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Abstract

We show that point sources of dark energy can explain accelerated late-time expansion and, simultaneously, satisfy
observational constraints on massive compact objects. Population III stellar collapse into GEneric Objects of Dark Energy
(GEODEs) between 8z20 mimics the observed ΩΛ within the typical concordance cosmology. We determine the
appropriate dynamical model of aggregate GEODE flow within covariant linear perturbation theory. We find that all
continuum fluid properties, at large scales, are determined by the internal properties and spin of individual GEODEs. For
large spin, the spatial distribution of GEODEs becomes uniform on scales 200Mpc. The power spectrum of cold dark
matter is essentially unaltered. A Population III GEODE scenario provides an observationally consistent physical origin
for accelerated late-time expansion while imposing no new constraints on structure formation.

Unified Astronomy Thesaurus concepts: Cosmological perturbation theory (341); Dark energy (351); Population
III stars (1285); Relativistic cosmology (1387)

1. Introduction

The accelerated expansion of the universe, established by
Riess et al. (1998) and Perlmutter et al. (1999), provided the first
evidence of what has come to be called dark energy (DE).
Within the Friedmann–Robertson–Walker (FRW) cosmological
framework, DE is readily modeled as a constant density ρΛ,
uniform in space and constant in time. All present data (e.g.,
Aghanim et al. 2018) are consistent with this simplest
explanation and produce a value of ρΛ∼0.7ρcr today.

This number, the cosmological constant, is widely regarded
as problematic. From the perspective of quantum field theories,
ρΛ should either be exactly zero or related to some fundamental
energy scale. As it so happens, ρΛ is related to another known
quantity: ρΛ∼2ρm, the average matter density in the universe,
today. This suggests that the “cosmological constant” may not
actually be constant, but is instead dynamically related to the
matter content of the universe.

Numerous investigations over the past 20 years (see
Amendola & Tsujikawa 2010 and references therein) have
pursued this theme. One prominent strategy is the introduction
of additional dynamical fields. Another prominent strategy is to
include effective source terms from small-scale inhomogene-
ities. With respect to the latter, arguments are put forth that the
FRW framework is not entirely appropriate for the study of our
universe. It is asserted that “backreaction,” due to nonlinearities
in Einstein’s equations, conspires to produce an effective ρΛ
that acts in Friedmann’s equation.

Recently, Croker & Weiner (2019, Section 2) established
that FRW models can be reliably used and are backreaction-
free, given the following caveats:

1. Einstein’s equations are determined via the Hilbert action
2. the Robertson–Walker (RW) metric is the lowest-order

term in a convergent perturbation series

3. in the absence of an explicit nongravitational Lagrange
density, constraints on nongravitational fields are for-
bidden before equations of motion are produced.

The consequence of these caveats is that pressures interior to
compact objects must be spatially averaged to compute the
Friedmann (i.e., zero-order) source terms. For stars, planets, and
gas, internal pressures are negligible relative to their mass energy
densities. In this limit, dynamics consistent with the naive
application of Birkhoff’s theorem are obtained. For objects
composed of ultrarelativistic material, Birkhoff’s theorem cannot
be applied on cosmological timescales, because such material
can become cosmologically coupled.
This result takes on particular significance, given any

population of GEneric Objects of Dark Energy (GEODEs).
GEODEs are stellar collapse remnants, first proposed by Gliner
(1966), composed mostly of DE. Croker & Weiner (2019,
Section 4.2) show that the mass of each individual GEODE can
cosmologically blueshift:

( )µm a , 13

where a is the RW scale factor. This energy shift is analogous
to the familiar photon redshift. Because GEODEs, in bulk,
comove with the Hubble flow, their cosmological number
density diminishes:

( )µn a1 . 23

The cosmological GEODE energy density, mn, then becomes
constant in space and time. For example, if a reasonable
fraction of Population III stars collapse to GEODEs before
reionization, the measured ρΛ is flexibly obtained. In other
words, pointlike sources of DE provide a previously over-
looked third strategy to explain the value of ρΛ.

1.1. The MACHO Problem

Given that GEODEs are compact objects formed from
matter, it is natural to expect that their bulk dynamics would
track those of cold dark matter (CDM). Specifically, one would
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expect GEODEs to “clump” with CDM and eventually become
a subpopulation of MAssive Compact Halo Objects
(MACHOs). If formed at z∼15, Population III GEODEs
would blueshift into 103–105 Me GEODEs today and would
mimic intermediate-mass black holes (IMBHs), on which there
are observational constraints.

The IMBH mass range has been previously investigated as
candidate objects for CDM halos. For compact objects in the
IMBH mass range, the most powerful constraint comes from
the existence of binary star systems within the Milky Way.
Binney & Tremaine (2008, (8.65b)) give the timescale for
catastrophic disruption of binary star systems as

( )
r

t
M

GA

0.07
, 3d,cat

dis

b
3

where rdis is the mass density of disruptors, Mb is the mass of
the binary system, and A is the semimajor axis3 of the binary
orbit. Systems are considered vulnerable to disruption if this
timescale is less than the lifetime of the Milky Way, roughly
10 Gyr. Due to the scaling 1/A3/2, wide binaries are more
easily disrupted.

To develop constraints on MACHOs, one studies halo wide
binaries: those binary pairs that have a center-of-mass orbit that
takes the system far from the galactic plane. Monroy-Rodríguez
& Allen (2014, Table 3) report observations of several such
stellar pairs. Adopting the pair with the largest semimajor axis
and requiring td,cat to exceed the age of the universe, we find

( )r ´ - - 8 10 kg m . 4dis
24 3

While this is 103 larger than ρcr, if Population III GEODEs
behave as CDM, it is natural to expect that their local densities
far exceed background values. It becomes clear that any viable
pointlike DE explanation of ρΛ must dynamically keep
Population III GEODE densities low in regions of CDM.

In this paper, we address the MACHO problem by studying
the dynamical behavior of Population III GEODEs. The
structure of this paper is as follows. In Section 2, we provide
definitions necessary to pose Einstein’s equations perturba-
tively. In Section 3, we review the zero-order (i.e., Friedmann)
cosmological source appropriate for a GEODE species. In
Section 4, we determine the first-order stress perturbations
appropriate for a GEODE species. In Section 5, we determine
the dynamical equations that govern the evolution of these
stress perturbations. In Section 6, we present results from
numerical solutions of these dynamical equations. In Section 7,
we interpret these results physically and discuss relations
between Kerr BHs and GEODEs. In Section 8, we briefly
conclude.

1.2. Conventions and Units

Throughout this work, unless otherwise indicated, we use the
following units: densities are in the critical density today ρcr,
times are in the reciprocal Hubble rate today -H0

1, and Fourier
wavenumber k is in -Mpc 1. We make every attempt to use the
same notation as Hu (2004). We adopt cosmological parameters
from the TT,TE,EE+lowE+lensing+BAO Planck 2018 cosmol-
ogy, given by Aghanim et al. (2018, Table 2). For consistency

with structure formation literature, all densities will be physical
(as opposed to comoving). We will often refer to redshifts and
scale factors as “times.” No confusion will arise because these
quantities evolve monotonically in any realistic Friedmann
model.

2. Definitions and Assumptions

In this section, we review sufficient definitions and
assumptions to establish a well-defined cosmological perturba-
tion theory from Einstein’s equations. This will be a brief
review of Croker & Weiner (2019, Section 2) and then an
explicit definition of the coordinates and frame fields required
for correct application of this formalism at first order. The
fundamental assumption is that Einstein’s equations are valid.
This means that a unique and bounded (i.e., well-defined)
metric and stress tensor exist everywhere and for all time. The
goal is to efficiently reconstruct them from observation.

