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Resumo

Nesta tese, nos estudamos ambos limites da correspondéncia AdS/CFT: o espaco de fase das teorias de spin
alto, e a insercao de operadores de vértice nas fungoes de correlagao da corda de espinores puros escrita no
background AdSs x S°. Noés calculamos também as equacoes de movimento do setor de Ramond para a corda
ambitwistor heterdtica na descrigao RNS. O estudo do espago de fase das teorias de spin alto usa a formulagao
obtida por Penrose e da indicios da presenga de uma simetria conforme nao-local. A amplitude de espalhamento
em AdS é estudada com o formalismo BV, apropriado para este background onde o fantasma b nao é holomorfico;
noés escrevemos a amplitude com a inser¢ao de um vértice de deformagao beta. Para o sistema heter6tico, nos
obtemos as transformagoes de supersimetria da teoria.

Palavras-Chave: Teoria de Cordas, Teoria de Campos, Correspondencia AdS/CFT, Teoria de spins altos,
Formalismo BV.



Abstract

In this thesis we study both limits of the AdS/CFT correspondence: the phase space of higher-spin theories,
and the insertion of vertex operators in string correlation functions of the pure spinor formulation in AdSs x S°
background. We also compute the equations of motion for Ramond sector of the RNS heterotic ambitwistor
string. The study the phase-space of free higher-spin theories uses a formulation obtained from twistors by
Penrose and hints the presence of a non-local conformal symmetry. The string scattering in AdS is studied
with the BV formalism, appropriate for this background given that the b-ghost is non-holomorphic; we write
the amplitude with the insertion of a beta-deformation vertex. For the heterotic ambitwistor system, we obtain
the supersymmetry algebra of this theory.
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Chapter 1

Introduction

String theory in AdS is one of the central topics of modern theoretical physics due to the
AdS/CFT correspondence [IH3]. The correspondence states that maximally supersymmetric
four-dimensional gauge theory (CFT) is equivalent to a theory of quantum gravity (type I1B
superstring theory) on a space with negative cosmological constant in five dimensions, called
Anti-de Sitter space (AdS). In this context, the energy scale in the conformal field theory
provides the holographic direction, related to the radial direction of AdS . The AdS/CFT
is a strong/weak coupling duality and we can use this fact to explore new phenomena on both
sides of the correspondence. In this thesis, we follow two approaches. The first one is higher
spin theory of Fradkin and Vasiliev, which is supposed to work in the small radius limit.

The second is the pure spinor approach, and the related ambitwistor formalism. Pure spinors
were developed by Berkovits 5] and aimed at the universal description of AdS background and
its deformations. It is technically the most difficult one. The ambitwistor formalism can be
thought of as a limit of the pure spinor string, which is promising and technically more accessible
than the original pure spinor formalism. At this point, however, it is not clear to us if it can
be extended beyond the tree level.

In the rest of this introductory section, we will briefly summarize what we have done fol-
lowing these three directions presenting the technical details.

1.1 On the phase space of free higher-spin theories and
conformal transformations.

Higher-spin theories are a toy-model for string field theory. Historically, the first considerations
can be traced back to Gross and Mende in ﬂ@,lﬂl, where it is argued that higher-spin theories
may govern the high energy limit of string scattering. Specific to the AdS/CFT context though,
Witten conjectured that when the AdS radius is small a subset of large string excitations
decouples from the remaining degrees of freedom and is described by an interacting higher-spin
theory.

Unfortunately, interactions are hard to construct. Powerful no-go theorems have been dis-
covered which prevent simple extensions of free higher-spin theories . Indeed, it seems
that there are only three interacting theories which are generally agreed to be well-defined:
Vasiliev’s theory in space-times with a non-vanishing cosmological constant , Segal’s con-
formal higher-spin theories , and string theory.

Vasiliev’s theory, as well as Segal’s theory, are based on symmetry. One has a higher-spin
symmetry that is gauged, and interactions are built based on the gauge invariance principle.
The formalism developed by Vasiliev is non-local, his equations are written for multiplets that
contain all spin s fields as components; they lead to the higher-spin equations of motion provided



they are partially solved with respect to certain auxiliary conditions and the gauge is fixed
appropriately ,.

It might be troubling that the main higher-spin theory available is non-local. Consider that
from the moment one allows non-local interactions, it is completely possible to also consider
non-local field redefinitions. If no locality condition is imposed, then interactions which are
invariant under a given gauge algebra can be formally solved up to any order and for any choice
of couplings. That is, one can perform arbitrary non-local field redefinitions that map order by
order in a weak field expansion any interaction to zero Consistency then implies that
there must be a way to truncate or better define what kind of non-localities are allowed.

This guide, if it exists, would be a breakthrough not just for higher-spin theories. Naturally,
in the past couple of year, efforts have concentrated on understanding the possible consequences
of these non-localities for vertices of flat space higher-spin theories, as well as other possible
applications in the AdS/CFT correspondence ,, which is a topic that we are not
familiar. We highlight the paper by Sharapov and Skvortsov that gives a geometric in-
terpretation for the origin of this non-local behaviour based on the Hochschild cohomology of
higher-spin algebras; it is interesting that all this complicated behaviour may find a succinct
and clear explanation in one piece of mathematics.

Our work also investigated non-local behaviour of higher-spin theories. More precisely, it
hinted the presence of a non-local conformal symmetry already at flat space: it satisfies the
conformal algebra despite being non-locally realized.

Our focus, then, is on free higher-spin theories. They have two known descriptions, which we
refer to as Fronsdal and Penrose formulation. In Fronsdal theory , we have constrained
spacetime tensors that form an irreducible representation of the Lorentz group on-shell, while
in Penrose theory one uses twistor geometry to construct irreducible representations of the little
group of the Lorentz group. Both theories are well described by an action which is invariant
under higher-spin gauge symmetries. It is interesting, however, that Penrose formulation s
invariant under local conformal symmetries while Fronsdal formulation is not . It is by
mapping one formulation to another that we can stablish the presence of a non-local conformal
symmetry in Fronsdal theory.

1.2 On worldsheet curvature coupling in the pure spinor
sigma-model.

The pure spinor string is the most suitable formalism for computations of scattering amplitudes,
specially in AdSs x S° background due to the manifest PSU(2,2|4) symmetry . Moreover,
the AdS background has some advantages when compared to the flat space. It is not neces-
sary to introduce non-minimal variables, so in priciple amplitudes could be computed without
regularizations [31].

But, there still exist complications. The evaluation of OPE’s is difficult due to the inter-
acting nature of the theory; supergravity vertex operators have not been completely described,
we have covariant expressions for the dilaton [31], the beta-deformation [32], and the half-BPS
states . In addition to that, the b-ghost is a composite operator which is not holomorphic
for general curved backgrounds ; this poses a problem for the current prescription of the
scattering amplitudes which could be argued to be even more fundamental than the complete
knowledge of the vertex operators.

Consider that string theory amplitudes are defined as integrals of differential forms over
the moduli space of Riemann surfaces with marked points . In order to have a well-defined
measure of integration, it is necessary that our form is closed and horizontal. Closedness implies

1See also references therein.



independence of the path of integration while horizontality means that for every diffeomorphism
of the metric our string amplitude remains invariant. Mathematically, horizontality is translated
into holomorphicity of the b-ghost.

Mikhailov and Schwarz suggested a geometric interpretation of the string amplitude
using the BV formalism. The string amplitude is described as a pseudo-differential form defined
over a family of Lagrangian submanifolds that live inside the BV space. It is interesting that this
geometric interpretation generalizes the amplitude prescription for non-holomorphic b-ghosts.

In collaboration with Andrei Mikhailov, we study in this new prescription the insertion
of vertex operators, integrated and unintegrated. We also explore the relationship between
unintegrated vertex operators and the Fradkin-Tseytlin term in the pure spinor formalism.
Explicitly construct the string measure for the AdSs x S° background when the amplitude is
deformed by the insertion of a beta deformation vertex.

1.3 On the spectrum and spacetime supersymmetry of het-
erotic ambitwistor string.

The ambitwistor paper is the only one that is not directly connected to AdSs x S°. Tt is
connected to the techniques learned during the previous years. We wanted to understand the
problem of describing Ramond backgrounds in RNS formalism, because for quite some time,
we believed that the BV machinery was the appropriate language for this problem. From this
point of view, ambitwistor theory just seemed a good place to test what one has learned about
Ramond vertex operators.

Another motivation was to understand what these ambitwistor strings would look like in
AdS5 x S5, The space of null geodesics has been studied in by Mikhailov, and perhaps
the vertex operators of this sigma model would be easier to describe (in comparison with the
standard pure spinor AdSsx S® string) given the amount of symmetry that we have. To the best
of our knowledge there is sigma model of written for this space, but it is interesting exercise.

In any case, these ambitwistor models have been on constant investigation recently due to
their connection with the CHY formula for scattering amplitudes. In 2013, Cachazzo, Hei and
Yuan published an expression for n-particle tree level amplitude of any massless theory
as an integral over the moduli space of the Riemann sphere with n-punctures. These integrals
are supported on a set of polynomial equations, today known as scattering equations, and the
precise form of the integrand is determined by the theory. Again, to the best of our knowledge,
no one has explained the origin of CHY using standard quantum field theory techniques, which
leaves us only with the direct comparison method for knowing which integrand corresponds to
which field theory .

But, even though we don’t have an explanation of the CHY formula via quantum field
theory, the integral over the moduli space of Riemann surfaces with marked points suggests
a string interpretation: a genus zero amplitude with n insertions of vertex operators. This is
precisely what the ambitwistor string theory does. It reproduces the CHY prescription via a
chiral worldsheet model with no free parameters. The target space is the space of null geodesics,
known as ambitwistor space. The localization over the scattering equations happens naturally
via path integration of the momentum eigenstates.

The model was developed by Mason and Skinner in [43], and is also described as the infinite
tension limit (o/ — 0) of the bosonic string. Infinite tension limits of supersymmetric strings
— the pure spinor string and RNS string — also exist as well. It is interesting to mention that
this description — the o' to zero limit of standard string theory — might be incomplete. The
theory is known to have non-unitary states in all formulations with the exception of type IIB
RNS sector. It would be really interesting to understand if the presence of these non-unitarities



is unavoidable when considering these infinite tension limits, or if there is in fact some string
theory that isolates precisely super Yang-Mills and supergravity, that is, there exists a well-
defined o/ — 0 limit.

This is not the main research direction of these ambitwistor models. Efforts have been on the
generalization of a CHY-type formula for loops. Loop amplitudes were obtained by considering
worldsheet correlators at higher genus surfaces in or what is called "nodal Riemann
sphere". At this point, it is not clear to us the construction of this loop level prescription,
because of the difficulties with gauge fixing. In particular, it is not clear how the worldsheet
metric enters in the construction of the model.

Together with Matheus Lize, we computed the fermionic equations of motion that should
determine the spectrum of the heterotic ambitwistor string. We also have written the super-
symmetry algebra for the combined bosonic and fermionic system. We had hoped that the
equations of motion would be easier to solve, and by supersymmetry we could determine the
bosonic spectra of the theory. But unfortunately, we were not able to find a solution for these
differential equations.



Chapter 2

On the phase space of free higher-spin
theories and conformal transformations.

2.1 Outline.

We organize our presentation as follows. Section 2 is a brief review, where we explain the two
approaches for free massless higher-spin theories.

In section 3 we write an action for Penrose higher-spin theory. To our knowledge, such
action for general higher-spins has never appeared before in the literature. First-order formu-
lations, however, were used by Fradkin and Vasiliev in for AdS space, where they were also
extended to interactions. More recently, Kirill Krasnov described full self-dual gravity in [47]
using an action that resembles ours; but, in our case, this action is defined over complex field
configurations, and it describes off-shell a doubled set of the higher-spin modes H

We look at some examples, so the spins 1, 3/2 and 2 cases are discussed in detail, each of
which highlights a particular feature of our construction outlining our strategy for dealing with
general spins. The spin s case is done in section 4; our construction is a particular instance of
the prescription given in [48], where a set of equations of motion and a presymplectic structure
are shown to lift to a well-defined Lagragian.

With the map defined, we can investigate conformal invariance. In section 5 we show
that Penrose action does have conformal symmetry for every spin s. Therefore one is able to
push forward these transformations to the Fronsdal case. For spins lower than 2, these new
transformations agree with usual conformal change of coordinates. The first non-trivial case
is linearized gravity. We write explicitly the resulting transformation, where one is able to see
the difference from standard Lie derivatives.

On notation. Our conventions follow those of ; we are concerned with 4-dimensional
Minskowski space; so, through out the paper, the various indices will always be running over
fixed intervals. Small Latin letters, for example, are spacetime indices running from 0 to 3,
so that A,, is a spacetime covector. Capital Latin letters, in turn, are spinor indices in Van
der Warden notation, that is, dotted and undotted running from 0 to 1. In particular, a Dirac
spinor is a two component Weyl and anti-Weyl spinor written like

U= (;ﬁ}) (2.1.1)

for some chiral spinor 14 and anti-chiral XA.

! In phase space, however, there is a well-defined notion of reality, and it is where we obtain a single copy of
the spectrum.
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Such notation is designed so that there is a correspondence between spacetime and spinor
indices where, for instance, m will correspond to the pair M M. The explicit realization is given

by the Pauli matrices with index structure o7} -, where
c'=-1 and &= (c'0%0°).

The epsilon symbol satisfies e45¢5¢ = 04 ¢ for undotted and dotted indices. This enables one

to raise the indices of O'R}M to obtain
" MM where 0= -1 and &= (-0, —0? —0®).

Everything is combined to form the Weyl representation of the Dirac matrices:

I = <_9n ":) , (2.1.2)

g

which satisfy the Clifford algebra

(™ [} = —opmn (2.1.3)

for the metric signature (—, +, +, +).

2.2 Review of massless higher-spin formulations.
This section is an overview of some background material based on references and . It
begins with Fronsdal theory and then proceeds to Penrose description [50].

2.2.1 Fronsdal theory of free massless higher-spin fields.

Let us begin with bosonic spins. Given a totally symmetric tensor of s indices, Rl ...;m,, Which
has higher-spin gauge freedom of the form

OPmyems = 8 Omy Emag-my) (2.2.1)

and is double-traceless:

0" ey mgmgmamg = 03 (2.2.2)

one can form the so-called Fronsdal tensor:

s(s—1)
EFoyome = Ul oo, — Sa(mlaphmmz...ms) + Ta(mlamhpmmg__m). (2.2.3)
A higher-spin theory in flat spacetime is then described by the action
_1 s+1 _ 1
S = % /d4gj (hmynmslemms _ %hnnmgmms}«_’ppmfyums) , (224)

which is symmetric in the higher-spin field A,,,...,,, and gauge invariant under transformations
(2.2.1]).
The equations of motion read

—1
%n(mm}?p 0. (2.2.5)

Foyom, — pmg---ma)
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And these can be further simplified if (2.2.2)) is taken into account. It implies

n R mamgmy e mg = 0 (2.2.6)
which, in turn, allows us to cast equation (2.2.5)) as

Fopoom, = 0. (2.2.7)

We see the Ironsdal tensor fixes hy,,...,,, up to gauge transformations since both have the same
number of degrees of freedom. The physical degrees of freedom, however, are obtained once we
gauge fix the above description. It is possible to gauge away the trace part of the higher-spin
field Ay, ..., as well as its divergence. Consider the gauge field € which satisfies

B = 0"y m, (2.2.8)

pma- ms

and

" hpmy--my = Uemy.om, (2.2.9)

so that the remaining gauge symmetry obeys

Oemyme =0, 0"Enmgom, =0, and &, =0. (2.2.10)
Once we choose (2.2.10f), our higher-spin field satisfies

Ohimyeoms =0, OPhpmy.om, =0, and AP = 0; (2.2.11)

pma--ms

thus proving that h,,,...,, describes a spin s massless particle.
There are minor changes if one wants to describe fermions. For a spin s = h 4+ 1/2, we have
a Majorana spinor ¥, ....,,, totally symmetric in its h indices which has gauge freedom

6\Ijm1-~-mh = ha(mlxmz...mh), (2.2.12)

and satisfies the triple I'-trace condition:

LAy ey, = 0. (2.2.13)

The fermionic Fronsdal tensor,

Py, = 00U oo = 1 O DU oy (2.2.14)

is the gauge invariant object used to construct the action

h{h = 1) ams-m,

1 4 —=my-my h = momy a
S = 3 /d x (\If Foom, — B) o, L Fomgeomy, — 1 v, T
(2.2.15)
where U™ satisfies the Majorana condition:
—_—mi-mp T EBA O
U =V O, and C = 0 EBA (2216)
is the charge conjugation matrix. The equations of motion are
h u h(h —1)
Fropm, — §F(m11“ Frymg)a — Tn(mlszpm3...m5)p = 0. (2.2.17)
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and they can be simplified once one notices ([2.2.13)) implies

[pmepms g ey = 0, (2.2.18)
which enables one to cast (2.2.17)) in the form

Foyoomy, = 0. (2.2.19)

Notice that, again, the fermionic Fronsdal tensor fixes W, ..., up to gauge transformations.
The physical degrees of freedom are obtained from the gauge parameter x,,,...,, that satisfies

Fp\I]memh == FmameQ...mh7 (2‘2'20)

so that the remaining gauge symmetry obeys

IO Xmgm, =0 and  IPxpmyem, = 0. (2.2.21)

The gauge fixing ([2.2.20)) ensures that W,,,..,,, is an irreducible representation of the little
group. The on-shell degrees of freedom are then described by a field ¥ which satisfies

[P0,V m, =0 and  IP¥,,. ., =0 (2.2.22)

thus proving U,,, ..., describes an spin s = h + 1/2 representation.

2.2.2 Penrose theory of free massless higher-spin fields.

Penrose’s description of massless higher-spin fields is obtained from the Penrose transform. It
relates homogeneous functions of definite degree in twistor space to massless higher-spin fields
in Minkowski space. For an introduction to twistors, see reference as well as references
therein.

Here we describe the integral expressions obtained by Penrose in [50] only to give some
context. These integral formulas are not necessary for the rest of this paper. We are only
interested in the spacetime fields they define.

