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Abstract: For the building emergency evacuation path planning problem, existing algorithms suffer

from low convergence efficiency and the problem of getting trapped in local optima. The Bloch

Spherical Quantum Genetic Algorithm (BQGA) based on the least-squares principle for single-robot

path planning and Bloch Spherical Quantum Bee Colony Algorithm (QABC) for multi-robots path

planning are studied. Firstly, the characteristics of three-dimensional path planning are analyzed,

and a linear decreasing inertia weighting approach is used to balance the global search ability of

chromosomes and accelerate the search performance of the algorithm. Then, the application algorithm

can generate a clear motion trajectory in the raster map. Thirdly, the least squares approach is used

to fit the results, thus obtaining a progressive path. Finally, multi-robots path planning approaches

based on QABC are discussed, respectively. The experimental results show that BQGA and QABC

do not need to have a priori knowledge of the map, and they have strong reliability and practicality

and can effectively avoid local optimum. In terms of convergence speed, BQGA improved by 3.39%

and 2.41%, respectively, while QABC improved by 13.31% and 17.87%, respectively. They are more

effective in sparse paths.

Keywords: Bloch sphere; path planning; Quantum Optimization Algorithm; quantum genetic

algorithm; quantum bee colony algorithm

1. Introduction

In recent years, path planning has been a hot problem in the research field, such as in
robot path planning and evacuation path planning [1,2]. Commonly used path planning
algorithms include the ant colony algorithm [1], artificial potential field algorithm [3],
genetic algorithm [4], and A* algorithm [5]. The core requirement of path planning is to
plan the optimal and safest path from the starting point to the target one according to the
optimization characteristics, such as shortest distance, shortest time, and lowest energy
consumption [6–8]. With the development of emerging technologies, methods based on
deep learning and quantum optimization algorithms have also been applied to the field of
path planning [9–12].

Sabzekar et al. employed a deep deterministic policy gradient algorithm to model
continuous environments, concurrently proposing an innovative inner product reward
function, thereby enhancing the objective tracking and obstacle avoidance capabilities of
unmanned aerial vehicles [9]. Liu et al. delved into the study of deep Q-learning models,
greedy table-based Q-learning models, and online optimization frameworks for addressing
the shortest path problem between two points and the issue of random obstacles [10]. The
Quantum Optimization Algorithm (QOA) is a brand new evolutionary algorithm proposed
by Ajit Narayanan and Mark Moore, who combined quantum computing theory into
the classical genetic algorithm in 1996 [13]. Built upon quantum principles, the quantum
optimization algorithm utilizes quantum bit encoding and updates populations through
quantum gates to pursue the global optimal solution. Contrasting with traditional evo-
lutionary algorithms, it boasts features like smaller population size, faster computation
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speed, and robust global optimality detection. The Quantum Genetic Algorithm (QGA)
amalgamates the merits of quantum computing and genetic algorithms, finding applica-
tions in various domains such as function optimization, combinatorial optimization, image
processing, data mining, and production scheduling. Consequently, it offers significant
advantages and exhibits robust vitality, holding substantial theoretical value and promising
application prospects for QOA.

Lewandowski et al. utilized Bloch spherical descriptions to model systems during
the design of quantum reversible logic. Subsequently, Bloch spherical coordinates have
frequently been employed in quantum logic operations and algorithms [14,15]. A QGA for
asymptotic Bloch spherical search was proposed by Sheng Li, and applied to the extreme
value optimization problem of multivariate functions [16]. Compared with the traditional
optimization algorithm for solving complex nonlinear problems, the quantum genetic
algorithm is generated under the guiding idea of de-coarsening, inheriting the strengths
of the genetic algorithm while also mitigating some of the drawbacks, such as oversized
populations and long convergence time, to some extent [17]. It achieves better optimization
results than traditional algorithms.

With the rapid development of the social economy, building designs are becoming
more complex and taller, resulting in more intricate internal passage distributions. How-
ever, most current algorithm research focuses on solving problems in two-dimensional
building environments, which presents numerous limitations when dealing with the rel-
atively complex three-dimensional space of modern buildings [18,19]. Hamacher et al.
characterized the indoor path planning problem as a dynamic net-work flow problem,
applying dictionary optimization algorithms to minimize evacuation time [20]. Pursals
improved evacuation and inverse evacuation functions, proposing a novel evacuation for-
mula to address evacuation problems [21]. Lujak, building upon shortest path indoor path
planning, considering the unpredictability of hazardous conditions, introduced evacuation
betweenness centrality and evacuation centrality, thereby enhancing the safety of evacua-
tion routes [22]. Hong et al. addressed path planning problems in 3D scene-constrained
spaces, presenting a three-stage heuristic approach for constructing route networks based
on minimum weighted set covering to enhance the utilization efficiency of escape exits [23].

