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Abstract: Quantum physics, despite its intrinsically probabilistic nature, lacks a definition of

entropy fully accounting for the randomness of a quantum state. For example, von Neumann

entropy quantifies only the incomplete specification of a quantum state and does not quantify the

probabilistic distribution of its observables; it trivially vanishes for pure quantum states. We propose

a quantum entropy that quantifies the randomness of a pure quantum state via a conjugate pair

of observables/operators forming the quantum phase space. The entropy is dimensionless, it is a

relativistic scalar, it is invariant under canonical transformations and under CPT transformations,

and its minimum has been established by the entropic uncertainty principle. We expand the entropy

to also include mixed states. We show that the entropy is monotonically increasing during a time

evolution of coherent states under a Dirac Hamiltonian. However, in a mathematical scenario, when

two fermions come closer to each other, each evolving as a coherent state, the total system’s entropy

oscillates due to the increasing spatial entanglement. We hypothesize an entropy law governing

physical systems whereby the entropy of a closed system never decreases, implying a time arrow for

particle physics. We then explore the possibility that as the oscillations of the entropy must by the

law be barred in quantum physics, potential entropy oscillations trigger annihilation and creation of

particles.

Keywords: quantum entropy; von Neumann entropy; entropic uncertainty principle

1. Introduction

The concept of entropy has been useful in classical physics but extending it to quantum
mechanics (QM) has been challenging. In classical physics Boltzmann entropy and Gibbs
entropy and their respective H-theorems [1] are formulated in the classical phase space,
capturing the practical limitations of specifying the degrees of freedom (DOFs) of a classical
state by describing it with randomness. Naturally, in quantum physics the DOFs specify
a quantum state. Von Neumann entropy, analogously to the entropy in classical physics,
quantifies the randomness of specifying the quantum state, expressed by the classical
statistical coefficients of a mixture of quantum states.

Our goal for defining a quantum entropy is to quantify both (i) the inherit randomness
of the observables and (ii) the randomness due to the limitations of specifying the DOFs of
the quantum state. Our interest in entropy is to better understand the dynamics of quantum
information and its impact in physics.

Quantum entropy is not an observable as there is no entropy operator, instead, entropy
is a scalar function associated with a state. Thus, we also require quantum entropy to be a
scalar invariant under special relativity, canonical transformations of coordinates, and CPT
transformations.

We propose a definition of entropy in quantum phase spaces that satisfies those
conditions. Quantum entropy has two components. One component is the coordinate-
entropy, defined in the phase space of position and momentum. The other component is
the spin entropy, which we study elsewhere [2]. Here we focus on this coordinate-entropy
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of position and momentum and its time evolution, and our study is applicable to both QM
and Quantum Field Theory (QFT).

1.1. Related Work

Von Neumann entropy [3] captures the randomness associated with not-knowing
precisely the quantum state, but does not capture the randomness associated with the
observables. Thus, it requires the existence of classical statistics elements (mixed states)
in order not to vanish. Wehrl entropy [4] is based on Husimi’s [5] quasiprobability dis-
tribution, rooted in projecting states to an overcomplete basis representation of coherent
states. These quasiprobability distributions are not relativistic invariant. Note that no two
coherent states are orthogonal to each other. Therefore, the Kolmogorov third axiom for
a probability distribution, requiring that elementary events be mutually exclusive, is not
satisfied. Consequently some probability properties, such as the monotonicity of probabili-
ties and the complement rule, are not satisfied by Husimi’s quasiprobability distribution.
These limitations prevent Wehrl entropy from correctly counting the random values of
the observables. For example, a quantum state where the projection in position space is a
Dirac delta function at x0 produces a non-zero value distribution for all possible position
coordinates x in the classical phase space coordinate (x, p), where p is the momentum
coordinate. Clearly, this is not the description of the random position x in QM. Indeed
Wehrl [6] referred to his proposed entropy as a classical entropy for the classical phase
space.

The entropic uncertainty principle (EUP) [7–10] is an extension of the standard
uncertainty principle [11,12] for a conjugate pair of observables, where the product of the
variances of each observable is replaced by the sum of the entropies for each observable. It
is a static statement. We view the sum of these two entropies as a single entropy in phase
space, which evolves over time, and the EUP as a lower bound for our proposed entropy
for pure states.

Works on quantum thermalization [13–16] and their references, suggest consideration
of a quantum system as a bipartite set of environment states and a subsystem of interest
and application of the von Neumann procedure of tracing out the density matrix for the
environment states. Then, these works establish a relation between the von Neumann
reduced density matrix of a subsystem of interest and the classical entropy. We argue that
a complete quantification of randomness of the system, including the randomness of the
observables, will lead to a more accurate understanding of the role of entropy in physics.

1.2. Our Contribution

Our starting points are pure states, where the DOFs associated with position and spin
are precisely specified. We investigate the inherent quantum randomness associated with
the observables. This randomness is fully captured by two conjugate pairs of observables
satisfying the uncertainty principle [11,12], one associated with space and momentum,
and the other associated with the internal spin state. The extension of the uncertainty
principle to the entropic uncertainty principle (EUP) [7–10] suggests that the two entropy
components associated with position and momentum play a role in physics. We propose a
definition of entropy associated with a quantum pure state, and refer to it as coordinate-
entropy. Furthermore, we extend the coordinate-entropy to mix states.

We study the coordinate-entropy’s time evolution for some physical systems, including
a coherent state evolution through a potential free Dirac equation, and the hydrogen atom in
an excited state transitioning to the ground state with a photon emission. In these scenarios
the entropy increases. We also study a collision of two spinless particles. As they come close
with each other, due to the superposition of the position wave functions and conservation
laws, only the annihilation of these particles and the creation of new particles can prevent
the entropy from decreasing. In the process of this analysis, we propose a property of the
time evolution of the entropy associated with a potential free Dirac equation.
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We then hypothesize an entropy law, universally applicable to particle physics, stating
that in a closed physical system the entropy never decreases. The motivation is that the
inverse of the amount of randomness, information, cannot be gained in a closed system.
Such a law implies irreversibility of time for all physical scenarios where entropy does not
stay constant. We complete the paper examining the consequences of such a law in physics.

2. Quantum Entropy in Quantum Phase Spaces

We now proceed to define a quantum entropy. An entropy is required to account
for both types of DOFs: the coordinate DOFs and the internal DOFs (spin). It must
quantify accurately all the randomness associated with the observables of a quantum state.
Thus, the probability distributions that define the quantum entropy should express the
uncertainty relations of the observables. Moreover, a quantum entropy must be invariant
under (i) special relativity transformations, (ii) canonical transformations, and (iii) CPT
transformations. Also when considering quantum mixed states, the quantum entropy must
also quantify all the randomness associated with the specification of a quantum state.

We first address the coordinate-entropy associated with the coordinate DOFs. Then
we mention briefly the spin-entropy associated the spin DOFs, as such study is developed
elsewhere [2].

2.1. Coordinate-Entropy

We associate with a state |ψ〉 and its density operator ρ = |ψ〉〈ψ| their projection onto
the QM eigenstates |x〉 and |p〉 of the operators x̂ and p̂, respectively. Either one projection,
ψ(x) = 〈x|ψ〉 or φ(p) = 〈p|ψ〉, is sufficient to recover the other one via a Fourier transform.
However, to account for the randomness of the observables, both |ψ〉 and |φ〉, are needed.
The quantum coordinate phase space is defined by projecting the density operator to obtain
the probability densities ρx(x) = 〈x|ρ|x〉 = |ψ(x)|2 and ρp(p) = 〈p|ρ|p〉 = |φ̃(p)|2.

A time evolution of a density function ρ according to a Hermitian Hamiltonian H is

described by ρt = e−i H
h̄ tρei H

h̄ t and so the evolution of a state in the quantum coordinate
phase space is given by the pair of probability densities ρx(x, t) = 〈x|ρt|x〉 = |ψ(x, t)|2 and
ρp(p, t) = 〈p|ρt|p〉 = |φ̃(p, t)|2.