Let Z = (w?,m;) be the coordinates of a twistor inside the complex projective line P;.
These are constrained by the twistor equation:

w? = 2447, (2.2.23)
where 144 parametrizes the Minkowski space. Consider also a point Z = (A4, ) in the dual
twistor space and fix two closed cycles of integration: 7 inside P, and +* inside the dual line
P;. Define the following spacetime spinors

_ 1 .
bip..plx) = %/WAWB .y f(2) 7rEd7rE (2.2.24a)
A —
2s
and
1 _
,y* N

2s
for some semi-integer number s.
Remark. These integrals are well defined over P; if the integrands are homogeneous

functions of degree 0. Hence, the complex functions f(Z) and f(Z) must have homogeneity
—2s5 — 2 1in 7, and A4 respectively.
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These spinors form an irreducible representation of the Lorentz group SL(2, C) and satisfy,
by consequence of their definitions, the differential equations

MG is () =0 (2.2.25)

and

0 b ap.. plz) = 0. (2.2.26)

In view of the (anti-)self-duality conditions, we can see ¢“ZP and EABWD describe right-handed
massless free fields of spin s and left-handed massless free fields of spin —s respectively.
Let a .. p be the field given by

aABmD - aB(B"'aDD a’A)BmD' (2227)

It readily follows that equation (2.2.25)) is automatically satisfied when

daap.. pyi=0. (2.2.28)

Notice, however, that there is an ambiguity. There are gauge symmetries of the form

6aABmD = aA(Bg---D) (2.2.29)

for some symmetric spinor &¢... p of 2s — 2 indices. These are the higher-spin gauge symmetries
which were also present in Fronsdal theory.

We will always refer to ¢45 P and a ip...p as the fundamental fields of Penrose description.
And, for future reference, we call ¢4p.. p the curvature spinor and a ;5. , the gauge field.

2.3 Higher-spin action in Penrose’s description.

2.3.1 Higher-spin action.

We suggest the following higher-spin action for a massless spin s particle:

S = @'/d4x <¢AB"'D8AAaAB,,_D> (2.3.1)
where ¢48 P and aAB_,,D have 25 and 2s — 1 undotted indices respectively. Invariance under
higher-spin gauge symmetries is respected, because if we consider the variation under ([2.2.29)
the action transforms into

68 = i/d‘*az [gzsAB'“DaAAaA(Bg...D) : (2.3.2)
From the identity
i 1
8AA8 B = +§€ABD, (233)

we get 0S5 = 0 since the curvature spinor ¢“2 P is completely symmetric in its indices. The

equations of motion obtained from ([2.3.1]) are precisely (2.2.25)) and (2.2.28)):
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2.3.2 Reality conditions.

It is a good point to make some observations. First, although twistors were used as a motivation
for this action, we are not integrating over twistor space. We are only using a spinor basis and
it is possible to write this action with usual Lorentz indices too. The convenience of using
spinors is the easier treatment of self-duality conditions. Second, and possibly a troublesome
point, is that it appears that this action describes just one helicity, but this is not the case.

Let us discuss this point in detail. For the sake of argument, let us specialize our discussion
to the spin 1 case. We want to show that the phase space spanned by these equations is
equivalent to the phase space of Maxwell’s electromagnetism. The natural route is to describe
a canonical map. Therefore, given the data (¢, a), we are supposed to construct a map to the
Maxwell gauge field A,

H:(¢,a) — A, (2.3.4)

where solutions of the (¢,a) system are carried to solutions of the Maxwell’s equations. In
addition, we must verify two things: the kernel of this map must be zero, otherwise there are
configurations of ¢ and a which would correspond to zero electromagnetic solution; and the
cokernel should also be zero, that is the set of all Maxwell solutions, given by A, should be fully
covered.

The canonical map H is constructed as follows. Given the equation of motion ,
locally by the Poincaré lemma, we can write ¢ as

¢ = da (2.3.5)

with some possible ambiguity given by the addition of a closed form. The second equation of
motion, ([2.2.28)), is the statement that a does not contribute to the self-dual part, hence it must
describe the anti-self-dual piece. It becomes natural to define

A=ua+a (2.3.6)

since it satisfies Maxwell’s equations as a consequence of self-duality:

dxdA=dxd(a+a)

= d % (da + da)
— id (da — da)
= 0. (2.3.7)

Notice that the kernel of indeed vanishes. One takes —a + da = @, for some «, and, by
consequence of , ¢ = 0, which forces a to be pure gauge. That the cokernel vanishes is
a more subtle point. Because the Hodge star operator * satisfies 2 = —1 in four dimensions,
it splits the bundle A2, of two-forms in Minkowski space, into a direct sum,

A = A2 @A?, (2.3.8)

where A2 are the +i eigenspaces of . Thus, any two form can be written as

F=¢+¢ (2.3.9)

and, by the Poincaré lemma, we locally have the decomposition ([2.3.6]).

The analysis of this construction is special to the 4-dimensional Minkowski space and it
carries through only for the equations of motion. It is not true that the action (2.3.1) is off-
shell equivalent to the Maxwell action. One way to understand this is to notice that the action
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(2.3.1)) is not real. In general, equation is defined over some complex infinite-dimensional
manifold.

Such consideration raises the question if whether the map defines a real A or not. It
turns out that, in phase space, complex conjugation acts as an involution, where the complex
conjugation map, denoted c.c., is

c.c. (z) - (ddj) . (2.3.10)

$an = Gip = 040 s (2.3.11)

from where we see that the complex conjugate of a is @ and vice-versa. To summarize our results:
the action is complex, but in phase space — that is, the space of classical solutions — there
is a well-defined notion of reality, which is given by the fixed point of the involution ,
namely equation . Only in this submanifold, the two theories classically agree.

Outside the fixed point, the complex theory describes two photons. Self-duality of ¢ allows
one to write

It has fixed point given by

¢p=F+ixF (2.3.12)

for a real 2-form F'. Hence, the equation of motion d¢ = 0 implies Maxwell’s equations:

dFfF =0 and d*F =0. (2.3.13)
On the other hand, the gauge field a on-shell gives an anti-self-dual 2-form:

da=G—ixG (2.3.14)

from where the second Maxwell equations come:

dG=0 and d*xG=0. (2.3.15)
The reality conditions (2.3.11]) impose F' = G.

2.3.3 Making action real.
Consider the real part of the actionEl (2.3.1)):

S:/(¢Ada+5Ada). (2.3.16)

It turns out that the equations of motion are unchanged. To see this, consider the variation of
this action under the real and imaginary parts of a, it gives

d(p+¢)=0 and d(¢—¢)=0 (2.3.17)

respectively. Self-duality of ¢ does not allow us to vary its real and imaginary parts indepen-
dently, therefore we have a single equation of motion:

d(a+a)+ixd(a—a)=0. (2.3.18)

2We would like to thank Arkady Tseytlin for suggesting this idea.
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Inspection shows that the real and imaginary parts of a satisfy the Maxwell’s equations while ¢
again satisfies d¢ = 0. The two copies of the Maxwell theory can be identified with the reality
condition . It is surprising that the addition of complex conjugatation does not change
the field content of the theory.

2.3.4 Symplectic structure.

We wish to establish the above correspondence for every spin s field. The above consideration

can be rephrased using the notion of symplectic structure. In this language, although the action

is defined for complex field configurations, there is a real submanifold inside the phase space

where the restriction of the symplectic form derived from is non-degenerate. Then, we

will construct a map H that becomes a canonical transformation to the phase space of Fronsdal.
The symplectic structure for action (2.3.1) is

Q= i/cégbAB”'D ASa 5 A d*z,,;, where n,;d%r =d%,;, (2.3.19)

for a normal vector n,; to the spacelike contour C. It is d-closed and invariant under defor-
mations of C', because

0 (5¢AB"'D A dat B,__D> —0 (2.3.20)

once we use the equations of motion. However, note that this symplectic structure is also
degenerate. Degeneracies indicate the presence of gauge symmetries in the action. In our case,
if we let

J

V =0;45¢.- _— 2.3.21
aA(Bg D)(J;) 5CLAB...D(I) ( )
be a tangent vector field along gauge trajectories, we get
LVQ—Z/8 SpB P A3, 4
Z/ [5 D)5¢AB D] T a4 —Z/ f(CDa A5¢ABC Ddd A
c
= z/ o4 pyd¢ PPl P4 =0, (2.3.22)

where the last line vanishes due to C' being a closed contour. Degenerate symplectic structures
descend to a reduced phase space. If we define ker (2 to be the set of gauge generators, then
the reduced phase space is given by the factor M/ ker 2. On-shell gauge-invariant functions are
points in this space and they coincide with physical observables.

It still remains to be checked whether this symplectic structure is real over the fixed point
defined by the involutionP} The fixed point can be written as

Sapp=bip.p=03" 05" ajyp.p (2.3.23)
and it follows that

3See paragraph above equation ([2.3.11))
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Q= —i/ 56" Noat L A dPa g,
C

0% . 9P, 8aVE P Agat APy

/ B
B0
)2t /5 AB- D/\(‘?BB@C ..6DD56A)B,“D/\d3xAA
/(5@’4

= +Q, (2.3.24)

p AP N By

thus proving that indeed the symplectic structure is real.

Having the symplectic structure for Penrose theory, it remains to construct the canonical
map which will relate the two descriptions. In doing so, we are ready to prove that the two
phase spaces agree.

2.4 Canonical map between descriptions.

It is instructive to consider some examples before treating the general case. We specialize our
discussion to Rarita-Schwinger and linearized gravity in the next two subsections. Each case
will serve to emphasize the introduction of a new tool for the analysis.

In the Rarita-Schwinger case, for example, we will see how the spliting of the gauge field
into self-dual and anti-self-dual connection — as it has already happened in electromagnetic case
— comes about in the symplectic structure. The main objective is to demonstrate, on the real
slice given by , that the canonical map indeed preserves the symplectic structure.

In linearized gravity, we show how the analysis can be made rather straightforward once we
pass to momentum space. It will avoid dealing with integration by parts when we show that
the symplectic structures agree.

2.4.1 Rarita-Schwinger case.

The Rarita-Schwinger theory is obtained when h = 1 in Section [2 We have the Majorana

spinor
v, = (%5) (2.4.1)

with higher-spin gauge symmetries 0V¥,, = 0,,¢ and gauge-invariant action

. 1—
S = /d%; (\p Font 5 W, TP FmFm) : (2.4.2)
The equations of motion read

F,, =T"9,V,, — 0,[™V, = 0. (2.4.3)

For our applications, it will be useful to consider the gauge-invariant combination

R = 0 W, — 0,0, (2.4.4)
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—ABC

in order to make contact with the curvature spinors ¢*%¢ and ¢ . To see how, let us
introduce the following spinor counterpart of R,,,:
RMMNN = d\II(MN)EMN - d\I/(MN)GMNa (245)

where abbreviations have been used:

(MN)B
(MN)
and
~ dvunyB
(MN)
It enables us to rewrite the equations of motion in the form
MM dvy vpeny —d ENIN
[ Ry = 0 — MBOMB 05" 07 ibéfNB M ﬂ”vB MN) o, (2.4.7)
€ Ve 0 Ay yxemn —dv yneyn
from where we obtain
dv gy — AW Nein =0 (2.4.8a)
and
—C —N
dy ayean +dy 4n = 0. (2.4.8b)
A quick inspection shows the only possible solutions for ([2.4.8a)) are
_ c
deANN =0 and d¢ NC — 0 (2.4.9)

since the first term is symmetric in AN while the second one is anti-symmetric in AN. The
same type of reasoning leads us to the solutions of ([2.4.8b)):
A ey =0 and dP" 4y =0. (2.4.10)

These solutions annihilate any components with dotted and undotted indices. Moreover they
completely symmetrize the self-dual and anti-self-dual part. The remaining components split
R, into

Rmn — _dw(MNA)EMN — dw(AMN)GMN (2.4.11)

and we can identify

—dunay a8 Pamn, (2.4.12)

and

—diyy as G- (2.4.13)
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This procedure occurs for other spins as well. One defines a gauge-invariant combination,

. . . . —AB--D
and once the equations of motion are imposed the spinors ¢A%P and ¢ are the only
remaining components. Notice that

is trivially satisfied in the presence of ¥,,. As soon as we change pictures and use the curvature
spinors, this equation turns into an equation of motion. The anti-symmetry is equivalent to a

contraction of spinor indices, and so we recover ([2.2.25)) and ([2.2.26]):

8AA¢AMN =0 and aAAEAMN =0.

The Penrose description splits the gauge field h,,,...,,, into anti-self-dual and self-dual parts
treating the self-dual part via the curvature while the anti-self-dual part is described with the
anti-self-dual gauge field.

. . . oo —mA
In the Rarita-Schwinger case, the gauge field a5, is mapped to the anti-chiral part v
with the ansatz

—m - - 1 -
o = igmEE (aAcaE-CE + §8E.CaACE) (2.4.15)

where the coefficients are fixed by requiring the higher-spin gauge symmetries to coincide. For

consistency, it is also possible, with this choice, to check that EmA satisfies the equations of
motion when a gz~ does. We should point out that this map is the non-trivial piece of our
correspondence. For other higher-spins, it has to be constructed with the right coefficients case
by case.

One can derive the symplectic structure from action and it reads:

0= / (260 A 0GP0, + 200, AT TP,
+ Othy A OOY 4 01, AT U™ — S A g, — 6 A 6m6¢m> ANd3z,. (2.4.16)
If we intend to describe the spin 3/2 piece, we are allowed to use the gauge
e, =0 (2.4.17)
so the symplectic structure collapses to
Q= 2/ S A ™00 A d3z,. (2.4.18)
In Penrose case, the symplectic structure follows from , and it is
Q= z’/ad)ABC ASat po A dPa 4. (2.4.19)
Notice the gauge condition implies

0PN s = 0, (2.4.20)
and by consequence of (2.4.15)):

9,7 a’ pe = 0. (2.4.21)
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When substitute our ansatz into the symplectic structure (2.4.18]), we obtain

Q= +i / SYEEAN D, Cbape A P, A (2.4.22)
and there is a subtlety we must highlight. Despite the advantage of being able to use the
equations of motion when dealing with a symplectic structure, we are not allowed to integrate

by parts indiscriminately. If we assume, for the moment, that we can make such integration,
then we would get the desired result:

0= +i / SYEFAN D, C8a im0 A Py A = —i / 0 COUPEAN S e AP, A, (2.4.23)

because, by the equations of motion, the di term is symmetric in the pair C'FE but also in FA
— thus being symmetric in all of its indices — and we have

Q=—i / 05, COUEEA N bape N Py A = —i / SCFANGS a e A P, (2.4.24)

The integration by parts is justified if we show that the two terms differ by an exact form.
Consider

/ 8, X A Py, — / D, SXIECAA gy
— / d,.¢ (MEAE Noasion — 00 oA 5aEAE> A dPx A (2.4.25)
and notice that is exactly what we want:
- / (aE CEPEPA N 64 p A Py A+ 6YPPAN D, OSa 450 A dPa A) , (2.4.26)

since all other terms cancel after we use (2.4.20) together with the equation of motion for the
gauge field a ;5. p:

0% aapcyi = 0. (2.4.27)
In all other cases, the integration by parts will be the main issue. We circumvent the difficulty

of finding appropriate exact forms by working in momentum space.

2.4.2 Linearized gravity case.

When s = 2 in section [2.2.1] we have linearized Einstein theory of gravity. The field h,,, has
gauge invariance of the form

O¢hmn (T) = Om&n (@) + Oném () (2.4.28)

and is described by the flat space action

1 1
§=-3 / d*z <hm"Rmn — §h”quq) : (2.4.29)



21

The R,,, and RP , represent the Ricci tensor and Ricci scalar respectively. Both can be obtained
from the linearized curvature given by

(_
Rinpg = 4 O 0 o)- (2.4.30)

The equations of motion are the linearized Einstein field equations

Ry =0 (2.4.31)

and the symplectic structure is

1 m n m n m n
Q:—§/(25h N OPSR," — Shy A OTSHP + Sh,P A O™ Sh,,

— 0, 0h™" A SR, 4 OPSH", A SR, ) A APy (2.4.32)

In order to change to Penrose description, we need to identify the (¢, a) fields. The self-dual
part of Ry,.upe gives ounpg via

PuNPQ = 8M(M8\N|NhMNpQ)7 (2.4.33)

while the anti-self-dual piece is described by the map

hapins = —10y; C@NCMN — iy, CaMCMN' (2.4.34)
Again, is an ansatz. It is constructed by requiring gauge symmetries to coincide. An
interesting feature we should stress is that h comes traceless since a is completely symmetric
in its undotted indices. This is not a problem. In Fronsdal theory these degrees of freedom are
pure gauge.
We will demonstrate that the phase spaces of these descriptions agree. In this on-shell
counting, let us go into Fourier space and fix the only non-zero component of the momentum
to be p,2. From the spinor description, we have then

0 oapep =0 = p"éipep =0, (2.4.35)

which implies that every term with an 1 index vanishes. The only non-zero component of ¢
thus is ¢g299. For the gauge field a, we have

a(AAaBCD)A =0 = p(22aBCD)2 =0, (2.4.36)

which means that every a with a 2 and a 2 index vanishes. The only remaining degrees of
freedom are ajpop. However, we should account for the gauge invariance:

00 ipep = aA(B §cpy = dajsep = Di(2 §op), (2.4.37)

which makes the only non-zero component aj,;;. Finally the symplectic structure for spin 2
Penrose theory is

Q= z'/é(bll“ Aba® | A dPays. (2.4.38)

Let us turn to Fronsdal theory. Fix a gauge where h,,, is traceless, so the symplectic

structure (2.4.32)) reduces to

1
Q=7 / (26h™, A OPSh,™ — Shy A O"SHP™) A &Py (2.4.39)
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The degrees of freedom of the self-dual part are fixed by Einstein’s equation since ¢ is written
in terms of h. For spin 2:

Rovvnvny = th(]WM\NN) + PP Moy Ny = 0, (2.4.40)

which gives, after we impose p* = 0,

The general solution of this equation is

So, for the self-dual part of the curvature, we have then

$22cD = —p(22p2 2hCD)éé = (222 = —Py 2p2 2h2222- (2.4.43)

To connect the two descriptions, we split the gravitational field h into a self-dual and
anti-self-dual part. The self-dual piece is already described by Einstein’s equations while the
anti-self-dual part is given by the ansatz (2.4.21)). It implies:

h(li\li) = pilailll +pila1111 = +2p11a1111- (2.4.44)

These considerations collapse the symplectic structure to

/<p1 Yaiy, /\p125h1111> A3z
= +i/ (5&1111 /\pi 1p125hilil> /\d3IL‘12
/ <5a1111 Ay s 5h2222) Ay

=+ / <5a1111 N (5@252222) VAN d T15- (2445)

This computation highlights the usefulness of momentum space. We can work directly with
physical degrees of freedom as it is suggested when dealing with symplectic structures.

2.4.3 Canonical map between formulations for general spin s.

In order to relate the two descriptions in general case, we split the Fronsdal field h,,,...,, into
self-dual and anti-self-dual components. The anti-self-dual part is described by the gauge field

-\ 28— Ns N-
Poag, it e arir, = (S0 710 00 Ay vty (2.4.46)

while the self-dual degrees of freedom are given by the curvature ¢4.. p, which should come
from the gauge-invariant tensor

R[mlnl]"' [msns] - 3[ns|a[ns_l‘ e 8‘[711 hm1” ‘ms—lnms}' (2447)
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Once Fronsdal equations are imposed, we expectﬁ

My Ny M Ny = BNy Moy = 3(NSNS e 8N1 M hMl...Ms)Nl...Ns' (2.4.48)

We also expect that any component of R, ,,...,m.n, Which contains mixed dotted and undotted
indices should vanish. In what follows, we will prove that this is indeed the case.

