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Abstract. We show that the dynamical group of an electron in a constant magnetic field is
the group of symplectomorphisms Sp(4,R). It is generated by the spinorial realization of the
conformal algebra so(2, 3) considered in Dirac’s seminal paper ”A Remarkable Representation
of the 3 + 2 de Sitter Group”. The symplectic group Sp(4,R) is the double covering of
the conformal group SO(2, 3) of 2+1 dimensional Minkowski spacetime which is in turn the
dynamical group of a hydrogen atom in 2 space dimensions. The Newton-Hooke duality
between the 2D hydrogen atom and the Landau problem is explained via the Tits-Kantor-
Koecher construction of the conformal symmetries of the Jordan algebra of real symmetric
2 × 2 matrices. The connection between the Landau problem and the 3D hydrogen atom is
elucidated by the reduction of a Dirac spinor to a Majorana one in the Kustaanheimo-Stiefel
spinorial regularization.

1. Introduction
In the heart of the quantum theory is the passionate history of the hydrogen atom spectrum. By
good fortune the Coulomb potential describing the “the action at a distance” is the twin brother
of the potential of the Newton universal interaction. Therefore the quantum motion of electron
in the hydrogen atom amounts to the quantization of the Kepler orbits. In some poetical sense,
the heavenly spheres mirror the depth of the micro-cosmos.

In his famous paper, Vladimir Fock [13] explained the accidental degeneracies in the spectrum
of the hydrogen atom by the existence of an additional integral of motion given by the Laplace-
Runge-Lenz. Fock’s result allows for a generalization. Namely, a n-dimensional hydrogen atom
whose Schrödinger equation for the bounded states in momentum space is transformed by
stereographic projection to the Laplace’s equation on a n-dimensional sphere Sn[9].

In this work we study the duality between the 2-dimensional (2D) hydrogen atom on one hand
and the Landau problem for the quantization of the electronic orbits in the uniform magnetic
field on the other:

2D e− in electric field
Newton−Hooke↔ 2D e− in magnetic field . (1)

The classical geodesic motion on the sphere, say on the equator, is seen as the periodic circular
Larmour motion in the magnetic field directed between the poles. The Fock method applied for
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2D hydrogen system with potential −k/r sends orbital eigenfunctions to spherical harmonics
in momentum space [6, 28, 4, 26, 31] which are the harmonic functions of the sphere S2, i.e.,
eigenfunctions of an isotropic harmonic oscillator with two degrees of freedom. The mapping
from 2D harmonic oscillator to 2D Coulomb-Kepler problem is known to be the Levi-Civita
transform [4]. In this paper we show that the dynamical group of the Landau problem is the
double covering Sp(4,R) of the conformal group SO(2, 3) of the 2D hydrogen atom and arises
from the exponentiation of the remarkable spinorial representation of SO(2, 3) found by Dirac
in his famous paper ”A Remarkable Representation of the 3 + 2 de Sitter Group”[11].

Different dualities between Coulomb-Kepler motion and harmonic oscillators has been already
studied by many autors1[4, 9, 1] in various dimensions, however to the best of our knowledge the
implications about the Landau problem were not highlighted. A tremendous amount of work
on the spectrum generating algebra of the hydrogen atom has been done by Asım Barut and
his collaborators [2, 3, 5](See also [22]). Gradually it became clear that the spectrum of 3D
hydrogen atom carries a minimal (massless) representation with helicity λ = 0 of the conformal
group SO(2, 4). It allows for a dual description in terms of 4D harmonic oscillator via a ladder
U(2, 2)-representation that has been put forward by Mack and Todorov[21]. The correspondence
with the massless U(2, 2)-representation having arbitrary helicity λ (isomorphic to a SO(2, 4)-
representation) turns out to be the quantization of the Kustaanheimo-Stiefel regularization [20]
in celestial mechanics. This correspondence holds true not only for the quantum Kepler motion
of electron in the field of the positively charged nucleus but also for more general binary systems
of coupled dyons [3, 32].

A powerful approach to the conformal dynamical symmetries of generalized quantum Kepler
problems based on Jordan algebras was proposed by Guowu Meng [23]. To an Euclidean Jordan
algebra one associates a symmetric null ray cone whose automorphisms form a conformal group.
From the minimal data of the Jordan algebra JC2 of 2 × 2 complex Hermitian matrices one is
able to build the whole conformal algebra so(2, 4) of 3D hydrogen atom[23, 27]. We show that
the reduction from 3D to 2D hydrogen atom dynamical group is done by simply imposing the
reality condition on the Jordan algebra of observables JC2 :

co(JC
2 ) = so(2, 4) ooKustaanheimo−Stiefel

su(2, 2)

co(JR
2 )
?�

x=xt

OO

= so(2, 3) ooLevi−Civita
sp(4,R)
?�

ψ=ψc

OO
. (2)

The projection π : JC
2 → JR

2 simply projects out the complex Pauli matrix σ2. On the other
hand the 3D hydrogen atom is in duality with the 4D harmonic oscillator (the quantization of
the harmonic motion on the sphere S3) the duality mapping being the Kustaanheimo-Stiefel
transformation [20], the so called spinorial regularization removing collision Kepler orbits from
the phase space. Similarly the Levi-Civita transformation connects the 2D harmonic oscillator
with the 2D hydrogen atom (1). We found out that the spinorial reduction from 4D harmonic
oscillator (regularized motion on S3) to 2D harmonic oscillator (Landau problem, i.e., motion
on S2) is the reduction from Dirac to the Majorana spinor. In other words on the spinorial side
of the diagram we also apply the reality condition ψ = ψc.