Our formulation of the coordinate-entropy is motivated by previous work includ-
ing Boltzmann and Gibbs [1], Shanon [17], Jaynes [18], von Neumann entropy, Wehrl
entropy, and it amounts to the sum of the two entropies in the EUP. More precisely,
let the entropy associated only with the spatial coordinates be the differential entropy
Sx = −

∫

ρx(x, t) ln ρx(x, t) d3x. Let k = 1
h̄ p be the spatial frequency (Fourier conjugate of x),

ρk(k, t) = h̄3ρp(p, t) the associated probability density, and Sk = −
∫

ρk(k, t) ln ρk(k, t) d3k.
Then we define the entropy associated with the quantum coordinate phase space distribu-
tions as

S = −
∫

ρ(x, k, t) ln ρ(x, k, t)d3x d3k = Sx + Sk , (1)

where ρ(x, k, t) = ρx(x, t)ρk(k, t). The entropy is dimensionless and thus, invariant under
changes of the units of measurements.

A natural extension of this entropy to an N-particle QM system is

S = −
∫

d3x1 d3k1 . . . d3xN d3kN ρx(x1, . . . , xN , t) ρk(k1, . . . , kN , t)

× ln(ρx(x1, . . . , xN , t) ρk(k1, . . . , kN , t)) ,

where ρx(x1, . . . , xN , t) = |ψ(x1, . . . , xN , t)|2 and ρk(k1, . . . , kN , t) = |φ(k1, . . . , kN , t)|2 are
defined in QM via the projection of the state |ψt〉N of N particles (the product of N Hilbert
spaces) onto 〈x1| . . . 〈xN | and 〈k1| . . . 〈kN | coordinate systems.

Fields in QFT are described by the operators Ψ(x, t), where (x, t) is the space-
time, and their spatial Frequency transform Φ(k, t). They are written in terms of
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operators that create and the annihilate particles at a position and time (x, t). A
representation for a system of particles is based on Fock states with occupation number
∣

∣nq1 , nq2 , , . . . , nqi
, . . . nqK

〉

, where nqi
is the number of particles in a QM state |qi〉. The

number of particles in a Fock state is then N = ∑
K
i=1 nqi

, and a QFT state is described
in a Fock space as |state〉 = ∑m αm

∣

∣nq1 , nq2 , , . . . , nqi
, . . .

〉

, where m is an index over the
configurations of a Fock state, αm ∈ C, and 1 = ∑m |αm|2. The QFT phase space state
associated with an initial |state〉 and quantum fields Ψ(x, t) and Φ(k, t) is then given by
(

〈state|ρQFT
x (x, t)|state〉, 〈state|ρQFT

k (k, t)|state〉
)

, where the probability density operators

for the spatial coordinates are

ρQFT
x (x, t) = Ψ†(x, t)Ψ(x, t) and ρQFT

k (k, t) = Φ†(k, t)Φ(k, t) .

The QFT coordinate-entropy is then described by the same formulae (1), but for QFT
ρx(x, t) = 〈state|ρQFT

x (x, t)|state〉 and ρk(k, t) = 〈state|ρQFT
x (k, t)|state〉.

The framework used, QM or QFT, will define which probability density operator is
being employed and to which kind of state is being applied.

2.1.1. Uniqueness of the Phase Space and QFT

The variable x can be thought as the 3D space where a quantum field is defined
and k =

p
h̄ as the spatial frequency domain where the Fourier of the quantum field

is defined. This makes them unique variables in QFT up to canonical transformations,
Lorentz transformations, and CPT transformations.

2.1.2. Mixed Quantum States

We now extend the entropy (1) to mixed states using the QM framework. Consider
a mixed state formed from m ≥ 2 pure quantum states

∣

∣ψj

〉

, j = 1, . . . , m, defined by the
density matrix ρM = ∑

m
j=1 λj

∣

∣ψj

〉〈

ψj

∣

∣, where λj > 0 and 1 = ∑
m
j=1 λj.

Projecting each component of the density matrix onto the quantum coordinate phase
space basis yields ρj(x, k, t) = λj |ψj(x, t)|2 |φj(k, t)|2, where 1 = ∑

m
j=1

∫

ρj(x, k, t) d3x d3k,
which account for the observables probabilities as well as the probabilities associated with
specifying the quantum state, namely the probabilities λj, j = 1, . . . , m. We define the
coordinate-entropy associated with mixed states to be

SM,λj = −
m

∑
j=1

∫

λj|ψj(x, t)|2|φj(k, t)|2 ln
(

λj|ψj(x, t)|2|φj(k, t)|2
)

d3x d3k

= −
m

∑
j=1

λj ln λj +
m

∑
j=1

λjSj ,

where Sj = −
∫

|ψj(x, t)|2 ln |ψj(x, t)|2 d3x −
∫

|φj(x, t)|2 ln |φj(x, t)|2 d3k is the entropy of
each pure state. This entropy has two terms: the von Neumann entropy (−∑

m
j=1 λj ln λj)

and the average value of the entropies of the observables for each pure state weighted by
the mixed coefficients λj. Clearly, the proposed entropy is larger than the von Neumann
entropy since it captures both type of randomness, the one associated with the DOFs of a
quantum state plus the one associated with the observables. This entropy also differs from
Wehrl entropy because it is based on a probability distribution of the observables and not
on a quasiprobability distribution that lacks probability properties needed to characterize
precisely the randomness of the observables.

When one is interested in quantifying just the randomness of the observables, then
one must consider the probability densities ρM

r (x, t) = 〈x|ρM|x〉 = ∑
m
j=1 λj|ψj(x, t)|2 and

ρM
k (k, t) = 〈k|ρM|k〉 = ∑

m
j=1 λj|φj(k, t)|2.

In this article we will focus on pure quantum states only as this is the setting of the main
new contribution.
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2.2. Spin-Entropy

It is not possible to know simultaneously the spin of a particle in all three dimensional
directions, and this uncertainty, or randomness, was exploited in the Stern–Gerlach exper-
iment [19] to demonstrate the quantum nature of the spin. We explore elsewhere [2] the
entropy associated with the quantum spin phase space.

3. Entropy Invariant Properties

We now address invariant properties that the coordinate-entropy must satisfy to be
considered a physical quantity of interest, namely it must be invariant under canonical
transformations, under CPT transformation, and under Lorentz transformation.

QFT is constructed to be invariant under Lorentz transformation, e.g., see [20]. We
then adopt the QFT framework for proving the entropy invariance as listed above.

3.1. Canonical Transformations

In classical physics canonical transformations are studied for phase spaces mapping
(x, k, t) 7→ (x′, k′, t) that preserves the form of Hamilton’s equations. We adopt the QFT
description of canonical transformations, where the phase space coordinates (x, k) are
conjugate variables and not operators.

Theorem 1. Consider a canonical transformation of coordinates F : (x, k, t) 7→ (x′, k′, t). The
entropy is invariant under canonical transformations.

Proof. Let S be the entropy in phase-space relative to a conjugate Cartesian pair of coor-
dinates (x, k) at time t, and S′ to be the entropy of the the new pair of canonical variables
(k′, x′) at time t. The canonical transformations induce new operators Ψ′(x′, t) and Φ′(k′, t)
in phase space that must satisfy the property that probabilities in infinitesimal volumes are
invariant. Thus,

Ψ′†(x′, t)Ψ′(x′, t)d3x′ = Ψ†(x, t)Ψ(x, t)d3x and

Φ′†(k′, t)Φ′(k′, t)d3k′ = Φ†(p, t)Φ(p, t)d3 p . (2)

Let JF(x, k, t) = ∂(x′ ,k′)
∂(x,k) be the jacobian matrix of F(x, k, t). The infinitesimal volume in-

variance at any time t gives d3x′ d3k′ = det JF(x, k, t)d3x d3k, and applying it to (2) we
get

Ψ′†(x′, t)Ψ′(x′, t)Φ′†(k′, t)Φ′(k′, t) =
1

det JF(x, k, t)
Ψ†(x, t)Ψ(x, t)Φ†(p, t)Φ(p, t) .

Thus,

Sx′ + Sk′ = −
∫

d3x′ d3k′ρ′(x′, k′, t) ln ρ′(x′, k′, t) = Sx + Sk + 〈ln det JF(x, k, t)〉ρr,k

= Sx + Sk ,

since for canonical transformations det JF(x, k, t) = 1.

