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Resumo
Nesta tese, nós estudamos ambos limites da correspondência AdS/CFT: o espaço de fase das teorias de spin

alto, e a inserção de operadores de vértice nas funções de correlação da corda de espinores puros escrita no
background AdS5 × S5. Nós calculamos também as equações de movimento do setor de Ramond para a corda
ambitwistor heterótica na descrição RNS. O estudo do espaço de fase das teorias de spin alto usa a formulação
obtida por Penrose e dá indícios da presença de uma simetria conforme não-local. A amplitude de espalhamento
em AdS é estudada com o formalismo BV, apropriado para este background onde o fantasma b não é holomórfico;
nós escrevemos a amplitude com a inserção de um vértice de deformação beta. Para o sistema heterótico, nós
obtemos as transformações de supersimetria da teoria.

Palavras-Chave: Teoria de Cordas, Teoria de Campos, Correspondencia AdS/CFT, Teoria de spins altos,
Formalismo BV.



Abstract

In this thesis we study both limits of the AdS/CFT correspondence: the phase space of higher-spin theories,
and the insertion of vertex operators in string correlation functions of the pure spinor formulation in AdS5×S5

background. We also compute the equations of motion for Ramond sector of the RNS heterotic ambitwistor
string. The study the phase-space of free higher-spin theories uses a formulation obtained from twistors by
Penrose and hints the presence of a non-local conformal symmetry. The string scattering in AdS is studied
with the BV formalism, appropriate for this background given that the b-ghost is non-holomorphic; we write
the amplitude with the insertion of a beta-deformation vertex. For the heterotic ambitwistor system, we obtain
the supersymmetry algebra of this theory.
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Chapter 1

Introduction

String theory in AdS is one of the central topics of modern theoretical physics due to the
AdS/CFT correspondence [1�3]. The correspondence states that maximally supersymmetric
four-dimensional gauge theory (CFT) is equivalent to a theory of quantum gravity (type IIB
superstring theory) on a space with negative cosmological constant in �ve dimensions, called
Anti-de Sitter space (AdS). In this context, the energy scale in the conformal �eld theory
provides the holographic direction, related to the radial direction of AdS [4]. The AdS/CFT
is a strong/weak coupling duality and we can use this fact to explore new phenomena on both
sides of the correspondence. In this thesis, we follow two approaches. The �rst one is higher
spin theory of Fradkin and Vasiliev, which is supposed to work in the small radius limit.

The second is the pure spinor approach, and the related ambitwistor formalism. Pure spinors
were developed by Berkovits [5] and aimed at the universal description of AdS background and
its deformations. It is technically the most di�cult one. The ambitwistor formalism can be
thought of as a limit of the pure spinor string, which is promising and technically more accessible
than the original pure spinor formalism. At this point, however, it is not clear to us if it can
be extended beyond the tree level.

In the rest of this introductory section, we will brie�y summarize what we have done fol-
lowing these three directions presenting the technical details.

1.1 On the phase space of free higher-spin theories and

conformal transformations.

Higher-spin theories are a toy-model for string �eld theory. Historically, the �rst considerations
can be traced back to Gross and Mende in [6, 7], where it is argued that higher-spin theories
may govern the high energy limit of string scattering. Speci�c to the AdS/CFT context though,
Witten [8] conjectured that when the AdS radius is small a subset of large string excitations
decouples from the remaining degrees of freedom and is described by an interacting higher-spin
theory.

Unfortunately, interactions are hard to construct. Powerful no-go theorems have been dis-
covered which prevent simple extensions of free higher-spin theories [9�17]. Indeed, it seems
that there are only three interacting theories which are generally agreed to be well-de�ned:
Vasiliev's theory in space-times with a non-vanishing cosmological constant [18], Segal's con-
formal higher-spin theories [19], and string theory.

Vasiliev's theory, as well as Segal's theory, are based on symmetry. One has a higher-spin
symmetry that is gauged, and interactions are built based on the gauge invariance principle.
The formalism developed by Vasiliev is non-local, his equations are written for multiplets that
contain all spin s �elds as components; they lead to the higher-spin equations of motion provided
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they are partially solved with respect to certain auxiliary conditions and the gauge is �xed
appropriately [20, 20,21].

It might be troubling that the main higher-spin theory available is non-local. Consider that
from the moment one allows non-local interactions, it is completely possible to also consider
non-local �eld rede�nitions. If no locality condition is imposed, then interactions which are
invariant under a given gauge algebra can be formally solved up to any order and for any choice
of couplings. That is, one can perform arbitrary non-local �eld rede�nitions that map order by
order in a weak �eld expansion any interaction to zero [22,23]1. Consistency then implies that
there must be a way to truncate or better de�ne what kind of non-localities are allowed.

This guide, if it exists, would be a breakthrough not just for higher-spin theories. Naturally,
in the past couple of year, e�orts have concentrated on understanding the possible consequences
of these non-localities for vertices of �at space higher-spin theories, as well as other possible
applications in the AdS/CFT correspondence [20, 22, 24, 25], which is a topic that we are not
familiar. We highlight the paper by Sharapov and Skvortsov [26] that gives a geometric in-
terpretation for the origin of this non-local behaviour based on the Hochschild cohomology of
higher-spin algebras; it is interesting that all this complicated behaviour may �nd a succinct
and clear explanation in one piece of mathematics.

Our work also investigated non-local behaviour of higher-spin theories. More precisely, it
hinted the presence of a non-local conformal symmetry already at �at space: it satis�es the
conformal algebra despite being non-locally realized.

Our focus, then, is on free higher-spin theories. They have two known descriptions, which we
refer to as Fronsdal and Penrose formulation. In Fronsdal theory [27, 28], we have constrained
spacetime tensors that form an irreducible representation of the Lorentz group on-shell, while
in Penrose theory one uses twistor geometry to construct irreducible representations of the little
group [29] of the Lorentz group. Both theories are well described by an action which is invariant
under higher-spin gauge symmetries. It is interesting, however, that Penrose formulation is

invariant under local conformal symmetries while Fronsdal formulation is not [30]. It is by
mapping one formulation to another that we can stablish the presence of a non-local conformal
symmetry in Fronsdal theory.

1.2 On worldsheet curvature coupling in the pure spinor

sigma-model.

The pure spinor string is the most suitable formalism for computations of scattering amplitudes,
specially in AdS5 × S5 background due to the manifest PSU(2, 2|4) symmetry [5]. Moreover,
the AdS background has some advantages when compared to the �at space. It is not neces-
sary to introduce non-minimal variables, so in priciple amplitudes could be computed without
regularizations [31].

But, there still exist complications. The evaluation of OPE's is di�cult due to the inter-
acting nature of the theory; supergravity vertex operators have not been completely described,
we have covariant expressions for the dilaton [31], the beta-deformation [32], and the half-BPS
states [33]. In addition to that, the b-ghost is a composite operator which is not holomorphic
for general curved backgrounds [31,34]; this poses a problem for the current prescription of the
scattering amplitudes which could be argued to be even more fundamental than the complete
knowledge of the vertex operators.

Consider that string theory amplitudes are de�ned as integrals of di�erential forms over
the moduli space of Riemann surfaces with marked points [35]. In order to have a well-de�ned
measure of integration, it is necessary that our form is closed and horizontal. Closedness implies

1See also references therein.
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independence of the path of integration while horizontality means that for every di�eomorphism
of the metric our string amplitude remains invariant. Mathematically, horizontality is translated
into holomorphicity of the b-ghost.

Mikhailov and Schwarz [36,37] suggested a geometric interpretation of the string amplitude
using the BV formalism. The string amplitude is described as a pseudo-di�erential form de�ned
over a family of Lagrangian submanifolds that live inside the BV space. It is interesting that this
geometric interpretation generalizes the amplitude prescription for non-holomorphic b-ghosts.

In collaboration with Andrei Mikhailov, we study in this new prescription the insertion
of vertex operators, integrated and unintegrated. We also explore the relationship between
unintegrated vertex operators and the Fradkin-Tseytlin term in the pure spinor formalism.
Explicitly construct the string measure for the AdS5 × S5 background when the amplitude is
deformed by the insertion of a beta deformation vertex.

1.3 On the spectrum and spacetime supersymmetry of het-

erotic ambitwistor string.

The ambitwistor paper is the only one that is not directly connected to AdS5 × S5. It is
connected to the techniques learned during the previous years. We wanted to understand the
problem of describing Ramond backgrounds in RNS formalism, because for quite some time,
we believed that the BV machinery was the appropriate language for this problem. From this
point of view, ambitwistor theory just seemed a good place to test what one has learned about
Ramond vertex operators.

Another motivation was to understand what these ambitwistor strings would look like in
AdS5 × S5. The space of null geodesics has been studied in [38] by Mikhailov, and perhaps
the vertex operators of this sigma model would be easier to describe (in comparison with the
standard pure spinor AdS5×S5 string) given the amount of symmetry that we have. To the best
of our knowledge there is sigma model of written for this space, but it is interesting exercise.

In any case, these ambitwistor models have been on constant investigation recently due to
their connection with the CHY formula for scattering amplitudes. In 2013, Cachazzo, Hei and
Yuan published [39,40] an expression for n-particle tree level amplitude of any massless theory
as an integral over the moduli space of the Riemann sphere with n-punctures. These integrals
are supported on a set of polynomial equations, today known as scattering equations, and the
precise form of the integrand is determined by the theory. Again, to the best of our knowledge,
no one has explained the origin of CHY using standard quantum �eld theory techniques, which
leaves us only with the direct comparison method for knowing which integrand corresponds to
which �eld theory [41,42].

But, even though we don't have an explanation of the CHY formula via quantum �eld
theory, the integral over the moduli space of Riemann surfaces with marked points suggests
a string interpretation: a genus zero amplitude with n insertions of vertex operators. This is
precisely what the ambitwistor string theory does. It reproduces the CHY prescription via a
chiral worldsheet model with no free parameters. The target space is the space of null geodesics,
known as ambitwistor space. The localization over the scattering equations happens naturally
via path integration of the momentum eigenstates.

The model was developed by Mason and Skinner in [43], and is also described as the in�nite
tension limit (α′ → 0) of the bosonic string. In�nite tension limits of supersymmetric strings
� the pure spinor string and RNS string � also exist as well. It is interesting to mention that
this description � the α′ to zero limit of standard string theory � might be incomplete. The
theory is known to have non-unitary states in all formulations with the exception of type IIB
RNS sector. It would be really interesting to understand if the presence of these non-unitarities
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is unavoidable when considering these in�nite tension limits, or if there is in fact some string
theory that isolates precisely super Yang-Mills and supergravity, that is, there exists a well-
de�ned α′ → 0 limit.

This is not the main research direction of these ambitwistor models. E�orts have been on the
generalization of a CHY-type formula for loops. Loop amplitudes were obtained by considering
worldsheet correlators at higher genus surfaces in [44, 45] or what is called "nodal Riemann
sphere". At this point, it is not clear to us the construction of this loop level prescription,
because of the di�culties with gauge �xing. In particular, it is not clear how the worldsheet
metric enters in the construction of the model.

Together with Matheus Lize, we computed the fermionic equations of motion that should
determine the spectrum of the heterotic ambitwistor string. We also have written the super-
symmetry algebra for the combined bosonic and fermionic system. We had hoped that the
equations of motion would be easier to solve, and by supersymmetry we could determine the
bosonic spectra of the theory. But unfortunately, we were not able to �nd a solution for these
di�erential equations.



Chapter 2

On the phase space of free higher-spin

theories and conformal transformations.

2.1 Outline.

We organize our presentation as follows. Section 2 is a brief review, where we explain the two
approaches for free massless higher-spin theories.

In section 3 we write an action for Penrose higher-spin theory. To our knowledge, such
action for general higher-spins has never appeared before in the literature. First-order formu-
lations, however, were used by Fradkin and Vasiliev in [46] for AdS space, where they were also
extended to interactions. More recently, Kirill Krasnov described full self-dual gravity in [47]
using an action that resembles ours; but, in our case, this action is de�ned over complex �eld
con�gurations, and it describes o�-shell a doubled set of the higher-spin modes 1.

We look at some examples, so the spins 1, 3/2 and 2 cases are discussed in detail, each of
which highlights a particular feature of our construction outlining our strategy for dealing with
general spins. The spin s case is done in section 4; our construction is a particular instance of
the prescription given in [48], where a set of equations of motion and a presymplectic structure
are shown to lift to a well-de�ned Lagragian.

With the map de�ned, we can investigate conformal invariance. In section 5 we show
that Penrose action does have conformal symmetry for every spin s. Therefore one is able to
push forward these transformations to the Fronsdal case. For spins lower than 2, these new
transformations agree with usual conformal change of coordinates. The �rst non-trivial case
is linearized gravity. We write explicitly the resulting transformation, where one is able to see
the di�erence from standard Lie derivatives.

On notation. Our conventions follow those of [49]; we are concerned with 4-dimensional
Minskowski space; so, through out the paper, the various indices will always be running over
�xed intervals. Small Latin letters, for example, are spacetime indices running from 0 to 3,
so that Am is a spacetime covector. Capital Latin letters, in turn, are spinor indices in Van
der Warden notation, that is, dotted and undotted running from 0 to 1. In particular, a Dirac
spinor is a two component Weyl and anti-Weyl spinor written like

Ψ =

(
ψA
χȦ

)
(2.1.1)

for some chiral spinor ψA and anti-chiral χȦ.

1 In phase space, however, there is a well-de�ned notion of reality, and it is where we obtain a single copy of
the spectrum.
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Such notation is designed so that there is a correspondence between spacetime and spinor
indices where, for instance, m will correspond to the pairMṀ . The explicit realization is given
by the Pauli matrices with index structure σm

MṀ
, where

σ0 = −1 and ~σ = (σ1, σ2, σ3).

The epsilon symbol satis�es εABε
BC = δ C

A for undotted and dotted indices. This enables one
to raise the indices of σm

MṀ
to obtain

σmMṀ , where σ0 = −1 and ~σ = (−σ1,−σ2,−σ3).

Everything is combined to form the Weyl representation of the Dirac matrices:

Γm =

(
0 σm

σm 0

)
, (2.1.2)

which satisfy the Cli�ord algebra

{Γm,Γn} = −2ηmn (2.1.3)

for the metric signature (−,+,+,+).

2.2 Review of massless higher-spin formulations.

This section is an overview of some background material based on references [27] and [28]. It
begins with Fronsdal theory and then proceeds to Penrose description [50].

2.2.1 Fronsdal theory of free massless higher-spin �elds.

Let us begin with bosonic spins. Given a totally symmetric tensor of s indices, hm1···ms , which
has higher-spin gauge freedom of the form

δhm1···ms = s ∂(m1εm2···ms) (2.2.1)

and is double-traceless:

ηm1m2ηm3m4hm1m2m3m4···ms = 0; (2.2.2)

one can form the so-called Fronsdal tensor:

Fm1···ms = �hm1···ms − s ∂(m1∂
ph|p|m2···ms) +

s(s− 1)

2
∂(m1∂m2h

p
|p|m3···ms). (2.2.3)

A higher-spin theory in �at spacetime is then described by the action

S =
(−1)

2

s+1 ∫
d4x

(
hm1···msFm1···ms −

s(s− 1)

4
h nm3···ms
n F p

pm3···ms

)
, (2.2.4)

which is symmetric in the higher-spin �eld hm1···ms and gauge invariant under transformations
(2.2.1).

The equations of motion read

Fm1···ms −
s(s− 1)

4
η(m1m2F

p
pm3···ms) = 0. (2.2.5)
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And these can be further simpli�ed if (2.2.2) is taken into account. It implies

ηm1m2ηm3m4Fm1m2m3m4···ms = 0 (2.2.6)

which, in turn, allows us to cast equation (2.2.5) as

Fm1···ms = 0. (2.2.7)

We see the Fronsdal tensor �xes hm1···ms up to gauge transformations since both have the same
number of degrees of freedom. The physical degrees of freedom, however, are obtained once we
gauge �x the above description. It is possible to gauge away the trace part of the higher-spin
�eld hm1···ms as well as its divergence. Consider the gauge �eld ε which satis�es

hp pm3···ms = ∂nεnm3···ms (2.2.8)

and

∂phpm2···ms = �εm2···ms , (2.2.9)

so that the remaining gauge symmetry obeys

�εm2···ms = 0, ∂nεnm3···ms = 0, and εp pm3···ms = 0. (2.2.10)

Once we choose (2.2.10), our higher-spin �eld satis�es

�hm1···ms = 0, ∂phpm2···ms = 0, and hp pm3···ms = 0; (2.2.11)

thus proving that hm1···ms describes a spin s massless particle.
There are minor changes if one wants to describe fermions. For a spin s = h+ 1/2, we have

a Majorana spinor Ψm1···mh totally symmetric in its h indices which has gauge freedom

δΨm1···mh = h ∂(m1χm2···mh), (2.2.12)

and satis�es the triple Γ-trace condition:

Γm1Γm2Γm3Ψm1m2m3···mh = 0. (2.2.13)

The fermionic Fronsdal tensor,

Fm1···mh = Γa∂aΨm1···mh − h ∂(m1Γ
aΨm2···mh)a, (2.2.14)

is the gauge invariant object used to construct the action

S =
1

2

∫
d4x

(
Ψ
m1···mh

Fm1···mh −
h

2
ΓpΨ

m2···mh
p ΓaFam2···mh −

h(h− 1)

4
Ψ

qm3···mh
q F p

pm3···mh

)
(2.2.15)

where Ψ
m1···mh satis�es the Majorana condition:

Ψ
m1···mh

= ΨTC, and C =

(
εBA 0

0 εḂȦ

)
(2.2.16)

is the charge conjugation matrix. The equations of motion are

Fm1···ms −
h

2
Γ(m1Γ

aFm2···ms)a −
h(h− 1)

4
η(m1m2F

p
m3···ms)p = 0. (2.2.17)
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and they can be simpli�ed once one notices (2.2.13) implies

Γm1Γm2Γm3Fm1m2m3···mh = 0, (2.2.18)

which enables one to cast (2.2.17) in the form

Fm1···mh = 0. (2.2.19)

Notice that, again, the fermionic Fronsdal tensor �xes Ψm1···mh up to gauge transformations.
The physical degrees of freedom are obtained from the gauge parameter χm2···mh that satis�es

ΓpΨpm2···mh = Γm∂mχm2···mh , (2.2.20)

so that the remaining gauge symmetry obeys

Γm∂mχm2···mh = 0 and Γpχpm2···mh = 0. (2.2.21)

The gauge �xing (2.2.20) ensures that Ψm1···mh is an irreducible representation of the little
group. The on-shell degrees of freedom are then described by a �eld Ψ which satis�es

Γp∂pΨm1···mh = 0 and ΓpΨpm2···mh = 0 (2.2.22)

thus proving Ψm1···mh describes an spin s = h+ 1/2 representation.

2.2.2 Penrose theory of free massless higher-spin �elds.

Penrose's description of massless higher-spin �elds is obtained from the Penrose transform. It
relates homogeneous functions of de�nite degree in twistor space to massless higher-spin �elds
in Minkowski space. For an introduction to twistors, see reference [51] as well as references
therein.

Here we describe the integral expressions obtained by Penrose in [50] only to give some
context. These integral formulas are not necessary for the rest of this paper. We are only
interested in the spacetime �elds they de�ne.

Let Z = (ωA, πȦ) be the coordinates of a twistor inside the complex projective line P1.
These are constrained by the twistor equation:

ωA = xAȦπȦ, (2.2.23)

where xAȦ parametrizes the Minkowski space. Consider also a point Z = (λA, µ
Ȧ) in the dual

twistor space and �x two closed cycles of integration: γ inside P1 and γ∗ inside the dual line
P∗1. De�ne the following spacetime spinors

φȦḂ··· Ḋ(x) =
1

2πi

∫
γ

πȦπḂ . . . πḊ︸ ︷︷ ︸
2s

f(Z)πĖdπĖ (2.2.24a)

and

φAB···D(x) =
1

2πi

∫
γ∗
λAλB . . . λD︸ ︷︷ ︸

2s

f(Z)λAdλA (2.2.24b)

for some semi-integer number s.

Remark. These integrals are well de�ned over P1 if the integrands are homogeneous
functions of degree 0. Hence, the complex functions f(Z) and f(Z) must have homogeneity
−2s− 2 in πȦ and λA respectively.
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These spinors form an irreducible representation of the Lorentz group SL(2,C) and satisfy,
by consequence of their de�nitions, the di�erential equations

∂AȦφȦḂ···Ḋ(x) = 0 (2.2.25)

and

∂ȦAφAB···D(x) = 0. (2.2.26)

In view of the (anti-)self-duality conditions, we can see φAB···D and φ
ȦḂ···Ḋ

describe right-handed
massless free �elds of spin s and left-handed massless free �elds of spin −s respectively.

Let aȦB···D be the �eld given by

φȦḂ··· Ḋ = ∂B
(Ḃ
· · · ∂D

Ḋ
aȦ)B···D. (2.2.27)

It readily follows that equation (2.2.25) is automatically satis�ed when

∂ Ȧ
(A aB···D)Ȧ = 0. (2.2.28)

Notice, however, that there is an ambiguity. There are gauge symmetries of the form

δaȦB···D = ∂Ȧ(Bξ···D) (2.2.29)

for some symmetric spinor ξC···D of 2s− 2 indices. These are the higher-spin gauge symmetries
which were also present in Fronsdal theory.

We will always refer to φAB···D and aȦB···D as the fundamental �elds of Penrose description.
And, for future reference, we call φAB···D the curvature spinor and aȦB···D the gauge �eld.

2.3 Higher-spin action in Penrose's description.

2.3.1 Higher-spin action.

We suggest the following higher-spin action for a massless spin s particle:

S = i

∫
d4x

(
φAB···D∂AȦa

Ȧ
B···D

)
(2.3.1)

where φAB ···D and aȦB···D have 2s and 2s− 1 undotted indices respectively. Invariance under
higher-spin gauge symmetries is respected, because if we consider the variation under (2.2.29)
the action transforms into

δS = i

∫
d4x

[
φAB···D∂AȦ∂

Ȧ
(Bξ···D)

]
. (2.3.2)

From the identity

∂AȦ∂
Ȧ
B = +

1

2
εAB�, (2.3.3)

we get δS = 0 since the curvature spinor φAB···D is completely symmetric in its indices. The
equations of motion obtained from (2.3.1) are precisely (2.2.25) and (2.2.28):

∂ȦAφ
AB···D = 0 and ∂Ȧ(Aa

Ȧ
B···D) = 0.
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2.3.2 Reality conditions.