2. Landau Problem and Harmonic oscillator
An electron in an uniform magnetic field propagates on circular orbits with Larmour frequency
ω = eB

mc . The Landau quantization of the circular orbits leads to an isotropic quantum harmonic

1 For comprehensive lecture notes and further references we send the reader to [30].
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oscillator with two modes. The minimal coupling of the electron’s charge density to the external
magnetic field described by the electromagnetic vector potential A leads to the Hamiltonian

H =
1

2m

(
p− e

c
A
)2

=:
1

2m
P 2 . (3)

The constant uniform magnetic fieldB = Bẑ along the z-direction can be obtained from different
potentials A = (Ax,Ay) in the plane. We choose the symmetric gauge

A = (Ax,Ay) =
B

2
(−y, x) , Ai = −B

2
ϵijx

j (4)

but most of our conclusions are gauge independent. The gauge independent kinetical momenta
P and the coordinates X of the center of the cyclotron motion are related to the phase space
canonical coordinates (x, y, px, py) by

Pi = mẋi = m
∂H

∂pi
= pi −

e

c
Ai, Xi = xi +

1

mω
ϵijP

j . (5)

The center of mass coordinates X = (X,Y ) are integrals of motion Ẋ = 0 = Ẏ and decouple
from the system. One has two independent Heisenberg algebras [P ,X] = 0

[Px, Py] = i
ℏe
c
B = iℏmω =

iℏ2

ℓ2
, [X,Y ] = −i ℏ

mω
= −iℓ2 .

Here ℓ stands for the magnetic length ℓ2 = ℏ
mω = ℏc

eB . We introduce also dimensionless canonical
coordinates of the phase space

x =
√
2ξℓ y =

√
2ηℓ px = pξ

√
mωℏ/

√
2 py = pη

√
mωℏ/

√
2

satisfying the canonical commutation relations

[ξ, pξ] = i = [η, pη] [ξ, pη] = 0 = [η, pξ] .

The Hamiltonian H in term of the new variables boils down to an isotropic harmonic oscillator
Hamiltonian plus a ”magnetic” term proportional to the angular momentum:

H =
P 2
x + P 2

y

2m
=

ℏω
4

{
p2ξ + p2η + (ξ2 + η2)

}
− ℏω

2
(ξpη − ηpξ) .

The kinetic momenta P = p − e
cA are quantized by the energy creation and annihilation

operators a±. The guiding center coordinates X and Y are integrals of motion, they are
quantized by the magnetic translation operators2 b±:

a± =
a±x ∓ia±y√

2
=

−Py∓iPx√
2mωℏ

, Px =
pξ+η√

2

√
mωℏ , Py =

pη−ξ√
2

√
mωℏ ,

b± =
a±x ±ia±y√

2
= X±iY

ℓ
√
2
, X =

(
ξ+pη√

2

)
ℓ , Y =

(
η−pξ√

2

)
ℓ

(6)

where we have used two commuting Heisenberg algebras with generators

a±x = (ξ ∓ ipξ)/
√
2 , a±y = (η ∓ ipη)/

√
2 such that [a−i , a

+
i ] = 1 . (7)

2 The geometrical meaning of the Zak’s magnetic translations in the Landau problem has been clarified in the
work [10].
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The operators a± shift between different energy levels of the Hamiltonian

H =
ℏω
2
{a+, a−} , [H, a±] = ±a± , [H, b±] = 0 . (8)

The “zero mode” generators b± commute with a± since the momenta P = (Px, Py) commute with
the guiding center coordinates X = (X,Y ). Hence the magnetic translations b± are responsible
for the degeneracy of the Landau levels. The angular momentum operator Lz = xpy − ypx
is the generator of the rotational symmetry, the operators b± increase (decrease) the angular
momentum eigenvalue

Lz
ℏ

=
1

2
{b−, b+} − 1

2
{a−, a+} , [

Lz
ℏ
, b±] = ±b± , [Lz, H] = 0 .

The angular momentum commutes with the energy operator H, however, there is a larger
accidental group SO(3) of transformations preserving the energy. Its origin is rooted in the
analog of the Laplace-Runge-Lenz vector in the Landau problem, the so called magnetic LRL
vector [33] which is an integral of motion beside the angular momentum. We proceed by exploring
the dynamical group of the Landau problem in a more systematic way.

3. Dirac dynamical algebra so(2, 3)
In his seminal paper ”A Remarkable Representation of the 3 + 2 de Sitter Group”[11] Dirac
came out with a realization of so(2, 3) which is quadratic in the phase space coordinates on a
plane: pξ, pη, ξ, η. The symplectic group Sp(4,R) is a natural symmetry for the Landau problem
since the magnetic field is encoded into the symplectic form of the phase space.

We now show that the Dirac’s algebra so(2, 3) of the De Sitter group SO(2, 3) can be thought
of as the group of symplectomorphisms, in view of the isomorphism

SO(2, 3) ∼= Sp(4,R)/Z2

thus yielding a dynamical group of the Landau’s problem. The group SO(2, 3) has a
homogeneous space dS4 defined by the Dirac quadric in 5-dimensional flat ambient space with
coordinates yA

y2−1 + y20 − y21 − y22 − y23 = R2 = ηaby
ayb , ηab = diag(+1,+1,−1,−1,−1) .

The group of motions of the 4-dimensional hyperboloid is the orthogonal de Sitter group
SO(2, 3), the conformal group of the Minkowski space R1,2. The generators mab of the Lie
algebra so(2, 3) satisfy the commutations relations

[mab,mcd] = 0 , [mab,mbc] = −iηbbmac (9)

where the indices a, b, c, d are assumed to be all distinct from the set {−1, 0, 1, 2, 3}.
The Dirac’s remarkable representation [11] is given by the following quadratic generators3