The path planning problem for the interior of a building is a typical non-deterministic
polynomial problem. That is, it is the problem of shortest path usage time formed by a
fixed number of branch nodes with constant start and end nodes [24]. In the whole path
planning process, it is important to control the direction and distance of the path [25]. In the
Bloch Sphere Quantum Genetic Algorithm (BQGA), the entire Bloch sphere is the search
range for the optimal solution, especially since there is no clear direction for the search,
so the blindness and uncertainty of the search greatly reduce the search efficiency and
optimality. At the same time, the size of ∆θ and ∆ϕ in this algorithm usually needs to
be determined according to the specific problem. If they take too small a value, they will
make the optimization process slow and thus reduce efficiency. If they take too large a
value, they will make the algorithm cross the global optimal solution or fall into premature
convergence [26].

This paper focuses on researching evacuation path planning for large-scale buildings.
To address the issues of local optima and low efficiency in path planning inside buildings,
a Bloch spherical coordinate algorithm incorporating least squares theory and the Bloch
Spherical Quantum Bee Colony Algorithm (QABC) are employed. Firstly, the characteristics
of three-dimensional path planning are analyzed, and a linear decreasing inertia weighting
approach is used to balance the global search ability of chromosomes and accelerate the
search performance of the algorithm. Then, the application algorithm can generate a
clear motion trajectory in the raster map. Thirdly, the least squares is used to fit the
results, thus obtaining a progressive path. Finally, multi-robots path planning approaches
based on QABC are discussed, respectively. The performance is verified by comparing
with Ant Colony Algorithm (ACA), Genetic Algorithm (GA) and Artificial Bee Colony
Algorithm (ABA).
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2. Bloch Sphere Quantum Genetic Algorithm

The quantum genetic algorithm is a probabilistic optimization algorithm based on
quantum computing principles, aiming to search for the optimal solution through the
evolution and mutation operations of chromosome genes. Its advantages include a small
population size, fast convergence, and robust global search capabilities. However, the
quantum genetic algorithm requires measuring the state of quantum bits to obtain binary
solutions, involving highly random and blind probabilistic operations. Comparing with the
traditional QGA, an improved one uses Bloch spherical coordinates for encoding. It extends
the search on each dimension to a three-dimensional search in space, with each chromosome
occupying three positions in space, to increase the randomness and diversity of quantum
chromosomes, and it constructs a new update strategy for quantum chromosomes by
incorporating the coordinate transformation of the least square principle. Meanwhile, a
selection formula for the variation angle is constructed to improve the search capability.

2.1. Quantum Chromosome Model

In quantum computing, the smallest unit of information is the quantum bit [27,28].
On the three-dimensional Bloch sphere, a qubit can be represented as (1).

|ϕ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩, (1)

where cos θ
2 and eiϕ sin θ

2 are complex numbers, which are called the probability amplitudes

of the corresponding states of a qubit, and
∣
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∣
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∣
eiϕ sin θ

2

∣

∣

∣

2
represent the probability

that the qubit is in |0⟩ or |1⟩, respectively [29,30]. The normalization condition is satisfied
as (2).
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On the Bloch sphere, a point p can be determined by two angles θ and ϕ, as shown in
Figure 1.
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Figure 1. Bloch spherical representation of quantum bits.

On the three-dimensional Bloch sphere, any qubit corresponds to a point on the sphere,
after which the qubit can be expressed in Bloch spherical coordinates as:

|ϕ⟩ = [cos ϕ sin θ sin ϕ sin θ cos θ]T, (3)

In the BQGA process, the Bloch spherical coordinate encoding of the qubit is directly
adopted. Considering the three coordinates of the qubit as three juxtaposed genes, each
chromosome contains three juxtaposed gene chains, and each gene chain represents an
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optimal solution [31]. Therefore, let Pi be the i chromosome in the population, and the
BQGA encoding method is shown as (4).

Pi =

∣

∣

∣

∣

∣

∣

cos ϕi1 sin θi1

sin ϕi1 sin θi1

cos θi1

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

cos ϕin sin θin

sin ϕin sin θin

cos θin

∣

∣

∣

∣

∣

∣

, (4)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, i = 1, 2, · · · , m.j = 1, 2, · · · n.

2.2. Solution Space Transformation and Coordinate Fitting

Then, apply solution space transformation and coordinate fitting to the chromosomes
encoded with Bloch coordinates. Each chromosome within the population comprises 3n
Bloch coordinates, representing n quantum bits [32]. Through linear transformation, these
3n coordinates can be mapped onto the solution space of the optimization problem, with
each coordinate corresponding to an optimization variable within the solution space [33,34].

Let the corresponding solution space transformation formula of the j quantum bit on
the i chromosome pi be















X
j
ix = 1

2

[

bj

(

1 + xij

)

+ aj

(

1 − xij

)]

X
j
iy = 1

2

[

bj

(

1 + yij

)

+ aj

(

1 − yij

)]

X
j
iz =

1
2

[

bj

(

1 + zij

)

+ aj

(

1 − zij

)]

, (5)

where i = 1, 2, · · · , m and j = 1, 2, · · · n. m is the population size and n is the number
of qubits.

Least squares space fitting is introduced to seek the best function, which is matched
for the data. The least squares criterion is a tool that has been widely used in disciplines
such as uncertainty prediction [35]. Least-squares fitting is used in fitting linear equations
to points in three-dimensional space, and can provide insight into the trend of variation
between points, predict future changes in points, and ultimately enable the optimal solution
to be determined.