It is a good point to make some observations. First, although twistors were used as a motivation
for this action, we are not integrating over twistor space. We are only using a spinor basis and
it is possible to write this action with usual Lorentz indices too. The convenience of using
spinors is the easier treatment of self-duality conditions. Second, and possibly a troublesome
point, is that it appears that this action describes just one helicity, but this is not the case.

Let us discuss this point in detail. For the sake of argument, let us specialize our discussion
to the spin 1 case. We want to show that the phase space spanned by these equations is
equivalent to the phase space of Maxwell's electromagnetism. The natural route is to describe
a canonical map. Therefore, given the data (φ, a), we are supposed to construct a map to the
Maxwell gauge �eld A,

H : (φ, a) 7−→ A, (2.3.4)

where solutions of the (φ, a) system are carried to solutions of the Maxwell's equations. In
addition, we must verify two things: the kernel of this map must be zero, otherwise there are
con�gurations of φ and a which would correspond to zero electromagnetic solution; and the
cokernel should also be zero, that is the set of all Maxwell solutions, given by A, should be fully
covered.

The canonical map H is constructed as follows. Given the equation of motion (2.2.25),
locally by the Poincaré lemma, we can write φ as

φ = da (2.3.5)

with some possible ambiguity given by the addition of a closed form. The second equation of
motion, (2.2.28), is the statement that a does not contribute to the self-dual part, hence it must
describe the anti-self-dual piece. It becomes natural to de�ne

A = a + a (2.3.6)

since it satis�es Maxwell's equations as a consequence of self-duality:

d ? dA = d ? d (a+ a)

= d ? (da+ da)

= id (da− da)

= 0. (2.3.7)

Notice that the kernel of (2.3.6) indeed vanishes. One takes −a+ dα = a, for some α, and, by
consequence of (2.2.28), φ = 0, which forces a to be pure gauge. That the cokernel vanishes is
a more subtle point. Because the Hodge star operator ? satis�es ?2 = −1 in four dimensions,
it splits the bundle Λ2, of two-forms in Minkowski space, into a direct sum,

Λ2 = Λ2
+ ⊕ Λ2

−, (2.3.8)

where Λ2
± are the ±i eigenspaces of ?. Thus, any two form can be written as

F = φ + φ (2.3.9)

and, by the Poincaré lemma, we locally have the decomposition (2.3.6).
The analysis of this construction is special to the 4-dimensional Minkowski space and it

carries through only for the equations of motion. It is not true that the action (2.3.1) is o�-
shell equivalent to the Maxwell action. One way to understand this is to notice that the action
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(2.3.1) is not real. In general, equation (2.3.1) is de�ned over some complex in�nite-dimensional
manifold.

Such consideration raises the question if whether the map (2.3.6) de�nes a real A or not. It
turns out that, in phase space, complex conjugation acts as an involution, where the complex
conjugation map, denoted c.c., is

c.c.

(
a
φ

)
=

(
d−1φ
da

)
. (2.3.10)

It has �xed point given by

φAB = φȦḂ = ∂C(Ȧa
C
Ḃ)
, (2.3.11)

from where we see that the complex conjugate of a is a and vice-versa. To summarize our results:
the action (2.3.1) is complex, but in phase space � that is, the space of classical solutions � there
is a well-de�ned notion of reality, which is given by the �xed point of the involution (2.3.10),
namely equation (2.3.11). Only in this submanifold, the two theories classically agree.

Outside the �xed point, the complex theory describes two photons. Self-duality of φ allows
one to write

φ = F + i ? F (2.3.12)

for a real 2-form F . Hence, the equation of motion dφ = 0 implies Maxwell's equations:

dF = 0 and d ? F = 0. (2.3.13)

On the other hand, the gauge �eld a on-shell gives an anti-self-dual 2-form:

da = G− i ? G (2.3.14)

from where the second Maxwell equations come:

dG = 0 and d ? G = 0. (2.3.15)

The reality conditions (2.3.11) impose F = G.

2.3.3 Making action real.

Consider the real part of the action2 (2.3.1):

S =

∫ (
φ ∧ da+ φ ∧ da

)
. (2.3.16)

It turns out that the equations of motion are unchanged. To see this, consider the variation of
this action under the real and imaginary parts of a, it gives

d
(
φ+ φ

)
= 0 and d

(
φ− φ

)
= 0 (2.3.17)

respectively. Self-duality of φ does not allow us to vary its real and imaginary parts indepen-
dently, therefore we have a single equation of motion:

d (a+ a) + i ? d (a− a) = 0. (2.3.18)

2We would like to thank Arkady Tseytlin for suggesting this idea.
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Inspection shows that the real and imaginary parts of a satisfy the Maxwell's equations while φ
again satis�es dφ = 0. The two copies of the Maxwell theory can be identi�ed with the reality
condition (2.3.11). It is surprising that the addition of complex conjugatation does not change
the �eld content of the theory.

2.3.4 Symplectic structure.

We wish to establish the above correspondence for every spin s �eld. The above consideration
can be rephrased using the notion of symplectic structure. In this language, although the action
is de�ned for complex �eld con�gurations, there is a real submanifold inside the phase space
where the restriction of the symplectic form derived from (2.3.1) is non-degenerate. Then, we
will construct a map H that becomes a canonical transformation to the phase space of Fronsdal.

The symplectic structure for action (2.3.1) is

Ω = i

∫
C

δφAB···D ∧ δaȦ B···D ∧ d3xAȦ, where nAȦd3x = d3xAȦ, (2.3.19)

for a normal vector nAȦ to the spacelike contour C. It is δ-closed and invariant under defor-
mations of C, because

∂AȦ

(
δφAB···D ∧ δaȦ B···D

)
= 0 (2.3.20)

once we use the equations of motion. However, note that this symplectic structure is also
degenerate. Degeneracies indicate the presence of gauge symmetries in the action. In our case,
if we let

V = ∂Ȧ(Bξ···D)(x)
δ

δaȦB···D(x)
(2.3.21)

be a tangent vector �eld along gauge trajectories, we get

ιV Ω = i

∫
C

∂Ȧ (Bξ···D)δφ
AB···Dd3xAȦ

= i

∫
C

∂Ȧ (B

[
ξ···D)δφ

AB···D] d3xAȦ − i
∫
C

ξ(C···D∂
Ȧ

B) δφ
ABC···Dd3xAȦ

= i

∫
C

∂Ȧ (B

[
ξ···D)δφ

AB···D] d3xAȦ = 0, (2.3.22)

where the last line vanishes due to C being a closed contour. Degenerate symplectic structures
descend to a reduced phase space. If we de�ne ker Ω to be the set of gauge generators, then
the reduced phase space is given by the factorM/ ker Ω. On-shell gauge-invariant functions are
points in this space and they coincide with physical observables.

It still remains to be checked whether this symplectic structure is real over the �xed point
de�ned by the involution3. The �xed point can be written as

φAB···D = φȦḂ···Ḋ = ∂ B
(Ḃ
· · · ∂ D

Ḋ
aȦ)B···D (2.3.23)

and it follows that

3See paragraph above equation (2.3.11)
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Ω = −i
∫
C

δφ
ȦḂ··· Ḋ ∧ δaA

Ḃ··· Ḋ ∧ d3xAȦ

= −i
∫
C

∂
(Ḃ
B ∂

Ċ
C . . . ∂ḊD δa

Ȧ)B···D ∧ δaA
Ḃ···Ḋ ∧ d3xAȦ

= (−)2s+1i

∫
C

δaȦB···D ∧ ∂Ḃ(B ∂
Ċ
C . . . ∂ḊD δaA)Ḃ···Ḋ ∧ d3x A

Ȧ

= −i
∫
C

δaȦ B···D ∧ δφAB···D ∧ d3xAȦ

= +Ω, (2.3.24)

thus proving that indeed the symplectic structure is real.
Having the symplectic structure for Penrose theory, it remains to construct the canonical

map which will relate the two descriptions. In doing so, we are ready to prove that the two
phase spaces agree.

2.4 Canonical map between descriptions.

It is instructive to consider some examples before treating the general case. We specialize our
discussion to Rarita-Schwinger and linearized gravity in the next two subsections. Each case
will serve to emphasize the introduction of a new tool for the analysis.

In the Rarita-Schwinger case, for example, we will see how the spliting of the gauge �eld
into self-dual and anti-self-dual connection � as it has already happened in electromagnetic case
� comes about in the symplectic structure. The main objective is to demonstrate, on the real
slice given by (2.3.23), that the canonical map indeed preserves the symplectic structure.

In linearized gravity, we show how the analysis can be made rather straightforward once we
pass to momentum space. It will avoid dealing with integration by parts when we show that
the symplectic structures agree.

2.4.1 Rarita-Schwinger case.

The Rarita-Schwinger theory is obtained when h = 1 in Section 2.2.1. We have the Majorana
spinor

Ψm =

(
ψAm

ψ
Ȧ

m

)
(2.4.1)

with higher-spin gauge symmetries δΨm = ∂mε and gauge-invariant action

S =

∫
d4x

(
Ψ
m
Fm +

1

2
ΨpΓ

p ΓmFm

)
. (2.4.2)

The equations of motion read

Fm = Γn∂nΨm − ∂mΓnΨn = 0. (2.4.3)

For our applications, it will be useful to consider the gauge-invariant combination

Rmn = ∂mΨn − ∂nΨm, (2.4.4)
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in order to make contact with the curvature spinors φABC and φ
ȦḂĊ

. To see how, let us
introduce the following spinor counterpart of Rmn:

RMṀNṄ = dΨ(ṀṄ)εMN − dΨ(MN)εṀṄ , (2.4.5)

where abbreviations have been used:

∂A
(Ṅ

ΨṀ)A = dΨ(ṀṄ) =

(
dψ(ṀṄ)B

dψ
Ḃ

(ṀṄ)

)
(2.4.6a)

and

∂Ȧ(MΨ Ȧ
N) = dΨ(MN) =

(
dψ(MN)B

dψ
Ḃ

(MN)

)
. (2.4.6b)

It enables us to rewrite the equations of motion in the form

ΓmRmn = 0 7−→

(
0 δ M

B δṀ
Ḃ

εMBεṀḂ 0

)(
dψṀṄBεMN − dψMNBεṀṄ

dψ
Ḃ

ṀṄεMN − dψ
Ḃ

MNεṀṄ

)
= 0. (2.4.7)

from where we obtain

dψȦṄN − dψCNC εȦṄ = 0 (2.4.8a)

and

dψ
Ċ

ĊṄεAN + dψ
Ṅ

AN = 0. (2.4.8b)

A quick inspection shows the only possible solutions for (2.4.8a) are

dψȦṄN = 0 and dψCNC = 0 (2.4.9)

since the �rst term is symmetric in ȦṄ while the second one is anti-symmetric in ȦṄ . The
same type of reasoning leads us to the solutions of (2.4.8b):

dψ
Ċ

ĊṄ = 0 and dψ
Ṅ

AN = 0. (2.4.10)

These solutions annihilate any components with dotted and undotted indices. Moreover they
completely symmetrize the self-dual and anti-self-dual part. The remaining components split
Rmn into

Rmn 7−→ −dψ(MNA)εṀṄ − dψ(ȦṀṄ)εMN (2.4.11)

and we can identify

−dψ(MNA) as φAMN , (2.4.12)

and

−dψȦṀṄ as φȦṀṄ . (2.4.13)
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This procedure occurs for other spins as well. One de�nes a gauge-invariant combination,

and once the equations of motion are imposed the spinors φAB···D and φ
ȦḂ···Ḋ

are the only
remaining components. Notice that

∂[mRnp] = 0 (2.4.14)

is trivially satis�ed in the presence of Ψm. As soon as we change pictures and use the curvature
spinors, this equation turns into an equation of motion. The anti-symmetry is equivalent to a
contraction of spinor indices, and so we recover (2.2.25) and (2.2.26):

∂ȦAφAMN = 0 and ∂AȦφȦṀṄ = 0.

The Penrose description splits the gauge �eld hm1···ms into anti-self-dual and self-dual parts
treating the self-dual part via the curvature while the anti-self-dual part is described with the
anti-self-dual gauge �eld.

In the Rarita-Schwinger case, the gauge �eld aȦBC is mapped to the anti-chiral part ψ
mȦ

with the ansatz

ψ
mȦ

= iσmĖE
(
∂ȦCaĖCE +

1

2
∂ C
Ė
aȦCE

)
(2.4.15)

where the coe�cients are �xed by requiring the higher-spin gauge symmetries to coincide. For

consistency, it is also possible, with this choice, to check that ψ
mȦ

satis�es the equations of
motion when aȦBC does. We should point out that this map is the non-trivial piece of our
correspondence. For other higher-spins, it has to be constructed with the right coe�cients case
by case.

One can derive the symplectic structure from action (2.4.2) and it reads:

Ω =

∫ (
2δψm ∧ σmσnpδψp + 2δψm ∧ σmσnpδψp

+ δψm ∧ σnδψ
m

+ δψm ∧ σnδψm − δψn ∧ σmδψm − δψ
n ∧ σmδψm

)
∧ d 3xn. (2.4.16)

If we intend to describe the spin 3/2 piece, we are allowed to use the gauge

ΓmΨm = 0 (2.4.17)

so the symplectic structure collapses to

Ω = 2

∫
δψm ∧ σnδψ

m ∧ d 3xn. (2.4.18)

In Penrose case, the symplectic structure follows from (2.3.1), and it is

Ω = i

∫
δφABC ∧ δaȦBC ∧ d 3xAȦ. (2.4.19)

Notice the gauge condition implies

∂ḂAψĖEA = 0, (2.4.20)

and by consequence of (2.4.15):

∂ B
Ȧ

aȦ BC = 0. (2.4.21)
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When substitute our ansatz into the symplectic structure (2.4.18), we obtain

Ω = +i

∫
δψĖEA ∧ ∂ C

Ė
δaȦEC ∧ d3x Ȧ

A (2.4.22)

and there is a subtlety we must highlight. Despite the advantage of being able to use the
equations of motion when dealing with a symplectic structure, we are not allowed to integrate
by parts indiscriminately. If we assume, for the moment, that we can make such integration,
then we would get the desired result:

Ω = +i

∫
δψĖEA ∧ ∂ C

Ė
δaȦEC ∧ d3x Ȧ

A = −i
∫
∂ C
Ė

δψĖEA ∧ δaȦEC ∧ d3x Ȧ
A , (2.4.23)

because, by the equations of motion, the dψ term is symmetric in the pair CE but also in EA
� thus being symmetric in all of its indices � and we have

Ω = −i
∫
∂ C
Ė

δψĖEA ∧ δaȦEC ∧ d3x Ȧ
A = −i

∫
δφCEA ∧ δ aȦEC ∧ d3x Ȧ

A . (2.4.24)

The integration by parts is justi�ed if we show that the two terms di�er by an exact form.
Consider

∫
∂m δX

[mn] ∧ d3xn =

∫
∂ĖC δX

[ĖC|ȦA] ∧ d3xȦA

= −
∫
∂ C
Ė

(
δψĖAE ∧ δaȦCE − δψ

E
Ȧ C

∧ δaĖAE
)
∧ d3x Ȧ

A (2.4.25)

and notice that (2.4.25) is exactly what we want:

−
∫ (

∂ C
Ė

δψĖEA ∧ δaȦEC ∧ d3x Ȧ
A + δψĖEA ∧ ∂ C

Ė
δaȦEC ∧ d3x Ȧ

A

)
, (2.4.26)

since all other terms cancel after we use (2.4.20) together with the equation of motion for the
gauge �eld aȦB···D:

∂Ȧ(AaBC)Ȧ = 0. (2.4.27)

In all other cases, the integration by parts will be the main issue. We circumvent the di�culty
of �nding appropriate exact forms by working in momentum space.

2.4.2 Linearized gravity case.

When s = 2 in section 2.2.1 we have linearized Einstein theory of gravity. The �eld hmn has
gauge invariance of the form

δξhmn(x) = ∂mξn(x) + ∂nξm(x) (2.4.28)

and is described by the �at space action

S = −1

2

∫
d4x

(
hmnRmn −

1

2
hp pR

q
q

)
. (2.4.29)
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The Rmn and R
p
p represent the Ricci tensor and Ricci scalar respectively. Both can be obtained

from the linearized curvature given by

Rmnpq = 4 ∂[mhn][p

←−
∂ q]. (2.4.30)

The equations of motion are the linearized Einstein �eld equations

Rmn = 0 (2.4.31)

and the symplectic structure is

Ω = −1

2

∫ (
2δhmn ∧ ∂pδh n

p − δhpn ∧ ∂mδhpn + δh p
p ∧ ∂mδh n

n

− ∂nδh
mn ∧ δh p

p + ∂pδhnn ∧ δh m
p

)
∧ d3xm. (2.4.32)

In order to change to Penrose description, we need to identify the (φ, a) �elds. The self-dual
part of Rmnpq gives φMNPQ via

φMNPQ = ∂Ṁ(M∂|Ṅ |Nh
ṀṄ

PQ), (2.4.33)

while the anti-self-dual piece is described by the map

hMṀNṄ = −i∂ C
Ṁ

aṄCMN − i∂
C

Ṅ
aṀCMN . (2.4.34)

Again, (2.4.34) is an ansatz. It is constructed by requiring gauge symmetries to coincide. An
interesting feature we should stress is that h comes traceless since a is completely symmetric
in its undotted indices. This is not a problem. In Fronsdal theory these degrees of freedom are
pure gauge.

We will demonstrate that the phase spaces of these descriptions agree. In this on-shell
counting, let us go into Fourier space and �x the only non-zero component of the momentum
to be p 2̇

2 . From the spinor description, we have then

∂ȦAφABCD = 0 =⇒ p2̇1φ1BCD = 0, (2.4.35)

which implies that every term with an 1 index vanishes. The only non-zero component of φ
thus is φ2222. For the gauge �eld a, we have

∂ Ȧ
(A aBCD)Ȧ = 0 =⇒ p 2̇

(2 aBCD)2̇ = 0, (2.4.36)

which means that every a with a 2̇ and a 2 index vanishes. The only remaining degrees of
freedom are a1̇BCD. However, we should account for the gauge invariance:

δaȦBCD = ∂Ȧ(B ξCD) =⇒ δa1̇2CD = p1̇(2 ξCD), (2.4.37)

which makes the only non-zero component a1̇111. Finally the symplectic structure for spin 2
Penrose theory is

Ω = i

∫
δφ1111 ∧ δa2̇

111 ∧ d3x12̇. (2.4.38)

Let us turn to Fronsdal theory. Fix a gauge where hmn is traceless, so the symplectic
structure (2.4.32) reduces to

Ω = −1

2

∫ (
2δhmn ∧ ∂pδh n

p − δhpn ∧ ∂mδhpn
)
∧ d3xm. (2.4.39)
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The degrees of freedom of the self-dual part are �xed by Einstein's equation since φ is written
in terms of h. For spin 2:

R(MṀ |NṄ) = p2h(MṀ |NṄ) + p(MṀp
ah|a|NṄ) = 0, (2.4.40)

which gives, after we impose p2 = 0,

p(MṀhNṄ)12̇ = 0. (2.4.41)

The general solution of this equation is

h(12̇|MṀ) = 0. (2.4.42)

So, for the self-dual part of the curvature, we have then

φ22CD = −p 2̇
(2 p

2̇
2 hCD)2̇2̇ =⇒ φ2222 = −p 2̇

2 p 2̇
2 h222̇2̇. (2.4.43)

To connect the two descriptions, we split the gravitational �eld h into a self-dual and
anti-self-dual part. The self-dual piece is already described by Einstein's equations while the
anti-self-dual part is given by the ansatz (2.4.21). It implies:

h(11̇|11̇) = p 1
1̇
a1̇111 + p 1

1̇
a1̇111 = +2p 1

1̇
a1̇111. (2.4.44)

These considerations collapse the symplectic structure to

Ω = − i
2

∫ (
2δhmn ∧ p12̇δh n

12̇

)
∧ d3xm −

(
δhpn ∧ p12̇δhpn

)
∧ d3x12̇

= +
i

2

∫ (
δhpn ∧ p12̇δhpn

)
∧ d3x12̇

= +i

∫ (
p 1

1̇
δa1̇111 ∧ p12̇δh1̇11̇1

)
∧ d3x12̇

= +i

∫ (
δa1̇111 ∧ p 1

1̇
p12̇δh1̇11̇1

)
∧ d3x12̇

= −i
∫ (

δa1̇111 ∧ p 2̇
2 p 2̇

2 δh222̇2̇

)
∧ d3x12̇

= +i

∫
(δa1̇111 ∧ δφ2222) ∧ d3x12̇. (2.4.45)

This computation highlights the usefulness of momentum space. We can work directly with
physical degrees of freedom as it is suggested when dealing with symplectic structures.

2.4.3 Canonical map between formulations for general spin s.

In order to relate the two descriptions in general case, we split the Fronsdal �eld hm1···ms into
self-dual and anti-self-dual components. The anti-self-dual part is described by the gauge �eld
aṀA···N via

hM1Ṁ1 ···MsṀs
= (−i)2s−1∂ Ns

(Ṁs
. . . ∂ N2

Ṁ2
aṀ1)N2···NsM1···Ms

, (2.4.46)

while the self-dual degrees of freedom are given by the curvature φA···D, which should come
from the gauge-invariant tensor

R[m1n1]··· [msns] = ∂[ns|∂[ns−1| . . . ∂|[n1hm1]|··· |ms−1]|ms]. (2.4.47)
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Once Fronsdal equations are imposed, we expect4

φM1N1···MsNs = R(M1N1 ···MsNs) = ∂ Ṅs
(Ns

. . . ∂ Ṅ1
N1

hM1...Ms)Ṅ1... Ṅs
. (2.4.48)

We also expect that any component of Rm1n1···msns which contains mixed dotted and undotted
indices should vanish. In what follows, we will prove that this is indeed the case.

For the moment, we should stress interesting features of this map. The anti-self-dual com-
ponent gives a traceless hm1···ms . But this is not a problem since these degrees of freedom are
pure gauge. Moreover, in order to show that the symplectic structures match, one does not
need all coe�cients in the anti-self-dual map. The Fronsdal equations will restrict these to a
single component each.

2.4.4 Equivalent symplectic structures: Fourier counting.

We proceed to the symplectic structures. We circumvent the need to look for exact forms by
going to momentum space, which also makes straightforward to work only with physical degrees
of freedom.