A special case of canonical transformations of the coordinates x 7→ x′, is known
as point transformation. Attempts by [21] to extend it to a quantum mechanics point
transformation, where the conjugate variables become conjugate operators, are interesting.
However, a large set of classical point transformations cannot yield a quantum point
transformation, including the transformation from Cartesian coordinates to a spherical
coordinate system [22]. The case of translations is possible, and studied by [23] as quantum
reference frames. So now we adopt the QM representation, but it is not difficult to adapt it to
a QFT representation. When a quantum reference frame is translated by x0 along x, the state
|ψt〉 in the position representation becomes ψ(x − x0, t) = 〈x − x0|ψt〉 = 〈x|T̂P(−x0)|ψt〉,
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where T̂P(−x0) = eix0
1
h̄ P̂, and where P̂ is the momentum operator conjugate to X̂. When the

reference frame is translated by p0 along p, the state |ψt〉 in the momentum representation

becomes φ̃(p − p0, t) = 〈p − p0|ψt〉 = 〈p|T̂X(−p0)|ψt〉, where T̂X(−p0) = ei 1
h̄ p0X̂, and

where X̂ is the position operator conjugate to P̂.

Theorem 2 (Frames of reference). The entropy of a state is invariant under a change of a quantum
reference frame by translations along x and along p.

Proof. Let |ψt〉 be a state and S its entropy. We start by showing that Sx =
−
∫ ∞

−∞
|ψ(x, t)|2 ln |ψ(x, t)|2 dx is invariant under two types of translations:

(i) translations along x by any x0

Sx+x0 = −
∫ ∞

−∞
|ψ(x + x0, t)|2 ln |ψ(x + x0, t)|2 dx = Sx ,

which is verified by changing variables.
(ii) translations along p by any p0

ψp0(x, t) = 〈x|T̂X(p0)|ψt〉 =
∫ ∞

−∞
〈x|T̂X(p0)|p〉〈p|ψt〉dp

=
∫ ∞

−∞
〈x|p + p0〉φ̃(p, t)dp =

∫ ∞

−∞

1√
2π

eix 1
h̄ (p+p0)φ̃(p, t)dp

= ψ(x, t)eix 1
h̄ p0 ,

implying |ψp0(x, t)|2 = |ψ(x, t)|2.

Similarly, by applying both translations to Sp = −
∫ ∞

−∞
|φ̃(p, t)|2 ln |φ̃(p, t)|2 dp we conclude

that Sp is invariant under them too. Therefore S = Sx + Sp − 3 ln h̄ is invariant under
translations in both x and p.

3.2. CPT Transformations

We will be focusing on fermions, and thus on the Dirac spinors equation, though
the results apply to bosons as well. We return to the QFT represenation where the Dirac
Hamiltonian is

HD =
∫

Ψ†(x, t)
(

−ih̄γ0
~γ · ∇+ mcγ0

)

Ψ(x, t) d3x .

A QFT solution Ψ(x, t) satisfies [HD , Ψ(x, t)] = −ih̄ ∂Ψ(x,t)
∂t

and the C, P, and T sym-

metries provide new solutions from Ψ(x, t). As usual, ΨC(x, t) = CΨ
T
(x, t), ΨP(−x, t) =

PΨ(−x, t), ΨT(x,−t) = TΨ∗(x,−t), and ψCPT(−x,−t) = CPTψ
T
(−x,−t). For complete-

ness, we briefly review the three operations, Charge Conjugation, Parity Change, and Time
Reversal.

Charge Conjugation transforms particles Ψ(x, t) into antiparticles Ψ
T
(x, t) =

(Ψ†γ0)T(x, t). As CγµC−1 = −γµT, ΨC(x, t) is also a solution for the same Hamiltonian.
In the standard representation, C = iγ2γ0 up to a phase. Parity Change P = γ0, up to
a sign, effects the transformation x 7→ −x. Time Reversal effects t 7→ −t and is carried
by the operator T = TK̂, where K̂ applies conjugation. In the standard representation
T = iγ1γ3, up to a phase. For simplicity of notation we will drop for the QFT superscript
of the probability density operator in the theorem that now follows.

Theorem 3 (Invariance of the entropy under CPT-transformations). Given a quantum field
operator Ψ(x, t), its Fourier transform Φ(k, t), and its entropy St associated with any initial state,
the entropies of Ψ∗(x, t), ΨP(−x, t), ΨC(x, t), ΨT(x,−t), ΨCPT(−x,−t), and their corresponding
Fourier transforms are all equal to St.



Entropy 2022, 24, 1341 7 of 22

Proof. The probability densities of Ψ∗(x, t), ΨT(x,−t), ΨP(−x, t), ΨC(x, t), and
ΨCPT(−x,−t) are

ρQFT, ∗
x (x, t) = ΨT(x, t)Ψ∗(x, t) = Ψ†(x, t)Ψ(x, t) = ρQFT(x, t) ,

ρQFT, C
x (x, t) =

(

Ψ
T
)†

(x, t)C†CΨ
T
(x, t) = Ψ

∗
(x, t)Ψ

T
(x, t) = ρQFT

x (x, t) ,

ρQFT, P
x (−x, t) = Ψ†(x, t)(γ0)†γ0Ψ(x, t) = Ψ†(x, t)Ψ(x, t) = ρQFT

x (x, t) ,

ρQFT, T
x (x,−t) = ΨT(x, t)T†TΨ∗(x, t) = ΨT(x, t)Ψ∗(x, t) = ρQFT

x (x, t) ,

ρQFT, CPT
x (−x,−t) =

(

Ψ
T
)†

(x, t)(CPT)†(CPT)Ψ
T
(x, t) = ρQFT

x (x, t) . (3)

As the operator densities are equal, so are the associated entropies for any given initial
state.

Equation (3) also hold for Φ(k, t) and its density. Thus, both entropies terms in
St = Sr + Sk are invariant under all CPT transformations.

3.3. Lorentz Transformations

Theorem 4. The entropy is invariant under Lorentz Transformations.

Proof. The probability elements dP(x, t) = ρx(x, t)d3x and dP(k, t) = ρk(k, t)d3k
are invariant under Lorentz transformations because event probabilities do not de-
pend on the frame of reference. Consider a slice of the phase space with frequency

ωk =

√

k2c2 +
(

mc2

h̄

)2
. The volume elements 1

ωk
d3k and ωk d3x, are invariant under

the Lorentz group [20], that is, 1
ωk

d3k = 1
ωk′

d3k′ and ωk d3x = ωk′ d3x′, implying

dV = d3k d3x = d3k′ d3x′ = dV′, where x′, k′, and ωk′ result from applying a Lorentz
transformation to x, k, and ωk. Thus, from the probability-invariant elements we conclude
that 1

ωk
ρx(x, t) and ωkρk(k, t) are also invariant under the group. Thus, the phase space

density ρx(x, t)ρk(k, t) is an invariant under Lorentz transformations. Therefore, the
entropy is a relativistic scalar.

Note that in QFT, one scales the operator Φ(k, t) by
√

2ωk, that is, one scales the
creation and the annihilation operators α†(k) =

√
ωka†(k) and α(k) =

√
ωa(k). In this

way, the density operator Φ†(k, t)Φ(k, t) scales with ωk and becomes a relativistic scalar.
Also, with such a scaling, the infinitesimal probability of finding a particle with momentum
p = h̄k in the original reference frame is invariant under the Lorentz transformation, though
it would be found with momentum p′ = h̄k′.

4. The Minimum Entropy Value

The third law of thermodynamics establishes 0 as the minimum classical entropy.
However, the minimum of the quantum entropy must be positive due to the uncertainty
principle’s lower bound. Let θ(x) be 1 for positive x and 0 elsewhere.

Theorem 5. The minimum entropy of a particle with spin s is 3(1 + lnπ) + θ(s) ln 2π.

Proof. The entropy is the sum of the coordinate-entropy and the spin-entropy. The
coordinate-entropy (1) is Sx + Sk. Due to the entropic uncertainty principle Sx + Sk ≥ 3 ln eπ
as shown in [7,8,10], with Sk = Sp − 3 ln h̄. To complete the proof, by [2], the minimum
spin-entropy is θ(s) ln 2π.

Higgs bosons in coherent states have the lowest possible entropy 3(1 + lnπ).
The dimensionless element of volume of integration to define the entropy will not

contain a particle unless d3x d3k ≥ 1, due to the uncertainty principle, and this may be
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interpreted as a necessity of discretizing the phase space. We note that the minimum
entropy of the discretization of (1) is also 3(1 + lnπ), as shown in [24].

We point out that coherent states minimize the uncertainty principle, they also min-
imize the entropic uncertainty principle (and we show it in Section 5.3) and they also
minimize Wehrl entropy as shown by Lieb [25].

5. Time Evolution of the Entropy

We now introduce a formalism and characterize time evolution behaviors of the
entropy.

