2 − iϵ2
− 1

ω2 − s1 + s2 − iϵ2

− 1

ω2 + s1 − s2 − iϵ2
+

1

ω2 − s1 − s2 − iϵ2

] ∫

p

1

s21 − Ω2
p1 + iϵp1

1

s22 − Ω2
p2 + iϵp2

. (6.2.10)

To simplify the wavefunction, do the s2 integral first, where the contour is closed in the lower half plane6.

The total energy pole comes from the fourth term in the bracket in (6.2.10), which integrates to:

ψ2 =

∫
ds1
2πi

∫

p

−1

ωT

1

(s21 − Ω2
p1)((ω2 − s1)2 − Ω2

p2)
+

1

(ω1 + s1 + p2)(ω2 − s1 − p2)

1

2Ωp2(s21 − Ω2
p1)

+ . . .

(6.2.11)

Relabelling s1 as p0, we have:

ψ2 =
i

ωT

∫
dD+1p

(2π)D+1

1

(p20 − |p|2 −m2)((ω2 − p0)2 − |k− p|2 −m2)
+ ψsub

2 (6.2.12)

The integrand is exactly the amplitude, where the external four momentum entering the loop is (ω2,k).

However since the result should be symmetric with respect to exchange of ω1 and ω2, we symmetrize the

result to obtain:

ψ2 =
1

2ωT

(
A(−ω2

1 + |k|2) + A(−ω2
2 + |k|2)

)
+ ψsub

2 , (6.2.13)

where

A(−ω2 + |k|2) = i

∫
dd+1p

(2π)d+1

1

(p20 − |p|2 −m2)((ω − p0)2 − |k− p|2 −m2)
(6.2.14)

Subleading terms In this simple case we can write down ψsub
2 explicitly. It is given by:

ψsub
2 = ψFF

2 + ψFB
2 + ψBB

2 , (6.2.15)

ψFF
2 =

∫
ds1
2πi

∫

p

1

(ω1 + s1 + Ωp2)(ω2 − s1 − Ωp2)

1

2Ωp2(s21 − Ω2
p1)

, (6.2.16)

ψFB
2 = −

∫
ds1
2πi

∫

p

1

(ω1 + s1 + Ωp2)(ω2 − s1 + Ωp2)

1

2Ωp2(s21 − Ω2
p1)

− (Ωp1 ↔ Ωp2), (6.2.17)

ψBB
2 =

∫

p

1

(ω1 + Ωp1 + Ωp2)(ω2 + Ωp1 + Ωp2)
. (6.2.18)

5Or just use the expression (6.1.3) and do the time integral
6I will also take ϵ2 < ϵp2
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There is a way to understand why the remaining terms are organised in this way. Notice that:

G(p, t1, t2) =

∫ ∞

−∞

ds

2πi

eis(t1+t2) − eis(t1−t2)

s2 − Ω2
p + iϵ

= GF (p, t1, t2) −GB(p, t1, t2), (6.2.19)

where GF (p, t1, t2) is the Feynman propagator and GB(p, t1, t2) is the boundary term added. Therefore,

we can always organise ψ2 as:

ψ2 =

∫
dt1

∫
dt2

∫

p

eiω1t1eiω2t2 (GF (p1)GF (p2) −GF (p1)GB(p2) −GB(p1)GF (p2) +GB(p1)GB(p2)) .

(6.2.20)

Now it is clear why we can separate the terms as written above:

• The total energy pole, i.e. A/ωT , always comes from the GFGF term, since the amplitude is

computed with Feynman propagators in the first place. However, we get extra terms that are

encapsulated in ψFF
2 , coming from picking up the pole in the propagator in the s2 integral. This

reflects the fact that we are not integrating time from −∞ to ∞, and so there are extra terms to

compensate.

• The ψBB
2 term comes from the GBGB term. No nested time integrals are required to evaluate this

term, hence its form is simpler than the other remainder term.

• The ψFB
2 term comes from the GBGF term, i.e. we are mixing contributions from the Feynman

propagator and the boundary term. In this simple case ψFB
2 can actually be further simplified to be:

ψFB
2 = −

∫

p

1

4Ωp1Ωp2

[
1

(ω1 + Ωp1 + Ωp2)(ω1 + ω2 + 2Ωp1)
+

1

(ω2 + Ωp1 + Ωp2)(ω1 + ω2 + 2Ωp1)

+
1

(ω1 + Ωp1 + Ωp2)(ω1 + ω2 + 2Ωp2)
+

1

(ω2 + Ωp1 + Ωp2)(ω1 + ω2 + 2Ωp2)

]
. (6.2.21)

As we will see in the next section, these terms will give rise to singularities that are not present in

amplitudes.

6.2.3 Example: three site loop

Let us move on to the example of a three site loop.

ω2

ω1 ω3

s2s1

s3

Figure 6.5: The three site one loop graph.

The wavefunction is:

ψ3 =
1

8

∫
ds1
2πi

ds2
2πi

ds3
2πi

D̃1D̃2D̃3

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

. (6.2.22)
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Here we have:

D̃i =
1

ωi + si + si−1 − iϵ
− 1

ωi − si + si−1 − iϵ
− 1

ωi + si − si−1 − iϵ
+

1

ωi − si − si−1 − iϵ
, (6.2.23)

and s0 = s3. Once again we can simplify this to (suppressing the iϵ in the denominator of the kernel):

ψ3 =

∫
ds1
2πi

ds2
2πi

ds3
2πi

(
1

k1 + s1 − s3
− 1

k1 + s1 + s3

)(
1

k2 + s2 − s1
− 1

k2 + s2 + s1

)

(
1

k3 + s3 − s2
− 1

k3 + s3 + s2

)∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

. (6.2.24)

Taking into account that only poles in the lower half s planes are picked up, we find that the term which

contributes to the amplitude is:

ψ3 =

∫
ds1
2πi

ds2
2πi

ds3
2πi

1

k1 + s1 − s3

1

k2 + s2 − s1

1

k3 + s3 − s2

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

+ . . . . (6.2.25)

Performing the s1 and s2 integrals give:

ψ3 =

∫
ds3
2πi

∫

p

1

ωT

1

(ω2 + ω3 + s3)2 − Ω2
p1

1

(ω3 + s3)2 − Ω2
p2

1

s23 − Ω2
p3

+ ψsub
3 (6.2.26)

Once again the integral here is simply the integral for the amplitude once we replace s3 → p0. Therefore

we have:

ψ3 =
1

ωT
A(−ω2

2 + k22,−ω2
3 + k23) + ψsub

3 . (6.2.27)

Similar to the two site case, we can organise the remainder terms as:

ψsub
3 = ψFFF

3 + ψFFB
3 + ψFBB

3 + ψBBB
3 . (6.2.28)

Writing out the remainder terms explicitly:

ψFFF
3 =

∫
ds3
2πi

∫

p

1

2Ωp2

1

ω1 + ω2 + Ωp2 − s3

1

ω3 − Ωp2 + s3

1

s23 − Ω2
p3

+
1

2Ωp1

1

ω2 + ω3 − Ωp1 + s3

1

ω1 + Ωp1 − s3

1

(ω3 + s3)2 − Ω2
p2

1

s23 − Ω2
p3

+
1

4Ωp1Ωp2

1

ω2 − Ωp1 + Ωp2

1

ω1 + Ωp1 − s3

1

ω3 − Ωp2 + s3

1

s3 − Ω2
p3

. (6.2.29)

ψFFB
3 =

∫
ds2
2πi

ds3
2πi

∫

p

1

ω2 + Ωp1 + s2

1

ω1 + Ωp1 − s3

1

ω3 − s2 + s3

1

2Ωp1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

+(permutations),

(6.2.30)
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ψFBB
3 =

∫
ds2
2πi

∫

p

1

ω2 + Ωp1 + Ωp2

1

ω1 + Ωp1 − s3

1

ω3 − Ωp2 + s3

1

2Ωp1

1

2Ωp2

1

s23 − Ω2
p3

+ (permutations),

(6.2.31)

ψFFF
3 =

∫

p

1

ω2 + Ωp1 + Ωp2

1

ω1 + Ωp1 − Ωp3

1

ω3 − Ωp2 + Ωp3

1

2Ωp1

1

2Ωp2

1

2Ωp3
+ (permutations). (6.2.32)

The momentum integral for the amplitude scales as p−2 while the remainder terms all scale as p−3 for

D = 3.

Summary Let us summarize our observations so far.

• The one loop n site wavefunction can be written as:

ψn =
An

ωT
+ ψsub

n . (6.2.33)

Here An is the one loop n site amplitude.

• The remaining parts of the wavefunction, ψsub
n , are subleading as ωT → 0 and are less UV divergent

than the amplitude part of the wavefunction.

Beyond one loop

Our current results hold for one loop diagram. However, we can show that (6.2.33) also works for a simple

two loop example. Consider the two site two loop diagram:

s3

s2

s1

k

ω1 ω2

Figure 6.6: Two site two loop diagram

The wavefunction is:

ψ2 =
1

8

∫
ds1
2πi

ds2
2πi

ds3
2πi

D̃1D̃2

∫

p1,p2

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

. (6.2.34)

Here p3 = k− p1 − p2, and

D̃a =
1

ωa + s1 + s2 + s3 − iϵ
− 1

ωa − s1 + s2 + s3 − iϵ
− 1

ωa + s1 − s2 − s3 − iϵ
+

1

ωa − s1 − s2 + s3 − iϵ

− 1

ωa + s1 + s2 − s3 − iϵ
+

1

ωa − s1 + s2 − s3 − iϵ
+

1

ωa + s1 − s2 − s3 − iϵ
− 1

ωa − s1 − s2 − s3 − iϵ
.

(6.2.35)
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Here a = 1, 2. We can simplify the expression to obtain:

ψ2 =

∫
ds1
2πi

ds2
2πi

ds3
2πi

1

ω1 + s1 + s2 + s3 − iϵ
D̃2

∫

p1,p2

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

s23 − Ω2
p3

. (6.2.36)

Let us do the s3 integral first. The total energy pole comes from the last term in (6.2.35), which integrates

to:

ψ2 =

∫
ds1
2πi

ds2
2πi

1

ωT

∫

p1,p2

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

(ω2 − s1 − s2)2 − Ω2
p3

+ . . . . (6.2.37)

This is simply the integral for the two loop amplitude, with internal four momentum p1 = (s1,p1) and

p2 = (s2,p2).

It is not hard to see that the remainder terms are less UV divergent. For example, the second last term

in (6.2.35) integrates to:

∫
ds1
2πi

ds2
2πi

−1

ωT + 2s1

∫

p1,p2

1

s21 − Ω2
p1

1

s22 − Ω2
p2

1

(ω2 + s1 − s2)2 − Ω2
p3

(6.2.38)

It is straightforward to see that after doing another contour integration, this integral is less divergent than

the amplitude term.

We will leave a careful proof for (6.2.33) for for diagrams with any topology at arbitrary loop order to

the future.

6.3 Landau analysis: second attempt

With the amplitude representation of the wavefunction in hand, we can now say more about the analytic

structure of the wavefunction. Once again we make use of Landau analysis to write down the singularities

of the wavefunction. In particular we have shown that the one loop wavefunction can be divided into

a total energy pole, whose residue is the amplitude, and as a remainder part. Therefore, we have the

following result:

• A subset of the singularities of the one loop wavefunction can be mapped to singularities of an ampli-

tude. In fact, we will see that these singularities have the same interpretation as the corresponding

singularities in amplitudes: namely, they correspond to cutting the same internal lines of a Feynman

diagram and sending them ”on-shell”, i.e. demanding the corresponding propagator to diverge. We

shall call these singularities ”amplitude-type singularity”

• The remaining singularities have no analogue in amplitudes, and we shall call them ”wavefunction-

type singularities”. Interestingly, in the one loop wavefunction, they correspond to cutting a single

internal line (which gives no physical singularities for amplitudes).

6.3.1 General strategy

Let us write down the wavefunction in the following form:

ψn =

∫ [∏

i

dsi
2πi

]
R({ω}, {s})

DK({ω}, {s})

∫ ∏

l

dDpl
(2π)D

1

DA({p}, {s})
. (6.3.1)
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This is merely a rewriting of (6.1.10). To make it more clear, we have:

R({ω}, {s})

DK({ω}, {s})
=
∏

a

D̃a. (6.3.2)

The main difference here is that on the left hand side we have gathered all the factors in the same

denominator. More explicitly,

DK =
∏

a

∏

σj=±


ω2

a −


s1 +

m∑

j=2

σjsj




2

− iϵ


 , (6.3.3)

and R is a polynomial in s and ω. DA is simply the following product:

DA =
∏

i

(s2i − Ω2
pi + iϵ). (6.3.4)

As an example, for a bubble diagram, we can start from (6.1.9) and obtain:

D̃1D̃2 =
16s21s

2
2ω1ω2

(ω2
1 − (s1 + s2)2 − iϵ)(ω2

1 − (s1 − s2)2 − iϵ)(ω2
2 − (s1 + s2)2 − iϵ)(ω2

2 − (s1 − s2)2 − iϵ)
. (6.3.5)

Here DK has the form (6.3.3), and R = 16s21s
2
2ω1ω2.

We can introduce a Feynman parameter λ and write:

ψn =

∫ ∞

0

dλ

∫ [∏

i

dsi
2πi

]∫ ∏

l

dDpl
(2π)D

R({ω}, {s})

D({p}, {ω}, {s})
, (6.3.6)

D({p}, {ω}, {s}) = DK({ω}, {s}) + λDA({p}, {s}). (6.3.7)

Let us write down the Landau equations. We have:

D = 0 → DK + λDA = 0, (6.3.8)

∂D

∂λ
= 0 → DA = 0. (6.3.9)

Let’s interpret these two equations before writing down the rest. Since DA is just a product of internal

propagators, demanding DA = 0 means sending a subset of propagators on shell (graphically this is simply

cutting internal lines). At least one of the internal lines must be cut if we want a physical singularity.

In addition, combining these two equations gives us DK = 0. From (6.3.3) we can see that this fixes the

internal energies s of the propagators in terms of external energies ω.

Let us write down the remaining equations. They are:

∂D

∂si
= 0 → ∂DK

∂si
+ λ

∂DA

∂si
= 0 (for all si), (6.3.10)

∂D

∂pl

= 0 → λ
∂DA

∂pl

= 0. (6.3.11)

The second equation, together with DA = 0, give us a modified version of the Landau equation for ampli-
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tudes. To see this, start with (6.3.1), then introduce Feynman parameters αpi for DA before introducing

the extra Feynman parameter λ. Then we get the following Landau equations involving DA:

|pi|2 = s2i −m2
i , (6.3.12)

∑

i∈l

αpipi = 0. (6.3.13)

These are simply Landau equations for the amplitude with the same Feynman diagram, except we have

modified m2
i to s2i −m2

i . Of course, we still need to solve ∂D
∂si

to fix si, but often we will find that knowing

the solutions for the Landau equations in amplitudes will give us shortcuts to solving the Landau equations

for the wavefunction.

In fact, we could even carry out the momentum integral first before writing down the Landau equation.

This gives:

DA =
∂DA

∂αpi
= 0. (6.3.14)

Counting number of constraints Before moving on to concrete examples, let us first ask an important

question: are the Landau equations sufficient to fix the singularities?

In general, we have I+L+1 integration variables which require fixing, (I is the total number of internal

lines, and L is the total number of loops). We have I + L + 2 Landau equations, so there are enough

equations to fix all the integration variables, and we can always write down the singularities in terms of

external kinematics. However, if we want to write down the singularity for one of the external energies

ω1, quite often we will need to write it in terms of other external off-shell energies (say ω2) as well. This

creates an obstacle when we study the singularities: for instance, suppose a singularity surface ω1 = −ω2,

naively we would assume that ω2 can take on any real negative value. However, once this energy is on-shell

(say ω2 =
√
k2 + 4m2), we realise that ω1 < −2m. This is an example where information is lost when the

other external energies are off-shell. Another example would be the anomalous threshold of the three site

one loop diagram, where the singularity condition is expressed purely in terms of the mass of internal and

external particles (see (6.3.65)). Without putting external energies on-shell, it would be hard to recognise

the anomalous threshold since off-shell external energies have no explicit dependence on mass.

It is often helpful to supply additional information on these external energies. For example, we can

put some of the external energies on-shell. We will see an example of this when we tackle the three site

one loop diagram.

6.3.2 Example: two site loop

Let’s start with the two site loop (fig 6.4). For simplicity we will always consider the internal lines to have

the same mass m.

Before we carry out Landau analysis, let us set our expectations for the result. We know that the

recursion expression for the wavefunction is given by [80]:

ψ2 =
1

ωT

∫

p

1

(ω1 + Ωp1 + Ωp2)(ω2 + Ωp1 + Ωp2)

[
1

ω1 + ω2 + 2Ωp1
+

1

ω1 + ω2 + 2Ωp2

]
. (6.3.15)

In the previous section we found the following singularities:
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• ω1 = −
√
k2 + 4m2. We will see that this corresponds to an amplitude-type singularity.

• ω1 = −ω2 − 2m. We will see that this corresponds to a wavefunction-type singularity.