2.1. RW Coordinates and RW Frame Fields

We adopt the following spatially flat RW metric representa-
tion:

( ) ≔ ( ) [ ( ) ] ( )( ) h h h h+ + <mn mn mn x xg a h, , 1. 52 1

This is the definition given by Croker & Weiner (2019,
Equation (14)), abbreviated4 at first order. Croker & Weiner
(2019, Sections 3.2–3.4) show that the coordinates η and x
continue to make sense inside many ultrarelativistic compact
objects. We will assume that they are well defined everywhere,
and we will use only these coordinates. The metric representa-
tion in Equation (5) is given with respect to a class of
coordinate frame fields spanned by nonnormal, and possibly
nonorthogonal, bases {∂μ}. We will call these frame fields
“RW frame fields.”
RW frame fields are useful because they are spanned by

coordinate bases. The explicit prescription of coordinate
functions then allows explicit computation of representations.
Across the differentiable manifold , RW frames differ at
most by order ò quantities. Taken together, RW frames can be
constructed to give representations that closely approximate
nonrelativistic mechanics on large regions of spacetime. Note
that first-order equations of motion are produced from variation
of the ( )

mh v
1 . This means that source terms to Einstein’s equations

for the metric perturbation degrees of freedom must be tensor
components in some RW frame field.

2.2. The Eigenframe Fields

The stress tensor mnT is, by definition, proportional to the
variation of the nongravitational Lagrange density with respect
to the true (i.e., unapproximated) inverse metric. Unfortunately,
we do not know the true metric, only that it uniquely exists. We
may, however, leverage this uniqueness to give an invariant
description of the true stress tensor.

3 Because we use a for the scale factor extensively, we have changed to A for
binary semimajor axis.

4 For clarity, we write only the first-order perturbations, have removed details
of the domain of definition, and removed details of convergence and
differentiability properties of the full series. These are not relevant for our
present discussion, but are given in op. cit. precisely.
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The tensor Tμν can be regarded as a linear map from each
tangent space at a point P to its dual space at P,

( )mn  T T T: . 6P P*

In other words, “Tμν acting on an index up quantity produces
an index down quantity.” If we contract with the inverse metric
at P, we produce a linear operator T on TP ,

≔ ( )ma
an  T g T T T: . 7P P

The operator T decomposes into the sum of a diagonalizable
operator TI and a nilpotent5 operator TII. The diagonalizable
operator TI describes timelike stress, while the nilpotent
operator TII describes lightlike stress.

At any point P, TI has one timelike and three spacelike
eigenvectors. If the type I stress at P has no particular
symmetries, as expected in general, these eigenvectors define a
unique frame field { }me (up to permutations in order and sign).
If there are symmetries at P, then there are repeat eigenvalues
and many such frames at P. We will call these frame fields
“eigenframe fields.” We will distinguish quantities in an
eigenframe field with an overline.

Eigenframe fields are useful because they give an invariant
characterization of the stress tensor. In any eigenframe field, the
representation of TI is diagonal:

[ [ ] [ ] [ ]] ( )r=mnT p p pdiag , 1 , 2 , 3 , 8I

where the energy density r and principal pressures [ ]p ℓ are the
eigenvalues of TI at P. In other words, the components of the
stress tensor in an eigenframe are invariant, physical quantities.
Suppose the timelike eigenvalue is unique. Then the timelike
eigenvector e0 becomes the velocity of the type I stress at P, if
viewed from any noneigenframe at P. From the perspective of
eigenframe fields, material that can be at rest is at rest.

3. Population III GEODE Stress at Zero Order

In this section, we will establish the appropriate dynamics of
a GEODE source within Friedmann cosmology. Friedmann’s
acceleration equation is sourced by the flat space average of the
stress tensor’s trace:

( ) ( )
h

p
h= - á ñm

m
x

d a

d

G
a T

4

3
, . 9

2

2
3

The average may be taken over any volume larger than the
homogeneity scale 1 3. The trace is an invariant scalar, so we
express its value in any eigenframe field,

( ) [ ] ( ) ( )åh
p

r h h= -
= 

x x
d a

d

G
a p ℓ

4

3
, , . 10

ℓ

2

2
3

1

3

Note the distinction between the coordinates (RW coordinates)
and components in a frame (an eigenframe). Define

≔ ( ) ( )r r há ñx, , 11

≔ [ ] ( ) ( )å h
= 

xp p ℓ
1

3
, . 12

ℓ 1

3

Because averages are linear, we may decompose the energy
density and pressure into a sum over constituents:

( )år r= 13
J

J

( )å=p p . 14
J

J

Now presume an ensemble of Population III GEODEs.
Denote GEODE constituent quantities with a subscript G. We
will consider a single, but arbitrary, GEODE species. The
equation of state for the GEODE contribution is the ratio

≔ ( )
r

w
p

; 15G
G

G

any causal deviation from perfect de Sitter spheres will lead to
an equation of state greater than −1. We define

≔ ( ) ( )c r- +p 1 , 16G G

with the constant χ�0 characterizing this deviation. Consider
a burst formation of GEODEs from baryons at time aG,
sufficient to produce ΩΛ at the present day. Then, conservation
of stress energy requires that

⎧⎨⎩( ) ( )r =
<

W c
L

- 
a

a a

a a a

0

.
17G

G

G
3

Let ρb denote the baryon density and let Ξ denote the fraction
of baryons consumed to produce GEODEs at aG. In order to
recover the correct ΩΛ measured today,

≔ ( )( )X
W
W

cL -a . 18
b

G
3 1

4. Population III GEODE Stress at First Order

In the previous section, we determined the perturbative zero-
order solution. This solution is a necessary input for the first-
order equations that describe position-dependent degrees of
freedom. In this section, we will characterize the nongravita-
tional source terms appropriate for the first-order equations. It
will be important to distinguish between unapproximated
quantities and Fourier transforms or averages that use the
same symbol. We will denote unapproximated quantities with a
superscript x notation.
The action principle unambiguously determines Einstein’s

equations at first order. In Newtonian gauge, the following
matter sources appear:

[ ] [ ] [ ] ( )
dr r r

d
= -
= - á ñp ℓ p ℓ p ℓ . 19

x x

x x x

Gauge, in this context, means coordinates whose partials define
RW frame fields. In the Newtonian gauge, coordinates are
constructed to set ( ) =mnh 01 for m n¹ . The metric perturbations
are defined in an RW frame field, so these sources are
components of the stress tensor in the same RW frame field.
Regarded as a 3×3 spatial strain tensor, the principal

pressures are typically decomposed under Euclidean rotations.
The trace,

≔ [ ] ( )åd d
=

p p ℓ
1

3
, 20x x

ℓ 1

3

5 I.e., =T 0II
2 .

3
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is called the “isotropic pressure perturbation.” The residual,

⎧
⎨⎪
⎩⎪

( ) ≔
[ ] [ ]

( )
åd d

P
- =

¹
¹p

p j p ℓ j k

j k

2

3

1

3

0 ,

21x
x x

k
j

ℓ j

is called the “anisotropic stress.”