5.1. A Formalism for Entropy Evolution

We introduce the concept of a QCurve to specify a curve (or path) in a Hilbert space
parametrized by time. In QM a QCurve is represented by a triple

(

|ψ0〉, U(t), δt
)

where

|ψ0〉 is the initial state, U(t) = e−i H
h̄ t is the evolution operator, and [0, δt] is the time interval

of the evolution. Of course, one may also represent the initial state by a triple
(

ρ0, U(t), δt
)

,
where ρ0 = |ψ0〉〈ψ0| is the density matrix. Alternatively, we can represent the initial state
in the quantum coordinate phase space by (〈x|ρ0|x〉, 〈k|ρ0|k〉) or (〈x|ψ0〉, 〈k|ψ0〉). In QFT
the unitary evolution may be represented by the initial condition

(

Ψ0 = Ψ(x, 0), Φ0 =

Φ(k, 0)
)

or by the initial phase space state
(

ρx(x, 0) = 〈state|ρQFT
x (x, 0)|state〉, ρk(k, 0) =

〈state|ρQFT
k (k, 0)|state〉

)

.
We will use any of these representations to describe a QCurve as more convenient for

manipulations for the problem at hand.

Definition 1 (Partition of E ). Let E to be the set of all the QCurves. We define a partition of E

based on the entropy evolution into four blocks:

C : The set of QCurves for which the entropy is a constant.

I : The set of QCurves for which the entropy is increasing, but it is not a constant.

D : The set of QCurves for which the entropy is decreasing, but it is not a constant.

O : The set of oscillating QCurves, with the entropy strictly increasing in some subinterval of [0, δt]
and strictly decreasing in another subinterval of [0, δt].

Consider stationary states |ψt〉 = |ψE〉e−iωt with ω = E/h̄, where E is an energy eigen-
value of the Hamiltonian, and |ψE〉 is the time-independent eigenstate of the Hamiltonian
associated with E.

Theorem 6. All stationary states are in C .

Proof. Follows from the time invariance of the probabilities ρt = |ψt〉〈ψt| = |ψE〉〈ψE|.

5.2. Dispersion of a Fermion Hamiltonian

Dirac’s free-particle Hamiltonian in QM [26] is

H = −ih̄γ0
~γ · ∇+ mcγ0 . (4)

It can be diagonalized in the spatial Fourier domain |k〉 basis to obtain

ω(k) = ±c

√

||k||2 + m2

h̄2 c2 , (5)
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where ω(k) is the frequency component of the Hamiltonian. We focus on the positive
energy solutions and so the group velocity becomes

vg(k) = ∇kω(k) =
h̄

m

k
√

1 + ( h̄||k||
mc )2

. (6)

In (9) we will use the Taylor expansion of (5) up to the second order, thus requiring
the Hessian H(k), with the entries

Hij(k) =
∂2ω(k)

∂ki ∂k j
=

h̄

m

(

1 +
(

h̄||k||
mc

)2
)− 3

2
[

δi,j

(

1 +
(

h̄||k||
mc

)2
)

−
(

h̄ki

mc

)(

h̄k j

mc

)

]

(7)

for the positive energy solution. The three (positive) eigenvalues of H(k) are

λ1 =
h̄

m

(

1 +
(

h̄||k||
mc

)2
)− 3

2

= h̄
m2

(m2 + µ2(||k||))
3
2

,

λ2,3 =
h̄

m

(

1 +
(

h̄||k||
mc

)2
)− 1

2

= h̄
1

(m2 + µ2(||k||)) 1
2

,

where µ(||k||) = h̄||k||/c is the kinetic energy in mass units. The Hessian is positive definite
for positive energy, and so it gives a measure of the dispersion of the wave.

We now consider initial solutions that are localized in space, ψk0
(x − x0) = ψ0(x −

x0)eik0·x, where x0 is the mean value of x. Assume that the variance,
∫

d3x(x − x0)
2ρx(x),

is finite, where ρx(x) = |ψ0(x)|2. In a Cartesian representation, we can write the initial
state in the spatial frequency domain as φx0(k − k0) = φ0(k − k0)e−i(k−k0)·x0 , where φ0(k)
is the Fourier transform of ψ0(x), and so the variance of ρk(k) = |φx0(k − k0)|2 is also finite,
with the mean in the spatial frequency center k0.

The time evolution of ψk0
(x − x0) according a Hamiltonian with a dispersion relation

ω(k), and written via the inverse Fourier transform, is

ψk0
(x − x0, t) =

1

(
√

2π)3

∫

Φx0(k − k0)e
−iω(k)teik·x d3k . (8)

As φx0(k − k0) fades away exponentially from k = k0, we expand (5) in a Taylor series
and approximate it by

ω(k) ≈ vp(k0) · k0 + vg(k0) · (k − k0) +
1
2
(k − k0)

TH(k0)(k − k0) , (9)

where vp(k0), vg(k0), and H(k0) are the phase velocity ω(k0)k̂0/|k0|, the group velocity (6),
and the Hessian (7) of the dispersion relation ω(k), respectively. Then after inserting (9)
into (8), we obtain the quantum dispersion transform

φxt
k0
(k − k0, t) ≈ 1

Zk
e−itvp(k0)·k0 Φxt

k0
(k − k0)N

(

k | k0,−it−1H−1(k0)
)

,

ψk0
(x − xt

k0
, t) ≈ 1

Zx
e−itvp(k0)·k0 ψk0

(x − xt
k0
) ∗N

(

x | xt
k0

, itH(k0)
)

, (10)

where xt
k0

= x0 + vg(k0)t, Φxt
k0
(k − k0) = φ0(k − k0)e

−i(k−k0)·xt
k0 , with Fourier transform

ψk0
(x − xt

k0
); ∗ denotes a convolution, Zr and Zk normalize the amplitudes, and N is

a normal distribution. Consequently, ψk0
(x − xt

k0
, t) is the spatial Fourier transform of

Φxt
k0
(k − k0, t).
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The probability densities associated with the probability amplitudes in (10) are

ρx(x − xt
k0

, t) =
1

Z2
x
|ψk0

(x − xt
k0
) ∗N

(

x | xt
k0

, itH(k0)
)

|2 ,

ρk(k − k0, t) =
1

Z2
k

|Φxt
k0
(k − k0)|2 . (11)

Lemma 1 (Dispersion Transform and Reference Frames). The entropy associated with (11) is
equal to the entropy associated with the simplified probability densities

ρS
x(x, t) =

1
Z2 |ψ0(x) ∗N (x | 0, itH(k0))|2 ,

ρS
k(k, t) =

1
Z2

k

|Φ0(k)|2 = ρS
k(k, t = 0) . (12)

Proof. Consider (11). If the frame of reference is translating the position by xt
k0

= x0 +

vg(k0)t and the momentum by h̄k0, we get the simplified density functions (12).
Theorem 2 shows that the entropy in position and momentum is invariant under

translations of the position x and the spatial frequency k, and that completes the proof.

The time invariance of the density ρS
k(k, t), and therefore of Sk, reflects the conservation

law of momentum for free particles.

5.3. The Coordinate-Entropy of Coherent States Increases With Time

Coherent states, represented by state |α〉, are eigenstates of the annihilator operator.
The 1D quantum phase space of observables (x, p) can be constructed by the unitary

operator U(x0, p0) = e
i
h̄ (x0X−p0P) applied to zero-state |x = 0, p = 0〉, that is, they can be

constructed as |α〉 = |x0, p0〉 = e
i
h̄ (x0X−p0P)|0, 0〉, where α = x0 + ip0. Projecting the state

to position space yields ψα(x) = 〈x|α〉 = e−
p2

0
2 e−

1
2 (x−

√
2α)

2

/π
1
4 , where α = (x0 + ip0)/

√
2.

Squeeze states extend coherent states to all eigenstate solutions of the annihilator operator
by allowing different variances to the Gaussian solution, and together their representation
in 3D position and momentum space are

ψk0
(x − x0) = 〈x|α〉 = 1

23π
3
2 (det Σ)

1
2

N (x | x0, Σ)eik0·x ,

Φx0(k − k0) = 〈k|α〉 = 1

23π
3
2 (det Σ−1)

1
2

N

(

k | k0, Σ−1
)

ei(k−k0)·x0 , (13)

where Σ is the spatial covariance matrix.

Theorem 7. A QCurve with an initial coherent state (13) and evolving according to (4) is in I .