Let us write down the expression for the wavefunction coefficient of the two site loop again:

ψ2 =

∫
ds1
2πi

∫
ds2
2πi

16s21s
2
2ω1ω2

S1+S1−S2+S2−

∫

p

1

(s21 − Ω2
p1

+ iϵ)(s22 − Ω2
p2

+ iϵ)
(6.3.16)

S1± = ω2
1 − (s1 ± s2)2 − iϵ, (6.3.17)

S2± = ω2
2 − (s1 ± s2)2 − iϵ. (6.3.18)

The convention for the internal momenta is p1 + p2 = −k.

To simplify our results:

• We will not look at cases where we have S1+ = 0 and S1− = 0 simultaneously. This is because they

both come from the sum in D̃1 (see (6.2.9)). We only need to send an individual term in the sum

to infinity, which corresponds to sending one of S1+ or S1− to infinity (and also picking a sign, for

example picking ω1 = −s1 + s2 instead of ω1 = s1 + s2).

• We will also impose ω2 > 0, this will restrict the singularities for ω1 to be on the negative real axis.

We will look at the case where S1+ = 0, and potentially S2− = 0. The case where we have S1− = 0 (and

S2+ = 0) are easily generalisations.

Let us introduce Feynman parameters for both DK and DA. The integral now has the following form:

ψ2 =

∫
ds1
2πi

∫
ds2
2πi

16s21s
2
2ω1ω2

S1−S2+

∫ 1

0

dα1+

∫ 1

0

dα2−

∫ 1

0

dαp1

∫ 1

0

dαp2

×
∫

p

δ(1 − α1+ − α2−)δ(1 − αp1 − αp2)

(α1+(ω2
1 − (s1 + s2)2) + α2−(ω2

2 − (s1 − s2)2))2(αp1(s21 − Ω2
p1

) + αp2(s22 − Ω2
p2

))2
. (6.3.19)

We did not introduce Feynman parameters for S1− and S2+ since we will never send them to zero. Just

like Landau equations for amplitudes, we can do the momentum integral first. This will allow us to write

down Landau equations in terms of Feynman parameters α, λ, and the internal energies s. This gives an

equation of the form (6.3.1), with

DA =
αp1αp2

αp1
+ αp2

k2 − αp1
(s21 −m2) − αp2

(s22 −m2). (6.3.20)

DK = −α1+(ω2
1 − (s1 + s2)2) − α2−(ω2

2 − (s1 − s2)2). (6.3.21)

Amplitude-type singularity As an example, let us solve the Landau equations with S1+ , Sp1
, Sp2

= 0

(where Spi
= s2i − Ω2

pi
). Since both Sp1

and Sp2
are zero, we are cutting both propagators. Let’s see if

this singularity can be mapped to a singularity in amplitudes.
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s2

s1

ω1 ω2

Figure 6.7: The amplitude-type singularity. The lines cut by the red dashed lines are the propagators
which are on-shell.

The Landau equation reads:

∂D

∂αp1

= 0 → α2
p2

(αp1
+ αp2

)2
k2 = s21 −m2, (6.3.22)

∂D

∂αp2

= 0 → α2
p1

(αp1
+ αp2

)2
k2 = s22 −m2, (6.3.23)

∂D

∂α1+

= 0 → ω2
1 = (s1 + s2)2, (6.3.24)

∂D

∂si
= 0 → λαp1

s1 = λαp2
s2 = (s1 + s2). (6.3.25)

Also, naturally we demand αp1
+ αp2

= 1. Since S2− ̸= 0, α2− must be zero and this naturally means

α1+ = 1.

The first two equations give:

α2
p2

(s22 −m2) = α2
p1

(s21 −m2). (6.3.26)

Therefore, using the last Landau equation, we obtain:

s21 −m2

s22 −m2
=
s21
s22
. (6.3.27)

The solution for this is s1 = ±s2 unless s1 = ±m or s2 = ±m. However, if we set s1 = ±m, the (6.3.22)

equation implies that k = 0 or αp2 = 0. But if αp2 = 0 that would imply s1 = −s2. This would mean

that if s1 is in the lower half plane, s2 is in the upper half plane, so either s1 or s2 are not in the physical

integration region. Therefore we conclude that if s1 = ±m we must have k = 0.

First consider k ̸= 0. Both s1 and s2 must lie in the lower half complex plane. One can easily show

that we have s1 = s2, so this gives us the singularity ω2
1 = 4s21. It is also straightforward to see λ = 4.

Using this, we get:
k2

4
= s21 −m2 (6.3.28)

This gives us the ω1 = −
√
k2 + 4m2 singularity.

For k = 0 we can easily see that this implies ω1 = −2m. But this is just a special case of ω1 =

−
√
k2 + 4m2, and so we landed on the same singularity.

How is this singularity connected to an amplitude singularity? We know that for the same diagram,

an amplitude has the singularity s = 4m2 (here s is the Mandelstam variable). But s = ω2
1 − k2 (since ω1

is the total energy entering the vertex and k is the total momentum entering the vertex), hence we have

ω2
1 = k2 + 4m2. Therefore this ω1 = −

√
k2 + 4m2 singularity is simply the same singularity as s = 4m2,
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written in terms of the off-shell energy variables.

Amplitude-type singularity for massless particles It is also helpful to look at singularities of

massless internal particles. Let us solve the same Landau equations, but with m = 0. The Landau

equation reads:

∂D

∂αp1

= 0 → α2
p2

(αp1
+ αp2

)2
k2 = s21 −m2, (6.3.29)

∂D

∂αp2

= 0 → α2
p1

(αp1
+ αp2

)2
k2 = s22 −m2, (6.3.30)

∂D

∂α1+

= 0 → ω2
1 = (s1 + s2)2, (6.3.31)

∂D

∂si
= 0 → λαp1

s1 = λαp2
s2 = (s1 + s2). (6.3.32)

The solution for this is quite straightforward: the first two equations imply αp2k = s1 and αp1k = s2.

From this we can easily conclude that s1 + s2 = (αp1 + αp2)k = k. Substituting this into (6.3.32) gives

ω1 = −k, which is the massless version of the amplitude-type singularity we just found.

We can easily write down the solutions to the Feynman parameters and the internal energies. Just

take:

s1 = s2 =
k

2
, (6.3.33)

αp1 = αp2 =
1

2
, (6.3.34)

λ = 4. (6.3.35)

It is easy to show by substitution that this solves the Landau equations.

Wavefunction-type singularity Now let us consider the case where S1+, S2−, Sp2 = 0, but we have

Sp1 ̸= 0. Notice that only one internal line is cut here. For amplitude there is no singularity for cutting

one internal line. However, for the wavefunction there is a singularity. In fact, for massless particles, it is

a physical singularity for any external kinematics.

s2

s1

ω1 ω2

Figure 6.8: Wavefunction-type singularity. Only one propagator is on-shell
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Let us write down the Landau equation. They are

∂D

∂α1+

= 0 → ω2
1 = (s1 + s2)2, (6.3.36)

∂D

∂α2−

= 0 → ω2
2 = (s1 − s2)2, (6.3.37)

∂D

∂αp2

= 0 → 0 = s22 −m2, (6.3.38)

∂D

∂s1
= 0 → 0 = α1+(s1 + s2) + α2−(s1 − s2), (6.3.39)

∂D

∂s2
= 0 → λs2 = α1+(s1 + s2) − α2−(s1 − s2) (6.3.40)

The third equation gives us s2 = m. We throw away s2 = −m: if we restore the iϵ in the solution, this is

s1 = −m+ iϵ, and is not included in the integration region, i.e. the lower half complex plane.

In addition, we have:

ω1 + s1 + s2 = 0, (6.3.41)

ω2 − s1 + s2 = 0. (6.3.42)

Use this to eliminate s1, we obtain ω1 + ω2 = −2m. This singularity is a total energy singularity, and

quite obviously have no analogue in amplitudes.

Is this singularity physical? Let us compute the Feynman parameters. We can show that:

α2− = − ω1

2m
. (6.3.43)

But ω2 = −ω1 − 2m ≥ 0, so we get α2− ≥ 1. Therefore this singularity may not be visible for any general

kinematics! Indeed this is consistent with the observation that this singularity is in fact invisible outside

the soft limit (see the appendix of [2]). However it is not entirely clear how this emerges from the Landau

analysis picture, and we will leave a detailed study of this for the future.

Wavefunction-type singularity for massless particles Things are more clear in the case of massless

particles. The Landau equations read:

∂D

∂α1+

= 0 → ω2
1 = (s1 + s2)2 → ω1 + s1 + s2 = 0, (6.3.44)

∂D

∂α2−

= 0 → ω2
2 = (s1 − s2)2 → ω2 − s1 + s2 = 0, (6.3.45)

∂D

∂αp2

= 0 → 0 = s22, (6.3.46)

∂D

∂s1
= 0 → 0 = α1+(s1 + s2) + α2−(s1 − s2), (6.3.47)

∂D

∂s2
= 0 → λs2 = α1+(s1 + s2) − α2−(s1 − s2) (6.3.48)

Immediately we have s2 = 0, and we have ω1+ω2 = 0. This is indeed the massless limit of the wavefunction-

type singularity found above.
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Unlike the massive case, this singularity is present for any external kinematics. Indeed, if we take

s1 = 0, we can easily see that the Landau equations can always be satisfied, with α1+, α2− > 0.

Where does the wavefunction-type singularity come from? Before we move on it is helpful to see

how the wavefunction-type singularity emerges from the expression we have obtained, i.e. from (6.2.13).

Now clearly the singularity cannot come from the amplitude part of the wavefunction, therefore it must

be a singularity from the remainder terms.

Upon inspection, we find that the singularity actually emerges from ψFB
2 , i.e. the mixing term between

Feynman propagator and the boundary term. We have shown that this term can be written as (6.2.21).

If we try to study the singularity associated with ω1 + ω2 + 2Ωp1 = 0, we find the wavefunction-type

singularity from above.

The terms ψFF
2 and ψBB

2 do not provide any contribution to the wavefunction-type singularity. Only

the ω1 = −
√
k2 + 4m2 singularity is present for those terms if we study the analyticity of these terms

individually.

s2

s1

ω1 ω2

ω1ω1 = −
√
k2 + 4m2

s2

s1

ω1 ω2

ω1 = −ω2 − 2m

Figure 6.9: A summary of the singularities present for the two site one loop graph. The red singularity
here is an amplitude-type singularity, while the blue singularity is a wavefunction-type singularity.

6.3.3 Example: three site loop

Let us now look at the one loop three site graph (fig 6.5). For amplitudes, this graph has two types of

singularities. The first type is the normal threshold, where two internal lines are cut. This type of cut is

associated with unitarity in the optical theorem. The second type is the anomalous threshold, where all

three internal lines are cut.

Since we have shown that the wavefunction can be written in terms of amplitude plus remainder terms,

we would expect singularities for the amplitude to be present in the wavefunction as well, including the

anomalous threshold. We will see that it is indeed the case. In addition, we will find that there are

wavefunction-type singularities again, where only a single internal line is cut.

For the one loop three site graph, the wavefunction coefficient can be written as:

ψ3 =

∫
ds1
2πi

∫
ds2
2πi

∫
ds3
2πi

512ω1ω2ω3s
2
1s

2
2s

2
3

S1+S1−S2+S2−S3+S3−

∫

p

1

(s21 − Ω2
p1

)(s22 − Ω2
p2

)(s23 − Ω2
p3

)
. (6.3.49)
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S1± = ω2
1 − (s1 ± s3)2, (6.3.50)

S2± = ω2
2 − (s1 ± s2)2, (6.3.51)

S3± = ω2
3 − (s2 ± s3)2. (6.3.52)

Also we have p1 = p, p2 = (p + k2), p3 = (p− k1) = (p + k2 + k3).

Let’s write everything in terms of Feynman parameters and perform the p integral first. We obtain:

ψ3 =

∫ ∞

0

dλ

∫ 3∏

i=1

dsi
2πi

∫ 1

0

∏

j=1±,2±,3±
dαj

∫ 1

0

∏

l=p1,p2,p3

dαl
F ({α})δ(1 −∑α)

D({α}, s1, s2, s3)9−d/2
, (6.3.53)

where we have:

Dk =
αp1αp2k

2
2 + αp2αp3k

2
3 + αp1αp3k

2
1∑

αpi

−
3∑

i=1

αpi(s
2
i −m2), (6.3.54)

as well as

DA = −
3∑

i=1

αi±Si±. (6.3.55)

F (α) is just polynomial in α, and its exact form will not be important for us.

Amplitude-type singularity: normal threshold Let us first study solutions corresponding to ”nor-

mal thresholds”. These are solutions where Spi
̸= 0 for one pi, and they can be used to recover certain

energy conservation poles.

ω2

ω1 ω3

s2s1

s3

Figure 6.10: Amplitude-type singularity, with the internal line s1 and s3 being cut.

As an example let us consider setting Sp2 ̸= 0, which requites αp2 = 0. In amplitude terms we are

looking at a singularity which comes from cutting s1 and s3 in the figure. Then we have the following

equations from D1:

α2
p3
k21

(αp1
+ αp3

)2
= s21 −m2, (6.3.56)

α2
p1
k21

(αp1
+ αp3

)2
= s23 −m2 (6.3.57)

At this point if we choose S1+ = 0 we can pretty much repeat the analysis we did for the two site graph

and obtain ω1 = −
√
k21 + 4m2.

However, we can make a more interesting choice. Suppose we choose S2− = S3+ = 0 instead. (I will
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relate this to a singularity in ω1 by permutation). Then we get the following equations from D2:

λαp1
s1 = α2−(s1 − s2), (6.3.58)

λαp3s3 = α3+(s3 + s2), (6.3.59)

0 = −α2−(s1 − s2) + α3+(s3 + s2). (6.3.60)

This can be rearranged into the following:

αp1
s1

αp3s3
=
α2−(s1 − s2)

α3+(s3 + s2)
= 1. (6.3.61)

Combine this with the equations from D1, we get:

s21
s23

=
s21 −m2

s23 −m2
. (6.3.62)

Then we can just following the derivation as in the two site graph to get:

ω2 = −
√
k21
4

+m2 + s2, (6.3.63)

ω3 = −
√
k21
4

+m2 − s2. (6.3.64)

This combines to give ω2 + ω3 = −
√
k21 + 4m2 singularity. This is related by permutation to ω1 + ω2 =

−
√
k23 + 4m2 and ω1 + ω3 =

√
k22 + 4m2 singularity, both of which are energy conserving poles.

ω2

ω1 ω3

s2s1

s3

ω2

ω1 ω3

s2s1

s3

Figure 6.11: Two other singularities for the wavefunction which are also amplitude-type singularities.
They are ω1 + ω3 =

√
k22 + 4m2 (for the left figure) and ω1 + ω2 = −

√
k23 + 4m2 (for the right figure)

Amplitude-type singularity: Anomalous threshold For amplitudes there is an anomalous thresh-

old that corresponds to sending all three internal lines on-shell. The existence of this threshold depends

on the external kinematics: namely, two of the external four momenta have to be equal. It is known that

the threshold is only physical when the masses of the external particles satisfy M2 > 2m2 where m2 is the

mass of the internal particles [146, 164–169]. This is lower than the expected two particle threshold 4m2,

hence the name anomalous threshold. This threshold is given by:

s = 4m2 − (M2 − 2m2)2

m2
, (6.3.65)

where s is the four momentum for one of the external lines (in the diagram it would be the line attached

to ω1) vertex.
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ω2

ω1 ω3

s2s1

s3

Figure 6.12: The anomalous amplitude-type singularity. To access this singularity we also need specific
external kinematics, which are given by (6.3.66)-(6.3.70).

We would like to show that such a threshold exists for the wavefunctions as well. We expect that the

singularity only appears for specifically chosen kinematics just like amplituides. To make life easier we

will choose the the following kinematics:

k2 = −k3, (6.3.66)

|k| = k, (6.3.67)

k1 = 0, (6.3.68)

ω2 = ω3 =
√
k2 +M2, (6.3.69)

ω2
1 = 4ω2

2 . (6.3.70)

The last line enforces the total energy to be zero, and we know in this limit the wavefunction reduces to

the amplitude, hence we should expect the anomalous threshold to show up.

Now let’s specify which Si± we send to zero. We make the following choice:

S1+ = ω2
1 − (s1 + s3)2 = 0, (6.3.71)

S2+ = ω2
2 − (s1 + s2)2 = 0, (6.3.72)

S3+ = ω2
3 − (s3 + s2)2 = 0. (6.3.73)

So now we have:

ω1 = s1 + s3, (6.3.74)

ω2 = s1 + s2, (6.3.75)

ω3 = s3 + s2. (6.3.76)

as well as:

α1+(s1 + s3) + α2+(s1 + s2) = λαp1s1, (6.3.77)

α2+(s1 + s2) + α3+(s3 + s2) = λαp2
s2, (6.3.78)

α3+(s3 + s2) + α1+(s1 + s3) = λαp3s3, (6.3.79)
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Also from DA we have:

(αp1
+ αp3

)2k22 − αp1
αp3

k21
(αp1

+ αp2
+ αp3

)2
− (s22 −m2) = 0, (6.3.80)

α2
p2
k22 + αp3

(αp2
+ αp3

)k21
(αp1

+ αp2
+ αp3

)2
− (s21 −m2) = 0, (6.3.81)

α2
p2
k22 + αp1

(αp2
+ αp1

)k21
(αp1 + αp2 + αp3)2

− (s23 −m2) = 0. (6.3.82)

Because ω2 = ω3 this immediately gives s1 = s3. Now we can use (6.3.81) and (6.3.82) to obtain:

αp1
(αp2

+ αp1
) = αp3

(αp2
+ αp3

), (6.3.83)

which implies αp1
= αp3

. We also use (6.3.77) and (6.3.79) (and s1 = s3) to show:

α2+ = α3+ . (6.3.84)

Now using ω2
1 = 4ω2

2 , we obtain:

4(s1 + s2)2 = 4s21, (6.3.85)

so s2 = −2s1. This also gives ω1 = −2ω2.