Assuming that there are n data points that need to be fitted, (x1, y1, z1), · · · , (xi, yi, zi).
It can be obtained from the two plane equations as shown in (6).

Ax + By + Cz + D = 0(C ̸= 0), (6)

Then it can be deduced that

z = − A

C
x − B

C
y − D

C
, (7)

marked as a = − A
C , b = − B

C , c = −D
C , and z = ax + by + c.

The standard equation is

x − x0

X
=

y − y0

Y
=

z − z0

Z
, (8)

So the spatial straight line can be obtained from the intersection of the two planes
above, and it van be fitted to fit the equations of these two planes. The least-squares
principle is as follows.

M =
n

∑
i−1

(axi + byi + c − z)2, (9)
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The partial derivative of (9) can be obtained, that is, the model parameters obtained
by the least squares fitting.







∑ 2(axi + byi + c − z)xi = 0

∑ 2(axi + byi + c − z)yi = 0

∑ 2(axi + byi + c − z) = 0
, (10)

Formula (10) can be derived.







a ∑ xi
2 + b ∑ xiyi + c ∑ xi = ∑ xizi

a ∑ xiyi + b ∑ yi
2 + c ∑ yi = ∑ yizi

a ∑ xi + b ∑ yi + n = ∑ zi

, (11)





∑ xi
2 ∑ xiyi ∑ xi

∑ xiyi ∑ yi
2 ∑ yi

∑ xi ∑ yi n









a
b
c



 =





∑ xizi

∑ yizi

∑ zi



, (12)

Solutions include















a = n ∑ xizi−∑ xi ∑ zi
n ∑ xi

2−∑ xi ∑ xi
− b

n ∑ xiyi−∑ yi ∑ xi

n ∑ xi
2−∑ xi ∑ xi

b =
(n ∑ yizi−∑ yi ∑ zi)(n ∑ xi

2−∑ xi ∑ xi)−(n ∑ xizi−∑ xi ∑ zi)(n ∑ xiyi−∑ xi ∑ yi)

(n ∑ yi
2−∑ yi ∑ yi)(n ∑ xi

2−∑ xi ∑ xi)−(n ∑ xiyi−∑ xi ∑ yi)(n ∑ xiyi−∑ xi ∑ yi)

c = ∑ zi−a ∑ xi−b ∑ yi
n

, (13)

We can substitute the obtained result into (7) to get:

z =
(

n ∑ xizi−∑ xi ∑ zi
n ∑ xi

2−∑ xi ∑ xi
− b

n ∑ xiyi−∑ yi ∑ xi

n ∑ xi
2−∑ xi ∑ xi

)

x

+
(n ∑ yizi−∑ yi ∑ zi)(n ∑ xi

2−∑ xi ∑ xi)−(n ∑ xizi−∑ xi ∑ zi)(n ∑ xiyi−∑ xi ∑ yi)

(n ∑ yi
2−∑ yi ∑ yi)(n ∑ xi

2−∑ xi ∑ xi)−(n ∑ xiyi−∑ xi ∑ yi)(n ∑ xiyi−∑ xi ∑ yi)
y

+∑ zi−a ∑ xi−b ∑ yi
n

, (14)

Finally, the variation formula of the solution space coordinate fitting that integrates
the least squares principle can be obtained.

2.3. Updating and Vaviation of Quantum Chromosome

Thirdly, perform update and variation operations on the quantum chromosomes.
In BQGA, the update of quantum chromosomes is generally realized by changing the
quantum phase through a revolving gate [36]. The purpose of qubit phase rotation is to
use each chromosome in the current population to approximate the contemporary optimal
chromosome. In the process of approximation, it is possible to produce better contemporary
optimal chromosomes, such that the population continues to evolve. The form of updating
will be:

U =





cos ∆ϕ cos ∆θ − sin ∆ϕ cos ∆θ sin ∆θ cos(ϕ + ∆ϕ)
sin ∆ϕ cos ∆θ cos ∆ϕ cos ∆θ sin ∆θ sin(ϕ + ∆ϕ)

− sin ∆θ − tan
( ϕ

2

)

sin ∆θ cos ∆θ



, (15)

The corresponding rules are proposed for the direction of the turning angle, which
can be judged by the algebraic operation of the three-qubit coordinates of the current
chromosome and the optimal chromosome. Based on the optimization theory and the
changing trend of the objective function, this paper proposes a progressive Bloch spherical
search method, which makes the search process more convenient, and avoids the blindness
of the search.