Proof. To describe the evolution of the initial states (13), we apply (10). Then, after applying
Lemma 1,

ρS
x(x, t) =

1
Z2

2
N (x | 0, Σ + itH(k0))N (x | 0, Σ − itH(k0)) = N

(

x | 0,
1
2

Σ(t)

)

,

ρS
k(k, t) = N

(

k | 0, Σ−1
)

,
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where Σ(t) = Σ + t2H(k0)Σ
−1H(k0). Then

S = Sx + Sk

= −
∫

N

(

x | 0,
1
2

Σ(t)

)

ln N

(

x | 0,
1
2

Σ(t)

)

d3x −
∫

N

(

k | 0, Σ−1
)

ln N

(

k | 0, 2Σ−1
)

d3k

= 3(1 + lnπ) +
1
2

ln det
(

I + t2(Σ−1H(k0))
2
)

.

As det
(

I + t2(Σ−1H(k0))
2
)

> 0, the entropy increases over time.

The theorem suggests that quantum physics has an inherent mechanism to increase
entropy for free particles, due to the spatial dispersion property of the Hamiltonian. Note
that at t = 0 a coherent state (13) reaches the minimum possible coordinate-entropy value.

The dispersion properties of the Dirac and Schrödinger Hamiltonian equations have
been studied in the past, and are already present in Feynmann path integral formulation
for the free particle [27], where an analytical solution is derived showing the dispersion of
the initial localized particle.

5.4. A Conjecture on Entropy Evolution

Conjecture 1. For every single fermion state |Ψ〉0 in Hilbert space, that is evolving under the free
fermion Hamiltonian, there exist a finite time parameter T such that ∀t > T the coordinate-entropy
will not decrease.

We present a motivation for this conjecture. The dispersion relation ω(k) for the free
fermion Hamiltonian has a positive Hessian (7). Note that Schrödinger Hamiltonian also
has a positive Hessian. We also observe some mathematical scenarios where the entropy can
decrease temporarily. Given a fermion in a coherent state solution |Ψ0〉 evolving backwards

for a time period T. It will yield a solution |Ψ−T〉 = ei H
h̄ T |Ψ0〉, with larger entropy than

|Ψ0〉. Then a starting solution |Ψ−T〉 will evolve forward for a period t ∈ (0, T], until it
reaches back to |Ψ〉0, with entropy decreasing. However, for t > T the entropy of the
evolution will increase forever. We discuss this scenario next in Section 5.5. Another
physical scenario where the entropy can decrease for a period T is when the initial state is a
sum of two coherent states, 〈x|Ψ0〉 = Ψk0

(x − x0) + Ψ−k0
(x + x0), that is, these parameters

model two components away from each other and moving towards each other. For large
distances 2x0, where the overlap of the two components is negligible, the entropy evolution
of each component increases due to dispersion, and thus, the entropy increases. As the
two components come closer to each other, the overlap increases, and the final probability
contain a significant term from the interference of the components. Then, due to the
interference, the entropy can decrease. Continuing the evolution, as the two components
“pass through each other” and start to move away from each other, the entropy will again
start to increase, and will increase forever. The parameter T in this case represents the
period of a large overlap between the two components up to when they “pass through each
other”.

Note that for physical scenarios where the overlap is large enough for causing the
entropy to decrease, there is a possible mechanism in nature, outside of the motion equa-
tion, to annihilate such solutions (such particles) and create new particles that satisfy the
conservation laws that could have the entropy of the evolution to always increase.
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5.5. Time Reflection

Consider a time-independent Hamiltonian. We investigate the discrete symmetries
C and P, and propose that Time Reversal be augmented with Time Translation, say by δt.
We refer to the mapping t 7→ −t + δt as Time Reflection, because as t varies from 0 to δt,
t′(t) = −t + δt varies as a reflection from δt to 0. We define the Time Reflection quantum
field

ΨTδ(x,−t + δt) = T Ψ(x, t) = TΨ∗(x, t) .

Note that in contrast to the case of Time Reversal, ΨTδ(x, t′) = T Ψ(x,−t′ + δt),
and the entropies associated with Ψ(x, t) and ΨTδ(x, t) are generally not equal. Thus, an
instantaneous Time Reflection transformation will cause entropy changes.

We next consider a composition of the three transformation, Charge Conjugation,
Parity Change, and Time Reflection.

Definition 2 (ΨCPTδ ). Let the CPTδ quantum field be

ΨCPTδ(−x,−t + δt) = ηδCPTΨ
T
(x, t) = ηγ5(Ψ†)T(x, t) , (14)

where η is the product of the phases of each operation, ηδ is the phase of time translation, and
γ5 = iγ0γ1γ2γ3.

Definition 3 (QCPTδ
). Let QCPTδ

be
(

ψ(x, 0), U(t), [0, δt]
)

7→
(

ψCPTδ(−x, 0), U(t), [0, δt]
)

.

Using (14) we see that,

ψCPTδ(−x, 0) = ηγ5(Ψ†)T(x,−0 + δt) = ηγ5(Ψ†)T(x, δt) . (15)

Theorem 8 (Time Reflection). Consider a CPT invariant quantum field theory (QFT) with
energy conservation, such as Standard Model or Wightman axiomatic QFT [28]. Let e0 =
(Ψ(x, 0), U(t), [0, δt]) be a QCurve solution to such QFT. Then, e1 = QCPTδ

(e0) is (i) a so-
lution to such QFT, (ii) if e0 is in C , D , O , I then e1 is respectively in C , I , O , D , making C ,
I , O , D reflections of C , D , O , I , respectively.

Proof. Let t′ = −t + δt. The QCurve e1 describes the evolution of ψCPTδ(−x, t′) during the
period [0, δt].

Since e0 is a solution to a QFT that is CPT-invariant and time-translation invariant, e1
is also a solution to the QFT, proving (i).

The time evolution of ΨCPTδ(−x, 0) from 0 to δt is described by ΨCPTδ(−x, t′), and
by (15) ΨCPTδ(−x, t′) = ηγ5(Ψ†)T(x,−t′ + δt) = ηγ5Ψ∗(x, δt − t′). Thus by Theorem 3,
the evolution of ΨCPTδ(−x, t′) as t′ evolves from 0 to δt has the same entropies as Ψ(x, δt −
t′). Since Ψ(x, δt − t′) traverses the same path as Ψ(x, t′) but in the opposite time direction,
we conclude that e1 produces the time evolution states ΨCPTδ(−x, t′) in the time interval
[0, δt] traversing the same path and with the same entropies as Ψ(x, t′), but in the opposite
time directions.

Applying the above to a QCurve respectively in I , D , C , O , results in a QCurve
respectively in D , I , C , O , proving (ii).

For a visualization see Figure 1.
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Figure 1. A visualization of the Time Reflection Theorem. (i) Axis t: A QCurve e1 =
(

Ψ0 =

Ψ(x, 0), e−iHt, δt
)

. (ii) Axis t′ = δt − t: The antiparticle QCurve is created as e2 = QCPTδ
(e1) =

(

ΨCPTδ (−x, t′ = 0), e−iHt′ , δt
)

. Axis t′ shows the evolution as going forward in time t′. The evolution
of ΨCPTδ (−x, t′) = ηγ5(Ψ†)T(x, δt − t′) is mirroring the evolution of Ψ(x, t), with t = t′ evolving
from 0 to δt. If e1 ∈ D , then e2 ∈ I

5.6. Entropy Oscillations

Consider a Hamiltonian H′ = H + HI, where |HI| ≪ |H| accounts for additional
interactions, and the initial eigenstate

∣

∣ψEi

〉

of H associated with the eigenvalue Ei = h̄ωi.
The time evolution of

∣

∣ψEi

〉

is

|ψt〉 = e−i (H+HI)
h̄ t

∣

∣ψEi

〉

=
n

∑
k=1

αk(t)
∣

∣ψEk

〉

,

where n is the number of the eigenvectors of H. Fermi’s golden rule [29,30] approximates
the coefficients of transition for k 6= i and short time intervals by

αk(t) ≈
HI

i,k

h̄(ωi − ωk)

(

−2 sin2
(

(ωi − ωk)t

2

)

+ i sin((ωi − ωk)t)

)

.

Theorem 9 (Entropy Oscillations). Consider the QCurve
(∣

∣ψEi

〉

, U(t) = e−i (H+HI)
h̄ t, T

)

with

h̄ω1 the ground state value of H and T = 2π
|ωi−ω1| . Assume that |α1(t)|2, |αi(t)|2 ≫ |αk(t)|2 for

k 6= 1, i and t ∈ [0, T]. Then the QCurve is in O .