By using (6.3.80) and (6.3.81) ((6.3.82) is the same as (6.3.81)) and eliminating the Feynman parame-

ters, we get:

(s22 − s21 + k2)2 = 4k2(s22 −m2). (6.3.86)

Usually this is as far as we can go, but because now we fixed ω2
1 = 4ω2

2 we found s2 = −2s1, so we can

further simplify this. Eventually we get:

M4

m2
= (ω2

1 − 4M2), (6.3.87)

or

ω2
1 = 4m2 − (M2 − 2m2)2

m2
, (6.3.88)

which is exactly the value for anomalous threshold in the amplitude case. Hence we have demonstrated

the existence of anomalous threshold in the wavefunction as well.

We can also compute the Feynman parameters explicitly to show that this is indeed a physical singu-

larity. For instance,

αp2
=
M2 − 2m2

M2
. (6.3.89)

For the singularity to be real, 0 < αp2
< 1. Hence We must have M2 > 2m2, which is indeed a criteriom

for anomalous threshold.

We could also compute the other Feynman parameters, which are found to be:

α2+ =
4M2 − 4m2

10M2 − 18m2
, (6.3.90)

λ =
4M2

10M2 − 18m2
. (6.3.91)
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For M2 > 2m2 we have 0 < α2+ < 1, as well as λ > 0, hence this is not a spurious singularity.

Which singularity does this correspond to in the recursion expression? It turns out that it corresponds

to this condition:

ω1 + Ωp1 + Ωp3 = 0, (6.3.92)

along with:

ω1 + ω2 + ω3 = 0. (6.3.93)

This is reflecting an interesting fact about studying singularities using the recursion expression. Naively

if we start with the expression ω1 + Ωp1 + Ωp3 = 0 and try to minimize it, it is tempting to simply write

down the most obvious solution (which is ω1 = −
√
k2 + 4m2), and we would be led to incorrect conclusions

about the analytic structure (for instance, that the singularity must first appear at ω1 < −2m). What

our result shows is that at particular kinematics, there may be other minimum solutions that corresponds

to additional singularities. For instance in this case we found a singularity that can live in the range

−2m < ω1 <
√

2m.

This is one of the main advantages of studying the analytic structure of the wavefunction using the

amplitude representation rather than using the recursion expression: we have a much better understand-

ing of the analytic structure of amplitudes, and this formalism give us a mapping between singularities

of amplitudes and the wavefunction. If we also have a good understanding of how wavefunction-type

singularities emerge (for example, in one loop cases they are singularities corresponding to cutting only

one internal line) then we have a complete catalogue of the singularities present in the wavefunction.

Wavefunction-type singularity One can also show that the wavefunction-type singularities are also

present. To see this, let us just cut one internal line, and pick:

S1+ = ω2
1 − (s1 + s3)2 = 0, (6.3.94)

S2− = ω2
2 − (s1 − s2)2 = 0, (6.3.95)

S3− = ω2
3 − (s2 − s3)2 = 0, (6.3.96)

Sp1 = s21 − Ω2
p1 = 0. (6.3.97)

Then one can show, similar to the two site graph case, that we have ω1 +ω2 +ω3 = −2m as a singularity.

ω2

ω1 ω3

s2s1

s3

Figure 6.13: Wavefunction-type singularity for the three site one loop graph.

Once again it is instructive to see which term in ψ3 give rise to this wavefunction-type singularity. Upon

inspection, we can find that it is (6.2.30) which has this singularity. Specifically, if we send ω1+Ωp1
−s3 = 0,

ω2 + Ωp1
+ s2 = 0 as well as ω3 − s2 + s3 = 0, we will land on ω1 + ω2 + ω3 = −2m. Interestingly, ψFBB

3

does not seem to give rise to a wavefunction-type singularity.
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ω1 ω3

s2s1

s3

ω1
ω2
1 = 4m2 − M2−2m2

m2

ω2

ω1 ω3

s2s1

s3

ω1 = −
√
k2 + 4m2

ω2

ω1 ω3

s2s1

s3

ω1 = −ω3 −
√
k2 + 4m2

ω2

ω1 ω3

s2s1

s3

ω1 = −ω2 −
√
k2 + 4m2

ω2

ω1 ω3

s2s1

s3

ω1 = −ω2 − ω3 − 2m

Figure 6.14: Singularities of the three site one loop graph. The red ones are the normal amplitude-type
singularities, the teal one is the anomalous amplitude-type singularity and the blue one is the wavefunction-
type singularity.

6.4 Singularities of in-in correlators

Since we are ultimately interested in in-in correlators, it is worth studying the singularities of in-in corre-

lators as well. We noted in section 4.3 that for the one site loop diagram, while the wavefunction has a

log kT term, the correlator is analytic in the external kinematics. This feature is in fact present in other

loop diagrams as well.

As an example consider the one site two loop diagram (fig. 6.4). We have written down the expression

for the flat space wavefunction for massless scalars, which we will restate here:

ψ2(ω1, ω2, k) =
1

8π2ωT

[
ω2 log

(
ω1+k

Λ

)
− ω1 log

(
ω2+k

Λ

)

ω1 − ω2

− ωT

2k

(
1

2
log2

(
ω1 + k

ω2 + k

)
+
π2

6
+ Li2

(
k − ω2

k + ω1

)
+ Li2

(
k − ω1

k + ω2

))]
. (6.4.1)

If we try to compute the in-in correlator, we get the following contributions: one from the time ordered

propagators (where we use the G++ and G−− propagators):

B2A =
1

8π2ωT

[
log

(
ω1 + k

Λ

)
+ log

(
ω2 + k

Λ

)]
. (6.4.2)

There is also the out-of-time-ordered propagators (where we use the G+− and G−+ propagators), which

gives:

B2B =
1

ω1 − ω2

−1

8π2

[
− log

(
ω1 + k

Λ

)
+ log

(
ω2 + k

Λ

)]
. (6.4.3)

The in-in correlator is simply the sum of these two terms. Notice the following feature:

• For the wavefunction, both the amplitude-type singularity (given by ω1 = −k) and the wavefunction-

type singularity (given by ω1 + ω2 = 0) are present. The wavefunction-type singularity is a total

energy branch point.

• For the correlator, only the amplitude-type singularity (given by ω1 = −k) is present. The wavefunction-

type singularity is absent.

Singularities and the cosmological KLN theorem The cancellation of singularities can be under-

stood more generally in terms of the cosmological KLN theorem, which stems from the cosmological tree

theorem. The cosmological KLN theorem states the following:

132



Total energy branch points in the wavefunction from loop integration are absent in the

corresponding in-in correlator.

The argument (taken from [170]) can be roughly summarized as follow:

• When computing in-in correlators from the wavefunction, we often need to add integrals of higher

point tree-level wavefunction coefficients to the one-loop wavefunction. For example, for the one site

one loop graph, the in-in correlator is given by (2.3.15):

⟨ϕ(ω1)ϕ(ω2)ϕ(ω3)ϕ(ω4)⟩ = ρ1L4 +

∫

p

Ppρ
tree
6 (ω1, ω2, ω3, ω4, ωp, ωp) (6.4.4)

• By taking the bulk-to-bulk propagator of the wavefunction and using θ(η1− η2) = 1− θ(η2− η1), we

obtain the cosmological tree theorem. This allow us to express the one loop wavefunction in terms

of its discontinuity, and graphically this is just a sum of tree-level diagrams. For instance, the one

loop one site wavefunction is:

ψ1L
4 = −

∫

p

P (p)
[
ψtree
6 (ω1, ω2, ω3, ω4, ωp, ωp) − ψtree

6 (ω1, ω2, ω3, ω4, ωp,−ωp)
]

(6.4.5)

• Combining these two give us an expression for the in-in correlator purely in terms of (integrals of)

tree level wavefunction. Crucially, any fully connected diagram does not have any singularities that

depend on total energy and ωp simultaneously. For example, the one site one loop diagram in flat

space becomes:

⟨ϕ(ω1)ϕ(ω2)ϕ(ω3)ϕ(ω4)⟩ =

∫

p

P (p)ψtree
6 (ω1, ω2, ω3, ω4, ωp,−ωp)

=

∫

p

1

2ωp

1

ωT + ωp − ωp

=

∫

p

1

2ωp

1

ωT
. (6.4.6)

Because of this, doing the momentum integral will not give us any total energy branch points.

The remarkable fact about this theorem, however, is that at one loop, all wavefunction-type singularities

are total energy singularities. To see this, we use Landau analysis once again. The n site one loop

wavefunction is given by:

ψn =

∫ [
ds1
2πi

. . .
dsn
2πi

]
F ({ω}, {s})

S1+S1−S2+S2− . . . Sn+Sn−

∫

p

n∏

j=1

1

s2j − Ω2
pj

, (6.4.7)

where Sn± = ω2
n − (sn ± sn−1)2. We can make use of Landau analysis again to find the wavefunction-type

singularity. To do so, we only cut one line, since any other way of cutting should give us either normal or
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anomalous amplitude-type singularity. This is given by:

S1+ = ω2
1 − (s1 + sn)2 = 0, (6.4.8)

S2− = ω2
2 − (s1 − s2)2 = 0, (6.4.9)

S3− = ω2
3 − (s2 − s3)2 = 0, (6.4.10)

. . .

Sn− = ω2
n − (sn−1 − sn)2 = 0, (6.4.11)

Sp1 = s21 − Ω2
p1 = 0. (6.4.12)

It is straightforward to show that this just gives ωT = −2m as a singularity. In fact, by using the recursion

representation of the wavefunction, we can easily see that this is always a singularity is always a branch

point 7. Therefore, we see that in one-loop, the following is true:

Wavefunction-type singularities are always absent in in-in correlators.

This conjecture is in fact not surprising. Amplitudes are in-out correlators, i.e. field operators are

sandwiched between vacuum in the asymptotic past (the in-vacuum) and asymptotic future (the out-

vacuum). In flat space in-vacuum and out-vacuum are simply related by a phase [104]. Assuming we have

thermal equilibrium, we obtain:

in⟨0|ϕ(k1)ϕ(k2) . . . ϕ(kn)|0⟩in = eiθ out⟨0|ϕ(k1)ϕ(k2) . . . ϕ(kn)|0⟩in. (6.4.13)

Since in-in correlators are related to amplitudes by a phase, one would not expect them to have different

analytic structures. In other words, one should expect a mapping between singularities of amplitudes to

in-in correlators. However at this point our understanding of wavefunction-type singularities is still rather

primitive, so we will leave a more careful study of this beyond one loop to the future.

7In the recursion representation, these singularities corresponds to sending ωT + 2ωpi = 0 for some internal momentum
pi. However, since we are integrating over p, the singularity must some from a logarithm/polylogarithm term, which means
the total energy singularity must be a branch cut.
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Chapter 7

Dispersion relation and effective field

theories

The discussion on analyticity of the wavefunction would not be complete without explaining its potential

uses. One such use is the derivation of UV/IR sum rules. In S-matrix literature, these rules are a set of

relations between the discontinuity of the amplitude (in the full UV theory) to a sum of Wilson coefficients

for an EFT (in the IR). These UV/IR sum rules are essential for constructing positivity bounds: by placing

constraints on the discontinuity of the amplitude (for instance, requiring the discontinuity to be greater

than zero by unitarity), one can derive a set of constraint equation for the Wilson coefficients.

In this section we detail the steps required to write down these UV/IR sum rules for the wavefunction.

We will begin by defining precisely what an EFT is for the wavefunction. We will then write down the

dispersion relation, which express the wavefunction in terms of its discontinuities. We will then show

how dispersion relations lead to UV/IR sum rules, and demonstrate this by studying a simple tree level

example and a loop level example.

7.1 What is an EFT for a wavefunction?

Recall that for amplitudes, given a bulk light field Φ and a bulk heavy field X, amplitudes for Φ can be

computed using the generating functional:

Z[J ] =

∫
[dΦ][dX] eiSUV[Φ,X]+i

∫
x
J(x)Φ(x). (7.1.1)

The heavy field can be integrated out by the following procedure to obtain action for the EFT:

eiSEFT[Φ] =

∫
[dX] eiSUV[Φ,X]. (7.1.2)

We can carry out a similar procedure for the wavefunction. Consider the wavefunction specified by the

path integral for the fields Φ and X. The boundary conditions to the past correspond to the Bunch-Davies

vacuum. The path integral is a functional of the field boundary conditions to the future Φ(t∗) = ϕ and
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X(t∗) = χ:

Ψ[ϕ, χ; t∗] =

∫ Φ(t∗)=ϕ

BD

[dΦ]

∫ X(t∗)=χ

BD

[dX]eSUV[Φ,X;t∗], (7.1.3)

where for some Lagrangian L we defined:

SUV[Φ, X; t∗] =

∫ t∗

−∞
dtL[Φ, X] . (7.1.4)

The path integral is then the transition amplitude between the Bunch-Davies vacuum |BD⟩Φ⊗|BD⟩X and

the field eigenstate |ϕ⟩Φ ⊗ |χ⟩X . To define the EFT wavefunction we focus on this wavefunction:

Ψ[ϕ, 0; t∗] =

∫ Φ(t∗)=ϕ

BD

[dΦ]

∫ X(t∗)=0

BD

[dX]eSUV[Φ,X;t∗],

i.e. the wavefunction with the heavy field set to zero at t = t∗ 1, and compute its wavefunction coefficients

in powers of ϕ. The coefficients of the perturbative expansion of Ψ[ϕ, 0; t∗] in powers of ϕ computed with

the interactions of the UV action SUV[Φ, X; t∗] is what we call the UV wavefunction coefficients ψUV:

Ψ[ϕ, 0; t∗] =

∫ Φ(t∗)=ϕ

BD

[dΦ]

∫ X(t∗)=0

BD

[dX]eSUV[Φ,X;t∗]

= exp

[
+

∞∑

n

1

n!

∫

k1,...kn

(2π)3δ(3)

(
n∑

a

ka

)
ψ
(n)
UV({k}; t∗)ϕ(k1) . . . ϕ(kn)

]
.

(7.1.5)

For this wavefunction, we can write down an EFT just like for amplitudes:

eiSEFT[Φ;t∗] =

∫ X(t∗)=0

BD

[dX] eSUV[Φ,X;t∗]. (7.1.6)

Crucially, this SEFT[Φ, t∗] can be expanded as a series of local interactions for Φ and its derivatives, which

at low energies (small derivatives) can be truncated at a finite nuber of terms. The EFT wavefunction

coefficients ψEFT(ωi, {kj}) are then obtained from expanding in powers of ϕ the wavefunction Ψ[ϕ, 0; t∗]

computed from the truncated EFT action:

Ψ[ϕ, 0; t∗] =

∫ Φ(t∗)=ϕ

BD

[dΦ] eiSEFT[Φ;t∗]

= exp

[
+

∞∑

n

1

n!

∫

k1,...kn

(2π)3δ(3)

(
n∑

a

ka

)
ψ
(n)
EFT({k}; t∗)ϕ(k1) . . . ϕ(kn)

]
.

(7.1.7)

At low energies, where the truncation made in SEFT is valid, the ψEFT coefficients coincide with the true

ψUV coefficients. As the energy is increased, eventually the derivative expansion in SEFT[Φ; t∗] breaks down

and one must “UV complete” the EFT by returning to the SUV[Φ, X; t∗]—physically this corresponds to

having enough energy to excite heavy X fluctuations (which are then not faithfully captured by an SEFT

involving only light degrees of freedom).

There is a crucial difference between this EFT for the wavefunction and the EFT for amplitudes: the

boundary condition for the fields are different. This comes from the new t = t∗ boundary we introduced

1One may ask whether this is the most physically relevant quantity to compute. For example, in an EFT with cutoff Λ
we might have to average the value of wavefunction in an interval t∗ ± Λ−1. We postpone this issue to the conclusions.
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for the wavefunction. As a result we need to keep track of both total derivatives in time and of terms

proportional to the equations of motion. To this end we separate the EFT action into a bulk and a

boundary term localized at t∗ :

SEFT[Φ; t∗] =

∫ t∗

−∞
dt

∫
d3x(Lbulk

EFT[Φ, ∂µ] + ∂tLboundary
EFT [ϕ, ∂µ, ∂t]). (7.1.8)

All total derivatives in time have been collected into ∂tLboundary
EFT , so that Lbulk

EFT is constructed in the usual

way (with the freedom to integrate by parts). Notice that our formalism applies to both Lorentz-invariant

theories as well as to theories that break boosts, explicitly or spontaneously. For concreteness our examples

will include Lorentz invariant interactions in the bulk and non-boost invariant time and spatial derivatives

will appear only in Lboundary
EFT .

7.2 Dispersion relation and UV/IR sum rules

We have now defined the low-energy EFT approximation, ψEFT, to the full wavefunction coefficient. The

question which we wish to address next is: what information about the underlying UV physics can be

gleaned from a measurement/calculation of this EFT object?