For the moment, we should stress interesting features of this map. The anti-self-dual com-
ponent gives a traceless N, ..,,,. But this is not a problem since these degrees of freedom are
pure gauge. Moreover, in order to show that the symplectic structures match, one does not
need all coefficients in the anti-self-dual map. The Fronsdal equations will restrict these to a
single component each.

2.4.4 Equivalent symplectic structures: Fourier counting.

We proceed to the symplectic structures. We circumvent the need to look for exact forms by
going to momentum space, which also makes straightforward to work only with physical degrees
of freedom. .

Let us choose a non-zero p, > component. Hence, the equation of motion for a 5., collapses
into

PE 3, 5y = 0, (2.4.49)

and we can see the only non zero component is ajp..,. We can restrict further using the gauge
transformations:

0ais...p = Pi2&-D); (2.4.50)

from where the only physical component which remains is ai;..;. Thus, the map we described
in gives hyi..,i component of the Fronsdal gauge field.

The degrees of freedom which the curvature spinor describes are obtained from the Fronsdal
equation. Together with the condition p? = 0, they imply

P vn Mt oty = 0; (2.4.51)
since our map describes a traceless Ay, ...,, field. This equation forces h;5 = 0, which also
annihilates any component with mixed dotted and undotted indices, and so we have

Such considerations are in line with the usual formulation of Fronsdal theory, where the degrees
of freedom contained in the trace and divergence of h,,,...,, can be gauged away.

We combine all of such considerations to show the symplectic structures agree. Note that
we are allowed to discard terms of the type

/ Sh.. A OPh,. and / SH” . NOh._.

because h,5  vanishes and our canonical map gives a traceless Ay, ...n,,. Thus the only allowed
combination for the bosonic case is of the form

Q- / (Ghas A OSH™ M) A dBa, (2.4.53)

and if we apply our results to (2.4.53)) we obtain

4Remember, to a spacetime index m there corresponds a pair MM.
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Q= / <5h(1i|.--|11) A Dy 25h(1i\...|n)> A dPz,
= (—1)*™" / <P1 e ' i0aiy..1 APy 25h2‘..22...2> A deQ 2
G Al N COTPNILIIL TP P
= ()7 iy ) [ Gy A Omnaa) A by

= — / ((5@11“,1 N (5¢22...22) A d3$2 2 (2454)

thus proving the desired result.

2.5 Conformal Invariance.

The conformal generator v¢ is

ve=a‘ +whr, +axt+2(p.x) 2 — p(z. 1), (2.5.1)

where the first two terms are the usual Poincaré transformations; the third one describes di-
latations and the last two generate special conformal transformations.

2.5.1 Lie derivation of spinors.

In treating Penrose action, we are going to need to vary spinor fields under conformal transfor-
mations. The Lie derivative of a spinor field is not widely used when compared with the usual
tensor variations. This subsection explains briefly this terminology before applying it to our
case.

In geometry, given a vector field v¢ and a vector density u’, the Lie derivative of u® with
respect to v¢ is defined as

Lo’ = v 0u’ — u0,v" + wy (0,v") u?, (2.5.2)

where w, is the density weight of u’. When u® is null, it can be written as product of two
spinors, u® = uPuP, and so we can use equation to define the Lie derivative of ;.

Following this procedure, a general spinor density u flows along the flux of v¢ such
that its infinitesimal change is given by

Oop = Lop™ = V" O + 1P [ g+ Wi (Omv™) 1 (2.5.3)
in here w,, denotes the density weight of the p field and f4 is the self-dual part of ve:

1 .
Jfap = 5 C(AVB)C- (2.5.4)

In deriving (2.5.3) from ([2.5.2)), we must impose that v¢ is a conformal generator. Indeed, the
second term in (2.5.2]) gives a contribution of the form:
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—u0, vy = —,uAﬁAaAAVBB
= —MAﬁAa[AAVBB] - NAﬁAa(AAVBB)
= — ! (faseas + Faseas) — 1 T0 v s
= Jip i fap + s ﬁAfAB - MAﬁAa(AAVBB)a (2.5.5)

in which the last term does not split into something dependent of B and B separately. It is
precisely when v¢ is a conformal generator, that is

1
a(AAVBB) = (éam\’m) €AB€ip- (2.5.6)

that we can identify the desired contributions to each spinor.

In our applications, of special interest is the self-dual part of the special conformal trans-
formations. We write it explicitly for future use:

fAB = _QPC(AZEB)C- (2.5.7)

2.5.2 Weight conventions.

The weight of a density is a geometrical quantity, that is, it has fixed value independent of
which transformation is made; and usually we would have

A
Lyeap = 5€AB- (2.5.8)
However, there is still freedom if we define €45 to be a density instead of a tensor. We choose

the weight of €45 such that

Lyeap = 0. (2.5.9)
From definition (2.5.3):
Lyeap =0= Seas + WOV ean
1
we see this amounts choosing w, = —1/4. Consistency, however, requires e*” to have weight

w® = +1/4. Hence, given an arbitrary spinor u”, in our conventions it is true that

Lopa = eaplop®, (2.5.11)

which is equivalent to state that a spinor and its dual have the same conformal weight. All
considerations apply equally for dotted indices.
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2.5.3 Conformal invariance of Penrose action.

In this section we will state the conformal invariance of the action (2.3.1). This in turn ensures
the existence of a set of conformal symmetries in Fronsdal description.
Let us begin with dilatations. The higher-spin fields vary under it according to

5,0 — az™d, PP 4 daw "B (2.5.12a)

and

s.a’ B = az™Oa’ gD+ daw,a’ Bl (2.5.12b)

These change the action by

5.5 = /d4x (axm B 4aw¢¢ABmD) aAAaA e
+ (bAB"'DaAA (OéxmamaA B-p 1 40(Waa/A B---D> : (25.13)

After a few simplifications, we get

0yS = /d4x {a [—3 44 (W¢ + wo)] ¢AB..-D8AAGA B~~-D} ’ (2.5.14)
which vanishes only when
3
Wo T Wa = 7 (2.5.15)

As we can see, dilatations are unable to fix completely the conformal weights. The remaining
condition comes from the special conformal transformations.
Under special conformal transformations, generated by

vt =2(p.x)ax™ — (z.x) p", (2.5.16)

the spin fields ¢*8P and o p...p vary according to

6V¢AB...D — ™ m¢AB~-D + 28¢C(AB---JCD)C 4 8W¢ (pI) quB"'D’ (2.5.17&)

and

6e0 g o =V"0mat 5 o+ f saC 5 p— (25 —1) fc(BaAmD)C + 8w, (p.x)a® 5. . (2.5.17b)

The action becomes

0,8 = / d'a (V706500 407 .y + 2567 AB PR, 10 . + 8w (p2) 900

+ ¢ P, v na B-pt CbABmDVmamaAAaA B-pt CbABmDaAA?A CCLC B-D
DA ~ |
+ ¢ 00,40 pp — (25 = 1) 617 P0, 4 € (pa” L pyo

- (2s—1) QSAB"'DfC(B@‘AmaA ~pyc T 8Wagpa + 8w, (p.x) qb@a) . (2.5.18)

In the second line, we open d,v,, in its symmetric and anti-symmetric pieces and integrate by
parts Oy, in 9, 0ma’ 5. 5. Then we obtain
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QbABmDaAAVm mCLA 5D = QﬁABMDa(AAVm)amCLA BoD +¢AB”‘D8[AAVm}amCLA BoD

=2 (p.x) pda + ¢ PP fanid™ a5 + 6P T 404 Mat 5
(2.5.19)

and

AB--Dm m AB--D m 1 AB---D A
¢ 0 aAAa B.p =~V Ono 0 Aa B.p— OV 0440" p..p

= V"0, PP, a0t 5. — 8 (p.x) Ppda. (2.5.20)

When we substitute everything back into the action, the only remaining terms are

0vS = /d45’7 {[8 (W + wa) = 6] (p.2) ™78, ja! B---D} + (8wo —3) 0" Pp a0t 5 g
— (25 = DP9, fC pat pyo (2.5.21)
We can use (2.5.7) so that
il 5 =—p, €1 —pipda°. (2.5.22)
At the end, we get two relations involving the weights. They are
8(wyp+w,) —6=0 (2.5.23a)
and

8w, +2s —4 =0. (2.5.23b)

If we use ([2.5.15)), the first equation, (2.5.23a}), is an identity. It gives no new information.
However, the second equation fixes the weight of the gauge field. Finally, we have

2—s

.= 2.5.24
wo=20 (25.24)
and
1
Wi = SZ _ (2.5.25)

The following table lists a few values for weights given different spin s theories.

Wo Wq
s =0 1/4 1/2
s=1/2 3/8 3/8
s =1 1/2 1/4
s— 3/2 5/8 1/8
s— 2 3/4 0
s=5/2| 7/8 1/8
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2.5.4 The structure of conformal transformations.

Penrose theory is described by the set (¢, a) while Fronsdal theory is described by h. We have
defined a map, which we name H, that takes one description into another:

H : gy, — (6777P a,p..0) -

It was shown that this map preserves phase space, i.e., it is a canonical transformation.

A map between symplectic structures also carries through symmetries of one description
to another. If a symplectic structure admits an action, then its symmetries must be also
symmetries of the action. Therefore it is natural to define a conformal transformation of the
form

Sohmyom, = H 'Ly H Ry (2.5.26)

where v is the conformal generator (2.5.1)). It can act non-trivially; its action, as equation
(2.5.26)) shows, is not obtained from standard Lie derivations. Moreover, additional compli-
cations may appear due to H~!, which involves inverting derivatives, as illustrates.
For spins running from s = 1/2 to s = 3/2, it can be shown to agree with usual conformal
transformations obtained by change of coordinates. At spin s = 2, however, since Fronsdal
theory is not conformal invariant, our transformation exhibits the non-local behaviour.

We can work out this case explicitly. For special conformal transformations, if we plug the

variation ([2.5.17b|) inside ([2.4.34)), we obtain

6Vh(]V[M|NN) = ‘CVh(JV[M\NN) +2(p.w) h(MM\NN) + 6P(ME aN)MNE(h)a (2.5.27)

where L, in this case, denotes the diffeomorphism Lie derivative and p is the special conformal
parameter. The last term shows the non-local behaviour since it involves rewriting equation
for ay; g in terms of by, v, giving inverse powers of 9,. Notice that the conformal
weight obtained from this expression, which reads w = +1/4, does not agree with the usual
Fronsdal theory, which is dilatation invariant for w = —1/4 at every spin [30].

These differences may appear problematic. They raise suspicion whether this transformation
satisfies the conformal algebra or not. The simplest way to answer this question is to notice
that is a conjugation; therefore, if H is well-defined, they must satisfy the same algebra
of the vector field v in question.

The issue of conformal invariance is unrelated to the on-shell phase space, but is rather
related to the off-shell description. The connection field of Fronsdal theory is not a representa-
tion of the conformal algebra, but the curvatures used in Penrose theory transform covariantly
under the action of the conformal group. Then, it could be said that the non-local nature of the
transformation follows from expressing the Fronsdal gauge field in terms of its curvature, as is
usual in spin 2 case when one uses Riemann normal coordinates. It should be stressed though
that, in this formalism, we still have a gauge field, a,;,, 5 in gravity case, and moreover, our
map ([2.4.34) is not obtained by a change of coordinates, it is the definition of aE|

The conformal change of coordinates preserves the action and its symplectic struc-
ture. We have shown that the two symplectic structures agree, so our transformations should be
a symmetry of Fronsdal action. This analysis is straightforward for free theories. It is possible
that this symmetry is not preserved by arbitrary interaction terms. It would be interesting to
understand what kind of interactions, if there is any, would preserve these symmetries.

®We would like to thank the referee for pointing this out.
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2.6 Conclusions.

We have defined an action for Penrose theory and constructed its symplectic structure. This
action appears to be simpler than the usual one obtained by Fronsdal. Moreover, it depends
only on the epsilon symbol, being possible to examine how it should extend to curved spaces.
In particular, this action might be the description of the singular limit suggested in for the
AdSy higher-spin action.

We showed that this theory describes the same classical phase space as of Fronsdal. More-
over, the action of conformal change of coordinates can be push-forwarded from one Langragian
to another. It, in turn, leads us to conjecture a set of non-trivial conformal symmetries for the
Fronsdal higher-spin fields A,,,...,,. These are not generated by usual coordinate changes, al-
though to lower spins — those which run from 1/2 to 3/2 — it is possible to show that both
symmetries agree. The non-local behaviour appears only at spin 2.

The construction of conformal higher-spin theories in four-dimensional flat space was devel-
oped by Fradkin and Tseytlin in , and it was generalized for arbitrary curved backgrounds
by Segal in . These theories involve higher-derivatives and additional fields; so, it should be
stressed that having identified a non-local realization of conformal symmetries is not enough to
argue that this gives a non-trivial relation between conformal higher-spin theories and Fronsdal
theory.
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Chapter 3

On worldsheet curvature coupling in pure
spinor sigma-model

3.1 Outline.

In a general curved background, the b-ghost of the pure spinor superstring is not holo-
morphic:

ob=Q(...) (3.1.1)

On one hand, this is a problem, complicating the computation of scattering amplitudes. On
the other hand, this is a tip of an interesting mathematical structure. It was suggested in
, that in such cases the definition of the string measure should be modified, so that the
resulting measure should descend on the factorspace of metricsﬂ over diffeomorphisms. The
method of , is to first construct a pseudodifferential form equivariant with respect to
diffeomorphisms, and then obtain a base form using some connection.

This procedure can be also used to study the insertion of unintegrated vertex operators.
Once we inserted unintegrated vertex operators, we should then integrate over the moduli
space of Riemann surfaces with marked points. Let us first integrate, for each fized complex
structure on X, over the positions of the marked points, postponing the integration over complex
structure for later. We interpret the result as the insertion of the integrated vertex operator.
It is usually assumed that to any unintegrated vertex operator V' corresponds some integrated
vertex operator U. The naive formula is:

U=b_1b,V (3.1.2)

However, this naive formula does not always work correctly. First of all, in the pure spinor
formalism, b is a rational function of the pure spinor fields. This, generally speaking, leads
to U being a rational function of the pure spinors, with non-constant denominators. It is not
clear if such rational expressions should be allowed in the worldsheet action. We will leave this
question open. Instead, we discuss another issue: Eq. does not tell us the whole truth
about the curvature coupling (the Fradkin-Tseytlin term in the worldsheet action). In this
paper we will explain how to derive the Fradkin-Tseytlin term in the action starting from the
insertion of the unintegrated vertex operator V. We will construct, following the prescription
of , the integration measure for integrating over the point of insertion of V. We will
show that the procedure of simplifies. This is mostly due to the existence of a relatively
straightforward construction of a connection on the space of Lagrangian submanifolds, as a
principal bundle with the structure group diffeomorphisms. The curvature of this connection
is essentially equal to the Riemann curvature of the worldsheet metric. The curvature term

Lor, more generally, of Lagrangian submanifolds of BV phase space
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in the base form generates, effectively, the dilaton coupling (the Fradkin-Tseytlin term) on the
string worldsheet. Under certain conditions, this reasoning leads (Section to the formula
for the deformation of the dilaton superfield:

(bo — bo)V = QP (3.1.3)

In general there are two contributions to ®: one from Eq. (3.1.2]) and another from Eq. (3.1.3)).

Egs. (3.1.2) and (3.1.3)) in the case of bosonic string In the case of bosonic string
(Section [3.4.2)), the curvature coupling, generally speaking, comes from both Eq. ([3.1.2)) and

Eq. (3.1.3). The contribution from Eq. (3.1.2)) is due to the fact that already the unintegrated
vertex operator contains the curvature coupling: cc,/gR®.

Egs. (3.1.2) and (3.1.3) in the case of pure spinor superstring In Section [.6] we
discuss Egs. (3.1.2) and (3.1.3)) in the context of the pure spinor superstring on AdSs x S°.
In this case, the only source of the curvature coupling is Eq. — the second line of Eq.
B233).

The b-ghost is a rational function of the pure spinor (not a polynomial). Therefore, the
OPEs b_1b_,V and (by — by)V are also non-polynomial. We explicitly evaluate (by — by)V in
the particular case when V is the beta-deformation vertex, using the b, and by from — see
Section At this time, we do not know any specific application of the formulas of Section
[B.6] However, these computations inspired us to make some conjectures about the unintegrated
vertex operators — see Sections [3.5.6] and [3.5.7]

One interesting feature of the beta-deformation is the existence of non-physical vertex op-
erators . They normally cannot be put on a curved worldsheet, because of the anomaly.
However, once we allow denominators of the form m, it seems that there is no obstacle,
and the nonphysical vertices can be included. This at least means, that the first few orders in
the expansion in powers of € in Eq. actually make sense in string perturbation theory.

3.2 General theory of vertex insertions

In this Section we will apply the prescription of for the vertex operators insertion.

3.2.1 Use of BV formalism and notations

In BV formalism, instead of integrating over the worldsheet complex structures, we integrate
over general families of Lagrangian submanifolds L in BV phase space. The space of all La-
grangian submanifolds is denoted LAG. In this paper, we will only consider a 6g—6-dimensional
subspace of LAG, which corresponds to variations of the complex structure.

We use the of [37). The odd Poisson bracket will be denoted {_, _}gy, or just
{ _, _}. For a vector field £ on the BV phase space, generated by a BV Hamiltonian, we denote
that Hamiltonian &:

§=1¢ Iy (3.2.1)

3.2.2 Use of worldsheet metric

Classically, the string worldhseet action depends on the worldsheet metric only through its
complex structure. Quantum mechanically, the computation of the path integral usually in-
volves the choice of the worldsheet metric (and not just complex structure), and then showing


http://andreimikhailov.com/math/bv/notations/notations.html
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that in critical dimension the result of the computation is actually Weyl-invariant (i.e. only
depends on the complex structure).

In this paper, we will need a worldsheet metric also for another purpose: to define a con-
nection El on the space of Lagrangian submanifolds as a principal bundle:

LAG

LAG — £ (3.2.2)

which we need to convert an equivariant form into a base form. Suppose that we choose a
metric for every complex structure. Then, we will explain in Section this defines a choice
of horizontal directions, i.e. a connection on (3.2.2) — see Eqgs. (3.2.29) and ([3.2.30)).