3 We adopt a different convention for the indices of the matrix mab, the mapping between our convention and
the Dirac’s one reads {1, 2, 3,−1, 0} → {1, 2, 3, 4, 5}.
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alternatively written with the Heisenberg algebras generators a±i (7):

m12 = 1
2(ξpη − ηpξ) = 1

2i

(
a+x a

−
y − a+y a

−
x

)
,

m23 = 1
4

(
p2ξ − p2η + ξ2 − η2

)
= −1

2

(
a+x a

−
x − a+y a

−
y

)
,

m31 = −1
2 (ξη + pξpη) = −1

2

(
a+x a

−
y + a+y a

−
x

)
,

m1−1 = 1
2 (ξη − pξpη) = 1

2

(
a−x a

−
y + a+x a

+
y

)
,

m2−1 = 1
4

(
ξ2 − η2 + p2η − p2ξ

)
= 1

4

(
a−x a

−
x + a+x a

+
x − a−y a

−
y − a+y a

+
y

)
m3−1 = 1

2 (ξpξ + ηpη)− i
2 = i

4

(
a+x a

+
x − a−x a

−
x + a+y a

+
y − a−y a

−
y

)
,

m01 = i
2 (ξpη + ηpξ) = −1

2

(
a+x a

+
y − a−x a

−
y

)
,

m02 = 1
2 (ξpξ − ηpη) = i

4

(
a+x a

+
x − a−x a

−
x − a+y a

+
y + a−y a

−
y

)
,

m03 = 1
4

(
p2ξ + p2η − ξ2 − η2

)
= 1

4

(
a+x a

+
x + a−x a

−
x + a+y a

+
y + a−y a

−
y

)
,

m−10 = 1
4

(
p2ξ + p2η + ξ2 + η2

)
= 1

2

(
a+x a

−
x + a−y a

+
y

)
.

(10)

Therefore the Dirac so(2, 3)-representation is rooted in the oscillator algebra with two modes a±x
and a±y [7]. We will further related these two modes a±x and a±y through eqs (6) to the energy

and magnetic translation creation and annihilation operators a± and b±. We will get the Dirac
conformal algebra so(2, 3) playing the role of infinitesimal symplectomorphisms of the Landau
problem.

It is convenient to introduce (anti)holomorphic coordinates z (z̄) on the phase space such
that

z = (x+ iy)/2ℓ = 1√
2
(ξ + iη) ∂ = ∂

∂z = ℓ
(
∂
∂x − i ∂∂y

)
= 1√

2
(∂ξ − i∂η) ,

z̄ = (x− iy)/2ℓ = 1√
2
(ξ − iη) ∂̄ = ∂

∂z̄ = ℓ
(
∂
∂x + i ∂∂y

)
= 1√

2
(∂ξ + i∂η) ,

where the momenta are related to the (anti)holomorphic derivatives ∂ (∂̄) through

∂ =
i√
2
(pξ − ipη) , ∂̄ =

i√
2
(pξ + ipη) , ipξ =

1√
2
(∂ + ∂̄) , pη =

1√
2
(∂ − ∂̄) .

The energy and magnetic translation creation and annihilation operators a± and b± in
the Landau problem from equation (6) are then expressed in the holomorphic phase space
coordinates as follows 4

a− = 1√
2
(z + ∂̄) b− = 1√

2
(z̄ + ∂) ,

a+ = 1√
2
(z̄ − ∂) b+ = 1√

2
(z − ∂̄) .

(11)

We are now able to recast the Dirac’s generators mab from eq (10) in the form of quadratic

4 The operators a± and b± yields one more parametrization of the phase space R4. The inverse transformation
reads

z = 1√
2
(a− + b+) ∂̄ = 1√

2
(a− − b+)

z̄ = 1√
2
(a+ + b−) ∂ = 1√

2
(b− − a+)



DERELI-FS-2021
Journal of Physics: Conference Series 2191 (2022) 012009

IOP Publishing
doi:10.1088/1742-6596/2191/1/012009

6

polynomials of the creation and annihilation operators a± and b± as follows

m12 = 1
2(z∂ − z̄∂̄) = 1

4 ({b
−, b+} − {a−, a+}) ,

m23 = 1
4(z

2 + z̄2 − ∂2 − ∂̄2) = 1
4 ({a

−, b+}+ {a+, b−}) ,
m31 = i

4(z
2 − z̄2 + ∂2 − ∂̄2) = i

4 ({a
−, b+} − {a+, b−}) ,

m1−1 = 1
4i(z

2 − z̄2 − ∂2 + ∂̄2) = i
4 (a

+a+ − a−a− + b−b− − b+b+) ,

m2−1 = 1
4(z

2 + z̄2 + ∂2 + ∂̄2) = 1
4 (a

−a− + a+a+ + b−b− + b+b+) ,

m3−1 = − i
2

(
z∂ + z̄∂̄−1

)
= − i

4 ({a
−, b−} − {a+, b+}) ,

m01 = −1
2

(
z∂̄ − z̄∂

)
= −1

4 (a
−a− + a+a+ − b−b− − b+b+) ,

m02 = − i
2

(
z̄∂ + z∂̄

)
= − i

4 (a
−a− − a+a+ + b−b− − b+b+) ,

m03 = 1
2

(
zz̄ + ∂∂̄

)
= −1

4 ({a
+, b+}+ {a−, b−}) ,

m−10 = 1
2

(
zz̄ − ∂∂̄

)
= 1

4 ({a
−, a+}+ {b−, b+}) .

(12)

Weyl Spinors and Sp(4,R). The whole dynamic Dirac algebra so(2, 3) ∼= sp(4,R) can be
compactly represented if we pack the Landau’s creation and annihilation operators a± and b±

into a two-component Weyl spinor

χα =

(
b−

a−

)
=

1√
2

(
z̄ + ∂
z + ∂̄

)
, χ∗

α = (b+ a+) =
1√
2
(z − ∂̄ , z̄ − ∂) . (13)

Barut and Duru [4] have found that the conformal algebra so(2, 3) generated by two oscillators
(12) can be written by the spinorial operators

mij = 1
2ϵijkχ

∗σTk χ , m−1i = i
4(χ

∗σTi ϵ
T (χ∗)T − χT ϵσTi χ) ,

m−10 = 1
2(χ

∗χ+ 1) , m0i = 1
4(χ

∗σTi ϵ
T (χ∗)T + χT ϵσiχ)

(14)

with the help of the Pauli matrices (σi)αβ and the charge operator ϵ = iσ2. They have obtained
the isomorphism of the spinorial so(2, 3) representation (14) with the spectrum generating
algebra of the 2D hydrogen atom. The latter spectrum has been derived as a solution of infinite-
component Majorana equation (see also the work of Stoyanov and Todorov [29]).

The subalgebra generated by m−10, m−13 and m03 is the radial subalgebra so(1, 2). The
generator m−10 is the conformal Hamiltonian attached to the harmonic oscillator while the true
hamiltonian is H

ℏω = m−10−m12. As the motion of a harmonic oscillator is periodic the evolution
parameter τ attached to the operator m−10 will be compactified to S1 and will be referred to as
conformal time τ .