Proof. With the theorem’s assumptions, we can approximate the position and the momen-
tum probability densities associated with |ψt〉 by

ρx(x, t) ≈
∣

∣

∣

∣

√

1 − |α1(t)|2
〈

x
∣

∣ψEi

〉

+ α1(t)
〈

x
∣

∣ψE1

〉

∣

∣

∣

∣

2

,

ρk(k, t) ≈
∣

∣

∣

∣

√

1 − |α1(t)|2
〈

k
∣

∣ψEi

〉

+ α1(t)
〈

k
∣

∣ψE1

〉

∣

∣

∣

∣

2

.

The time coefficients of ρx(x, t) and ρk(k, t) are the same, and they all return to the
same values simultaneously after a period of T, and so the entropy will return to its
previous value too. As the entropy is not a constant, it must be oscillating.

Thus, when Fermi’s golden rule can be applied, the coefficients of the transition
probabilities of the unitary evolution of a state oscillate, and the entropy associated with
the evolution of such a state will also oscillate with the same period.

Theorem 10 (Coefficients for two states). Consider a particle in an eigenstate
∣

∣ψE1

〉

of a Hamil-
tonian H that has only two eigenstates

∣

∣ψE1

〉

and
∣

∣ψE2

〉

with eigenvalues E1 = h̄ω1 and E2 = h̄ω2,
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respectively. Let this particle interact with an external field (such as the impact of a Gauge Field),
requiring an additional Hamiltonian term HI to describe the evolution of this system.

Let ωI
i,j = 1

h̄

〈

ψEi

∣

∣HI
∣

∣

∣
ψEj

〉

, ωtotal
1 = ω1 + ωI

11, ωtotal
2 = ω2 + ωI

22,

η =
√

(

ωtotal
1 − ωtotal

2

)2
+ 4(ωI

12)
2, and λ± =

ωtotal
1 +ωtotal

2 ±η
2 . Then, the probability of

the particle to be in state
∣

∣ψE2

〉

at time t is

4(ωI
12)

2

η2 sin2 (λ+ − λ−)t
2

.

Proof. The Hamiltonians in the basis
∣

∣ψE1

〉

,
∣

∣ψE2

〉

are

H = h̄

(

ω1 0
0 ω2

)

and HI = h̄

(

ωI
11 ωI

12
ωI

12 ωI
22

)

,

where the real values satisfy ωI
21 = ωI

12 as HI is Hermitian. The eigenvalues of the symmet-
ric matrix H′ = H + HI are h̄λ±, and so we can decompose it as

H′ = h̄

(

ωtotal
1 ωI

12
ωI

12 ωtotal
2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

h̄λ+ 0
0 h̄λ−

)(

cos θ sin θ
− sin θ cos θ

)

, (16)

where

θ =
1
2

arcsin
2ωI

12
η

. (17)

The time evolution of
∣

∣ψE1

〉

is |ψt〉 = e−i (H+HI)
h̄ t

∣

∣ψE1

〉

= ∑
2
k=1 αk(t)

∣

∣ψEk

〉

, and project-

ing onto
〈

ψEj

∣

∣

∣
, we get αj(t) =

〈

ψEj

∣

∣

∣
e−i (H+HI)

h̄ t
∣

∣ψE1

〉

. From (16),

e−i H′
h̄ t =

(

cos θ − sin θ
sin θ cos θ

)(

e−iλ+t 0
0 e−iλ−t

)

×
(

cos θ sin θ
− sin θ cos θ

)

Thus,

(

α1(t)
α2(t)

)

= e−i H′
h̄ t

(

1
0

)

=

(

cos2 θ e−iλ+t + sin2 θ e−iλ−t

sin 2θ
(

e−iλ+ t−e−iλ− t

2

)

)

,

and so
(

|α1(t)|2
|α2(t)|2

)

=

(

1 − 1
2 sin2 2θ (1 − cos(λ− − λ+)t)

1
2 sin2 2θ (1 − cos(λ− − λ+)t)

)

.

As 1− cos(λ− − λ+)t = 2 sin2 (λ+−λ−)t
2 , the probability of being in state

∣

∣ψE2

〉

at time

t is |α2(t)|2 = sin2 2θ sin2 (λ+−λ−)t
2 . Using (17), completes the proof.

If ω1 ≫ ωI
11, ω2 ≫ ωI

22, and |ω1 − ω2| ≫ ωI
12, then λ+,− ≈ ω1,2, and the coefficient of

transition becomes |α2(t)|2 ≈ 4(ωI
12)

2

(ω1−ω2)2 sin2 (ω2−ω1)t
2 , which is Fermi’s golden rule [29,30].

6. Entropy Evolution in Physical Scenarios

We now apply to physical scenarios the formalism developed for characterizing the
time evolution of the entropy, including analysis of experiments conducted with particles
and atoms.
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6.1. A Two-Particle Collision

Consider a two-fermions or a two-massive-bosons system

|ψt〉 =
1√
Ct

(∣

∣

∣
ψ1

t

〉∣

∣

∣
ψ2

t

〉

∓
∣

∣

∣
ψ2

t

〉∣

∣

∣
ψ1

t

〉)

,

where Ct is the normalization constant that may evolve over time and the signs “∓” repre-
sent fermions (“−”) and bosons (“+”). When

∣

∣ψ1
t

〉

and
∣

∣ψ2
t

〉

are orthogonal to each other,
Ct = 2. Projecting on 〈x1|〈x2| and on 〈k1|〈k2|,

ψ(x1, x2, t) =
1√
Ct

(ψ1(x1, t)ψ2(x2, t)∓ ψ1(x2, t)ψ2(x1, t)) ,

ψ(k1, k2, t) =
1√
Ct

(φ1(k1, t)φ2(k2, t)∓ φ1(k2, t)φ2(k1, t)) .

The entropy of the two-particle system, discarding the spin-entropy which is constant
throughout the collision, is then

S
(∣

∣

∣
ψ1

t

〉

,
∣

∣

∣
ψ2

t

〉)

= −
∫

d3x1

∫

d3x2ρx(x1, x2, t) ln ρx(x1, x2, t)

−
∫

d3k1

∫

d3k2ρk(k1, k2, t) ln ρk(k1, k2, t) .

Consider a collision of two particles, each one described by an initial coherent state
with position variance σ2, centered at c1 and c2, and moving towards each other along
the x-axis with center momenta h̄k0 and −h̄k0. They can be represented in position and
momentum space as

Ψ1(x, t) =
e−ik0vp(k0)t

Z1
eik0x

N

(

x | c1 + vg(k0)t, σ2 + itH(k0)
)

,

Ψ2(x, t) =
e−ik0vp(k0)t

Z1
e−ik0x

N

(

x | c2 − vg(k0)t, σ2 + itH(−k0)
)

,

Φ1(k, t) =
e−itvp(k0)k0

Zk0

ei(k−k0)(c1+vg(k0)t)N
(

k | k0, (σ2 + itH(k0))
−1
)

,

Φ2(k, t) =
e−itvp(k0)k0

Zk0

ei(k+k0)(c2−vg(k0)t)N
(

k | −k0, (σ2 + itH(−k0))
−1
)

. (18)

Figure 2 shows that when the two particles are far apart, the entropy of the system
is close to the sum of the two individual entropies, with each one increasing over time.
The spatial entanglement decreases the uncertainty, and therefore the entropy too. The
competition between the increase of the entropy of the individual particles and the decrease
of the entropy due to entanglement results in an oscillation and the decrease in the total
entropy when the two particles are close to each other.
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(a) h̄
m = 1 : Entropy vs. time; ρx(x1, x2, t) overlaid over time

(b) h̄
m = 0.5 : Entropy vs. time; ρx(x1, x2, t) overlaid over time

Figure 2. Collision of two fermions with individual amplitudes (18), parameters k0 = 1, c2 = −c1 = 300,
speed of light c = 1, a grid of 1 000 points for x1, x2, k1, k2. The left column shows entropy vs. time.
The right column shows snapshots of the density at initial time, final time, and intervals of 100 time
units, overlaid on single plots. The z-axis represents the density, and the x and y axes represent the x1

and x2 values, respectively. As the particles approach each other, their individual densities disperse,
the maximum values are reduced, and the entropy increases. Only when the particles are close to
each other, the interference reduces the total entropy

6.2. The Hydrogen Atom and Photon Emission

The QED Hamiltonian for the hydrogen atom is

H(p, r, q) =
3

∑
i=1

(

pi − e
c Ai(q)

)2

2m
− e2

r
+

2

∑
λ=1

h̄ωqa†
λ(q)aλ(q) ,

where the photon’s helicity λ = 1, 2, ωq = |q|c, the creation and the annihilation operators
of photons satisfy [aλ(p), a†

λ′(q)] = δλ,λ′δ(p− q), and the electromagnetic vector potential is

Ãi(q) =
√

2πh̄c2
2

∑
λ=1

1√
ωq

(

ǫi
λ(q)aλ(q) + ǫ∗i

λ (q)a†
λ(q)

)

,

and in the Coulomb Gauge (∇ · A = 0), for q = |q|(sin θq cos φq, sin θq sin φq, cos θq), the polar-
izations satisfy ǫ1(q) = (cos θq cos φq, cos θq sin φq, sin θq) and ǫ2(q) = (− sin φq, cos φq, 0).