4.1. Definition of the Continuum Fluid Approximation

Astrophysical sources will contribute energy densities and
principal pressures that greatly exceed the background
averages. More so, these large deviations from the background
only occur at the positions of the sources. Typically then, drx,
dpx, and ( )P x

k
j are regarded as continuum fluid approxima-

tions. In the continuum fluid approximation (e.g., Landau &
Lifshitz 1959, Section 1), one coarse-grains the source into
“fluid elements.” The fluid elements must be large enough so
that a bulk description is useful on the desired scales. The fluid
elements must also be small enough so that four-momentum is
distributed within the elements faster than between them. An
average is then performed over each fluid element volume to
produce density and pressure fields.

Unfortunately, no quantitative prescription is given for any
part of this procedure. In other words, the ambiguity resolved
by Croker & Weiner (2019) at zero order reemerges in the first-
order theory. A spatial average must be taken, but no length
scale over which to average, or Jacobian to use during
integration, is unambiguously prescribed.

In Fourier space, however, this pathology is bypassed. In
practice, the Fourier expansion is always truncated at some
finite kmax. Upon inversion of the transform, this leads to
first-order real-space sources that are low-pass filtered below
p k2 max. All of the resulting dynamical variables now
smoothly track the distribution in real space of the pointlike
objects. In fact, there is a measured scale 2π/knl (Dodelson
2003, Section 7.1.1), above which the observed matter power
spectrum agrees with linear theory predictions. This scale
defines a continuum fluid approximation. It is the first-order
analog to the zero-order homogeneity scale 1 3. In summary,

1. a well-defined, first-order theory requires the Fourier
transforms of Equations (19), not the Fourier transforms
of the continuum fluid approximations to Equations (19).

In particular, pressures interior to all objects will get “smeared”
into all modes below kmax. For ensembles of ultrarelativistic
objects, peculiar flows at first order can then become influenced
by these objects’ internal dynamics. This is the same
phenomenon observed at zero order, but replayed at first order.

4.2. Existence of Fourier Transforms

We have used Fourier transforms to produce a well-defined
continuum fluid approximation from the actual first-order sources
to Einstein’s equations. D’Eath (1976, Section 3) proves that
solutions to Einstein’s equations for perturbed RW spaces with
spatial curvature ≔W 0K do not generally exist unless perturba-
tions decay sufficiently fast at infinity. This pathology implies that
the Fourier transforms of Equation (19) may diverge.

The standard approach (e.g., Peebles 1980, Section 27)
regards the universe as “box periodic.” This procedure changes
the global topology of the universe to that of a three-torus. We
adopt this convention and define spatial Fourier transforms on a

three-torus with radii much larger than the zero-order
homogeneity scale 1 3.

4.3. Ensemble Definition, Interpretation of Zero-order χ

In this section, we define the GEODE ensemble in terms of a
local model and use it to compute the background equation of
state−1+ χ. In order that our definition be invariant, we must
work in an eigenframe field. Regard rx

G and px
G as being

sourced by a population of N GEODEs at positions ( )hxj :

≔ [ ( ) ( )]

≔ [ ( ) ( )] ( )

å

å

r h k h

h k h

+ -

- + -





x x

x x

u

p u

1

1

,

, . 22

x

x

G
j

N

j

G
j

N

j

0

1

j

j

Each GEODE is defined on a support of radius6 R centered at
( )hxj ,

⎧⎨⎩( ) ≔
∣ ( )∣
∣ ( )∣

( )
h
h

-
- >


x

x x

x x

R

R
1

1

0 ,
23

j

j
j

and separated into a de Sitter portion with uniform energy
density u and a superposed “crust.” The crust is characterized
by an energy density k0 and an isotropic pressure k1 .
From Equation (16), it follows that

[( )( ) ] ( )òå c k k- + + + - =
 

u u d x
1

1 0. 24
j

N

0 1
3

j

All GEODEs are presumed identical, so

[( )( ) ] ( )c k k- + + á ñ + - á ñ =



 
N

u u1 0. 250 1

Rearranging, and assuming that ká ñ u0 , the binomial
expansion gives

( )c
k k

=
á + ñ

+

u
. 261 0

At leading order, χ is the GEODE volume-averaged sum of the
crust energy density and pressure, scaled by the GEODE
interior DE density.

4.4. GEODE Perturbations, Interpretation of cG
2

In Fourier space, Hu (2004, Equation (106)) defines the
squared nonadiabatic sound speed cG

2 as

( )
( )
( )

( )h
d h
dr h

=k
k

k
c

p
, :

,

,
. 27G

G

G

2

GEODErest

For point objects, the “rest” gauge for a particular constituent
comoves7 with the peculiar flow of that constituent. GEODEs
are extended objects, so the “rest” gauge perceives mass centers
to be at rest. These RW frame fields are not, however, fully
adapted to individual GEODEs. They will still perceive
intrinsic GEODE motions, such as spin. For this reason, we
do not use the word “rest.” Instead, we will refer to this gauge
as the GEODE “flow gauge.”

6 This magnitude is defined with respect to the Euclidean norm.
7 In other words, the “energy flux” Tk

0 contribution from this specific
constituent vanishes. See comments below (Bardeen 1980, Equation (3.13)).
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From Equations (19) and (22), the Fourier transforms dpG and
drG will track the GEODE distribution in space at modes below
∼1/R, due to the presence of many 1 j. This remains true in the

flow gauge, so cG
2 is constant in space for modes below ∼1/R.

We use this to compute cG
2 directly from the Fourier transforms.

For k = 2π/R, we have that

( ) ( ) ( )· ·ò ò r r- = -e p p d x c e d x. 28k x x k x xi
G G G

i
G G

3 2 3

At =k 0, the computation is just a spatial average and the
fluctuations vanish, independently of cG

2. Consider ¹k 0. By
orthogonality, all spatially independent contributions vanish:

( )· ·ò ò r=e p d x c e d x. 29k x x k x xi
G G

i
G

3 2 3

Substitution of Equations (22), formally transformed into the
flow gauge, gives

[ ( )] ( )·ò å k k- - + =e u c u d x1 0. 30k xi

j

N

G1
2

0
3

j

The pure de Sitter contributions are invariant because pure DE
is a multiple of the metric. We may use the supports of the
individual GEODEs to reexpress the transform as a sum over
the ensemble

[ ( )] ( )·òå k k- - + =


e u c u d x 0. 31k x

j

N
i

G1
2

0
3

j

From each term, factor out the constant phase ( · )k xiexp j :

[ ( )] ( )· ·( )òå k k- - + =-


e e u c u d x 0. 32k x k x x

j

N
i i

G1
2

0
3j

j

j

On each support, ∣ ∣ k R1 , so the exponential under the
integral is essentially 1,

( ) ( )· òå k k- - + =


e u c u d x 0. 33k x

j

N
i

G1
2

0
3j

j

Performing the integrations gives

[ ( )] ( )·å k ká ñ - - á ñ + =  e u c u 0. 34k x

j

N
i

G1
2

0j
j j

Because all GEODEs are presumed identical, the term in square
braces can be factored out:

[ ( )] ( )·åk ká ñ - - á ñ + = u c u e 0. 35k x
G

j

N
i

1
2

0 j

If the sum happens to vanish at the fixed k we have chosen, no
constraint on cG

2 can be established. In Appendix A, we prove
that the sum of phases is nonzero almost everywhere in k for
any distribution of N GEODEs in space. So if the sum
vanishes, there always exists t Î 3 with ∣ ∣t arbitrarily small so
that the sum does not vanish at t+k . In this sense, we may
always divide by the sum to arrive at the desired relation,