The so(3)-algebra spanned by the operators m12, m23, m31 is commuting with the conformal
Hamiltonian m−10

[m−10,mij ] = 0 i, j = 1, 2, 3 .

The so(3)-algebra is the dynamical “accidental” symmetry extending the rotational symmetry
generated by the angular momentum operator 2m12 = Lz/ℏ. The rotational group element
R(ϕ) = exp im12ϕ would actually live in a spinor representation of so(3).

4. Jordan algebra toolbox
The tight connection between the two quantum problems sharing the same dynamical conformal
symmetry so(2, 3): Landau problem and 2D hydrogen atom find their natural formulations in
the setting of Jordan algebras. We shall follow the ideas of Murat Günaydin [14] to employ a
Jordan algebra in the construction of a regular linear representation of the conformal group. For
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the sake of completeness we first introduce the main notions related to Jordan algebra in general
and only then we specialize to the important examples of the Jordan algebras of the 2× 2 real
Hermitian matrices JR

2 and complex Hermitian matrices JC
2 yielding the linear representation of

SO(2, 3) and SO(2, 4), respectively.
Jordan algebras. A commutative multiplication law ◦ : J × J → J, satisfying the Jordan

identity
a ◦ b = b ◦ a a ◦

(
a2 ◦ b

)
= a2 ◦ (a ◦ b) (15)

defines a Jordan algebra (J, ◦). Any associative matrix algebra (over R,C,H) can be converted
into a special Jordan algebra via the product a ◦ b = 1

2 (ab+ ba), where ab is the standard
associative matrix multiplication.

Jordan triple product and conformal group Co(J) representations. Any Jordan
algebra J has a Jordan triple product (•, •, •) : J× J× J → J

(abc) = a ◦ (b ◦ c)− b ◦ (a ◦ c) + (a ◦ b) ◦ c . (16)

The Jordan triple product defines a Jordan triple system with identities

(abc) = (cba) (17)

(ab(cdx))− (cd(abx)) = (a(dcb)x)− ((cda)bx) . (18)

For any pair of elements (x, y) ∈ J× J one has a linear map Syx : J → J with a matrix fixed by
the structure constants (Σν

µ)
σ
ρ of the Jordan triple product

Syx(z) = (xyz) (eµ, eν , eρ) = Σνσ
µρeσ . (19)

Tits, Kantor and Koecher (TKK) construction of co(J). The conformal group Co(J)
is generated by vector fields closing a conformal Lie algebra co(J). The general construction of a
conformal Lie algebra co(J) from a given Jordan algebra J is due to Tits, Kantor and Koecher.

Any Jordan triple system generated in x ∈ J gives rise to a 3-graded Lie algebra co(J),
endowed with an involution † via

(x, y, z) := [[x, y†], z] .

Conversely, any 3-graded Lie algebra [gi, gj ] ⊂ gi+j (with gi = 0 when i ̸= 0,±1) endowed with

a graded involution †, g†k = g−k determines a Jordan triple system. The 3-graded Lie algebra
co(J) has the graded decomposition

co(J) = g+1 ⊕ g0 ⊕ g−1 := J∗ ⊕ str(J)⊕ J (20)

where the abelian subalgebra g−1(g+1) is generated in the space J(J∗). The grading operator
D ∈ g0 is the dilatation [D, g] = kg, for any g ∈ gk. The grading alone implies that g+1 and g−1

are abelian Lie subalgebras of co(J) and their mutual commutators belong to g0, [g−1, g+1] ⊂ g0.
It turns out that all elements in g0 can be represented as commutators, the structure algebra of
J, str(J) := g0 = [g−1, g+1] and g±1 are its fundamental and antifundamental representations in
view of

[g0, g±1] = g±1 .

Coordinate-free definition of co(J). The relations5 of the conformal algebra co(J) are
compactly written with the help of the Jordan triple product conveying the essence of the

5 The normalization [Ua, U
b] = −2Sb

a is adopted for future convenience following [23].
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TKK construction [14]

[Ua, U
b] = −2Sba , [Ua, Ub] = 0 , Ua ∈ g−1

[Sba, Uc] = U(abc) , [Sba, S
d
c ] = Sd(abc) − S

(bad)
c , Sba ∈ g0

[Sba, U
c] = −U (bac) , [Ua, U b] = 0 , U b ∈ g+1 .

(21)

The involution † acts as U †
a = Ua and consequently (Sba)

† = Sab .
TKK for Jordan algebra JC

2 = H2(C). The associative algebra of 2×2 Hermitian matrices
with complex elements H2(C) has a basis of Pauli matrices σµ. The symmetric product ◦ gives
rise to the (special) Jordan algebra JC2

σi ◦ σj :=
1

2
{σi, σj} = δij , σ0 ◦ σi = σi , σ0 ◦ σ0 = σ0 .

An element x ∈ H2(C) is parametrized by its Minkowski coordinates

x = xµσµ = x011 + xiσi

where σ0 is the unit matrix 11 and σi are the Pauli matrices. Hence

x = xµσµ =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
, xµ :=

1

2
tr(xσµ) (22)

and the Minkowski metric g with a signature (+,−,−,−) is given by the determinant

detx = xµx
µ = (x0)2 − δijx

ixj = gµνx
µxν .

