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Abstract

The Drell-Yan (DY) process is crucial in high-energy physics, particularly for precision elec-
troweak measurements and the study of Quantum Chromodynamics (QCD). It provides a clear
production channel where quarks and antiquarks from colliding hadrons annihilate, forming a
virtual photon or Z boson that decays into leptons. This process is instrumental in refining
parton distribution functions (PDFs), which describe the momentum distribution of quarks
within hadrons, and for probing parton dynamics at varying energy scales. Moreover, the DY
process allows for the study of soft gluon emissions and particle evolution, offering insights
into the behaviour of quarks and gluons under QCD. The Parton Branching (PB) framework,
incorporating transverse momentum-dependent (TMD) PDFs, is used to model the evolution
of these distributions, distinguishing between different types of parton branchings based on a
soft gluon resolution scale (zM ) which is parametrised by q0. These TMDs are first fitted on
Deep Inelastic Scattering (DIS) data and are then matched with Next-to-Leading Order (NLO)
matrix elements, created by a Monte Carlo generator, to create predictions of DY transverse
momentum (pT ) distributions.

A key focus of this research is the interplay between the intrinsic transverse momentum (kT )
distribution, characterised by the parameter qs, and the resolution scale zM . A long-standing
issue is the mismatch between PDFs, which are evolved without a zM , and the parton shower
evolution that include zM . This thesis presents the first analysis of DY pT distributions using
the PB TMD method with a dynamical zM . The behaviour of the intrinsic kT distribution
parameter qs is studied across a range of centre-of-mass (COM) energies (62 GeV – 13 TeV)
using data from the experiments CMS, ATLAS, CDF, D0, Phenix, and R209. The analysis
showed a consistent fit for most datasets, except for some discrepancies and limited data. The
key finding is that the parameter qs remains independent of COM energy, contrary to previous
studies that suggested qs would depend on COM energy when using a dynamical treatment of
soft gluons. This research found no such dependence, which either suggests that this result is a
bridge between a fixed and a dynamical zM , meaning that a fixed zM can be seen as the limit
of a dynamical zM for small q0, or it challenges earlier results by being the first instance of an
approach using dynamical zM to not show COM dependence for the parameter qs.

This work showcases that it is possible to examine the behaviour of the intrinsic kT pa-
rameter qs with the PB TMD method using a dynamical resolution scale. This enhances our
understanding of the intrinsic transverse momentum distribution but also underscores the im-
portance of considering the resolution scale in such analyses. Additionally, this study proposes
further investigations into the behaviour of the qs parameter and its COM energy dependence,
as this behaviour is not fully understood. Specifically, understanding the influence of the treat-
ment of the strong coupling is necessary for understanding this new behaviour. Furthermore,
current TMDs are assumed flavour-independent, future studies could take flavour into account.
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Samenvatting (Dutch)

De persoonlijke motivatie om dit onderzoek te starten komt voort uit een diepe fascinatie
voor de deeltjesfysica. Het laat op het meest fundamentele niveau zien hoe het universum werkt
en hoe het leven ervan afhangt. Dit biedt de mogelijkheid om na te denken over de werkeli-
jkheid waarin we leven en om diepgaande filosofische inzichten te verwerven. Daarom wil ik een
uitgebreide kennis verwerven over de huidige stand van zaken van deze theorieën, en het onder-
werp van deze scriptie was een perfecte aanleiding om een van de vier fundamentele krachten,
de sterke interactie, te bestuderen. De theorie die deze interactie het beste beschrijft, wordt
kwantumchromodynamica (QCD) genoemd. Dit is een kwantumveldentheorie gebaseerd op een
niet-abelse Lie-groep. Het werkt bijzonder goed in hoog-energetische gebieden, waar de koppel-
ingsconstante klein is vanwege de zogenaamde ”running coupling” van QCD. Deze theorie wordt
grondig uitgelegd in Hoofdstuk 2, het is grotendeels een samenvatting van de cursus die ik volgde
over kwantumchromodynamica, gegeven door mijn begeleider Prof. Dr. Francesco Hautmann
aan de Universiteit van Antwerpen. Daarom is het eerste hoofdstuk sterk gëınspireerd door de
cursusnotities gemaakt door Thomas Van Laer. Het hoofdstuk legt de theoretische basis voor
het begrijpen van proton-proton botsingen. Het hoofdstuk behandelt het eikprincipe, waarbij de
nadruk ligt op het belang ervan voor het waarborgen van lokale eik-invariantie, en introduceert
de QCD Lagrangiaan om de dynamica van quarks en gluonen te beschrijven. De kwantiser-
ing van eik-veldtheorieën wordt onderzocht, waarbij de verschillen tussen Abelse en niet-Abelse
gevallen worden belicht. Belangrijke concepten zoals renormalisatie, de renormalisatiegroep en
het lopen van de koppelingsconstante worden besproken, waarbij wordt gëıllustreerd hoe de
sterke interactie zich anders gedraagt op verschillende energieniveaus. Het hoofdstuk behandelt
ook verstrooiingsprocessen, factorisatie, evolutievergelijkingen en het Drell-Yan (DY) proces, die
allemaal cruciaal zijn voor het analyseren van hadronbotsingen en het begrijpen van de intrin-
sieke transversale impulsverdelingen van partonen binnen hadronen. Deze kennis is essentieel
voor de focus van de thesis op het DY process. Het DY proces is van cruciaal belang in de hoge-
energie fysica voor precisie metingen in de elektrozwakke sector en de studie van QCD. Het biedt
een helder productiekanaal waarbij quarks en antiquarks van botsende hadronen annihileren en
een virtueel foton of Z boson vormen dat vervalt in leptonen. Dit proces is essentieel voor het
verfijnen van parton distributiefuncties (PDFs), die de momentumsverdeling van quarks binnen
hadronen beschrijven, en voor het onderzoeken van parton dynamica bij verschillende energien-
iveaus. Bovendien stelt het DY-proces ons in staat om soft gluon-emissies en de evolutie van
deeltjes te bestuderen, wat inzichten biedt in het gedrag van quarks en gluons onder QCD.

