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Abstract: Quantum Parameter Estimation (QPE) is commonly led using quantum probe states for
the characterization of quantum systems. For these purposes, Quantum Fisher Information (QFI)
plays a crucial role by imposing a lower bound for the parametric estimation of quantum channels.
Several schemes for obtaining QFI lower bounds have been proposed, particularly for Pauli channels
regarding qubits. Those schemes commonly employ either the individual channel, multiple copies
of it, or arrangements including communication architectures. The present work aims to propose
an architecture involving path superposition and causal indefinite order in superposition. Thus, by
controlling the symmetry balance of this superposition, it reaches notable improvements in quantum
parameter estimation. The proposed architecture has been tested to find the best possible QPE bounds
for a representative and emblematic set of Pauli channels. Further, for the most reluctant channels,
it was revisited testing the architecture again under a primary path superposition (using double
teleportation) and also using entangled probe states to recombine their outputs with the original
undisturbed state. Notable outcomes practically near zero were found for the QPE bounds, stating a
hierarchy between the approaches, but anyway reaching a perfect theoretical QPE, particularly for
the last path superposition including the proposed architecture.

Keywords: quantum parameter estimation; quantum channels architecture; pauli channels; causal
structures control; symmetric superposition control; double quantum teleportation

1. Introduction

The structure of quantum systems is determined by parameters affecting their in-
teractions with external systems. The knowledge of these parameters can be obtained
from intermediate measurements that capture features inherited from these interactions.
Parameters could characterize several applied systems as cute sensors [1], featured physical
interactions or processes [2], as well as communication channels [3]. For the classical trans-
mission of information, the Fisher information [4] measures the amount of information
provided by a random variable associated with an unknown parameter of a statistical
distribution, while the quantum analog, the Quantum Fisher Information (QFI) [5], is an
extension of this concept used to estimate parameters associated with quantum processes
through observable measurements.

The Cramér-Rao Bound (CRB) [6,7] involves Fisher information, whether classical or
quantum, to set a limit for the variance associated with the Quantum Parameter Estimation
(QPE) process. The QFI thus states a bound for the knowledge of channel parameters.
Quantum channels can be characterized using parameters that modify the initial probe state
into an outcome coming from the target system. Therefore, QFI is useful in characterizing
quantum channels.

Among such channels, the Pauli channels are commonly used in quantum information
and communication involving qubits. These channels have been extensively studied due
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to their affordability and can be characterized by three independent parameters. These
channels can admit a Bloch representation, but this representation can be extended to
higher dimensional channels. Such representation for probe and output states is valuable
in channel parameter estimation because it provides an easier way to reach the QFI for
those systems fulfilling it.

Despite it could be believed, the use of a single channel to test its effect on a probe
state is not a unique way to reach the knowledge of unknown parameters of it. Instead,
other configurations have been analysed as sequential or repeated arrangements of copies
of the channel involved. Then, alternative circuits implementing Indefinite Causal Order
(ICO) or Path Superposition (PS) have been proved for Pauli channels [8,9] with partial
success in the improvement of QPE for specific unknown channels. Such configurations or
circuits appeared as improved strategies to set a better channel footprint on the probe state.
In general, other architectures involving copies of the analyzed channels combined with
complementary gates or unitary operations have also been proposed since then to improve
the accuracy of parameter values [10].

The utilization of quantum entanglement for parameter estimation has been also used
by both theoretical frameworks and practical applications. Research studies explore the
use of entangled states in quantum metrology [11], where the precision of measurements is
limited by fundamental quantum bounds. Techniques like QFI are employed to quantify
the sensitivity of the measurement outcomes. Entangled states have been shown to achieve
enhanced QFI values compared to single states, indicating their potential for more precise
parameter estimation [12,13].

This work aims to propose a generic architecture dealing with the computing of the
QFI based on the architectures involving Pauli channels. Such architecture combines, as a
superposition, ICO as well as PS arrangements controlling the symmetry balance between
both strategies. The generic architecture will be ruled by a couple of controls to select a
specific arrangement of channels. In addition, we include alternatively the use of entangled
probe states in the process or double teleportation to scaffold the process. Section 2
summarizes the basic concepts and outcomes for the analysis as following previous works
in the proposed approach. Then, the third section presents the Kraus representation of
the composed architecture involving a couple of controls. Here, we deal with convenient
treatments for the channels’ states to ease the QFI calculation. Section 4 presents the
architecture presented, which combines ICO and PS as a coherent superposition. It is
analyzed together with an insight analysis through some emblematic channels in the Pauli
channels family. Section 5 presents the main outcomes for a set of notable Pauli channels
regarding single qubit probe states. Section 6 revisits part of the previous analysis first
considering double teleportation to selectively apply the QPE process, or secondarily
entangled states as probe states. Both are scaffolded strategies to superpose the original
state together with the QPE process coming from the architecture. Conclusions are finally
set in the final section.

2. QFI and Pauli Channels and Architectures for QPE
2.1. Quantum Fisher Information

From the classical view, Fisher information is a fundamental concept in mathematical
statistics that measures the amount of information that a random variable carries about an
unknown parameter [14]. It plays a crucial role in various areas of statistics and estimation
theory. Fisher information quantifies the sensitivity of the likelihood function to variations
in the parameter of interest, providing a measure of the precision with which the parameter
can be estimated. In essence, it characterizes the curvature of the likelihood function at a
particular point, indicating how well the parameter can be estimated based on the available
data [15].

The Fisher information has wide-ranging applications in statistical inference, hypoth-
esis testing, and parameter estimation. It forms the basis for many statistical methods,
such as maximum likelihood estimation and the CRB. Additionally, it plays a signifi-
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cant role in the study of the efficiency and sufficiency of statistical estimators [16]. The
Fisher information matrix, which is a matrix of second-order partial derivatives of the
log-likelihood function, is particularly important as it provides a comprehensive summary
of the information available in the data [6].

Similarly, QFI can be depicted as its classical version in terms of the logarithmic
derivative. By considering a quantum mixed state p emerging from a quantum channel
characterized by the set of parameters («1, a2, 3), the entries of the Fisher information
matrix are defined by:

Fi(p) = 3 Telp{Li L)) )

where L; is the logarithmic derivative operator with respect to the parameter «;, fulfilling
dip = %(pLi + Lip), while the subscripts i, j refer to ith and jth parameters. Despite this
expression simplifies the calculation of (1), L; operator calculation could be complex.

More affordable expressions for the QFI matrix entries have been developed for specific
states or situations [17]. Particularly, for systems admitting a Bloch representation of pout, a
simpler expression is known. As instance, for qubits pout = %(00 + #out - 0), the QFI matrix
becomes [18,19]:

= byd Hou a ﬂou ﬁou .a Hou = 3
Fop(pou) = {(aunout) - (Optiout) + (out ”q_%f:t'z‘ blout) [iout] # 1 (mixed states)
a out) — o

afiout) - (pHout), |fiout| =1 (pure states)

where subscripts 4, b refer to the ath and bth parameters, it means a,, a, witha,b =1,2,3,
the independent parameters. Then, d, refers to the partial derivative concerning «,. Note,
that this outcome is still valid for larger Bloch representations [18,19]. In fact, for qudits
(dimension d) represented by pout = %()\0 + Nidout - 7\), with N' = /d(d — 1) /2, Ag the
identity of dimension d, and A = (Ay,...,Ap_;) the traceless generators of SU(d).

In this work, we are interested in the quantum version of the Fisher information for a
quantum state going through a quantum channel. Figure 1 describes such a process. An
initial well-characterized quantum state is sent through a circuit containing a quantum
channel or several copies of it, which is depicted by a set of parameters {«; }. It will modify
the input state imprinting its footprint. Therefore, the output state emerging will contain
information about those parameters. One or more controls can be present to rule the circuit
behavior. The emerging state will become entangled with the controls’ states requiring a
joint analysis.

a-Channel

Input state
parameters

Output state  Detector Estimation X

Quantum channel Control
architecture & measurement
control system

Figure 1. Process for QPE considering a composed architecture for the channels and ruled by controls.
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2.2. Cramér—Rao Bound

The classical CRB is a fundamental result in mathematical statistics establishing a lower
bound on the variance of any unbiased estimator of a parameter. It provides a measure of
the best achievable precision for estimating the parameter based on the available data. The
bound is derived using the Fisher information, which quantifies the amount of information
carried by the data about the parameter. Specifically, the CRB states that the variance of any
unbiased estimator is lower-bounded by the inverse of the Fisher information. This result
has significant implications for the efficiency of estimators and serves as a benchmark for
evaluating the performance of different estimation methods [20]. In the theory of statistical
estimation, the CRB [6] establishes the minimum possible variance for an estimator of a
specific deterministic parameter drawn from its statistical distribution.