Analyticity and the dispersion relation. The analytic properties that we developed in the last two

sections can give a very concrete answer to this question. The reason is that complex analytic functions

are very constrained: they are all but completely fixed by their singularities and asymptotics via Cauchy’s

theorem. One can use said theorem to recover the value of a function f(z) at a point z = z0 using a closed

contour integral:

f(z0) =
1

2πi

∮

C

f(z)

z − z0
. (7.2.1)

where C is a counter-clockwise contour around the pole at z = z0 (and contains no further singularities).

Now imagine we expand C until we start intersecting poles and branch cuts of f(z). We need to deform

the contour to properly defined the integral (7.2.1). In particular, we have three different contributions to

the deformed contour CR as shown in Fig. 7.1:

(i) The isolated poles zi of f(z). The deformed contour wraps clockwise around the poles of f(z).

(ii) The branch cuts of f(z). The contour runs above and below the branch cut, and is therefore

proportional to the discontinuity of the function along the cut, where,

disc f(z) = lim
ϵ→0

[f(z + iϵ) − f(z − iϵ)] . (7.2.2)

(iii) the arc at infinity CR. Once the contour is made arbitrarily large, we can identify this contribution

with the residue of the pole at infinity.

This expresses the right-hand side of (7.2.1) as a sum of three terms:

f(z0) = −
∑

zi

Res
z=zi

(
f(z)

z − z0

)

︸ ︷︷ ︸
isolated poles

+

∫
dz

2πi

disc(f(z))

z − z0︸ ︷︷ ︸
branch cut

+ Res
∞

(
f(z)

z − z0

)

︸ ︷︷ ︸
Pole at infinity

. (7.2.3)
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Figure 7.1: Deformed contour for dispersion relations. There is a branch point at z = z1 and a branch cut
on the negative real axis. There are isolated poles at z = z2 and z = z3.

Note that if one defines the “discontinuity” of an isolated pole as disc (1/(z − zi)) = −2πiδ(z − zi), then

the first term can be absorbed into the second.

Wavefunction dispersion relation. We can apply these considerations to the off-shell wavefunction

coefficients ψn({ω}, {k}) taken as analytic functions of a single complex variable ω1, while holding all the

other kinematics fixed. As we have discussed, singularities in ψn({ω}, {k}) can only exist on the negative

real axis of ω1. This allows us to write (7.2.3) as:

ωTψ({ω}, {k})
∣∣
ω1=ω′

1
=

∫ 0

−∞

dω1

2πi

disc (ωTψ({ω}, {k}))

ω1 − ω′
1

+ Res
ω1=∞

(
ωTψn({ω}, {k})

ω1 − ω′
1

)
. (7.2.4)

This is our central application of analyticity: it allows us to connect every Wilson coefficient appearing in

LEFT to an integral over the wavefunction of the underlying UV theory.

UV/IR sum rules. The idea is to expand the left-hand-side of (7.2.4) at low energy/momenta, where

it can be computed using the low-energy LEFT. This expansion can then be matched, order-by-order, to

particular high-energy integrals on the right-hand-side. To this end, we define the UV integral,

I(N)
UV ({ωa ̸=1}, {k}) =

∫ 0

−∞

dω1

2πi

disc [ωTψ({ω}, {k})]

ωN+1
1

+ Res
ω1=∞

(
ωTψ({ω}, {k})

ωN+1
1

)
. (7.2.5)
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The low-energy expansion of (7.2.4) can then be written compactly as,

1

N !
∂Nω1

(ωTψEFT)
∣∣
ω1=0

= I(N)
UV ({ωa̸=1}, {k}) . (7.2.6)

Since the EFT does not distinguish between ω1 and the other kinematic variables, this equation should be

further expanded in powers of each of the ωa̸=1 and ka. In the next subsection, we explicitly construct the

EFT for the wavefunction of a scalar field up to fourth order in derivatives, and show how (7.2.6) relates

each Wilson coefficient to a particular UV integral, I(N)
UV .

7.3 Example: a light scalar

Let us illustrate these new sum rules using the EFT for a light scalar field Φ on a fixed Minkowski

background.

An EFT basis for quartic interactions. Once total derivatives and terms proportional to the free

equations of motion are included, the list of possible interactions grows rapidly with increasing mass-

dimension. Rather than construct the most general possible EFT, we will focus on a particular subset of

interactions which illustrates our sum rules simply and yet remains general enough to capture simple tree-

level UV completions (of which we give an example in Sec. 7.4). Firstly, we focus on quartic interactions:

these would be the leading interactions in any theory with an approximate Z2 symmetry, Φ → −Φ. We

truncate the EFT at mass-dimension-8, which means we only include interactions with up to four (three)

derivatives in the bulk (boundary) Lagrangian, and further assume that Lorentz symmetry is broken only

by the boundary interactions. Finally, we focus on specific interactions of the factorised form D1Φ2D2Φ2,

where D1 and D2 are differential operators. Altogether, this gives the following EFT basis of interactions:

Lbulk
EFT[Φ, ∂µ] ⊃ α0

4!
Φ4 +

α2

4
Φ2□Φ2 +

α4

4
Φ2□2Φ2 + O(∂6) ,

Lboundary
EFT [Φ(t∗), ∂µ, ∂t] ⊃

β00
4!

Φ4(t∗) − β11
4

Φ2(t∗)∂tΦ
2(t∗) +

β20
4

Φ2(t∗)□Φ2(t∗) − β22
4

Φ2(t∗)∂2i Φ2(t∗)+

− β31
4

Φ2(t∗)∂t□Φ2(t∗) − β
′

31

4
□Φ2(t∗)∂tΦ

2(t∗) + O(∂4), (7.3.1)

where the αa’s are the free Wilson coefficients of bulk interactions and the βab’s are free Wilson coefficients

of boundary interactions. The first label on β counts the total number of derivatives, while the second

counts the number of derivatives that are not Lorentz invariant (such as ∂t and ∂2i ).

EFT wavefunction. We can use (7.3.1) to compute the tree-level four-point wavefunction coefficient up

to fourth order in the momenta/energy. Even though we consider contact interactions, it is convenient to

separate contributions into s, t and u “channels” according to the partial energies on which they depend:

ψEFT({ω}, {k}) = δd(kT )(ψ′
EFT(ω12, ω34,ks) + ψ′

EFT(ω13, ω23,kt) + ψ′
EFT(ω14, ω24,ku)) . (7.3.2)
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An explicit calculation gives:

ψ′(ω12, ω34,ks) =
1

ωT

[
1

3
α0 + α2(s12 + s34) + α4(s212 + s234)

]
+

+
i

3
β00 + β11ωT + iβ20(s12 + s34) + i2β22k

2
s+

+ β31(s12ω12 + s34ω34) + β′
31(s12ω34 + s34ω12) + O(p5).

(7.3.3)

We have defined:

ks = k1 + k2 , kt = k1 + k3 , ku = k1 + k4 ,

ωij = ωi + ωj , kij = ki + kj , sij = ω2
ij − k2

ij . (7.3.4)

Sum rules. The sum rules in (7.2.6) can be used to fix each of the low-energy Wilson coefficients in

(7.3.1) in terms of an integral over the UV completion of the EFT. Concretely, proceeding order-by-order

in derivatives:

• At mass-dimension-4, there is a single bulk interaction in LEFT with Wilson coefficient α0. The

corresponding sum rule follows from evaluating (7.2.4) at all ωa = ka = 0,

α0 = I(0)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.5)

• At mass-dimension-5, there is a single boundary interaction in the EFT, with coefficient β00. The

corresponding sum rule follows from evaluating the ∂ω1
of (7.2.4) at all ωa = ka = 0,

iβ00 = I(1)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.6)

• At mass-dimension-6, there are two interactions, with Wilson coefficients α2 and β11. The corre-

sponding sum rules follow from evaluating the ∂2ω1
and ∂ω2∂ω1 of (7.2.4) at all ωa = ka = 0,

3(α2 + β11) = I(2)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.7)

2(α2 + 3β11) = ∂ω2
I(1)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.8)

• At mass-dimension-7 there are two boundary interactions, with Wilson coefficients β20 and β22. The

corresponding sum rules follow from evaluating ∂3ω1
and ∂ω1

∂2ks
of (7.2.4) at all ωa = ka = 0,

3iβ20 = I(3)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.9)

−4i(β20 − β22) = ∂2ks
I(1)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.10)

• At mass-dimension-8, there are three EFT interactions, with Wilson coefficients {α4, β31, β
′
31}. The

corresponding sum rules follow from evaluating ∂4ω1
, ∂2ω1

∂ω2
∂ω3

and ∂ω1
∂ω2

∂ω3
∂ω4

of (7.2.4) at all
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ωa = ka = 0,

3(α4 + β31) = I(4)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.11)

6β31 + 10β′
31 = ∂ω2

∂ω3
I(2)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

, (7.3.12)

24β′
31 = ∂ω2

∂ω3
∂ω4

I(1)
UV ({ω}, {k})

∣∣
ωa=0
ka=0

. (7.3.13)

These sum rules can be similarly applied to any desired order in the EFT expansion, determining every

Wilson coefficient in LEFT. Note in particular that the boundary interactions and the bulk interactions

contribute on an equal footing. For instance, the sum rule (7.3.7) can only unambiguously fix the bulk

Wilson coefficient once supplemented with (7.3.8)—generally at a given order in derivatives one requires

all independent sum rules in order to solve for a particular Wilson coefficient.

Comparison with amplitude sum rules Amplitude sum rules have been extensively studied in the

literature and have proven to be very useful in the study of EFTs. However, the amplitudes sum rules

differ in two fundamental aspect from the wavefunction sum rules we have derived above:

• The LSZ formula reduces the number of possible EFT interaction vertices in the bulk. For example

terms like Φ2□Φ2 will not be present as they are proportional to the equations of motion.

• The scattering process takes place between asymptotically free past and future states. This means

that one can discard total derivative interactions in the bulk, and that the EFT vertices on the time

slice t = t∗ will not play a role.

Therefore, the EFT expansion for amplitudes Samp
EFT[Φ] only involves the bulk Lagrangian from (7.1.8)

action:

Samp
EFT[Φ] =

∫ +∞

−∞
dt

∫
d3xLbulk

EFT[Φ, ∂µ]. (7.3.14)

As a consequence of the above considerations, fewer operators need to be considered, namely

Lbulk
EFT[Φ, ∂µ] ⊃ α0

4!
Φ4 +

α4

4
Φ2□2Φ2 + O(∂6). (7.3.15)

From these interactions we can obtain the leading terms for the 2 → 2 scattering amplitude,

A(s, t) = α0 + 2α4(s2 + t2 + u2) + O(α6p
6). (7.3.16)

The analyticity for the scattering amplitude A(s, t) in the complex s plane allows us to write a dispersion

relation for A(s, t) and its derivatives. Using these we find that:

α0 =

∫ +∞

−∞

ds

2πi

disc(A(s, t = 0))

s
+ Res

∞

(
disc(A(s, t = 0))

s

)
, (7.3.17)

4α4 =

∫ +∞

−∞

ds

2πi

disc(A(s, t = 0))

s3
+ Res

∞

(
disc(A(s, t = 0))

s3

)
. (7.3.18)

Therefore, we can see that the amplitudes’ sum rules only capture a reduced set of the possible EFT interac-

tions. Not every interaction that contributes to the wavefunction may appear in the scattering amplitude,
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whilst all interactions that contribute to the amplitude do appear in the wavefunction coefficients2.

In the case of boundary interactions, the best case is the comparison of the sum rules for α4 from

amplitudes (7.3.18) with that from wavefunction coefficients (7.3.11). Whilst the amplitude sum rule only

includes information about the EFT interaction Φ2□2Φ2, the wavefunction one also includes information

about Φ2∂t□2Φ2|t=t∗ . For interactions proportional to the equations of motion, like Φ2□Φ2, the amplitudes

sum rules are oblivious. It requires us to look at wavefunction sum rules like (7.3.7) and (7.3.8) to constrain

the value for the Wilson coefficients of Φ2□Φ2 and Φ2∂tΦ
2|t=t∗ .

7.4 Example UV completion

In this section, we evaluate and check our proposed sum rules in a simple UV-completion of the single-

scalar low-energy effective theory presented above. We do this both for a tree-level process and for a

one-loop process in the UV-completion of effective theory to show cases in which both poles and branch

points arise.

7.4.1 Tree level example

Consider a toy UV model of two scalars: a light field Φ and a heavy field X, which interact via a coupling

of the form gMΦ2X, so that the complete renormalisable Lagragian is:

LUV[Φ, X] = −1

2
(∂Φ)2 − 1

2
m2Φ2 − 1

2
(∂X)2 − 1

2
M2X2 − gMΦ2X . (7.4.1)

We aim to study the EFT of the light field Φ at energies well below the mass M of the heavy field X.

At tree level, it is enough to integrate out the heavy field X using the classical equations of motion and

substitute back into the action:

(□−M2)X = gMΦ2 . (7.4.2)

The solution in momentum space with boundary conditions X̄ in
k in the past and X̄out

k in the future are:

Xsol
k (t) =

fk(t)

fk(t∗)
X̄ in

k +
f∗k (t)

f∗k (t∗)
X̄out

k − gM

∫
p

Φp(t)Φk−p(t)

∂2t + k2 +M2
, (7.4.3)

where fk(t) are the mode functions of the heavy scalar X with fk(t) = e−iΩkt/
√

2Ωk and Ω2
k = k2 +M2.

The first two terms correspond to the homogeneous solution of the equation of motion. The third term

corresponds accounts for the coupling to the Φ2(t) source.

In order to derive the Wilson coefficients from the action we need to substitute the equations of motion

for the heavy field into the original action. For generic boundary conditions, i.e. for both amplitudes and

wavefunction coefficients, evaluating the action on the X given in (7.4.3) gives:

SEFT[Φ, Xsol] =

∫
dt d3x

[
−1

2
(∂Φ)2 − 1

2
m2Φ2 − 1

2
gMΦ2X − 1

2
∂µ(X∂µX)

]
. (7.4.4)

To make progress we have to choose boundary conditions. These are different depending on whether we

discuss amplitudes or wavefunction coefficients. Let’s study each case in turn.

2This is necessary since in the limit ωT → 0 the Minkowski wavefunction coefficients coincide with scattering amplitudes.
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Amplitudes. Amplitudes are related by the LSZ reduction formula to an in-vacuum to out-vacuum

Green’s function. This choice corresponds to X̄ in
k = 0 and X̄out

k = 0, and similarly for Φ. This leads to

Xsol
k (t) = −gM

∫
p

Φp(t)Φk−p(t)

∂2t + k2 +M2
⇒ Xsol(t,k) =

∫

k

eikxXsol
k (t) =

gM

□−M2
Φ2(t,x) . (7.4.5)

When substituted back into the on-shell action the boundary term vanishes and we find

Samp
EFT[Φ, Xsol(Φ)] =

∫
dt d3x

[
−1

2
(∂Φ)2 − 1

2
m2Φ2 − 1

2
g2M2Φ2 1

□−M2
Φ2

]
. (7.4.6)

This action is clearly non-local. However, in the regime M2 ≫ □ we can approximate it as a series of local

operators. This leads to the EFT vertices that reproduce the EFT interactions in (7.3.15):

Samp
EFT[Φ] =

∫
dt d3x

[
−1

2
(∂Φ)2 − 1

2
m2Φ2 +

1

2
g2M2

∞∑

n=0

Φ2

(
□
M2

)n

Φ2

]
. (7.4.7)

Note Φ2□Φ2 does not contribute to any scattering amplitude as it is proportional to the equations of

motion. Therefore, even though it appears in the action it cannot be captured by the amplitude sum

rules. For this particular UV-completion, the Wilson coefficients in (7.3.15) can be read off from (7.4.7):

α0 = 12g2 , α2 =
2g2

M2
, α4 =

2g2

M4
, ... (7.4.8)

Wavefunction coefficients. For wavefunction coefficients the boundary conditions are different from

those of amplitudes because for the “out” state we project onto a field eigenstate at some finite time, as

opposed to a state of free particles in the infinite future. This leads to additional EFT interactions as we

now show. The right boundary conditions are now X̄ in
k = 0 and ′Xsol

k (t∗) = 0, and hence

Xsol(t) = X̄outeiΩ(t−t∗) + gM
Φ2(t)

□−M2
, X̄out = −gM Φ2(t∗)

□−M2
, (7.4.9)

where Ω =
√
k2 +M2 is fixed by the dispersion relation for the momentum of X or equivalently Φ2. Notice

that since X(t) = 0 at t = t∗ and at t = −∞(1− iϵ), the total derivative term in (7.4.4) vanishes. For the

other terms in (7.4.4) we can split the result into bulk and boundary contributions as we did in (7.1.8).