As the number of iterations increases, ∆θ and ∆ϕ should gradually become stable.
Therefore, ∆θ and ∆ϕ can be calculated asymptotically on the Bloch sphere with the least-
squares theory. The sizes of the two corners of the quantum revolving doors can be derived
by fitting the calculation to prevent the algorithm from losing the global optimal solution
or prematurely converging.
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Assuming that the algorithm evolves to the t generation, the updated formulas of
∆θi+1 and ∆ϕi+1 would be:

∆θi+1 = (i + 1)
∑

t
i=1 i∆θi − ∑

t
i=1 ∆θi

∑
t
i=1 i2 − ∑

t
i=1 i

, (16)

∆ϕi+1 = (i + 1)
∑

t
i=1 i∆ϕi − ∑

t
i=1 ∆ϕi

∑
t
i=1 i2 − ∑

t
i=1 i

, (17)

where i = 0, 1, 2, · · · , t.
Since the purpose of mutation operation is to achieve population diversity and break

through premature convergence, in BQGA, a quantum revolving gate is used to operate θ

and ϕ.

θ =
1

t

t

∑
i=1

θi, (18)

ϕ =
1

t

t

∑
i=1

ϕi, (19)

The quantum mutation operation seeks to change the state of the superposition of the
qubit states, so that the original tendency to collapse to the state “1/0” becomes the tendency
to collapse to the state “0/1”. At the same time, the variation of quantum chromosomes
helps to increase the diversity of the population and helps to avoid premature convergence.

2.4. Selection of Fitness Function

The selection of the fitness function directly affects the convergence speed of GA and
whether it can find the optimal solution. This is because the genetic algorithm does not
use external information in the evolutionary search, and it searches with the adaptation of
each individual of the population degree only based on the fitness function [37–39]. The
complexity of the fitness function is the main component of the complexity of GA, and
the design of the fitness function should be as simple as possible to minimize the time
complexity of the calculation. By establishing a mapping relationship between the objective
function of the optimization problem and the fitness of the individual, the optimization
of the objective function of the optimization problem can be realized in the process of
group evolution.

There are three gene chains for each chromosome, which correspond to three objective
function values. The chromosome should be represented by the best gene chain. Consid-
ering the size of the obstacle region and the distance between the starting point and the
target one, an adaptive individual initialization mechanism is proposed. By calculating the
Euclidean distance between the starting point and the target one, the fitness function can
be derived as

Fit(i) = sqrt(B1(1)− B2(1))2 + (B1(2)− B2(2))2 + (B1(3)− B2(3))2, (20)

The chromosome with the smallest fitness value in the population is selected as the
contemporary optimal chromosome, and the one with the smallest objective function value
among its three gene chains is the contemporary optimal chain. Bi (i = 1, 2, 3) represents
the position of each point, and the shortest distance or the fitness function is obtained
according to the shortest distance formula of the three-dimensional graph.

The quality of the chromosomes in the iterative process needs to be measured in order
to drive the chromosomes to keep approaching the best position in the whole region. The
main consideration of the metric fitness in three-dimension path planning in intelligent
construction is the shortest path. To make the planned paths shorter in time, a three-sample
method is used for interpolation, and the path length of the scatter is obtained by calculating
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the three samples after differencing the interpolated values. The adaptation value formula
is shown as (21).

Fitness =
K

∑
k=1

sqrt(xk+1 − xk)
2 + (yk+1 − yk)

2 + (zk+1 − zk)
2, (21)

where K represents the number of interpolations, and k represents the order of interpolation.
The total path length is obtained by summing the distances of all path segments. The smaller
the value is, the shorter the path is.

The inertial weight ω is an important parameter for the speed of chromosome memory
predecessors. In the early stage of the algorithm, for a larger search range, larger inertia
weights are needed to improve the performance of a large search range, while in the later
stage a more refined search is needed. Therefore, a linear decreasing strategy is used to
adjust the weights, and the inertia weights will vary linearly between the maximum and
minimum values to balance the search capability. Also, to balance the range difference
between the inertia weight values and the chromosome velocity, the path range coefficient
A which prevents the divergence of the weight values, is introduced as follow.

ω(x) = A ∗ ωmax ∗ (ωmax − ωmin)(maxgen − x)/maxgen, (22)

where ωmax is the maximum inertia weight, ωmin is the minimum inertia weight and
maxgen is the maximum number of iterations.

2.5. Algorithm Steps

In the ideal algorithm, the object is considered as a point without dimensions. The
building as a whole is simplified by the grid method [40,41] to obtain a grid of 21 × 21 of
equal size, and each grid is assigned a value, and the size of the value in the grid represents
the height. The following are the steps of BQGA.

Step 1—Population initialization, setting the population size popsize, the number of
iterations maxgen, the corner step shiftstep, the variation probability pm, the maximum
inertia weight ωmax and the minimum inertia weight ωmin;

Step 2—Three-stranded gene coding, encoding the chromosomal genes by expressions
(1), (2), (3) and (4);

Step 3—Spatial transformations solving. Combine the specific optimization problem
with expression (5) to perform the solution space transformation and coordinate mapping
to the solution space of the optimization problem. Then the obtained solution space
coordinates are fit with (14);

Step 4—Chromosome updating. Update the chromosomes by using the quantum
rotation gate in expression (15) to obtain new populations;

Step 5—Chromosomal variation. Correction of the direction of chromosome updating
by (18) and (19);