Let us choose a non-zero p 2̇
2 component. Hence, the equation of motion for aȦB···D collapses

into

p 2̇
(2 a2̇B2···B2s)

= 0, (2.4.49)

and we can see the only non zero component is a1̇B···D. We can restrict further using the gauge
transformations:

δa1̇2···D = p1̇(2ξ···D), (2.4.50)

from where the only physical component which remains is a1̇1···1. Thus, the map we described
in (2.4.46) gives h11̇ ··· 11̇ component of the Fronsdal gauge �eld.

The degrees of freedom which the curvature spinor describes are obtained from the Fronsdal
equation. Together with the condition p2 = 0, they imply

p(M1Ṁ1
h12̇M3Ṁ3···MsṀs)

= 0, (2.4.51)

since our map describes a traceless hm1···ms �eld. This equation forces h12̇.... = 0, which also
annihilates any component with mixed dotted and undotted indices, and so we have

φ22···22 = isp 2̇
2 . . . p 2̇

2 h2...22̇...2̇. (2.4.52)

Such considerations are in line with the usual formulation of Fronsdal theory, where the degrees
of freedom contained in the trace and divergence of hm1···ms can be gauged away.

We combine all of such considerations to show the symplectic structures agree. Note that
we are allowed to discard terms of the type∫

δh.... ∧ ∂php... and

∫
δhp p.... ∧ δh.....

because h12̇..... vanishes and our canonical map gives a traceless hm1···ms . Thus the only allowed
combination for the bosonic case is of the form

Ω =

∫
(δhn1···ns ∧ ∂mδhn1···ns) ∧ d3xm (2.4.53)

and if we apply our results to (2.4.53) we obtain

4Remember, to a spacetime index m there corresponds a pair MṀ .
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Ω =

∫ (
δh(11̇|···|11̇) ∧ p 2̇

2 δh(11̇|···|11̇)
)
∧ d3x 2

2̇

= (−i)s−1

∫ (
p1

1̇
. . . p1

1̇
δa1̇1···1 ∧ p 2̇

2 δh2···22̇···2̇

)
∧ d3x 2

2̇

= (−)s−1(−i)s−1

∫ (
δa1̇1···1 ∧ p 2̇

2 . . . p 2̇
2 δh2···22̇···2̇

)
d3x 2

2̇

= (−)s−1(−i)s−1(−i)s
∫

(δa1̇1···1 ∧ δφ22···22) ∧ d3x 2
2̇

= −i
∫

(δa1̇1···1 ∧ δφ22···22) ∧ d3x 2
2̇

(2.4.54)

thus proving the desired result.

2.5 Conformal Invariance.

The conformal generator vc is

vc = ac + ωcbxb + αxc + 2 (ρ . x)xc − ρc(x . x), (2.5.1)

where the �rst two terms are the usual Poincaré transformations; the third one describes di-
latations and the last two generate special conformal transformations.

2.5.1 Lie derivation of spinors.

In treating Penrose action, we are going to need to vary spinor �elds under conformal transfor-
mations. The Lie derivative of a spinor �eld is not widely used when compared with the usual
tensor variations. This subsection explains brie�y this terminology before applying it to our
case.

In geometry, given a vector �eld vc and a vector density ub, the Lie derivative of ub with
respect to vc is de�ned as

Lvu
b = va∂au

b − ua∂avb + wu (∂av
a) ub, (2.5.2)

where wu is the density weight of ub. When ub is null, it can be written as product of two
spinors, ub = µBµḂ, and so we can use equation (2.5.2) to de�ne the Lie derivative of µB.

Following this procedure, a general spinor density [51,52] µA �ows along the �ux of vc such
that its in�nitesimal change is given by

δvµ
A = Lvµ

A = vm∂mµ
A + µBfAB + wµ (∂mvm)µA; (2.5.3)

in here wµ denotes the density weight of the µ �eld and fAB is the self-dual part of vc:

fAB = −1

2
∂Ċ(Av Ċ

B) . (2.5.4)

In deriving (2.5.3) from (2.5.2), we must impose that vc is a conformal generator. Indeed, the
second term in (2.5.2) gives a contribution of the form:
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−ua∂avb = −µAµȦ∂AȦvBḂ

= −µAµȦ∂[AȦvBḂ] − µ
AµȦ∂(AȦvBḂ)

= −µAµȦ
(
fABεȦḂ + f ȦḂεAB

)
− µAµȦ∂(AȦvBḂ)

= µḂ µ
AfAB + µB µ

Ȧf ȦḂ − µ
AµȦ∂(AȦvBḂ), (2.5.5)

in which the last term does not split into something dependent of B and Ḃ separately. It is
precisely when vc is a conformal generator, that is

∂(AȦ vBḂ) =

(
1

2
∂mvm

)
εAB εȦḂ. (2.5.6)

that we can identify the desired contributions to each spinor.

In our applications, of special interest is the self-dual part of the special conformal trans-
formations. We write it explicitly for future use:

fAB = −2 ρĊ(Ax
Ċ

B) . (2.5.7)

2.5.2 Weight conventions.

The weight of a density is a geometrical quantity, that is, it has �xed value independent of
which transformation is made; and usually we would have

LvεAB =
λ

2
εAB. (2.5.8)

However, there is still freedom if we de�ne εAB to be a density instead of a tensor. We choose
the weight of εAB such that

LvεAB = 0. (2.5.9)

From de�nition (2.5.3):

LvεAB = 0 =
λ

2
εAB + wε∂mvmεAB

=

(
1

2
+ 2wε

)
εAB (2.5.10)

we see this amounts choosing wε = −1/4. Consistency, however, requires εAB to have weight
wε = +1/4. Hence, given an arbitrary spinor µA, in our conventions it is true that

LvµA = εABLvµ
B, (2.5.11)

which is equivalent to state that a spinor and its dual have the same conformal weight. All
considerations apply equally for dotted indices.
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2.5.3 Conformal invariance of Penrose action.

In this section we will state the conformal invariance of the action (2.3.1). This in turn ensures
the existence of a set of conformal symmetries in Fronsdal description.

Let us begin with dilatations. The higher-spin �elds vary under it according to

δvφ
AB···D = αxm∂mφ

AB···D + 4αwφφ
AB···D (2.5.12a)

and

δva
Ȧ
B···D = αxm∂ma

Ȧ
B···D + 4αwaa

Ȧ
B···D. (2.5.12b)

These change the action by

δvS =

∫
d4x

(
αxm∂mφ

AB···D + 4αwφφ
AB···D) ∂AȦaȦ B···D

+ φAB···D∂AȦ

(
αxm∂ma

Ȧ
B···D + 4αwaa

Ȧ
B···D

)
. (2.5.13)

After a few simpli�cations, we get

δvS =

∫
d4x

{
α [−3 + 4 (wφ + wa)]φ

AB···D∂AȦa
Ȧ
B···D

}
, (2.5.14)

which vanishes only when

wφ + wa =
3

4
. (2.5.15)

As we can see, dilatations are unable to �x completely the conformal weights. The remaining
condition comes from the special conformal transformations.

Under special conformal transformations, generated by

vm = 2 (ρ.x)xm − (x.x) ρm, (2.5.16)

the spin �elds φAB···D and aȦ B···D vary according to

δvφ
AB···D = vm∂mφ

AB···D + 2sφC(AB···f
D)
C + 8wφ (ρ.x)φAB···D, (2.5.17a)

and

δva
Ȧ
B···D = vm∂ma

Ȧ
B···D + f

Ȧ

Ċa
Ċ
B···D − (2s− 1) fC (Ba

Ȧ
···D)C + 8wa (ρ.x) aȦ B···D. (2.5.17b)

The action becomes

δvS =

∫
d4x

(
vm∂mφ

AB···D∂AȦa
Ȧ
B···D + 2sφC(AB···f

D)
C∂AȦa

Ȧ
B···D + 8wφ (ρ.x)φ∂a

+ φAB···D∂AȦvm∂ma
Ȧ
B···D + φAB···Dvm∂m∂AȦa

Ȧ
B···D + φAB···D∂AȦf

Ȧ

Ċa
Ċ
B···D

+ φAB···Df
Ȧ

Ċ∂AȦa
Ċ
B···D − (2s− 1)φAB···D∂AȦf

C
(Ba

Ȧ
···D)C

− (2s− 1)φAB···DfC (B∂|AȦ|a
Ȧ
···D)C + 8waφρa+ 8wa (ρ.x)φ∂a

)
. (2.5.18)

In the second line, we open ∂avm in its symmetric and anti-symmetric pieces and integrate by
parts ∂m in ∂AȦ∂ma

Ȧ
B···D. Then we obtain
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φAB···D∂AȦvm∂ma
Ȧ
B···D = φAB···D∂(AȦvm)∂

maȦ B···D + φAB···D∂[AȦvm]∂
maȦ B···D

= 2 (ρ.x)φ∂a+ φAB···DfAM∂
M
Ȧ
aȦ B···D + φAB···Df ȦṀ∂

Ṁ
A aȦ B···D

(2.5.19)

and

φAB···Dvm∂m∂AȦa
Ȧ
B···D = −vm∂mφ

AB···D∂AȦa
Ȧ
B···D − ∂mvmφAB···D∂AȦa

Ȧ
B···D

= −vm∂mφ
AB···D∂AȦa

Ȧ
B···D − 8 (ρ.x)φ∂a. (2.5.20)

When we substitute everything back into the action, the only remaining terms are

δvS =

∫
d4x

{
[8 (wφ + wa)− 6] (ρ.x)φAB···D∂AȦa

Ȧ
B···D

}
+ (8wa − 3)φAB···DρAȦa

Ȧ
B···D

− (2s− 1)φAB···D∂AȦf
C

(B a
Ȧ
···D)C . (2.5.21)

We can use (2.5.7) so that

∂AȦf
C
B = −ρ C

Ȧ
εAB − ρȦBδ

C
A . (2.5.22)

At the end, we get two relations involving the weights. They are

8 (wφ + wa)− 6 = 0 (2.5.23a)

and

8wa + 2s− 4 = 0. (2.5.23b)

If we use (2.5.15), the �rst equation, (2.5.23a), is an identity. It gives no new information.
However, the second equation �xes the weight of the gauge �eld. Finally, we have

wa =
2− s

4
(2.5.24)

and

wφ =
s+ 1

4
. (2.5.25)

The following table lists a few values for weights given di�erent spin s theories.

wφ wa

s = 0 1/4 1/2
s= 1/2 3/8 3/8
s = 1 1/2 1/4
s= 3/2 5/8 1/8
s = 2 3/4 0
s = 5/2 7/8 -1/8
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2.5.4 The structure of conformal transformations.

Penrose theory is described by the set (φ, a) while Fronsdal theory is described by h. We have
de�ned a map, which we name H, that takes one description into another:

H : hm1···ms 7−→
(
φAB···D, aȦB···D

)
.

It was shown that this map preserves phase space, i.e., it is a canonical transformation.

A map between symplectic structures also carries through symmetries of one description
to another. If a symplectic structure admits an action, then its symmetries must be also
symmetries of the action. Therefore it is natural to de�ne a conformal transformation of the
form

δvhm1···ms = H−1Lv H hm1···ms , (2.5.26)

where v is the conformal generator (2.5.1). It can act non-trivially; its action, as equation
(2.5.26) shows, is not obtained from standard Lie derivations. Moreover, additional compli-
cations may appear due to H−1, which involves inverting derivatives, as (2.4.46) illustrates.
For spins running from s = 1/2 to s = 3/2, it can be shown to agree with usual conformal
transformations obtained by change of coordinates. At spin s = 2, however, since Fronsdal
theory is not conformal invariant, our transformation exhibits the non-local behaviour.

We can work out this case explicitly. For special conformal transformations, if we plug the
variation (2.5.17b) inside (2.4.34), we obtain

δvh(MṀ |NṄ) = Lvh(MṀ |NṄ) + 2 (ρ.x)h(MṀ |NṄ) + 6 ρ E
(Ṁ

aṄ)MNE(h), (2.5.27)

where Lv, in this case, denotes the di�eomorphism Lie derivative and ρ is the special conformal
parameter. The last term shows the non-local behaviour since it involves rewriting equation
(2.5.17b) for aṀMNE in terms of hMṀNṄ , giving inverse powers of ∂a. Notice that the conformal
weight obtained from this expression, which reads w = +1/4, does not agree with the usual
Fronsdal theory, which is dilatation invariant for w = −1/4 at every spin [30].

These di�erences may appear problematic. They raise suspicion whether this transformation
satis�es the conformal algebra or not. The simplest way to answer this question is to notice
that (2.5.26) is a conjugation; therefore, if H is well-de�ned, they must satisfy the same algebra
of the vector �eld v in question.

The issue of conformal invariance is unrelated to the on-shell phase space, but is rather
related to the o�-shell description. The connection �eld of Fronsdal theory is not a representa-
tion of the conformal algebra, but the curvatures used in Penrose theory transform covariantly
under the action of the conformal group. Then, it could be said that the non-local nature of the
transformation follows from expressing the Fronsdal gauge �eld in terms of its curvature, as is
usual in spin 2 case when one uses Riemann normal coordinates. It should be stressed though
that, in this formalism, we still have a gauge �eld, aṀMNE in gravity case, and moreover, our
map (2.4.34) is not obtained by a change of coordinates, it is the de�nition of a5.

The conformal change of coordinates preserves the action (2.3.1) and its symplectic struc-
ture. We have shown that the two symplectic structures agree, so our transformations should be
a symmetry of Fronsdal action. This analysis is straightforward for free theories. It is possible
that this symmetry is not preserved by arbitrary interaction terms. It would be interesting to
understand what kind of interactions, if there is any, would preserve these symmetries.

5We would like to thank the referee for pointing this out.
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2.6 Conclusions.

We have de�ned an action for Penrose theory and constructed its symplectic structure. This
action appears to be simpler than the usual one obtained by Fronsdal. Moreover, it depends
only on the epsilon symbol, being possible to examine how it should extend to curved spaces.
In particular, this action might be the description of the singular limit suggested in [53] for the
AdS4 higher-spin action.

We showed that this theory describes the same classical phase space as of Fronsdal. More-
over, the action of conformal change of coordinates can be push-forwarded from one Langragian
to another. It, in turn, leads us to conjecture a set of non-trivial conformal symmetries for the
Fronsdal higher-spin �elds hm1···ms . These are not generated by usual coordinate changes, al-
though to lower spins � those which run from 1/2 to 3/2 � it is possible to show that both
symmetries agree. The non-local behaviour appears only at spin 2.

The construction of conformal higher-spin theories in four-dimensional �at space was devel-
oped by Fradkin and Tseytlin in [54], and it was generalized for arbitrary curved backgrounds
by Segal in [55]. These theories involve higher-derivatives and additional �elds; so, it should be
stressed that having identi�ed a non-local realization of conformal symmetries is not enough to
argue that this gives a non-trivial relation between conformal higher-spin theories and Fronsdal
theory.
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Chapter 3

On worldsheet curvature coupling in pure

spinor sigma-model

3.1 Outline.

In a general curved background, the b-ghost of the pure spinor superstring [5, 56] is not holo-
morphic:

∂̄b = Q(. . .) (3.1.1)

On one hand, this is a problem, complicating the computation of scattering amplitudes. On
the other hand, this is a tip of an interesting mathematical structure. It was suggested in
[36, 37] that in such cases the de�nition of the string measure should be modi�ed, so that the
resulting measure should descend on the factorspace of metrics1 over di�eomorphisms. The
method of [36, 37] is to �rst construct a pseudodi�erential form equivariant with respect to
di�eomorphisms, and then obtain a base form using some connection.

This procedure can be also used to study the insertion of unintegrated vertex operators.
Once we inserted unintegrated vertex operators, we should then integrate over the moduli
space of Riemann surfaces with marked points. Let us �rst integrate, for each �xed complex
structure on Σ, over the positions of the marked points, postponing the integration over complex
structure for later. We interpret the result as the insertion of the integrated vertex operator.
It is usually assumed that to any unintegrated vertex operator V corresponds some integrated
vertex operator U . The naive formula is:

U = b−1b−1V (3.1.2)

However, this naive formula does not always work correctly. First of all, in the pure spinor
formalism, b is a rational function of the pure spinor �elds. This, generally speaking, leads
to U being a rational function of the pure spinors, with non-constant denominators. It is not
clear if such rational expressions should be allowed in the worldsheet action. We will leave this
question open. Instead, we discuss another issue: Eq. (3.1.2) does not tell us the whole truth
about the curvature coupling (the Fradkin-Tseytlin term in the worldsheet action). In this
paper we will explain how to derive the Fradkin-Tseytlin term in the action starting from the
insertion of the unintegrated vertex operator V . We will construct, following the prescription
of [36, 37], the integration measure for integrating over the point of insertion of V . We will
show that the procedure of [36,37] simpli�es. This is mostly due to the existence of a relatively
straightforward construction of a connection on the space of Lagrangian submanifolds, as a
principal bundle with the structure group di�eomorphisms. The curvature of this connection
is essentially equal to the Riemann curvature of the worldsheet metric. The curvature term

1or, more generally, of Lagrangian submanifolds of BV phase space
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in the base form generates, e�ectively, the dilaton coupling (the Fradkin-Tseytlin term) on the
string worldsheet. Under certain conditions, this reasoning leads (Section 3.2) to the formula
for the deformation of the dilaton super�eld:

(b0 − b̄0)V = QΦ (3.1.3)

In general there are two contributions to Φ: one from Eq. (3.1.2) and another from Eq. (3.1.3).

Eqs. (3.1.2) and (3.1.3) in the case of bosonic string In the case of bosonic string
(Section 3.4.2), the curvature coupling, generally speaking, comes from both Eq. (3.1.2) and
Eq. (3.1.3). The contribution from Eq. (3.1.2) is due to the fact that already the unintegrated
vertex operator contains the curvature coupling: cc̄

√
gRΦ.

Eqs. (3.1.2) and (3.1.3) in the case of pure spinor superstring In Section 3.6 we
discuss Eqs. (3.1.2) and (3.1.3) in the context of the pure spinor superstring on AdS5 × S5.
In this case, the only source of the curvature coupling is Eq. (3.1.3) � the second line of Eq.
(3.2.33).

The b-ghost is a rational function of the pure spinor (not a polynomial). Therefore, the
OPEs b−1b−1V and (b0 − b̄0)V are also non-polynomial. We explicitly evaluate (b0 − b̄0)V in
the particular case when V is the beta-deformation vertex, using the b0 and b̄0 from [34] � see
Section 3.6. At this time, we do not know any speci�c application of the formulas of Section
3.6. However, these computations inspired us to make some conjectures about the unintegrated
vertex operators � see Sections 3.5.6 and 3.5.7.

One interesting feature of the beta-deformation is the existence of non-physical vertex op-
erators [32,57]. They normally cannot be put on a curved worldsheet, because of the anomaly.
However, once we allow denominators of the form 1

STr(λLλR)
, it seems that there is no obstacle,

and the nonphysical vertices can be included. This at least means, that the �rst few orders in
the expansion in powers of ε in Eq. (3.3.1) actually make sense in string perturbation theory.

3.2 General theory of vertex insertions

In this Section we will apply the prescription of [36,37] for the vertex operators insertion.

3.2.1 Use of BV formalism and notations

In BV formalism, instead of integrating over the worldsheet complex structures, we integrate
over general families of Lagrangian submanifolds L in BV phase space. The space of all La-
grangian submanifolds is denoted LAG. In this paper, we will only consider a 6g−6-dimensionalLAG
subspace of LAG, which corresponds to variations of the complex structure.

We use the notations of [37]. The odd Poisson bracket will be denoted {_,_}BV, or just
{_,_}. For a vector �eld ξ on the BV phase space, generated by a BV Hamiltonian, we denote{_,_}
that Hamiltonian ξ:

ξ = {ξ,_}BV (3.2.1)

3.2.2 Use of worldsheet metric

Classically, the string worldhseet action depends on the worldsheet metric only through its
complex structure. Quantum mechanically, the computation of the path integral usually in-
volves the choice of the worldsheet metric (and not just complex structure), and then showing

http://andreimikhailov.com/math/bv/notations/notations.html
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that in critical dimension the result of the computation is actually Weyl-invariant (i.e. only
depends on the complex structure).

In this paper, we will need a worldsheet metric also for another purpose: to de�ne a con-
nection 2 on the space of Lagrangian submanifolds as a principal bundle:

LAG −→ LAG

Diff
(3.2.2)

which we need to convert an equivariant form into a base form. Suppose that we choose a
metric for every complex structure. Then, we will explain in Section 3.2.5, this de�nes a choice
of horizontal directions, i.e. a connection on (3.2.2) � see Eqs. (3.2.29) and (3.2.30).

Given a complex structure, we will use the constant curvature metric of unit volume, which
always exists and is unique by the uniformization theorem [58]. (But other global choices of a
metric would also be OK.)

3.2.3 String measure

Equivariant Master Equation String worldsheet theory, in the approach of [36,37], comes
with a PDF3 Ωbase on LAG, which is base with respect to H = Di�. It is obtained from the
equivariant half-density ρC, which satis�es the equivariant Master Equation:

∆canρ
C(ξ) = ξρC(ξ) (3.2.3)

where ξ ∈ h = Lie(H) is the equivariant parameter, and ξ the corresponding BV Hamiltonian.