Given a complex structure, we will use the constant curvature metric of unit volume, which
always exists and is unique by the uniformization theorem . (But other global choices of a
metric would also be OK.)

3.2.3 String measure

Equivariant Master Equation String worldsheet theory, in the approach of , comes
with a PDPﬂ QP2s¢ on LAG, which is base with respect to H = Diff. It is obtained from the
lequivariant half-density| p°, which satisfies the equivariant Master Equation:

Acun®(€) = £7°(E) (3.2.3)

where { € h = Lie(H) is the equivariant parameter, and § the corresponding BV Hamiltonian.

Expansion in powers of ¢ Let us write p°(&) as a product:

Po(&) = e Dpiys (3.2.4)
where p; /9 is a half-density satisfying the usual (not equivariant) Master Equation:

p1j2 = exp(Spy) ( Spy is string worldsheet (3.2.5)
Master Action )

Acanpl/Q =0 (326)

and a(€) is a function on the BV phase space, a(0) = 0. For any function f and half-density
p1/2, let us denote:

Apl/Qf = p;/gAcan(fpl/Q) - (_)ffp;/lgAcanpl/Q (327)
Egs. (3.2.3) and (3.2.6) imply:

By, pa€) + 5 al€), 0@}y = € (328)

a(§) for bosonic string and for pure spinor string

For bosonic string a({) is background-independent, linear in &, and given by a simple
formula:

o =) = [ e (3.2.9)

2there might be other choices of a connection, not requiring a metric
3pseudo-differential form
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For pure spinor string a(&) is a complicated background-dependent expression. For back-
ground AdSs x S°, the a(V)(¢) was constructed|in , where it was called ®,. Schematically:

a(¢) = / (€-0ZM) Ay N 4 (€ - 02BN Zx+ (3.2.10)
b))
+(0ZM)OY Lewa, + D woLews (3.2.11)

where:
— Z are coordinates on super-AdSs x S°

— A are pure spinors (both A and Ag)
— Apra, BY, €% and D are some functions of Z,
and rational functions of pure spinors

Some assumptions

BV formalism is [ill-defined in field-theoretic context|, because A© is ill-defined. We will
assume that on local functionals A(®) = 0. In other words, when fi,. is a local functional of the
string worldsheet fields:

Apl/gfloc = {SBV7flOC} (3212)

We believe that it is possible justify this assumption in worldsheet perturbation theory, but at
this time our considerations are not rigorous.

3.2.4 Equivariant unintegrated vertex

Stabilizer of a point Insertion of unintegrated vertex operator V' at a point on p € X leads
to breaking of the diffeomorphisms down to the subgroup St(p) C Diff which preserves p. Let
st(p) denote the Lie algebra of St(p):

St(p) = {g € Diff | g(p) = p} (3.2.13)
st(p) = Lie(St(p)) (3.2.14)

We will now explain how to construct an St(p)-equivariant form on LAG, and then in Sections
B.2.5 and B.2.6] how to construct a base form.

Equivariantization of vertex Given an unintegrated vertex V, suppose that we can con-
struct for any & € st(p) an equivariant vertex V°(&y), satisfyingﬂ

Ve)=V (3.2.15)
Ape(en) V(&) = 0 (3.2.16)
and: ]
{&,VE(no)}ev = - V(e lpy) (3.2.17)
t=0

Under the conditions of Eqs. (3.2.16) and (3.2.17)) the product V°(&)p®(&) defines an st(p)-

equivariant half-density satisfying the st(p)-equivariant Master Equation:

(Acan — &) (V(&)p°(&0)) =0 (3.2.18)

4the subindex C stands for Cartan model of equivariant cohomology
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Any solution V(&) of Eq. (3.2.18]) leads to st(p)-equivariant pseudo-differential form:

(L, dL, &) = / exp (o(dL)) V(£0)p (&) (3.2.19)

gLo

Here o(dL) is any BV Hamiltonian generating the infinitesimal deformation dL of L.
We can think of V°¢(&y)p°(&) as correction of the first order in € to p®(&y) under the defor-
mation:

p exp(a(&)) = p exp (a(fo) +eVe(&)) (3.2.20)
Eqgs. and imply:
(80,2 +{a&). Yov) Vo(&) = 0 (3:2:21)
{&,VE(no)}ev = % VO(etléor py) (3.2.22)
t=0

The exact deformations, of the form:

Veactl€0) = (B, + {al&), _}uv) o°(0) (3.2.23)

with v° satisfying the equivariance condition {£o, v°(mo) }ev = %|,_, v°(e'€~lng) are considered
trivial.
Consider the expansion of V(&) in powers of &:

V(&) = VO + V() + V(G @ &) + ... (3.2.24)

(We use angular brackets (...) to highlight linearity, i.e. f(x) instead of f(z) when f is a linear
functions of x.) In particular, Eq. (3.2.21)) implies at the linear order in &:

Ay, V(&) + {a (&), VO Ypy = 0 (3.2.25)

Equivariant vertex operators form a representation of the Dg algebra discussed in , the
differential d of being represented by A, .

For our purpose, we will use a slightly different form of Eq. (3.2.25]). Let us return to Eq.
(13.2.18). At the linear order in & it becomes:

A,y , (a(E)WVO + V(&) = &V© (3.2.26)

An exact V corresponds to (see Eq. (3.2.23)):
Vi = 4,0 (3.2.27)
Vie(€o) = Ay, (aM(g0)v©@ + 0D (g)) — €00 (3.2.28)

Eq. (3.2.26) is an equivalent form of Eq. (3.2.25)). We will explain in Section that in case

of bosonic string it is more convenient to use Eq. (3.2.25). But in case of pure spinor string we

use Eq. (3.2.26)).

3.2.5 A connection on A — A/St(p)

In order to integrate, we need to pass from equivariant Q¢ to base Q. This requires a choice
of a connection in the principal St(p)-bundle LAG — LAG/St(p). We will now define the
connection by specifying the distribution Hy C T'E|s of horizontal vectors. We say that the
vector belongs to H,, if it is a linear combination of vectors of the following two classes:
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e The first class consists of the variations of the metric satisfying:

h* 5has = 0 (3.2.29)
Vhas = (3.2.30)

Such dh,p can be identified as holomorphic or antiholomorphic quadratic differentials.

e The second class by definition consists of infinitesimal isometric (“rigid”) translations of
the disk D, of the small radius e. These are delta-function-like variations of the metric with
the support on dD.. They are always trivial in LAG/Diff, but nontrivial in LAG/St(p)
when genus is greater than one.

(This definition only works for the metric of constant negative curvature, because for
generic metric D, does not have any infinitesimal isometries. In such cases, we can
choose some lift to a vector field v which is approximately isometry, in the sense that
L,905 = O(|z[?). Formulas do not change.)

3.2.6 Base form and its integration

Given a connection, we can|construct a base form|out of the equivariant form of Eq. (3.2.19);
it is given by the following expression :

QP ([, dL) = /L exp(0{dL|noe) ) VE(F)p°(F) (3.2.31)

where V¢ must satisfy Egs. and m, and F' is the curvature of our connection.
Here, as in Eq. m, dL]hor is any BV Hamiltonian generating the infinitesimal de-
formation, but we have to “project” the variation dL to the horizontal subspace (using our
connection).

Let us consider the fiber bundle:
MET , MET

Si(p)  Diff

(3.2.32)

We want to integrate ) over the cycle of the form 7T_106g_6 where cgy_6 is the fundamental
cycle of the moduli space of Riemann surfaces. Let us first integrate over the fiber (which is 3).
Our connection, described in Section lifts the tangent vectors to the fiber as horizontal
vectors of the second class, i.e. as infinitesimal rigid translations of D.. The curvature of our
connection, evaluated on a pair of vectors tangent to the fiber, takes values in infinitesimal rigid
rotations of D, and equals to the curvature of 3. Therefore Q2°2¢ is

QPase — / es[ VOO0 (dLue) A 0 (dLye:) +
+ VOGO(RY + VO(R) ] (3.2.33)
We will now explain this equation, first line first, and then the second.

First line of Eq. (|3.2.33))

With our definition of the connection in Section [3.2.5] the horizontal projection dL|pe is an

infinitesimal diffeomorphism: an infinitesimal translation of the disk D, by [ EZ } Therefore,


http://andreimikhailov.com/math/bv/equivariant-cohomology/From_Cartan_To_Base.html
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the corresponding BV Hamiltonian o(dL|p.,) is actually A-exact. Indeed, Eq. (3.2.8) implies
that:

o{dL|pey) = A, 0 (u(dz, dz)) (3.2.34)

P1/2
Here u(dz,dz) is the vector field on ¥ which is:
— at the center of D, equals to [ Z; }

— inside D, is an infinitesimal rigid translation
— outside of D, is zero

Since a(! is a local functional on the string worldsheet, Eqs. (3.2.34) and (3.2.12)) imply:

o(dLhe:) = {Smv, aV(u(dz,dz))} (3.2.35)
Lemma-definition 1: For any vector field v, the restriction of {Sgyv, a(v)} on Lis [0V v

{SBv,a(l)@)}’L = /baﬂvavﬁ (3.2.36)

We take Eq. (3.2.36)) as the definition of b*? (which is otherwise defined only up to a Q-closed

expression).

Proof Let us consider the expansion of Sgy and the expansion of V = {Sgy, aV}:

Spy = So+ Q% + ... (3.2.37)

From {Sgv, {Spv,aM}} = 0 we derive:
EQVO == £V1 S(] (3239)

Eq. follows from the variation of Sy under infinitesimal diffeomorphism being equal to
/T 2PV ,vg, and from the vanishing of the off-shell cohomology in ghost number —1 (we are
working off-shell!).

Returning to Eq. , Since u is an isometry inside D, and zero outside D,, we have:

{Sgv,aV(w)}, = / V9 6PV qug :f dz"bapu’ (3.2.40)
s

€

Therefore the first line in Eq. (3.2.33)) contributes:

b_yb_, VO (3.2.41)

Second line of Eq. (3.2.33))

Expressions like a®V)(R) and V™ (R) should be understood in the following way. We think of
the curvature R as a two-form on the worldsheet with values in rotations of the tangent space:

ReT (L ®so(TY)) (3.2.42)

In particular, if £ € 7,3 and 1 € T,¥ are two tangent vectors, then R(&,n) at the point p is an
infinitesimal rotations of 7),>. This infinitesimal rotation can be represented by a vector field
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v with zero at the point p. Let us “truncate” v by putting it to zero outside D,, i.e. multiply
v by the function xp, which is 1 inside D, and 0 outside. By definition:

aV(R(€,m)) Ea (xp, )
VO(R(E,m)) ZVD (xpv) (3.2.43)
(This is an abbreviation, rather than a definition.) In this context, Eq. (3.2.26]) becomes:

Ay, (VOaW(R) + VI(R)) = {Sgy,a(R)}V© (3.2.44)

P1/2

In the case of pure spinor string {aY(R),V(©} = 0, because v in Eq. is a
vector field vanishing at the point of insertion of V(® and V©) does not contain derivatives.
Therefore, the left hand side of Eq. is {Spv, a(R)V© + VI(R)}. When restricted
to the Lagrangian submanifold, up to equations of motionEl:

Q (@ (R) VOl + VOURL) = {Sov. a®(R)}LV O, (3.2.45)

We must stress that this equation is only valid under assumption {aV(R), V(©} = 0. Generally

speaking, instead of Eq. (3.2.45):

Q (a(1)<R>|LV(0)|L + V(1)<R>|L) =
= {Sev,a (R} VO, = {a(R), VO], (3.2.46)

The computation of {Sgyv,a™ (R)}|;, uses Eq. (3.2.40):

{SB\/, a(l)(R>}\LV(O) ’L = (bo — BO)V(O) (3247)
Therefore:
ad(R) VO, + VIR, = /gRD (3.2.48)
where ® satisfies: B
QP = (by — bo)V ¥ (3.2.49)

To summarize, the total integrated vertex insertion corresponding to the unintegrated vertex
V() is given by the expression:

/ d*z (b-1b-, VO + \/gR®) (3.2.50)
b

where ® satisfies:Q® = (by — by)V®

3.3 Brief review of the conventional description of the cur-
vature coupling

Here we will briefly review the “standard” derivation of the curvature coupling.

Consider the deformation of the worldsheet action by adding the integrated vertex operator:

S|—>S+6/U (3.3.1)

°In spite of the fact that xp v of Eq. (3.2.43) is zero at the point of insertion of V() we cannot claim that
aM(R)| V|, is zero. This is because of the singularities in the OPE of the integrand of a{" and V(0.
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where € is a small “deformation parameter”. Suppose that the deformed action is classically
BRST invariant. At the one loop level, we get:

it = of (X + \/gRY) (3.3.2)

where X is a BRST-closed operator of conformal dimension (1, 1) and ghost number one, and
Y is a BRST-closed expression of conformal dimension zero and ghost number oneﬁ In generic
curved target-spaces, there is no BRST cohomology at ghost number 1 and conformal dimension
zero. Therefore, exists ® such that:

Y = —Qprer® (3.3.3)

Also, there is no cohomology in conformal dimension (1, 1) and ghost number 1, therefore exists
U’ such that X = —QU’. These U’ and ® can be absorbed into U:

U U+ o'U + o/ \/gRD (3.3.4)

and the term & is the deformation of the dilaton.

3.4 Bosonic string vs pure spinor string

3.4.1 Main differences

In pure spinor string theory on AdSs x S°:
e simplification: V© does not contain derivatives

e complication: restriction of a(§) on “standard” family of Lagrangian submanifolds is
nonzero

In this case we need compute (aMV©® 4 V1) ‘L (this is what deforms the equivariant density),
and we get it from Eq. (3.2.45))

In bosonic string theory:

e complication: V() contains at least derivatives of matter fields, and sometimes derivatives
of ghosts

e simplification: a(&) is given by a simple formula: a(§) = £%¢,

restriction to the standard Lagrangian submanifold is zero

and in particular its

In this situation we compute VY from Eq. (3.2.21)):
0

{Spy, VWY = —{¢%¢,, V) = —fa@ (3.4.1)
The exact vertex has:
Vi = {Sev, v} (3.4.2)
VELAE) = (Sov 0 (E)) + €0 (3.43)
(3.4.4)

Notice that there is no \/gRV term in Eq. (3.3.1), because there are no BRST-closed scalar operators V' of
ghost number zero, other than 1 (the 1 corresponding to the change in string coupling).
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3.4.2 Bosonic string vertices as functions on BV phase space

Consider bosonic string on a general curved worldsheet. We work in BV formalism, our vertex
operators are functions on the BV phase space of bosonic string worldsheet|

Let us start by considering the vertex corresponding to a “gravitational wave”, i.e. an in-
finitesimal deformation of the target space metric G,,,. We assume that G, satisfies transver-
sality and linearized Einstein equations:

Gy =0 (
0G,., =0 (

)

4.5
4.6)

3.
3.
(almost all gravitational waves can be obtained like this, except for some zero modes). Let

hag be the worldsheet metric, and I the corresponding complex structure. We claim that the
following vertex operator:

VO = (Ic-0X")(c- 0X")G 0 (2) (3.4.7)
satisfies:
{Sgy, V01 =0 (3.4.8)
Let us prove this. The odd Poisson brackets with [BV Master Action| are:
{Spv, X} =L.X (3.4.9)
{Spv,ct = %[07 e (3.4.10)
{Spv,I} =L.I (3.4.11)

(Here £.X is the same as ¢- 0X — the Lie derivative of X.)
{SB\/, (]C . aX)(C . 8X)} =
1
— (([ﬁc, £[C] — £I[c,c])X) L. X — (ﬁ]cﬁcX) L. X+ §<£1[C,C}X) LX =

1
= (L L X)L X — §(£1[C7C]X)ECX (3.4.12)
Eq. (3.4.12) follows from:
1 L, 1 2 yrx
EC,C]CX - §£[[C7C]X = §LC d+xdX = E{SBV’ LCX } (3.4.13)

In Eq. (3.4.13) we identify X* as a 2-form on the worldsheet, and contract it two times with
c. This operation can be characterized by saying that for every local (i.e. given by a single
integral over the worldsheet ¥) functional F[X]:

oF
Lgbnd—X
To prove Eq. (3.4.13), let us choose the coordinates (z,2) where the complex structure is:
12 =i2. We denote C = ¢* and C = ¢, i.e. ¢-0 = CO+ CO (with a slight abuse of

0z
notations, we let d denote also 0,). With these notations:

{te1y X*, FIX]} = (3.4.14)

(CO+ CO)(iCO —iCIX — I(CO + CI)*X = 2iCCIOX (3.4.15)

In order to actually insert V() we have to regularize it. (Even when Eqs. (3.4.5) and (3.4.6)
are satisfied, we have the product of two 0X at the same point, which does not make sense
without regularization.)


http://andreimikhailov.com/math/bv/bosonic-string/index.html
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Regularization We regularize V() by replacing every X* (including those acted on by 0)
with the averaged value:

X(0,0) ./\fg/dzz\/gexp (—%disﬁ((z,z),(o,()))> X(z,2) (3.4.16)

where dist is the distance measured by the worldsheet metric, € — 0 the regularization param-
eter, and N, is the normalization factor:

N, = [ / /G exp (—%disﬁ((z, 7, (0,0))” B (3.4.17)

When ¢ gets contracted with dx, we take the average of ¢*0,x.

Renormalization After specifying the regularization prescription, we have to subtract in-
finities.

Actually, with Eqs. (3.4.5) and ([3.4.6]) the subtraction is not even needed, because the regular-
ized V(© remains finite when € — 0.

But suppose that (having in mind extensions to string field theory) we want to define our
vertex in a way which requires smooth extension off-shell, i.e. relaxing of Eqs and
(3.4.6). Then, for our expression to remain finite off-shell, we have to do a regularization. We
define the subtraction as follows:

_ _ [ g2 o Qg 0 0
Oren = exp( /d z/d w5 In dist (Z7Z’w’w)5X“(z,§) 5Xu(w,w)) O (3.4.18)

— this removes the short distance singularity in (X (z, 2) X (w,w)). Although this subtraction
is diffeomorphism invariant, it is not Weyl invariant, and therefore it does not commute with
{Sgv, _}. The actual effect of the subtraction is:

a 0 !
lim,_,, (ca(x)cﬁ(y)%ﬁ—yﬁ log dist2(x,y)) = %(c, Ic)R(x) (3.4.19)
This implies, that the unintegrated vertex annihilated by {Sgy, } is:

Oé,

(LeatLiea’ G ()),,, + g(c, Ic)®,en R (3.4.20)

where & = G (3.4.21)
Therefore the curvature coupling arises from Eq. (3.1.2)), as b_1b_1 ((¢,Ic)R ®) = R ®. (And

this source of curvature coupling is not present in the pure spinor case.)