The evaluation of the Jordan triple structure constants Σβρ
αγ in the JC

2 basis

(σα, σβ, σγ) = Σβρ
αγσρ = σα ◦ (σβ ◦ σγ)− σβ ◦ (σγ ◦ σα) + (σα ◦ σβ) ◦ σγ

gives back the concise formula,

Σβρ
αγ = δργδ

β
α + δραδ

β
γ − gβρgαγ . (23)

The latter formula establishes via TKK construction a dichotomy between Minkowski’s
spacetime Jordan algebra JC

2 and the 3-graded Lie algebra so(2, 4).
Indeed the Jordan triple product induces via the TKK construction (Eq. (21)) a co(JC

2 )-
representation [14, 25] by the following vector fields:

co(J) operator ∈ co(J) mapping x−rep basis so(2, 4) deg(x)
J Ua = −iaµPµ ∈ g−1 x 7→ a Pν = i∂ν 0

str(J) Sba = iaνbµS
µ
ν ∈ g0 x 7→ (a, b, x) Sµν = −iΣµβ

ναxα∂β 1

J∗ U b = ibµK
µ ∈ g+1 x 7→ −(x, b, x) Kµ = iΣµβ

ναxνxα∂β 2

The 15 generators of the conformal group Co(JC
2 ) = SO(2, 4) are obtained after the evaluation

of the Jordan structure constants Σµβ
να (23)

g−1 −iPν = ∂ν translations
g0 iMµ

ν = −xµ∂ν + xν∂
µ Lorentz transformations

g0 iD = xµ∂µ dilatation
g+1 iKµ = −2xµxν∂ν + xνxν∂

µ special conformal transformations

(24)
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yielding a minimal representation the Lie algebra so(2, 4). The Lorentz generators Mµ
ν are

the basis of the reduced structure algebra str0(J
C
2 ) = so(1, 3) (generating the Lorentz norm

detx preserving group). The structure algebra str(JC
2 ) is generated by Sab . When we choose

coordinates as in the table above str(JC
2 ) is the span of the generators Sµν = i

2 [K
µ, Pν ] =

Mµ
ν − δµνD. Then the TKK construction (21) for JC

2 yields the commutation relations of the
conformal algebra so(2, 4) of the Minkowski space R1,3 (µ, ν, λ = 0, 1, 2, 3)

[Kµ, Pν ] = 2i(gµνD −Mµν) , [D,Pµ] = iPµ , [D,Kµ] = −iKµ ,

[Kλ,Mµν ] = i(gλµKν − gλνKµ) , [D,Mµν ] = 0 , [Pµ, Pν ] = 0 = [Kµ,Kν ] ,

[Pλ,Mµν ] = i(gλµPν − gλνPµ) , [Mµα,Mβν ] = 0 , [Mµα,Mαν ] = igααMµν .

(25)

In the last two relations the indices are assumed distinct.
The conformal inversion I(x0,x) =

(
x0

x2
,− x

x2

)
is an involution, I2 = 11. It anticommutes

with the grading operator, ID = −DI and induces the involution † through

Kµ = IPµI = P †
µ .

The conformal inversion changes dimensions; namely, the length to inverse length.
TKK for Jordan algebra JR

2 = H2(R). The real symmetric matrices are spanned by the
subset {σ0, σ1, σ3} of real Pauli matrices with coordinates {y0, y1, y2}

y =
∑

µ=0,1,3

xµσµ =

(
y0 + y2 y1
y1 y0 − y2

)
, yT = y . (26)

We simply skip the Pauli matrix σ2 (which is not symmetric) from the 3 + 1 Minkowski spinor
x = xµσµ. Renaming the components x0 = y0, x1 = y1and x3 = y2 we end up with a real
spinorial representation of the Minkowski spacetime R1,2 such that the deteminant yields the
metric

det y = yµ̃y
µ̃ = (y0)2 − (y1)2 − (y2)2 = gµ̃ν̃y

µ̃yν̃ µ̃, ν̃ = 0, 1, 2 .

Tits-Kantor-Koecher construction applied to the Jordan algebra JC
2 and JR

2 yields,
respectively, the conformal algebra of the Minkowski spacetime R1,3, eq. (25):

co(JC
2 ) = so(2, 4) = (JC

2 )
∗︸ ︷︷ ︸

Kµ

⊕

str(JC
2 )︷ ︸︸ ︷

(so(1, 3)︸ ︷︷ ︸
Mµ

ν

⊕ R︸︷︷︸
D

)⊕ JC
2︸︷︷︸
Pν

(27)

and the conformal algebra of the Minkowski space R1,2, eq. (25):

co(JR
2 ) = so(2, 3) = (JR

2 )
∗︸ ︷︷ ︸

Kµ̃

⊕

str(JR
2 )︷ ︸︸ ︷

(so(1, 2)︸ ︷︷ ︸
M µ̃

ν̃

⊕ R︸︷︷︸
D

)⊕ JR
2︸︷︷︸
Pν̃

µ, ν = 0, 1, 2. (28)

Geometry of null cones. In his famous Erlangen program Félix Klein associated any geometric
space with its group of motion, i.e., its underlying group of symmetries.

Proposition 4.1 Let the compactified Minkowski space M1,3 = N/R∗ be the space of the
isotropic rays in R2,4 (proportional isotropic vectors are identified)

N = {x⃗ ∈ R2,4|x2−1 + x20 − x21 − x22 − x23 − x25 = 0;x ̸= 0}.
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The compactified null cone M1,3 = N/R∗ ∼= (S1 × S3)/Z2 is a homogeneous space for the
conformal group SO(2, 4) generated in the Lie algebra co(JC

2 ) = so(2, 4), eqs (31).

The intersection of M1,3 by hyperplane x2 = 0 yields the space M1,2 = Ñ/R∗ of the isotropic
rays in R2,3

Ñ = {y⃗ ∈ R2,3|y2−1 + y20 − y21 − y22 − y23 = 0; y ̸= 0}

where the remaining coordinates after the reduction are renamed according to

{x−1, x0, x1, x3, x5} ↔ {y−1, y0, y1, y2, y3} .

The compactified null cone M1,2 = Ñ/R∗ ∼= (S1 × S2)/Z2 of the isotropic rays in R2,3 is a
homogeneous space for the conformal group SO(2, 3) generated in the Lie algebra co(JR

2 ) =
so(2, 3) (see eqs (31)) .

In this sense, the geometry of the compactified Minkowski spaces M1,2 = (S1 × S2)/Z2 and
M1,3 = (S1×S3)/Z2 are associated with the conformal symmetry algebras so(2, 3) and so(2, 4)
of the Jordan algebras of real and complex hermitian 2× 2 matrices. The intersection with the
plane x2 = 0 corresponds to the reduction of the complex Jordan algebra to real JR

2 Jordan
algebra JC

2

JR
2 = {y ∈ JC

2 |yT = y} ,

thus reducing the conformal symmetry from so(2, 4) to so(2, 3).
The advantage of the TKK construction of the Jordan algebra symmetries is that it yields

explicitly a conformal group representationof the conformal spacetime symmetries as linear
transformations of a null-ray cone.