This is simplified by the fact that the on-shell action is linear in X:

St∗
EFT[Φ] = SEFT[Φ, Xsol] = Sbulk

EFT[Φ] + Sbdy
EFT[Φ], (7.4.10)

To compute each term we notice that the relative factor between the kinetic term and the cubic interaction

is different in the action (7.4.4) from what appears in the equations of motion (7.4.2). This means that

we have the choice to use the equations of motion for X to eliminate either the kinetic term or the cubic

interaction. Here we choose to eliminate the latter, finding

SEFT[Φ, Xsol] ⊃
∫
dt d3x

[
−1

2
Xsol(□−M2)Xsol

]
. (7.4.11)
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This has four contributions from squaring the two terms in X in (7.4.9). The contribution from squaring

the second term in (7.4.9) gives the bulk interactions

Sbulk
EFT ⊃

∫
d3xdt − 1

2
g2M2Φ2 1

□−M2
Φ2 , (7.4.12)

where □ −M2 cancelled out with (□ −M2)−1. Now notice that the first term in (7.4.9) is a solution of

the homogeneous equations of motion and so it is annihilated by □−M2. Hence, of the remaining three

terms the only survivor is the one where □−M2 hits Φ2,

Sbdy
EFT[Φ] = −

∫
d3xdt

1

2
X̄outeiΩ(t−t∗)(□−M2)gM

Φ2

□−M2
. (7.4.13)

One could choose to simplify □ −M2 but then one has to compute the time integral. Instead here we

integrate by part twice to move □ −M2 onto the first factor. Since again that factor is annihilated by

□−M2 the only contribution comes from the boundary terms in the first and second integration by parts

in time. They combine into

Sbdy
EFT =

∫
d3x

1

2
gMX̄out (∂t − iΩ)

Φ2(t∗)

□−M2
(7.4.14)

=

∫
d3x

ig2M2

2

Φ2(t∗)

□−M2
(i∂t + Ω)

Φ2(t∗)

□−M2
, (7.4.15)

where we used (7.4.9) to substitute for X̄out.

To obtain the local EFT interactions we expand in M2 ≫ □, ∂2t , ∂
2
i . The resulting vertices in the bulk

are:

Lbulk
EFT =

∑

n=0

g2

2M2n
Φ2□nΦ2, (7.4.16)

These are the same as for amplitudes, with the difference that we cannot drop the n = 1 term, which

is proportional to the equation of motion. On the boundary, we have both Lorentz covariant and boost

breaking terms:

Lbrane
EFT =

ig2

2M2

∑

a,b

□aΦ2(t∗)

M2a

(
i∂t +M

∑

n=0

(
1/2

n

)(
− ∂2i
M2

)n
)

□bΦ2(t∗)

M2b
. (7.4.17)

Therefore, we can write the first few Wilson coefficients:

α0 = 12g2 , α2 =
2g2

M2
, α4 =

2g2

M4
,

β′
31 =

2g2

M4
, β31 =

2g2

M4
, β11 =

2g2

M2
, β20 =

4ig2

M3
, β00 =

12ig2

M
, β22 =

ig2

M3
.

(7.4.18)

The value of these coefficients have been derived from the Lagrangian of the EFT after integrating

out the heavy degrees of freedom of the UV. They do not rely on the sum rules. To prove that we can

use the latter to compute all the coefficients in (7.4.18) we will start from the UV four-point exchange

wavefunction coefficient for the light scalar ψUV and then we will use the sum rules (7.3.5-7.3.10) to obtain

the value of all the Wilson coefficients from (7.4.18). ψUV is a exchange diagram given by a heavy internal
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line so it is the sum of three different channels ψ′
UV. An explicit computation gives,

ψUV({ω}, {k}) = δ (kT ) [ψ′
UV(ω12, ω34,ks) + ψ′

UV(ω13, ω24,kt) + ψ′
UV(ω14, ω23,ku)] , (7.4.19)

ωTψ
′
UV(ω12, ω34,ks) =

4g2M2

(ω12 + Ωks)(ω34 + Ωks)
. (7.4.20)

The object that appears on the right-hand side of the sum rules (7.3.5-7.3.10) is the discontinuity of

ωTψUV along the negative ω1 real axis. In this particular example, ωTψUV is a rational function of ω1

and therefore there are no branch cuts contributing to disc(ωTψUV). However, the poles located in the

negative ω1 plane do contribute towards disc(ωTψUV) as delta functions:

disc(ωTψUV) = − 4g2M2

ω34 + Ωks

2πiδ(ω12 + Ωks
) − 4g2M2

ω24 + Ωkt

2πiδ(ω13 + Ωkt
) − 4g2M2

ω23 + Ωku

2πiδ(ω14 + Ωku
).

(7.4.21)

The residue at infinity vanishes and therefore only the integral over the discontinuity contributes towards

the sum rules. Now we are in position to use the sum rules to compute the Wilson coefficients and prove

that they match the result from (7.4.18):

I(0)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

disc(ωTψUV)

ω1

∣∣∣∣ωi=0
kj=0

= 12g2, (7.4.22)

I(1)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

disc(ωTψUV)

ω2
1

∣∣∣∣ωi=0
kj=0

= −12g2

M
, (7.4.23)

I(2)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

disc(ωTψUV)

ω3
1

∣∣∣∣ωi=0
kj=0

=
12g2

M2
, (7.4.24)

∂ω2
I(1)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

∂ω2
disc(ωTψUV)

ω2
1

∣∣∣∣ωi=0
kj=0

=
16g2

M2
, (7.4.25)

I(3)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

disc(ωTψUV)

ω4
1

∣∣∣∣ωi=0
kj=0

= −12g2

M3
, (7.4.26)

I(4)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

disc(ωTψUV)

ω5
1

∣∣∣∣ωi=0
kj=0

=
12g2

M4
, (7.4.27)

∂ω2∂ω3I(2)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

∂ω2∂ω3disc(ωTψUV)

ω3
1

∣∣∣∣ωi=0
kj=0

=
32g2

M4
, (7.4.28)

∂ω2∂ω3∂ω4I(1)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

∂ω2
∂ω3

∂ω4
disc(ωTψUV)

ω2
1

∣∣∣∣ωi=0
kj=0

=
48g2

M4
, (7.4.29)

∂2ks
I(1)
UV({ω}, {k})

∣∣
ωi=0
kj=0

=

∫ 0

−∞

dω1

2πi

∂2ks
disc(ωTψUV)

ω2
1

∣∣∣∣ωi=0
kj=0

=
12g2

M3
. (7.4.30)

All of the sum rules match the result of the Wilson coefficients (7.4.18) computed at the level of the action.
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7.4.2 Loop level example

Now consider a different toy model:

LUV[Φ, X] = −1

2
(∂Φ)2 − 1

2
m2Φ2 − 1

2
(∂X)2 − 1

2
M2X2 − gΦ2X2. (7.4.31)

Unlike the previous toy model, we can no longer use the classical equation of motion for the heavy field

X to obtain the effective action for Φ because the leading correction to the action is now at loop level.

Instead, we will explicitly compute the wavefunction coefficient ψUV, and match this to a low-energy ψEFT

in order to fix the appropriate EFT Wilson coefficient.

Computing the UV wavefunction. In order to compute the Wilson coefficients, we can first compute

the wavefunction coefficient for the UV theory and expand the wavefunction coefficient in the low-energy

limit. Since this expression needs to match the wavefunction coefficient computed from the EFT, we can

read off the Wilson coefficients. In the UV theory, the leading contribution to the two-point wavefunction

coefficient is the following graph:

p
(7.4.32)

This graph corresponds to the integral,

ωTψUV = g

∫

p

1

ωT + 2
√
p2 +M2

. (7.4.33)

which is computed explicitly using a hard cut-off. The full result is:

ωTψUV =
g

16π2

[
2Λ(Λ − ωT ) +M2 + (ω2

T − 2M2) log

(
2Λ

M

)

+ 2ωT

√
4M2 − ω2

T arcsin

(√
2M − ωT

4M

)
+ O

(
1

Λ

)]
. (7.4.34)

Finding the EFT Wilson coefficients. Notice that this particular ψUV depends only on the energies

of the external lines, not their spatial momenta. Consequently, it can be matched using an EFT in which

time derivatives are treated as much larger than spatial derivatives. Concretely, we consider the following

EFT interactions,

SEFT[Φ; t∗] =

∫ t∗

−∞
dt

∫
d3x

1

2

∑

n=0

γn(−i∂t)nΦ2 (7.4.35)
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which corresponds to a low-energy two-point wavefunction,

ωTψEFT =
∑

n=0

γnω
n
T . (7.4.36)

The UV model (7.4.31) is one possible UV completion of this EFT, in which the first few Wilson coefficients

γn appearing in (7.4.36) are fixed to be,

γ0 =
g

16π2

(
2Λ2 +M2 − 2M2 log

(
2Λ

M

))

γ1 =
g

16π2
(−2Λ +Mπ)

γ2 =
g

16π2

(
−1 + log

(
2Λ

M

))

γ3 =
g

16π2

(
− π

8M

)
(7.4.37)

so that ψEFT coincides with ψUV at low values of ωa.

Notice that we have only regularized the theory, with an arbitrary cutoff, but we have not carried out

renormalization. We will verify our sum rules at finite but arbitrary Λ: since if our rules hold for any value

of the regulator, they will also hold for any renormalization scheme which is consistently implemented in

both the EFT and the UV.

Checking the UV/IR sum rules. Applying the dispersion relation, the Wilson coefficients appearing

in (7.4.35) are given by,

γn = I(n)
UV

∣∣
ω2=0
k=0

(7.4.38)

where I(N)
UV are defined in 7.2.5 using the two-point ψUV.

One could take the discontinuity of (7.4.34) directly to compute the integrals I(N)
UV , but a quicker route

is to take the discontinuity of the original integrand,

disc(ωTψUV) = g

∫

p

disc

(
1

ωT + 2
√
p2 +M2

)

= − g

2π2

∫ ∞

0

dp p2 2πiδ(ωT + 2
√
p2 +M2). (7.4.39)

Since p is real, for ωT > −2M there is no solution to ωT + 2
√
p2 +M2 = 0. Therefore, the discontinuity

is proportional to a step function:

disc(ωTψUV) =
g ωT

16π2

√
ω2
T − 4M2 2πiΘ (−ωT − 2M) . (7.4.40)

Substituting (7.4.40) into 7.2.5, and again using a hard cut-off to tame any divergences, we find that in

this UV model:

I(N)
UV

∣∣
ω2=0
k=0

=

∫ −2M

−2Λ

dω
g

16π2

ω
√
ω2 − 4M2

ωN+1
. (7.4.41)
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These can be evaluated straightforwardly, and give,

I(0)
UV

∣∣
ω2=0
k=0

=
g

16π2

(
2Λ2 +M2 − 2M2 log

(
2Λ

M

))

I(1)
UV

∣∣
ω2=0
k=0

=
g

16π2
(−2Λ +Mπ)

I(2)
UV

∣∣
ω2=0
k=0

=
g

16π2

(
−1 + log

(
2Λ

M

))

I(3)
UV

∣∣
ω2=0
k=0

=
g

16π2

(
− π

8M

)
(7.4.42)

in agreement with the sum rules (7.4.38).
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Chapter 8

Conclusion and outlook

In this thesis we studied various constraints on the cosmological wavefunction from different physical

principles. In particular, we focused on the constraints from unitary time evolution, which give rise to

a set of consistency relations between different wavefunction coefficients. We explored the case of parity

odd trispectrum for massless scalars, where we see that the bootstrap requires the trispecturm to vanish

at tree level. However, by explicit computation, we find the one loop parity odd trispectrum is generally

nonvanishing, and their signal is suppressed relative to a parity even tree level trispectrum provided the

instrumental noise is the same.

We also studied the analytic structure of the wavefunction in great detail. We first showed that non-

perturbatively, the wavefunction coefficients are always analytic in the lower half complex plane of its

external energies. We moved on to perturbation theory, where we showed that singularities arises when

energy entering a sub-diagram of a Feynman diagram vanishes, and we argued for its existence both

heuristically and through Landau analysis. We developed the amplitude representation of the wavefunc-

tion, where we classified singularities of the wavefunction into two classes: amplitude-type singularities and

wavefunction-type singularities, and we argued that wavefunction-type singularities should vanish when

we compute an in-in correlator. In the end we developed the dispersion relation for a wavefunction, and

leveraged it to obtain UV/IR sum rules for an effective field theory.

There are many interesting future directions. For the perturbative cosmological bootstrap, these in-

clude:

• Understanding how to simplify the loop level cutting rules. Our current cutting rules for loop level

wavefunction includes summing over all cuts, and for more complicated diagrams it give rise to

many terms. One possibility is to try and understand how to properly flip the internal energies by

analytical continuation of external energies (for instance through the procedure given in 3.5), which

could cut down the number of terms in the loop level cutting rules a lot.

A potentially interesting application of having a simpler loop level cutting rule is that we may be

able to replicate the procedure in [134]. There unitarity is used to glue two tree level ψ3 together

to form an exchange ψ4. If we can show the contact COT hypothesis described in 3.5 holds, we can

extend this procedure to glue any 1PI ψ3 to form an exchange ψ4. More generally, this means that in

order to understand loop level wavefunction, we simply need to focus the 1PI wavefunctions, similar

to the story of 1PI effective action described in usual QFT textbooks.
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• Understanding how to extend the cosmological optical theorem beyond perturbation theory, at least

in dS. A potential direction is to use holography: this has been described in 3.5. Once again the

main difficulty lies in our lack of knowledge of the boundary CFT of dS: we still need to properly

understand various elementary properties of the boundary CFT. Most importantly for our purpose,

we need to understand how to properly encode the physical properties of inflation into the conformal

bootstrap. At this point it is not clear what the implications of our cosmological bootstrap (such as

the COT and manifest locality) means for the boundary CFT even at a perturbative level, and it

would be interesting to explore this further.

• One implicit assumption we made in our discussion of unitarity is that the size of the Hilbert space

never changes. Throughout our discussion we have completely ignored the fact that dS have a

cosmological horizon: as the universe expands, the horizon shrinks, and long wavelength modes exit

the cosmological horizon and become inaccessible in the physical Hilbert space of an observer. This

is another way where unitarity can be broken in the context of inflation, and it would be highly

interesting to understand this. On the theoretical side, it would be interesting to see if this give rise

to some sort of information paradox similar to the famous black hole information paradox [171]. On

the observational side, since we do not have access to the full information of the future conformal

boundary of dS (i.e. all information at the end of inflation), it would be nice to see if this leaves

any interesting imprints in the correlators, in particular whether the cosmological optical theorem is

broken as a result.

In addition, for the analytic wavefunction, interesting future directions include:

• Understanding how the energy conservation condition extends to general cosmological spacetime, in

particular dS. One way to proceed is to write the wavefunction for the cosmological spacetime as

an operator acting on the flat space wavefunction. If the operator is simply a differential operator

then things are simple: the differentiation does not introduce new singularities so the cosmological

wavefunction inherits the analytic structure of the flat space wavefunction. However if the operator

is an integral operator then things are less straightforward. For example, it has been proposed

that the wavefunction for any FLRW spacetime can be written in terms of an integral of the flat

space wavefunction [80]. Such a representation is written down for the recursion representation

of the wavefunction, where it can be computed by using intersection theory [172] or differential

equations [73, 173]. This representation also allow us to study the space of functions which appear

in the wavefunction using the symbol technology, and this is studied extensively in de Sitter [174].

Therefore, when we try and study the singularity structure of the wavefunction by Landau analysis,

we need to include the endpoint singularities of these extra integrals as well as any singularities

(especially branch points) coming from the integration kernel.

• Understanding the wavefunction-type singularities. While it is clear for one loop diagrams that

wavefunction-type singularities are always total energy branch points, this is less clear for general

diagrams. It would be nice to have a systematic understanding of wavefunction-type singularities

for general diagram. This would potentially tell us whether the cosmological KLN theorem can be

used to remove all wavefunction-type singularities for in-in correlators at all order. In addition it

would be nice to see whether this cancellation works for in-in correlators for general cosmological

spacetime as well.
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• Understanding the wavefunction in terms of master integrals. It is known that any one loop amplitude

can be written in terms of a few master integrals [175,176]. It would be useful to understand if this

is also true for wavefunction using the amplitude representation of the wavefunction. Naively such a

statement should also be true for wavefunctions as well: we can first decompose the amplitude-like

part of the wavefunction (6.1.11) into master integrals, and then fix the energies using the energy-

fixing kernel. If the amplitude-like part has no new poles in terms of internal energies s, then the

wavefunction can easily be written in terms of master integrals as well.

• Understanding how different physical principles (for example unitarity) are encoded in the complex

plane of external energy. For example, the discontinuity of an amplitude in the complex s−plane

must be larger than zero by unitarity. Combined with the UV/IR sum rules this allow us to con-

struct positivity bounds for amplitudes. For wavefunction this is a lot less clear: the cosmological

optical theorem is a relation between the Disc of the wavefunction, and the Disc operator is not a

regular discontinuity. In fact, the Disc operator analytically continues all of the external energies

(and in some cases internal energy as well). In order to understand how the cosmological optical

theorem manifests itself in the language of the analytic wavefunction, we may need to understand

the analyticity of the wavefunction when we simultaneously analytically continue multiple external

energies.

These are some of the future directions in a technical standpoint. But there is a larger question which

the cosmological bootstrap community should address: whether we as a community should be focusing on

bootstrapping the wavefunction. The main advantage of working with the wavefunction is that it is simpler

to work with in perturbation theory (as the number of diagrams do not proliferate with the number of

verticies of the Feynman diagram), its connection to holography [121] as well as positive geometry (see [80–

82,84, 85, 163,177]). However, generalizing the results of the cosmological bootstrap beyond perturbation

theory from the wavefunction perspective proved to be difficult: due to the difficulties described in 3.5 the

holography perspective has not given us much progress. And while the connection to positive geometry

is nice from a purely theoretical standpoint, it is not immediately apparent that it offers a significant

advantage in imposing bounds on a practical level.