( )k
k

=
- + á ñ

+ á ñ



c

u

u
. 36G

2 1

0

In order to express this parameter in terms of intrinsic
GEODE properties, we must express the flow gauge stress

components in terms of eigenvalues. Pick any GEODE. The
flow frames near this GEODE perceive only higher-order
center-of-mass motion. Pick a flow frame at some point P in the
GEODE crust. Suppose that this flow frame perceives the crust
in motion, spinning at velocity ( )b h x, in some direction
denoted f̂. The transformation from an eigenframe at P to the
flow frame at P is detailed in Appendix B. After transforma-
tion, the crust energy density becomes

( ) ( ) ( )k g k b k= + + O , 370
2

0
2

1

while the crust principal pressures become

[ ˆ ] ( ) ( ) ( )f g k b k= + + p O 38x
G

2
1

2
0

[ ˆ] ( ) ( )k= + p r O 39x
G 1

[ ˆ] ( ) ( )q k= + p O . 40x
G 1

The frames are related by a boost, with order ò corrections.
Because cG

2 relates two order-ò quantities, these corrections are
to be dropped. By definition, κ1 is the isotropic pressure in the
flow gauge, so

⎛
⎝⎜

⎞
⎠⎟ ( )k k

k b k
b

= +
+
-

1

3
2

1
. 411 1

1
2

0
2

We may now express cG
2 in terms of GEODE intrinsic

properties. If the GEODE crust rotates rigidly, then functions of β
(η) have no position dependence and commute through spatial
averages. Substituting Equations (37) and (41) into Equation (36)
gives

⎡
⎣⎢

⎤
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( )
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( )k g k b k
g k b k
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It is instructive to consider the two limits

⎧⎨⎩ ( )
c b

b
=

- + + 


c
1 ... 0

1 3 1.
43G

2

The nonspinning β → 0 limit sets the squared sound speed of
density perturbations equal to the background equation of state.
As Hu (2004, Section 5.2) remarks, a DE model with this
behavior will undergo accelerated clumping. This is consistent
with expectations from Croker et al. (2020, Section 3).
Pointlike GEODEs at small scales, without spin, aggregate
more quickly due to blueshifting mass.
The rapidly spinning β → 1 limit can be recognized as

perceiving the crust as a nearly null flux, with equation of state
1/3. Like radiation overdensities, a GEODE population with
very high spin will tend to disperse at first order.

5. Population III GEODE Dynamics at First Order

In the previous section, we established how the local
structure and behavior of each individual GEODE defines the
bulk fluid parameters χ and c .G

2 In this section, we construct the
scalar mode equations appropriate8 for this model. They will be

8 The vector and tensor portions of the anisotropic stress can introduce
vorticity and perturbations to the gravitational radiation field, respectively.
Supposing vector anisotropic stresses come from the rotational motion of
individual GEODEs, for all modes of interest with respect to large-scale
structure, we expect these contributions to cancel. The possible role of tensor
anisotropic stress from GEODEs is less clear, but it would only influence the
gravitational radiation field, which does not affect large-scale structure.
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characterized by three perturbation variables: density contrast

≔
( )

( )d
dr
r

, 44G
G

G

peculiar velocity vG, and anisotropic stress ΠG. We use the
density contrast instead of the density perturbation because it
results in simpler equations and is more readily interpreted.

For simplicity, GEODEs interact with CDM and baryons
only through the gravitational potentials Φ and Ψ. CDM will be
tracked by two perturbation variables: density contrast δcdm and
peculiar velocity vcdm. Baryons will be tracked by two
perturbation variables: density contrast δb and peculiar velocity
vb. With the exception of vG, the evolution equations are
standard and given in Appendix C. Initial conditions follow
from continuity of the energy density and are given in
Appendix D. In this section, the combination k/H occurs
frequently. In our choice of units, this introduces dimensionful
factors of

≔ ( )k c H10 . 45fac
3

0

5.1. GEODE Peculiar Velocity Field

The dynamics for the velocity field of any decoupled
constituent are given in an arbitrary gauge by Hu (2004,
Equation (19)),

⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )


h

r
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+ +
-

= - P + + Y

d

d
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a
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p p p

4

2

3
. 46

G G
G

G G G G G

Here B is the vector shift, which is defined to be 0 in
Newtonian gauge, and we have set Hu’s RW spatial curvature
K=0. Substituting the background equation of state from
Equation (16) gives

⎡
⎣⎢

⎤
⎦⎥

( ) ( )


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3
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G

G G G G

A dynamical model for the peculiar velocity field requires the
derivative term vG, so we divide by χ:

⎡
⎣⎢

⎤
⎦⎥

( ) ( )


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1

1

To model a population of individual DE point objects,
however, we need to take χ → 0. Evidently, the dynamics
cannot be perturbatively consistent in the χ → 0 limit unless

( )d r= - Pp
2

3
. 49G G G

An algebraic relation between δpG and ΠG is unsurprising,
given Equation (27) and that k = 1/R. It is remarkable,
however, that Equation (49) contains no explicit k dependence.
The proportionality holds at all modes, not just modes below
∼1/R. In other words, viable GEODE interiors must have

nonvanishing anisotropic stress. This result is consistent with
the conclusions of Cattoen et al. (2005), who found that a wide
class of GEODEs must feature anisotropic stress. For k=1/R,
the GEODE anisotropic stress perturbation is determined by
combining Equation (49) with Hu (2004, Equation (107)),

⎡
⎣⎢

⎤
⎦⎥( ) ( )d c cP = - +

-
+ -c Ha

v B

kk
c

3

2
3 1 . 50G G G

G
G

2

fac

2

We are now in position to define the dynamics of the
GEODE peculiar velocity field. Substitution of Equation (49)
back into Equation (46) gives

⎡
⎣⎢

⎤
⎦⎥( )( ) ( )  cr

c= + - - + Y - P
k

v B v B
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a
k k3 4

2

3
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G G G

All quantities outside the square braces are nonzero, and we
divide them off:

( )( ) ( )  
c= + - - + Y - Pv B v B

a

a
k k3 4

2

3
. 52G G G

This equation is true for an arbitrary gauge, so the dynamics of
the Population III GEODE velocity field are well defined for
arbitrarily small χ, provided that Equation (49) is satisfied.
Fixing to Newtonian gauge, expressing derivatives in terms of
the scale factor, scaling units, and rearranging give

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )c= - + Y - P

dv

da

v

a

kk

Ha
3 4

2

3
. 53G G

G
fac

2

Note that GEODEs with χ → 0 have the largest possible
“Hubble drag” consistent with the DEC.

5.2. GEODE Continuum Fluid Parameter Values

The model we have constructed has three constant
parameters: the redshift of burst formation zG, the deviation
from perfect de Sitter interior χ>0, and the nonadiabatic
sound speed cG

2. The time of burst formation zG affects the
fraction of baryons Ξ required to produce the observed ΩΛ.
Planck determines a baryon density parameter at recombina-
tion:

( ) ( ) ( )W =  ´ -h 2.2236 0.015 10 68% confidence . 54b
2 2

GEODEs, however, form at much later times. Independent late-
time measurements of Ωb by Macquart et al. (2020) with fast
radio bursts are consistent with the measured value at
recombination, with 40% uncertainties.
We assume that the epoch of Population III star formation is

8 � z � 20. In our cosmology, this occurs over ∼0.5 Gyr.
Inoue et al. (2014, Figure 2) use the extragalactic background
light (EBL) to place constraints on the Population III star
formation rate (SFR). Based on this figure, an averaged SFR
density for z � 20 is ~ ´ - - -M5 10 yr Mpc2 1 3. Combining
these estimates gives the following density in Population III
stars,

( )W ~ ´ -2 10 , 55III
4

expressed in units of the critical density today. No Population
III star has been observed, so we regard the entirety of this
fraction as collapsing and accreting onto GEODEs. Because the
total baryon fraction is Ωb∼0.05, this means

( )X ~ ´ -4 10 . 563
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We combine this collapse fraction with the measured χ from
Aghanim et al. (2018, Equation (51)),

( ) ( )c  0.05 95% confidence , 57

and use Equation (18) to estimate an approximate burst time,

⎧⎨⎩ ( )
c
c

~



z
15 0.05
14 0.