5. Hydrogen atom from 3D to 2D
The non-relativistic hydrogen atom in three space dimensions is central in the development of
the quantum mechanics. Barut and collaborators (see e.g. [3, 5]) have shown that the states in
the 3D hydrogen atom spectrum transform in a helicity zero massless irreducible representation
[21] of the dynamical group SO(2, 4) with generators

L = r × p B0 −A0 = r B0 +A0 = rp2

Γ = rp B −A = r B +A = rp2 − 2p(r · p)
D = r · p− i

. (29)

On the other hand the conformal symmetry SO(2, 4) of the hydrogen spectrum is also the group
of causal space-time automorphisms of the Minkowski space R1,3. The dictionary between the
two is given by the table

co(J) space-time cone hydrogen atom
g0 Mµν ; D Lij , Γi; D
g−1 Kµ Bµ +Aµ
g+1 Pµ Bµ −Aµ

.

The dynamical group SO(1, 2) generated by {A0, D,B0} is the “radial” group of the conformal
transformations of the time coordinate R0,1 [17]

t → t′ = t+ t0 P0 = B0 −A0 time translations
t → t′ = λt D time dilation
t → 1

t′ = 1
t +

1
t0

K0 = A0 +B0 special conformal
.
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The conformal transformation group SO(1, 2) arises from the TKK construction of the Jordan
algebra JR

1 = R yielding

co(R) = so(1, 2) = (JR
1 )

∗ ⊕ str(JR
1 )⊕ JR

1 = RK0 ⊕ RD ⊕ RP0 .

The sign of energy chooses different SO(1, 2)-generator to be a conformal hamiltonian:

B0 = r(p2 + 1)/2 E < 0 bound states ,
A0 = r(p2 − 1)/2 E > 0 scattering states ,

A0 +B0 = rp2 E = 0 free motion .

The conformal SO(1, 2) group can be seen also as the even generators of the Schrödinger
group in the context of non-relativistic conformal symmetries (for the correspondence between
Schrödinger and conformal group see [16]).

The 15 generators of the 3D hydrogen dynamical group SO(2, 4) act by linear transformations
of the null-ray cone. They have been identified in [27] (see the table above) with the causal
automorphisms of the light cone co(JC

2 ), see eqns (27, 31)
0 B0 B1 B2 B3 D

0 Γ1 Γ2 Γ3 A0

0 L3 −L2 A1

0 L1 A2

0 A3

0

 =


0 L−10 L−11 L−12 L−13 L−15

0 L01 L02 L03 L05

0 L12 L13 L15

0 L23 L25

0 L35

0

 . (30)

Stated differently the compactified Minkowski space M1,3 = (S1 × S3)/Z2 carries a minimal
representation of the conformal group SO(2, 4) stemming from the TKK construction of the
Jordan algebra JC

2 .
The conformal algebra generators LAB satisfy the commutation relations

[LAB, LCD] = −i(ηACLBD + ηBDLAC − ηADLBC − ηBCLAD) (31)

where the set of indices contains the auxiliary indices −1 and 5 in addition to the spacetime
indices µ = 0, 1, 2, 3

LAB ∈ so(2, 4) , ηAB = diag(1, 1,−1,−1,−1,−1) , A,B ∈ {−1, 0, 1, 2, 3, 5} .

While reducing to the spacetime R1,2 with indices µ = 0, 1, 2 we get an algebra representation
equivalent to the Dirac’s remarkable so(2, 3)-representation (9)

Lab ∈ so(2, 3) , ηab = diag(1, 1,−1,−1,−1) , a, b ∈ {−1, 0, 1, 2, 3 = 5}6 .

When the motion of the electron is constrained to a plane we obtain a system which we will
refer to as 2D hydrogen atom, the reduction of the usual 3D atom to two space dimensions.
The dynamical algebras of the 2D hydrogen atom and the Landau problem are isomorphic, the
isomorphism is simply the transposition

Lab ↔ mba = −mab . (32)

6 The auxiliary index 5 comes with the Dirac matrix γ5 = γ0γ1γ2γ3. In R1,2 we have γ5 = γ0γ1γ2 and similarly
iσ3 = σ0σ1σ2 so we adopt a double notation 3 = 5.
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The isotropic rays in the five dimensional space R2,3 carry a linear representation of the
conformal group SO(2, 3) with generators :

Lab =


0 B0 B1 B2 D

0 Γ1 Γ2 A0

0 L3 A1

0 A2

0

 =


0 L−10 L−11 L−12 L−15

0 L01 L02 L05

0 L12 L15

0 L25

0

 .

The dynamical symmetry group of the 2D hydrogen atom is the conformal group SO(2, 3)
stemming from the TKK algebra co(JR

2 ) (28). The compactified Minkowski space M1,2
∼=

(S1 × S2)/Z2 is a homogeneous space for the dynamical SO(2, 3) group of the 2D hydrogen
atom. We conclude that in the Jordan algebra language the reduction from SO(2, 4) to SO(2, 3)
is projecting the complex Jordan algebras JC

2 to the real JR
2 .

The sphere S3 in M1,3 arises as compactification of the flat momentum space via the Cayley
transform whereas S1 stays for the compatified time coordinate. The maximally compact
subgroup SO(4) ⊂ SO(2, 4) stabilizes the sphere S3 interpolating between states with equal
energy. A dual point of view is advocated in a recent paper [19] where S3 in M1,3 is thought as
a configuration space of the quark-antiquark system. In that way the compactified Minkowski
space M1,3 becomes a toy model for the simplest QCD system: a meson. In other words
one obtains the ”QCD hydrogen atom” where the interaction potential is the curved analogue
of the Coulomb potential, inherently introduced by the Green function of the Laplace-Beltrami
operator on S3. On closed surfaces charges appear in pairs thus the charge neutrality is naturally
leading to a confinement. The phenomenologically observed degeneracies of the spectrum of
meson masses can be then attributed to the conformal symmetries [18] of the compactified
Minkowski space (S1 × S3)/Z2 seen as a configuration space for one color charge degree of
freedom. From that perspective the mesons are the QCD cousins of the system ”electron-
constant magnetic field” living in the space M1,2

∼= (S1 × S2)/Z2.