Het DY process kan worden onderzocht met behulp van de Parton Branching (PB) meth-
ode, deze methode wordt uitgelegd in Hoofdstuk 3. Het herformuleert de evolutievergelijkingen,
gëıntroduceerd in Hoofdstuk 2, met een unitariteitsbenadering. Hierbij wordt een onderscheid
gemaakt tussen oplosbare en niet-oplosbare partonvertakkingen op basis van een zachte gluon-
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resolutieschaal (zM ), en Sudakov-vormfactoren worden gebruikt om de kans te modelleren dat
er tussen energie-schalen geen vertakkingsgebeurtenissen plaatsvinden. De PB-methode wordt
numeriek gëımplementeerd via iteratieve Monte Carlo-technieken, waardoor de evolutie van
partonverdelingen binnen hadronen van lagere naar hogere energieniveaus mogelijk wordt. Een
belangrijk aspect van dit hoofdstuk is de uitbreiding van de methode om Transverse Momentum
Dependent distributies (TMDs) te omvatten, door een kinematische toewijzing (angular order-
ing) die de evolutieschaal verbindt met de transversale impuls van een uitgezonden parton. Deze
TMDs zijn cruciaal voor een nauwkeurige beschrijving van processen zoals Drell-Yan-productie
en voor het begrijpen van partondynamica. Bovendien introduceert het hoofdstuk ook de gefac-
toriseerde vorm van de TMD; het collineaire deel samen met een intrinsieke transversale momen-
tumverdeling (kT ). Het hoofdstuk eindigt met de bespreking van de dynamische resolutie-schaal
zM , dit is een nieuwe aanpak voor het onderscheid tussen oplosbare en niet-oplosbare partonver-
takking, gebaseerd op de angular ordering die gëıntroduceerd is voor de transversale impulsen
mee in rekening te houden binnen de PB methode. Deze uitgebreide benadering zorgt ervoor
dat de complexiteit van TMDs effectief wordt beheerd binnen de PB methode.

In Hoofdstuk 4 wordt uitgelegd hoe de PB aanpak wordt toegepast op het Drell-Yan pro-
cess. Het begint met het uitleggen van de procedure voor het verkrijgen van de initiële collineaire
PDF voor de TMD in de intrinsieke transversale momentumverdeling. De PDF wordt gefit op
diepe inelastische verstrooiings data van HERA, deze vormt dan samen met de kT -distributie
de TMD. Vervolgens wordt het gebruik van de PB TMD-methode voor botsingsvoorspellin-
gen in detail besproken; er wordt uitgelegd hoe PB TMDs worden gecombineerd met Next-to-
Leading Order (NLO) matrixelementen met behulp van de Cascade-generator om voorspellingen
te doen over inclusieve DY transversale momentum (pT ) distributies. Deze benadering verhoogt
de nauwkeurigheid van botsingsvoorspellingen door PB TMDs te integreren met standaard
collineaire matrixelementgenerators. Daarnaast biedt het hoofdstuk een overzicht van belan-
grijke resultaten van vorige studies met betrekking tot de toepassing van de PB methode op
inclusieve DY pT data. Belangrijke bevindingen omvatten de effectiviteit van de methode in
het beschrijven van DY transversale impulspectra over verschillende kinematische gebieden en
energieniveaus. Het schetst een duidelijk beeld van de beschrijving die de PB TMD-methode
kan bieden voor DY doorsnedes. Al de resultaten die worden aangehaald voor de effectiviteit
aan te tonen maakten gebruik van een vaste resolutieschaal.