Analogously, there is a quantum version for the CRB, in this sense, QFI [4] can be
obtained from the statistical distribution of the CRB indicator, setting a lower bound for the
joint variance of estimation:

3
Zvar(ai) > %Tr(]—'fl(pout)) =3 3)
i=0

where N is the size of sampling in a repeated experiment and F is the QFI matrix. In our
following development, we will consider the analysis of the single or unitary experiment
case, which means N = 1 — V as bound.

2.3. Quantum Fisher Information Remarks and Limitations

Several remarks and limitations about QFI are suitable here, particularly in the QPE
context. In the operative domain, note that QFI exhibits a non-trivial form in terms of
the logarithmic derivatives from the output state carrying out the channel parameters
information, thus making its dependence non-linear from poy:. Such a fact has conditioned
the extended analytical approach of QFI applications for general channels, in particular, for
the CRB considered below. Despite this, some affordable expressions have been developed
for special cases as previously mentioned. Moreover, the last expression particularly
includes the more complete case where there exist multiple parameters characterizing the
channel, which naturally increases the non-linearity [19]. In the current work, the Bloch
representation for QFI being present in Pauli channels partially lets the analysis [18,19].
Despite this, in the current work, the complexity of the architecture considered, by itself
introduces analytical limitations. Another important fact already noticed in QPE [21] is the
discontinuous behaviour of QFI in points where the QFI matrix exhibits a rank change [22].
This issue will be noticed in the current analysis.

In another trend, we should note that QFI is a mathematical extension in the quantum
domain inherited from Statistics. Thus, this approach still should deal with some quantum
features not directly involved in its quantum extension. Such is the case of the limitations
imposed by the Heisenberg principle: the Heisenberg limit. In fact, over the CRB, the
Heisenberg limit imposes the speed at which the absolute statistical difference between
two pure states in the Hilbert space (or in the space of density operators for mixed states)
could change along a specified path. This fact sets in metrology an optimal rate to reach a
certain accuracy of a measurement in agreement with the energy used there [23].

Also, because QFI characterizes the sensitivity of a quantum state to variations, still
encompassing unitary operations, it inherently lacks invariance to general changes, which
is easily expected from its non-linear construction (1) and (2). Despite this, there is evidence
that entangled states can attain the Heisenberg limit [24] by reaching increased QFI values.
This optimization reached by the presence of entanglement lets to resume the maximum
QFI over potential local unitary operations [25]. Thus, the presence of entanglement in
the metrology appears convenient in general explaining the QPE advantage exhibited by
PS and ICO, inherently involving entanglement, particularly if such schemes additionally
include local operations.
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Then, the employment of QFI is instrumental in assessing the efficacy of probe states
in metrology, revealing the dual correspondence between the increase in QFI average and
the detection of entangled states [26]. Thus, in our approach, as in some former strategies,
the entanglement generated by the superposition boosted by a control system supersedes
the QPE based on a single channel or still a sequential chain of channels.

Finally, note that certainly all metrology processes could become accompanied by
undesired noise, which is normally addressed under Quantum Error Correction (QEC)
schemes [27,28]. In our approach, we have assumed that our QPE context is free of noise
other than the introduced by the noisy channel under analysis, which is expected to become
characterized. Nevertheless, such processes are normally included in the QPE domain,
and currently, they are studied to provide approaches that also effectively deal with the
Heisenberg limit [29,30].

2.4. A Brief Context of General Improved QPE Efforts

The quantum identification problem has been remarked as an important procedure
in metrology [31]. In such a problem, in general, a quantum system is used to reach some
properties of another quantum system. Particularly, specific systems of interest are quantum
channels, systems modifying the quantum state of another probe system as a function of
some of their constitutive parameters. This single problem has several complexity issues
particularly due to the quantum nature of the involved systems and the physical variables
being present in terms of the Heisenberg principle [5].

The depolarizing channel with arbitrarily higher dimensions has been commonly
employed to try concrete strategies because it is an extreme example of a channel erasing
the underlying information of any probe state, thus it is considered a limit case in channels
QPE [8,32]. Of course, in those approaches, the most logical QPE implementation is based
on the single arrangement of the probe state crossing the single channel under analysis.
Nevertheless, it was soon discovered that other probing schemes could be identified to
improve the single-channel estimation. Thus, possible alternative schemes included the re-
circulating of the probe state backing on the channel several times or other identical copies
of it [8], but also the entangling of the probe with another before the measurement [31,33].

More recently, the implementation of ICO arrangements has shown additional impor-
tant improvements in the QPE for the depolarizing channel [34,35]. Such a diversity of
efforts has stated QPE hierarchies among the more effective procedures [36]. After such
communication approaches, new works have proposed more elaborated communication
strategies containing the channel under analysis to improve the lower bound imposed
by QFI [37], which particularly involves the use of local transformations with success.
Following these last trends, and particularly using a specific approach for the theoretical
treatment of ICO implementation for the entire family of Pauli channels [38], this work
pursues an improved QPE procedure superseding some previous sequential, single ICO,
and scaffolded PS and ICO strategies for those channels [9,21].

2.5. Pauli Channels Basic Preliminaries

Pauli channels are a class of quantum channels used to describe the effects of noise
and decoherence on quantum systems. Because a quantum channel should reflect the
multiple scenarios that a quantum system could transit on time, it is represented as a
decoherent operation performed on a certain arbitrary input state (pure or mixed). The
Kraus representation comprises those kinds of operations [39]. For two-level systems,
Kraus operators could be expressed in terms of Pauli operators. Moreover, under a proper
basis change, Kraus operators become proportional to each Pauli operator through certain
coefficients a;,i = 0,...,3 [38], a set of four parameters depicting how each channel
becomes an incoherent mixture of basic operations of syndromes precisely depicted by the
Pauli operators (the invariant or transparent operation ¢y, and the other three syndromes
on qubits: bit-flipping, dephasing-noise, and a combination of both).
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Thus, Pauli channels are defined algebraically using the Pauli matrices, a set of four
2 x 2 matrices including the identity matrix (0p) and the three Pauli matrices (¢1, 02 and 03).
The algebraic representation of Pauli channels allows a concise and convenient framework
to analyze various noise processes in quantum systems [40]. Pauli channels find diverse
applications in the field of quantum information theory. They are primarily used to model
and study the effects of noise and decoherence on quantum systems. These channels
play a crucial role in understanding the robustness and stability of quantum information
processing tasks, such as quantum computation and quantum communication, in realistic
noisy environments. The general depiction of Pauli channels can be written as:

3 3
Pout = A[pin} = ZKHOK?. = Z“z‘UiPU; (4)
i=0 i=0
where 0; are the Pauli operators with i = 1,2, 3, 0y is the identity operator and K; are the
Kraus operators [39] with K; = |/w;07,i = 0,1,2,3. Note, from (4) that Z?:o KﬁoK;r and
therefore 21'3:0 a; = 1. In this case, the parameters {«;} are the ones that will characterize
the type of channel. By expressing the Bloch density matrix in terms of the Pauli operators
(which are precisely the same Kraus operators in the channel) pout = %(0’0 + Hout - 0),
we can represent the state of a qubit using just three real parameters (the coefficients
associated with the Pauli matrices). This representation is highly compact allowing an
easier manipulation of the quantum state. The entire family of Pauli channels has been
represented in a tetrahedron space as the Pauli Channels Parametric Space [38] (PCPS).