Expansion in powers of ξ Let us write ρC(ξ) as a product:

ρC(ξ) = ea(ξ)ρ1/2 (3.2.4)

where ρ1/2 is a half-density satisfying the usual (not equivariant) Master Equation:

ρ1/2 = exp(SBV) ( SBV is string worldsheet (3.2.5)

Master Action )

∆canρ1/2 = 0 (3.2.6)

and a(ξ) is a function on the BV phase space, a(0) = 0. For any function f and half-density
ρ1/2, let us denote:

∆ρ1/2f = ρ−1
1/2∆can(fρ1/2)− (−)f̄fρ−1

1/2∆canρ1/2 (3.2.7)

Eqs. (3.2.3) and (3.2.6) imply:

∆ρ1/2a(ξ) +
1

2
{a(ξ), a(ξ)}BV = ξ (3.2.8)

a(ξ) for bosonic string and for pure spinor string

For bosonic string a(ξ) is background-independent, linear in ξ, and given by a simple
formula:

a(ξ) = a(1)〈ξ〉 =

∫
Σ

ξαc?α (3.2.9)

2there might be other choices of a connection, not requiring a metric
3pseudo-di�erential form

http://andreimikhailov.com/math/bv/omega/Equivariant_half-densities.html
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For pure spinor string a(ξ) is a complicated background-dependent expression. For back-
ground AdS5×S5, the a(1)〈ξ〉 was constructed in [59], where it was called Φξ. Schematically:

a(1)〈ξ〉 =

∫
Σ

(ξ · ∂ZM)AMαλ
?α + (ξ · ∂ZM)BN

MZ
?
N+ (3.2.10)

+ (∂ZM)Cα
MLξwα +DαβwαLξwβ (3.2.11)

where:
� Z are coordinates on super-AdS5 × S5

� λ are pure spinors (both λL and λR)
� AMα, B

N
M , Cα

M and Dαβ are some functions of Z,
and rational functions of pure spinors

Some assumptions

BV formalism is ill-de�ned in �eld-theoretic context , because ∆(0) is ill-de�ned. We will
assume that on local functionals ∆(0) = 0. In other words, when floc is a local functional of the
string worldsheet �elds:

∆ρ1/2floc = {SBV, floc} (3.2.12)

We believe that it is possible justify this assumption in worldsheet perturbation theory, but at
this time our considerations are not rigorous.

3.2.4 Equivariant unintegrated vertex

Stabilizer of a point Insertion of unintegrated vertex operator V at a point on p ∈ Σ leads
to breaking of the di�eomorphisms down to the subgroup St(p) ⊂ Di� which preserves p. Let
st(p) denote the Lie algebra of St(p):

St(p) = {g ∈ Di� | g(p) = p} (3.2.13)

st(p) = Lie(St(p)) (3.2.14)

We will now explain how to construct an St(p)-equivariant form on LAG, and then in Sections
3.2.5 and 3.2.6 how to construct a base form.

Equivariantization of vertex Given an unintegrated vertex V , suppose that we can con-
struct for any ξ0 ∈ st(p) an equivariant vertex V C(ξ0), satisfying4:

V C(0) = V (3.2.15)

∆ρC(ξ0)V
C(ξ0) = 0 (3.2.16)

and:

{ξ0, V
C(η0)}BV =

d

dt

∣∣∣∣
t=0

V C(et[ξ0 ,_]η0) (3.2.17)

Under the conditions of Eqs. (3.2.16) and (3.2.17) the product V C(ξ0)ρC(ξ0) de�nes an st(p)-
equivariant half-density satisfying the st(p)-equivariant Master Equation:

(∆can − ξ0)
(
V C(ξ0)ρC(ξ0)

)
= 0 (3.2.18)

4the subindex C stands for Cartan model of equivariant cohomology

http://andreimikhailov.com/math/pure-spinor-formalism/AdS5xS5/Action_of_diffeomorphisms.html
http://andreimikhailov.com/math/bv/BV-formalism/Infinite_dimensional_case.html
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Any solution V C(ξ0) of Eq. (3.2.18) leads to st(p)-equivariant pseudo-di�erential form:

ΩC(L, dL, ξ0) =

∫
gL0

exp (σ〈dL〉) V C(ξ0)ρC(ξ0) (3.2.19)

Here σ〈dL〉 is any BV Hamiltonian generating the in�nitesimal deformation dL of L.
We can think of V C(ξ0)ρC(ξ0) as correction of the �rst order in ε to ρC(ξ0) under the defor-

mation:
ρ exp (a(ξ0))→ ρ exp

(
a(ξ0) + εV C(ξ0)

)
(3.2.20)

Eqs. (3.2.16) and (3.2.17) imply:(
∆ρ1/2 + {a(ξ0),_}BV

)
V C(ξ0) = 0 (3.2.21)

{ξ0, V
C(η0)}BV =

d

dt

∣∣∣∣
t=0

V C(et[ξ0 ,_]η0) (3.2.22)

The exact deformations, of the form:

V C
exact(ξ0) =

(
∆ρ1/2 + {a(ξ0),_}BV

)
vC(ξ0) (3.2.23)

with vC satisfying the equivariance condition {ξ0, v
C(η0)}BV = d

dt

∣∣
t=0

vC(et[ξ0 ,_]η0) are considered
trivial.

Consider the expansion of V C(ξ0) in powers of ξ0:

V C(ξ0) = V (0) + V (1)〈ξ0〉+ V (2)〈ξ0 ⊗ ξ0〉+ . . . (3.2.24)

(We use angular brackets 〈. . .〉 to highlight linearity, i.e. f〈x〉 instead of f(x) when f is a linear
functions of x.) In particular, Eq. (3.2.21) implies at the linear order in ξ:

∆ρ1/2V
(1)〈ξ0〉+ {a(1)〈ξ0〉, V (0)}BV = 0 (3.2.25)

Equivariant vertex operators form a representation of the Dg algebra discussed in [60], the
di�erential d of [60] being represented by ∆ρ1/2 .

For our purpose, we will use a slightly di�erent form of Eq. (3.2.25). Let us return to Eq.
(3.2.18). At the linear order in ξ0 it becomes:

∆ρ1/2

(
a(1)〈ξ0〉V (0) + V (1)〈ξ0〉

)
= ξ0V

(0) (3.2.26)

An exact V corresponds to (see Eq. (3.2.23)):

V
(0)

exact = ∆ρ1/2v
(0) (3.2.27)

V
(1)

exact〈ξ0〉 = ∆ρ1/2(a
(1)〈ξ0〉v(0) + v(1)〈ξ0〉)− ξ(0)v(0) (3.2.28)

Eq. (3.2.26) is an equivalent form of Eq. (3.2.25). We will explain in Section 3.4, that in case
of bosonic string it is more convenient to use Eq. (3.2.25). But in case of pure spinor string we
use Eq. (3.2.26).

3.2.5 A connection on Λ→ Λ/St(p)

In order to integrate, we need to pass from equivariant ΩC to base Ωbase. This requires a choice
of a connection in the principal St(p)-bundle LAG → LAG/St(p). We will now de�ne the
connection by specifying the distribution H0 ⊂ TE|S of horizontal vectors. We say that the
vector belongs to H0, if it is a linear combination of vectors of the following two classes:
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• The �rst class consists of the variations of the metric satisfying:

hαβδhαβ = 0 (3.2.29)

∇αδhαβ = 0 (3.2.30)

Such δhαβ can be identi�ed as holomorphic or antiholomorphic quadratic di�erentials.

• The second class by de�nition consists of in�nitesimal isometric (�rigid�) translations of
the diskDε of the small radius ε. These are delta-function-like variations of the metric with
the support on ∂Dε. They are always trivial in LAG/Diff, but nontrivial in LAG/St(p)
when genus is greater than one.

(This de�nition only works for the metric of constant negative curvature, because for
generic metric Dε does not have any in�nitesimal isometries. In such cases, we can
choose some lift to a vector �eld v which is approximately isometry, in the sense that
Lvgαβ = O(|z|2). Formulas do not change.)

3.2.6 Base form and its integration

Given a connection, we can construct a base form out of the equivariant form of Eq. (3.2.19);
it is given by the following expression [36,37]:

Ωbase(L, dL) =

∫
L

exp(σ〈dL|hor〉)V C(F )ρC(F ) (3.2.31)

where V C must satisfy Eqs. (3.2.16) and (3.2.17), and F is the curvature of our connection.
Here, as in Eq. (3.2.19), σ〈dL|hor〉 is any BV Hamiltonian generating the in�nitesimal de-
formation, but we have to �project� the variation dL to the horizontal subspace (using our
connection).

Let us consider the �ber bundle:
MET

St(p)

π−→ MET

Di�
(3.2.32)

We want to integrate Ω over the cycle of the form π−1c6g−6 where c6g−6 is the fundamental
cycle of the moduli space of Riemann surfaces. Let us �rst integrate over the �ber (which is Σ).
Our connection, described in Section 3.2.5, lifts the tangent vectors to the �ber as horizontal
vectors of the second class, i.e. as in�nitesimal rigid translations of Dε. The curvature of our
connection, evaluated on a pair of vectors tangent to the �ber, takes values in in�nitesimal rigid
rotations of Dε and equals to the curvature of Σ. Therefore Ωbase is:

Ωbase =

∫
eS
[
V (0)σ 〈dLhor〉 ∧ σ 〈dLhor〉 +

+ V (0)a(1)〈R〉+ V (1)〈R〉
]

(3.2.33)

We will now explain this equation, �rst line �rst, and then the second.

First line of Eq. (3.2.33)

With our de�nition of the connection in Section 3.2.5, the horizontal projection dL|hor is an

in�nitesimal di�eomorphism: an in�nitesimal translation of the disk Dε by

[
dz
dz̄

]
. Therefore,

http://andreimikhailov.com/math/bv/equivariant-cohomology/From_Cartan_To_Base.html
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the corresponding BV Hamiltonian σ〈dL|hor〉 is actually ∆-exact. Indeed, Eq. (3.2.8) implies
that:

σ〈dL|hor〉 = ∆ρ1/2a
(1)〈u(dz, dz̄)〉 (3.2.34)

Here u(dz, dz̄) is the vector �eld on Σ which is:

� at the center of Dε equals to

[
dz
dz̄

]
� inside Dε is an in�nitesimal rigid translation
� outside of Dε is zero

Since a(1) is a local functional on the string worldsheet, Eqs. (3.2.34) and (3.2.12) imply:

σ〈dL|hor〉 = {SBV , a
(1)〈u(dz, dz̄)〉} (3.2.35)

Lemma-de�nition 1: For any vector �eld v, the restriction of {SBV, a
(1)〈v〉} on L is

∫
bαβ∇αvβ:

{SBV, a
(1)〈v〉}

∣∣
L

=

∫
bαβ∇αvβ (3.2.36)

We take Eq. (3.2.36) as the de�nition of bαβ (which is otherwise de�ned only up to a Q-closed
expression).

Proof Let us consider the expansion of SBV and the expansion of V = {SBV, a
(1)}:

SBV = S0 +QAφ?A + . . . (3.2.37)

{SBV, a
(1)} = V0 + VA1 φ?A + . . . (3.2.38)

From {SBV, {SBV, a
(1)}} = 0 we derive:

LQV0 = LV1S0 (3.2.39)

Eq. (3.2.36) follows from the variation of S0 under in�nitesimal di�eomorphism being equal to∫
Tαβ∇αvβ, and from the vanishing of the o�-shell cohomology in ghost number −1 (we are

working o�-shell!).

Returning to Eq. (3.2.35), Since u is an isometry inside Dε and zero outside Dε, we have:

{SBV, a
(1)〈u〉}|L =

∫
Σ

√
g bαβ∇αuβ =

∮
∂Dε

dzαbαβu
β (3.2.40)

Therefore the �rst line in Eq. (3.2.33) contributes:

b−1b̄−1V
(0) (3.2.41)

Second line of Eq. (3.2.33)

Expressions like a(1)〈R〉 and V (1)〈R〉 should be understood in the following way. We think of
the curvature R as a two-form on the worldsheet with values in rotations of the tangent space:

R ∈ Γ
(
Ω2Σ⊗ so(TΣ)

)
(3.2.42)

In particular, if ξ ∈ TpΣ and η ∈ TpΣ are two tangent vectors, then R(ξ, η) at the point p is an
in�nitesimal rotations of TpΣ. This in�nitesimal rotation can be represented by a vector �eld
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v with zero at the point p. Let us �truncate� v by putting it to zero outside Dε, i.e. multiply
v by the function χDε which is 1 inside Dε and 0 outside. By de�nition:

a(1)〈R(ξ, η)〉 def=a(1)〈χDεv〉

V (1)〈R(ξ, η)〉 def=V (1)〈χDεv〉 (3.2.43)

(This is an abbreviation, rather than a de�nition.) In this context, Eq. (3.2.26) becomes:

∆ρ1/2

(
V (0)a(1)〈R〉+ V (1)〈R〉

)
= {SBV, a

(1)〈R〉}V (0) (3.2.44)

In the case of pure spinor string {a(1)〈R〉, V (0)} = 0, because v in Eq. (3.2.43) is a
vector �eld vanishing at the point of insertion of V (0), and V (0) does not contain derivatives.
Therefore, the left hand side of Eq. (3.2.44) is

{
SBV , a

(1)〈R〉V (0) + V (1)〈R〉
}
. When restricted

to the Lagrangian submanifold, up to equations of motion5:

Q
(
a(1)〈R〉|LV (0)|L + V (1)〈R〉|L

)
= {SBV, a

(1)〈R〉}|LV (0)|L (3.2.45)

We must stress that this equation is only valid under assumption {a(1)〈R〉, V (0)} = 0. Generally
speaking, instead of Eq. (3.2.45):

Q
(
a(1)〈R〉|LV (0)|L + V (1)〈R〉|L

)
=

= {SBV, a
(1)〈R〉}|LV (0)|L − {a(1)〈R〉, V (0)}

∣∣
L

(3.2.46)

The computation of {SBV, a
(1)〈R〉}|L uses Eq. (3.2.40):

{SBV, a
(1)〈R〉}|LV (0)|L = (b0 − b̄0)V (0) (3.2.47)

Therefore:
a(1)〈R〉|LV (0)|L + V (1)〈R〉|L =

√
gRΦ (3.2.48)

where Φ satis�es:
QΦ = (b0 − b̄0)V (0) (3.2.49)

To summarize, the total integrated vertex insertion corresponding to the unintegrated vertex
V (0) is given by the expression:∫

Σ

d2z
(
b−1b̄−1V

(0) +
√
gRΦ

)
(3.2.50)

where Φ satisfies:QΦ = (b0 − b̄0)V (0)

3.3 Brief review of the conventional description of the cur-

vature coupling

Here we will brie�y review the �standard� derivation of the curvature coupling.

Consider the deformation of the worldsheet action by adding the integrated vertex operator:

S 7→ S + ε

∫
U (3.3.1)

5In spite of the fact that χDε
v of Eq. (3.2.43) is zero at the point of insertion of V (0), we cannot claim that

a(1)〈R〉|LV (0)|L is zero. This is because of the singularities in the OPE of the integrand of a
(1)
L and V (0).
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where ε is a small �deformation parameter�. Suppose that the deformed action is classically
BRST invariant. At the one loop level, we get:

∂µjBRST
µ = α′(X +

√
gRY ) (3.3.2)

where X is a BRST-closed operator of conformal dimension (1, 1) and ghost number one, and
Y is a BRST-closed expression of conformal dimension zero and ghost number one6 In generic
curved target-spaces, there is no BRST cohomology at ghost number 1 and conformal dimension
zero. Therefore, exists Φ such that:

Y = −QBRSTΦ (3.3.3)

Also, there is no cohomology in conformal dimension (1, 1) and ghost number 1, therefore exists
U ′ such that X = −QU ′. These U ′ and Φ can be absorbed into U :

U 7→ U + α′U ′ + α′
√
gRΦ (3.3.4)

and the term Φ is the deformation of the dilaton.

3.4 Bosonic string vs pure spinor string

3.4.1 Main di�erences

In pure spinor string theory on AdS5 × S5:

• simpli�cation: V (0) does not contain derivatives

• complication: restriction of a(ξ) on �standard� family of Lagrangian submanifolds is
nonzero

In this case we need compute
(
a(1)V (0) + V (1)

)∣∣
L
(this is what deforms the equivariant density),

and we get it from Eq. (3.2.45)

In bosonic string theory:

• complication: V (0) contains at least derivatives of matter �elds, and sometimes derivatives
of ghosts

• simpli�cation: a(ξ) is given by a simple formula: a(ξ) = ξαc?α, and in particular its
restriction to the standard Lagrangian submanifold is zero

In this situation we compute V (1) from Eq. (3.2.21):

{SBV, V
(1)} = −{ξαc?α , V (0)} = −ξα ∂

∂cα
V (0) (3.4.1)

The exact vertex has:

V
(0)

exact = {SBV, v
(0)} (3.4.2)

V
(1)

exact〈ξ〉 = {SBV, v
(1)〈ξ〉}+ ξα

∂

∂cα
v(0) (3.4.3)

. . . (3.4.4)

6Notice that there is no
√
gRV term in Eq. (3.3.1), because there are no BRST-closed scalar operators V of

ghost number zero, other than 1 (the 1 corresponding to the change in string coupling).
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3.4.2 Bosonic string vertices as functions on BV phase space

Consider bosonic string on a general curved worldsheet. We work in BV formalism, our vertex
operators are functions on the BV phase space of bosonic string worldsheet.

Let us start by considering the vertex corresponding to a �gravitational wave�, i.e. an in-
�nitesimal deformation of the target space metric Gµν . We assume that Gµν satis�es transver-
sality and linearized Einstein equations:

∂µGµν = 0 (3.4.5)

�Gµν = 0 (3.4.6)

(almost all gravitational waves can be obtained like this, except for some zero modes). Let
hαβ be the worldsheet metric, and Iαβ the corresponding complex structure. We claim that the
following vertex operator:

V (0) = (Ic · ∂Xµ)(c · ∂Xµ)Gµν(x) (3.4.7)

satis�es:
{SBV, V

(0)} = 0 (3.4.8)

Let us prove this. The odd Poisson brackets with BV Master Action are:

{SBV, X} = LcX (3.4.9)

{SBV, c} =
1

2
[c, c] (3.4.10)

{SBV, I} = LcI (3.4.11)

(Here LcX is the same as c · ∂X � the Lie derivative of X.)

{SBV, (Ic · ∂X)(c · ∂X)} =

= (([Lc,LIc]− LI[c,c])X) LcX − (LIcLcX) LcX +
1

2
(LI[c,c]X) LcX =

= (LcLIcX)LcX −
1

2
(LI[c,c]X)LcX (3.4.12)

Eq. (3.4.12) follows from:

LcLIcX −
1

2
LI[c,c]X =

1

2
ι2c d ∗ dX =

1

2
{SBV, ι

2
cX

?} (3.4.13)

In Eq. (3.4.13) we identify X? as a 2-form on the worldsheet, and contract it two times with
c. This operation can be characterized by saying that for every local (i.e. given by a single
integral over the worldsheet Σ) functional F [X]:

{ιξιηX? , F [X]} = ιξιη
δF

δX
(3.4.14)

To prove Eq. (3.4.13), let us choose the coordinates (z, z̄) where the complex structure is:
I ∂
∂z

= i ∂
∂z
. We denote C = cz and C̄ = cz̄, i.e. c · ∂ = C∂ + C̄∂̄ (with a slight abuse of

notations, we let ∂ denote also ∂z). With these notations:

(C∂ + C̄∂̄)(iC∂ − iC̄∂̄)X − I(C∂ + C̄∂̄)2X = 2iC̄C∂∂̄X (3.4.15)

In order to actually insert V (0) we have to regularize it. (Even when Eqs. (3.4.5) and (3.4.6)
are satis�ed, we have the product of two ∂X at the same point, which does not make sense
without regularization.)

http://andreimikhailov.com/math/bv/bosonic-string/index.html
http://andreimikhailov.com/math/bv/bosonic-string/SolutionOfMasterEqn.html
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Regularization We regularize V (0) by replacing every Xµ (including those acted on by ∂)
with the averaged value:

X(0, 0) 7→ Nε
∫
d2z
√
g exp

(
−1

ε
dist2((z, z̄), (0, 0))

)
X(z, z̄) (3.4.16)

where dist is the distance measured by the worldsheet metric, ε→ 0 the regularization param-
eter, and Nε is the normalization factor:

Nε =

[∫
d2z
√
g exp

(
−1

ε
dist2((z, z̄), (0, 0))

)]−1

(3.4.17)

When c gets contracted with ∂x, we take the average of cα∂αx.

Renormalization After specifying the regularization prescription, we have to subtract in-
�nities.

Actually, with Eqs. (3.4.5) and (3.4.6) the subtraction is not even needed, because the regular-
ized V (0) remains �nite when ε→ 0.

But suppose that (having in mind extensions to string �eld theory) we want to de�ne our
vertex in a way which requires smooth extension o�-shell, i.e. relaxing of Eqs (3.4.5) and
(3.4.6). Then, for our expression to remain �nite o�-shell, we have to do a regularization. We
de�ne the subtraction as follows:

Oren = exp

(
−
∫
d2z

∫
d2w

α′

2
ln dist2(z, z̄;w, w̄)

δ

δXµ(z, z̄)

δ

δXµ(w, w̄)

)
O (3.4.18)

� this removes the short distance singularity in 〈X(z, z̄)X(w, w̄)〉. Although this subtraction
is di�eomorphism invariant, it is not Weyl invariant, and therefore it does not commute with
{SBV,_}. The actual e�ect of the subtraction is:

limx→y

(
cα(x)cβ(y)

∂

∂xα
∂

∂yβ
log dist2(x, y)

)
=
α′

3
(c, Ic)R(x) (3.4.19)

This implies, that the unintegrated vertex annihilated by {SBV,_} is:

(LcxµLIcxνGµν(x))ren +
α′

3
(c, Ic)ΦrenR (3.4.20)

where Φ = Gµ
µ (3.4.21)

Therefore the curvature coupling arises from Eq. (3.1.2), as b−1b̄−1 ((c, Ic)R Φ) = R Φ. (And
this source of curvature coupling is not present in the pure spinor case.)

If we do not impose the condition (3.4.5), then Eq. (3.4.7) requires modi�cation. Additional
terms should be added, such as e.g. div c (Lcxµ)Aµ(x). With these extra terms, Eq. (3.1.3)
also contributes to the curvature coupling.

3.4.3 Ghost number one

Cohomology at ghost number one is (cp Eq. (3.4.13)):

W µ = LIcXµ − 1

2
ι2cX

µ? (3.4.22)

W µν = X [µLIcXν] − 1

2
X [µι2cX

ν]? (3.4.23)
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They are both already equivariant, because {a(ξ),W} = 0, sinceW does not contain derivatives
of c. Notice that:

dW µ = {SBV , U
µ} (3.4.24)

where Uµ = ∗dXµ − ιcXµ? (3.4.25)

The proof of Eq. (3.4.24) uses:

dLIcXµ − Lc ∗ dXµ = {SBV, ιcX
µ?} (3.4.26)

As a consistency check, it should be true, at least in restriction to a reasonable Lagrangian
submanifold, that:

ιξU
µ =

(∫
D

{
SBV, a

(1)〈ξ〉
})

W µ (3.4.27)

where
{
SBV, a

(1)〈ξ〉
}

= (LξXµ)X?
µ + [ξ, c]c? + (Lξgαβ)bαβ (3.4.28)

This is true on the standard Lagrangian submanifold i.e. c? = 0, X? = 0. We did not
explicitly check this for other Lagrangian submanifolds.