58G

As expected, this value lies in the middle of our assumed
Population III formation range.

We have ignored the details of accretion and dynamic spin-
up in our simplified treatment. The approximate burst
formation time given in Equation (58) is consistent with EBL
constraints and regenerates the correct ΩΛ. It need not be
appropriate for inferring GEODE distribution in space. This is
because GEODEs need not initially form with high spin and so
may initially clump. There may be a delay between when
GEODEs form and when GEODEs reach sufficient spin to
dynamically repel. For dynamical studies, we will consider
burst formation times over the entire Population III range,

( ) z8 20. 59G

In order that the GEODE population resist collapse, >c 0G
2 .

From Equation (42), this requirement becomes

( ) ( )k g k b ká ñ + á ñ + á ñ >   u2 3 . 601
2

1
2

0

Essentially, the boosted pressure within the crust must exceed
the energy density of the de Sitter region by a factor of 3. We
can develop a lower bound by assuming a dusty crust ≔ká ñ 01 ,

( )g b c > 3. 612 2

Evaluation with Equation (57) gives

( )g  8. 62

In this regime, we may determine a constraint between cG
2, χ,

and γ:

( )
g c

-c
1

3

4

3
. 63G

2
2

A discussion of plausible γ and its relation to the Kerr solution
can be found in Section 7.2. We will consider the following
range of nonadiabatic squared sound speeds,

( )< <c0
1

3
. 64G

2

6. Results

In the previous section, we established the appropriate
dynamical equations, initial conditions, and parameter values
for a late-time burst formation of Population III GEODEs from
baryons. In this section, we present results from numerical
integration of these equations: GEODE power spectra and
GEODE-CDM cross-correlations.

6.1. Methods

We solved the initial value problem presented in Section 5,
Appendices C, and D with the odeint package in Python 3.5.
Initial conditions were determined using the CLASS Einstein–
Boltzmann code (Blas et al. 2011). We verified the correct
configuration of CLASS, and our analysis tool chain, by

regenerating Planck’s reported s8 to <0.5σ from directly output
Fourier mode amplitudes. We verified our Einstein code in two
ways under ΛCDM assumptions. We regenerated an indis-
tinguishable σ8 by integrating from zG with initial conditions
generated by CLASS. We also regenerated σ8 to ∼5% by
integrating from primordial times, regarding baryons as CDM.
In a Population III GEODE scenario, ΩΛ=0 until the
formation of GEODEs at zG. Despite this, WL set to the typical
value at primordial times within the CLASS code can have
only a negligible effect on all initial conditions used in this
study.

6.2. GEODE Power Spectra

We consider two burst formation scenarios bracketing our
assumed epoch of Population III star formation: zG=20 and
zG=8. Figure 1 displays an early-burst formation at zG=20
for parameter values at log spacing. Initially, GEODEs start
with spectra identical to baryons. For all parameter values,
these spectra damp substantially during evolution. GEODE
linear power for z<2 is always suppressed by at least 105,
relative to the peak linear CDM power ∼103. Upon approach to
the present day, depending on parameter space, GEODE power
can become further suppressed by 103. In other words, early-
burst GEODEs with γ8 tend toward uniformity. They
achieve near uniformity before the epoch of galaxy formation,
and density contrast continues to damp during galaxy
evolution.
Figure 2 displays a late-burst formation at zG=8 for

parameter values at log spacing. We regard this scenario as a
dynamical proxy to an earlier burst formation but with a spin-
up delay. Initially, GEODEs start with spectra identical to
baryons. Again, for all parameter values, the spectra damp
substantially during evolution. GEODE linear power for z<2
is always suppressed by at least 103, relative to peak linear
CDM power ∼103. Due to a later burst, oscillations about
uniformity can persist through the epoch of galaxy formation
until the present day. In other words, late-burst GEODEs with γ
 8 also tend toward uniformity but can exhibit residual
structure.

6.3. Late-burst Scenarios and Void-scale Anticorrelation

The first-order analysis we have performed cannot make
strong statements about the distribution of Population III
GEODEs above the nonlinearity scale knl. For a late-burst
scenario, possible structure can remain in the GEODE
distribution. It is then of interest to ask under what
circumstances do GEODEs become anticorrelated at the
smallest scales accessible to linear theory. Consider antic-
orrelation achieved around the epoch of galaxy formation that
persists until the present day. In such scenarios, it becomes
even less likely that the nonlinear evolution of the GEODE
density contrast would build significant overdensities on scales
knl.
To investigate this question, we compute the GEODE-CDM

cross-correlation coefficient:

( )( )
( ) ≔

( ) ( )

( ) ( )
( )å

å å
x

d d

d d
z

z k z k

z k z k

, ,

, ,
. 65k G

k G k

CDM

2
CDM

2

We restrict our attention to the high end of the linear theory
 k k0.01 nl. In Figure 3, we display smoothed values of
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ξ(0) determined from 400 uniform samples of parameter space
for a burst formation at zG=8. Much of the parameter space
produces GEODE populations that are weakly correlated or
anticorrelated with CDM at the present day. Overlaid on this
figure is also the requisite spin boost γ required to achieve the
combination of χ and cG

2. In Figure 4, we magnify the
anticorrelated region of Figure 3. Overplotted contours
represent regions of parameter space where the GEODE
density contrast has been anticorrelated with CDM on average
since z<2. Evidently, regions of parameter space exist where
GEODEs have been separate from CDM for ∼10 Gyr and
remain so today.

7. Discussion

In the previous section, we presented results from the
numerical solution of Einstein’s equations at first order with a
GEODE population at late times. In this section, we interpret

these results physically. We then relate the spin of an individual
GEODE to the spin of a Kerr BH. This allows us to place our
assumptions and results in the context of existing observations.

7.1. Resolution of the MACHO Problem

All dynamics can be understood as damped oscillations about
a uniformly distributed equilibrium. From Equation (27), the
overpressure is cG

2 times the density contrast. An appreciable and
positive cG

2 will cause Population III GEODEs to disperse from
their progenitor baryonic overdensities. If they become under-
dense, gravitational attraction with CDM brings them back
together. A large cG

2 means greater pressures, and so larger
amplitude oscillation and longer time to damp. Inspection of
Equation (C4) reveals the effect of χ. A large χ implies less
Hubble friction and greater sensitivity to the gravitational
environment, and so more prone to oscillation. A large zG
implies earlier relaxation to low GEODE power. At small zG,

Figure 1. GEODE power spectra (autocorrelation) PG(k) and their time evolution for nine distinct burst formations at zG=20. Along the grid, nonadiabatic (i.e.,
perturbation) sound-speed squared cG

2 increases to the right and deviation from a perfect de Sitter equation of state χ increases vertically. On each graph, vertical axes
are displayed in a symmetric log scale, with a transition to linear axes at -10 6 (horizontal dotted). The nonlinearity regime, beginning at knl∼30 Mpc, is shaded in
gray. The temporal evolution of the spectra is shown in color (intensity). Initial values (z = 20) are perfectly correlated with the baryon density contrast δb and show
inherited baryon acoustic oscillations (BAO). Except at high χ and low cG

2, power in GEODE density contrast damps´ - ´10 104 8 toward zero. Present-day (z = 0)
power at scales �100 Mpc is often essentially zero, implying uniform distribution at the scale of clusters. Acoustic oscillations in the GEODE population are visible at
high cG

2.
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matter overdensities have had more time to grow, so GEODE
contrast will be more prone to oscillation.