If we do not impose the condition ([3.4.5)), then Eq. (3.4.7) requires modification. Additional
terms should be added, such as e.g. dive(Le.a*)A,(z). With these extra terms, Eq. (3.1.3)
also contributes to the curvature coupling.

3.4.3 Ghost number one
Cohomology at ghost number one is (cp Eq. (3.4.13))):

1
WH = L1 X" — §L§X“* (3.4.22)

1
W = Xk xv - §X[M§X"l* (3.4.23)
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They are both already equivariant, because {a(&), W} = 0, since W does not contain derivatives
of c. Notice that:

dW# = {Sgv, U"} (3.4.24)
where U" = xd X" — 1 X" (3.4.25)

The proof of Eq. (3.4.24)) uses:
AL X" — L. x dX" = {Spv, L. X"} (3.4.26)

As a consistency check, it should be true, at least in restriction to a reasonable Lagrangian
submanifold, that:

LSUH = (/D {SB\/,CL(I)<§>}> WH (3427)
where {SB\/, a(1)<£)} = (EéX'u)X; + [5, C]C* + (ﬁggag)baﬂ (3428)

This is true on the standard Lagrangian submanifold| i.e. ¢ = 0, X* = 0. We did not
explicitly check this for other Lagrangian submanifolds.

3.4.4 Dilaton zero mode

Ghost dilaton Let us lift the expression dc — ¢ of to the BV phase space as v = div(/¢).
The Cartan differential of v is (see Eqs. (3.2.27) and (3.2.28)):

VO — {Spy, 0} = Lo(div(Ie)) %div([[c, ) (3.4.29)
V(&) = {aV(&), v} = div(I&) (3.4.30)
VEDCL) =0

The restriction of V(© on the standard family is, on-shell, cd%c — é0%c.

The base form corresponding to V() by the procedure of Section is \/gR. Therefore,
we should interpret V(1) as the unintegrated vertex operator corresponding to the dilaton zero
mode. However, V() by itself is not {Spy, }-closed:

(Spy, VY = tr(l [ﬁcl,ﬁgol]) £0 (3.4.31)

(commutator
as matrices in T,X)

(3.4.32)

What is going on? The construction of the base form consists of the substitution of the
curvature 2-form in place of §. The way we construct connection in Section |3.2.5] it actually
takes values in a smaller subalgebra st(p, I,,) C st(p), which consists of those vector fields which
preserve the complex structure in the tangent space to the point p of insertion, i.e. I, € gl(T,X).
We observe that:

& €st(p, 1) Cst(p) = {Spv, VIW(&)} =0 (3.4.33)

We must stress that, since [ is one of the BV fields, st(p, I,,) varies from point to point in the
P P
BV phase space.)


http://andreimikhailov.com/math/bv/bosonic-string/LagrangianSubmanifold.html#%28part._section.Standard.Lagrangian.Submanifold%29
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Equivalence of V(®© and V() Egs. (3.4.29) and (3.4.30) imply that the integrated vertex
obtained from V() should be same as the one obtained from V(. We can check this explicitly:

< j'{ dzo‘bagfﬁ) < j'{ dzaba5n5> Vo = (3.4.34)

= (ﬁgdiv(ln) —~ %div([[f,n])) — (e = (3.4.35)
= div(Z[¢, n]) = R(&,n) (3.4.36)

We used the fact that, by the prescription of Section [.2.5] ¢ and 7 are lifted as isometries of a
small neighborhood of the insertion point; in particular, the Lie derivative £, commutes with
the operations [ and div.

3.4.5 Semirelative cohomology

In our paper we identify the space of states as the cohomology of the equivariant complex, as
defined in Section B.2.41

The usual definition is via the semirelative complex . In the case of bosonic string, the
cohomology is the same. Indeed, imposing the semirelative condition (by — by)V = 0 leads to
two effects:

o Effect 1. There are ghost number 2 cocycles, which should be thrown away because they
are not annihilated by by — by. Those are non-physical beta—deformationsﬂ

o Effect 2. The ghost-dilaton is Q(9C — 0C) — would be BRST exact in the naive BRST
complex, but Q(0C — dC') is not annihilated by by — by. Therefore, the ghost-dilaton is
actually nontrivial.

The equivariant complex gives the same result. For V' a nonphysical beta-deformation
(Effect 1), {a(&),V'} is not just nonzero, but actually not even {Sgy, }-exact. Therefore, we
cannot “equivariantize” such vertex in the sense of Section [3.2.4] Therefore, such states should
be thrown away also in our approach.

In case of Effect 2, we do admit OC — dC' (we present it as div(Ic)). Tt is a perfectly valid
cochain for us. However, our differential is not just Qgrsr, or {Spy, }. We actually have the
equivariant differential, which consists of two parts:

de = {Spv, _} +{al&), } (3.4.37)

{SBV, oC — oC } is ghost dilaton, but the second term is also nonzero:
{a(£),0C — 0C} = div(I¢€) (3.4.38)

Therefore, it is not the ghost-dilaton which is d¢-exact, but a sum of the ghost-dilaton and the
expression div(/£). In other words, in our approach the ghost-dilaton is not d-exact, but is
d-equivalent to div(I§). Both expressions, when passing to the base form, result in \/gR —
the dilaton zero-mode. This means that Effect 2 is also the same in our approach, as in the
semirelative approach.

"For pure spinor string, they are described in and references therein. The pure spinor case is similar.
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3.5 Vertex operators of pure spinor superstring

3.5.1 Conventions and notations for AdSs x S° string

We begin introducing some notation that will be useful through out the calculation. Our
notation is largely based on references .

Constant Grassmann parameters The target space is a supermanifold, a coset of the Lie
supergroup PSU(2,2|4). As usual , treating the supermanifold, we introduce a “pool” of
constant Grassmann parameters €,¢',€”,.... We can construct the “e, €', €, .. -points” of the
supermanifold PSU(2,2]4) as formal expressions of the form, for example exp (eu®t3 + € put})
where ;1 and p® are some spinors with real number components. In addition to these constant
Grassmann parameters, there are string worldsheet fields 0% and 6%; therefore we also have:
exp (0%t3) — another element of the supergroup.

Superconformal generators and Casimir conventions An element in the superconformal
algebra g = psu(2,2[4) will be represented according to its Z, grading,

b=t Sty Do, S
where

t0n €8, thEg, thnE€gy and t)€gs (3.5.1)

Latin letters are vector indices and greek letters are spinor indices. The bosonic generators are

boosts and rotations, given by t([)mn], and translations denoted 2. The fermionic generators

are the right supersymmetries, ¢, and the left supersymmetries, ¢3, with both spinors in the

d = 10 Majorana-Weyl representation. The vector space g, is the sum of the tangent vector
spaces of AdS; and S°; m € {0,...,9}.
For a finite-dimensional representation, the invariant bilinear form is given by the supertrace:

str (62,67) = Kmn,  Str (6285) = Kaa  and  str (642)) = Kaa (3.5.2)

where k.4 and k,,, are Casimir tensors.

Parametrization of AdS; x S° We will work with the conventions of . The coordinates
in AdS; x S® are given by (x, 9, 5) such that

r=a2"(z,2), 0=0%z2)8, 0=0%z2)t. (3.5.3)

[a'R)

Each of these coordinates lifts to an element in PSU(2,2|4) given by

~ 1 1~ 1
g(x,0,0) = exp <}_%0 + }—%9) exp (}—%x) (3.5.4)
where R is the AdS radius.

The pure spinor action The AdS5 x S° pure spinor string action is

R? 1 3 1
S =— / d2Z Stl‘(§<]22<]25 + ZLJIZJ&% + ngzjlg + wlZDg)\g + CU3ZD5/\1 -+ NOZNOZ) (355)
v
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with the covariant derivatives defined as
D:A3 = 0:A3 + [Joz, N3], DA = 0. A1 + [Joz, A1 (3.5.6a)

and the Lorentz currents for the ghosts given by

NOz = — {wlz, /\1} s Nog = — {W35, /\3} . (356]3)

The pure spinor action is built out of the right-invariant currents:

J=—dgg ' =—-0.99 'dz — 0:9 g 'dz, (3.5.7)

where g is given by Eq. . These currents decompose according to the conformal weight
and the Z, grading. We write J = Jy + J; + Jo + J3 to highlight the grading structure, and we
observe that under local Lorentz symmetry Jy transforms as a connection while J;, Jy and J3
transform in the adjoint representation.

3.5.2 Covariance of vertices

In this Section we will consider vertex operators of pure spinor superstring in AdSs x S°. We
will restrict ourselves with only those vertex operators which transform in finite-dimensionall
representations of g . We mainly consider the simplest example, namely the beta-
deformation, which transforms in @Tg)o. We also make some conjectures about deformations
transforming in other representations (“higher” vertices, Section |3.5.7)).

Let H denote some subspace in the space of deformations, closed as a representation of
g. We assume that the vertex is covariant. This means that exists a map from H to space
of vertices, commuting with the action of g. As was explained in ﬂ@, under these conditions
the all the vertex operators in the given representation H are completely specified by a single
A-dependent vector v in the dual of H:

U()\L,)\R) cH (358)

It should satisty:
p()\L + )\R)U =0 (359)

where p(Ar + Ag) is the action of the element A\¢t3 + A\4tL € g in H'. In this sense, the pure
spinor BRST operator acts on H':

Q= p()\g + )\1) (3510)

In this Section we will study the case when H is finite-dimensional. Then H' = H. We will
consider those H which can be constructed products of adjoint representations of g, the simplest
example being the beta-deformation @. Such spaces are naturally related to the cochain

complex of g, which we will now discuss.

3.5.3 Lie algebra cohomology complex

Let us consider the Lie algebra cohomology complex of g = psu(2,2[4) with coefficients in a

trivial representation. As a linear space, it is the direct sum € A"g’, where g’ is the dual space
i=0
of g. We use the fact that g has a supertrace, and identify g’ with g. The supertrace induces
the pairing
ANgo A'g — C (3.5.11)


http://andreimikhailov.com/math/deformations-of-AdS/finite-dimensional-vertex/index.html
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For example:

(x Ny, z Nw) = (3.5.12)
= STr(yz)STr(zw) — (—1)*STr(z2)STr(yw) (3.5.13)

The Lie superalgebra cohomology differential dr;. acts as follows:

dise : N'g — A"t'g (3.5.14)

(dyse, y Aw) *TED (2 [y w]) = STr(2[y, w]) (3.5.15)

3.5.4 Vertex operators corresponding to global symmetries
The following element:

M-\ eClg=g (3.5.16)
is a nontrivial cocycle of ). It corresponds to the unintegrated vertex operator:

VO = STr(t,g (A3 — A1)g) (3.5.17)

3.5.5 Interplay between Lie algebra cohomology and pure spinor co-
homology

The @Q-cocycle A3 — A1 is not a )-coboundary. However the Lie algebra differential applied to

it is a coboundary, if we allow denominator SW:
3N

drie(As — A1) = Q (K**5 A (1 — 2P y3)t}) (3.5.18)

The internal commutator of k**t3 A (1 — 2P43)t} is nonzero, but is Q-exact:

. 3 3
kLt (1 — 2P3)th} = §{>\3, A} = ZQ(Ag + A1) (3.5.19)

3.5.6 Beta-deformation and its generalizations
Definition

The definition of the unintegrated vertex for beta-deformation given in [32}[67] is:

V = BW,W, (3.5.20)
vhere W, = STr (tag " (A3 — M1)g) (3.5.21)

where B is a constant antisymmetric tensor, defined up to the equivalence relation:
B® ~ B® 4 f® A€ (3.5.22)
The beta-deformation transforms in the following the following representation of psu(2,2|4):

(8N g
g

where the factor over g accounts for the equivalence relation defined by the Eq. (3.5.22)).

(3.5.23)
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This vertex operator defined in Eq. (3.5.20) is not strictly speaking covariant, for the
following reason. When we change B to B® 4 f%_ A, it changes by a BRST exact expression:

V —V 4+ QW (3.5.24)
where W = STr (Ag~' (A5 + \)g) (3.5.25)

It is possible to define the vertex which is strictly covariant:
V=V —(B,g " ([ZX+MAEX+A])g) (3.5.26)

where
S = diag(1,1,1,1,—-1,—1,-1,—1) (3.5.27)
The difference between V and V' is a BRST-exact expression:
(B, g " (S, +MAE X4+ M])g) = (3.5.28)
vhere X = — (B, g ' (SA[S, A+ A1) g) (3.5.29)

The definition of X requires some work, because ¥ is not an element of g = psu(2, 2|4), because
STrY # 0. Therefore, in order to define X, we need to lift B from gAg to su(2,2[4) Asu(2,2[4).
There is no way to do it while preserving the psu(2,2|4)-invariance. Therefore, X does not
transform as Eq. . Still, Eq. holds, thus V' is BRST-equivalent to V.

Alternative definition

When B satisfies the “physicality” condition B® f,,¢ = 0, we can use the alternative vertex:
V= STr(/\g)\l)B“b<ta Aty g7 (kS A Pst)) g> (3.5.30)

This alternative beta-deformation vertex is “homogeneous”, in the sense that it has a definite
ghost number (1,1). It is linear in A3 and in Ay, because the pre-factor STr(As\;) cancels the
denominator in Pjys.

Conjecture The vertex operator V defined by Eq. ) is not BRST-exact. If this is the
case, then V is proportional to the beta-deformation vertex of Eq. 1) We leave the proof
of this conjecture, and the computation of the proportionality coefficient, for future work.

3.5.7 Conjectures about higher finite-dimensional vertices
Recurrent construction of vertices

Eq. (3.5.30) calls for generalization for higher finite-dimensional vertices . Let us consider
the bicomplex:

dtot - Q + dLie (3531)
Eq. (3.5.18)) shows that:
QU2 = — drietn (3.5.32)
where v; = )\3 — >\1 (3533)
vy =12 A (1 —2P3)t} (3.5.34)

Notice that the ghost number of v, is 2 — n.
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Conjecture:

1. Exist w3, vy, ... such that:

dioy Y _v; =0 (3.5.35)
j=1

2. For j > 2: (STr(AsA1))’ vy is a polynomial in A3 and ), and is a covariant ghost number
2 vertex for the deformation corresponding to [ d*ztrZ**

3. For 7 > 2: (ST1r()\3/\1))j+1 Ug;y1 is a polynomial in A3 and Ay, and is a covariant ghost
number 3 vertex, also corresponding to [ d*ztrZ?*7 as explained in [62].

We leave the verification of these conjectures for future work.

Infinitesimal deformations of worldsheet BV Master Action

We will now describe another recurrent construction. As explained in , the pure spinor
superstring in AdSs x S° is quasiisomorphic to the theory with the following Master Action:

Spy = / ST (J; A (1 — 2P31)Js) (3.5.36)

This is the integral over the worldsheet of the 2-form B = STr (J; A (1 — 2P3;)J3) which satisfies
the property:

LoB = dA (3.5.37)

where A = STY()\3J1 — )\1J3) = Str (()\5 — )\1)J) (3538)

It is natural to conjecture that a vertex operator will correspond to an infinitesimal deforma-
tion of the action defined by Eq. (3.5.36)):

ASpy = / (B, T A ) (3.5.39)

Here (3 is a rational function of A with values in Hom (H,g A g), where H is the space of
deformations. The BRST invariance of the deformed action implies:

QB = duieax (3.5.40)

Suppose that STr(A3A1)5 is a polynomial in A. Then Eq. (3.5.40) implies that STr(A3A1)f5
defines a Q)-closed equivariant vertex for H ® (g A g)o. We conjecture that this vertex is
nontrivial (i.e. not BRST exact), although it may be BRST exact on a proper subspace L C

H® (g Ag)o. That means that, given a covariant vertex transforming in the representation H,

we can build a new covariant vertex on the space of the larger spin representation H = w.

This gives a recurrent procedure for producing covariant vertices. We leave verification of these
conjectures for future work.

3.6 OPE of b-ghost with beta-deformation vertex

3.6.1 The b-ghost
The b-ghost satisfies:

QLbzz = T227
Qszz =0
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where T, is the holomorphic stress-energy tensor. The bss is defined by the same formula with
@1, exchanged with Qg and T, replaced with 7%;. The solutions of these equations are given

by B1B:
) _ o str (A [J2.8, i) +lstr(P wiaJs) (3.6.3)
Ly = < (/\3)\1) 5 13W1zJ3z e

and
_ str (Ag [Joz2, Jsz]) | 1
bzg _ - t P 2J 3 364
+ str (AsA1) - 2S r (PaiwszJiz) ( )

where P13 and P3; are|some projectors|. These projectors are needed because the pure spinor
momenta wy, and ws; are defined up to gauge transformations of the form:

6uW3Z = [u27 )\1] ) and 5uw12 = [u27 >\3] ) (365)
for both u, and us in gs. Therefore, the projectors are constructed to satisfy

P135uw12 =0 and Pgl(suw;gz =0. (366)

Explicit formulas for P13 and P3; as rational functions of the pure spinor variables can be found

in [59).

It is an open question to prove that the expressions str (Piswi,Js.) and str(PsjwssJ;z) are
well-defined in the quantum theory.

Lemma implies that b given by Eqs. (3.6.3) and (3.6.4) coincides with AW¥|; up to a

Q-closed expression. We have not verified this explicitly.

OPE between b-ghost and global vertex With these definitions, the OPE between the
b-ghost and unintegrated global symmetry becomes to 1-loop order:

(e o) viaoe ™) = ((§ 55 sebte) - § 55 2 ) Vi)
<(7{ 2mi zebe(2 7{— Zebzz) V[€l(0) Si>- (3.6.7)

We will calculate all Feynman diagrams considering the pure spinor action and the b-ghost as
a power series in the AdS radius. For the parametrization , the expansion of the action
can be found in reference . In the above equation S; represents all contributions of order
1/R or greater.