3.4.4 Dilaton zero mode

Ghost dilaton Let us lift the expression ∂c− ∂̄c̄ of [61] to the BV phase space as v = div(Ic).
The Cartan di�erential of v is (see Eqs. (3.2.27) and (3.2.28)):

V (0) = {SBV, v} = Lc(div(Ic))− 1

2
div(I[c, c]) (3.4.29)

V (1)〈ξ0〉 = {a(1)〈ξ0〉, v} = div(Iξ0) (3.4.30)

V (≥2)〈. . .〉 = 0

The restriction of V (0) on the standard family is, on-shell, c∂2c− c̄∂̄2c̄.

The base form corresponding to V (1) by the procedure of Section 3.2.6 is
√
gR. Therefore,

we should interpret V (1) as the unintegrated vertex operator corresponding to the dilaton zero
mode. However, V (1) by itself is not {SBV,_}-closed:

{SBV, V
(1)} = tr

(
I [LcI,Lξ0I]

)
6= 0 (3.4.31)

(commutator

as matrices in TpΣ)
(3.4.32)

What is going on? The construction of the base form consists of the substitution of the
curvature 2-form in place of ξ0. The way we construct connection in Section 3.2.5 it actually
takes values in a smaller subalgebra st(p, Ip) ⊂ st(p), which consists of those vector �elds which
preserve the complex structure in the tangent space to the point p of insertion, i.e. Ip ∈ gl(TpΣ).
We observe that:

ξ0 ∈ st(p, Ip) ⊂ st(p) ⇒ {SBV, V
(1)〈ξ0〉} = 0 (3.4.33)

(We must stress that, since I is one of the BV �elds, st(p, Ip) varies from point to point in the
BV phase space.)

http://andreimikhailov.com/math/bv/bosonic-string/LagrangianSubmanifold.html#%28part._section.Standard.Lagrangian.Submanifold%29
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Equivalence of V (0) and V (1) Eqs. (3.4.29) and (3.4.30) imply that the integrated vertex
obtained from V (1) should be same as the one obtained from V (0). We can check this explicitly:(∮

dzαbαβξ
β

)(∮
dzαbαβη

β

)
V (0) = (3.4.34)

=

(
Lξdiv(Iη)− 1

2
div(I[ξ, η])

)
− (ξ ↔ η) = (3.4.35)

= div(I[ξ, η]) = R(ξ, η) (3.4.36)

We used the fact that, by the prescription of Section 3.2.5, ξ and η are lifted as isometries of a
small neighborhood of the insertion point; in particular, the Lie derivative Lξ commutes with
the operations I and div.

3.4.5 Semirelative cohomology

In our paper we identify the space of states as the cohomology of the equivariant complex, as
de�ned in Section 3.2.4.

The usual de�nition is via the semirelative complex [61]. In the case of bosonic string, the
cohomology is the same. Indeed, imposing the semirelative condition (b0 − b̄0)V = 0 leads to
two e�ects:

• E�ect 1. There are ghost number 2 cocycles, which should be thrown away because they
are not annihilated by b0 − b̄0. Those are non-physical beta-deformations.7

• E�ect 2. The ghost-dilaton is Q(∂C − ∂̄C̄) � would be BRST exact in the naive BRST
complex, but Q(∂C − ∂̄C̄) is not annihilated by b0 − b̄0. Therefore, the ghost-dilaton is
actually nontrivial.

The equivariant complex gives the same result. For V a nonphysical beta-deformation
(E�ect 1), {a(ξ), V } is not just nonzero, but actually not even {SBV,_}-exact. Therefore, we
cannot �equivariantize� such vertex in the sense of Section 3.2.4. Therefore, such states should
be thrown away also in our approach.

In case of E�ect 2, we do admit ∂C − ∂̄C̄ (we present it as div(Ic)). It is a perfectly valid
cochain for us. However, our di�erential is not just QBRST , or {SBV,_}. We actually have the
equivariant di�erential, which consists of two parts:

dC = {SBV,_}+ {a〈ξ〉,_} (3.4.37){
SBV, ∂C − ∂̄C̄

}
is ghost dilaton, but the second term is also nonzero:

{a〈ξ〉, ∂C − ∂̄C̄} = div(Iξ) (3.4.38)

Therefore, it is not the ghost-dilaton which is dC-exact, but a sum of the ghost-dilaton and the
expression div(Iξ). In other words, in our approach the ghost-dilaton is not d-exact, but is
d-equivalent to div(Iξ). Both expressions, when passing to the base form, result in

√
gR �

the dilaton zero-mode. This means that E�ect 2 is also the same in our approach, as in the
semirelative approach.

7For pure spinor string, they are described in [62] and references therein. The pure spinor case is similar.
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3.5 Vertex operators of pure spinor superstring

3.5.1 Conventions and notations for AdS5 × S5 string

We begin introducing some notation that will be useful through out the calculation. Our
notation is largely based on references [32, 63].

Constant Grassmann parameters The target space is a supermanifold, a coset of the Lie
supergroup PSU(2, 2|4). As usual [64], treating the supermanifold, we introduce a �pool� of
constant Grassmann parameters ε, ε′, ε′′, . . .. We can construct the �ε, ε′, ε′′, . . .-points� of the
supermanifold PSU(2, 2|4) as formal expressions of the form, for example exp

(
εµαt3α + ε′µα̇t1α̇

)
where µα and µα̇ are some spinors with real number components. In addition to these constant
Grassmann parameters, there are string worldsheet �elds θαL and θα̇R; therefore we also have:
exp (θαLt

3
α) � another element of the supergroup.

Superconformal generators and Casimir conventions An element in the superconformal
algebra g = psu(2, 2|4) will be represented according to its Z4 grading,

t = t0[mn] ⊕ t1α̇ ⊕ t2m ⊕ t3α
where

t0[mn] ∈ g0, t1α̇ ∈ g1, t2m ∈ g2 and t3α ∈ g3 (3.5.1)

Latin letters are vector indices and greek letters are spinor indices. The bosonic generators are
boosts and rotations, given by t0[mn], and translations denoted t2m. The fermionic generators

are the right supersymmetries, t1α̇, and the left supersymmetries, t3α, with both spinors in the
d = 10 Majorana-Weyl representation. The vector space g2 is the sum of the tangent vector
spaces of AdS5 and S

5; m ∈ {0, . . . , 9}.
For a �nite-dimensional representation, the invariant bilinear form is given by the supertrace:

str
(
t2mt

2
n

)
= κmn, str

(
t3αt

1
α̇

)
= καα̇ and str

(
t1α̇t

3
α

)
= κα̇α (3.5.2)

where καα̇ and κmn are Casimir tensors.

Parametrization of AdS5 × S5 We will work with the conventions of [63]. The coordinates

in AdS5 × S5 are given by
(
x, θ, θ̂

)
such that

x = xm(z, z̄)t2m, θ = θα(z, z̄)t3α, θ̂ = θ̂α̇(z, z̄)t1α̇. (3.5.3)

Each of these coordinates lifts to an element in PSU(2, 2|4) given by

g(x, θ, θ̂) = exp

(
1

R
θ +

1

R
θ̂

)
exp

(
1

R
x

)
(3.5.4)

where R is the AdS radius.

The pure spinor action The AdS5 × S5 pure spinor string action is

S =
R2

π

∫
d2z str

(
1

2
J2zJ2z̄ +

3

4
J1zJ3z̄ +

1

4
J3zJ1z̄ + ω1zDz̄λ3 + ω3zDz̄λ1 +N0zN0z̄

)
(3.5.5)
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with the covariant derivatives de�ned as

Dz̄λ3 = ∂z̄λ3 + [J0z̄, λ3], Dzλ1 = ∂zλ1 + [J0z, λ1] (3.5.6a)

and the Lorentz currents for the ghosts given by

N0z = −{ω1z, λ1} , N0z̄ = −{ω3z̄, λ3} . (3.5.6b)

The pure spinor action is built out of the right-invariant currents:

J = −dg g−1 = −∂zg g−1dz − ∂z̄g g−1dz, (3.5.7)

where g is given by Eq. (3.5.4). These currents decompose according to the conformal weight
and the Z4 grading. We write J = J0 + J1 + J2 + J3 to highlight the grading structure, and we
observe that under local Lorentz symmetry J0 transforms as a connection while J1, J2 and J3

transform in the adjoint representation.

3.5.2 Covariance of vertices

In this Section we will consider vertex operators of pure spinor superstring in AdS5 × S5. We
will restrict ourselves with only those vertex operators which transform in �nite-dimensional
representations of g [65, 66]. We mainly consider the simplest example, namely the beta-

deformation, which transforms in (g∧g)0
g

. We also make some conjectures about deformations

transforming in other representations (�higher� vertices, Section 3.5.7).
Let H denote some subspace in the space of deformations, closed as a representation of

g. We assume that the vertex is covariant. This means that exists a map from H to space
of vertices, commuting with the action of g. As was explained in [67], under these conditions
the all the vertex operators in the given representation H are completely speci�ed by a single
λ-dependent vector v in the dual of H:

v(λL, λR) ∈ H′ (3.5.8)

It should satisfy:
ρ(λL + λR)v = 0 (3.5.9)

where ρ(λL + λR) is the action of the element λαLt
3
α + λα̇Rt

1
α̇ ∈ g in H′. In this sense, the pure

spinor BRST operator acts on H′:

Q = ρ(λ3 + λ1) (3.5.10)

In this Section we will study the case when H is �nite-dimensional. Then H′ = H. We will
consider thoseH which can be constructed products of adjoint representations of g, the simplest
example being the beta-deformation (g∧g)0

g
. Such spaces are naturally related to the cochain

complex of g, which we will now discuss.

3.5.3 Lie algebra cohomology complex

Let us consider the Lie algebra cohomology complex of g = psu(2, 2|4) with coe�cients in a

trivial representation. As a linear space, it is the direct sum
∞⊕
i=0

Λng′, where g′ is the dual space

of g. We use the fact that g has a supertrace, and identify g′ with g. The supertrace induces
the pairing

Λng ⊗ Λng −→ C (3.5.11)

http://andreimikhailov.com/math/deformations-of-AdS/finite-dimensional-vertex/index.html
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For example:

〈x ∧ y, z ∧ w〉 = (3.5.12)

= STr(yz)STr(xw)− (−1)x̄ȳSTr(xz)STr(yw) (3.5.13)

The Lie superalgebra cohomology di�erential dLie acts as follows:

dLie : Λng→ Λn+1g (3.5.14)

〈dLiex, y ∧ w〉
def of dLie= 〈x, [y, w]〉 = STr(x[y, w]) (3.5.15)

3.5.4 Vertex operators corresponding to global symmetries

The following element:

λ3 − λ1 ∈ C1g = g (3.5.16)

is a nontrivial cocycle of Q. It corresponds to the unintegrated vertex operator:

V (0)
a = STr(tag

−1(λ3 − λ1)g) (3.5.17)

3.5.5 Interplay between Lie algebra cohomology and pure spinor co-

homology

The Q-cocycle λ3 − λ1 is not a Q-coboundary. However the Lie algebra di�erential applied to
it is a coboundary, if we allow denominator 1

STr(λ3λ1)
:

dLie(λ3 − λ1) = Q
(
kαα̇t3α ∧ (1− 2P13)t1α̇

)
(3.5.18)

The internal commutator of kαα̇t3α ∧ (1− 2P13)t1α̇ is nonzero, but is Q-exact:

kαα̇{t3α, (1− 2P13)t1α̇} =
3

2
{λ3, λ1} =

3

4
Q(λ3 + λ1) (3.5.19)

3.5.6 Beta-deformation and its generalizations

De�nition

The de�nition of the unintegrated vertex for beta-deformation given in [32,67] is:

V = BabWaWb (3.5.20)

where Wa = STr
(
tag
−1(λ3 − λ1)g

)
(3.5.21)

where Bab is a constant antisymmetric tensor, de�ned up to the equivalence relation:

Bab ' Bab + fabcA
c (3.5.22)

The beta-deformation transforms in the following the following representation of psu(2, 2|4):

(g ∧ g)0

g
(3.5.23)

where the factor over g accounts for the equivalence relation de�ned by the Eq. (3.5.22).
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This vertex operator de�ned in Eq. (3.5.20) is not strictly speaking covariant, for the
following reason. When we change Bab to Bab+fabcA

c, it changes by a BRST exact expression:

V −→V +QW (3.5.24)

where W = STr
(
Ag−1(λ3 + λ1)g

)
(3.5.25)

It is possible to de�ne the vertex which is strictly covariant:

V ′ = V −
〈
B , g−1 ([Σ, λ3 + λ1] ∧ [Σ, λ3 + λ1]) g

〉
(3.5.26)

where
Σ = diag(1, 1, 1, 1,−1,−1,−1,−1) (3.5.27)

The di�erence between V and V ′ is a BRST-exact expression:〈
B , g−1 ([Σ, λ3 + λ1] ∧ [Σ, λ3 + λ1]) g

〉
= QX (3.5.28)

where X = −
〈
B , g−1 (Σ ∧ [Σ, λ3 + λ1]) g

〉
(3.5.29)

The de�nition of X requires some work, because Σ is not an element of g = psu(2, 2|4), because
STrΣ 6= 0. Therefore, in order to de�ne X, we need to lift B from g∧g to su(2, 2|4)∧su(2, 2|4).
There is no way to do it while preserving the psu(2, 2|4)-invariance. Therefore, X does not
transform as Eq. (3.5.23). Still, Eq. (3.5.28) holds, thus V ′ is BRST-equivalent to V .

Alternative de�nition

When B satis�es the �physicality� condition Babfab
c = 0, we can use the alternative vertex:

Ṽ = STr(λ3λ1)Bab
〈
ta ∧ tb , g−1

(
kαα̇t3α ∧P13t

1
α̇

)
g
〉

(3.5.30)

This alternative beta-deformation vertex is �homogeneous�, in the sense that it has a de�nite
ghost number (1, 1). It is linear in λ3 and in λ1, because the pre-factor STr(λ3λ1) cancels the
denominator in P13.

Conjecture The vertex operator Ṽ de�ned by Eq. (3.5.30) is not BRST-exact. If this is the

case, then Ṽ is proportional to the beta-deformation vertex of Eq. (3.5.20). We leave the proof
of this conjecture, and the computation of the proportionality coe�cient, for future work.

3.5.7 Conjectures about higher �nite-dimensional vertices

Recurrent construction of vertices

Eq. (3.5.30) calls for generalization for higher �nite-dimensional vertices [65]. Let us consider
the bicomplex:

dtot = Q+ dLie (3.5.31)

Eq. (3.5.18) shows that:

Qv2 = − dLiev1 (3.5.32)

where v1 = λ3 − λ1 (3.5.33)

v2 = t3α ∧ (1− 2P13)t1α̇ (3.5.34)

Notice that the ghost number of vn is 2− n.
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Conjecture:

1. Exist v3, v4, . . . such that:

dtot

∞∑
j=1

vj = 0 (3.5.35)

2. For j ≥ 2: (STr(λ3λ1))j v2j is a polynomial in λ3 and λ1, and is a covariant ghost number
2 vertex for the deformation corresponding to

∫
d4xtrZ2+j

3. For j ≥ 2: (STr(λ3λ1))j+1 v2j+1 is a polynomial in λ3 and λ1, and is a covariant ghost
number 3 vertex, also corresponding to

∫
d4xtrZ2+j as explained in [62].

We leave the veri�cation of these conjectures for future work.

In�nitesimal deformations of worldsheet BV Master Action

We will now describe another recurrent construction. As explained in [59], the pure spinor
superstring in AdS5 × S5 is quasiisomorphic to the theory with the following Master Action:

SBV =

∫
STr (J1 ∧ (1− 2P31)J3) (3.5.36)

This is the integral over the worldsheet of the 2-form B = STr (J1 ∧ (1− 2P31)J3) which satis�es
the property:

LQB = dA (3.5.37)

where A = STr(λ3J1 − λ1J3) = Str ((λ3 − λ1)J) (3.5.38)

It is natural to conjecture that a vertex operator will correspond to an in�nitesimal deforma-
tion of the action de�ned by Eq. (3.5.36):

∆SBV =

∫
〈β, J ∧ J〉 (3.5.39)

Here β is a rational function of λ with values in Hom (H,g ∧ g), where H is the space of
deformations. The BRST invariance of the deformed action implies:

Qβ = dLieα (3.5.40)

Suppose that STr(λ3λ1)β is a polynomial in λ. Then Eq. (3.5.40) implies that STr(λ3λ1)β
de�nes a Q-closed equivariant vertex for H ⊗ (g ∧ g)0. We conjecture that this vertex is
nontrivial (i.e. not BRST exact), although it may be BRST exact on a proper subspace L ⊂
H⊗ (g∧ g)0. That means that, given a covariant vertex transforming in the representation H,
we can build a new covariant vertex on the space of the larger spin representation H̃ = H⊗(g∧g)0

L
.

This gives a recurrent procedure for producing covariant vertices. We leave veri�cation of these
conjectures for future work.

3.6 OPE of b-ghost with beta-deformation vertex

3.6.1 The b-ghost

The b-ghost satis�es:

QLbzz = Tzz, (3.6.1)

QRbzz = 0 (3.6.2)
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where Tzz is the holomorphic stress-energy tensor. The b̄z̄z̄ is de�ned by the same formula with
QL exchanged with QR and Tzz replaced with Tz̄z̄. The solutions of these equations are given
by [31,34]:

bzz = −str (λ1 [J2zΣ, J1z])

str (λ3λ1)
+

1

2
str (P13ω1zJ3z) (3.6.3)

and

bz̄z̄ = +
str (λ3 [J2z̄Σ, J3z̄])

str (λ3λ1)
+

1

2
str (P31ω3z̄J1 z̄) (3.6.4)

where P13 and P31 are some projectors . These projectors are needed because the pure spinor
momenta ω1z and ω3z̄ are de�ned up to gauge transformations of the form:

δuω3z = [uz, λ1] , and δuω1z̄ = [uz̄, λ3] , (3.6.5)

for both uz and uz̄ in g2. Therefore, the projectors are constructed to satisfy

P13δuω1z̄ = 0 and P31δuω3z = 0. (3.6.6)

Explicit formulas for P13 and P31 as rational functions of the pure spinor variables can be found
in [59].

It is an open question to prove that the expressions str (P13ω1zJ3z) and str (P31ω3z̄J1 z̄) are
well-de�ned in the quantum theory.

Lemma 3.2.6 implies that b given by Eqs. (3.6.3) and (3.6.4) coincides with ∆Ψ|L up to a
Q-closed expression. We have not veri�ed this explicitly.

OPE between b-ghost and global vertex With these de�nitions, the OPE between the
b-ghost and unintegrated global symmetry becomes to 1-loop order:

〈
ε
(
b0 − b0

)
V [ε̃](0)e−Si

〉
=

〈(∮
dz

2πi
zεbzz(z)−

∮
dz̄

2πi
z̄εbz̄z̄

)
V [ε̃](0)

〉
−
〈(∮

dz

2πi
zεbzz(z)−

∮
dz̄

2πi
z̄εbz̄z̄

)
V [ε̃](0)Si

〉
. (3.6.7)

We will calculate all Feynman diagrams considering the pure spinor action and the b-ghost as
a power series in the AdS radius. For the parametrization (3.5.4), the expansion of the action
can be found in reference [63]. In the above equation Si represents all contributions of order
1/R or greater.

3.6.2 General considerations

At the leading order in α′, we should have:

bzzWa =
1

z
(jaz +Qlaz) (3.6.8)

bz̄z̄Wa = − 1

z̄
(jaz̄ +Qlaz̄) (3.6.9)

where laz, laz̄ are some operators, and jazdz + jaz̄dz̄ is the global charge density; our de�nition
of the charge density is such that:(

1

2πi

∮
jazdz + jaz̄dz̄

)
Wb = fab

cWc (3.6.10)

http://andreimikhailov.com/math/pure-spinor-formalism/AdS5xS5/Subspaces_in_superconformal_algebra.html#%28part._.Tangent_and_normal_space_to_pure_spinor_cones%29
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Notice:

jzaWb =
1

2z
fab

cWc + . . . (3.6.11)

jz̄aWb = − 1

2z̄
fab

cWc + . . . (3.6.12)

(where . . . can include log z but not z−1) Therefore:

(b0 − b̄0)V =

∮
(dzzbzz − dz̄z̄bz̄z̄)V =

= Babfab
cWc +Q

[
Bab

(∮
la

)
Wb

]
(3.6.13)

One is tempted to say that Eq. (3.6.13) implies that V is annihilated by b0 − b̄0, in cohomol-
ogy, once B satis�es the physicality condition Babfab

c = 0. However, notice that the expres-
sion fab

cWc is anyway Q-exact (and even g-covariantly Q-exact) since we allow denominator
1

STr(λ3λ1)
, see Section 3.7.

3.6.3 Explicit computation

The operator (b0 − b̄0)V is a sum of two terms: the term with the ghost number (1, 0) and the
term with the ghost number (0, 1). The term with the ghost number (0, 1) is:

2

STr(λ3λ1)

(
{[λ1, t

2
−m], λ3} ∧ [t2m, λ1] − {[λ3, t

2
−m], λ1} ∧ [t2m, λ1]

)

− κββ̇{t3β, λ1} ∧ t1β̇ (3.6.14)

and the term with the ghost number (1, 0) is equal, with the minus sign, to the same expression
with λ3 ↔ λ1 and exchanged dotted and undotted indices. Transform:

− 2

STr(λ3λ1)
{[λ3, t

2
−m], λ1} ∧ [t2m, λ1]

= − 2κβ̇β

STr(λ3λ1)
{[λ3, {λ1, t1β̇}STL

], λ1} ∧ t3β

=
2κβ̇β

STr(λ1λ3)
{[λ3, {λ1, t1β̇}STL

], λ1} ∧ t3β

= − 2κβ̇β

STr(λ1λ3)
{[{λ1, t1β̇}STL

, λ3], λ1} ∧ t3β

= κβ̇β{t1
β̇
, λ1} ∧ t3β (3.6.15)

where we used the explicit form of the pure spinor projector P31 that can be found in [59].
Thus we arrive at:

2

STr(λ3λ1)
{[λ1, t

2
−m], λ3} ∧ [t2m, λ1]−QR

(
κββ̇t3β ∧ t1β̇

)
(3.6.16)
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Adding the �mirror� term with the ghost number (1, 0), we arrive at:

(b0 − b̄0)
〈
Babg(ta ∧ tb)g−1 , (λ3 − λ1) ∧ (λ3 − λ1)

〉
= QΦ (3.6.17)

where:

Φ =
〈
Babg(ta ∧ tb)g−1 , (3.6.18)

2[t2−m, λ1] ∧ [t2m, λ1] + 2[t2−m, λ3] ∧ [t2m, λ3]

Str(λ3λ1)
− κββ̇t3β ∧ t1β̇

〉
Up to Q-exact terms, we can also take:

Φ =
〈
Babg(ta ∧ tb)g−1 , (3.6.19)

−4[t2−m, λ3] ∧ [t2m, λ1] + 2[{λ3, λ1}, t2−m] ∧ t2m
Str(λ3λ1)

− κββ̇t3β ∧ t1β̇
〉

3.6.4 Discussion

In this Section we will compare our proposed Eq. (3.2.50):∫
U =

∫
Σ

d2z
(
b−1b̄−1V

(0) +
√
gRΦ

)
(3.6.20)

where Φ is given by Eq. (3.6.18) (3.6.21)

with the standard approach to the beta-deformation [32]. The most obvious observation is that
the �dilaton super�eld� Φ of Eq. (3.6.18) contains pure spinors (while the �standard� dilaton
super�eld, obviously, does not). Therefore, they are certainly not the same. We will now
explain that there are two reasons for the di�erence.