Working with in-in correlators have given us some success (example includes [122,123] which give some

non-perturbative results for unitarity). In particular, under some simple assumptions it is possible to write

in-in correlators in terms of in-out correlators [105]. In those cases the number of Feynman diagrams no

longer increase exponentially since we are working with in-out correlators, and many new results (such

as cutting rules for correlators) have been found. In addition this give us hope in defining some sort of

S-matrix for dS in the Poincare patch 1. Even though we do not measure this S-matrix directly, for the

purpose of constructing positivity bounds these objects may be simpler to work with, as it may be easier

to import technology from the S-matrix bootstrap to these objects instead.

Because of these recent developments, it may be worth considering whether the community should

focus more effort in bootstrapping the wavefunction, or try to work with in-in correlators or some form

of S-matrix. One of the main goals of the cosmological bootstrap is to come up with concrete tests for

inflations. If we are unable to connect to cosmological observations, that defeats the whole purpose of this

program.

1There have been a few other proposals of S-matrix in dS, see [79,178–180]

151



Appendix A

Time derivatives

When the interaction is allowed to involve time derivatives this introduces derivatives on the Green’s

function that potentially alter the analysis as it is no longer immediately possible to exploit the result

from (3.1.24). Instead it is necessary to understand the behaviour of terms like

Im
[
∂Nη ∂

M
η′ Gp(η, η′)

]
. (A.0.1)

This generalisation is simpler than it might seem as the energies are the only complex variables and

therefore complex conjugation commutes with the time derivatives and so derivatives of K and G will

remain Hermitian analytic,

[
∂Nη K−k∗(η)

]∗
= ∂Nη K

∗
−k∗(η) = ∂Nη Kk(η) , (A.0.2)

[
∂Nη ∂

M
η′ G−p∗(η, η′)

]∗
= ∂Nη ∂

M
η′ G∗

−p∗(η, η′) = ∂Nη ∂
M
η′ Gp(η, η′) . (A.0.3)

Likewise, we can explore the imaginary part of G for real p,

Im
[
∂Nη ∂

M
η′ Gp(η, η′)

]
= ∂Nη ∂

M
η′ Im [Gp(η, η′)] (A.0.4)

= 2PpIm ∂Nη Kp(η) Im ∂Mη′ Kp(η′) . (A.0.5)

From this it is apparent that we can cut lines involving time derivatives in exactly the same way as non-

derivative interactions, except each of the diagrams must include the derivatives previously associated with

the bulk-to-bulk propagator on the the external lines that are introduced. We can further clarify this by

looking at the full wavefunction coefficient,

ψn({k}; {p}; {k}) = i

∫ ( V∏

A

dηAFA(k)

)(
n∏

a

K
(Na)
ka

)(
I∏

m

G(Nm,Mm)
pm

)
. (A.0.6)

Where we have introduced the notation

K(N)(η) = ∂Nη K(η) (A.0.7)

152



whilst suppressing the η dependence. This has an imaginary discontinuity arising from cutting the internal

line with momentum S given by

DiscS iψn+m({k}; p1, . . . , S, . . . , pI ; {k})

= i

∫ ( V∏

A

dηAFA(k)

)(
n+m∏

a

K
(Na)
ka

)(
I∏

l

G(Nl,Ml)
pl

)(
iG

(N,M)
S − i

[
G

(N,M)
S

]∗)

= iPS

∫ ( V∏

A

dηAFA(k)

)(
n+m∏

a

K
(Na)
ka

)(
I∏

l

G(Nl,Ml)
pl

)(
K

(N)
S −K

(N)
S

∗)(
K

(M)
S −K

(M)
S

∗)

= −iPS DiscS [iψn+1 (k1, . . . , kn, S; {p}; {k})] DiscS [iψm+1 (S, k1, . . . , km; {p}; {k})] . (A.0.8)

This is the same as the expression with non time-derivative interactions except the propagators are now

allowed to have derivatives. Therefore, the single-cut rules derived in the previous section apply to any

derivative interactions as well. The generalization to time derivatives for spinning fields proceeds similarly

as the modefunctions remain Hermitian analtyic and the vertex terms are time independent.
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Appendix B

WKB solution to the Klein Gordon

equation for flat FLRW spacetime

As a demonstration of the Hermitian analyticity of the bulk-to-boundary propagator with Bunch-Davies

initial conditions, we consider the case p(k, η) = 2a′

a and q(k, η) = c2s(η)k2 + m2, i.e. the case where ϕ

satisfy the Klein Gordon equation in an arbitrary flat FLRW spacetime. (One can also carry out the same

procedure for the Mukhanov Sasaki equation by replacing the scale factor with z = a
¯̇
ϕ
H .) The equation we

have is:

ϕ′′ + 2
a′

a
ϕ′ + (c2sk

2 +m2a2)ϕ = 0. (B.0.1)

Re-writing this in terms of f = aϕ, we find

f ′′ +

(
c2sk

2 +m2a2 − a′′

a

)
f = 0. (B.0.2)

For solutions of the form f = Ceikσ(k,η) this becomes

(c2s − σ′2) +
i

k
σ′′ +

1

k2

(
m2a2 − a′′

a

)
= 0. (B.0.3)

Since we are interested in the case where the mode function approaches eikη in the far past, we make the

following ansatz:

σ(k, η) = ±σ0(η) +
1

k
σ1(η) +

1

k2
σ2(η) +

1

k3
σ3(η) +

1

k4
σ4(η) + . . . , (B.0.4)

where

σ0(η) =

∫ η

−∞
dη̄ cs(η̄). (B.0.5)

We will focus on the solution with + sign for now, though the negative solution can be easily obtained by

complex conjugation.

At O(k−1) (B.0.3) tells us that
2cs
k
σ′
1 = 0. (B.0.6)
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This means that σ1 is constant unless cs vanishes somewhere in the bulk. This constant can be absorbed

into the normalization of the mode function, so we will ignore its contribution.

At O(k−2) we have:

−2cs(η)σ′
2 +

(
m2a2 − a′′

a

)
= 0, (B.0.7)

σ2 =
1

2

∫ η

−∞
dη̄

1

cs(η̄)

(
m2a(η̄)2 − a′′(η̄)

a(η̄)

)
. (B.0.8)

Since everything within the integral is real, we expect σ2 to be real as well.

At O(k−3) we have:

−2csσ
′
3 + iσ′′

2 = 0, (B.0.9)

σ3 =
i

2

∫ η

−∞
dη̄
σ′′
2 (η̄)

cs(η̄)
. (B.0.10)

Since everything within the integral is real, σ3 is pure imaginary. In general we have the following:

σr =
1

2

∫ η

−∞
dη̄

1

cs(η̄)
(iσ′′

r−1(η̄) −
∑

m+n=r

σ′
m(η̄)σ′

n(η̄)). (B.0.11)

By induction, we see that σr must be real for even r and pure imaginary for odd r. Therefore, as long as

this series expansion converges, we conclude that σ(k, η) is Hermitian analytic.

Since K(k, η) = ϕ+(k,η)
ϕ+(k,η0)

, in terms of the function f(k, η) this is simply

K(k, η) =
a(η0)eikσ+(k,η)

a(η)eikσ+(k,η0)
. (B.0.12)

Now since the scale factor is real, and σ is Hermitian analytic, the bulk-to-boundary propagator is Her-

mitian analytic.

As an example of how this WKB expansion gives us the mode function, let us consider the case of a

massless scalar in de Sitter space with cs = 1. For de Sitter, a = 1
Hη , therefore a′′

a = 2
η2 . Since m2 = 0,

we have:

σ2 =
1

2

∫ η

−∞
dη′
(−2

η′2

)
=

1

η
. (B.0.13)

Taking this result, we can obtain the other σr order by order:

σ3 =
i

2

∫ η

−∞
dη′
(

1

η

)′′
=
i

2

∫ η

−∞
dη′
(

2

η3

)
=

−i
2η2

,

σ4 =
1

2

∫ η

−∞
dη′
[
i
−3i

η4
− 1

η4

]
=

−1

3η3
.

(B.0.14)

With the help of combinatorics and using induction, we can see that:

σr =
(−i)r

2

∫ η

−∞
dη′
[
r − 1

ηr
− r − 3

ηr

]
=

−(−i)r
(r − 1)ηr−1

. (B.0.15)
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Therefore, we have:

ikσ(k, η) = ikη − ik

∞∑

r=2

(−i)r
(r − 1)ηr−1kr

= ikη −
∞∑

r=1

(−i)r
r(kη)r

= ikη + log

(
1 +

i

kη

)
,

f = Ceikσ = Ceikη
(

1 +
i

kη

)
.

(B.0.16)

Setting C = −ik/
√

2k3, and remembering that ϕ = f/a, we have

ϕ =
H√
2k3

(1 − ikη)eikη, (B.0.17)

which is the usual de Sitter mode function of a massless scalar.
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Appendix C

Tensor structure

The I tensors that result from the single-field loop integral are totally symmetric and can only depend

on the vector s, so they take the form of sums of products of si and δij . The momentum integrals are

computed in dimensional regularisation; when the integrand is not a scalar, this makes it more difficult

to compute the integral. In this appendix, we determined the coefficients of the products of si and δij in

terms of contractions of the I tensors with other powers of si and δij .

Three indicies As a first example consider:

Iijk = I
(3)
1

(si
s
δjk +

sj
s
δik +

sk
s
δij

)
+ I

(3)
3

sisjsk
s3

. (C.0.1)

To find I
(3)
1 and I

(3)
3 , we contract Iijk with δij and si. The calculation is straightforward and give:

T1 :=
δijsk
s

Iijk = 5I
(3)
1 + I

(3)
3 , (C.0.2)

T3 :=
sisjsk
s3

Iijk = 3I
(3)
1 + I

(3)
3 . (C.0.3)

Therefore, we have:

I
(3)
1 =

T1 − T3
2

, I
(3)
3 =

−3T1 + 5T3
2

. (C.0.4)

While it is entirely possible to carry out the same calculation for tensor structure with more indicies

with brute force, it is beneficial to introduce a diagrammatic way of representing the contractions [3]. The

diagrammatic rules are summarised below. Diagrams will be drawn in two columns, with tensors on the

left representing those contracted into the factors in I on the right.

Since I is totally symmetric, the symmetry factor for each diagram corresponds to the number of distinct

ways of assigning labels (indices) to the internal lines whilst preserving the index structure on the left—i.e.
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the indices that meet at any vertex there. For example, the following diagram, which appears in 1
ssiδjkIijk,

has symmetry factor 2:

The calculation for the three indicies tensor structure can be represented in the following diagrammatic

way:

Four indices The diagrammatic method simplifies calculation of the I tensors with more indices. The

diagrams themselves are omitted here for brevity.

With four indices,

Iijkl = I
(4)
0 (δijδkl + 2 perms) + I

(4)
2

(sisj
s2

δkl + 5 perms
)

+ I
(4)
4

sisjsksl
s4

. (C.0.5)

Using Tn to denote a trace with n si
s s, then,

T0 = δijδklIijkl = 15I
(4)
0 + 10I

(4)
2 + I

(4)
4 , (C.0.6)

T2 =
sisj
s2

δklIijkl = 5I
(4)
0 + 8I

(4)
2 + I

(4)
4 , (C.0.7)

T4 =
sisjsksl
s4

Iijkl = 3I
(4)
0 + 6I

(4)
2 + I

(4)
4 , (C.0.8)

so that

I
(4)
0 =

1

8
(T0 − 2T2 + T4) , (C.0.9)

I
(4)
2 =

1

8
(−T0 + 6T2 − 5T4) , (C.0.10)

I
(4)
4 =

1

8
(3T0 − 30T2 + 35T4) . (C.0.11)

Five indices At this point, the number of terms starts to become large, and the diagrammatic approach

begins to pay off.

Iijklm =
I
(5)
1

s
(siδjkδlm + 14 perms) +

I
(5)
3

s3
(sisjskδlm + 9 perms) +

I
(5)
5

s5
sisjskslsm. (C.0.12)
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Using the notation established above,

T1 = 35I
(5)
1 + 14I

(5)
3 + I

(5)
5 , (C.0.13)

T3 = 21I
(5)
1 + 12I

(5)
3 + I

(5)
5 , (C.0.14)

T5 = 15I
(5)
1 + 10I

(5)
3 + I

(5)
5 . (C.0.15)

This yields

I
(5)
1 =

1

8
(T1 − 2T3 + T5) , (C.0.16)

I
(5)
3 =

1

8
(−3T1 + 10T3 − 7T5) , (C.0.17)

I
(5)
5 =

1

8
(15T1 − 70T3 + 63T5) . (C.0.18)

Six indices Now,

Iijklmn = I
(6)
0 (δijδklδmn + 14 perms) +

I
(6)
2

s2
(sisjδklδmn + 44 perms) +

I
(6)
4

s4
(sisjskslδmn + 14 perms) +

I
(6)
6

s6
sisjskslsm. (C.0.19)

The required traces are

T0 = 105I
(6)
0 + 105I

(6)
2 + 21I

(6)
4 + I

(6)
6 , (C.0.20)

T2 = 32I
(6)
0 + 77I

(6)
2 + 19I

(6)
4 + I

(6)
6 , (C.0.21)

T4 = 21I
(6)
0 + 57I

(6)
2 + 17I

(6)
4 + I

(6)
6 , (C.0.22)

T6 = 15I
(6)
0 + 45I

(6)
2 + 15I

(6)
4 + I

(6)
6 . (C.0.23)

Thus,

I
(6)
0 =

1

57
(T0 − 3T2 + 3T4 − T6) , (C.0.24)

I
(6)
2 =

1

456
(−5T0 + 72T2 − 129T4 + 62T6) , (C.0.25)

I
(6)
4 =

1

76
(T0 − 60T2 + 155T4 − 96T6) , and (C.0.26)

I
(6)
6 =

1

152
(5T0 + 840T2 − 2835T4 + 2142T6) . (C.0.27)
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Appendix D

Explicit computations for one loop

wavefunctions

In this appendix we describe how to compute the one loop wavefunctions by doing the momentum integrals

explicitly.

D.1 Classifying complexity

The majority of the loop integrals that we encounter below cannot be written in terms of elementary

functions. It will be useful, therefore, to introduce a taxonomy for the various kinds of special functions

which can arise in a given ψn. In particular, whenever an integral can be written in the following form,

I =

∫ ∞

1

dp

∫ +1

−1

dz1 ...

∫ +1

−1

dzT −1
R(p, z1, ..., zT −1)

Poly2G+2(p, z1, ..., zT −1)
, (D.1.1)

where R is a rational function of its arguments and PolyN represents a polynomial which is at most order

N in any one of its arguments, then we say that I has a degree of transcendentality T and a genus G.

Roughly speaking, T counts the number of integrals and G counts the number of independent square roots

appearing in the integrand. The lower each of these numbers, the closer the integral will be to familiar

elementary functions.

In Fig. D.1(a) we give some examples of special functions with different T and G. In particular, for

genus G = 0, an integral with degree of transcendentality T can possess polylogarithmic-type branch cuts

of a polylog LiT , where T determines the weight of the polylogarithm. For T = 1, (D.1.1) represents

the so-called “hyperelliptic integrals”, where the degree 2G + 2 polynomial in the denominator is called

“hyperlliptic curve of genus G”.

When both T > 1 and G > 0 much less is known about integrals of the form (D.1.1), and the labels T
and G give a useful measure of “how complicated” each integral is. For instance, we will show below that

the three-point wavefunction coefficient at one-loop, ψ1-loop
3 , generically has T = 3 and G = 3 in d = 3

spatial dimensions, so in principle would require knowledge of the special functions which correspond to

three iterated integrals over a hyperelliptic curve of genus 3. A dedicated study of the properties of such

functions would certainly be interesting (particularly in light of the myriad connections between amplitude
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T = 1 T = 2 · · · T
G = 0

Logarithm
log(z)

Dilogarithm
Li2(z)

· · · Polylogarithm
LiT (z)

G = 1
Elliptic integral

Π(z)
Integral of elliptic integral∫

dz
z Π(z)

· · · Integrals of elliptic integral[∫
dz
z

]T −1
Π(z)

G = 2 Hyperelliptic integral Integral of hyperelliptic integral · · ·
...

...
...

... · · · . . .

Table D.1: To organise the special functions which arise when performing the loop integrals, we introduce
a degree of transcendentality, T , and a genus, G, as in (D.1.1). Above we give some simple examples
of functions in each class, and in Table D.2 we summarise how the first three wavefunction coefficients
ψ1, ψ2, ψ3 (and their various massless and soft limits) populate these classes.

Feynman integrals and pure mathematics), but here we will restrict our attention to integrals that can be

written in terms of G = 0 or T = 1 functions only. In the case of ψ1-loop
3 in d = 3 dimensions, we will

see that taking a combination of soft and massless limits can reduce (T ,G) to (2, 0), and we can therefore

give an explicit expression in terms of dilogarithms (see (D.4.19)).

D.2 One internal edge

For loop diagrams with only a single internal edge (of mass M), the integrand depends on the loop

momenta through only a single Ωp =
√
p2 +M2. Since this is a function of p = |p| only, the d− 1 angular

components of the loop integration can be performed immediately, giving,

∫
ddp

(2π)d
I(Ωp) =

Sd−1

(2π)d

∫ ∞

0

dp pd−1 I(Ωp), (D.2.1)

where Sd−1 is the surface area of a (d− 1)-dimensional unit sphere,

Sd−1 =
πd/2

Γ
(
d
2

) , (D.2.2)

which takes the usual value of S2 = 4π in d = 3 spatial dimensions.