3.6.2 General considerations

At the leading order in o/, we should have:
1
bzzWa = ;(jaz + Qlaz) (368)
1
bzzW, = — E(jaz + Qlaz) (3.6.9)

where [,., l,; are some operators, and j,.dz + j,sdZz is the global charge density; our definition
of the charge density is such that:

1
(27’(’ fjazdz + ]azdz> Wb - fabCWc (3610)
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Notice:
1
J:aWo = - faWe+ ... (3.6.11)
2z
1
JzaWo = — = faWe+ ... (3.6.12)
2z
(where ... can include log z but not z~*) Therefore:

(bo — EO)V = f(dZZbZZ — dzzb55> V =

= BPf, W, +Q {Bab ( 7{ za> Wb] (3.6.13)

One is tempted to say that Eq. (3.6.13) implies that V is annihilated by by — by, in cohomol-
ogy, once B satisfies the physicality condition B®f,,¢ = 0. However, notice that the expres-
sion fu,°W, is anyway Q-exact (and even g-covariantly Q-exact) since we allow denominator

1 i
SUSTEVW see Sectlon

3.6.3 Explicit computation

The operator (by — by)V is a sum of two terms: the term with the ghost number (1,0) and the
term with the ghost number (0,1). The term with the ghost number (0, 1) is:

2

STrOwh) <{[>\1,t2m],A3} A2 M) — {[Xs, 12, ], A A2 Aﬂ)

— KPS M} AL (3.6.14)

and the term with the ghost number (1,0) is equal, with the minus sign, to the same expression
with A3 <> Ay and exchanged dotted and undotted indices. Transform:
2

- m{[/\s,ﬁm], A AR, A

_ —ﬂ{[x DT LA A
T STr(AgAy) UV e A

9,58

_ ISV 3
- STr()\lAg) {[)\37 {Ab tﬁ}STL]’ )\1} A t,@
2670y 3
= — m{[{)‘“tﬂ}sm’ Asl, A} At
= RPN A (3.6.15)

where we used the explicit form of the pure spinor projector P3; that can be found in [59].
Thus we arrive at:

2

ST A Foml Ask Al ] = Qn (w6 ) (3.6.16)
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Adding the “mirror” term with the ghost number (1,0), we arrive at:

(bo - l_)()) <Babg(ta VAN tb)g_l s ()\3 - )\1) VAN (/\3 - /\1)> = QCI) (3617)
where:
o = <Babg(taAtb)g*1, (3.6.18)
2[t2 0 M A [ Al + 2[82,, Al A 6 As] BB A t1>
Str(AsAp) FTT8
Up to Q-exact terms, we can also take:
o = <Babg(tamb)g*1, (3.6.19)
Str()\g)\l) A s

3.6.4 Discussion

In this Section we will compare our proposed Eq. (3.2.50):

/ U = / d*z (b-1b-, VO + \/gR®) (3.6.20)
b

where ® is given by Eq. (3.6.18) (3.6.21)

with the standard approach to the beta-deformation [32]. The most obvious observation is that
the “dilaton superfield” ® of Eq. contains pure spinors (while the “standard” dilaton
superfield, obviously, does not). Therefore, they are certainly not the same. We will now
explain that there are two reasons for the difference.

First reason: b_,b_;V( is different from the standard integrated vertex on flat
worldsheet. The standard integrated vertex on flat worldsheet is :

B, A jy (3.6.22)

In our approach here, it is the b_;b_1V(© of Eq. (3.6.20). This is not equal to B®j, A jp, but
differs from it by a (Q-exact expression, which we have not explicitly computedﬂ

B™j, A jy = dz Adzb_1b VO + QX (3.6.23)

Notice that the BRST operator is only nilpotent on-shell:

oS 0

Therefore, the QX on the RHS of Eq. (3.6.23)) deforms the BRST operator:

Q—Q+ <8_Xi + (1 o 3)> (3625)

awl awg

This leads to the change in the BRST anomaly, and, by the mechanism of Eqs. (3.3.3)), (3.3.4)),
to the change of the Fradkin-Tseytlin term.

8since we have not explicitly computed b_1b_,V(©)
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When we modify the unintegrated vertex:
VO o VO = yO L Q© (3.6.26)
The change in P, i.e. o — ®, should satisfy:
QP — ®) = (by — by) QW (3.6.27)

Under the assumption that (Lo — Lo)W©® = 0 this can be solved by taking:

® = — (by — by)W©® (3.6.28)

Suppose that we were able to find such W that VO g polynomial in pure spinors. Then, the
curvature coupling also changes, according to Eq. (3.6.2§)),

Second reason: we have not required the vanishing of B*f,,¢. Infact, ® of Eq. (3.6.19)
can be presented as:

2[R AR
_ ab 1 m m
® =B <X[ab]+<g(ta/\tb)g , STInN > (3.6.29)

where X4 is defined in Eq. (3.7.3). Since QX4 is proportional to fu°, the term B® X, can
be dropped when B has zero internal commutator, i.e. B%f,;,¢ = 0. In that case, we have just:

2 ML A t%’n> (3.6.30)

b = Bab
<g(ta A tb)g ) Str()\3>\1>

We see that imposing the condition B f,,¢ = 0 “considerably simplifies” the expression for the
dilaton superfield. But still the resulting expression is a rational function of \’s.

3.6.5 Computation.

The free field propagators can be read from :

(x™(z, 2)x"(0)> = —/imfI log |2|? (3.6.31)
(0% (2, 2)0%(0)) = =k log | 2|? (3.6.32)
(0%(2,2)02(0)) = =k log | 2|2 . (3.6.33)

The propagator Aw can be characterized by saying that for any A%(\) such that AaF;”B)\ﬁ =0
(i.e. tangent to the pure spinor cone):

(As (A(z,2)) w(z, 2) NPy = =271 (3.6.34)

Current Vertex

Let us focus, for the moment, on contractions that take only one V in V' A'V; that is, we are
going to compute the OPE of (by —by) with €(A3 — A1). The contributions we are interested are
represented in the diagrams below:
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StI"(G/\l[JQE,Jl]) — Stl‘((i/\lwflﬁz,aé])

g_lg(A?) - Al)g - [Ia [97 €()\3 - )\1)]]

Figure 3.1: Disconnected contractions for the OPE between b,, and V]

StI'(EPlgleg) — —str(ePlgwlﬁé?)
/

X

g 'e(hs = A)g = —[0.éx]

Figure 3.2: Disconnected contractions for the OPE between b,, and V]

Contribution from the diagram of Fig.

1 mn .o

T str(ah) Rf(z f w)? str (6)‘1 [tfnZ,tiD [@ {th. e - )\1)}} : (3.6.35)

Let us use the identity:

— K™Y sty (al (2%, tg}) {ti, {3, e(Xs — Al)}} = (3.6.36)
_ [tg, (2.5 M) e (g — m}]

_ [t,a, (2.5, ex] ,ag]} . (3.6.37)

Contribution from the diagram of Fig.

rOARPP 1,3 1 kDP 3 ~p 41
mstr <€P13t~ta> {tﬁ’ Etd} = m |:Etﬁ, €P13t6:| . (3638)
Sum of first and second diagram
_ /R 3 kB8 [
EbUV[E] = +MH |:ti, HtfnZ, 6)\1} ,E/\g}:| — 2_R4 [EPlgtg,Etz] . (3639)

Anti-holomorphic b-ghost A similar computation gives for the anti-holomorphic term:
BB
2Rt

4
oV = + LT [tg, (225, exy] ,al}}

éP 5t t3]. 6.4
StrOah) P st ot (3.6.40)

Contribution of by — by We can simplify the total contrubution of the diagrams of Figures

B and B2l to



o4

str(ex, [0xX, H0])

o0 oz

o
[0, (A3 — A1)

Figure 3.3: Vertex contribution b,, and V[e].

( mn [ﬁ t2 ¥, M), e/\3]_ — KM [ti, {[tfnz,ag],&l}b

e(bo — bo

§ 6)\1,6)\3 —g|:€/\3,€)\1 )

(\]

(el o] ffem ) [2a )
(el o] e o]

= —g |:€/\1, E)\3:| + g |:€)\3, g)\1:| =0 (3641)

In this derivation, we used the identities

W (2, (2,8 0] = S ({22, 2) e\l

m)n

= e\ (3.6.42a)

together with

23 e |, |12, E)s _ 3 €A, ENg (3.6.42b)
o) o] -l
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and

{t?nz,dg], {ti,@\lu = ;{eAg,al} (3.6.42c)

Contribution of the diagram of Figure There only remains the contractions that get
contributions from the interaction vertices:

1 1 A . ) _
SRl str(/\3>\1)8tr (e)\l [8952, 89}) (2) [9, €(A\3 — )\1)} (w) /d w str ((995 [(9, 89]) (3.6.43)
We use: X X X
2 _T
/d T~ 2T (3.6.44)
and obtain:
st (e |25 15] ) {th, €0 = M) st (82 {8, 13}) (3.6.45)

We temporarily do not write the factor of 1/4R%str(\3\;) since it only observes the calculation.
This answer can be rewritten as

_ HmnﬂBﬂﬂaAstr (5)\1 |:t$nE7 t;]) {t}i, g(/\g - Al)}str (ti {t3’ti}> =

— IimnliBBliaAStl" ( €A, 12, ) {th. e — M) }str ([t2 t%]ti) =

— kst (e, 2,501} ) [[t2 3, (Ag_m] _

— g™ [ti, [6)\1, t?nEH ,E()\g — /\1) =

R[22, eM]] e — M) | = g [e)\l, E(\s — )\1)] —

5 5
2 [exl,ag} _2 [6)\3,@\1] (3.6.46)
2 2

to give the contribution — with all factors restored —

5 97" [6)\3, g>\1]9
8R*  str(AsA;)

Notice that in deriving equation (3.6.46)) we used identity (3.6.42a)). To summarize, the contri-
bution of Figure is given by equation ([3.6.47)).

(3.6.47)
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Anti-holormophic b-ghost One can compute the contribution of b;;(2) in the same way

and it gives

5 g [6)\37 g)\1}9

eboV [€](w) = 8R*  str(AzAq)

Final answer Combining the three diagrams we arrive at

€ (bo — 50) V[g] = 0

for the current vertex.

Beta-deformation Vertex.

(3.6.48)

(3.6.49)

In order to finish the calculation, we only have to compute contractions where the b-ghost hits

both V in V' A V. These mixed contractions are given by the diagrams below:

V/\Vj %[9. E()\g - )\1)} A [17,6(/\3 - )\1”

1 str(e')\l[ﬁmﬁ,@@])
bZZ:} R Str(>\3>\1)

Figure 3.4: Disconnected contractions for the OPE between b,, and V[¢] A V]e].

—%str(E’Plgwlzaﬁ)

X

20, = M) Al - \)

Figure 3.5: Disconnected contractions for the OPE between b, and V[¢] A V]e].

We stress that there are no contributions from the action up to 1-loop.

Contribution of diagram in figure The diagram in figure 3.4] contributes as

. ) ~
_KAamm"mstr (6/)\1 [tan, ti]) {ti, 6()\3 — /\1)} N [ti, 6()\3 - )\1)]

And this result can be simplified to:

(3.6.50)
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. %m (2 [2.511]) {208 — A} A [, 0 — M) =

B %SU ([, 1, 50t8) {22, 60 = M)} A [E2,e(hs — A)] =

_ % :[e')\l, t2,3], E(N\s — Al)} A [tfl, e(Ag — )\1)} —

_ % :{e,)\l, 5], ag] A [ti, ey — )\1)} (3.6.51)

Contribution of diagram in figure Likewise, we obtain:

1 ~
ﬁstr (e'Plgwu@G) [97 g(/\g — /\1)] A 6()\3 — )\1) =

1 .
— E/QO‘ASU" (€/P13wlzti) {t}i? g()\g — )\1)} A\ 6()\3 — )\1) =

U i _
it AkBstr (G/Plgtéti> {th,e(hs — M)} At =

1 o
—HBﬁ E/Plgt}g, g()\g — )\1):| A €t3 =

1 sl .
—HBB €/P13t27€)\3:| A Et% =

LT
— kB8 e’t}y E)\g} AN Et% (3652)
Holormorphic 6-ghost The sum of these contribution gives us:

2kMm

Elb()V[g] VAN V[E] = —m

{[e’Al,tan],éAg} A {ti,E()\g — Al)}

1 ¢ .
+ ﬁﬁBﬁ |:€’t}3.)7 e/\3:| VAN Et% (3653)

Anti-holomorphic b-ghost The same can be done for the anti-holomorphic b-ghost, and we
obtain
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2k™Mm

G,Bo‘/[g] A V[E] = —m

[[e’Ag,tan] ,é/\l} A {ti,E(/\g - Al)}

I 3
+ }—%mB {gtg, eh} A etg (3.6.54)

Final answer

The sum of all contributions from the current and the mixed contractions gives us the final
answer:

¢ (bo = bo) VIT A Vel =

_2/€mn

m([[e%,t?ﬂx},&g] A [ti,e(Ag — Al)} — |:[€/)\3,t72nz] ,éAl] A |:ti,E(A3 — Al)])

1 . .
+ i <m35 {e'tg, €)\3} A et — k7P {e’t%, é)\l} A eté) (3.6.55)

3.7 BRST triviality of f,,“W.

The projectors P were used in to prove that BRST triviality of the ghost number 1 vertices
corresponding to the global symmetries. Once we allow denominators, the BRST cohomology
is zero anyway. But in highly supersymmetric backgrounds, it is meaningful to ask to which
extent resolving Q¢ = v preserves the global supersymmetries. The ghost number 1 vertex for
a global symmetry ¢, € psu(2,2|4) is:

Wa(e) = (g7 (eAs — eA1)g), (3.7.1)
for a Grassmann odd constant parameterﬂ e. It was proven in that
faWe = —eQXap = —€QX[qp) where (3.7.2)
Xap = Str(gtag™" ((gtsg™ )3+ 2(gtsg™ )2+ 3(gtsg™ )1 — 4P13(gtsg ')1))

where f¢, are the structure constants of psu(2,2|4). This implies that f,,°W, is Q-exact in a way
preserving symmetries. However, W, cannot be obtained from f,,°W, preserving symmetries.
(Notice that f,;,°f$® = 0.) In this sense, f,;,°W, is BRST-exact but W, is not.

Notice that:

Xy = <ta/\tb, g*lAg> (3.7.3)
where A = —2k**t3 A (1 —2P3)t, = (3.7.4)
: koot A {, th ) As)
— Qkaat3 A tl 8 « sy Y& JSTL » _
o @ + STI')\1>\3
. ALEETA R, ]
= 2k%3 Al 8[ L m m? 3.7.5
o Mt STrA N (3.7.5)

9As usual in supergeometry, we use a sufficiently large pool of constant fermionic parameters
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In other words, in the covariant complex (see Section Eq. (3.5.10)):
Q (kadti A\ (1 - 2P13)t(11) - dLie(Ag - )\1) (376)

where dr;. is defined in Section [3.5.3

Relation to the “minimalistic action” We will now explain that Eq. (3.7.6] is equivalent
to the BV Master Equation for the minimalistic action of . Let us consider the scalar
product, as defined in Section [3.5.3] with J3 A Jy:

<J3 ATy, KOS A (1 — 2P13)tg> - (3.7.7)

= STr (J1t2) k* A STr (t4(1 — 2P31)J5) = (3.7.8)
=STr (J1 A (1 —2P3;)J3) (3.7.9)
6Q<J3 ATy, KOS A (1 — 2P13)t;> — (3.7.10)

— <[6A1, D) AJy+ Js Aleds, Ja] , k4483 A (1 — 2P13)tg> +
+ (= eDods A Jy = Js AeDody , K8 A (1 - 2Pg)tl)
The first line of the RHS of Eq. equals to (in the sense of Section , Eq. ):
- <J2 ANJi+J3 Ay, €Q (K**3 A (1 —2Pq3)t}) > =
- <J2 ANJr+ T A do s die(eds — e)\l)> - (3.7.11)
- <[J2, T] + [, Jo] s €Xs — 6A1> — STr ([Js, Jo]eds — [Jo, Ji]e)
The second line of the RHS of Eq. is:
< — DMy A Jy — Jy A €Dk, KO3 A (1 — 2P13)t;> - (3.7.12)

- < —eDoAs A Ji — Js A €Dy 5 kA t;> —
=STr ((Do)\l)Jg — (D0>\3>J1) (3713)

The sum is a total derivative:

This shows that Eq. (3.5.36)) is )-invariant.

3.8 MATHEMATICA code

MATHEMATICA code for computations in AdSs x S° sigma-model is |available on GitHub!|



https://github.com/Henriquemfl/Pure-spinor-in-AdS5-Mathematica/tree/master
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Chapter 4

On the Spectrum and Spacetime
Supersymmetry of Heterotic Ambitwistor
String

4.1 Outline.

Sections [4.2 and [4.3] contain a mini review on the Ramond sector and the ambitwistor model.
Their main purpose is to set our notation and make our presentation self-contained. It doesn’t
contain anything new, and it can be skipped for those who already know the subject.

We start in section [4.4] where we use the standard BRST method to compute the equations
of motion of the Ramond sector for the heterotic system. These represent the fermionic degrees
of freedom of the theory, and our analysis shows that they also follow non-unitary equations
of motion. We write a gauge-invariant version of theory in terms of Fronsdal fields [68]. The
kinetic term of the fermionic ambitwistor string field theory action is also computed in section
4.5 Tt is expressed in terms of gauge-invariant objects and resembles Fronsdal’s free action
despite having more derivatives.

Finally, in section [4.6] we write the supersymmetry transformations of the system. In RNS
language, the supersymmetry operator is defined on-shell and thus gives the supersymmetry
transformations up to equations of motion. Then we prove the invariance of the action under
supersymmetry transformations.

4.2 Ramond sector, cocycles and Gamma matrices.

Spinor indices in 10 dimensions can be distinguished between chiral and anti-chiral. We denote
chiral indices by undotted greek letters, o, while anti-chiral indices are represented by dotted
greek letters, &. Both run from 1 to 16. Spinor indices are 5-dimensional vector representations
of u(5):

1
- — = + 4| and =g
-+ 4+ + 4

+ +
—- -

B (4.2.1)

+ o+

where an anti-chiral index, ¢, must have an even number of plus signs, and a chiral index,
£, must have an odd number of plus signs. Each of these combinations has 16 independent
components represented as 16 = 1 + 10 + 5.
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4.2.1 The Ramond Sector.
The Ramond sector of the Ambitwistor string is defined by the antiperiodic boundary conditions
of ™

"™ 2) = =" (2). (4.2.2)

We follow [69] and implement these boundary conditions via spin fields. That is, we have a
conformal primary S(z) that twists a periodic 1

P (24 (w— 2)e*™) S(z) = =™ (w) S(z). (4.2.3)

This implies that a state |a) created from the vacuum |0) via

o) = 5°(0)|0) (4.2.4)

should transform as a spacetime spinor. Notice that, due to the presence of S forcing ¢ to be

in the Ramond sector, this state must belong to an irreducible representation of the zero-mode
Clifford algebra of ¥™: {¢*, ¢y} = n™", which implies

migy - L may g
wO ’CY>— \/§F5 ‘6> (4.2.5)

4.2.2 Bosonization and cocycles.

Because S twists the boundary conditions of ¢, the system is not free and OPE’s are difficult
to compute. Bosonization is a technique that allows us to deal with free fields only. Bosonization
assigns for a pair of complex fermions one chiral boson, which means that we have to break
manifest so(10) invariance down to u(5).

Spin Fields. The bosonization of spin fields is given by

S(2) = exp (a : gb(z))ca (4.2.6)

where « is a chiral spinor index. The same expression is valid for anti-chiral spin fields by just
replacing « for &. The factor ¢, is a cocycle phase that guarantees the correct anticommutation
relations.