First reason: b−1b̄−1V
(0) is di�erent from the standard integrated vertex on �at

worldsheet. The standard integrated vertex on �at worldsheet is [32,67]:

Babja ∧ jb (3.6.22)

In our approach here, it is the b−1b̄−1V
(0) of Eq. (3.6.20). This is not equal to Babja ∧ jb, but

di�ers from it by a Q-exact expression, which we have not explicitly computed8:

Babja ∧ jb = dz ∧ dz̄b−1b̄−1V
(0) +QX (3.6.23)

Notice that the BRST operator is only nilpotent on-shell:

Q2 =
∂S

∂w1

∂

∂w3

+ (1↔ 3) (3.6.24)

Therefore, the QX on the RHS of Eq. (3.6.23) deforms the BRST operator:

Q 7→ Q+

(
∂X

∂w1

∂

∂w3

+ (1↔ 3)

)
(3.6.25)

This leads to the change in the BRST anomaly, and, by the mechanism of Eqs. (3.3.3), (3.3.4),
to the change of the Fradkin-Tseytlin term.

8since we have not explicitly computed b−1b̄−1V
(0)
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When we modify the unintegrated vertex:

V (0) 7→ Ṽ (0) = V (0) +QW (0) (3.6.26)

The change in Φ, i.e. Φ̃− Φ, should satisfy:

Q(Φ̃− Φ) = (b0 − b̄0)QW (0) (3.6.27)

Under the assumption that (L0 − L̄0)W (0) = 0 this can be solved by taking:

Φ̃ = Φ− (b0 − b̄0)W (0) (3.6.28)

Suppose that we were able to �nd such W (0) that Ṽ (0) is polynomial in pure spinors. Then, the
curvature coupling also changes, according to Eq. (3.6.28),

Second reason: we have not required the vanishing of Babfab
c. In fact, Φ of Eq. (3.6.19)

can be presented as:

Φ = Bab

(
X[ab] +

〈
g(ta ∧ tb)g−1 ,

2[{λ3, λ1}, t2−m] ∧ t2m
Str(λ3λ1)

〉)
(3.6.29)

where X[ab] is de�ned in Eq. (3.7.3). Since QX[ab] is proportional to fab
c, the term BabX[ab] can

be dropped when B has zero internal commutator, i.e. Babfab
c = 0. In that case, we have just:

Φ = Bab
〈
g(ta ∧ tb)g−1 ,

2[{λ3, λ1}, t2−m] ∧ t2m
Str(λ3λ1)

〉
(3.6.30)

We see that imposing the condition Babfab
c = 0 �considerably simpli�es� the expression for the

dilaton super�eld. But still the resulting expression is a rational function of λ's.

3.6.5 Computation.

The free �eld propagators can be read from [63]:

〈xm(z, z̄)xn(0)〉 = −κmn log |z|2 (3.6.31)

〈θαL(z, z̄)θβ̇R(0)〉 = −καβ̇ log |z|2 (3.6.32)

〈θα̇R(z, z̄)θβL(0)〉 = −κα̇β log |z|2 . (3.6.33)

The propagator λw can be characterized by saying that for any Aα(λ) such that AαΓmαβλ
β = 0

(i.e. tangent to the pure spinor cone):

〈Aα̇ (λ(z, z̄))wα̇+(z, z̄) λβ〉 = −κα̇βz−1 (3.6.34)

Current Vertex

Let us focus, for the moment, on contractions that take only one V in V ∧ V ; that is, we are
going to compute the OPE of (b0− b̄0) with ε(λ3−λ1). The contributions we are interested are
represented in the diagrams below:
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Figure 3.1: Disconnected contractions for the OPE between bzz and V [ε̃].

Figure 3.2: Disconnected contractions for the OPE between bzz and V [ε̃].

Contribution from the diagram of Fig. 3.1

− 1

str(λ3λ1)

κmnκα̇α

R4(z − w)2
str

(
ελ1

[
t2mΣ, t1α̇

])[
t2n,
{
t3α, ε̃ (λ3 − λ1)

}]
. (3.6.35)

Let us use the identity:

− κmnκα̇α str

(
ελ1

[
t2mΣ, t1α̇

])[
t2n,
{
t3α, ε̃ (λ3 − λ1)

}]
= (3.6.36)

= κmn
[
t2n,
[[
t2mΣ, ελ1

]
, ε̃ (λ3 − λ1)

]]
= κmn

[
t2n,
[[
t2mΣ, ελ1

]
, ε̃λ3

]]
. (3.6.37)

Contribution from the diagram of Fig. 3.2

καȦκḂβ

2R4(z − w)2
str
(
εP13t

1
β̇
t3α

){
t3β, ε̃t

1
α̇

}
=

κḂβ

2R4(z − w)2

[
εt3β, ε̃P13t

1
β̇

]
. (3.6.38)

Sum of �rst and second diagram

εb0V [ε̃] = +
1/R4

str(λ3λ1)
κmn

[
t2n,
[[
t2mΣ, ελ1

]
, ε̃λ3

]]
− κḂβ

2R4

[
ε̃P13t

1
β̇
, εt3β

]
. (3.6.39)

Anti-holomorphic b-ghost A similar computation gives for the anti-holomorphic term:

εb0V [ε̃] = +
1/R4

str(λ3λ1)
κmn

[
t2n,
[[
t2mΣ, ελ3

]
, ε̃λ1

]]
− κḂβ

2R4

[
ε̃P13t

1
β̇
, εt3β

]
. (3.6.40)

Contribution of b0 − b0 We can simplify the total contrubution of the diagrams of Figures
3.1 and 3.2 to
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Figure 3.3: Vertex contribution bzz and V [ε̃].

ε(b0 − b0)V [ε̃] =

(
κmn

[
t2n,

[
[t2mΣ, ελ1], ε̃λ3

]]
− κmn

[
t2n,

[
[t2mΣ, ελ3], ε̃λ1

]])

=

(
5

2

[
ελ1, ε̃λ3

]
− 5

2

[
ελ3, ε̃λ1

])

+

(
κmn

[[
[t2mΣ, ελ1

]
,

[
t2n, ε̃λ3

]]
− κmn

[[
[t2mΣ, ελ3

]
,

[
t2n, ε̃λ1

]])

=

(
κmn

[[
[t2mΣ, ελ1

]
,

[
t2n, ε̃λ3

]]
− κmn

[[
[t2mΣ, ελ3

]
,

[
t2n, ε̃λ1

]])

= −3

2

[
ελ1, ε̃λ3

]
+

3

2

[
ελ3, ε̃λ1

]
= 0 (3.6.41)

In this derivation, we used the identities

κmn
[
t2n,
[
t2mΣ, ελ1

]]
=

Σ

2
κmn

[{
t2m, t

2
n

}
, ελ1

]
= κmnκmn

Σ

8
[Σ, ελ1]

=
1

4
κmnκmn ελ1

=
5

2
ελ1 (3.6.42a)

together with

κmn

[[
t2mΣ, ελ1

]
,

[
t2n, ε̃λ3

]]
= −3

2

[
ελ1, ε̃λ3

]
(3.6.42b)
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and

−κmn
[[
t2mΣ, ελ3

]
,

[
t2n, ε̃λ1

]]
=

3

2

[
ελ3, ε̃λ1

]
(3.6.42c)

Contribution of the diagram of Figure 3.3 There only remains the contractions that get
contributions from the interaction vertices:

1

2πR4

1

str(λ3λ1)
str
(
ελ1

[
∂xΣ, ∂θ̂

])
(z)
[
θ̂, ε̃ (λ3 − λ1)

]
(w)

∫
d2u str

(
∂x
[
θ, ∂θ

])
(3.6.43)

We use: ∫
d2u

1

(z − u)3

1

(w̄ − ū)
=
π

2

1

(z − w)2
(3.6.44)

and obtain:

−κmnκḂβκαȦstr
(
ελ1

[
t2mΣ, t1

β̇

]){
t1α̇, ε̃(λ3 − λ1)

}
str
(
t2n
{
t3β, t

3
α

})
. (3.6.45)

We temporarily do not write the factor of 1/4R2str(λ3λ1) since it only observes the calculation.
This answer can be rewritten as

− κmnκḂβκαȦstr
(
ελ1

[
t2mΣ, t1

β̇

]){
t1α̇, ε̃(λ3 − λ1)

}
str
(
t2n
{
t3β, t

3
α

})
=

− κmnκḂβκαȦstr
(

[ελ1, t
2
mΣ]t1

β̇

){
t1α̇, ε̃(λ3 − λ1)

}
str
(
[t2n, t

3
β]t3α

)
=

− κmnκḂβstr
(

[ελ1, t
2
mΣ]t1

β̇

)[
[t2n, t

3
β], ε̃(λ3 − λ1)

]
=

− κmn
[ [
t2n, [ελ1, t

2
mΣ]

]
, ε̃(λ3 − λ1)

]
=

+ κmn

[ [
t2n, [t

2
mΣ, ελ1]

]
, ε̃(λ3 − λ1)

]
=

5

2

[
ελ1, ε̃(λ3 − λ1)

]
=

5

2

[
ελ1, ε̃λ3

]
=

5

2

[
ελ3, ε̃λ1

]
(3.6.46)

to give the contribution � with all factors restored �

5

8R4

g−1
[
ελ3, ε̃λ1

]
g

str(λ3λ1)
. (3.6.47)

Notice that in deriving equation (3.6.46) we used identity (3.6.42a). To summarize, the contri-
bution of Figure 3.3 is given by equation (3.6.47).
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Anti-holormophic b-ghost One can compute the contribution of bz̄z̄(z̄) in the same way
and it gives

εb̄0V [ε̃](w) =
5

8R4

g−1
[
ελ3, ε̃λ1

]
g

str(λ3λ1)
(3.6.48)

Final answer Combining the three diagrams we arrive at

ε
(
b0 − b0

)
V [ε̃] = 0 (3.6.49)

for the current vertex.

Beta-deformation Vertex.

In order to �nish the calculation, we only have to compute contractions where the b-ghost hits
both V in V ∧ V . These mixed contractions are given by the diagrams below:

Figure 3.4: Disconnected contractions for the OPE between bzz and V [ε̃] ∧ V [ε].

Figure 3.5: Disconnected contractions for the OPE between bzz and V [ε̃] ∧ V [ε].

We stress that there are no contributions from the action up to 1-loop.

Contribution of diagram in �gure 3.4 The diagram in �gure 3.4 contributes as

−κȦακmn 2

R4str (λ3λ1)
str
(
ε′λ1

[
t2mΣ, t1α̇

])
{t3α, ε̃(λ3 − λ1)} ∧ [t2n, ε(λ3 − λ1)] (3.6.50)

And this result can be simpli�ed to:
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− 2κȦακmn

R4str (λ3λ1)
str
(
ε′λ1

[
t2mΣ, t1α̇

])
{t3α, ε̃(λ3 − λ1)} ∧ [t2n, ε(λ3 − λ1)] =

− 2κȦακmn

R4str (λ3λ1)
str
(
[ε′λ1, t

2
mΣ]t1α̇

)
{t3α, ε̃(λ3 − λ1)} ∧ [t2n, ε(λ3 − λ1)] =

− 2κmn

R4str (λ3λ1)

[[
ε′λ1, t

2
mΣ
]
, ε̃(λ3 − λ1)

]
∧
[
t2n, ε(λ3 − λ1)

]
=

− 2κmn

R4str (λ3λ1)

[[
ε′λ1, t

2
mΣ
]
, ε̃λ3

]
∧
[
t2n, ε(λ3 − λ1)

]
(3.6.51)

Contribution of diagram in �gure 3.5 Likewise, we obtain:

1

R2
str (ε′P13ω1z∂θ) [θ̂, ε̃(λ3 − λ1)] ∧ ε(λ3 − λ1) =

− 1

R2
καȦstr

(
ε′P13ω1zt

3
α

)
{t1α̇, ε̃(λ3 − λ1)} ∧ ε(λ3 − λ1) =

1

R4
καȦκḂβstr

(
ε′P13t

1
β̇
t3α

)
{t1α̇, ε̃(λ3 − λ1)} ∧ εt3β =

1

R4
κḂβ

[
ε′P13t

1
β̇
, ε̃(λ3 − λ1)

]
∧ εt3β =

1

R4
κḂβ

[
ε′P13t

1
β̇
, ε̃λ3

]
∧ εt3β =

1

R4
κḂβ

[
ε′t1

β̇
, ε̃λ3

]
∧ εt3β (3.6.52)

Holormorphic b-ghost The sum of these contribution gives us:

ε′b0V [ε̃] ∧ V [ε] = − 2κmn

R4str (λ3λ1)

[[
ε′λ1, t

2
mΣ
]
, ε̃λ3

]
∧
[
t2n, ε(λ3 − λ1)

]

+
1

R
κḂβ

[
ε′t1

β̇
, ε̃λ3

]
∧ εt3β (3.6.53)

Anti-holomorphic b-ghost The same can be done for the anti-holomorphic b-ghost, and we
obtain
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ε′b̄0V [ε̃] ∧ V [ε] = − 2κmn

R4str (λ3λ1)

[ [
ε′λ3, t

2
mΣ
]
, ε̃λ1

]
∧
[
t2n, ε(λ3 − λ1)

]

+
1

R
κβḂ

[
ε′t3β, ε̃λ1

]
∧ εt1

β̇
(3.6.54)

Final answer

The sum of all contributions from the current and the mixed contractions gives us the �nal
answer:

ε′
(
b0 − b0

)
V [ε̃] ∧ V [ε] =

−2κmn

R4str (λ3λ1)

([[
ε′λ1, t

2
mΣ
]
, ε̃λ3

]
∧
[
t2n, ε(λ3 − λ1)

]
−
[ [
ε′λ3, t

2
mΣ
]
, ε̃λ1

]
∧
[
t2n, ε(λ3 − λ1)

])

+
1

R4

(
κḂβ

[
ε′t1

β̇
, ε̃λ3

]
∧ εt3β − κβḂ

[
ε′t3β, ε̃λ1

]
∧ εt1

β̇

)
(3.6.55)

3.7 BRST triviality of fab
cWc

The projectors P were used in [32] to prove that BRST triviality of the ghost number 1 vertices
corresponding to the global symmetries. Once we allow denominators, the BRST cohomology
is zero anyway. But in highly supersymmetric backgrounds, it is meaningful to ask to which
extent resolving Qφ = ψ preserves the global supersymmetries. The ghost number 1 vertex for
a global symmetry ta ∈ psu(2,2|4) is:

Wa(ε) =
(
g−1(ελ3 − ελ1)g

)
a

(3.7.1)

for a Grassmann odd constant parameter9 ε. It was proven in [32] that

fab
cWc = −εQXab = −εQX[ab] where (3.7.2)

Xab = Str
(
gtag

−1
(
(gtbg

−1)3̄ + 2(gtbg
−1)2̄ + 3(gtbg

−1)1̄ − 4P13(gtbg
−1)1̄

))
where f cab are the structure constants of psu(2, 2|4). This implies that fab

cWc isQ-exact in a way
preserving symmetries. However, Wc cannot be obtained from fab

cWc preserving symmetries.
(Notice that fab

cfabd = 0.) In this sense, fab
cWc is BRST-exact but Wc is not.

Notice that:

X[ab] =
〈
ta ∧ tb , g−1Ag

〉
(3.7.3)

where A = −2kαα̇t3α ∧ (1− 2P13)t1α̇ = (3.7.4)

= 2kαα̇t3α ∧ t1α̇ + 8
kαα̇t3α ∧ [{λ1, t1α̇}STL , λ3]

STrλ1λ3

=

= 2kαα̇t3α ∧ t1α̇ + 8
[λ1, t

2
m] ∧ [t2−m, λ3]

STrλ1λ3

(3.7.5)

9As usual in supergeometry, we use a su�ciently large pool of constant fermionic parameters
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In other words, in the covariant complex (see Section 3.5.2, Eq. (3.5.10)):

Q
(
kαα̇t3α ∧ (1− 2P13)t1α̇

)
= dLie(λ3 − λ1) (3.7.6)

where dLie is de�ned in Section 3.5.3.

Relation to the �minimalistic action� We will now explain that Eq. (3.7.6) is equivalent
to the BV Master Equation for the minimalistic action of [59]. Let us consider the scalar
product, as de�ned in Section 3.5.3, with J3 ∧ J1:〈

J3 ∧ J1 , k
αα̇t3α ∧ (1− 2P13)t1α̇

〉
= (3.7.7)

= STr
(
J1t

3
α

)
kαα̇ ∧ STr

(
t1α̇(1− 2P31)J3

)
= (3.7.8)

= STr (J1 ∧ (1− 2P31)J3) (3.7.9)

εQ
〈
J3 ∧ J1 , k

αα̇t3α ∧ (1− 2P13)t1α̇

〉
= (3.7.10)

=
〈

[ελ1, J2] ∧ J1 + J3 ∧ [ελ3, J2] , kαα̇t3α ∧ (1− 2P13)t1α̇

〉
+

+
〈
− εD0λ3 ∧ J1 − J3 ∧ εD0λ1 , k

αα̇t3α ∧ (1− 2P13)t1α̇

〉
The �rst line of the RHS of Eq. (3.7.10) equals to (in the sense of Section 3.5.2, Eq. (3.5.10)):

−
〈
J2 ∧ J1 + J3 ∧ J2 , εQ

(
kαα̇t3α ∧ (1− 2P13)t1α̇

) 〉
=

=
〈
J2 ∧ J1 + J3 ∧ J2 , dLie(ελ3 − ελ1)

〉
= (3.7.11)

=
〈

[J2, J1] + [J3, J2] , ελ3 − ελ1

〉
= STr ([J3, J2]ελ3 − [J2, J1]ελ1)

The second line of the RHS of Eq. (3.7.10) is:〈
− εD0λ3 ∧ J1 − J3 ∧ εD0λ1 , k

αα̇t3α ∧ (1− 2P13)t1α̇

〉
= (3.7.12)

=
〈
− εD0λ3 ∧ J1 − J3 ∧ εD0λ1 , k

αα̇t3α ∧ t1α̇
〉

=

= STr ((D0λ1)J3 − (D0λ3)J1) (3.7.13)

The sum is a total derivative:

QSTr (J1 ∧ (1− 2P31)J3) = dSTr ((λ3 − λ1)J) (3.7.14)

This shows that Eq. (3.5.36) is Q-invariant.

3.8 MATHEMATICA code

MATHEMATICA code for computations in AdS5×S5 sigma-model is available on GitHub.

https://github.com/Henriquemfl/Pure-spinor-in-AdS5-Mathematica/tree/master
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Chapter 4

On the Spectrum and Spacetime

Supersymmetry of Heterotic Ambitwistor

String

4.1 Outline.

Sections 4.2 and 4.3 contain a mini review on the Ramond sector and the ambitwistor model.
Their main purpose is to set our notation and make our presentation self-contained. It doesn't
contain anything new, and it can be skipped for those who already know the subject.

We start in section 4.4, where we use the standard BRST method to compute the equations
of motion of the Ramond sector for the heterotic system. These represent the fermionic degrees
of freedom of the theory, and our analysis shows that they also follow non-unitary equations
of motion. We write a gauge-invariant version of theory in terms of Fronsdal �elds [68]. The
kinetic term of the fermionic ambitwistor string �eld theory action is also computed in section
4.5. It is expressed in terms of gauge-invariant objects and resembles Fronsdal's free action
despite having more derivatives.

Finally, in section 4.6 we write the supersymmetry transformations of the system. In RNS
language, the supersymmetry operator is de�ned on-shell and thus gives the supersymmetry
transformations up to equations of motion. Then we prove the invariance of the action under
supersymmetry transformations.

4.2 Ramond sector, cocycles and Gamma matrices.

Spinor indices in 10 dimensions can be distinguished between chiral and anti-chiral. We denote
chiral indices by undotted greek letters, α, while anti-chiral indices are represented by dotted
greek letters, α̇. Both run from 1 to 16. Spinor indices are 5-dimensional vector representations
of u(5):

α̇ =
1

2

− − − − −
− − − + +
− + + + +

 and β =
1

2

+ + + + +
+ + + − −
+ − − − −

 . (4.2.1)

where an anti-chiral index, α̇, must have an even number of plus signs, and a chiral index,
β, must have an odd number of plus signs. Each of these combinations has 16 independent
components represented as 16 = 1 + 10 + 5.
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4.2.1 The Ramond Sector.

The Ramond sector of the Ambitwistor string is de�ned by the antiperiodic boundary conditions
of ψm:

ψm(e2πiz) = −ψm(z). (4.2.2)

We follow [69] and implement these boundary conditions via spin �elds. That is, we have a
conformal primary S(z) that twists a periodic ψ:

ψm
(
z + (w − z)e2πi

)
S(z) = −ψm (w)S(z). (4.2.3)

This implies that a state |α〉 created from the vacuum |0〉 via

|α〉 = Sα(0)|0〉 (4.2.4)

should transform as a spacetime spinor. Notice that, due to the presence of S forcing ψ to be
in the Ramond sector, this state must belong to an irreducible representation of the zero-mode
Cli�ord algebra of ψm: {ψm0 , ψn0 } = ηmn, which implies

ψm0 |α〉 =
1√
2

Γmα
β̇
|β̇〉. (4.2.5)

4.2.2 Bosonization and cocycles.

Because Sα twists the boundary conditions of ψm, the system is not free and OPE's are di�cult
to compute. Bosonization is a technique that allows us to deal with free �elds only. Bosonization
assigns for a pair of complex fermions one chiral boson, which means that we have to break
manifest so(10) invariance down to u(5).