Step 6—Adaptation function for screening. The obtained chromosomes are used to
calculate the fitness of individual chromosomes based on Equations (20) and (21), and
the optimal chromosomes and optimal gene chains are also used as the historical optimal
chromosomes and gene chains. If Fit(i) < Fit(i − 1), the contemporary optimal solution is
updated. Otherwise, the previous solution is kept unchanged;

Step 7—Iterate. Retain the optimal solution of the algorithm. Determine whether the
number of iterations reaches the set value. If yes, the iteration ends and stops, otherwise,
go back to Step 3;

Step 8: Algorithm termination. When the iteration reaches the maximum number of
evolutionary generations, the algorithm stops iterating.
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3. Bloch Sphere Quantum Bee Colony Algorithm

3.1. Bloch Coordinate Coding of Nectar Source

Firstly, encode the nectar sources using Bloch coordinate encoding. The coding ap-
proach is similar to the quantum genetic algorithm. The coordinates of nectar source
are determined by defining a point p for each pair of parameters θ and ϕ, and any qubit
corresponds to a point on the spherical surface. Finally, Pi which is the ith food source
in the population, is obtained, and three feasible solutions in the corresponding space
are calculated.

The original nectar source is coded with Bloch coordinates of qubits directly, and the
ith individual Ri in the population is encoded as follows:

Ri =

∣

∣

∣

∣

∣

∣

cos ϕi1 sin θi1

sin ϕi1 sin θi1

cos θi1

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

cos ϕij sin θij

sin ϕij sin θij

cos θij

∣

∣

∣

∣

∣

∣

· · ·

∣

∣

∣

∣

∣

∣

cos ϕin sin θin

sin ϕin sin θin

cos θin

∣

∣

∣

∣

∣

∣

, (23)

{

ϕij = 2π × rand(0, 1)
θij = 2π × rand(0, 1)

, (24)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n, m is the population size, and n is the spatial dimension.
Each food source Ri consists of three chains, each corresponding to a feasible solution

xix, xiy or xiz in the original solution space.











xix = (x
(1)
i1 , x

(1)
i2 , . . . , x

(1)
in )

xiy = (x
(2)
i1 , x

(2)
i2 , . . . , x

(2)
in )

xiz = (x
(3)
i1 , x

(3)
i2 , . . . , x

(3)
in )

, (25)

3.2. Solution Space Transformation and Food Sources Updating

Apply solution space transformation to the chromosomes encoded with Bloch coordi-
nates, and perform an update operation on the quantum chromosomes. The search space
for each dimension of the QABC algorithm is [−1,1]. In order to calculate the fit value
of the artificial bee, the solution space needs to be transformed, and the corresponding
transformation of the jth qubit of the ith food source Ri in the Bloch spherical coordinate
system is















X
(1)
ij = 1

2

[

bj

(

1 + cos ϕij sin θij

)

+ aj

(

1 − cos ϕij sin θij

)]

X
(2)
ij = 1

2

[

bj

(

1 + sin ϕij sin θij

)

+ aj

(

1 − sin ϕij sin θij

)]

X
(3)
ij = 1

2

[

bj

(

1 + cos θij

)

+ aj

(

1 − cos θij

)]

, (26)

where i = 1, 2, · · · , m and j = 1, 2, · · · n.
In QABC, updating quantum chromosomes is usually finished by changing the quan-

tum phase with revolving gates. Updating the location of the honey source essentially
involves changing the angles between each Bloch coordinate.

The honey sources have the capacity for evolution, that is, they gradually move
towards the optimal solution at the same time. Consider adjusting for the change in ϕ by
the cosine of the difference between θ and θgbest and for the change in θ by the cosine of the
difference between ϕ and θgbest.







ϕij = ϕij + cos
(

θij − θgbest

)

∗
(

ϕij − ϕgbest

)

θij = θij + cos
(

ϕij − ϕgbest

)

∗
(

θij − θgbest

) , (27)

where ϕij and θij are the Bloch coordinate phase angles of the ith food source at the jth
quantum position, and ϕgbest and θgbest are the globally optimal Bloch coordinate phase
angles in each generation.
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3.3. Multi-Robots Path Planning Based on QABC

A two-level planning method is adopted for multi-robots based on QABC: the first
level is for each robot to plan its global trajectory with QABC, and the second level is to
solve the trajectory conflict problem between multi-robots and the external circular collision
method to detect other robots in the nearby environment.

3.3.1. External Circle Collision Detection Algorithm

In this paper, the priority method is used to deal with the collision strategy. The
priorities of robots in the whole system are defined. When a path conflict occurs, the
low-priority robot obeys the command of the high-priority robot and coordinates with the
action of the high-priority robot to resolve the conflict. The robot operates on the grid using
the action of the octagonal structure, and the motion step size is 1 or

√
2. The position of

the robot at time t is (xt, yt, zt). Then,







xt − xt−1 = 0
yt − yt−1 = 0
zt − zt−1 = 0

or







xt − xt−1 = 1
yt − yt−1 = 1
zt − zt−1 = 1

, t ∈ [1, end], (28)

3.3.2. Conflict Resolution Algorithm

If the priorities of the robots are the same, then the robot with the shortest expected
initial path will avoid the robot with the longest expected initial path for optimal efficiency.