2.6. Improved Circuits to Reach More Optimal QPE

ICO arrangements have been proposed as experimental methods because they have
been shown to improve quantum communication [41-43], where other different treatments
have been developed to analyze them [44]. ICO is a concept that has been studied in quan-
tum channels for a variety of applications. In [45,46], a study of the use of superposition of
causal orders in quantum teleportation was presented for very noisy channels, showing
that the use of superposition of causal orders can lead to a significant improvement in the
fidelity of teleportation under very noisy channels. In [47], the use of superposition of
orders is applied in quantum communication, where the use of superposition of orders
can increase the communication capacity of a quantum channel. It is demonstrated that
the use of indefinite causal order can lead to a significant reduction in the amount of
entanglement required for quantum communication [41]. In the experimental field, it is
presented an experimental realization of a quantum switch that can be in a superposition of
two different orders of gates [43]. There, it has been shown that such a switch can be used
to implement a quantum algorithm with a quadratic speedup over classical algorithms.
They also demonstrate that such a switch can be used to implement a quantum error
correction code more efficiently than the best-known classical code. While [48] presents
an experimental realization of a quantum switch that can be in a superposition of two
different orders of gates. By leveraging ICO, quantum communication protocols could
experience unprecedented advancements. Thus, by using higher orders under ICO than the
switch, the communication performance has been used to analyze the Pauli channels [38].
The ICO arrangements, then, have remarkable properties for improving communication.
However, in the case of QPE, the capabilities of these arrangements have shown limited
outcomes [9,21].

On the other hand, the PS of quantum channels has several important applications in
quantum communication. One of the key applications is using trajectories as a quantum
control to rule the order of noisy communication channels. This quantum control has been
shown to enable the transmission of information even when traditional communication
protocols through well-defined trajectories fail [49]. The use of channels in series with
quantum-controlled operations within the framework of quantum interferometry has been
found to yield the largest advantages, allowing both the information exchanged and the tra-
jectory of information carriers to be quantum, which has been demonstrated experimentally
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and numerically in quantum-optical scenarios [49]. Furthermore, by considering superpo-
sitions of alternative evolutions or orders, quantum particles can experience interference
effects, leading to cleaner communication channels and boosted capacity to communicate
classical and quantum bits [41]. Experimental demonstrations have shown the communi-
cation advantages of superposing alternative channel configurations. These applications
represent the potential of PS in enhancing various aspects of quantum communication and
furthering the understanding of quantum Shannon theory [50].

Summarizing, channels’ parameters determine the effect of each specific channel
on a quantum probe state, and the process can be enhanced using different composed
architectures as coherent [51,52] such as sequential combinations, superposition of channel
paths, and even ICO [9]. The use of ICO and PS opens up more possibilities for QPE. By
exploiting both concepts simultaneously, researchers have demonstrated the potential to
surpass classical limits.

3. Architectures Involving Copies of a Quantum Channel and Additional
Quantum Controls

3.1. Kraus Representation for a Combined Architecture of Channels Involving Controls

Some architectures of channel arrangements have been proposed in the context of
quantum circuits architecture, in particular, for QPE to improve the parameter estimation.
In the present analysis, we propose the use of a general architecture consisting of a combi-
nation of the best previous analysis of channel arrangements. In this case, the architecture
is considered for the Pauli channels family.

Certain combinations of identical channels appear more convenient for QPE as sequen-
tial or other implementing ICO [9]. Moreover, the proposal of certain circuits involving
additional control operations together with those combinations [19] has become useful to
state performance hierarchies among those arrangements for QPE. In particular, the use of
PS and ICO as composed architectures including other control operations has shown no-
table advantages on the single use of those causal order arrangements [21]. In the last work,
specific PS and ICO architectures with controls demonstrated dramatic improvements in
the lower bounds of QPE. Thus, in the current analysis, the coherent combination of those
architectures is studied trying to reach better outcomes.

In this article, we look to unify path superposition and ICO together with other
strategies such as entangled test states to increase the estimation efficiency. With ICO, by
carefully choosing the order of measurements and operations, it is possible to minimize the
resources required for parameter estimation, leading to higher estimation efficiency [53].
Additionally, ICO and PS can offer robustness against noise and imperfections, making
quantum parameter estimation more resilient to environmental disturbances and experi-
mental imperfections [54].

Considering the general form for the Kraus operators for Pauli channels as follows:

Kij = Y. Clgysl®oBc,vc,) (ol 5)
w,B,7,0

withi,j € {0,...,3} whilew, 8,7, € {0,1}. Cijﬁ .5 are the structure constants for the circuit
involving the single channel whose parameters are pretended to become estimated [21]
(here, we are considering a couple of controls instead of the only one included in that
reference). In the following, for simplicity, Latin scripts run on 0, .. ., 3, while the Greek
ones run on 0, 1. The subscript 0 corresponds to the system (probe state) going through
the architecture arrangement and subscripts C; and C, refer to the controls on the scheme
to select the different configurations. These Kraus operators should fulfill the condition
Y K;;Ki]' =1, and therefore:



Symmetry 2024, 16, 74 8 of 29

l]* —
Z Clxﬁ'}/, lxlgr)/ljl - 5(55/ (6)

“ﬁ”r

Using the Bloch representation for the input state p = %(o’o +#-0) = %Nf -3, where
we have extended the three-dimensional Bloch vector 7 (|7i| < 1) into the four-dimensional
one N = (1,7) = (1,1, 12, n3). Particularly, it is possible to parametrize i in terms of a pair
of angles as 7i = |7i|(sin 6 cos ¢, sin 0 sin ¢, cos B). Similarly, & = (g, 7) = (09, 01, 02, 03), the
2 x 2 identity and the Pauli operators. In such expressions, & = (07, 0, 03) as traditionally.
The output state could be written as:

Alp] = Y KijpKj @)
L]

which implicitly includes the control system in Kj;. There, by writing p in terms of N:

1. i .
A[p] = EN' Z Cgﬁ%,scgfﬁ/%y\ﬂéoﬁcl’Yc2><50|Z\56><“6ﬁ/c17/c2\ (8)
1,
a,ﬁ,zy,é
d’,ﬁ/,’yl,ls’
1
= EZNk Z Clxﬁ'y(sc /,3/ /5/07(,5(5/|0‘0,BC17C2><“618,C{)’/C2| )
k
w /5 7,0
ﬁ/l,)// 5/

there, O, are the entries of ¢y. In addition, because:

1
Oy = T(@)(&lor) —  la)e] =5} ok, 0 (10)
k
then, we get:
Al = 3 Z Nk, Clg, 6Cargr 1%k, 1B ¥e2) (BC, 7G| (11)
efrd
tXl,ﬁ/,’)//(s/

— Al = ;A[P]k’ak’

the component k' of Afp] expanded in a linear combination of ¥. It also includes the
control systems, which are in general entangled with the state going through the channel
arrangement.

The output state is a composite state including the controls, and therefore, it does
not directly admit a Bloch representation. In such cases, there are two alternatives if one
desires to obtain a state admitting a Bloch representation. One option is to consider an
analysis that disregards the controls by partially tracing out those unwanted states. The
other option is to measure the controls, which involves a stochastic process, waiting to
obtain certain states that are more suitable for parameter estimation. By doing the tracing
process, the focus is placed solely on the desired probe state that can be represented using
the Bloch representation. This approach simplifies the analysis by disregarding the control
components and allows a more straightforward parameter estimation process. On the other
hand, by measuring the controls of the system, it is introduced a stochastic process where
the measurement outcomes of the control systems are utilized to obtain certain states that
are more favourable for parameter estimation. This approach relies on the measurement
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results of the control systems to select the test state, potentially improving the accuracy and
precision of parameter estimation.

3.2. Output State for the Tracing Out or the Measuring of the Control States

Thus, by tracing the control systems and using the property (6), it is possible to
demonstrate that pt, for the tracing out (T) adopts the mixed state form for a single qubit
system (Nout, = 1):

1- o
OTowe = AT[p] = Trc1,C2(A[p]) = ENTout Y (12)
1 .
- _ Cl
with: Nr,,, = 5 lX;{( Neoy, C am 5Carp, 51Tk (13)
tx,/é],,'y,é
a0

thus providing an expression for 7t , which can be inserted in (2). Unfortunately, tracing
will imply in the practice repeating the measurement of both controls several times on the
bases [0c.), |1c,),i = 1,2, to reach an averaged i, .