Spin Fields. The bosonization of spin �elds is given by

Sα(z) = exp

(
α · φ(z)

)
cα (4.2.6)

where α is a chiral spinor index. The same expression is valid for anti-chiral spin �elds by just
replacing α for α̇. The factor cα is a cocycle phase that guarantees the correct anticommutation
relations.

Cocycles. The anticommuting fermionic algebra is reproduced in the bosonic system via the
Baker-Campbell-Hausdor� formula:

eφ(z)e±φ(z′) = e±φ(z′)e∓φ(z′)eφ(z)e±φ(z′) = −e±φ(z′)eφ(z) (4.2.7)

provided for |z′| = |z| we have[
φ(z′), φ(z)

]
= ±iπ which implies φ(z)φ(0) ∼ ln z (4.2.8)

Now, if we are given more than one pair of fermions, they won't naturally anticommute because
[φi, φj] = 0. This is corrected by the introduction of cocycles [70]:

• Order all bosons of the theory: φi where i = 1, . . . , N ;

https://en.wikipedia.org/wiki/Baker\T1\textendash Campbell\T1\textendash Hausdorff_formula
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• Then multiply each exponential by a factor (−)N1+...+Ni−1 , where Ni is the fermion number
operator:

Ni = −
∮

dz

2πi
ψiψi =

∮
dz

2πi
∂φi. (4.2.9)

For example, if we consider two pairs of fermions, the bosonization becomes

ψ1 = eφ1 , ψ1 = e−φ1 (4.2.10)

with

ψ2 = eφ2(−)N1 , ψ2 = e−φ2(−)N1 (4.2.11)

where now ψ1 and ψ2 anticommute

eφ1eφ2(−)N1 = eφ2eφ1(−)N1 = eφ2(−)N1(−)−N1eφ1(−)N1 = −eφ2(−)N1eφ1 (4.2.12)

provided

[
Ni, e

nφj
]

= nδije
nφj . (4.2.13)

Thus, for more than one pair of fermions, we need to introduce the cocycle phase factors:

ci = (−)N1 + ...+Ni−1 . (4.2.14)

Consider the vector

∂φ = (N1, N2, . . . , N5) (4.2.15)

then the cocycle factor can be written as

c±ei = exp [±iπ〈eiM∂φ〉] (4.2.16)

where ei is 1 in the ith component and zero elsewhere, 〈 〉 is a matrix inner product and M is
a lower triangular matrix with entries ±1:

M =


0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
−1 1 −1 0 0 0
1 1 1 1 0 0
−1 −1 −1 −1 −1 0

 .

The signs of M are arbitrary at this point, but they can be speci�ed studying the charge
conjugation matrix [70].

The cocycle factors of spin �elds, cα and cα̇, are given the following expressions:

cα = exp [iπ〈αM∂φ〉] and cα̇ = exp [iπ〈α̇M∂φ〉] (4.2.17)
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Gamma Matrices. To motivate the construction of gamma matrices and show how cocycles
work, let us consider the OPE between ψi and Sα. Using expressions (4.3.4) and (4.2.6) we
have to compute the OPE of eφi(z)ci with e

αφ(w)cα. Notice that ci will pass through e
αφ and

due to Baker-Campbell-Hausdor� we obtain an extra phase:

cie
αφ = eiπ〈eiM∂φ〉eαφ = eiπ〈eiMα〉eαφci (4.2.18)

so that our OPE becomes

eφi(z)ci e
αφ(w)cα ∼ (z − w)α·ei eiπ〈eiMα〉e(ei+α)φci+α. (4.2.19)

Notice that we obtain a branch-cut if α · ei = αi = −1/2 which in turn implies that the sum
ei + α must be an anti-chiral index β̇. Therefore given

eφi(z)ci e
αφ(w)cα ∼ (z − w)−1/2 eiπ〈eiMα〉eβ̇φcβ̇, (4.2.20)

we see that it becomes natural to de�ne the gamma matrices as

(Γj)βα̇ =
√

2δ (ej + β − α̇) eiπ〈ejMα̇〉 (4.2.21a)

and

(Γj) β̇α =
√

2δ
(
ej + β̇ − α

)
eiπ〈ejMα〉 (4.2.21b)

giving us the �nal result:

ψi(z)Sα(w) ∼ 1√
2

Γi α
β̇
Sβ̇(w)

(z − w)1/2
. (4.2.22)

The explicit representation is written in terms of the Pauli-matrices via

Γ±ej = (±i)j−1
√

2
(
σ3⊗

)j−1
σ∓ (⊗1)5−j (4.2.23)

and one can convert between u(5) and covariant so(10) using

Γ2j−1 =
1√
2

(
Γej + Γ−ej

)
(4.2.24a)

and

Γ2j =
i√
2

(
Γej − Γ−ej

)
(4.2.24b)

Notice that in our construction, the notation γµ is reserved for the symmetric gamma matrices:

γµαβ = Γµ β̇α Cβ̇β (4.2.25a)

γµαβ = Γµα
β̇
C β̇β (4.2.25b)

as it is common in the literature. In above equations, C denotes the charge conjugation matrix
which is the next topic in our discussion.
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Charge Conjugation Matrix. We de�ne C as

Cββ̇ = δ
(
β + β̇

)
eiπβMβ̇ (4.2.26a)

and

C β̇β = −δ
(
β̇ + β

)
eiπβ̇Mβ (4.2.26b)

and with these convetions we have Cββ̇ = C β̇β. These expressions can be motivated by studying
the OPE of Sα and Sβ̇.

It is also common to use only undotted indices when describing spinors in 10d. Charge
matrices act as metrics on the spinor space and can remove all dotted indices. For us all
spinors are de�ned with upper indices and then anti-chiral ones are written as

Sβ = Cββ̇S
β̇. (4.2.27)

This notation is used together with the symmetric gamma representation.

4.3 Ambitwistor Action and Ramond Sector.

We �rst review the ambitwistor model. Its main purpose is to set the basic de�nitions and
notation.

The heterotic ambitwistor model is de�ned by the free action

S =
1

2π

∫
d2z

(
pm∂̄x

m + ψm∂̄ψ
m + b∂̄c+ b̃∂̄c̃+ β∂̄γ + Sj

)
(4.3.1)

where pm is a worldsheet holomorphic one-form and xm is an holomorphic coordinate function.
The b and c �elds together with β and γ are the Faddeev-Poppov ghosts of superconformal
worldsheet symmetry. Particular to the heterotic model, we have the current action Sj; its
speci�c form is irrelevant for us, we only require the existence of a current ja with conformal
weight 1 that satis�es the OPE

ja(z)jb(w) ∼ δab

(z − w)2
+
fabc jc(w)

(z − w)
, (4.3.2)

being fabc the structure constants of the Lie algebra in question. The Ambitwistor model di�ers
from the superstring due to the presence of the b̃ and c̃ ghosts related to the gauge symmetries
of the light-cone constrain: p2 = 0. These ghosts have conformal weights 2 and −1 respectively
and both are worldsheet fermions.

Our Majorana spinors ψm will be rewritten in the complex linear combinations:

ψ±i =
1√
2

(
ψ2i−1 ∓ ψ2i

)
(4.3.3)

for i = 1, . . . , 5 that are subsequently bosonized to

ψ±i(z) = exp

(
± φi(z)

)
c±ei (4.3.4)

with φ's satisfying

φi(z)φj(w) ∼ + δij ln(z − w) (4.3.5)
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The (β, γ) system is bosonized with extra fermions (ξ, η) [69], both primaries of conformal
weight 0 and 1 respectively:

β = ∂ξe−φ6ce6 and γ = ηeφ6ce6 . (4.3.6)

This choice follows the conventions of [70] and [71] where we have introduced the cocycles cei
and ce6 . During the computation of cohomology, cocycle factors are important and must be
taken into account. The de�nition of cocycles depends on the way we order the di�erent φi.
For us the chiral bosons corresponding to ψm are ordered from 1 to 5 while the boson coming
from the βγ system is labeled as 6. The sixth boson has OPE:

φ6(z)φ6(w) ∼ − ln(z − w) (4.3.7)

while (ξ, η) form a free system:

ξ(z)η(w) ∼ 1

(z − w)
(4.3.8)

The symmetries of this action are encoded in the following BRST charge:

Q =

∮
dz

2πi

[
c

(
Tmatter + Tb̃c̃ + Tβγ + Tj

)
+ bc∂c+

1

2
c̃p2 + γpmψm − γ2b̃

]
(4.3.9)

provided

Tmatter = −pm∂x
m +

1

2

5∑
i=1

∂φi∂φi, Tb̃c̃ = c̃∂b̃− 2b̃∂c̃, (4.3.10a)

Tβγ = −1

2
∂φ6∂φ6 − ∂2φ6 − η∂ξ, and γ2 = η∂ηe+2φ6 . (4.3.10b)

These are all the stress-energy tensors for (xm, pm, ψ
m), (β, γ) and (b̃, c̃). We only require for

the stress tensor of the current sector, Tj, that the following OPE is satis�ed:

Tj(z)Tj(w) ∼ cj
2(z − w)4

+
2Tj(w)

(z − w)2
+
∂Tj(w)

(z − w)
. (4.3.11)

Then, provided the central charge of the current system is 16, it is possible to show that Q2 = 0
when the spacetime is 10-dimensional.

4.4 Cohomology.

In this section, we compute the ghost number 2 BRST cohomology of the Ambitwistor string
for states in the Ramond sector. The cohomology of the Neveu-Schwartz sector has already
been computed in [72].

We start by writing the most general vertex operator and the most general gauge parameter.
Once all equations of motion and gauge transformations are obtained, we solve the algebraic
gauge conditions to obtain a set of independent �eld equations.
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4.4.1 Vertex operators.

States are de�ned by picture number −1/2 and ghost number 2 BRST cohomology. We de�ne
ghost and picture numbers by the expressions:

Nghost = −
∮

dz

2πi

(
bc+ b̃c̃+ ξη

)
and Npicture =

∮
dz

2πi

(
ξη − ∂φ6

)
. (4.4.1)

Vertex Operator. The most general ghost number 2 and picture number −1/2 vertex op-
erator that is annihilated by b0 is given by the sum,

VR = V+ + V−, (4.4.2)

where V+ and V− are the GSO(+) and GSO(−) combinations. The GSO(+) vertex operator
is given by:

V+ = cηSαeφ/2Aα + c̃ηSαeφ/2Bα + cc̃Sα̇e−φ/2∂xmCmα̇ + cc̃Sα̇e−φ/2pmD
m
α̇ + cc̃Sα̇e−φ/2jaEa

α̇

+ c∂c̃Sα̇e−φ/2Fα̇ + cc̃Sα̇∂e−φ/2Gα̇ + cc̃ψm(/ψS)αe−φ/2Hm
α + cc̃∂c̃∂ξSαe−3φ/2Iα + c̃∂c̃Sα̇e−φ/2Jα̇

(4.4.3)

while V− is obtained from V+ by changing the chirality of our spinors. Notice that the vertices
ψmψnSα̇ and ∂Sα̇ have not been written. In bosonized form, these combinations are related to
ψ/ψS via �eld rede�nitions [70]; there is no need to worry about them.

Gauge vertex. As for the gauge transformations, we parametrize them by ghost number 1
and picture number −1/2 vertex operators:

Λ = cSα̇e−φ6/2λα̇ + c̃Sα̇e−φ6/2ωα̇ + cc̃∂ξSαe−3φ6/2µα. (4.4.4)

Both expressions (4.4.2) and (4.4.4) constitute the basic �eld content of BRST cohomology.

4.4.2 Equations of motion and gauge symmetries.

For clarity we consider only the GSO(+) sector. The GSO(−) is obtained by replacing chiral
indices for anti-chiral and vice-versa. We present the equations of motion organized by ghost
number as they were obtained from the OPE of Q and V+. We also write the worldsheet
operator that multiplies the resulting equation of motion.

• For (2c, 1c̃) multiplying (Sα̇e−φ6/2cc̃∂2c):

+
1

2
∂mD

m
α̇ + Fα̇ −

3

8
Gα̇ −

9

4
(Γm)βα̇Hmβ = 0 (4.4.5)

• For (0c, 1c̃) multiplying (Sα̇e3φ6/2c̃η∂η):

+Jα̇ −
i√
2

(Γm)βα̇∂mBβ = 0 (4.4.6)

• For (1c, 0c̃) multiplying (Sα̇e3φ6/2cη∂η):
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− i√
2

(Γm)βα̇∂mAβ −Gα̇ + Fα̇ = 0 (4.4.7)

• For (1c, 2c̃)

� multiplying (Sαe−φ6/2cc̃∂c̃pm):

−1

2
�Dm

α̇ + Cm
α̇ − ∂mFα̇ −

i√
2

(Γm)βα̇Iβ = 0 (4.4.8)

� multiplying (Sα̇e−φ6/2cc̃∂2c̃):

−1

2
∂mCmα̇ − Jα̇ = 0 (4.4.9)

� multiplying (Sα̇e−φ6/2cc̃∂c̃∂xm):

−1

2
�Cmα̇ − ∂mJα̇ = 0 (4.4.10)

� multiplying (Sα̇e−φ6/2cc̃∂c̃∂φ6):

+
1

4
�Gα̇ +

1

2
Jα̇ +

i√
2

(Γm)βα̇∂mIβ = 0 (4.4.11)

� multiplying (cc̃∂c̃ψm(/ψS)α):

+
1

2
�Hm

α −
i

4
√

2
∂mIα +

i

8× 9
√

2
(Γm)β̇α(/∂I)β̇ +

1

9× 4
(Γm)β̇αJβ̇ = 0 (4.4.12)

• For 1c, 1c̃

� multiplying (Sαeφ6/2cη∂c̃):

−1

2
�Aα + Bα + 2Iα −

i√
2

(Γm)β̇α∂mFβ̇ = 0 (4.4.13)

� multiplying (Sαeφ6/2cc̃η∂xm):

−∂mBα +
i√
2

(Γn)β̇α∂nCmβ̇ = 0 (4.4.14)

� multiplying (Sαeφ6/2cc̃ηpm):

−∂mAα +
i√
2

(Γn)β̇α∂nD
m
β̇

+
i

2
√

2
(Γm)β̇αGβ̇ −

i8√
2
Hm
α −

i√
2
Hβn(Γn)βα̇(Γm)α̇α = 0 (4.4.15)
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� multiplying (Sαeφ6/2cc̃∂η):

−Bα + 3Iα +
i√
2

(Γm)β̇αCmβ̇ −
i

2
√

2
(Γm)β̇α∂mGβ̇ +

8i√
2
∂mHαm +

i√
2

(Γn)β̇α(Γm)τ
β̇
∂nHτm = 0

(4.4.16)

� multiplying (Sαeφ6/2cc̃η∂φ6):

1

2
Bα + 4Iα +

i√
2

(Γm)β̇αCmβ̇ −
i√
2

(Γm)β̇α∂mGβ̇ +
8i√

2
∂mHαm +

i√
2

(Γn)β̇α(Γm)τ
β̇
∂nHτm = 0

(4.4.17)

� multiplying
(
ηcc̃ψm(/ψS)α̇eφ6/2

)
:

+
1

36
(Γm)αα̇Bα +

i

2
√

2

[
1

4
∂mGβ̇ −

1

9× 8
(Γm)τα̇(/∂G)τ

]
− i√

2

[
1

4
Cα̇m −

1

9× 8
(Γm)τα̇(/C)τ

]

− i√
2

[
− 1

4
(Γn)βα̇∂mHβn − (Γn)βα̇∂nHβm +

1

9
(Γm)βα̇∂

nHβn +
1

9× 8
(Γm)βα̇(Γl)β̇β(Γp)τ

β̇
∂lHτp

]
= 0

(4.4.18)

These 14 equations of motion are all invariant under the following 10 gauge transformations:

δAα = +
i√
2

(Γm)β̇α∂mλβ̇ + 2µα (4.4.19a)

δBα = +
i√
2

(Γm)β̇α∂mωβ̇ (4.4.19b)

δIα =
1

2
�µα (4.4.19c)

δHm
α =

1

9× 4
(Γm)β̇αωβ̇ +

i

4
√

2
∂mµα −

i

8× 9
√

2
(Γm)β̇α(/∂µ)β̇ (4.4.19d)

δCmα̇ = ∂mωα̇ (4.4.19e)

δDm
α̇ = ∂mλα̇ −

i√
2

(Γm)βα̇µβ (4.4.19f)

δEA
α̇ = 0 (4.4.19g)

δFα̇ = −1

2
�λα̇ + ωα̇ (4.4.19h)

δGα̇ = ωα̇ −
2i√

2
(Γm)βα̇∂mµβ (4.4.19i)

δJα̇ = −1

2
�ωα̇ (4.4.19j)

We determined the basic content of ghost number 2 BRST cohomology; all equations of
motion have been written between (4.4.5) and (4.4.18). This set is highly redundant, and the
next step is to use (4.4.19) to stablish the independent �eld equations.
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4.4.3 Gauge-�xing and independent equations of motion.

In order to �nd the independent set of equations of motion, we begin by �xing algebraic gauge
conditions and solving auxiliary �eld equations. Let us gauge-�x A and F to zero using the
parameters µ and ω, that is, we choose µ = −A and ω = −F so that the residual gauge
parameters µ′ and ω′ must satisfy:

µ
′

α +
i

2
√

2
(Γm)β̇α∂mλβ̇ = 0, (4.4.20)

and

ω
′

α̇ −
1

2
�λα̇ = 0. (4.4.21)

After this gauge �xing, the following auxiliary �eld conditions can be imposed:

Gm
α̇ = 0, (4.4.22a)

Bα = −2Iα, (4.4.22b)

Cm
α̇ = +

1

2
�Dm

α̇ +
i√
2

(ΓmI)α̇, (4.4.22c)

Jα̇ = −1

4
� ∂mD

m
α̇ −

i

2
√

2
(/∂I)α̇, (4.4.22d)

Hm
α =

1

8
/∂
β̇
αD

m
β̇
− 1

18× 8
(ΓmΓn /∂)β̇αD

n
β̇
. (4.4.22e)

At this point it is already clear that there only remains two independent �elds given by Dm
α̇

and Iα. Moreover, the only remaining gauge parameter is λ. We leave the gluino �eld Ea
β̇
out

of the discussion since its equation of motion is already the Dirac equation and it has no gauge
transformations.

Finally, the following set of 3 equations,

i√
2
∂mIα = �

(
1

4
/∂
β̇
αD

m
β̇
− 1

12
(Γm)β̇α∂nD

n
β̇

)
(4.4.23a)

2∂mD
m
α̇ + (ΓnΓp)

β̇
α̇∂

nDp

β̇
= 0 (4.4.23b)

/∂
α̇
αE

a
α̇ = 0 (4.4.23c)

with the corresponding gauge transformations:

δDm
α̇ =

3

4
∂mλα̇ −

1

4
(Γmn) β̇

α̇ ∂nλβ̇ (4.4.24a)

δIα = − i

4
√

2
/∂
β̇
α�λβ̇ (4.4.24b)

de�nes the spectrum of the theory.
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Gauge-invariant description. Consider the following �eld rede�nitions:

dmα̇ = Dm
α̇ −

1

6
(Γm)αα̇ /Dα (4.4.25a)

iα = +
i4√

2
Iα +

1

6
� /Dα (4.4.25b)

such that our gauge transformations are mapped to

δdmα̇ = ∂mλα̇ and δiα = 0. (4.4.26)

The gauge-invariant object is then naturally de�ned as:

Fmnα̇ = ∂mdnα̇ − ∂ndmα̇ (4.4.27)

which allows us to write the equations of motion in the following form:

∂miα = �Fmα (4.4.28a)

and

(/F)α̇ = 0 (4.4.28b)

where

Fmα ≡ (Γn)α̇αFmnα̇ = (/∂dm − ∂m/d)α. (4.4.29)

In the formulation of free higher-spin theories Fm is called Fronsdal tensor [68], it is the analog
of the Ricci curvature in spin 2 formulation.

This section started with the most general ghost number 2 picture −1/2 vertex operator.
Then we obtained all equations of motion from the BRST method together with all gauge
transformations parametrized by ghost number 1 picture −1/2 vertex operators. By �xing
some of this gauge freedom, we have found a independent set of equations of motion that can
be parametrized by Fronsdal �elds. The next natural step is to write the spacetime action that
gives the dynamics of this system.

4.5 Action

The kinetic term of the ambitwistor string �eld theory was de�ned in [72]:

S[V ] = 〈I ◦ V (−3/2)(0) ∂cQV (−1/2)(0)〉, (4.5.1)

where V −1/2 is the vertex operator (4.4.2) introduced in the previous section, an element of the
small Hilbert space that is also constrained to satisfy L0V = b0V = 0. The RNS string has
one additional feature: the picture number. It is necessary to saturate the background charge
of supermoduli space to −2, and that is why we need a string �eld with picture −1/2, V −1/2,
together with a string �eld with picture −3/2, V −3/2. We de�ne picture raising, Z, and picture
lowering, Y , by the following expressions:

Z = c∂ξ + eφ6pmψ
m − ∂(e2φ6ηb̃)− e2φ6∂ηb̃, (4.5.2)

Y (z) = c̃∂ξe−2φ6 , (4.5.3)
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so that we can obtain V −3/2 from V −1/2 via

V −3/2(z) =
1

2πi

∮
dw

(w − z)
Y (w)V −1/2(z). (4.5.4)

Using the auxiliary gauge-�xing conditions imposed on the previous section, we obtain

V −3/2 = + c̃∂c̃Sαe−3φ6/2Bα − cc̃∂c̃∂ξSα̇e−5φ6/2∂xmCmα̇ − cc̃∂c̃∂ξSα̇e−5φ6/2pmD
m
α̇

− cc̃∂c̃∂ξSα̇e−5φ6/2jaEa
α̇ − cc̃∂c̃∂ξψm(/ψS)αe−5φ6/2Hm

α −
1

2
cc̃∂c̃∂ξ∂2c̃∂2ξSαe−7φ6/2Iα

(4.5.5)

The composition I ◦ V −3/2 is the BPZ conjugate of the picture −3/2 �eld with I = −1/z. We
should be careful when computing the conformal transformation I ◦V −3/2 because V −1/2 is not
primary. From the OPE with the stress-energy tensor

T (z)V −1/2(0) ∼ z−3Sα̇e−φ6/2cc̃

(
1

2
∂mD

m
α̇ + Fα̇ −

3

8
Gα̇ −

9

4
/Hα̇

)
+ · · · (4.5.6)

we obtain a cubic pole contribution that changes the �nite conformal transformation to

I ◦ V =

[
V
(
I(z)

)
+

1

2

I ′′(z)

[I ′(z)]2
#
(
I(z)

)]
. (4.5.7)

where # is cubic pole coe�cient. Even after the auxiliary conditions are imposed we still have
non-primary contributions that must be taken into account.