Cocycles. The anticommuting fermionic algebra is reproduced in the bosonic system via the
IBaker-Campbell-Hausdorft formulal

9 EO() D) F() f0(2) £0() _ _ kb(!) (9 (2) (4.2.7)
provided for |2’| = |z| we have
{¢(2’), qﬁ(z)] = +im  which implies ¢(2)¢(0) ~Inz (4.2.8)

Now, if we are given more than one pair of fermions, they won’t naturally anticommute because
[¢i, ¢;] = 0. This is corrected by the introduction of cocycles [70]:

e Order all bosons of the theory: ¢; where t =1,...  N;


https://en.wikipedia.org/wiki/Baker\T1\textendash Campbell\T1\textendash Hausdorff_formula
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e Then multiply each exponential by a factor (—)N1TTNi-1 where N, is the fermion number
operator:

dz — dz
N; = _f%zﬁﬂ/’z = %%a@ (4.2.9)

For example, if we consider two pairs of fermions, the bosonization becomes

Yy =%, Y =e (4.2.10)
with
vy = ()M = ()Y (1:211)
where now 1 and vy anticommute
e¢1e¢z(_)Nl — €¢>2€¢>1(_)N1 - e¢z(_)N1(_)fN1€¢1(_)N1 — —e¢2(—)Nle¢1 (4.2.12)
provided
[Ni, €n¢j] = néije”¢f. (4213)

Thus, for more than one pair of fermions, we need to introduce the cocycle phase factors:

ci = (=) (4.2.14)

Consider the vector

8¢ = (N1, Na, ..., N5) (4.2.15)

then the cocycle factor can be written as

Cie, = exp [Him(e; MOo)] (4.2.16)

where e; is 1 in the ith component and zero elsewhere, ( ) is a matrix inner product and M is
a lower triangular matrix with entries +1:

o 0 0 0 0 0
10 0 0 0 0
11 0 0 0 0
M= -1 1 -1 0 0 0
11 1 1 0 O

-1 -1 -1 -1 -1 0

The signs of M are arbitrary at this point, but they can be specified studying the charge
conjugation matrix [70].
The cocycle factors of spin fields, ¢, and ¢4, are given the following expressions:

Co = exp [im(aMO¢p)] and ¢4 = exp [im(&MOIp)] (4.2.17)
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Gamma Matrices. To motivate the construction of gamma matrices and show how cocycles

work, let us consider the OPE between ¢* and S®. Using expressions (4.3.4) and ([{.2.6) we
have to compute the OPE of e?(*)¢; with e**™¢,. Notice that ¢; will pass through e*® and
due to Baker-Campbell-Hausdorff we obtain an extra phase:

Ci6a¢ _ eiw(eﬂ\/]@qﬁ) eaqﬁ _ eiw(eiMoOeozd)Ci (4218)

so that our OPE becomes
e?i ey Wiy~ (2 — w)e eirleiMa) gleita)d (4.2.19)
Notice that we obtain a branch-cut if « - e; = a; = —1/2 which in turn implies that the sum

e; + a must be an anti-chiral index 3. Therefore given

e? ey e Wey ~ (2 — w) 712 e”<eiMa>ef3¢cB, (4.2.20)
we see that it becomes natural to define the gamma matrices as
(THE =20 (e; + B — &) emlesMe) (4.2.21a)
and
()8 = V25 (ej +B— a) gimleiMa) (4.2.21D)
giving us the final result:
| 1 TSP (w)
"(2)S(wW) ~ —= /. 4.2.22
V(RS W) ~ S (1222)
The explicit representation is written in terms of the Pauli-matrices via
T4 = (i)Y V2 (%0) T o7 (@1)° (4.2.23)
and one can convert between u(5) and covariant so(10) using
rto L (T +17%) (4.2.24a)
V2
and
- i
% =—(I'-I""% 4.2.24b
(1) (4221

Notice that in our construction, the notation ~+* is reserved for the symmetric gamma matrices:

Yy =THAC, (4.2.25a)

,Y;Lozﬁ — I“Z@Cﬁﬁ (4225b)

as it is common in the literature. In above equations, C' denotes the charge conjugation matrix
which is the next topic in our discussion.
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Charge Conjugation Matrix. We define C' as

0P = 5 (ﬁ + 6) ¢imPMb (4.2.262)

and
OB = _§ (5 + ﬁ) (imhMB (4.2.26b)

and with these convetions we have C*# = CPP. These expressions can be motivated by studying
the OPE of S and S”.

It is also common to use only undotted indices when describing spinors in 10d. Charge
matrices act as metrics on the spinor space and can remove all dotted indices. For us all
spinors are defined with upper indices and then anti-chiral ones are written as

Sp = Cy35°. (4.2.27)

This notation is used together with the symmetric gamma representation.

4.3 Ambitwistor Action and Ramond Sector.

We first review the ambitwistor model. Its main purpose is to set the basic definitions and
notation.
The heterotic ambitwistor model is defined by the free action

S = % / d?z <pm5:cm + U™ 4+ bde + b + SOy + Sj> (4.3.1)

where p,, is a worldsheet holomorphic one-form and z™ is an holomorphic coordinate function.
The b and c fields together with 5 and v are the Faddeev-Poppov ghosts of superconformal
worldsheet symmetry. Particular to the heterotic model, we have the current action Sj; its

specific form is irrelevant for us, we only require the existence of a current j* with conformal
weight 1 that satisfies the OPE

5 peie(w)
Gow?  (z—w)

() (w) ~ (4.3.2)
being 4 the structure constants of the Lie algebra in question. The Ambitwistor model differs
from the superstring due to the presence of the band ¢ ghosts related to the gauge symmetries
of the light-cone constrain: p? = 0. These ghosts have conformal weights 2 and —1 respectively
and both are worldsheet fermions.

Our Majorana spinors )™ will be rewritten in the complex linear combinations:

) 1 ) )
+3 2i—1 24
=7 4.3.3
vH = = (0 ) (43.3)
for i = 1,...,5 that are subsequently bosonized to
V¥ (2) = exp ( + ¢i(z)> Cee; (4.3.4)

with ¢’s satisfying

¢i(2)¢;(w) ~ +6ijIn(z — w) (4.3.5)
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The (3,7) system is bosonized with extra fermions (&,7) [69], both primaries of conformal
weight 0 and 1 respectively:

B =0te %c,, and y=nec,. (4.3.6)

This choice follows the conventions of and where we have introduced the cocycles c,
and c.,. During the computation of cohomology, cocycle factors are important and must be
taken into account. The definition of cocycles depends on the way we order the different ¢;.
For us the chiral bosons corresponding to ¢ are ordered from 1 to 5 while the boson coming
from the (v system is labeled as 6. The sixth boson has OPE:

o6(2)p6(w) ~ —In(z —w) (4.3.7)
while (&, 7n) form a free system:

1

(2 = w)

§(z)n(w) ~ (4.3.8)

The symmetries of this action are encoded in the following BRST charge:

d 1 -
Q - f 2_7; C<Tmatter + TBE + Tﬂfy + TJ) + bcdc + 55}32 + med}m - ’72() (439)
provided
5
m 1 ~071 7~

Tmater = —Pmd2™ + 2 > 0604, Ty, = éob — 200¢, (4.3.10a)

i=1
1
Tpy = —58%8(;56 — 0% —nd€, and ~* = none2%. (4.3.10b)

These are all the stress-energy tensors for (z, p,,, ¥™), (8,7) and (13, ¢). We only require for
the stress tensor of the current sector, Tj, that the following OPE is satisfied:

G 2T;(w) N IT;(w)

T Ty0) ~ g+ o+

(4.3.11)

Then, provided the central charge of the current system is 16, it is possible to show that Q? = 0
when the spacetime is 10-dimensional.

4.4 Cohomology.

In this section, we compute the ghost number 2 BRST cohomology of the Ambitwistor string
for states in the Ramond sector. The cohomology of the Neveu-Schwartz sector has already
been computed in [72].

We start by writing the most general vertex operator and the most general gauge parameter.
Once all equations of motion and gauge transformations are obtained, we solve the algebraic
gauge conditions to obtain a set of independent field equations.
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4.4.1 Vertex operators.

States are defined by picture number —1/2 and ghost number 2 BRST cohomology. We define
ghost and picture numbers by the expressions:

dz < dz
Nghost = - % 9 (bC + bc + 577) and Npicture — % % (§U - a¢6) . (441)

v

Vertex Operator. The most general ghost number 2 and picture number —1/2 vertex op-
erator that is annihilated by by is given by the sum,
V=V, +V_, (4.4.2)

where V, and V_ are the GSO(+) and GSO(—) combinations. The GSO(+) vertex operator
is given by:

Vy = cnSae¢/2Aa + énSaed’/QBa + ¢8S%e™ 292 C s + CESd€_¢/2meZ-7 + céSde_¢/2jaEg
+ c0ESYe P 4 + iS40 ™2 Gy + ctrhn (1hS) e PH™ + cc0cOES e 3, + ¢0eSe 2],
(4.4.3)

while V_ is obtained from V, by changing the chirality of our spinors. Notice that the vertices
™" S and S have not been written. In bosonized form, these combinations are related to
1) S via field redefinitions ; there is no need to worry about them.

Gauge vertex. As for the gauge transformations, we parametrize them by ghost number 1
and picture number —1/2 vertex operators:

A = cS% %2\, + &S% /2, + cé@ﬁSae’?’d’ﬁ/Qua. (4.4.4)
Both expressions (4.4.2) and (4.4.4]) constitute the basic field content of BRST cohomology.

4.4.2 Equations of motion and gauge symmetries.

For clarity we consider only the GSO(+) sector. The GSO(—) is obtained by replacing chiral
indices for anti-chiral and vice-versa. We present the equations of motion organized by ghost
number as they were obtained from the OPE of @) and V.. We also write the worldsheet
operator that multiplies the resulting equation of motion.

e For (2c, 1) multiplying (S%e~%/2¢c¢0%c):

1 3 9
+50mDE + Fa = 2 G — Z(rm)QHmﬁ =0 (4.4.5)

e For (Oc, 1&) multiplying (S%e3?s/2¢non):

?

V2

e For (1c,0&) multiplying (S%e3?s/2cnon):

+J5 — —(["™)20,,Bs = 0 (4.4.6)



e For (1c,2¢)

l

(T™)50, A5 — Ga +Fg =0

I~

— multiplying (S®e~%/2cé0ép,, ):

1 i
——OD™ + CT — 0"Fg — —
V2

5 (I35 =0

— multiplying (S%e~#/2c;0%¢):

1
" C — Js =0
2

— multiplying (S%e%5/2cé0é0x™):

1
_§|:|Cmd - am']d =0

— multiplying (S%e=%/2c00¢s):

1 1 ;
+70Ga+ 3Ja+ -5

"™)20, 15 =0

— multiplying (ccocy™(¥S)%):

+

e For 1c, 1c

1
2

OH™ — — 0,1 +

1 i ) 1 _
44/2 m(rm)g(éﬂ)g + m(Fm)gJB =0

— multiplying (S®e?/2cndé):

1

1
——0OA, + B, + 21, —
2 V2

(™30, F5 =0

— multiplying (S®e?/2cénda™):

~9,Ba ")29,C,.s =0

+E(

— multiplying (S%e?/2cénp,y,):

_amAa + L

V2

1

2v/2

; i8 i
I'"AG, - —H™ — —
( )a B « \/5

)%9,D7 +
(I")a0n D 7
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(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)

(4.4.13)

(4.4.14)

Hj, (I™)5(I™)2 =0 (4.4.15)
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— multiplying (S®e®s/2ccon):

7 ; 1 ; 81
—B,+3I,+—=IT™FC ,— ——=(1T")20,,Gs+ —=0"Hup + —= T2 (T™).0,H,pn = 0
\/5( ) mp3 2\/5( ) B \/— \/5( ) ( )ﬁ (44 16)
— multiplying (S®e®/2céndos):
1B + 41, + — (Fm)ﬁc - l(rm)ﬁ'a G;+ RUPRS + L(F”)B(rm)fa H,, =0
2 \/5 \/5 a~”m>=g \/§ am \/5 o gUntlrm

(4.4.17

~—

— multiplying (nccy™(1S)%e?/?):

1. i |1 1 T i |1 1 .
+ %(Fm)dBa + ﬁ [ZamGﬁ - m(rm)a($G>T] - E chm - M(Fm)a(¢)7']

1
~ (T2 0" Hp, +

9

1
— (T30, Hg, — (T™)50,Hpg,, —

(Fm)g(rl)g(F”)g&Hm] 0
(4.4.18)

Sl =

These 14 equations of motion are all invariant under the following 10 gauge transformations:

i
SA, = +E(F )a0mAs + 24t (4.4.19a)
Z’ .
_ m\ B .
6B, = +E(F ) 0mw; (4.4.19b)
1
oL, = §D,ua (4.4.19¢)
SH™ = I"™)5ws + ——=0nfta 4.4.19d
WL )aws 4\/5 Ho = S 9\/—( )o@ 5 ( )
6Coma = Omwa (4.4.19¢)
i
SDT = O g — —= (I™ 4.4.19f
NG (I™) ks ( )
SEZ =0 (4.4.19g)
1
OF; = — 0N+ ws (4.4.19h)
0G4 = ws — % (T™)2 Otz (4.4.19i)
1
5Jd = —§Dwd (4419J)

We determined the basic content of ghost number 2 BRST cohomology; all equations of
motion have been written between (4.4.5) and (4.4.18). This set is highly redundant, and the
next step is to use (4.4.19) to stablish the independent field equations.
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4.4.3 Gauge-fixing and independent equations of motion.

In order to find the independent set of equations of motion, we begin by fixing algebraic gauge
conditions and solving auxiliary field equations. Let us gauge-fix A and F to zero using the
parameters p and w, that is, we choose p = —A and w = —F so that the residual gauge
parameters ;' and w’ must satisfy:

i

Qﬂ(rm)éamAB =0, (4.4.20)

o, +
and

;1
Wi = 50 = 0. (4.4.21)

After this gauge fixing, the following auxiliary field conditions can be imposed:

G =0, (4.4.22a)
B, — —2L,, (4.4.22D)
cr — +iopy + () (4.4.22¢)
"= +OD7 4+ — o 4.22¢
« 2 « \/§
1 1
Jo=—-08,D7 — — (§D)s, 4.4.22d
: L (4.4220)
H — Lg’Dr— L (pr, gyiDn (4.4.22¢)
@ 8 8 18 x 8 nrlaTp o

At this point it is already clear that there only remains two independent fields given by DI
and I,. Moreover, the only remaining gauge parameter is A\. We leave the gluino field EZ out
of the discussion since its equation of motion is already the Dirac equation and it has no gauge
transformations.

Finally, the following set of 3 equations,

l 1.5 1 :
—0™, =0( -9, D" — —(I")?9,D" 4.4.23
20D + (Da1,) 0" DY = 0 (4.4.23b)
OB =0 (4.4.23¢)
with the corresponding gauge transformations:
DT = 39 A, — S fa,
D R—— Y (4.4.24D)
42

defines the spectrum of the theory.
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Gauge-invariant description. Consider the following field redefinitions:
1
di = D — =(I")3 P (4.4.25a)
14

o=+
V2

such that our gauge transformations are mapped to

1
I, + ED]Z)Q (4.4.25b)

0d}' = 0™\, and 6i, = 0. (4.4.26)

The gauge-invariant object is then naturally defined as:

and = amdno'z - andmd (4427)

which allows us to write the equations of motion in the following form:

Opniy = OF, ., (4.4.28a)
and
(F)a =0 (4.4.28b)
where
Fro = (T)F png = (#d,, — Opd) . (4.4.29)

In the formulation of free higher-spin theories F,, is called Fronsdal tensor , it is the analog
of the Ricci curvature in spin 2 formulation.

This section started with the most general ghost number 2 picture —1/2 vertex operator.
Then we obtained all equations of motion from the BRST method together with all gauge
transformations parametrized by ghost number 1 picture —1/2 vertex operators. By fixing
some of this gauge freedom, we have found a independent set of equations of motion that can
be parametrized by Fronsdal fields. The next natural step is to write the spacetime action that
gives the dynamics of this system.

4.5 Action

The kinetic term of the ambitwistor string field theory was defined in [72]:

S[V] = (I o V=32(0) e QV 2 (0)), (4.5.1)

where VV=1/2 is the vertex operator ({#.4.2)) introduced in the previous section, an element of the
small Hilbert space that is also constrained to satisty LoV = by = 0. The RNS string has
one additional feature: the picture number. It is necessary to saturate the background charge
of supermoduli space to —2, and that is why we need a string field with picture —1/2, V~=1/2,
together with a string field with picture —3/2, V~=3/2, We define picture raising, Z, and picture
lowering, Y, by the following expressions:

7 = cOE + e®p ™ — 3(e*%5nb) — e2#° b, (4.5.2)

Y (2) = é0ge 2%, (4.5.3)
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so that we can obtain V32 from V2 via
1 dw
V32(2) = —j{ Y (w)V12(2). 4.5.4
&= 5 f Y V) (454

Using the auxiliary gauge-fixing conditions imposed on the previous section, we obtain

V2 = 4 G060 0P B,, — c20E0ES e 200 Cpy — cEOTOES e 5%/ 2, DI
_ 1
— cLOR0ES e PR, — cROCOE Y (1S) €PN H — S ce0EOED e S e TN,
(4.5.5)

The composition I o V=32 is the BPZ conjugate of the picture —3/2 field with [ = —1/z. We

should be careful when computing the conformal transformation o V=3/2 because V=2 is not
primary. From the OPE with the stress-energy tensor
12 3ca,—e/2 .~ [ 1 m 3 9
T(Z)V (O) ~ 2z °5% 9%/ %ce iade + Fd - éGd — ZH& —+ .. (456)
we obtain a cubic pole contribution that changes the finite conformal transformation to
1 I"(2)
ToV =|V(I — 1 : 4.5.7
o = [v) + s #0)| 457

where # is cubic pole coefficient. Even after the auxiliary conditions are imposed we still have
non-primary contributions that must be taken into account.

To calculate the free action, we fix the normalization (cOcd?*cé0cd*ce=2%6) = 4, then the
correlation function (4.5.1)) gives the following gauge-invariant action:

1 1 1 1

Sp = _/dl% [5(1’"“5 (Fm - 5(%)&51#3) + §(F)“ia — 5T (E@E)} : (4.5.8)

In this expression we used the symmetric gamma matrices (7(%,7%5) defined in section .

When using these symmetric matrices, the charge conjugation is used to eliminate all dotted

indices; different chiralities are just represented by upper and lower indices, i.e. (C*dT =
dmoz).

We have written a non-unitary action that gives the equations of motion obtained in (4.4.28]).