1. Conflict type;

Conflict type I and the collision prediction are shown in Figure 2. Two robots travel in
opposite directions on segment AB, and S2 is moving along BA, while S1 is moving along
AB. S1 is predicted to collide with S2 at P point.

  
(a) (b) 

 

0 0

S1

S2

P

D

1

2

Figure 2. (a) Collision type I; (b) collision prevention approach I.

In order to avoid collision, S2 passes in accordance with the established path, while S1

defines the safety range around the collision course of the outer ring as the restricted area
of S1, according to the priority, and S1 waits for S2 to pass. The shadow area in the figure
shows the superposition of the circular part with radius d.

2. Conflict type II

When the paths of two robots engaged in circumferential collision walking intersect,
a collision may occur. Suppose that S1 moves along the line S1P, and S2 moves along the
line S2P; the path intersection is P. If S1 moves along the planned path to point C and S2

arrives at point D with the same speed, their direction of movement is d. When the distance
between two robots DC is less than the safe distance, that is 0 ≤ d ≤ a, 0 ≤ d ≤ b, they are
expected to collide. Conflict type I and the collision prediction are shown in Figure 3. The
collision prediction diagram is shown in Figure 4.
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Figure 3. (a) Collision type II; (b) collision prevention approach II.
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Figure 4. Collision prediction.

To avoid a collision, S2 with low priority actively avoids the robot S1 and waits at a
safe distance, while S1 maintains its initial speed until it leaves the outer circle of S2. Finally,
S2 continues along its original path and speed.

3. Conflict type III

Taking the position of the parked robot as the center of the circle, the circle correspond-
ing to the radius and safety distance is divided into small areas, and the local route is
designed according to the improved algorithm. To avoid collision, the robot path needs to
change, as shown in Figure 5.

 

 
(a) (b) 

tt

 

 
 

 
 

Figure 5. (a) Collision type III; (b) collision prevention approach III.

4. Analysis of Evacuation Path Planning Model Experiment

4.1. Basic Assumptions

The following assumptions and parameter settings need to be made for the set-up
algorithm before establishing the mathematical model of the evacuation path optimiza-
tion problem:
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(a) The initial node is the accident site, the endpoint is the safe area, and all the nodes
between them are evacuation points;

(b) Each evacuation point can be passed only once;
(c) When starting the operation, the route must be executed to completion without

interruption;
(d) During the execution of the task, the speed change is uniform;
(e) Human factors and obstacle changes are ignored when the accident occurs.

4.2. Raster Data Capture

Commonly used methods for modeling the environment include the grid map
method [42], the free space method [43] and the geometric information method [44]. In
this paper, the grid method is chosen to establish the three-dimensional path planning
space, which is an approach of map modeling to fill in the obstacles in the environment,
i.e., environment optimization. The planning space is decomposed into a number of
network cells with binary information consisting of a matrix of 0s and 1s. 0 represents
a free form, indicating that there are no obstacles and there is a free passage, colored
white. 1 represents an obstacle grid, indicating that there are obstacles that need to
be moved around, colored black [45]. The workspace is decomposed into cells and
then an algorithm is used to search for safe paths in the cells. The method is simple to
implement and easy to extend to three-dimensional environments. We use a plane to
uniformly divide the three-dimensional space, from which the discrete points required
for three-dimensional path planning are extracted. Assuming that each grid represents a
sparse point, and that each grid has the same size, the size length set to unit 1.

Firstly, the eight adjacent grids in the square grid are anlyzed from a steering per-
spective, with the horizontal positive direction as the 0◦ reference, 45◦, 90◦, 135◦ clock-
wise, 45◦, 90◦, 135◦ counterclockwise, and 180◦ backwards. Next, the OABC-O1A1B1C1

three-dimensional space is constructed with O as the vertex, shown in Figure 6.

( 1,2, )

  
 

(a) (b) (c) 

ff

ff

Figure 6. (a) Grid plan model; (b) three-dimensional space occupation; (c) three-dimensional model

space.

The three-dimensional space is divided uniformly with a plane, from which the
discrete points required for three-dimensional path planning are extracted. The space
OABC-O1A1B1C1 is first divided into n equal parts along the OC side to obtain n + 1 planes
Ωi(i = 1, 2, · · · n), and then the n + 1 planes are divided into m equal parts along the OA
side and l equal parts along OO’ to obtain each intersection point in the space. The planes
are divided as shown in Figure 7.
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( 1,2, )

 
(a) (b) 

ff

ff

Figure 7. (a) Plane segmentation of three-dimensional space; (b) two-dimensional display of three-

dimensional space division.

Through the above steps, the entire planning space OABC-O1A1B1C1 is decomposed
into a collection of spatially discrete points, which form the paths searched by the BQGA.

The schematic diagrams of the simulated obstacle avoidance movement in different
raster maps are shown in Figure 8, and the adjacent 8 rasters are used as optional evacuation
locations under different real-life conditions. The specific evacuation locations depend on
the update direction and the size of the quantum revolving door.