MACHO constraints in the IMBH range are consistent with
a density of disruptors 103ρcr. We have shown that high-spin
Population III GEODEs disperse and tend toward a uniform
distribution with density WL. In other words, Population III
GEODEs are consistent with MACHO constraints over large
ranges of parameter space.

7.2. Magnitude of GEODE γ, Relation to Kerr Spin

In Section 4, we found that GEODE peculiar flow has two
regimes, depending on spin. For γ  8, GEODEs undergo
accelerated clustering. For γ  8, GEODEs effectively repel
each other. To place this value for γ in context, contemporary
terrestrial accelerators, such as the Large Hadron Collider
(LHC; e.g., Evans & Bryant 2008), readily achieve proton
beams with γ>103. The radius of the LHC proton ring is
∼4.3 km, which is roughly the Schwarzschild radius of a 1 Me

BH. Astrophysically, however, Hessels et al. (2006) report the
fastest spinning pulsar has surface γ=1.03.
Because GEODEs mimic BHs, it is of interest to relate γ to

the Kerr dimensionless spin parameter a*. A reasonable
definition of tangential velocity for a Kerr hole is somewhat
arcane. Smarr (1973, Equation (20)) gives a definition that may
be expressed in terms of the Kerr dimensionless spin via Smarr
(1973, Equations (11)). Converting to contemporary9 notation,
this relation becomes

( )b g=
- -

+ -
= +

-

a

a a

1 1

1 1

1

2
1

1

1
. 66

2

2 2
*

* *

Figure 2. GEODE power spectra (autocorrelation) PG(k) and their time evolution for nine distinct burst formations at zG=8. Along the grid, nonadiabatic (i.e.,
perturbation) sound-speed squared cG

2 increases to the right and deviation from a perfect de Sitter equation of state χ increases vertically. On each graph, vertical axes
are displayed in a symmetric log scale, with a transition to linear axes at ±10−6 (horizontal dotted). The nonlinearity regime, beginning at knl∼30 Mpc, is shaded in
gray. The temporal evolution of the spectra is shown in color (intensity). Initial values (z = 8) are perfectly correlated with the baryon density contrast δb and show
inherited BAO. Over all parameter space displayed, power in GEODE density contrast damps ×104 toward zero. Present-day (z = 0) power at scales100 Mpc can
exhibit oscillations, leading to anticorrelations.

9 Smarr (1973) uses a to mean the Kerr angular momentum per unit mass.
The LIGO Scientific Collaboration et al. (2019) uses a to mean angular
momentum per unit mass, in units of the Kerr (reducible) mass. To avoid
collision of notation with the scale factor a(η), we use a* for the Kerr
dimensionless spin.
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In order to achieve γ  8, we require a Kerr dimensionless spin

( )>a 0.99997. 67*

The largest Kerr spin parameter measured by the LIGO
Scientific Collaboration et al. (2019, Table III) is GW 170729,
with 0.68<a*<0.88, which becomes γ<2.2. Walton et al.
(2016) report 0.93a*  0.96 for the accreting X-ray binary
BH Cygnus X-1, which becomes γ3.2. If these objects are
also GEODEs, these data suggest that GEODEs do not initially
have sufficient spin to enter the repulsive regime.

7.3. Time Dependence of GEODE γ

Repulsive behavior is required for GEODEs to be a viable
late-time pointlike DE candidate. While this behavior is also
superficially required for stability of the dynamical equations, β
may be time dependent within the model we have considered.
Assume a conservative γ(zG)∼2, based on spin parameters
reported by the LIGO Scientific Collaboration et al. (2019). In
this regime, GEODE peculiar flow will undergo accelerated
collapse.
Population III GEODEs form at an epoch with much higher

density and from much larger progenitor stars. Given angular-
momentum-conserving accretion due to GEODE blueshift and
frequent mergers while in the accelerated collapse regime,
Population III GEODEs with high spin are plausible. In fact,
Bardeen (1970, Equation (4)) computes that a 1* as quickly as

⎜ ⎟ ⎜ ⎟
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) + -- -m m 1 3 sin
2

3
sin

1

3
, 68i

1 1

where mi is the Kerr mass at a*=0. In ideal settings, a 4 Me

remnant with a*=0 will achieve a*=1 at ~ M10 , if
reached via accretion.
It must be emphasized that the Kerr solution is asymptotically

flat and has a mass parameter that does not blueshift. Following
the discussion in Croker & Weiner (2019, Section 3.1),
Equation (68) can only be usefully applied in scenarios where
accretion occurs much more rapidly than cosmological blueshift.
The above factor in mass gain occurs from blueshift alone at

⎜ ⎟⎛
⎝

⎞
⎠ ( )z z

2

3
. 69f G

1 3

For zG=15, blueshift has contributed the same mass required
from accretion by zf=13, or 60Myr later. This is equivalent to
a constant accretion rate of ~ ´ - -M2.5 10 yr7 1. Accretion
must be significantly larger than this, e.g., 

- - M10 yr5 1, to
apply Equation (68). This would imply GEODE γ?8 in as
little as ∼1Myr. In this regime, the burst formation approx-
imation we have studied is justified.
Under slower accretion rates, the appropriate spin-up time is

unclear. This justifies studying the dynamics of a zG=8 burst
scenario, with the implicit understanding that the baryon
budget is adjusted with respect to an earlier formation zG15.
The detailed study of the Population III GEODE scenario with
time-dependent ( )b h is the subject of a future paper.

8. Conclusion

GEODEs are stellar collapse remnants with DE interiors.
Cosmologically, they dilute in number density proportionally
to the volume of the universe but blueshift in mass by a similar
factor. An ensemble of GEODEs formed between 8  z  20
will blueshift into an ensemble of ∼103–105Me ultracompact
objects today. Their resulting approximately constant physical
density mimics ΩΛ.
We have argued that such Population III stellar collapse

GEODEs viably explain late-time accelerated expansion. To
achieve this, we constructed a well-defined source to Einstein’s
equations perturbed about an isotropic and homogeneous
background. The appropriate continuum fluid approximation
to the unapproximated stress tensor contributions to Einstein’s
equations involves the truncated Fourier transform. This cutoff,

Figure 3. Correlation coefficient ξ(z) (i.e., normalized Fourier-space dot product)
of δG and δcdm. Heat map shows the present-day value ξ(0) for scales greater than
the nonlinearity scale p ~k2 30 Mpcnl and less than 100 Mpc. Unity indicates
perfect correlation in space, while a negative one indicates perfect anticorrelation
in space. Dependence is given in terms of the GEODE deviation from a perfect
de Sitter equation of state χ and the nonadiabatic sound speed cG

2. The GEODE
spin Lorentz boost ( )g c c, G

2 is overlaid as contours.