The state of the atom can be described by |n, l, m〉e− |q, λ〉γ, where n, l, m

are the quantum numbers of the electron e−, and q and λ are the momentum
and the helicity of the photon γ. We next consider the Lyman-alpha transition,
|n = 2, l = 1, m = 0〉|0〉 → |n = 1, l = 0, m = 0〉|q, λ〉 with the emission of a photon with
wavelength λ ≈ 121.567 × 10−9 m.

We first evaluate the electron’s entropy at both states |n = 2, l = 1, m = 0〉
and |n = 1, l = 0, m = 0〉. For simplicity, we consider the Schrödinger approxi-
mation to describe the electron state with the energy change in this transition of
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∆En=2→n=1 ≈ (1 − 2−2)× 13.6 eV = 10.2 eV. We now compute the difference between the
final and the initial state entropy in three steps.

(i) The position probability amplitudes described in [31] and the associated entropies are

ψ2,1,0(ρ, θ, φ) =
1√
32π

(

1
a0

)
3
2

ρe−
ρ
2 cos(θ) → Sx(ψ2,1,0) ≈ 6.120 + lnπ+ 3 ln a0 ,

ψ1,0,0(ρ, θ, φ) =
1√
π

(

1
a0

)
3
2

e−ρ → Sx(ψ1,0,0) ≈ 3.000 + lnπ+ 3 ln a0 ,

where a0 ≈ 5.292 × 10−11 m is the Bohr radius, and ρ = r/a0.
(ii) The momentum probability amplitudes described in [31] and the associated entropies

are

Φ2,1,0(p, θp, φp) =

√

1282

2πp3
0

p

p0

(

1 +
(

2
p

p0

)2
)−3

cos
(

θp

)

→ Sp(Φ2,1,0) ≈ 0.042 + 3 ln p0 ,

Φ1,0,0(p, θp, φp) =

√

32

π p3
0

(

1 +
(

p

p0

)2
)−2

→ Sp(Φ1,0,0) ≈ 2.422 + 3 ln p0 ,

where p0 = h̄/a0.
(iii) Therefore, ∆S2,1,0→1,0,0 = Sx(ψ1,0,0) + Sp(Φ1,0,0)− Sx(ψ2,1,0)− Sp(Φ2,1,0) ≈ −0.740 .

Thus, the entropy of the electron is reduced by approximately 0.740 during the transi-
tion |n = 2, l = 1, m = 0〉 → |n = 1, l = 0, m = 0〉.

We next evaluate the entropy associated with the randomness in the emission of
the photon. Due to energy conservation, the energy must satisfy |q|c ≈ 10.2 eV, where
c is the speed of light. The associated energy uncertainty is very small. The main ran-
domness for the photon is in specifying the direction of the emission. The angular mo-
mentum of the electron along z (m = 0) does not change between |n = 2, l = 1, m = 0〉
and |n = 1, l = 0, m = 0〉. The spin 1 of the photon is along its motion, and conserves the
total angular momentum of the system. Thus, to conserve angular momentum along z,
the photon must be moving perpendicularly to the z axis, that is, θq = π

2 , and so the
polarization vectors must be ǫ1(q) = (0, 0, 1) and ǫ2(q) = (− sin φq, cos φq, 0). The angle
φq is completely unknown, with the entropy ln 2π. Then we observe that the entropy
increases, as

∆S|n=2,l=1,m=0〉|0〉→ |n=1,l=0,m=0〉|q,λ〉 ≈ ln 2π− 0.740 = 1.098 .

Consider now an apparent time-reversing scenario in which an apparatus emitted
photons with energy Eγ = h̄|ωn=2,l=1,m=0 − ωn=1,l=0,m=0| to strike a hydrogen atom with
its electron in the ground state. The photon had to follow a precise direction towards the
atom, and a very small uncertainty in the direction implies low photon entropy. Once the
atom absorbs the photon, the energy of the electron in the ground state suffices for a jump
into an excited state. The entropy increases again, as the entropy of the excited state is
larger than the entropy of the ground state (accounting for the low photon entropy).

Experiments in a Reflective Cavity

More recent sophisticated experiments have addressed time reversibility of quantum
mechanics, see, e.g., [32,33]. A cavity is created with nearly perfect mirrors and an atom
with an electron in an excited state is placed inside the cavity. Then the atom goes to the
ground state and a photon is emitted. Then, the cavity mirror reflects the photon, which
carries the same phase as the emitted photon. The ground state atom absorbs the photon
and the electron jumps back to the excited state, and the process restarts. The whole process



Entropy 2022, 24, 1341 18 of 22

is then apparently reversible, meaning it starts with the atom and the excited electron and
ends with the atom and the excited electron.

We do not interpret this process as a demonstration of quantum time reversibility. Our
reasoning follows. Let |ae〉 denote the state of the atom with the electron in the excited state,
while |ag〉 denotes the state of the atom in the ground state. At the start of this process
the atom state is |ae〉 and once the electron goes to the ground state and emits a photon
the new state is denoted by |ag, γ〉, with a photon in the state |γ〉. More generally, the
atom can be in a superposition of the two states, |ae〉 and |ag, γ〉. Note that the state |ag, γ〉
requires the atom to recoil due to momentum conservation. Since the photon is emitted
to a random direction (constrain by the angular momentum conversation) the recoil of
the atom must also have such randomness, and the pair of states |ag〉 and |γ〉 must be
entangled by the motion direction variable (see for example [34,35] and references). If one
observes the atom recoil direction one will know the direction of the photon emission. Next
in the process, the photon is reflected by the cavity. After the photon is reflected, due to
momentum conservation, the cavity must now be in a new quantum state, |c〉, carrying
twice the momentum the photon had when it was emitted. Since the photon emission
direction is a random variable, so is the cavity motion direction. Then the three states |ag〉,
|γ〉 and |c〉 must now be entangled. Observing the momentum of the atom or of the cavity
will reveal all other motion directions.

During this process, a flow of information also occurs, that is the entropy associated
with the isolated states vary in time. The system evolved from the state |ae〉, to the entangled
state |ag, γ〉, then to the entangled state |ag, γ, c〉, and finally, after the atom absorbs the
photon, it is in the entangled state |ae, c〉. It is clear that the introduction of the cavity
adds another quantum state to the system. For the initial state |ae〉 the cavity motion was
assumed to be zero. For the final state there is an uncertainty in the motion direction of the
atom entangled with the motion direction of the cavity. Thus, the final state has a larger
entropy than the initial state and the process is not reversible.

7. An Entropy Law and a Time Arrow

In classical statistical mechanics, the entropy provides a time arrow through the second
law of thermodynamics [36]. We have shown that due to the dispersion property of the
fermionic Hamiltonian, some states, such as coherent states, evolve with an increasing
entropy. However, current quantum physics is time reversible, and it is possible to have
state evolution where the entropy oscillates. This includes the scenario in the hydrogen
atom studied earlier, where the excited state of the electron with no photon and the ground
state of the electron with a photon emission are two possible states where quantum physics
describe an oscillation which we showed leads to the entropy oscillation.

We hypothesize the following

Law (The Entropy Law). The entropy of an isolated quantum system is an increasing function of
time.

It is an information-theoretic conjecture about isolated quantum states, whereby
information (the inverse of the entropy) cannot be gained. We note that it does not require
any observer making any measurement.