  
(a) (b) 

൫𝑥௜ , 𝑦௝ , 𝑧௞൯

ff

–

Figure 8. (a) Direction of movement; (b) demonstration of obstacle avoidance.

The data, such as the length, width and height of the building, are simulated, and the
point data obtained are converted into a grid of 21 × 21. Next, each grid to be interpolated
is assigned the value of the building heights. Its coordinates are set as

(

xi, yj, zk

)

by labeling
each grid in the raster layer. The original path planning space is transformed into a set of
raster numbers, and one only needs to select this set of data points when path planning is
carried out. In the rasterized three-dimensional terrain, only 19 raster points need to be
selected from the accident occurrence point to the safety zone to form an evacuation path
in turn.

4.3. Experimental Analysis of Single-Robot Path Planning

In order to verify the effectiveness of the Bloch Spherical Quantum Genetic Algorithm,
the model is solved by simulation. The simulations of BQGA, ACA and GA were conducted
for comparison tests, respectively. In order to reflect the fairness of the comparison results,
the same population size and evolutionary generation were used for three algorithms.
The parameters were set as follows: evolutionary generation maxgen = 100, number of
populations popsize = 100, number of quantum bits n = 2, and 19 evacuation nodes. Then
the performances of the three algorithms are verified in Figures 9–11.
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Figure 9. Evacuation path planning route.
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Figure 10. Three-dimensional route planning space.
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Figure 11. (a) Trends in the best individual fitness of the BQGA model; (b) trends in the best individual

fitness of the ACA model; (c) trends in the best individual fitness of the GA model.

4.3.1. Results Analysis

The visualization of the spatially optimal route of the evacuation path three-dimensional
raster model is given in Figure 11. The best path route based on the ACA search took 1.362073 s
to run, the best path route based on the GA search took 1.304934 s to run, and the best path
route based on the BQGA search took 1.256061 s.

In Figure 11, the trends of the best individual fitnesses under different algorithms are
represented. Figure 11 shows the trend of the best individual fitness for the BQGA, from
the initial 128 to 118, with a difference of 10, the trend of the best individual fitness for the
ACA, from the initial 126 to 115, with a difference of 11, and the trend of the best individual
fitness for the GA, from the initial 128 to 110, with a difference of 18.

For ACA, it is easy to fall into local optimum prematurely, and the computational
search time is too long because of its complexity. It is easy to encounter a stagnation
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phenomenon, that is, after the search is carried out to a certain degree, it cannot search
the solution space further, which is not conducive to discovering better solutions. ACA’s
optimization efficiency is low.

For GA, the encoding of ordinary algorithms does not fully represent the constraints
of the optimization problem, and therefore it requires the consideration of thresholds for
infeasible solutions, which in turn increases the workload and solution time, making the
iteration time larger.

BQGA avoids the random characteristics brought by generating binary codes with
measuring quantum bits, and expands the planar unit circle description of quantum
bits to Bloch spherical description, so that the quantum behavior can be fully reflected.
Then, the frequent binary number decoding process can be avoided, and the time will be
reduced. Thirdly, BQGA expands the number of global optimal solutions and improves
the probability of obtaining global optimal solutions. Finally, the number of global optimal
solutions can be expanded and the probability of obtaining global optimal solutions will
be improved.

4.3.2. Path Instance Analysis

The three algorithms were run 30 times, respectively, and the evaluation indicators
were recorded. Three groups of different populations with popsize = 100, popsize = 150, and
popsize = 200 were set. The comparisons of the optimization results of the best individual
fitness functions of the three algorithms are listed in Tables 1–3.

Table 1. Comparison of ACA, GA and BQGA under evacuation conditions of Maxgen = 100,

Popsize = 100.

Algorithm Best Result Worst Result Average Result Time/s

ACA 126 110 118 1.2914
GA 127 113 120 1.2784

BQGA 128 118 123 1.2476

Table 2. Comparison of ACA, GA and BQGA under evacuation conditions of Maxgen = 100,

Popsize = 150.

Algorithm Best Result Worst Result Average Result Time/s

ACA 127 110 118.5 1.8490
GA 126 112 119 1.8043

BQGA 128 118 123 1.7658

Table 3. Comparison of ACA, GA and BQGA under evacuation conditions of Maxgen = 100,

Popsize = 200.

Algorithm Best Result Worst Result Average Result Time/s

ACA 126 112 119 2.3565
GA 125 111 118 2.3367

BQGA 128 118 123 2.3102

For the continuous optimization problem, in BQGA, the two parameters θ and ϕ of
the quantum bit can be adjusted simultaneously by using the current quantum bit to rotate
around a certain rotation axis toward the target quantum bit, and the corresponding Bloch
coordinates can be directly obtained by the projection measurement of the quantum bit,
which achieves the best matching of the amount of adjustment of the two parameters in the
quantum bit adjustment. Obviously, this best-matched rotation has higher optimization
efficiency. Therefore, the optimization efficiency of BQGA is higher than that of ACA
and GA, i.e., the shorter the time, the larger the average result value, which indicates



Appl. Sci. 2024, 14, 4613 15 of 19

its effectiveness and efficiency. The optimization efficiency of BQGA is improved by
approximately 3.39% and 2.41% compared to the other two algorithms, respectively.