Figure 4. Detail of correlation coefficient ξ(z) (i.e., normalized Fourier-space dot
product) of dG and dcdm. The vertical axis is magnified by ~ ´5 , relative to
Figure 3. The heat map has the same interpretation as Figure 3, though colors
have been adjusted to distinguish the contours. The time-averaged correlation
coefficient xá ñ for redshift z 2 is overlaid as contours. Yellow (light) regions
within the-1 3 contour have been anticorrelated for the past10 Gyr and remain
so today.
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the nonlinearity scale knl, is observable and is the first-order
analog of the zero-order homogeneity scale. The resulting
continuum fluid sources become smoothed: power on small
scales is redistributed into the low Fourier modes described by
linear theory. Consequently, the internal dynamics of ultra-
compact objects can govern their peculiar flow at first order.

We presented the simplest schematic model of a GEODE. We
used this model to compute the continuum fluid source’s adiabatic
and nonadiabatic sound speeds. The nonadiabatic sound speed has
two dynamical regimes that depend on the spin of individual
GEODEs. In the low-spin limit, GEODEs undergo accelerated
clumping consistent with established literature. In the high-spin
limit, GEODEs are expected to repel each other at large scales.

To investigate these dynamics, we solved Einstein’s
equations numerically with CDM, baryons, and a GEODE
source. The presence of high-spin GEODEs does not
significantly alter the power spectrum of CDM. The GEODE
power spectra show that the GEODE density contrast damps to
zero over most of the parameter space. Further, regions of
parameter space exist where GEODE density contrast is
uncorrelated or even anticorrelated with CDM. This establishes
that Population III GEODEs do not preferentially aggregate
with CDM over large regions of parameter space. In other
words, MACHO constraints on intermediate-mass objects
cannot be applied to exclude a Population III GEODE scenario.

We thank an anonymous referee for a penetrating question
about the observational implications of the existence of
GEODEs. In addition, we warmly acknowledge: J. Weiner
(Hawai‘i) for the proof in Appendix A and thorough technical
review strengthening the work; N. Warrington (INT) for
assistance during numerical implementation; and I. Szapudi
(IfA) for feedback and stimulating discussions.

Software:CLASS10 (Blas et al. 2011), scipy11 (Oliphant
2007), Maxima12 (Maxima 2019), matplotlib13 (Hunter 2007).

Appendix A
Nonvanishing Sum of Phases

For N unequal points Î xj
3 fixed, consider
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Note that ( )kS is defined on 3 and can be regarded as a
mapping to 2 via the standard isomorphism between :
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Thus, ( )kS is a finite sum of functions real analytic on 3, so it
is also real analytic on 3. Even though Section 4 necessarily
considers ( )kS on restricted domains ∣ ∣ k R 1, we will prove
properties of ( )kS on all of 3. Our results will then hold on
arbitrary open neighborhoods, such as all those within such

restricted domains. Let

( ) ≔ { ( ) } ( )=k kF S S: 0 A3

be the zero set of S. To establish that this sum is nonvanishing
a.e., we use an elementary result.

Theorem 1. Let ( )  kS : n m be real analytic. Then either
( ) =kS 0 identically or F(S) has zero measure.

A proof is given explicitly by Mityagin (2020). We will
prove that ( )kS does not identically vanish.

Proof. Suppose for contradiction that ( ) =kS 0 identically.
Then, it follows that ( ) =kS m 0 for all Î m , so

[ ( )] ( )å =
=

kz 0. A4
j

N

j
m

1

Every order L�N polynomial p(z) over , without a constant
term, may be written as

( ) ( )å= Î
=

p z a z a . A5
ℓ

L

ℓ
ℓ

ℓ
1

By supposition, it follows that the sum of p(zj) satisfies

( ) [ ( )] ( )å å å=
= = =

kp z a z A6
j

N

j
j

N

ℓ

L

ℓ j
ℓ

1 1 1

[ ( )] ( )å å=
= =

ka z A7
ℓ

L

ℓ
j

N

j
ℓ

1 1

( )=0. A8

As no two GEODEs are located at the same place,
¹  ¹x xi j j j. Many zj, however, could be equal in highly

pathological (e.g., periodic) arrangements. Because each zj ¹ 0
by definition, there must be at least two nonequal zj so that ( )kS
can cancel to zero. Let wj be the 1<NM�N distinct zj and Mj

their multiplicities. Define a particular order N polynomial p(z)
via its unique factorization over ,

( ) ≔ ( ) ( ) -
>

p w w w w . A9
j

N

j
M

1

M

j

From this definition, it follows immediately that

( ) ( )å =
>

M p w 0. A10
j

N

j j
1

M

But we know from Equation (A8)

( ) ( ) ( )å+ =
>

M p w M p w 0, A11
j

N

j j1 1
1

M

which implies that p(w1)=0. The contradiction is encoun-
tered: ( ) ¹p w 01 explicitly by Equation (A9). Thus, there
exists an m such that ( ) ¹kS m 0.

,

Appendix B
Transformation from an Eigenframe to an RW Frame

As discussed in Section 4, the typical formalism (e.g., Bardeen
1980) has no means to determine the necessary first-order sources

10 https://lesgourg.github.io/class_public/class.html
11 https://www.scipy.org
12 http://maxima.sourceforge.net
13 https://matplotlib.org/
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from the unapproximated stress. We define our sources generically
by use of eigenframe fields. In this appendix, we show how to
relate the eigenframe fields to any RW frame fields.

B.1. Associated Vierbein Frame Fields

The eigenframe fields are definitive: they are physical, and
so do not depend on arbitrary choices of “the user,” such as the
metric ansatz. A key virtue of eigenframe fields is that they are
orthonormal. In eigenframe fields, the unapproximated metric
has the canonical Minkowski representation

( ) ( )= -mng diag 1, 1, 1, 1 . B1

Pick any point P. All subsequent discussion will apply to
frames at this point, so we will stop explicitly saying “at P.” In
an eigenframe, the metric representation is canonical Min-
kowski. If we perform a Lorentz transformation, the metric
representation does not change. In general, we are no longer in
an eigenframe, because our frame is now spacetime rotated
relative to the eigenframe. We are, however, still in an
orthonormal frame (as evidenced by the canonical metric
representation). In general, every orthonormal frame is related
to every other orthonormal frame by some Lorentz transforma-
tion. We will leverage this fact to connect the eigenframe to the
RW frame.

Our first goal is to construct an orthonormal frame from any
RW frame. We will call this frame the “associated vierbein
frame.” The procedure is as follows:

1. Pick any RW frame for which the representation is
defined (e.g., like Equation (5)).

2. The lowered metric representation gives the RW frame
basis overlaps:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

· ·

· ·
( )


  


=

¶ ¶ ¶ ¶

¶ ¶ ¶ ¶
mng . B2

0 0 0 3

3 0 3 3

These inner products can be used in the Gram-Schmidt
procedure to determine an orthonormal basis {vμ}, in
terms of the RW frame coordinate basis {∂μ}. This can
always be done because the metric is semi-Riemannian
and assumed to be well defined everywhere on.

3. Arrange the orthonormalized basis vectors (expressed
with components from the RW frame representation) as
rows in a table of numbers s

mV .

The change of basis matrix s
mV is sometimes called the vierbein.

In our setting, s
mV transforms from the RW frame { }¶m into the

associated vierbein frame {vμ}. The qualifier “associated”
arises because the construction procedure takes as input some
RW frame. Different RW frames will have different associated
vierbein frames, in general.