Otherwise, by optimally measuring the control states using a privileged basis for

. 1

each one: B¢, = {|1pgb>|y = 0,1},b = 1,2; for instance, |1,L7€1> =Yg cg|[3C1) and |ng2> =
Y, d4|vc,). Then, when |1pg1) and |¢¢, ) are measured the output state obtained after the
controls measuring (M) becomes:

Tow «

P = Ailel = 38, 2 o
1 ij ij * pox M
with : NMoutk/ = m Zk Nko—k/a/aClxﬂ’y,ﬁclx’ﬁ/’y/,(s’a-kﬁb’cﬁ ﬁ’dx*dljy (15)
1,],
zx,ﬁ]n/,é
a’,ﬁ’,’y’,b’

there, P, is the probability of success to obtain |1/JZ1> and [¢¢.)):

Z Nkczxﬁ’y& aply /a/‘fkwcz* z,dlé*dl; (16)

aﬁv&
’31,,)//,5/

clearly it implies NMgzto = 1. In the following, the measurement bases will be written as:

Be, = {l$g,) = V50l0c,) +5ille,) ¢e,) = vsil0c,) — veolle,)}  (17)
Bcz = {|lp?22> = \/%‘OC2> + \/H|1C2>f |¢1C2> = \/E‘OC2> - \/5|1C2>} (18)

which states a set of particular cases because coefficients are considered real. In the follow-
ing discussion, we will assume that the optimized solution is represented by \lpgl ), |1,ng2 ),
having a success probability Pyy. Consequently, our QPE process will become stochastic. In
addition, its optimization analysis involves the two additional selectable parameters sy and
tp, which will represent a more complex computational effort. In general, for the T and M
cases, those approaches simplify the mathematical challenges involved in QPE by allowing
the global state to return into a form that can be expressed using the Bloch representation,
thus easing the QFI calculation as in (2).

4. Proposed Architecture for the Improvement of QPE Controlling the Symmetry
Balance of Superposition between Two Communication Strategies

In the current analysis, we study the QPE problem for an unknown Pauli channel
(Ch). The channel is involved in a quantum circuit containing several copies of it. In
addition, those copies are connected following emblematic communication connections as
ICO and/or PS [37]. This process is depicted in Figure 2, representing with iy and i; the



Symmetry 2024, 16, 74

10 of 29

index for the single Kraus operators of each one of the two channels involved. Those copies
are connected in superposition under a pair of causal structures: Paths superposition and
ICO. Thus, one control Cy, assumed in the state |¢c,) = /q0/0c,) + /q1|1c,), decides the
type of causal structure, path superposition (green, y = 0) or ICO (blue, v = 1). Together,
the control Cy in the state |¢c,) = \/po|Oc,) + /P1llc,) defines the path order or the causal
order, beginning with the upper channel (8 = 0, solid lines) or the lower one (8 = 1, dashed
lines). An additional unitary control gate U is included to improve the QPE. This last gate is
alternated for path superposition or lays in the middle for ICO, summarizing the structures
considered in [21] separately.

iy
-

--«---
\
1
1 y=20
-1

B }\
'~
1
I—————+——

Figure 2. Proposed architecture for QPE involving two copies of a quantum channel and a unitary
operation U. A couple of controls will rule the path followed (B) and the causal structure: Path
superposition (green, v = 0) or ICO (blue, v = 1).

Regarding the last figure, the mathematical expression for the structure constants
C;]ﬁ .6 Decomes:

L 1\ 177 1.\7 1
= (2) " romanar, [ (ohelu) (uosn e b)) o)

the coefficient (%)7 is due to the normalization of Kraus operators for each causal structure
as in [21]. In the current analysis, we will assume the probe pure state
|po) = cos §]0) + € sin §|1) (it means |ii;,| = 1). In addition, considering U = ¢x"%
with i1 = (sinecosd,sinesind, cose), then, the optimization problem, considering the
controls’ states measurement scheme (M) to get the minimum bound Vp,n for V should
consider the swept on the set of nine selectable parameters: IT = {po, 0,6, ¢, x,€,9,50, to },
with po, qo,50,t0 € [0,1],6,€,x € [0, 7], and ¢, 6 € [0,27].

The procedure to get V requires the use of Formulas (15) and (16) in combination with
(19) to get fout in Fyp(pout)- Thus, getting the Fisher information matrix, its eigenvalues
Ai,i = 1,2,3 could be found (as instance with the procedure depicted in [55]) to finally
arrive at the expression of V. Nevertheless, expressions for 7oyt are large and complicated
for the proposed architecture, so at this point a numerical procedure is more convenient
for substituting the selectable parameters’ values, obtaining the derivatives numerically.
For those reasons, a method such as the Monte Carlo one should be preferred to reach the
optimal values.

To illustrate this fact, we have obtained V for the uniparametric sub-family of Pauli
channels characterized by a; = p;i =1,2,3 and p € [0,1/3] (it was still calculated under
the multiparametric approach for those channels), considering a random sample of size
10* sets of selectable parameters on IT to numerically reach the statistical distribution for
log,, V. Values of log,, V were grouped on 25 subsets of equal size on the obtained data
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range. The outcomes are shown in Figure 3 for (A) p =0, (B) p = 1/18, (C) p = 2/18, (D)

=3/18,(E) p =4/18, (F) p =5/18, (G) p = 6/18. Red dots correspond to the class mark
and the black solid line is a spline fitting of order 6. Each plot is limited to the obtained
data range in each case and then represented in the same interval to ease the comparison.
Note, for p £ 1/6, that the peak of the distribution is displaced on the right respect to those
cases for p < 1/6. Although the sample could not contain the lowest possible values, this
analysis shows the expected behaviour, the presence of log,, V values near zero drops to
zero dramatically for p Z 1/6.
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o 0.3F
1=
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0.0E i i i h n
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o
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(B) log,oV
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o 0.3F ?
8
T 0.2F
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_ 0.5F 1
S 0.4f \ p= T
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Figure 3. Cont.
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0.5F
0.4F =T
0.3F
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0.1F
0.0F

p(log,yV)

(E) log,V

0.6F
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0.4F p=—
0.3F L2
0.2
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0.0F | ! !

p(log, V)

0.5
0.4 p=—
0.3F
0.2

p{log, V)

0.0F i 1 L
-2 0 2 4 6 8

(G) log oV

Figure 3. Statistical distributions p(log;, V) for log;, V obtained numerically using a sample of size
10* on IT for (A) p=0B)p=1/18,(C)p =2/18, (D) p = 3/18, (E) p = 4/18, (F) p = 5/18,
(G)p=6/18.

5. Analysis and General Outcomes for QPE

Previous outcomes in QPE reported in the literature for Pauli channels have used
several types of combined architectures using unitary control gates [21]. Thus, common ar-
chitectures involving PS (named PS+U and PSA+U) have demonstrated the best minimum
values Vmin. Despite this, still ICO architectures give the best outcomes for a limited subset
of Pauli channels. In this section, we analyze the proposed architecture (ICO-PSA+U) for
QPE purposes as compared with the previous best outcomes for Vpin.

5.1. Bound for the Parameter Estimation through Several Emblematic Pauli Channels

Because the analysis to find Vi involves nine parameters through I1, the computa-
tional effort supersedes the effort being present in [21]. Thus, we analyze the QPE outcomes
for a representative set of Pauli channels characterized by a; = p;i =1,2,3,p € [O, 1/ 3}.
They include the transparent, the depolarizing, and the central-ICO channels [38], some em-
blematic Pauli channels. Note, that despite apparently a single parameter being considered,
we are performing the analysis on the multiparametric domain for the states surrounding
this line on the three-dimensional parametric space of Pauli-channels. We used a Monte
Carlo method on resizeable regions through I1. Despite this, our effort implied to im-
prove the first obtained outcomes to discriminate between possible local minima. The final
outcomes have been reported in Figure 4 including a comparison with the best previous
outcomes [21] reporting simpler architectures using PS and ICO, one at a time.
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Figure 4. Best bounds for V found through the central line o; = p,i = 1,2,3; p € [0,1/3] in the Pauli
channels parametric space as a function of p for the proposed architecture, ICO-PSA+U (solid and
dashed grey lines), compared with the previous best outcomes using other architectures (PS+U -blue-,
PSA+U -green-, and ICO -red-).

Solid lines report the best outcomes in [21] using ICO (red), PSA+U (green), or PS+U
(blue) architectures independently for each p-value. Then, the outcomes corresponding to
ICO-PSA+U architecture are reported with a grey line (solid or dashed). They include the
improved Vmin values for the set of p-values analyzed marked with dots (in blue, brown,
and green for convenience). Results show the expected improved outcomes obtained
by combining the leading architectures ICO and PSA+U in a coherent superposition.
Several aspects presented regarding the optimal values should be noted. The central
region with p € [0.0395,0.1495] (brown dots) exhibits the best outcomes for Vpin between
p ~ 1073 — 1077, then almost unnoticeable in the plot. Otherwise, values in the region
with p € [0,0.0340] (blue dots) comprise values below pure PSA+U and ICO architecture
in a well-defined curve with Vpy,in values below 0.5. In these two last cases, our procedure
was able to find multiple solutions for the minimum values of V, in agreement with the
distribution outcomes presented in Figure 3 for those values of p.