6. Reduction of Kustaanheimo-Steifel transform
The Kustaanheimo-Stiefel transform [20] in celestial mechanics removes the singular trajectories
due to binary collisions from the phase space of the 3D Kepler motion and estabilishes a
correspondence between the 4D isotropic harmonic oscillator 3D Coulomb-Kepler problem. The
spectrum of bounded states for the 3D hydrogen atom (i.e. the quantum Kepler problem) is
then symplectically equivalent to the spectrum of the harmonic oscillator with 4 bosonic modes.
One has an inclusion SU(2, 2) ⊂ Sp(8,R) [21].

The elliptic Kepler orbits for negative energies E < 0 correspond to geodesic motion on
3-dimensional sphere S3. The sphere S3 arises through the stereographic projection of the
momenta. A great circle in S3 is the hodograph7 of an elliptic orbit [24]. The regularized Kepler
orbits live on the cotangent bundle T ∗S3 to the sphere S3 with the zero section removed [9]

T+S3 = T ∗S3 − {0sec} .

Definition 6.1 The Kustaanheimo-Stiefel (KS) transform is the mapping between the
cotangent bundles (with north poles deleted) 8

KS : T+S3 → T+S2 ⊂ (R∗)4 × R4 → (R∗)3 × R3

7 The hodograph is a curve drawn by the velocity vector, that is, the trajectory in the momentum space. It turns
out the the hodographs of Kepler orbits for hyperbolic (E > 0) and parabolic E = 0 motions are segments of
circles.
8 We adopt the notation R∗ = R − {0}.
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where the 4D harmonic oscillator phase space coordinates (u,w) ∈ (R∗)4 × R4 are related with
the 3D Kepler phase space (x, p) ∈ (R∗)3 × R3 coordinates through the Hopf fibration map (see
eq. (35))

x1 = u1u3 + u2u4 ,
x2 = u2u3 − u1u4 ,
x3 = −u21 − u22 + u23 + u24 ,

(33)

extended with the derived momentum relations (|z|2 = u21 + u22 + u23 + u24)

p1 = −(u1w3 + w1u3 + u2w4 + w2u4)/|z|2 ,
p2 = −(u2w3 + w2u3 − w1u4 − u1w4)/|z|2 ,
p3 = (u1w1 + u2w2 − u3w3 − u4w4)/|z|2 .

. (34)

The coordinates on T+S3 are subject to the constraint

K = u1w2 − u2w1 + u3w4 − u4w3 = 0 .

This constraint is in fact a constant of motion as a sum of two angular momentum components.
The non-vanishing of the constraint K is playing a crucial role in the generalizations of the
magnetised problem of a electric charge in the field of a Dirac monopole and systems of two
dyonic particles [32].

The Hopf fibration is essentially representing a 3D vector x ∈ R3 as a “square root” of a
spinor z ∈ C2 in view of

|x| = |z|2 , |x| =
√
x21 + x22 + x23 , z =

(
u1 + iu2
u3 + iu4

)
, |z|2 = z†z. (35)

The KS transformation can be seen as a phase space extension of the Hopf fibration

0 → S1 ↪→ S3 → S2 → 0 ,

the kernel consists of the spinors eiθz ∈ S1.
Reduction of KS transform to the Levi-Civita transform is done by the choice

u2 = u4 = 0 , w2 = w4 = 0

which amounts to taking a square root of a vector in the 2D plane x1 = η and x3 = ξ.
The Levi-Civita transform stems from the change to parabolic coorindates u1 and u3 in the

complex plane

ξ + iη = Z2 ,
ξ = u21 − u23 , pξ = (u1w1 − w3u3)/|Z|2 ,
η = 2u1u3 , pη = −(u1w3 + w1u3)/|Z|2

(36)

where the real spinor ψ =

(
u1
u3

)
is written with one complex number Z = u1+iu3. Levi-Civita

mapping is then a sympletic extension of the the trivial Hopf fibration

0 → S0 ↪→ S1 → S1 → 0

where the dimension zero sphere S0 = Z2 is in the kernel thus reflecting the fact that any pair
of parabolic (spinor) coordinates (u1, u3) and (−u1,−u3) parametrize one and the same point
(ξ, η) in the complex plane.

The Levi-Civita transform (36) is then a 2-to-1 mapping between 2D harmonic oscillator
phase-space (u1, u3, w1, w3) and the phase space of the 2D Kepler problem (ξ, η, pξ, pη). Upon
quantization it yields the Newton-Hooke duality between the Landau problem and the 2D
hydrogen atom (1). We are now going to show that the phase space (u1, u3, w1, w3) is naturally
parametrized by a Majorana spinor in dimension 4.
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7. Ladder U(2, 2) representation
Let ψ = (ψα) be operator-valued Dirac spinor with 4 components satisfying the canonical
commutation relations

[ψα, ψ̄β] = δαβ , [ψα, ψβ] = 0 .

A canonical representation of a pair of 2D harmonic oscillators with two complex variables zα

and the holomorphic derivatives iwα = ∂
∂zα is given by

z =

(
z1

z2

)
∂ =

(
∂
∂z1

∂
∂z2

)
ψ =

(
z̄
∂

)
ψ̄ = (−∂̄, z) . (37)

The ladder representation of U(2, 2) [21] is a spinorial representation realized by the operators9

JAB = ψ̄σABψ , C1 = ψ̄ψ (38)

where the 4× 4 matrices σAB close a defining representation of su(2, 2): these are the matrices
in sl(4,C) preserving a pseudo-Hermitian form β with signature (+ +−−)

(ϕ, ψ) = ϕ∗1ψ1 + ϕ∗2ψ2 − ϕ∗3ψ3 − ϕ∗4ψ4 = ϕ†βψ = ϕ̄ψ .