An evidence for such a law is the hydrogen atom scenario discussed earlier. According
to QED, and due to photon fluctuations of the vacuum, the state of an electron in an excited
state of the hydrogen atom is in a superposition with the ground state, and the entropy
would decrease within a time interval 2π/|ωn=2,l=1,m=0 − ωn=1,l=0,m=0|. Instead, interrupt-
ing the oscillation, the electron jumps to the ground state and a photon is created/emitted,
increasing the entropy. We hypothesize that the entropy law is the trigger for the photon
creation.

We complete the paper wondering whether, in light of the hypothesized entropy law,
all quantum states are indeed always in a superposition of all quantum states evolving
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according to the unitary evolution dictated by the Hamiltonian of the system as current QM
asserts. In this case, no collapse of the wave function exists. Alternatively, and according to
the QFT description, the creation and annihilation of particles occur and can interrupt the
unitary evolution. In this QFT framework, if entropy oscillation scenarios can occur, e.g., as
described by the Fermi Golden Rule transition [29,30], then the entropy law would trigger
a collapse of a state to a new state where the entropy will increase during the following
evolution. This could possibly describe the emission of the photon when the electron falls
to the ground state in the hydrogen atom, or the collision of two particles, creating the
new particles. In this case, like in the Copenhagen interpretation of QM, the collapse of the
state would occur, but in contrast to the Copenhagen interpretation, it would not require a
measurement (or an observer).

8. Conclusions

Capturing all the information of a quantum state requires specification of the parame-
ters associated with the DOFs of a quantum state as well as the intrinsic randomness of the
quantum state. The intrinsic randomness is associated with a conjugate pair of observables,
satisfying the uncertainty principle. We proposed a coordinate-entropy defined in the quan-
tum phase spaces, the space of all possible states projected in the Fourier conjugate basis
of position, and spatial frequency. Even though these observables are the same variables
used in the classical entropy, the motivation and quantification are quite different. For the
classical case, the randomness originates in the practical difficulties in specifying the DOFs
precisely, while for the quantum pure state case, the randomness is due to the intrinsic
quantum state observables characterized by a pair of conjugate observables that satisfy the
uncertainty principle.

This definition of the coordinate-entropy and quantum phase spaces possesses de-
sirable properties, including invariance under canonical transformations, under Lorentz
trasnformations, and under CPT transformations. We extended this entropy for the more
general case where there is a randomness associated with specifying the quantum state,
leading to a mixed quantum state. For mixed states, the entropy is always larger than
von Neumann entropy due to the accounting for the randomness associated with the
observables of each pure state.

We analyzed the entropy evolution through the partition of QCurves into the four
sets C , I , O , D . We showed that the Dirac’s Hamiltonian disperses information due
to its positive Hessian, causing coherent states time evolution to increase entropy. We
proved that Time Reflection transforms QCurves in C , I , O , D into QCurves in C , D , O ,
I , respectively. We proved that an initial eigenstate of a Hamiltonian evolving with the
addition of a Hamiltonian term not only causes a state oscillation (as suggested by Fermi’s
golden rule when the appropriate approximations hold) but also causes entropy oscillation.
We showed that the entropy increases when an electron in an excited state of the hydrogen
atom falls to the ground state emitting a photon. We also showed that experiments with
near perfect cavity with atoms in excited states do not describe reversible processes, but
rather processes such that the information of the entanglement of the atom with a cavity
motion direction cannot be neglected. We studied collisions of two particles, each evolving
as a coherent state, and showed that as they come closer to each other the total system’s
entropy oscillates.

We hypothesized an entropy law that the entropy of a closed quantum system increases
with time. The motivation for the law is that information (inverse of the amount of ran-
domness) cannot increase in a closed quantum system. This law implies the irreversibility
of time for scenarios where the entropy is not constant.

The results are applicable to both the Quantum Mechanics (QM) and the Quantum
Field Theory (QFT) settings, but we generally presented them in the more convenient
setting.

For the oscillation scenarios, the entropy law triggers the collapse of a state to a
new state where the new evolution will cause the entropy to increase. Such a collapse is
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accompanied by particle creation or annihilation. In this case, the entropy law determines
that the event of particle creation and/or annihilation does occur, regardless of an observer
performing a measurement. In this view, a measurement is a physical process that activates
the hypothesized entropy law. Thus, for example, the phenomena described by the double
slit experiment would imply that, at the sensors screen, the absorption (annihilation) of the
particle passing through the double slit occurs, accompanied by the collapse of the particle
state. However, a measurement is not required for the collapse of the state to occur.
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Glossary

List of Main Symbols (in Order of Appearance)

Section 2

x 3D position variable or operator.
k spatial frequency variable (the Fourier transform variable of the x variable).
p momentum variable or operator, conjugate pair to x

|ψ〉 and ρ = |ψ〉〈ψ| QM state and QM density operator associated with a QM state.

|ψt〉 = e−i H
h̄ t|ψ〉 and

ρt = e−i H
h̄ tρei H

h̄ t
Time evolution of a QM state and of a density operator

ψ(x, t) = 〈x|ψt〉 and
φ(p) = 〈p|ψt〉

QM wave functions in each coordinate of phase space (x, p)

Entropy coordinate-entropy in phase space
Sr, Sp, Sk coordinate-entropy components for position x, momentum p, and spatial frequency k, respectively.
Ψ(x, t) and Φ(k, t) QFT operators in position and spatial frequency domains, respectively.
ρQFT

x (x, t) = Ψ†(x, t)Ψ(x, t) and
ρQFT

k (k, t) = Φ†(k, t)Φ(k, t)
QFT probability density operators in position and spatial frequency domains, respectively.

∣

∣nq1 , nq2 , , . . . , nqi , . . . nqK

〉

Fock states with occupation number , where nqi is the number of particles in a QM state |qi〉.
|state〉 =
∑m αm

∣

∣nq1 , nq2 , . . . , nqi , . . .
〉

a QFT state in a Fock space where m is an index over configurations of a Fock state, αm ∈ C, and
1 = ∑m |αm|2.

Below are the same symbols for
probability density values for the
x, k variables used for the QM
and QFT frameworks. Context
will disambiguate

ρx(x, t) =

{

〈state|Ψ†(x, t)Ψ(x, t)|state〉 : QFT for the x variable
〈x|ψt〉〈ψt|x〉 : QM for the x variable

ρk(k, t) =

{

〈state|Φ†(k, t)Φ(k, t)|state〉 : QFT for the k variable
〈k|ψt〉〈ψt|k〉 : QM for the k variable

λi > 0, i = 1, . . . , m probability coefficients of a mixed state made of m pure states.
Section 3

F : (x, k, t) 7→ (x′, k′, t) a canonical transformation of coordinates
JF(x, k, t) to be the Jacobian
Given a QFT solution Ψ(x, t)

ΨC(x, t) = CΨ
T
(x, t) Charge Conjugation satisfying

CγµC−1 = −γµT, and in the standard representation C = iγ2γ0 up to a phase.
ΨP(−x, t) = PΨ(−x, t) Parity Change, so P = γ0

ΨT(x,−t) = TΨ∗(x,−t)
Time Reversal, carried by the operator T = TK̂, where K̂ applies conjugation. In the standard
representation T = iγ1γ3, up to a phase.
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ψCPT(−x,−t) =

CPTψ
T
(−x,−t)

Charge Conjugation, Parity Change, and Time Reversal.

Section 5

U(t) = e−i H
h̄ t evolution operator for Hamiltonian H

(

〈x|ψ0〉, 〈k|ψ0〉,
)

initial QM condition for the unitary evolution
(

Ψ0 = Ψ(x, 0), Φ0 = Φ(k, 0)
)

initial QFT condition for the unitary evolution
QCurve
C The set of QCurves for which the entropy is a constant
I The set of QCurves for which the entropy is increasing, but it is not a constant
D The set of QCurves for which the entropy is decreasing, but it is not a constant

O
The set of oscillating QCurves, with the entropy strictly increasing in some subinterval of [0, δt]

and strictly decreasing in another subinterval of [0, δt]

N (x | c, Σ) Normal distribution for variable x, centered in c, and with covariance Σ

αk(t) Coefficients of expansion of a QM state |ψt〉 into the energy eigenstates
∣

∣ψEk

〉

Section 6

Ai(k) Electromagnetic potential 3D components, i = 1, 2, 3, in spatial frequency space
aλ(k) annihilation operator per polarization λ = 1, 2, in spatial frequency space
a†

λ(k) creation operator per polarization λ = 1, 2, in spatial frequency space
ǫi

λ(k) polarization 3D orientation components, i − 1, 2, 3, per polarization λ = 1, 2
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