Finally, the region characterized by p > 0.1550 has the largest values but, of course, be-
low the single architecture cases on an apparent irregular curve for that reason represented
by a dashed grey line. The peaks with larger values for Vp, through the curve represent
hard p values for the optimization of the bound, just finding the reported values after
repeated improvements by our numerical procedure. Thus, those outcomes are obtained
and reported on the limit of our numerical procedure. In fact, most of the numerical proce-
dures to reach the minimum value of Vp,in (and the set of optimal selectable parameters
in IT) in p € [0.0000,0.1495] were delayed around six hours each on a 12-core computer
checked successfully at least twice. Instead, for the region p € [0.1550, 0.3333], each channel
calculation required multiple checks to report the optimal value found. For the elusive
peaks around p = 0.2045 and p = 0.2540, the procedure was repeated more than 20 times
each to reach the best outcome reported in the plot. Then, because the global behaviour of
the optimal solutions suggests being multiple, for those two peaks the solutions appeared
concentrated in smaller regions hardening the search. It suggests a change in the continuity
of QFI reported in the literature [22], which unavoidably depends on the architecture being
considered and its complexity as it is in this case. Of particular interest, is the peak in
p = 0.2045 which practically reaches the value for the previous outcome reported for the
PS+U case, which locally becomes better than PSA+U one in such region (blue line). Note,
that the PS+U strategy is not obtained as a reduction with the ICO-PSA+U architecture
being proposed (just the PSA+U one), being that the main operative reason for this peak,
but still resting on a deeper property for that narrow group of channels already noticed
in [21] where PS+U architecture dominates.

In addition, the sudden drop to zero of Vp,in near the central-ICO channel p = 1/3
(note the consistency with the peak in Figure 3G where a tiny recoil is observed). Such
outcomes exhibit discontinuities among them as the outcomes presented in [21]. In gen-
eral, it is possible to notice a clear consistency of those last outcomes with the statistical
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distribution for log;, V, setting the difficulty to reach numerically the optimal values for
zZ 1/6.

As it was stated in [21], the optimization of V on IT commonly includes multiple
solutions. By analyzing the prescriptions for the selectable parameters in the solutions
presented in Figure 4, such an aspect is also verified in the current case, thus, the solutions
there may not exhibit a defined behaviour in some of those parameters. Nevertheless, still
some analyses were included here. Figure 5A compares pg and s for the overall set of
solutions in Figure 4. It shows, in addition, the value of p in colour, in agreement with the
colour bar at the bottom, thus making reference to Figure 4. While in the cases reported
in [21], there was a remarked correlation between this pair of parameters, in the current case
it is just limited to the best-defined group of solutions for p < 0.0340 (red dots) establishing
the linear correlation also observed in [21]. For the intermediate values of p (green dots),
the almost perfect values Vyin = 0 appear located in the plot borders sy) ~ 1 or pg ~ 1,
indicating a preferred path since the beginning in the control C; state or post-measuring.
Larger values for p appear dispersed without an apparent correlation.

1.0 L ° . °
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0.8 . ]
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" 04 o AT
0.2 0. 0.05 0.1 0.15/0.2 0.25 0.3 - .
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(A)
1. -
0.8
0.6
§
0.4 3 ’
ozf e m
0 0.0 0.2 0.4 0.6 0.8 1.0
0 0.05 0.1 0.15 0.2 0.25 0.3

P
(B)

Figure 5. Some notable relations among selectable parameters in the optimal QPE configuration.
(A) Between py (path or causal order superposition) and sq (path or causal order control measurement),
as a function of p in colour and (B) between g (causal structure superposition) and p (type of channel),
reporting the success probability Py for the best stochastic controls” measurement (in colour).

In another view, Figure 5B compares p versus g in colour but still includes the Py
values of success. A clear recurrence for large gy values becomes evident in the plot, thus
preferring the PS component in the superposition. This aspect is in general expected from
the outcomes in [21]. In addition, the colours remark satisfactory values for Py, centred
near 0.5 (green). This plot also shows that gy increases with the value of p (PS preferred on
ICO in the superposition).

5.2. Bound for the Parameter Estimation near Syndromic Pauli Channels

In this subsection, we analyze the QPE outcomes for those Pauli channels near the pure
syndromic channels: Bit-flipping (x; = 1), Dephasing noise (x3 = 1), and their combination:
(xp = 1). First, we have obtained V for each of those channels regarding a random sample
of size 10* sets of selectable parameters on IT to numerically reach an approximation to the
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statistical distribution for log;, V), following the same previous procedure using a spline
fitting of order 6.

The outcomes are shown in Figure 6 for (A) Bit-flipping channel, (B) Bit-flipping +
Dephasing noise channel, and (C) Dephasing noise channel. Each plot is limited to the
obtained data range in each case and then represented in the same interval to ease the
comparison. Note, that the peak of the distribution in all three cases is around zero (with a
little displacement on the left and a narrower distribution for the dephasing-noise case).
Thus, we expect better results for QPE near those syndromic Pauli channels, at least as
compared with the channels on the central line in Figure 3, where the peak distribution is
always on the left side of log;, V = 0, thus expecting to obtain pretty small values for V.

p(logqoV)
o o o
S

e
-

0.0

(A) log,0V

p(logqoV)
o ©
Now

e
-

0.0

(B) log, oV

p(logqoV)

(C) log,0V

Figure 6. Statistical distributions p(log;, V) for log;, V obtained numerically using a sample of size
10* on IT for (A) Bit-flipping channel, (B) Bit-flipping + Dephasing-noise channel, (C) Dephasing-noise
channel.

Following the analysis for the syndromes for Pauli channels as in [21], we will ana-
lyze the case for the corner of the Pauli channels parameter space [38] characterized by
0.9 < a; < 1 near from each channel syndrome i (Bit-flipping noise i = 1, Dephasing
noise i = 3, and their combination i = 2). By considering a uniform sample of channels
in that corner region for the considered architecture, we obtained an insight into the Vpin
behaviour. Outcomes are shown in Figure 7 together for the three syndromes.
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Figure 7. Best bounds for V for the proposed architecture found for a sample of channels nearest
(x; > 0.9) to each syndrome channel («; = 1) in each corner of the parametric space of parameters.
They are shown as a function of their distance d to the specific syndrome: Bit-flipping (red), Dephasing-
noise (green), and combined (blue).

Outcomes for Vpin are similar for the three syndromes. They are shown in a different
colour for each syndrome: Bit-flipping (red, i = 1), Dephasing-noise (green, i = 3), and the
combined (blue, i = 2). Each dot represents the outcome for a channel uniformly located
in the region with a; > 0.9 as a function of its Euclidean distance to the exact syndrome
«; = 1 as measured on the Pauli channels parameter space. For the dephasing-noise case,
no apparent difference explicitly appears as could be expected from Figure 6C. Critical
values on each syndrome are represented with the biggest dots on the left. Differences
among them could become non-meaningful as an effect of the log,, scale, they are in the
precision limit of our numerical calculation. In any case, those outcomes reflect an excellent
possibility of the QPE problem of those three channels.

6. Alternative Scaffolding Strategies for the Architecture in QPE

Some other strategies have been proven to improve QPE. The construction of a spe-
cific circuit involving the channel under analysis together with complementary control
operations (as U in the proposal being analyzed) is not the only strategy. Otherwise, the
use of entangled probe states has been considered in the literature [8,37] with notable
advantages for maximally entangled probe states, particularly for the case when just one
of the subsystems goes through the QPE preparation [8], although those outcomes were
proved for the depolarizing channel. In some sense, if just one of the subsystems goes
through the preparation, it suggests that certain interference between the input state and
the exposed one to the channel becomes profitable. Alternatively, we could compare such a
strategy with an additional PS using the architecture and not using it. This communication
effect could be reached by implementing double teleportation [56] by replicating the input
state in a pair of superposed copies ruled by a control state. Then, just one of such copies is
exposed to the QPE architecture in comparison with the previous scheme using a probe
entangled state.