B.2. Completing the Transformation

Now that we have an associated vierbein frame, we may
complete the transformation from the eigenframe to the RW
frame. Because the associated vierbein frame is orthonormal, it
is always related to the eigenframe by a Lorentz transformation.
Let Λ be a boost representing the four-velocity from the
eigenframe to the associated vierbein frame. Let V represent the

associated vierbein and A be its inverse. Then,

( )= L Lmn m
l

l
s

rs t
r

n
tT A T A . B3

It can be verified that this procedure regenerates Bardeen
(1980, Equations (2.17)–(2.20)) under three assumptions: the
boost velocity is defined to be order ò, the source is cleaved into
a background and an order ò perturbation, and one computes
with the vierbein frame associated with Equation (5).
Source term representations in the RW frame fields can now

be determined without explicit prescription of coordinate bases
for the strong sources. No other knowledge is required except
that the coordinates of the RW frame field remain well defined
on open sets containing the source. In this sense, our procedure
is a relativistic generalization of the procedure outlined by
Bardeen (1980, Section IIA).

B.3. GEODE Eigenframe to GEODE Flow Frame

We now have sufficient machinery to determine the
transformation required in Section 4.4. To enter the associated
vierbein frame from the eigenframe, two separate boosts must
be performed. Because boosts are closed under composition,
Equation (B3) continues to apply. The first boost introduces the
tangential velocity due to spin at P. The second boost
introduces the peculiar center -of-mass-motion.
There is never any Hubble flow contribution, because all

RW frame fields are built from comoving coordinates. The
second boost is required because the “flow gauge” is designed
to remove energy flux Tk

0 in RW frame fields that originally
perceived it. Two separate boosts are required because vector
four-velocity addition is incorrect in special relativity. The two
successive boosts introduce a Thomas rotation and, in general,
do not commute. This does not affect the isotropic pressure or
energy density.
Finally, the inverse vierbein is applied to enter the flow

frame. Clearly, this can only introduce order-ò adjustments.
This procedure has been symbolically verified, in general, to
produce T k

0 with only spin contributions, as expected. The
diagonal components combine as indicated in Equations (37)
and (41).

Appendix C
Typical First-order Equations

In this section, we present the first-order equations that
follow rote from Hu (2004) and substitution of the model as
defined in Section 5.

C.1. GEODE Density Contrast

The GEODE density contrast is defined as

≔ ( )d
dr
r

, C1G
G

G

where drG is the GEODE density perturbation. This quantity is
−1 in true vacuum and 0 in regions where the local density is
equal to the background. The continuity equation at first order
for a decoupled component is given by Hu (2004, Section 3.3,
Equation (33)):

⎛
⎝⎜

⎞
⎠⎟ ( )( ) ( )  

h
dr d r+ + = - + + F

d

d

a

a

a

a
p p kv3 3 3 . C2G G G G G
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Substituting the GEODE background evolution from
Equation (17), the anisotropic stress from Equation (49), and
the definition of the density contrast gives

( ) ( ) ( )  d
h

c d c+ - - P = - + F
d

d

a

a

a

a
kv3 1 2 3 C3G

G G G

after evaluation of the derivative. Switching to scale factor and
scaling gives the desired dynamical equation,

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )d

c
d

c= - +
P

- +
Fd

da a a

kk

Ha
v

d

da
3 1

2
3 . C4G G G

G
fac

2

C.2. CDM and Baryons: Density Contrast and Peculiar
Velocity Field

We adopt the standard CDM evolution equations and regard
baryons at z<45 as essentially dust. This means that baryons
and CDM will have the same evolution equations; their
dynamics will only differ by their initial conditions set at zG.
We will now use the subscript m for matter.

The velocity evolution equation for matter is equal to
Equation (53), with the subscript G replaced with m, χ → 1,
and ≔P 0m :

( )= - + Y
dv

da

v

a

kk

Ha
. C5m m fac

2

Again, we will compute with the density contrast

≔ ( )d
dr
r

. C6m
m

m

Substitution of this definition into the continuity Equation (C2)
gives

( ) d = - - Fkv 3 . C7m m

Switching to scale factor and rescaling units give the desired
dynamical equation:

( )d
= - -

Fd

da

kk v

Ha

d

da
3 . C8m mfac

2

Note that this equation agrees with Equation (C4) when ≔c 1
and ≔P 0G . This completes the specification of the material
bulk degrees of freedom describing the CDM and baryon-
tracking fluids at late times.

C.3. The Einstein Equations

The Einstein equations are entirely determined via the action
principle, the solution ansatz, and the choice of gauge. For ease
of comparison with existing literature, we will express the
dynamics in terms of the Newtonian scalar curvature Φ.
Combine Hu (2004, Equations 17(a), (c)) and fix the gauge to
Newtonian to find

⎜ ⎟⎛
⎝

⎞
⎠ ( )  åp r drF = + Y - Fk Ga

a

a

a

a
4 3 , C9

J
J

2 2
cr

where we define the dimensionless sum of density perturba-
tions as

≔ ( )å dr d dW + W c-
L

-a a . C10
J

J m m G
3 3

Hu (2004, Equation (17)) gives the algebraic relation between
the gravitational potentials and the anisotropic stress

perturbation:

( ) ( )pY + F = - Pk Ga p8 , C11G G
2 2

where we have fixed to Newtonian gauge. Note that GEODEs
are the only relevant source of anisotropic stress. Rearranging,
substituting the background evolution, and scaling give

( ) ( )c
Y =

- W P
- F

c-
La

k k

3 1
. C12G

2 3

2
fac
2

Rearranging, switching to scale factor, and scaling the
remaining terms give the desired dynamical equation for the
Newtonian scalar curvature:

( )å drF
= -

F
+ +

Yd

da

ak k

H a

a

H a a3 2
. C13J J

2
fac
2

2 4

3

2 4

This completes the specification of the scalar gravitational
degrees of freedom.

Appendix D
Initial Conditions

At first order in the perturbation, we have seven, first-order,
differential equations for seven degrees of freedom: Φ, vcdm,
δcdm, vb, δb, vG, and δG. Because a burst formation involves a
Dirac delta function in time, initial conditions are determined in
the limit of aG±ò for ò → 0. We will omit writing the limit
explicitly, instead writing -aG and +aG for the left and right
limits, respectively.
We define the GEODE bias bG so that

( ) ≔ ( ) ( )d d+ -a b a . D1G G G b G

If bG=0, then the initial GEODE density contrast is zero and so
GEODEs are produced uniformly everywhere. If bG=1, then
the initial GEODE density contrast identically tracks the baryon
distribution. Because we assume stellar progenitors to Popula-
tion III GEODEs, there is little physical motivation to consider

b 0G . In principle, the bias could depend on k, but for
simplicity we do not consider such possibilities in this work.
To determine the initial condition for the matter density

contrast, we enforce that the overall energy density be
continuous at aG:

[ ( ) ( )]∣ [ ( )]∣ ( )r d r d r d+ + + = ++ -1 1 1 . D2b b G G a b b aG G

Note that we have omitted the CDM contribution ( )r d+1cdm cdm

because we do not deplete CDM when forming GEODEs. This
equation can be solved for the baryon density contrast
immediately after the burst:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )d d=

- X
- X

+ -a
b

a
1

1
. D3b G

G
b G

The velocity field of the matter should not initially be
changed by the formation of GEODEs, so

( ) ≔ ( ) ( )+ -v a v a D4G Gcdm cdm

( ) ≔ ( ) ( )+ -v a v a . D5b G b G

Similarly, any GEODEs formed should initially be flowing
identically with the baryons whence they came,

( ) ≔ ( ) ( )+ -v a v a . D6G G b G

All other initial conditions are unaltered.
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