To calculate the free action, we �x the normalization 〈c∂c∂2cc̃∂c̃∂2c̃e−2φ6〉 = 4, then the
correlation function (4.5.1) gives the following gauge-invariant action:

SR = −
∫
d 10x

[
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα −

i

2
Tr

(
E/∂E

)]
. (4.5.8)

In this expression we used the symmetric gamma matrices (γmαβ, γ
αβ
m ) de�ned in section 4.2.

When using these symmetric matrices, the charge conjugation is used to eliminate all dotted
indices; di�erent chiralities are just represented by upper and lower indices, i.e. (Cαα̇dmα̇ =
dmα).

We have written a non-unitary action that gives the equations of motion obtained in (4.4.28).
It closely resembles the gauge-invariant formulation of spin 3/2, the di�erence being the presence
of more derivatives. Let us proceed and study the supersymmetry of this non-unitary system.

4.6 Supersymmetry.

Let us de�ne the supersymmetry generator as

Q−1/2
α =

1

2πi

∮
dz Sαe

−φ6/2 (4.6.1)

Notice that it carries picture, which means that supersymmetry algebra only closes on-shell.
We need the picture 1/2 supersymmetric charge:

Q1/2
α =

1

2πi

∮
dz

[
ipm(γm)αβS

βeφ6/2 + b̃ηSαe
3φ6/2

]
. (4.6.2)
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to obtain {Q−1/2
α , Q

1/2
β } = 2γmαβpm. In practice, supersymmetry transformations are written up

to equations of motion. One also needs to choose a GSO sector to have well-de�ned supersym-
metry transformations, otherwise there will be branch cuts. Given the generator (4.6.1), we
need use the GSO(+) vertex operator.

4.6.1 Supersymmetry transformations of NS and R sectors.

The Neveu-Schwarz vertex operator in picture −1 was written in [72]:

V −1
NS = e−φ6cc̃

[(
G

(1)
(mn) +B

(1)
[mn]

)
pmψn +

(
G

(2)
(mn) +B

(2)
[mn]

)
∂xmψn + Cmnpψ

mψnψp + jaψmAam

]
+

+ e−φ6cc̃∂ψmA(4)
m + ∂φ6e

−φ6cc̃A(3)
m ψm + ∂ξe−2φ6∂2c̃c̃cS(4) + ηcS(1) + ∂ξe−2φ6∂2ccc̃S(2)

+ . . . (4.6.3)

where . . . depends only on the previous �elds. In [72], the �elds (B
(1)
mn, A

(3)
m , A(4), S(1), S(2))

of (4.6.3) were gauged to zero. If we choose to keep this gauge, we must observe that in
general supersymmetry does not preserve a given gauge condition. Therefore when calculating
supersymmetry transformations, we have to choose the gauge parameter Λ:

δζV
−1
NS =

[
ζQ−1/2, V

−1/2
R

]
+

[
QBRST ,Λ

−1

]
, (4.6.4)

which is a vertex operator of ghost number 1 and picture −1, to ensure that δζ(B
(1)
mn, A

(3)
m , A(4),

S(1), S(2)) all give zero. In the transformations below, the contributions of H are due to the
gauge-�xing of these auxiliary �elds:

δζG
(1)
mn = 2(ζγ(mDn)) (4.6.5)

δζG
(2)
mn =

2

5
(ζγ(nCm))−

48

5
∂(nζHm) (4.6.6)

δζB
(2)
mn = −4(ζγ[nCm])−

48

5
(ζ∂[mHn]) (4.6.7)

δζCmnp =
3

2
∂[p(ζγmDn])− 24(ζγ[npHm]) + 6(ζγmnp /H) (4.6.8)

and using the �eld rede�nitions of [72]:

hmn = G(1)
mn +

1

4
ηmnh

r
r, t =

1

4
�hmm +Gm(2)

m and B(2)
mn = Bmn (4.6.9)

we arrive at

δζhmn = 2ζγ(mdn) (4.6.10)

δζt = ζi (4.6.11)

δζCmnp = −3(ζγt[mnF
t
p])− 3(ζγ[mFnp]) (4.6.12)

δζBmn = −2�(ζγ[mdn])− (ζγmni) +
1

6
(ζγmn∂pF

p) (4.6.13)

δζA
a
m =

i

2
(ζγmE

a). (4.6.14)
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The term (ζγmn∂pF
p) is zero if we use the equation of motion /F = 0, and so could not have

been obtained from the supersymmetry generator (4.6.1). This term was added by hand in
order to make the action invariant under supersymmetry.

For the Ramond sector the same can be done if we use instead the picture +1/2 supersym-
metry generator (4.6.2):

δζd
α
m = +(γrsζ)α∂shmr − 2(γnpζ)αCmnp +

1

3
(γmnpsζ)Cnps (4.6.15)

δζiα = 2(ζ/∂)αt− (γmnpζ)αHmnp +
1

3
(γmnpζ)α�Cmnp (4.6.16)

δζE
aβ = −1

4
Fmn(γmnζ)β (4.6.17)

At this point, we have obtain the supersymmetry transformations of both NS and R system
for the independent �elds of the theory in equations (4.6.10) to (4.6.9). Let us proceed and
check that indeed the total GSO(+) action is supersymmetric invariant.

4.6.2 Supersymmetry invariance of the action.

The action that describes the Neveu-Schwarz sector is

SNS = −
∫
d10x

[
1

2
hmn�

(
Rmn −

1

2
ηmnR

)
− tR +

1

4
Tr(FmnFmn)+

−CmnpHmnp +
1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)]
(4.6.18)

where Hmnp is the �eld strength for Bmn and Rmn is the Ricci tensor. This expression is
equivalent to the action written in equation (4.13) of [72] if we shift t by t 7→ t + R2. The
equations of motion derived from (4.6.18) are

�Rmn − ∂m∂nt = 0 , R = 0 , �Cmnp −Hmnp = 0 ,

∂mCmnp = 0 , and ∂mF
mn = 0. (4.6.19)

Now, the Ramond sector is described by equation (4.5.8):

SR = −
∫
d 10x

[
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα −

i

2
Tr

(
E/∂E

)]
. (4.6.20)

from which we obtain the following set of equations of motion � (4.4.28):

∂miα = �Fmα , /F
α

= 0 and i/∂αβE
a β = 0. (4.6.21)

From now on, we leave the Yang-Mills system out of the discussion because its super-
symmetry transformations and action are already standard. For later use, let us write the
supersymmetry transformation for all �eld strengths:
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δζRmn = (ζ∂(mFn)) + (ζγ(m∂
pFn)p) (4.6.22a)

δζHmnp = 3�(ζγ[mFnp])− 3(ζγ[mn∂p]i) +
1

2
(ζγ[mn∂p]∂`F

`) (4.6.22b)

δζF
α
mn = −2(γrsζ)αRmrsn + 4(γrpζ)α∂[nCm]rp −

2

3
(∂[nγm]rpsζ)αCrps (4.6.22c)

δζFmα = +2(γnζ)αRmn − 2(γlnpζ)α∂lCmnp +
1

3
(γlmnpsζ)α∂

lCnps

+ 4(γnζ)α∂
pCmnp − (γmpsζ)α∂nC

nps (4.6.22d)

δ /F
β

= 2ζβR− 6(γnpζ)β∂mCnpm (4.6.22e)

4.6.3 Supersymmetry for (hmn, t, i,d)

Let us consider the system:

S = −
∫
d10x

(
1

2
hmn�

(
Rmn −

1

2
ηmnR

)
− tR

+
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα

)
(4.6.23)

such that the

SNS variation is given by

δζ (−tR) = −ζαiαR− 2tζα∂pF
p
α

δζ

[
1

2
hmn�

(
Rmn −

1

2
ηmnR

)]
= 2(ζγmdn)�

(
Rmn −

1

2
ηmnR

)
and the

SR variation is given by

δζ

(
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
))

= 2dmα�

(
(ζγn)αRmn −

1

2
(ζγm)αR

)
= −2(ζγndm)�

(
Rmn −

1

2
ηmnR

)

δζ

(
1

2
(/F)αiα

)
= ζαRiα + (/F)α/∂αβζ

βt

= ζαiαR + 2ζα(∂pF
p
α)t+ ∂(...)

where we have used (4.6.22) and (/∂ /Fζ) = 2(ζ∂pF
p). It is clear that the sum of all terms cancels

and invariance of this system is stablished.
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4.6.4 Supersymmetry for (Hmnp, Cmnp,d
α
m, iα)

It remains for consideration the following system:

S = −
∫
d10x

(
− CmnpHmnp +

1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)

+
1

2
dmα�

(
Fmα −

1

2
(γm)αβ /F

β
)

+
1

2
(/F)αiα

)
(4.6.24)

In order to check supersymmetric invariance we have to gather all independent combination of
gamma matrices (γm, γmn, γmnp, γmnpp, γmnpqr). So consider the

SNS variation:

δζ(−CmnpHmnp) = +3
[
(ζγtmnF

t
p) + (ζγmFnp)

]
Hmnp − 3(ζγmFnp)�C

mnp

− 3(ζγmni)∂pC
mnp − 1

2
(ζγmn∂pF

p)∂pC
mnp + ∂(. . . )

δζ

[
1

2
Cmnp

(
�Cmnp −

1

2
∂[p∂

rCmn]r

)]
=− 3

[
(ζγtmnF

t
p) + (ζγmFnp)

]
�Cmnp

+
1

2

[
(ζγmn∂

pFp) + (ζγm∂n /F)
]
∂rC

mnr + ∂(. . . )

and the

SR variation:

δζ

(
1

2
/Fi

)
= −3(γnpζ)β∂mCnpmiβ −

1

2
/F
α
(γmnpζ)αHmnp +

1

6
/F
α
(γmnpζ)α�Cmnp

= +3(ζγnmi)∂pCnmp+

−
[

1

6
(ζγmnptsFts)�Cmnp − (ζγtmnF p

t )�Cmnp − (ζγmFnp)�Cmnp

]
+

[
1

2
(ζγmnptsFts)Hmnp − 3(ζγtmnF p

t )Hmnp − 3(ζγmFnp)Hmnp

]

δζ

(
1

2
dαm�

(
Fm
α −

1

2
(γm)αβ /F

β
))

=

(
−2(γnpζ)αCmnp +

1

3
(γmnpsζ)αCnps

)
�

(
Fm
α −

1

2
(γm)αβ /F

β
)

= +2(F m
l γlnpζ)�Cmnp − 4(Fmnγpζ)�Cmnp+

− 1

3
(Flmγ

lmnpsζ)�Cnps − (F n
m γ

psmζ)�Cnps+

−
[

1

6
(ζγmnptsFts)�Cmnp − (ζγtmnF p

t )�Cmnp − (ζγmFnp)�Cmnp

]
Recall that the γmnpqr is symmetric and γmnp is antisymmetric under the spinor indices. Gath-
ering all independent terms we con�rm the system is supersymmetric.



Bibliography

[1] Juan Martin Maldacena. The Large N limit of superconformal �eld theories and super-
gravity. Int. J. Theor. Phys., 38:1113�1133, 1999. [Adv. Theor. Math. Phys.2,231(1998)].

[2] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators
from noncritical string theory. Phys. Lett., B428:105�114, 1998.

[3] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253�291,
1998.

[4] Michael R. Douglas, Luca Mazzucato, and Shlomo S. Razamat. Holographic dual of free
�eld theory. Phys. Rev., D83:071701, 2011.

[5] Nathan Berkovits. Super Poincare covariant quantization of the superstring. JHEP, 04:018,
2000.

[6] David J. Gross. High-Energy Symmetries of String Theory. Phys. Rev. Lett., 60:1229,
1988.

[7] David J. Gross and Paul F. Mende. The High-Energy Behavior of String Scattering Am-
plitudes. Phys. Lett., B197:129�134, 1987.

[8] Edward Witten. Spacetime Reconstruction. Talk at the 60th birthday of Professor J.H.

Schwarz, http://quark.caltech.edu/jhs60/program.html, 2001.

[9] Steven Weinberg. Photons and Gravitons in s Matrix Theory: Derivation of Charge Con-
servation and Equality of Gravitational and Inertial Mass. Phys. Rev., 135:B1049�B1056,
1964.

[10] Sidney R. Coleman and J. Mandula. All Possible Symmetries of the S Matrix. Phys. Rev.,
159:1251�1256, 1967.

[11] G. Velo and D. Zwanziger. Noncausality and other defects of interaction lagrangians for
particles with spin one and higher. Phys. Rev., 188:2218�2222, 1969.

[12] Steven Weinberg and Edward Witten. Limits on Massless Particles. Phys. Lett., 96B:59�62,
1980.

[13] Massimo Porrati, Rakibur Rahman, and Augusto Sagnotti. String Theory and The Velo-
Zwanziger Problem. Nucl. Phys., B846:250�282, 2011.

[14] M. Taronna. Higher-Spin Interactions: four-point functions and beyond. JHEP, 04:029,
2012.

[15] R. Roiban and A. A. Tseytlin. On four-point interactions in massless higher spin theory
in �at space. JHEP, 04:139, 2017.

77



78

[16] E. S. Fradkin and Mikhail A. Vasiliev. Cubic Interaction in Extended Theories of Massless
Higher Spin Fields. Nucl. Phys., B291:141�171, 1987.

[17] E. S. Fradkin and Mikhail A. Vasiliev. On the Gravitational Interaction of Massless Higher
Spin Fields. Phys. Lett., B189:89�95, 1987.

[18] Mikhail A. Vasiliev. Consistent equation for interacting gauge �elds of all spins in (3+1)-
dimensions. Phys. Lett., B243:378�382, 1990.

[19] Arkady Y. Segal. Conformal higher spin theory. Nucl. Phys., B664:59�130, 2003.

[20] Nicolas Boulanger, Pan Kessel, E. D. Skvortsov, and Massimo Taronna. Higher spin
interactions in four-dimensions: Vasiliev versus Fronsdal. J. Phys., A49(9):095402, 2016.

[21] Pan Kessel, Gustavo Lucena Gómez, Evgeny Skvortsov, and Massimo Taronna. Higher
Spins and Matter Interacting in Dimension Three. JHEP, 11:104, 2015.

[22] Massimo Taronna. A note on �eld rede�nitions and higher-spin equations. J. Phys.,
A50(7):075401, 2017.

[23] Glenn Barnich and Marc Henneaux. Consistent couplings between �elds with a gauge
freedom and deformations of the master equation. Phys. Lett., B311:123�129, 1993.

[24] Charlotte Sleight and Massimo Taronna. Higher-Spin Gauge Theories and Bulk Locality.
Phys. Rev. Lett., 121(17):171604, 2018.

[25] Charlotte Sleight and Massimo Taronna. Feynman rules for higher-spin gauge �elds on
AdSd+1. JHEP, 01:060, 2018.

[26] A. A. Sharapov and E. D. Skvortsov. Formal higher-spin theories and Kontse-
vich�Shoikhet�Tsygan formality. Nucl. Phys., B921:538�584, 2017.

[27] Christian Fronsdal. Massless Fields with Integer Spin. Phys. Rev., D18:3624, 1978.

[28] J. Fang and C. Fronsdal. Massless Fields with Half Integral Spin. Phys. Rev., D18:3630,
1978.

[29] Michael G. Eastwood, R. Penrose, and R. O. Wells. Cohomology and Massless Fields.
Commun. Math. Phys., 78:305�351, 1981.

[30] Glenn Barnich, Xavier Bekaert, and Maxim Grigoriev. Notes on conformal invariance of
gauge �elds. J. Phys., A48(50):505402, 2015.

[31] Nathan Berkovits. Simplifying and Extending the AdS(5) x S**5 Pure Spinor Formalism.
JHEP, 09:051, 2009.

[32] Oscar A. Bedoya, L.Ibiapina Bevilaqua, Andrei Mikhailov, and Victor O. Rivelles. Notes on
beta-deformations of the pure spinor superstring in AdS(5) x S(5). Nucl.Phys., B848:155�
215, 2011.

[33] Nathan Berkovits. Half-BPS vertex operators of the AdS5× S5 superstring. JHEP, 07:084,
2019.

[34] Nathan Berkovits and Luca Mazzucato. Taming the b antighost with Ramond-Ramond
�ux. JHEP, 11:019, 2010.

[35] Edward Witten. Superstring Perturbation Theory Revisited. 2012.



79

[36] Andrei Mikhailov and Albert Schwarz. Families of gauge conditions in BV formalism.
JHEP, 07:063, 2017.

[37] Andrei Mikhailov. Integration over families of Lagrangian submanifolds in BV formalism.
Nucl. Phys., B928:107�159, 2018.

[38] Andrei Mikhailov. Supersymmetric null-surfaces. JHEP, 09:068, 2004.

[39] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles in Arbitrary
Dimensions. Phys. Rev. Lett., 113(17):171601, 2014.

[40] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering equations and Kawai-Lewellen-
Tye orthogonality. Phys. Rev., D90(6):065001, 2014.

[41] Freddy Cachazo, Song He, and Ellis Ye Yuan. Einstein-Yang-Mills Scattering Amplitudes
From Scattering Equations. JHEP, 01:121, 2015.

[42] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles: Scalars,
Gluons and Gravitons. JHEP, 07:033, 2014.

[43] Lionel Mason and David Skinner. Ambitwistor strings and the scattering equations. JHEP,
07:048, 2014.

[44] Tim Adamo, Eduardo Casali, and David Skinner. Ambitwistor strings and the scattering
equations at one loop. JHEP, 04:104, 2014.

[45] Yvonne Geyer and Ricardo Monteiro. Gluons and gravitons at one loop from ambitwistor
strings. JHEP, 03:068, 2018.

[46] E. S. Fradkin and Mikhail A. Vasiliev. Cubic Interaction in Extended Theories of Massless
Higher Spin Fields. Nucl. Phys., B291:141�171, 1987.

[47] Kirill Krasnov. Self-Dual Gravity. Class. Quant. Grav., 34(9):095001, 2017.

[48] Maxim Grigoriev. Presymplectic structures and intrinsic Lagrangians. 2016.

[49] J. Wess and J. Bagger. Supersymmetry and supergravity. Princeton University Press,
Princeton, NJ, USA, 1992.

[50] Roger Penrose and Wolfgang Rindler. Spinors and Space-Time vol 1 and 2. Cambridge
Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2011.

[51] S. A. Huggett and K. P. Tod. AN INTRODUCTION TO TWISTOR THEORY. 1986.

[52] Y Choquet-Bruhat and C DeWitt-Morette. Analysis, manifolds and physics; Rev. and

enlarged ed. North-Holland, Amsterdam, 2000.

[53] M. A. Vasiliev. On Conformal, SL(4,R) and Sp(8,R) Symmetries of 4d Massless Fields.
Nucl. Phys., B793:469�526, 2008.

[54] E. S. Fradkin and Arkady A. Tseytlin. CONFORMAL SUPERGRAVITY. Phys. Rept.,
119:233�362, 1985.

[55] Arkady Y. Segal. Conformal higher spin theory. Nucl. Phys., B664:59�130, 2003.

[56] Nathan Berkovits and Paul S. Howe. Ten-dimensional supergravity constraints from the
pure spinor formalism for the superstring. Nucl. Phys., B635:75�105, 2002.



80

[57] Andrei Mikhailov. Cornering the unphysical vertex. JHEP, 082, 2012.

[58] S. Donaldson. Riemann Surfaces. Oxford Graduate Texts in Mathematics. OUP Oxford,
2011.

[59] Andrei Mikhailov. A minimalistic pure spinor sigma-model in AdS. 2017.

[60] Anton Alekseev and Pavol Severa. Equivariant cohomology and current algebras. 2010.

[61] Alexander Belopolsky and Barton Zwiebach. Who changes the string coupling? Nucl.

Phys., B472:109�138, 1996.

[62] Andrei Mikhailov. Vertex operators of ghost number three in Type IIB supergravity. Nucl.
Phys., B907:509�541, 2016.

[63] Andrei Mikhailov and Sakura Schafer-Nameki. Perturbative study of the transfer matrix
on the string worldsheet in AdS(5) x S**5. Adv.Theor.Math.Phys., 15:913�972, 2011.

[64] A. S. Shvarts. On the De�nition of Superspace. Theor. Math. Phys., 60:657�660, 1984.
[Teor. Mat. Fiz.60,37(1984)].

[65] Andrei Mikhailov. Finite dimensional vertex. JHEP, 1112:5, 2011.

[66] Andrei Mikhailov and Segundo P. Milián. A geometrical point of view on linearized beta-
deformations. 2017.

[67] Andrei Mikhailov. Symmetries of massless vertex operators in AdS(5) x S**5.
Adv.Theor.Math.Phys., 15:1319�1372, 2011.

[68] J. Fang and C. Fronsdal. Massless Fields with Half Integral Spin. Phys. Rev., D18:3630,
1978.

[69] Daniel Friedan, Emil J. Martinec, and Stephen H. Shenker. Conformal Invariance, Super-
symmetry and String Theory. Nucl. Phys., B271:93�165, 1986.

[70] V. Alan Kostelecky, Olaf Lechtenfeld, Wolfgang Lerche, Stuart Samuel, and Satoshi Wata-
mura. Conformal Techniques, Bosonization and Tree Level String Amplitudes. Nucl. Phys.,
B288:173�232, 1987.

[71] I. G. Koh, W. Troost, and Antoine Van Proeyen. Covariant Higher Spin Vertex Operators
in the Ramond Sector. Nucl. Phys., B292:201�221, 1987.

[72] Nathan Berkovits and Matheus Lize. Field theory actions for ambitwistor string and
superstring. JHEP, 09:097, 2018.