For instance, consider the contribution from the one-loop diagram given in (5.3.11).

ωψ1-loop
1 (ω) =

Sd−1

(2π)d

∫ ∞

0

dp
pd−1

ω + 2Ωp
. (D.2.3)

This integral has G(ψ1-loop
1 ) = 0 and T (ψ1-loop

1 ) = 1 in any d, The single square root in the denominator

can be removed by a change of variables, and the resulting integral can be straightforwardly performed in
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T = 1

G = 0

(a) ψ1-loop
1

T = 1 T = 2

G = 0

G = 1

(b) ψ1-loop
2

T = 1 T = 2 T = 3

G = 0

G = 1

G = 2

G = 4

(c) ψ1-loop
3

Table D.2: The degree of transcendentality T and genus G of the different one-loop diagrams computed
in App. D. A dashed internal line denotes a massless field, and a dot-dashed external line denotes a soft
limit in which that field carries zero spatial momentum.
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any integer d with a hard cut-off,
∫∞
0
dp→

∫ Λ

0
dp. For instance, in d = 3 dimensions1,

ωψ1-loop
1 (ω)|d=3

=
1

16π2

[
2Λ(Λ − ω) +

(
ω2 − 2M2

)
log

(
2Λ

M

)
+ 2ω

√
4M2 − ω2arcsin

(√
2M − ω

4M

)
+M2

]
, (D.2.5)

and in d = 1 dimensions,

ωψ1-loop
1 (ω)|d=1 =

1

4π


log

(
2Λ

M

)
−

2ω arcsin
(√

2M−ω
4M

)

√
4M2 − w2


 . (D.2.6)

In any number of dimensions, ωψ1-loop
1 is an analytic function of ω except for branch points at ω = −2M

and ω = −∞, which can be connected by a cut along the negative real axis. In particular, note that (D.2.5)

and (D.2.6) are analytic at ω = +2M , since
√

2M − ω arcsin
(√

2M−ω
4M

)
=
∑

j(2M−ω)j for positive integer

powers j.

D.3 Two internal edge

For a one-loop diagram with two vertices, the integrand depends on a single loop momentum through two

independent combinations, namely the energies associated with the momenta {q1,q2} of the internal lines,

where momentum conservation fixes their difference to be equal to the external momentum, q1 − q2 = k,

∫
ddq1d

dq2

(2π)d(2π)d
I(Ωq1 ,Ωq2) (2π)dδ

(d)
D (q1 − q2 − k) . (D.3.1)

Note that Ωq1 and Ωq2 are only independent in d > 1 spatial dimensions.

D.3.1 Generalities

Integration variables. Integrals of the form (D.3.1) can be simplified by choosing an appropriate set of

integration variables. When d ≥ 2, it is possible to choose the two lengths {q1, q2} (together with a further

d− 2 angular co-ordinates on which the integrand does not depend). Given the momentum conservation

constraint, the three lengths {q1, q2, k} must correspond to the edges of a triangle, as shown in Fig. D.1.

The domain of integration for {q1, q2} can then be determined by the condition that such a triangle exists,

namely that the three triangle inequalities are satisfied2,

q1 + q2 ≥ k , q1 + k ≥ q2 , q2 + k ≥ q1 . (D.3.2)

1Symbolic manipulation packages like Mathematica will often return a sum of arctan functions, which can be simplified
using trigonometric relations like,

arctan

(
2M + ω√
4M2 − ω2

)
− arctan

(
ω√

4M2 − ω2

)
= arcsin

(√
2M − ω

4M

)
(D.2.4)

in order to make the non-analyticity at ω = −2M manifest.
2Given three positive numbers {q1, q2, k}, (D.3.2) is a necessary and sufficient condition for a triangle with these edge

lengths to exist. It can also be written as a single non-linear condition, namely that the area of the formed triangle is positive,
cf. (D.4.3).
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Figure D.1: The one-loop contribution to ψ1-loop
2 with two internal lines is described by three momenta

which, as vectors, form the edges of a triangle due to momentum conservation.

Note that these inequalities are only saturated when the triangle degenerates into a line.

To change from {q1,q2} to these variables, we can parametrise the two internal momenta as,

q1 =
1

2
(p + k) , q2 =

1

2
(p− k) , (D.3.3)

and then align one of our co-ordinate axes along k, adopting the polar parametrisation,

k =

(
k

0d−1

)
, p =


 q+ cosϑ√

q2+ − k2 sinϑp̂d−1


 , (D.3.4)

where p̂d−1 is a unit vector in the (d − 1) directions orthogonal to k and 0d−1 = (0, ..., 0) is the vector

of (d − 1) zeroes. Integrating over the undetermined loop momentum p is then equivalent to integrating

over {q+, ϑ, p̂d−1}, where

q+ = q1 + q2 , k cosϑ = q1 − q2, (D.3.5)

and so surfaces of constant q+ correspond to ellipses (with foci separated by k) and ϑ is the eccentric

anomaly of a point on each ellipse. We will often use the notation q− = q1 − q2 in place of the angular

k cosϑ.

In practice, this allows us to write integrals of the form (D.3.1) as an integral over two scalars3,

∫
ddp

(2π)d
I(Ωq1 ,Ωq2) =

Sd−2

(2π)d

∫ ∞

k

dq+

∫ +k

−k

dq−
2k

qd−2
1 q2 I (Ωq1 ,Ωq2)

∣∣
q1=

1
2 (q++q−)

q2=
1
2 (q+−q−)

, (D.3.7)

where the integration region has been determined using the triangle inequalities, (D.3.2).

Finally, when considering massive fields it is often convenient to replace q± with the total/relative

energy, Ωq1 ± Ωq2 , which we denote by,

Ω± =
√
q21 +M2

1 ±
√
q22 +M2

2 (D.3.8)

3One simple way to find this Jacobian is to first express ddq1 in terms of spherical polars about the k axis (i.e. set
q1 · k = q1k cos θ), and then use the explicit change of variables,

q± = q1 ±
√
k2 + q21 − 2q1k cos θ , (D.3.6)
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The Jacobian between the two is straightforward,

(
q2+ − q2−

)
dq+ dq− =

(
Ω2

+ − Ω2
−
)
dΩ+ dΩ− . (D.3.9)

To find the integration region, we write q1 in polar co-ordinates about the k axis (as in (D.3.6)),

q1 =
1

2

√
(Ω+ + Ω−)2 − 4M2

1 , cos θ = −Ω+Ω− + k2 +M2
2 −M2

1

k
√

(Ω+ + Ω−)2 − 4M2
1

, (D.3.10)

which makes it clear that,

(Ω+ + Ω−)2 > 4M2
1 and |Ω+Ω− + k2 +M2

2 −M2
1 | < k

√
(Ω+ + Ω−)2 − 4M2

1 , (D.3.11)

and similarly for M1 ↔M2. We can therefore write the allowed integration region as,

∫ ∞

k

dq+

∫ k

−k

dq−
k

(
q2+ − q2−

)
=

∫ ∞

Ωk

dΩ+

∫ +k δk(Ω+)

−k δk(Ω+)

dΩ−
k

(
Ω2

+ − Ω2
−
)
, (D.3.12)

where,

Ωk =
√
k2 + (M1 +M2)2 ,

δk (Ω+) =

√
Ω2

+ − k2 − (M1 −M2)2
√

Ω2
+ − Ω2

k

Ω2
+ − k2

+
Ω+

k

|M2
1 −M2

2 |
Ω2

+ − k2
. (D.3.13)

In the case of equal masses, these simplify to,

Ωk =
√
k2 + 4M2 , δk (Ω+) =

√
Ω2

+ − Ω2
k√

Ω2
+ − k2

. (D.3.14)

To keep the following explicit expressions as succinct as possible, for the remainder of this subsection we

are going to work with the rescaled variables,

ω̂a =
ωa√

k2 + 4M2
, k̂ =

k√
k2 + 4M2

, m̂ =
m√

k2 + 4M2
, Ω̂± =

Ω±√
k2 + 4M2

. (D.3.15)

Note that 0 ≤ k̂ ≤ 1 is bounded in these variables, and since 4M̂2 = 1− k̂2 we can choose to write functions

in terms of k̂ or M̂ as convenient. Altogether, (D.3.1) can therefore be written as,

∫
ddp

(2π)d
I(Ωq1 ,Ωq2) =

Ω3
kSd−2

8k̂(2π)d

∫ ∞

1

dΩ̂+

∫ +k̂δk(Ω+)

−k̂δk(Ω+)

dΩ̂−
(

Ω̂2
+ − Ω̂2

−
)
qd−3
1 I (Ωq1 ,Ωq2)

∣∣
Ωq1

=
1
2k(Ω̂++Ω̂−)

Ωq2=
1
2k(Ω̂+−Ω̂−)

.

(D.3.16)
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Master integrals. It is useful to define a small number of master integrals from which other, more

complicated, integrals can be constructed. For ψ1-loop
2 , we define two such building blocks,

Jk(B) =

∫ ∞

1

dΩ̂+

∫ +k̂δk(Ω+)

−k̂δk(Ω+)

dΩ̂−
1

Ω̂+ +B
,

Jk (A;B) =

∫ ∞

1

dΩ̂+

∫ +k̂δk(Ω+)

−k̂δk(Ω+)

dΩ̂−
1

(Ω̂+ + Ω̂− +A)(Ω̂+ +B)
. (D.3.17)

Other integrals can then be written straightforwardly in terms of these using partial fractions. For instance,

consider,

I(A;B1, B2) =

∫ ∞

1

dΩ̂+

∫ +k̂δk(Ω+)

−k̂δk(Ω+)

dΩ̂−
Ω̂2

+ − Ω̂2
−

(Ω̂+ + Ω̂− +A)(Ω̂+ +B1)(Ω̂+ +B2)
. (D.3.18)

Expanding the numerator in terms of the factors appearing in the denominator,

Ω2
+ − Ω2

− =

(
B1 −A

B1 −B2
(Ω+ +B2) +

B2 −A

B2 −B1
(Ω+ +B1) − Ω−

)
(Ω+ + Ω− +A)

+
A(A− 2B1)

B1 −B2
(Ω+ +B2) +

A(A− 2B2)

B2 −B1
(Ω+ +B1) (D.3.19)

immediately gives,

I(A;B1, B2) =
B1 −A

B1 −B2
Jk(B1) +

B2 −A

B2 −B1
Jk(B2) +

A(A− 2B1)

B1 −B2
Jk(A;B1) +

A(A− 2B2)

B2 −B1
Jk(A;B2) .

(D.3.20)

The apparent poles at B1 = B2 are spurious: the only singularities in I(A;B1, B2) come from the master

integrals Jk(Bj) and Jk(A;Bj). This is because the residue at B1 = B2 vanishes.

For simplicity let us focus on the case where M1 = M2 = M . The wavefunction can be computed from

the following integral:

ω12ψ
1-loop
2 =

∫

p

1

(ω1 + Ωq1 + Ωq2)(ω2 + Ωq2)

[
1

ω12 + 2Ωq1

+
1

ω12 + 2Ωq2

]
. (D.3.21)

The full computation is rather long, and interested readers can refer to [2] for details. Here I will quote

the main results. The integral for ψ1-loop
2 can be written as,

ω12ψ
1-loop
2 =

1

16π2

[
2J̃k + 2

ω1J̃ (ω̂2) − ω2J̃k(ω̂1)

ω1 − ω2
− ω12

k
J̃k(ω̂12, ω̂1) − ω12

k
J̃k(ω̂12, ω̂2)

]
(D.3.22)

where J̃k is a simple logarithmic divergence given by

J̃k = log

(
Λ

M

)
. (D.3.23)
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Jk(ω̂1) Jk(ω̂12; ω̂1) Jk(ω̂12; ω̂2)

Finite mass (0 < k̂ < 1) −1 −1

Massless (k̂ → 1) −1 −1 , −ω̂2, −ω̂2 − 2 −ω̂2, −ω̂2 − 2

Soft limit (k̂ → 0) −1 −1 , −ω̂2 − 1 −ω̂2 − 1

Table D.3: The location of singular points in the complex ω̂1 plane of the three integrals from which
ψ1-loop
2 is constructed. The branch point at ω̂12 = −2 which develops in the massless limit is shown in red

to indicate that it cancels out in the full ψ1-loop
2 . The singularity at ω̂1 = −1 (i.e. ω1 = −

√
k2 + 4M2)

predicted by the heuristic argument is present in all cases, and in the massless and soft limits there is also
the singularity at ω12 = −2M predicted from the simpler one-edge loop.

J̃k(B) is an elliptic integral given by,

J̃k(ω̂) = − 2i

1 − k̂

[
(ω̂ − 1)F̃

(√
αk,

1

α2
k

)
+ 2 Π̃

(√
αk,

ω̂ + 1

αk(ω̂ − 1)
,

1

α2
k

)]
+ O (ω̂) , (D.3.24)

where we have discarded terms that are linear in ω (since these do not contribute to ψ1-loop
2 ) and introduced

the ratio,

αk =
1 − k̂

1 + k̂
. (D.3.25)

J̃k(A;B) is an integral of an elliptic integral given by:

∂ω̂1
Jk(ω̂12, ω̂1) = − 4M̂2ω̂1ω̂2

(ω̂2
1 − 1)

(
ω̂2
1 − k̂2δ(ω2)2

) 2k̂J̃k(ω̂1)

ω̂2
2 − k̂2δ(ω1)2

− 4M̂2

√
ω2
12 − 4M2

z̄+,kz̄−,k

(z̄2+,k − 1)(z̄+,k − ω̂1)

J̃k(z̄+,k)

2z̄+,k − ω̂12

+
4M̂2

√
ω2
12 − 4m2

z̄+,kz̄−,k

(z̄2−,k − 1)(z̄−,k − ω̂1)

J̃k(z̄−,k)

2z̄−,k − ω̂12
− (k ↔ −k) , (D.3.26)

where the four z̄ are (minus) the roots of the Dk polynomial,

Dk(Ω̂+, ω̂12) = (Ω̂+ + z̄+,k)(Ω̂+ + z̄−,k)(Ω̂+ + z̄+,−k)(Ω̂+ + z̄−,−k) . (D.3.27)

and can be written explicitly as,

z̄±,k(ω̂12) =
ω̂12

2
±

√
ω̂2
12

4
+ k̂2 + k̂

√
ω̂2
12

4
− M̂2 . (D.3.28)

The singularities of (D.3.22) can be summarized in table D.3.

There are two limits where all of the master integrals give elementary functions: the massless limit and

the soft limit.
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D.3.2 Massless limit

In this limit the master integrals in (D.3.17) can be evaluated immediately in terms of polylogarithms4,

J1(B) =

∫ Λ̂

1

dq̂+

∫ +1

−1

dq̂−
1

B + q̂+
= 2 log

(
Λ̂

B + 1

)

J1 (A;B) =

∫ ∞

1

dq̂+

∫ +1

−1

dq̂−
1

(A+ q̂+ + q̂−)(B + q̂+)
= Li2

(
B −A+ 1

B + 1

)
− Li2

(
B −A− 1

B + 1

)

(D.3.30)

Both have a logarithmic branch point at B = −1, and J1(A;B) has further dilogarithmic branch points

at A = 0 and A = −2.

In this limit, Jk(ω̂12; ω̂1) retains the singularity at ω̂1 = −1,

lim
k→1

Jk(ω̂12, ω̂1) ∼ log2(ω̂1 + 1) near ω̂1 = −1 , (D.3.31)

identified above for finite masses, but now it also acquires branch points at ω̂1 = −ω̂2 and ω̂1 = −ω̂2 − 2,

where the dilogarithms are finite but not smooth. These non-analyticities are due to the J̃k(z̄) terms in

(D.3.26), since in the massless limit the four roots become,

lim
k→1

z̄(ω̂12) = {−1,−1 + ω̂12, 1 + ω̂12, 1} , (D.3.32)

and are now linear in ω1. However, note while Jk(ω̂12, ω̂2) was previously analytic in ω1 (at fixed finite

mass), now this integral also develops branch points at ω̂1 = −ω̂2 and ω̂1 = −ω̂2 − 2. In particular, the

residue of the ω̂1 = −ω̂2−1 branch points are equal and opposite, so that overall the sum of Jk(ω̂12; ω̂1) +

Jk(ω̂12; ω̂2) is actually analytic there. Concretely, the terms which are non-analytic at ω̂1 = −ω̂2 − 2,

Jk(ω̂12; ω̂1) + Jk(ω̂12; ω̂2) ⊃ Li2

(
− ω̂1 + 1

ω̂2 + 1

)
+ Li2

(
− ω̂2 + 1

ω̂1 + 1

)
(D.3.33)

partially cancel due to the dilogarithm identity,

Li2(z) + Li2

(
1

z

)
= −1

2
log2(−z) − π2

6
for z > 1 , (D.3.34)

Altogether, substituting (D.3.30) into (D.3.21) and using the identity (D.3.34), the final result for

ψ1-loop
2 in this massless limit is,

ω12ψ
1-loop
2 (ω1, ω2, k) =

1

8π2

[
ω2 log

(
ω1+k

Λ

)
− ω1 log

(
ω2+k

Λ

)

ω1 − ω2

− ω12

2k

(
1

2
log2

(
ω1 + k

ω2 + k

)
+
π2

6
+ Li2

(
k − ω2

k + ω1

)
+ Li2

(
k − ω1

k + ω2

))]
. (D.3.35)

4This follows immediately from the indefinite integral,∫
dq̂+dq̂−

(A+ q̂+ + q̂−)(B + q̂+)
= Li2

(
B −A− q̂−
B + q̂+

)
. (D.3.29)
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D.3.3 Soft limit

The soft limit k̂ → 0 is another limiting case in which the master integrals (D.3.17) become elementary,

J0(ω̂) =

∫ ∞

1

dΩ+
1√

Ω̂+(Ω̂+ − 1)(Ω+ + ω)
=

2 arcsin
(√

−ω̂
)

√
−ω̂(1 + ω̂)

.