Both arrangements are shown in Figure 8 exhibiting the entire architecture circuit
inside an orange dashed box. Figure 8A shows the teleportation control system Ct sending
pin to two parties, one of which applies the architecture while the second does not. The
outputs in each party are again coherently deposited in just one, becoming indexed by the
control state as a unique output for the QPE process. Figure 8B shows a bipartite state pin
on systems a and b, possibly entangled, being modified by the architecture in only one of
their parties (a). Inside each box are the additional controls C; and C; of the architecture
(not shown in the plot). At the end of both processes, a measurement for the teleportation
control Cr or in the party b are, respectively, performed to leave a single qubit state to be
analyzed under the Bloch representation approach for the QFI.
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Figure 8. (A) Controlled double teleportation where only one of the receivers apply the architecture
for QPE, and (B) Bipartite probe state where only the first party apply the architecture for QPE.

6.1. Double Teleportation as an Additional PS Strategy in QPE of Pauli Channels

Double teleportation, as it was introduced in [56], first considers the state
|@in) = cos §|0) + ¢ sin §|1) to be teleported to a pair of parties receiving copies of it
in superposition in agreement with a control state |¢c,) = \/wo|0c,) + \/@1|1c,). Then,
each party coherently applies independent operations Uy, k = a,b on its copy to finally
close them together over one of them using a SWAP gate. The teleported and processed
states are then allocated in party a as an instance, it becomes:

|Pout) = wolOc,) @ Ua|@in) + wil|le,) @ Up|@in) (20)

In the current case, U, is the identity, while U, is in fact the architecture arrangement
(see Figure 8A), which is not a coherent operation, so the outcome is in fact:

Pout = wo|0c;)(O0c,| @ Alpin] + willc)(ley| @ pin (21)

where A[p;,| could be considered in the tracing (T) or in the measuring (M) strategies
in agreement with the expressions (12) and (14), respectively. In any of those cases, no
entanglement is already exhibited in both subsystems, control of teleportation and qubit a.
Entanglement in the previous subsystems 4 and b has been transformed in a superposition
of both outcomes deposited on subsystem a. Any advantage for QPE will be considered a
measurement on a different basis that is stated by the |0c,), |1c,) states of the teleportation
control subsystem. As an instance, considering the measuring basis for the teleportation
control {[Goc ) = &ol0c;) +81l1c;) [Gie,) = &170¢;) — &0*[1c;)} and assuming the
first element as the optimized element to improve Vpin, then, the post-measurement
state becomes:
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1
ppm = 5Npm-Z (22)

o 2N 1— o) (1 — |eol2)N:
with : Npm = w0|g0| Nout + ( 5 a}o)( |g0| )Nm (23)
0

Py = wolgo|* + (1 — wo) (1 — |g0]*)

this expression lets calculate the QFI from (2). Py is the success probability of reaching the
correct measurement on the teleportation control. There, Nout is obtained from our previous
basic approach just considering (13) or (15) as a function of the strategy followed, (T) or (M).
In the more complex scheme, (M), which will be followed in the further development, the
selectable parameters increase in two, wy, o: I+ = {po, 0,0, ¢, X, €, 9, 50, to, wo, g0 }, with
Po, 90, S0, to, wo, Lo € [0,1],0,¢, x € [0, 7t], and ¢, 5 € [0,27].

The procedure to get V requires the use of the formula (23) to reach the expression
for prm to feed (2). There, a numerical procedure has been applied by substituting the
selectable parameters’ values, then obtaining the derivatives numerically, thus obtaining
V. By considering a random sample of size 8 x 10* sets of selectable parameters on I17,
we numerically reached an approximation for the statistical distribution of log;, V as in
the previous cases. The outcomes are shown in Figure 9 for (A) p = 0, (B) p = 2/18,
(C) p =4/18, and (D) p = 6/18, using spline fittings of order 6, 3,3, 3, respectively. Each
plot is limited to the obtained data range in each case and represented with an appropriate
scale to show the entire results. Note, that the peak for all the distributions is located
approximately at the same value log;; ) ~ 2. Moreover, comparing the outcomes of
Figure 3, we notice a wider distribution slightly displaced to the right, showing that
the additional strategy worsens the possible outcomes in general. Still, it is clear that
our previous strategy in Section 5 is contained here if just the upper path in Figure 8 is
considered (wo = 1). Still, we bet on the possibility that better values for log;; Vimin could
be reached.
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Figure 9. Cont.
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Figure 9. Statistical distributions p(log;, V) for log;, V corresponding to the architecture involved in
a double teleportation is just one of the paths. It was obtained numerically using a random sample of
points with a size of 8 x 10* on IT7 for (A) p = 0, (B) p = 2/18, (C) p = 4/18, (D) p = 6/18.

6.2. Entanglement States as Probe States in QPE of Pauli Channels

The use of entangled states as probe states has been shown to offer substantial im-
provements in quantum parameter estimation processes. The family of parallel strategies
stands as the pioneering and notably successful instance of quantum-enhanced metrology,
demonstrating the utilization of entanglement to achieve a precision surpassing classical
limitations. This concept has been explored in various studies, showcasing the advantages
of using entangled probe states. For instance, in the context of estimating the phase of a
unitary transformation on a qubit affected by depolarizing noise, entangled qubit pairs
have demonstrated enhancements in performance compared to separable probe states [57].
Even when one of the entangled qubits does not interact with the process being estimated,
the presence of entanglement leads to improved performance. This enhancement holds for
both partially and maximally entangled qubit pairs, depending on the level of noise [58].
Another example, in the context of quantum metrology, several strategies including inde-
pendent channels, sequential channels, or channels in parallel using a general entangled
state and superposition of causal order have been probed, where those strategies provide
no asymptotic advantage over the case where an entangled probe state has been used [11].
Similarly, Ref. [37] establishes a structured framework for discerning the ultimate boundary
of precision for various categories of approaches, including parallel, sequential, and indefi-
nite causal order tactics and proving an algorithm for selecting the most suitable strategy
within the specific category, positioning the parallel strategies with the use of entangled
states as the pioneer in improving parameter estimation.

In agreement with the development included in the Appendix A, a bipartite state on
qubits 2 and b can be written in terms of a matrix D as:

¥.-D-%, = DynEm, @ E, (24)

0

N

Pin =

NN
i

m

with £ = (09,07, 02, 03) as before. Thus, if the architecture is just implemented on party a
(see Figure 8B):

— —

1 3
Pout = ZA[Za] D%y = Z DmnA[Zma] by an (25)
0

m,n=

N
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where A[X,,,] could easily be obtained from (13):

AT[Zx p Z o, MM z;;/«w pOky = AT[Z,] ZAT i v o (26)

a570
o6

for the tracing (T) strategy, and:

uv _ 1 1y * I/‘
M Bele = 2Py, Lo Oy, CapsCpr Pk O Sy dy @7
L,
oc,ﬂ,]fy,é
0(/ II,Y/’&/

— AK/}/ ka] = ZAﬁ/}/[Zk,;]k’Uk’

1 3 . - P‘ .
Puw = 2 . 2 mo 2 Caﬁ75 aﬁ’ 1,510y € /5 Cpidy oy (28)

“ﬁ%
B

for the measuring (M) strategy obtained directly from (15). As before, the success probability
for the QPE process is assumed to be Py.

Also, as in the previous double teleportation strategy, a joint non-local measurement
between the subsystem bases is expected to gain an advantage for QPE. Thus, in the
following, we will consider the following bipartite state as the initial probe state (with real
coefficients) [59]:

|p) = sinasin B cos 7|00),p + sina sin B sin y|01),, + sinw cos B|11),, + cos|10),,  (29)

this proposal, despite not being general, already introduces an additional parameter in
comparison with the previous approaches regarding single probe states. With this expres-
sion, we can construct a definite form for matrix D. In fact, it requires writing pin = |¥) (¢|,
then projecting it into the basis 0;, ® 0j, to reach the D entries. They are reported in the
Appendix B in (A8). Note, that the expression (25) is valuable because it splits the initial
state information stored in D from the generic effect of the architecture, A[Z].