It closely resembles the gauge-invariant formulation of spin 3/2, the difference being the presence

of more derivatives. Let us proceed and study the supersymmetry of this non-unitary system.

4.6 Supersymmetry.

Let us define the supersymmetry generator as

1
Q.= — j[dz Se96/2 (4.6.1)

21

Notice that it carries picture, which means that supersymmetry algebra only closes on-shell.
We need the picture 1/2 supersymmetric charge:

271

1 ~
Q=5 f dz [@'pmm)aﬁsﬂe%” +bnSae* 2| (4.6.2)
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to obtain {Qal/ 2 Ql/ 2} = 27,5Pm- In practice, supersymmetry transformations are written up
to equations of motion. One also needs to choose a GSO sector to have well-defined supersym-
metry transformations, otherwise there will be branch cuts. Given the generator (4.6.1]), we
need use the GSO(+) vertex operator.

4.6.1 Supersymmetry transformations of NS and R sectors.

The Neveu-Schwarz vertex operator in picture —1 was written in [72]:

Vﬁé:e_w{(GEWan]) DU (G + Bl ) 050" G000 4§07 A+

+ e % ccoP™ AW + dpge e ccAD Y™ + Ot 20 9% iccSW + neSY) + dge 26 9%cccS?
+ ... (4.6.3)

where ... depends only on the previous fields. In \\ the fields (BT(,{T)L,AQ),A(A‘),S@),S@))
of were gauged to zero. If we choose to keep this gauge, we must observe that in
general supersymmetry does not preserve a given gauge condition. Therefore when calculating
supersymmetry transformations, we have to choose the gauge parameter A:

0cVys = [CQ V2 Ve 1/21 + {QBRST,All, (4.6.4)

which is a vertex operator of ghost number 1 and picture —1, to ensure that d.(B ,71,)1, A,(f{), AW,
SM S all give zero. In the transformations below, the Contrlbutlons of H are due to the
gauge-fixing of these auxiliary fields:

0cGia = 2(CmDy) (4.6.5)
0GR, = %(CV(nCm)) - %a(nCHm) (4.6.6)
B, = ~4(CnCo) — 5 (O H) (46.7)
ScCoanp = 20p(CnDot) — 2 Ho) + 6(C e H) (163)

and using the field redefinitions of :

1 1
Boun = G 4 —nnhl, = 10 + Gm?  and B® =B,. (4.6.9)

4

we arrive at

5<hmn = QC’Y(mdn) (4.6.10)

St = Ci (4.6.11)

5CCmnp = _S(nyt[mnFtp]) - S(CV[anp]) (4612)
) 1

6Can = _QD(C'Y[mdn}) - (C’anl) + E(Cymn(“)pr) (4613)

i
6 Ah = 5(CmE"). (4.6.14)
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The term ((Ymn0,FP) is zero if we use the equation of motion F = 0, and so could not have
been obtained from the supersymmetry generator (4.6.1). This term was added by hand in
order to make the action invariant under supersymmetry.

For the Ramond sector the same can be done if we use instead the picture +1/2 supersym-
metry generator (4.6.2):

1
5cd® = +(7"50)*Oshmr — 2(7"C)*Crnp + g(ymnpsg)onps (4.6.15)
Ocia = 2(CD)at = (V" Oty + 3(7"" )0y (4.6.16)
1
OB = =2 Fn(y™"C)" (4.6.17)

At this point, we have obtain the supersymmetry transformations of both NS and R system
for the independent fields of the theory in equations (4.6.10) to (4.6.9). Let us proceed and
check that indeed the total GSO(+) action is supersymmetric invariant.

4.6.2 Supersymmetry invariance of the action.

The action that describes the Neveu-Schwarz sector is

1 1 1
Syg = — / 4% lghmnm (Rmn - §nmnR> — iR+ T (F™ Fru)+
1 1
~C™" Hypyy + 5C™™ (DCmnp - §a[parcmn}r)] (4.6.18)

where H,,,, is the field strength for B,,, and R,,, is the Ricci tensor. This expression is
equivalent to the action written in equation (4.13) of if we shift ¢ by ¢t + ¢t + R2. The
equations of motion derived from (4.6.18]) are

ORpn — OmOut =0, R=0, OChup— Hump =0,

0"Crpnp =0, and 0, "™ =0. (4.6.19)
Now, the Ramond sector is described by equation (4.5.8]):
10 1 mo 1 B 1 o i
Sp=— [ d"x §d O( Fra — 5(%)aﬁ]@“ + 5(]?‘) i, — §Tr EJE )| . (4.6.20)
from which we obtain the following set of equations of motion — (4.4.28]):

8mioc = DFma ; Fa =0 and iaaﬁEaﬂ =0. (4621)

From now on, we leave the Yang-Mills system out of the discussion because its super-
symmetry transformations and action are already standard. For later use, let us write the
supersymmetry transformation for all field strengths:



)

OcRimn = (COmFn)) + (CYmO"Fryp) (4.6.22a)
L1
2
6cFr, = =207 C) " Rinrsn + 4(7C)* OpnCrjrp — g(a[nym]rpsg)a(]rps (4.6.22¢)
1

0cFma = +2(1"QaRon = 204" C)a@iConnp + 5 (Climnps)ad C™*
+4(7"0)a0"Crnp — (YmpsC)a0nC™* (4.6.22d)
SF7 = 2¢°R — 6(7"¢)?0™ Cropm (4.6.22¢)

4.6.3 Supersymmetry for (h,,,,t,i,d)

Let us consider the system:

1 1
S —_ / dx (—hmnm (Rmn — —nmnR) —tR
2 2
1

+Lamn (Fm - gmmw) " §(F)”ia> (46.23)

such that the

Sng variation is given by

S (—tR) = —C%i, R — 2t¢“0,F?

1 1 1

and the

Sk variation is given by

5c (30 (B = 30t ) ) = 2470 (Do = 3G R)

1
= =2(¢y"d™)O <Rmn — §nmnR>

5( (%(F)ala) = (“Ri, + (F)aaaﬁcﬂt
= ™I R + 2C*(9,F?)t + 0(...)

where we have used ([1.6.22) and (PF() = 2(¢9,FP). It is clear that the sum of all terms cancels
and invariance of this system is stablished.
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4.6.4 Supersymmetry for (H,.,;, Crnp, dS,, 1a)

It remains for consideration the following system:

1 1
S=-— / d%( = O™ Hypy + 5O (Dcmnp - 5a[pavcm,ﬂ)

- %dm“D (Fma = %(vm)a5F5> + l(F)‘“ia> (4.6.24)

In order to check supersymmetric invariance we have to gather all independent combination of
gamma matrices (™, ™", 4P AMIPP ~AMIPAT) - So consider the

Sy variation:

5((_Cmanmnp) =+3 [(C%mnFtp) + (CVanp)] H™® — 3(C7anp)DOmnp
1 mn, 1 mn,
- 3(<7mn1)8p0 P— §(Can8pr)8pC P4 8( .. )

1 1
5( |:§Cmnp (Dcmnp - §a[par0mn}r):| =—3 [(C'ytmnFtp) + (CF)/anp)} ey

45 QU By) + (Y] .07 4 0(.)

and the

Sp variation:

1. 1
54 (§F1> =3 npg)ﬁa Crpmis — QF (V" ()a Hpnp + F (v man)aDCmnp
=43 C’ynmi)aanmp—f-

1
- |:6 (CrymnptsFts)DOmnp - (C’thnFtp)DCmnp - (C’yanp)DCmnp:|

1
+ |:§(C’7mnptSFts)Hmnp - 3(C7tmnFtp)Hmnp - 3(€’yanp)Hmnp:|

(ol = (e fomre)o -

= +2(F, """ )OCnp — 4(F™ P )OC mmp+
1

— 5 Fu) " 0 s = (B9 )0t

1
- [6 (C’YmnptsFts)DCmnp - (C’ytmnFtp)DCmnp - (nyanp)DCmnp‘|

Recall that the v™"P9" is symmetric and 7" is antisymmetric under the spinor indices. Gath-
ering all independent terms we confirm the system is supersymmetric.



Bibliography

[1]

2]

13l

[4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Juan Martin Maldacena. The Large N limit of superconformal field theories and super-
gravity. Int. J. Theor. Phys., 38:1113-1133, 1999. |Adv. Theor. Math. Phys.2,231(1998)].

S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators
from noncritical string theory. Phys. Lett., B428:105-114, 1998.

Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253-291,
1998.

Michael R. Douglas, Luca Mazzucato, and Shlomo S. Razamat. Holographic dual of free
field theory. Phys. Rev., D83:071701, 2011.

Nathan Berkovits. Super Poincare covariant quantization of the superstring. JHEP, 04:018,
2000.

David J. Gross. High-Energy Symmetries of String Theory. Phys. Rev. Lett., 60:1229,
1988.

David J. Gross and Paul F. Mende. The High-Energy Behavior of String Scattering Am-
plitudes. Phys. Lett., B197:129-134, 1987.

Edward Witten. Spacetime Reconstruction. Talk at the 60th birthday of Professor J.H.
Schwarz, http://quark.caltech.edu/jhs60/program.html, 2001.

Steven Weinberg. Photons and Gravitons in s Matrix Theory: Derivation of Charge Con-
servation and Equality of Gravitational and Inertial Mass. Phys. Rev., 135:B1049-B1056,
1964.

Sidney R. Coleman and J. Mandula. All Possible Symmetries of the S Matrix. Phys. Rev.,
159:1251-1256, 1967.

G. Velo and D. Zwanziger. Noncausality and other defects of interaction lagrangians for
particles with spin one and higher. Phys. Rev., 188:2218-2222, 1969.

Steven Weinberg and Edward Witten. Limits on Massless Particles. Phys. Lett., 96B:59-62,
1980.

Massimo Porrati, Rakibur Rahman, and Augusto Sagnotti. String Theory and The Velo-
Zwanziger Problem. Nucl. Phys., B846:250-282, 2011.

M. Taronna. Higher-Spin Interactions: four-point functions and beyond. JHEP, 04:029,
2012.

R. Roiban and A. A. Tseytlin. On four-point interactions in massless higher spin theory
in flat space. JHEP, 04:139, 2017.

7



78

[16] E. S. Fradkin and Mikhail A. Vasiliev. Cubic Interaction in Extended Theories of Massless
Higher Spin Fields. Nucl. Phys., B291:141-171, 1987.

[17] E. S. Fradkin and Mikhail A. Vasiliev. On the Gravitational Interaction of Massless Higher
Spin Fields. Phys. Lett., B189:89-95, 1987.

[18] Mikhail A. Vasiliev. Consistent equation for interacting gauge fields of all spins in (341)-
dimensions. Phys. Lett., B243:378-382, 1990.

[19] Arkady Y. Segal. Conformal higher spin theory. Nucl. Phys., B664:59-130, 2003.

[20] Nicolas Boulanger, Pan Kessel, E. D. Skvortsov, and Massimo Taronna. Higher spin
interactions in four-dimensions: Vasiliev versus Fronsdal. J. Phys., A49(9):095402, 2016.

[21] Pan Kessel, Gustavo Lucena Goémez, Evgeny Skvortsov, and Massimo Taronna. Higher
Spins and Matter Interacting in Dimension Three. JHEP, 11:104, 2015.

[22] Massimo Taronna. A note on field redefinitions and higher-spin equations. J. Phys.,
A50(7):075401, 2017.

[23] Glenn Barnich and Marc Henneaux. Consistent couplings between fields with a gauge
freedom and deformations of the master equation. Phys. Lett., B311:123—-129, 1993.

[24] Charlotte Sleight and Massimo Taronna. Higher-Spin Gauge Theories and Bulk Locality.
Phys. Rev. Lett., 121(17):171604, 2018.

[25] Charlotte Sleight and Massimo Taronna. Feynman rules for higher-spin gauge fields on
AdS4.,. JHEP, 01:060, 2018.

[26] A. A. Sharapov and E. D. Skvortsov. Formal higher-spin theories and Kontse-
vich—Shoikhet—Tsygan formality. Nucl. Phys., B921:538-584, 2017.

[27] Christian Fronsdal. Massless Fields with Integer Spin. Phys. Rev., D18:3624, 1978.

[28] J. Fang and C. Fronsdal. Massless Fields with Half Integral Spin. Phys. Rev., D18:3630,
1978.

[29] Michael G. Eastwood, R. Penrose, and R. O. Wells. Cohomology and Massless Fields.
Commun. Math. Phys., 78:305-351, 1981.

[30] Glenn Barnich, Xavier Bekaert, and Maxim Grigoriev. Notes on conformal invariance of
gauge fields. J. Phys., A48(50):505402, 2015.

[31] Nathan Berkovits. Simplifying and Extending the AdS(5) x S**5 Pure Spinor Formalism.
JHEP, 09:051, 2009.

[32] Oscar A. Bedoya, L.Ibiapina Bevilaqua, Andrei Mikhailov, and Victor O. Rivelles. Notes on
beta-deformations of the pure spinor superstring in AdS(5) x S(5). Nucl. Phys., B848:155—
215, 2011.

[33] Nathan Berkovits. Half-BPS vertex operators of the AdS;x S® superstring. JHEP, 07:084,
2019.

[34] Nathan Berkovits and Luca Mazzucato. Taming the b antighost with Ramond-Ramond
flux. JHEP, 11:019, 2010.

[35] Edward Witten. Superstring Perturbation Theory Revisited. 2012.



79

[36] Andrei Mikhailov and Albert Schwarz. Families of gauge conditions in BV formalism.
JHEP, 07:063, 2017.

[37] Andrei Mikhailov. Integration over families of Lagrangian submanifolds in BV formalism.
Nucl. Phys., B928:107-159, 2018.

[38] Andrei Mikhailov. Supersymmetric null-surfaces. JHEP, 09:068, 2004.

[39] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles in Arbitrary
Dimensions. Phys. Rev. Lett., 113(17):171601, 2014.

[40] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering equations and Kawai-Lewellen-
Tye orthogonality. Phys. Rev., D90(6):065001, 2014.

reddy Cachazo, Song He, an 18 Ye Yuan. Finstein-Yang-Mills Scattering Amplitudes
41| Freddy Cach S H d Ellis Ye Y Ei in-Y; Mills S ing Amplitud
From Scattering Equations. JHEP, 01:121, 2015.

[42] Freddy Cachazo, Song He, and Ellis Ye Yuan. Scattering of Massless Particles: Scalars,
Gluons and Gravitons. JHEP, 07:033, 2014.

[43] Lionel Mason and David Skinner. Ambitwistor strings and the scattering equations. JHEP,
07:048, 2014.

[44] Tim Adamo, Eduardo Casali, and David Skinner. Ambitwistor strings and the scattering
equations at one loop. JHEP, 04:104, 2014.

[45] Yvonne Geyer and Ricardo Monteiro. Gluons and gravitons at one loop from ambitwistor
strings. JHEP, 03:068, 2018.

[46] E. S. Fradkin and Mikhail A. Vasiliev. Cubic Interaction in Extended Theories of Massless
Higher Spin Fields. Nucl. Phys., B291:141-171, 1987.

[47] Kirill Krasnov. Self-Dual Gravity. Class. Quant. Grav., 34(9):095001, 2017.
[48] Maxim Grigoriev. Presymplectic structures and intrinsic Lagrangians. 2016.

[49] J. Wess and J. Bagger. Supersymmetry and supergravity. Princeton University Press,
Princeton, NJ, USA, 1992.

[50] Roger Penrose and Wolfgang Rindler. Spinors and Space-Time vol 1 and 2. Cambridge
Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK, 2011.

[51] S. A. Huggett and K. P. Tod. AN INTRODUCTION TO TWISTOR THEORY. 1986.

[52] Y Choquet-Bruhat and C DeWitt-Morette. Analysis, manifolds and physics; Rev. and
enlarged ed. North-Holland, Amsterdam, 2000.

[53] M. A. Vasiliev. On Conformal, SL(4,R) and Sp(8,R) Symmetries of 4d Massless Fields.
Nucl. Phys., B793:469-526, 2008.

[54] E. S. Fradkin and Arkady A. Tseytlin. CONFORMAL SUPERGRAVITY. Phys. Rept.,
119:233-362, 1985.

[55] Arkady Y. Segal. Conformal higher spin theory. Nucl. Phys., B664:59-130, 2003.

[56] Nathan Berkovits and Paul S. Howe. Ten-dimensional supergravity constraints from the
pure spinor formalism for the superstring. Nucl. Phys., B635:75-105, 2002.



80

[57] Andrei Mikhailov. Cornering the unphysical vertex. JHEP, 082, 2012.

[58] S. Donaldson. Riemann Surfaces. Oxford Graduate Texts in Mathematics. OUP Oxford,
2011.

[59] Andrei Mikhailov. A minimalistic pure spinor sigma-model in AdS. 2017.
[60] Anton Alekseev and Pavol Severa. Equivariant cohomology and current algebras. 2010.

[61] Alexander Belopolsky and Barton Zwiebach. Who changes the string coupling? Nucl.
Phys., B472:109-138, 1996.

[62] Andrei Mikhailov. Vertex operators of ghost number three in Type IIB supergravity. Nucl.
Phys., BO0T:509-541, 2016.

[63] Andrei Mikhailov and Sakura Schafer-Nameki. Perturbative study of the transfer matrix
on the string worldsheet in AdS(5) x S**5. Adv. Theor.Math. Phys., 15:913-972, 2011.

[64] A. S. Shvarts. On the Definition of Superspace. Theor. Math. Phys., 60:657-660, 1984.
[Teor. Mat. Fiz.60,37(1984)].

[65] Andrei Mikhailov. Finite dimensional vertex. JHEP, 1112:5, 2011.

[66] Andrei Mikhailov and Segundo P. Milian. A geometrical point of view on linearized beta-
deformations. 2017.

[67] Andrei Mikhailov.  Symmetries of massless vertex operators in AdS(5) x S**b.
Adv. Theor. Math. Phys., 15:1319-1372, 2011.

[68] J. Fang and C. Fronsdal. Massless Fields with Half Integral Spin. Phys. Rev., D18:3630,
1978.

[69] Daniel Friedan, Emil J. Martinec, and Stephen H. Shenker. Conformal Invariance, Super-
symmetry and String Theory. Nucl. Phys., B271:93-165, 1986.

[70] V. Alan Kostelecky, Olaf Lechtenfeld, Wolfgang Lerche, Stuart Samuel, and Satoshi Wata-
mura. Conformal Techniques, Bosonization and Tree Level String Amplitudes. Nucl. Phys.,
B288:173-232, 1987.

[71] 1. G. Koh, W. Troost, and Antoine Van Proeyen. Covariant Higher Spin Vertex Operators
in the Ramond Sector. Nucl. Phys., B292:201-221, 1987.

[72] Nathan Berkovits and Matheus Lize. Field theory actions for ambitwistor string and
superstring. JHEP, 09:097, 2018.