J0(ω̂12, ω̂1) = −
∫ ∞

1

dΩ̂+

Ω̂+

2
√

Ω̂2
+ − 1

(Ω̂+ + ω̂12)(Ω̂+ + ω̂1)

=
1

ω̂1

(
π

ω̂12
+

2
√

1 − ω̂2
12

ω̂12
arccos(ω̂12) +

2
√

1 − ω̂2
1

ω̂1
arccos(ω̂1)

)
, (D.3.36)

Again we see that the only branch point in J0(ω̂) is at the two-particle threshold ω̂ = −1, and it is of the

square-root form established by our method of regions analysis above. The J0(ω̂12; ω̂1) integral, on the

other hand, has both a branch point at ω̂1 = −1 and also an additional one at ω̂12 = −1 (the apparent

poles at ω̂2 = 0, ω̂1 = 0 and ω̂12 = 0 are all removable singularities with zero residue). The analogous

J0(ω̂12; ω̂2) also has a branch point at ω̂12 = −1. These additional branch points are due to the J̃k(z̄)

terms in (D.3.26), since in this limit the roots again become linear in ω1,

lim
k→0

z̄(ω̂12) = {ω12, ω12, 0, 0} . (D.3.37)

This branch point does not cancel out, but since ω̂12 = −1 corresponds to ω12 = −2m in the soft limit we

recognise this as the threshold from the simple one-edge diagram.

D.4 Three internal edge

For a one-loop diagram with three vertices, the integrand will depend on the loop momenta through three

independent combinations, namely the energies associated with the momenta (q12,q23,q31) of the internal

lines, where momentum conservation fixes their differences,

q12 − q31 = k1 , q23 − q12 = k2 , q31 − q23 = k3 , (D.4.1)

and also sets k1 + k2 + k3 = 0 (so only two of the three equalities in (D.4.1) are independent). Given this

constraint, the magnitudes of the internal momenta can be viewed as three edge lengths of a tetrahedron,

whose triangular base is fixed by the external momenta (k1,k2,k3). This is shown in Fig. D.2.

D.4.1 Generalities

Let us first consider d ≥ 3 spatial dimensions. As in the two vertex case, it would seem prudent to use the

edge lengths (q12, q23, q31) as our integration variables. The domain of integration is then determined by the

condition that there exists a tetrahedron with these edge lengths. Clearly each of the four triangular faces

of the tetrahedron lead to triangle inequalities between the internal and external momenta, for instance,

|q12 − q31| < k1 < q12 + q31 . (D.4.2)
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Figure D.2: The one-loop contribution to ψ1-loop
3 with three internal lines is described by six momenta

which, due to momentum conservation, form the edges of a tetrahedron.

However, while (D.4.2) and its permutations are certainly necessary conditions, they are not sufficient.

There is one further condition which must be satisfied: the volume V of the tetrahedron must be positive,

288V 2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 k21 k22 k23

1 k21 0 q212 q231

1 k22 q212 0 q223

1 k23 q231 q223 0

∣∣∣∣∣∣∣∣∣∣∣∣

≥ 0 , (D.4.3)

where this bound is saturated only for degenerate tetrahedra (for which all four faces lie in the same

plane). Taken together, (D.4.3) and (D.4.2) (together with its permutations) are a necessary and sufficient

condition5 for the lengths {q12, q23, q31} to form a tetrahedron with triangular base {k1, k2, k3} as shown

in D.2, and they therefore define the domain of loop integration. Note that (D.4.3) is generally a fourth

order polynomial in any single qab, and so this condition defines a rather involved integration boundary.

The only situation in which this nested square root simplifies are the degenerate cases with either k3 = 0

or when k1 = k2 = 0.

Concretely, we can orient one co-ordinate axis along k1 and adopt the same polar parametrisation for

q12 and q31 as in the two-vertex case, namely,

q12 =
1

2
(k1 + p) , q31 =

1

2
(k1 − p) , (D.4.4)

with p = (q+ cosϑ,
√
q2+ − k21 sinϑ p̂d−1), where now,

q+ = q12 + q31 , k1 cosϑ = q12 − q31 , (D.4.5)

and we will often also write q− = q12−q31. Momentum conservation then fixes the third internal momentum

as,

q23 =
1

2
(p + k1 + 2k2) . (D.4.6)

5Note that an equivalent condition is that the areas of the four tetrahedral faces obey A1 + A2 + A3 > A4 for all four
distinct permutations of {1, 2, 3, 4}, which is the direct analogue of the triangle inequalities. The face areas are related to their
side lengths {a, b, c} by the Cayley-Menger determinant analogous to (D.4.3), 16A2 = (a+b+c)(−a+b+c)(a−b+c)(a+b−c).
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If we then adopt the an analogous polar parametrisation of this external momenta,

k1 + 2k2 =

(
k′ cosχ

k′ sinχk̂
′
d−1

)
, (D.4.7)

we see that the only angular component of p̂d−1 on which our integrand can depend is,

p̂d−1 · k̂
′
d−1 = cosφ . (D.4.8)

So overall, integrating over the undetermined loop momenta corresponds to integration over {q+, ϑ, φ}
and the remaining d− 3 angular variables in p̂d−1 on which the integrand does not depend.

In practice, this allows us to write the loop integration as,

∫
ddp

(2π)d
I(Ωq31 ,Ωq12 ,Ωq23) =

Sd−3

(2π)d

∫ ∞

k1

dq+

∫ +1

−1

d cosϑ

2

∫ 2π

0

dφ qd−2
12 q31 I (Ωq31 ,Ωq12 ,Ωq23)

∣∣
q12=

1
2 (q++k1 cosϑ)

q31=
1
2 (q+−k1 cosϑ)

q23=q̄23(q+,ϑ,φ)

,

(D.4.9)

where,

q̄23(q+, ϑ, φ) =
1

2

√
q2+ + k′2 − k2 sin2 ϑ+ 2q+k′ cosχ cosϑ+ 2k′

√
q2+ − k2 sinχ sinϑ cosφ . (D.4.10)

Since sinϑ =
√

1 − cos2 ϑ, (D.4.10) represents a nested square root: this generally leads to elliptic functions

from integrals of the form (D.4.9).

In lower dimensions, d < 3, we must instead integrate over only degenerate tetrahedra (confined to a

plane in d = 2 or a line in d = 1), which can be parameterised by using {q+, ϑ} or simply {q12}.

D.4.2 Reducing the complexity

Consider the correction to ψ1-loop
3 from a loop with three internal lines, which is given by,

ω123ψ
1-loop
3 =

∫

p

1

(ω1 + Ωq12 + Ωq31)(ω2 + Ωq12 + Ωq23)(ω3 + Ωq23 + Ωq31)

6∑

perm.

1

(ω123 + 2Ωq12)(ω23 + Ωq12 + Ωq31)
.

(D.4.11)

Transforming to the {q+, ϑ, φ} variables described above, a näıve counting of the number of integrals and

the number of square roots which cannot be removed from the integrand gives (T ,G) = (3, 4). In more

detail, we count G as follows.

• There is one square root for each of the internal lines (Ωqa =
√
q2a +M2

a ) assuming the masses are

unequal,

• Changing variables from φ to cosφ introduces a square-root from the
√

1 − cos2 φ Jacobian,

• There are three square roots inside q̄23 (from sinϑ =
√

1 − cos2 ϑ,
√
q2+ − k2 and the overall square

root).
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• There is the freedom to perform an Euler substitution in each of the integration variables, which can

remove three of these square roots.

It seems that very little is known about special functions with (T ,G) = (3, 4). So rather than analyse this

integral any further, we will look for limits which reduce this complexity.

Massless limit. In the massless limit,

ω123ψ
1-loop
3 =

∫

p

1

(ω1 + q12 + q31)(ω2 + q12 + q23)(ω3 + q23 + q31)

6∑

perm.

1

(ω123 + 2q12)(ω23 + q12 + q31)
.

(D.4.12)

Focusing on just one of these permutations, partial fractions can be used to linearise the denominator in

one of the internal momenta, say q23. Schematically, this produces integrals of the form,

∫ ∞

k

dq+

∫ +1

−1

d cosϑ

∫ 2π

0

dϕ
R(q+, cosϑ)

q̄23(q+, ϑ, φ) + q+ + k1 cosϑ+ ω2

=

∫ ∞

k

dq+

∫ +1

−1

d cosϑ R(q+, cosϑ) Π (q+ + k1 cosϑ, p̄23(q+, ϑ, 0), p̄23(q+, ϑ, π)) , (D.4.13)

where R(x, y) represents a rational function of {x, y} and Π(x, y, z) represents a combination of elliptic

integrals whose arguments are rational functions of {x, y, z} (note that a rational dependence on the

external {ωa} is implicit in both of these functions). Performing the remaining two integrals will produce

special functions with (T ,G) = (3, 1).

Soft limit. Note that if we further take one of the external edges to be soft, e.g. k3 → 0, then integration

variables can be chosen so that the integrand no longer depends on φ. This leads to an integral with

(T ,G) = (2, 0), which is the same complexity as the massless ψ1-loop
2 integral computed in (D.3.35) above.

We will focus on this limit, in which all three external lines are massless and one external line carries zero

spatial momentum, for the remainder of the subsection, since in this case we are able to give closed form

expressions for ψ1-loop
3 using (at most) dilogarithms.

D.4.3 Soft limit

Taking the soft limit k3 → 0 removes the need to integrate over φ, since the tetrahedron of momenta

degenerates into a triangle and we can proceed as in the two-edge case of Sec. D.3. Explicitly, there is

now only one independent external momenta which we write as k1 = −k2 = k, and the three internal

momenta are now constrained by,

q23 = q31 , q12 − q31 = k . (D.4.14)
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This limit therefore lowers both the transcendentality and the genus of the loop integral, which can be

written in terms of q± = q12 ± q31,

ω123ψ
1-loop
3 =

∫

p

1

(ω1 + q+)(ω2 + q+)(ω3 + q+ − q−)

{
1

ω123 + q+ + q−

(
1

ω13 + q+
+

1

ω23 + q+

)

+
1

ω123 + q+ − q−

(
1

ω13 + q+
+

1

ω23 + q+
+

2

ω12 + q+ − q−

)}
.

(D.4.15)

To express (D.4.15) compactly, it will be useful to generalise (D.3.20) to an arbitrary number of factors

in the denominator, defining

I(A;B1, ..., Bn) =

∫ ∞

1

dq̂+

∫ +1

−1

dq̂−
q̂2+ − q̂2−

(q̂+ + q̂− +A)
∏n

j=1(q̂+ +Bj)
. (D.4.16)

(D.4.17)

Using partial fractions, integrals of this kind can be written in terms of the two master integrals (D.3.17)

of Sec. D.3,

I(A;B1, ..., Bn) =

n∑

j=1

A(A− 2Bj)∏
i ̸=j(Bj −Bi)

J1(A;Bj) +

n∑

j=1

Bj −A∏
i̸=j(Bj −Bi)

J1(Bj) . (D.4.18)

where in the massless limit the J1 are given in (D.3.30) in terms of logs and dilogs. Note that the apparent

poles when two of the Bj coincide are spurious—the only branch points are at each Bj = −1 and at A = 0

or A = −2.

In terms of these (D.4.18) integrals, the three-point coefficient (D.4.15) is given by,

ω123ψ
1-loop
3 =

1

2
I
(
ω3;ω1, ω2, ω13, ω3 +

ω12

2

)
+

1

2
I
(
ω123;ω1, ω2, ω13, ω3 +

ω12

2

)

+
1

2
I
(
ω3;ω1, ω2, ω23, ω3 +

ω12

2

)
+

1

2
I
(
ω123;ω1, ω2, ω23, ω3 +

ω12

2

)

+
1

ω12
I (ω3;ω1, ω2, ω13) − 1

ω12
I (ω123;ω1, ω2, ω13) (D.4.19)

+
1

ω12
I (ω3;ω1, ω2, ω23) − 1

ω12
I (ω123;ω1, ω2, ω23)

+
2 I (ω3;ω1, ω2)

ω12(ω12 − ω3)
+

2 I (ω123;ω1, ω2)

ω3ω12
− 2 I (ω12;ω1, ω2)

ω3(ω12 − ω3)
.

The apparent poles at ω12 = 0, ω1 = 0 and ω2 = 0 are all spurious. Only some of the branch points have

non-zero residues. In the complex ω1 plane (at fixed ω2, ω3), there are four physical singularities,

(i) ω̂1 = −1,

(ii) ω12 = 0,

(iii) ω̂13 = −1,

(iv) ω123 = 0,
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which agree with the energy-conservation condition of Sec. 5.3. There are three spurious branch points,

(v) ω̂12 = −2. This singularity is spurious since the only term with a possible branch point there is the

I(ω12;ω1, ω2), but this is precisely the ψ1-loop
2 (ω1, ω2, k) integral analysed above.

(vi) ω̂123 = −2. This branch point occurs in every term separately, but cancels out of the total sum.

(vii) ω̂3 + ω̂12

2 = −1. It is only the first line of (D.4.15) that could contain such a branch point, and when

we compare the prefactors in (D.4.18) (in particular the 1/(Bj −Bi) product), we find that they are

proportional to,

1

(ω3 + ω12

2 ) − ω13
+

1

(ω3 + ω12

2 ) − ω23
= 0 , (D.4.20)

and consequently the branch point at ω3 + ω12/2 has zero residue and is spurious.

The complex ω2 plane is analogous, since (D.4.19) is symmetric in ω1 ↔ ω2. In the complex ω3 plane

(at fixed ω1, ω2), there are five physical singularities,

(i) ω3 = 0,

(ii) ω̂3 = −2,

(iii) ω̂13 = −1,

(iv) ω̂23 = −1,

(v) ω123 = 0.

which again agree with the energy-conservation condition of Sec. 5.3. There are two spurious branch

points, at ω̂123 = −2 and ω̂3 + ω̂12

2 = −1, which have vanishing residue for the reasons described above.
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Appendix E

Discontinuity for loop diagrams

Let us consider a simple example of a one loop diagram: the two site loop (see figure 6.4). The amplitude

representation is given by (6.2.8).

Now we make use of the following fact:

Disc(f(ω)g(ω)h(ω)) = [Discf(ω)]g(ω)h(ω) + f∗(−ω)[Discg(ω)]h(ω) + f∗(−ω)g∗(−ω)[Disch(ω)]. (E.0.1)

In addition, we have:

Discf(ω) = 2f(ω) → −f∗(−ω) = f(ω). (E.0.2)

Then we get:

Discψ2 =

∫
ds1
2πi

ds2
2πi

[
(DiscD̃1)D̃2 + D̃∗

1(−ω1)(DiscD̃2)
] ∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

+

∫
ds1
2πi

ds2
2πi

D̃∗
1(−ω1)D̃∗

2(−ω2)Im

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

=

∫
ds1
2πi

ds2
2πi

[
(2D̃1)D̃2 − D̃1(2D̃2)

] ∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

+

∫
ds1
2πi

ds2
2πi

(−D̃1)(−D̃2)Im

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

=

∫
ds1
2πi

ds2
2πi

D̃1D̃2Im

∫

p

1

s21 − Ω2
p1

1

s22 − Ω2
p2

.

Once again we only need to take the imaginary part for the amplitude part of the wavefunction. However

in general the disc of a loop diagram is not so simple: for example, if we consider an n site loop (where n

is an odd number) we will also need the disc of the energy-fixing kernel. As an example consider the one

site loop (fig. 3.5.3). The amplitude representation of this diagram is given by:

ψ1 =

∫
ds

2πi
D̃

∫

p

1

s2 − Ω2
p

, (E.0.3)

where the energy-fixing kernel is:

D̃ =
1

ω + 2s− iϵ
− 2

ω − iϵ
+

1

ω − 2s− iϵ
. (E.0.4)
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The disc of ψ1 is:

Discψ1 =

∫
ds

2πi
DiscD̃

∫

p

1

s2 − Ω2
p

+

∫
ds

2πi
D̃Im

∫

p

1

s2 − Ω2
p

(E.0.5)

= 2

∫
ds

2πi
D̃

∫

p

1

s2 − Ω2
p

−
∫

ds

2πi
D̃

∫

p

(2πiδ(s2 − Ω2
p)). (E.0.6)

Doing the s integral gives:

Discψ1 =

∫

p

1

2Ωp

[
1

ω + 2Ωp
− 1

ω − 2Ωp

]
=

∫

p

1

2Ωp
Disc

s

1

ω + 2Ωp
. (E.0.7)

This is the usual result from the cutting rules.
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