Finally, if the subsystem b is measured in the basis {|Hy,) = hol0y) + h1|1p),
|Hy,) = h1%|0p) — ho*|1p)} and assuming the first element as the optimized element to
improve Vpin, then the post-measurement state and the measurement success probabil-

ity become:
1 = —
Ppm = m/\[zu] D - (Ho, |Xp|Ho,) (30)
1 = .
Po = JTr(A[Zd]) - D (Ho, Xy Hop) (31)

be aware of the nature of those expressions. A[Z,] is a four-component vector whose entries
are operators obtained as a linear combination of Pauli matrices and the identity. In ppm,
such a four-component vector becomes multiplied by D on the right, while the expression
is multiplied on the left by the four-component vector of scalars given as (Hp, |Zy|Ho, ), the
expectation value of ¥ under the state |Hp, ). It gives the operator ppm. More concretely,
for the QFI calculation using the formula (2):

1 =
Npmk/ = m/\[zﬂ] ’ ) <H0b|2b|H0b> (32)
1 =
PO = 7A[Zﬂ]0 -D- <H0h |Zb|H0b> (33)

2
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For the more complex scheme, (M), the selectable parameters increase in two by
replacing 6, ¢ with «, B, y, and introducing ho: I1¢ = {po, g0, &, B, 7, X, €, 9, 0, to, ho }, with
Po, 90,50, to, ho € [0,1], &, B,v,€, x € [0, 7] [59], and & € [0, 27t]. We will follow this approach
(M) in the following.

By repeating the previous procedure of obtaining V with (32) to reach prm and
then feeding (2), we finally used the same numerical procedure. The selectable parameters’
values were substituted, then reaching numerically V values. First, we again get a numerical
approximation for the statistical distribution of log;, V through a random sample of size
8 x 10 sets of selectable parameters on I1¢ under the same previous methodology. The
outcomes are shown in Figure 10 for (A) p = 0,(B) p =2/18,(C) p = 4/18,and (D) p = 6/18,
implementing a spline fitting of order 6, 3, 3, 3, respectively. In this case, the peak is located
at lower values than the teleportation strategy, between 1 and 2 with the transparent
channel (p = 0) as an exception, below 0. All of them become narrower distributions than
the teleportation case, barely similar to the original strategy with the architecture alone in
Figure 3. Despite this strategy contains in principle the original one in Section 5, we have
entirely limited our analysis to the authentic probe entangled states, thus avoiding the separable
states (in the frontiers &« = 0, 7t or B = 0, 77, or cos & cos y — sina siny cos = 0) [59].
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Figure 10. Statistical distributions p(log;, V) for log;, V corresponding to the architecture using
entangled states as probe states. It was obtained numerically using a random sample of points with a
size of 8 x 10* on Ilg for (A) p=0,B)p=2/18,(C)p=4/18,(D)p =6/18.

6.3. Bound for the Parameter Estimation for Pauli Channels Using the Architecture under PS or
with Entangled Probe States

To reach Vpin, the Monte Carlo method has been applied on Il and Il¢ as previously
depicted in Section 5. Thus, we have obtained Vpi, for the uniparametric sub-family of
Pauli channels with &; = p;i = 1,2,3 and p € [0,1/3]. We have limited our analysis to the
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still imperfect regions obtained in Section 5, p € [0,0.035] and p € [0.155,1/3], looking for
better values for 1og;;, Vmin in these regions. Outcomes are shown in Figure 11.

Thus, Figure 11A presents the outcomes for the PS support implementing double
teleportation (red dots) and entangled probe states (green dots) for p € [0,0.035]. Blue dots
show the same outcome for this region already reported in Figure 4. A notable outcome is
obtained using PS, reaching Vinin — 0. Despite this, the outcome using entangled states
becomes worse than the single use of the architecture with single probe states.

0.30F
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o020k —_— Entangled ° e
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Figure 11. Best bounds for V found through the central line a; = p,i = 1,2,3;p € [0,1/3] in the
regions (A) p € [0,0.035], and (B) p € [0.155,1/3]. Red dots show the case scaffolded by the PS
strategy using double teleportation, while green dots represent the case where strictly entangled
probe states are used. Blue dots are the corresponding outcome in Figure 4 with the single use of the
architecture.

Instead, Figure 11B shows the outcomes for the region p € [0.155,1/3]. Again, the PS
case reached with the use of double teleportation exhibits notable outcomes with Vipin — 0
(red dots). But as before, the use of entangled states does not report improved outcomes
(green dots) in comparison with the single use of the architecture (blue dots).

6.4. A Final Summary for Quantum Sensing in Quantum Parameter Estimation for
Pauli Channels

The QPE problem for Pauli channels has been addressed through several approaches,
each one superseding limitations in the lower bound as stated by the Cramér-Rao bound
for the joint variance V for the estimation of each one of the free parameters involved in
their characterization «;,i = 1,2, 3. The first approach is the direct use of a specific Pauli
channel or a train of copies from it arranged sequentially (SEQ) [9]. The outcomes are mild
because the bound for } becomes above the unity considering that the parameters being
estimated are lower than one [9].

The employment of some communication schemes where copies of the same Pauli
channel analyzed are included, ICO for instance, provides only limited improved outcomes
for the bound just for certain channels, as the Central ICO one, but surprisingly conducts
to worse outcomes for those channels where the sequential strategy provides better values
for V. In any case, the crucial value V = 1 is limitedly superseded. The proposal of local
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unitary operations included in the design of the previous strategies has provided better
outcomes at least for schemes such as ICO (ICO + U) or PS (PS + U or PSA + U), but not for
the sequential approach (SEQ + U) [21].

Thus, these unitaries with their selectable design parameters to improve the QPE
outcomes move dramatically the previous schemes lowering the bound below V = 1, at
least for the transparent channel and for the pure syndromic channels. Those schemes or
architectures set the bound near to zero, but not in general. In our current architecture
combining two of the best schemes (PS and ICO: ICO + PSA + U), still considering the
support unitaries, the outcomes dramatically improve, with only a few regions being
partially reluctant but clearly below the single previous communication architectures
including unitaries.

For our last approach, we include other ideas already proposed in the literature as the
use of entangled probe states [11] or still a second PS strategy, in both cases combining the
outcomes for the proposed architecture with the original single probe state to boost the
destructive interference of some components increasing the bound. Finally, our strategy
using a second-order PS implementation with our original circuit proposed (PS + (PS +
ICO + U)), lowers the bound to zero in the remaining regions. Despite not the generality
of channels having been analyzed, this strategy works for a family of representative Pauli
channels. Tracking of the last hierarchies found for the last approaches is synthetically
depicted in Figure 12.

QPE Multiparametric bound Viin > 1 Vpin = 1 Vipin <1 Vipin = 0

SINGLE SCHEMES
Transparent

Sequential copies Depolarizing Central ICO

Indefinite causal ll Transpa.rt?nt
. Depolarizing Central ICO
order architecture ID
COMMUNICATION ARCHITECTURES

Sequential with local _._._._
K Ch Ch Depolarizin Transparent
unitary controls (S + U) . n . P & P

Central ICO

Path superposition with n Central ICO
local unitary controls

(PS+U / PSA + U) Depolarizing Transparent
Indefinite causal order
. ) Transparent
with local unitary controls
Central ICO
(ICO +U) o
Depolarizing
RECURSIVE SUPERPOSITION ARCHITECTURES
Communication scheme
in superposition Depolarizing Transparent
(PS+1C0 + U) Central ICO
Recursive communication
scheme using primary Transparent
path superposition Central ICO

(PS + (PS+1CO + U)) Depolarizing
Figure 12. A summary of hierarchies for the lower bound of V for the multiparametric case, comparing
several types of Pauli channels and QPE approaches.

7. Conclusions

In the present work, we established an analytical approach to improve QPE for Pauli
channels. The current method proposes combining several copies of one specific Pauli
channel within a quantum circuit. Those copies were connected following the well-known
communication setups of ICO and PS in superposition, additionally including supple-
mentary local control operations inside of a structured arrangement or architecture. That
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arrangement incorporates extra adjustable and selectable parameters that are not the fo-
cus of our QPE analysis; rather, they were optimally chosen to enhance the QPE results.
Therefore, the proposed architecture involves parallel pathways and indeterminate causal
frameworks with scaffolding local operations within these structures (see Figure 2).

The analysis performed combined analytical and numerical approaches to obtain a
joint lower bound for V as stated by the CRB. Thus, a representative uniparametric sub-
family of Pauli channels, givenby a; = p; i =1,2,3and p € [0, %}, was first considered on
the entire family of those channels. Such channels include the transparent, the depolarizing,
and the central ICO (the best-corrected channel by ICO) channels, together with many
others combining the main syndromes. As a strategy, we first analyze the distribution of V
on I, their complete space I1 of selectable parameters in the architecture by considering
random samples of size 10*. Such distributions along several values of p exhibited the
expected behaviour for the lower bound Vi, an increment of it as p increases.