4.3.3. Influence Analysis of BQGA and ACA, GA Stability Results

With the expansion of the problem scale, the size of the problem scale has a strong
influence on the algorithm’s running time, and the overall trend of the running time of the
algorithms increases from the analysis of the path instance. So the algorithms should be
evaluated according to the size of the actual problem. Therefore, the results are further
explored for each of the two algorithms in the case of increasing problem size, based on the
fitting, using the control variables method. The number of location points and the running
time are roughly linear in BQGA, while in ACA and GA, the number of location points and
the running time tend to show a more quadratic correlation. When the number of location
points is large, the running time of ACA and GA is obviously longer than that of BQGA.
The relationship between the number of iterations and the degree of adaptation can be
plotted according to the data obtained from the two algorithms, as shown in Figure 12.

tt

ff

Figure 12. Trends in the best individual fitness of the GA model.

4.4. Experimental Analysis of Multi-Robots Path Planning

In order to verify the effectiveness of the QABC, the model is solved by simulation.
The simulations of QABC, ACA and ABC were conducted for comparison tests, respec-
tively. The parameters were set as follows: population size N = 200, limiting frequency
limit = 50, maximum cycle number maxcycle = 1000, number of quantum bits n = 2 and
19 evacuation nodes.

4.4.1. Collision Detection

As shown in Figure 13a, each robot moves towards the target point from the initial
position, and robots A and C detect each other in their own peripheral circles. In order to
prevent collision, the method shown in collision type II is adopted. Meanwhile, the robots
with a lower priority will actively avoid the one with a higher one.

As shown in Figure 13b, robots A and B detect the existence of each other by using the
external circle method. In this case, collision type III is required for conflict resolution and
avoidance, so that the robots can pass smoothly.

As shown in Figure 13c, robots A and B detect each other using external circles, which
belongs to collision type I. The corresponding conflict resolution method needs to be used
to let the one with higher priority pass first, and the one with lower priority can pass only
when the external circle is larger than the security zone.
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Figure 13. (a) Conflict type II; (b) conflict type III; (c) conflict type I.

4.4.2. Results Analysis

The results for the three approaches are shown in Table 4. It can be seen from the data
in the table that multiple robots S1 and S2, based on the quantized artificial bee colony
algorithm, increase the path length and shorten the running time by using priority-based
path planning compared with those in S1 and S2 in QABC. After the introduction of the
circular collision detection operator, the safety and directivity of the second layer’s local
path planning in the two-layer programming method are enhanced, and the ability to
search the optimal solution using QABC is improved. Meanwhile, the application saves
time, reduces work cost, and effectively improves the work efficiency of multi-robots.
The optimization efficiency of QABC is improved by approximately 13.31% and 17.87%
compared to the other two algorithms, respectively.

Table 4. Comparison of ACA, ABA and QABC.

Algorithm Robot Estimate Path Length Actual Path Length Time/s

ACA
S1 11.983 11.983 1.291
S2 14.678 14.678 1.339

ABC
S1 11.346 12.237 1.343
S2 12.327 12.438 1.433

QABC
S1 12.628 12.682 1.153
S2 15.729 15.720 1.127

4.4.3. Influence Analysis of QABC, ACA and ABC Stability Results

According to the data obtained by the three algorithms, the relationship between
iteration times and fitness can be drawn, as shown in Figure 14. The use of QABC reduces
the possibility of collision between robots, and improves the safety of robots. When the
number of location points is large, the running times of ABC and ACA are obviously longer
than that of QABC. Comparing the stability of the three algorithms, it is found that QABC
is more stable.
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Figure 14. Relationship between the number of iterations and fitness.

5. Conclusions

In this paper, the Bloch Spherical Quantum Genetic Algorithm model fused with the
least-squares principle for a single robot and the Bloch Spherical Quantum Bee Colony
Algorithm for multi-robots are proposed to seek the optimal path. From a progressive point
of view, consider the least-squares method and quantum optimization; the discrete grid
division approach deals with the unpredictable evacuation problem caused by emergencies.
In the case of uncertain building conditions, a fusion least-squares method is established
for studying the three-dimensional path planning problem. The principle of the quantum
model and quantum optimization algorithm based on a Bloch sphere is designed. On the
basis of verifying the validity of the algorithm, the algorithm comparison is carried out,
and the running time and fitness of the algorithm are compared, as well as the influence
of stability.

Experiments show that the rasterization of building floors is more convenient for
finding the shortest safe path. Compared with ACA, GA and ABC, the methods in this
paper can effectively deal with the problems of slow convergence and long execution time
caused by the traditional algorithms. The solution to these problems can enable humans to
quickly evacuate from dangerous areas when an emergency occurs, thereby improving the
safety factor for human activities in the building.

Future research will focus on improved qubit encoding, which can make the food
source more evenly traversable throughout the solution space to improve the search effi-
ciency of the algorithm.
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