The Hermitian matrix β = β† depends on the basis, it fixes the choice of the Dirac matrix
γ0 := β and the invariance of the form implies

βσABβ−1 = (σAB)† .

The linear Casimir operator C1 is the center of U(2, 2). It is represented by an integer multiple
of the unit 11:

C1 + 2 = −2λ = zα
∂

∂zα
− z̄α

∂

∂z̄α
λ = 0,±1

2
,±1, . . .

where the half-integer helicities λ are labelling the zero-mass representations of U(2, 2). The
hydrogen atom is described by helicity λ = 0 representation [21].

A finite-dimensional representation of su(2, 2) is generated by the 4×4 Dirac gamma matrices
γµ,

{γµ, γν} = 2ηµν µ, ν = 0, 1, 2, 3 .

The 15 su(2, 2)-generators σAB can be concisely written10(see e.g. [21]) :

σµν = i
4 [γ

µ, γν ] , σ−15 = −1
2γ

5 ,

σµ5 = i
4 [γ

µ, γ5] , σ−1µ = −1
2γ

µ .
(39)

Here we denoted γ5 := γ0γ1γ2γ3. In view of the isomorphism su(2, 2) ∼= so(2, 4) the operators
σAB satisfy the so(2, 4) commutation relations (31). They give rise to a spinorial representation
of the conformal algebra so(2, 4), eq. (30) through the Kustaanheimo-Stiefel correspondence
between the quantum Coulomb-Kepler problem and the 4D harmonic oscillator

LAB ↔ JAB = ψ̄σABψ , A,B ∈ {−1, 0, 1, 2, 3, 5} .
9 Here the summation on spinorial indices is implicit.
10 We get another concise expression σAB = i

2
γAγB for A < B in {−1, 0, 1, 2, 3, 5} if we set the unit matrix

multiplier γ−1 := i11.
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Proposition 7.1 The Majorana condition ψ = ψc is reducing the Dirac SU(2, 2)-spinor ψα to
a real Sp(4,R)-spinor. The reality condition is essentially reducing the 4D harmonic oscillator
(Dirac spinor) to the 2D oscillator (Weyl spinor).

Proof. The Majorana condition is the invariance under the charge-conjugation involution
C = iγ0γ2. We choose the Dirac representation for the Clifford algebra generators γµ

γ0 =

(
σ0 0
0 −σ0

)
, γi =

(
0 σi

−σi 0

)
, C = iγ0γ2 =

(
0 ϵ
ϵ 0

)
.

A Majorana spinor is a Weyl spinor written in 4-dimensional form. The Majorana condition
ψ = ψc yields

ψ =

(
χ

ϵT (χ∗)T

)
, ψ̄ = ψ∗γ0 =

(
χ∗ − χT ϵ

)
. (40)

The Dirac’s remarkable spinorial so(2, 3)-algebra represention (14) is nothing else than the ladder
representation for the Majorana spinor ψ = ψc

mba ↔ Jab = ψ̄cσab ψc a, b ∈ {−1, 0, 1, 2, 3} .

The Weyl spinor χ
(∗)
α has components identified in eq. (13) with the Heisenberg algebra

generators a± and b± in Landau problem. Hence the dynamical algebra so(2, 3) of the Landau
problem (12) is the span of the infinitesimal symplectomorphisms sp(4,R) of the phase space
(ξ, η, pξ, pη) ∈ R4 obtained from the Majorana reduction of the ladder representation (38) of
su(2, 2) ∼= sp(8,R) ∩ so(4, 4).

8. Conclusion and outlook
In celestial mechanics the regularization is the transformation of the singular equations of the
Kepler motion to the regular equations of the harmonic oscillator. The duality between the
Newton’s universal law and Hooke’s law of harmonic motion has been know since the time of
Newton and Hooke [8]. Its reincarnation in quantum mechanics is the duality between the
hydrogen atom and the harmonic oscillator via the Fock’s method of quantization. At the
quantum level, the Levi-Civita regularization induces the duality transform between the 2D
hydrogen atom and 2D harmonic oscillator, whereas the Kustaanheimo-Stiefel regularization
bridges between the 3D hydrogen atom and the 4D harmonic oscillator. We have given an
unified picture (2) of the dynamical groups in duality derived from the conformal symmetries on
Jordan algebras and the TKK construction. We point out that the dynamical group Sp(4,R) of
the quantum motion of an electron in a constant magnetic field (Landau problem) is mapped via
the Levi-Civita regularization to the conformal SO(2, 3) spectrum generating algebra of the 2D
hydrogen atom. The symplectic group Sp(4,R) is a natural symmetry for the Landau problem
since the magnetic field is encoded into the symplectic form on the phase space of the planar
motion. On the other hand the carrier of the electromagnetic interaction is the zero-mass photon
propagating on the light cone in Minkowski spacetime R1,2 whose causal automorphisms form
the group SO(2, 3). In a similar fashion, the Kustaanheimo-Stiefel regularization connects the
zero-mass spinorial representation of SU(2, 2) with the minimal SO(2, 4)-representation of light
cone automorphisms in Minkowski spacetime R1,3.

The merit of the Jordan algebra formalism is that the reduction from 3D to 2D hydrogen atom
is done by the reduction of the Jordan algebra JC

2 to JR
2 . We have shown that on the spinorial

side of the Newton-Hooke correspondence (1), a 4D Dirac spinor is reduced to the Majorana
spinor with 4 real independent components (or alternatively Weyl spinor with 2 complex), that
is, we impose the natural reality condition for spinors.
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We have also noted that the Levi-Civita transform connecting the Landau problem and the
2D hydrogen atom is an extension of the Hopf fibration S1 → S1. We have drawn the parallel
with the Kustaanheimo-Stiefel transform thought as an extension of the Hopf fibration S3 → S2.
We believe that phase space extentions of the remaining Hopf fibrations

H 0 → S3 ↪→ S7 → S4 → 0 ,
O 0 → S7 ↪→ S15 → S8 → 0 ,

are of potential interest for high energy physics in view of the exceptional role that the octonions
could play in the quark-lepton symmetry of the Standard Model [12, 15].
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