Then, the optimization for our central analysis was made through a Monte Carlo
search procedure by considering random samples for the selectable parameters of size 10*
in each recursive approximation on resizeable regions. The outcomes showed that optimal
values for the lower bound Vi, drop to zero dramatically for p € [0.0395,0.1495] [21], thus
delivering perfect outcomes for QPE. The nearest regions to the transparent channel in
p € [0.0000, 0.0395] exhibited improved outcomes compared with the previous outcomes
not considering the current combined architecture [21] but not necessarily dropping to zero
in general. The worst outcomes (but still improved) appeared in the remaining region for
p € [0.0395,0.3333], having erratic behaviour at our precision level, but better than the
separate strategies (PS and ICO).

When the proposed architecture is also tested with some emblematic Pauli channels
(the transparent, the depolarizing, and the central-ICO channels), it was found that im-
proved outcomes were obtained by combining the leading architectures ICO and PSA+U in
a coherent superposition, in comparison to those results found in [21] (see Figure 4). When
the architecture was tested near syndromic Pauli channels (Bit-flipping, Dephasing noise
and the combination of both), it was obvious that the peak of the statistical distribution for
all log;, V in all three cases was around zero (one for V). Despite this, the outcomes for the
lower bound Vi, fall at the same level as the practically perfect outcomes found for the
PSA+U strategy in [21].

By revisiting the problem for the reluctant regions p € [0.0000,00395] U [0.1495,0.3333],
the entire same architecture was now tested first using double teleportation, a superposition
between the schemes using the architecture or not. Then, a second strategy was proved
using a probe-entangled state, with just one of the subsystems going through the prepa-
ration. The analysis was made following the same previous searching procedure to reach
the optimal value on their new respective selectable parameter spaces, I1 or Il¢. Such
nested strategies to the architecture gave notable outcomes. Again, a first insight was made
using the log,, V distributions. In both cases, they showed an increase in the values, which
suggests in general worse outcomes when an arbitrary selection of parameters is made.
For the double teleportation strategy, the peak distributions were approximately located
at log,,V ~ 2, with a wider distribution displaced to the right. Whereas, the strategy
involving entangled probe states showed peaks located at lower values and narrower
distributions than the teleportation strategy. Finally, Vi,in was obtained for both strategies
in the reluctant regions, pointing out a disrupting outcome as compared with our insight.
When using double teleportation, Vimin — 0 in both regions despite its wider distributions.
Instead, the use of probe entangled states (strictly restricted to non-separable states) yields
worse outcomes compared to employing the architecture with single probe states (see
Figure 11).

In summary, our current outcomes have demonstrated that strategies immersing probe
Pauli channels inside circuits implementing combined communication schemes between
PS and ICO, particularly scaffolded by a local operation in the midway, provide notable
improvements for QPE. Note, that such local operation is specific for each architecture and
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concrete channel because QFI is inclusively sensitive to any local variation. Nonetheless,
in our analysis, such local operations still form sets of equivalent operations providing
the same Vpin optimal value. This set, in our numerical analysis, appears more or less
elusive under the Monte Carlo search as a function of the channel (p-value), thus denoting
its density or accumulation (see the analysis performed in that direction in [21]), which
deserves more future work. In the road, the approach to write composed circuits or
architectures to model the QPE through their structure constants as C;]ﬁ - have contributed
to the analysis in the field [21]. Such constructions should sometimes still be combined
again with the original probe state to reach the optimal superposition and achieve a perfect
parameter estimation inclusively implementing intelligent and post-quantum scenarios [60].
Still, in each case, the confirmation of the perfect bound for QPE just opens the research to
design the experimental scheme for reaching the elusive channel characterization [61,62].
In such a search, other restrictions imposed by the quantum nature of the systems and
tentative measurements should be overcome [9,63].
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Abbreviations

The following abbreviations are used in this manuscript:

CRB  Cramér-Rao Bound

ICO Indefinite Causal Order

PCPS  Pauli Channels Parametric Space
PS Path Superposition

QEC  Quantum Error Correction

QFI Quantum Fisher Information
QPE Quantum Parameter Estimation
SEQ  Sequential

U Unitary operation

Appendix A. Bloch Representation of Bipartite States

A pair of possibly entangled states could still be represented in a Bloch-like represen-
tation. If )\lN ,i=1,...,N2—1arethe S U(N) traceless generators [64], together with )\6\1 as
the identity matrix, then, any bipartite state constructed by a system of dimension N and
other of dimension M could be expressed as [65]:

N2-1,M2-1

Z DC,’j)LZN X )\]M (Al)

i,j=0

N2-1 M2—-1 N2—-1,M?2-1

0600/\6\] X )\6\/[ + Z Déio/\f\] X )\é\/l + Z 060]‘)\6\] ® )\fvj + Z DC,']‘)\ZN X )\;\A

i=1 j=1 ij=1
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by demanding that Tr(p) = 1 then agg = (NM)~!. Additionally, considering the partial
trace concerning each subsystem:

1 N2-1
o1 = Tl‘z(p) = N/\(I)\]+M Z IXZ‘()/\lN (AZ)
i=1
1 M M2-1 M
p2 = Tnlp) = ;A0 +N Y oA (A3)
j=1

Thus, by noting in each case that for pure states Tr(p?) = Tr(px),k = 1,2, and as-
sociating a Bloch unitary vector 7iN'M for those states, in this case, it is necessary that

N /N(N-1 N MM 1 nM i
ajy = I:;IM (2 ) = I:l,’M./\/'N and ag; = (2 ) = Nat/Num [66]. Similarly, for

pure separable bipartite states Tr(p?) = Tr(p), then it is possible to demonstrate that for
those states:

N2-1,M2-1 2 AS2
e MV A%
= Y N2M?2
1,j=

then, in general we define a normalized quantity a;; = NnANupij, reaching the value of 1

N2-1,M2-1

in that case (separable pure states), }; -1 12] = 1. Thus, for the general case:

p = ﬁ(AS’@AS’WAfN AN AN @AM 4 Ny AY @ M- AM 4
N2-1,M%-1 N v
NN Y B AN @A ) (A5)

ij=1

being AP = (/\f ,. ..,/\E). The last sum, for the pure separable states case, will be-

come iiN - AN @ 7iM . AM, then Bij = nanfA. It directly implies that Det(f) = 0 and

Tr(B) = #N - #™. Moreover, the last expression could be written more synthetically by
defining £ = (Ao, A) and the N? x M? matrix D:

B 1 Ny itM
b= (NNﬁN NNNM;%) (A6)

L

being B the N?> — 1 x M? — 1 matrix defined above. Then:

1 o =
= 3SN.p.gM A7
P =NM (A7)

Finally, note that for a couple of qubits, N = M = 2, NN = N'M = 1. In this case, the
matrix B has some interesting features. @ By writing p for a pure state as
|) = &|00) + B|01) + |10) + 5|11), a direct calculation shows that Tr(8) = 1 — 2|8 — 7|2,
which reflects the symmetry of the states for the two parties, particularly reached for g = 1.
Also, Det(B) = —4|ad — By|?> = —C(|ip)), the state concurrence C(|¢)) € [0,1], becoming
zero for separable states and one for maximally entangled ones).

Appendix B. Parameterized Matrix D for a Bipartite State with Real Coefficients

If a pure bipartite state in the form of (29) is considered, then, the non-zero entries of
4 x 4 matrix D for the corresponding p, become:
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Dy =1 (A8)
Dg1 = 2sinasinf ( COS & cos Y + sina cos B sin ’y)

Dy3s = —cos’a+sin’a (1 —2cos? ﬁ)

Dy = 2sina (cos & cos B+ sina sin? Bsiny cos ’y)

D1 = 251n1xsinﬁ<cosocsin'y—|—sinrxcos,3cos ’y)

D13 = 2sina (— cos a cos  + sina sin? B sin y cos 'y)

Dy = Zsinzxs'm,B(coszxsin'y —sinacosﬁcos'y)

D3y = cos’a —sin’a (1 — 25sin? B cos? 7)

D3; = 2sinasinf ( COS & cos 7y — sinwa cos B sin 'y)

D33 = —cos®a+sin®a (1 — 2sin? B sin? 'y)

Notably, C(|y)) = D3,.
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