Het onderzoek van deze scriptie in Hoofdstuk 5 maakt gebruikt van dezelfde methode, maar
het gebruikt de dynamische resolutieschaal van Hoofdstuk 3. Dit wordt voor het eerst gedaan
in dit onderzoek omdat het gebruik van de dynamische resolutieschaal belangrijk is voor het
begrijpen van de fysica van QCD coherentie en de angular ordering van gluonradiatie. Een ander
belangrijk aandachtspunt van dit onderzoek is de wisselwerking tussen de intrinsieke transversale
momentum (kT ) distributie, gekenmerkt door de parameter qs, en de resolutieschaal zM . Een
lang bestaand probleem is de mismatch tussen PDFs, geëvolueerd zonder de resolutieschaal zM ,
en de parton shower evolutie die wel de resolutieschaal zM bevat. Deze scriptie presenteert de
eerste analyse van DY pT -distributies met behulp van de PB TMD-methode met een dynamische
resolutieschaal zM . Het gedrag van de intrinsieke transversale momentumdistributieparameter
qs wordt bestudeerd over een reeks van centre-of-mass (COM) energieën (62 GeV – 13 TeV)
met behulp van data van de experimenten CMS, ATLAS, CDF, D0, Phenix en R209.

De volledige analyse wordt uitgebreid besproken in Hoofdstuk 5. Het toont aan dat, binnen
de onzekerheden, de parameter qs onafhankelijk is van de COM-energie. Dit toont een nieuw
resultaat in de energieafhankelijkheid van qs, wat verder onderzoek rechtvaardigt. Opmerkelijk
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is dat een vorige studie, met een vaste, niet-dynamische zM , een bijna vlakke qs-gedragslijn met
energie vond uit fits op DY pT -data. Daarentegen meldde andere studies met een dynamische
aanpak een andere trend, namelijk een COM-afhankelijkheid van de parameter qs. Deze thesis
toont echter dat wanneer gewerkt wordt met een dynamische zM die een kleine transversale
impuls-schaal van q0 = 0.5 GeV gebruikt, het gedrag van qs met energie afvlakt, wat dichter
aansluit bij de bevindingen van de studie met de vaste zM . Het resultaat van deze thesis lijkt
de eerste instantie te zijn waarbij een dynamische zM -benadering, vergeleken met DY-gegevens,
resulteert in een bijna vlakke qs, wat de eerdere resultaten gerapporteerd in de studies met
dynamische zM uitdaagt. Daarnaast is het belangrijk om deze bevindingen te vergelijken met
de vaste zM -berekening en de minimum transversale impuls-schaal die in deze thesis wordt
gebruikt te vergelijken met die in eerdere dynamische zM -berekeningen. In de studies met
dynamische zM werd gerapporteerd dat de helling afnam met afnemende q0. Dit zou kunnen
suggereren dat het resultaat van deze studie de brug vormt tussen de twee situaties; het scenario
met een vaste zM kan worden gezien als de limiet van een dynamische zM met een zeer kleine
q0—wat aanzienlijk meer zachte emissies toelaat dan berekeningen met q0-waarden van 1 GeV
of hoger.

Hoewel het onderzoek waardevolle inzichten heeft opgeleverd, is het essentieel om bepaalde
beperkingen te erkennen. De belangrijkste beperking van deze studie is de onvolledige en
beperkte data van bepaalde experimenten. Met name leverden de datapunten van de CDF-
en D0-experimenten bij 1960 GeV geen bruikbare resultaten op. Respectievelijk, de systematis-
che afwijkingen en het beperkte aantal datapunten bëınvloedden de robuustheid van de analyse.
Dit benadrukt de noodzaak voor meer uitgebreide datasets om de bevindingen te valideren over
alle energieschalen en experimentele opstellingen. Verdere onderzoeken zouden zich kunnen
richten op het toepassen van de PB TMD-methodologie op experimentele gegevens in de 1960
GeV-regio, om de toepasbaarheid ervan te valideren.

Ter conclusie, dit werk toont aan dat het mogelijk is om het gedrag van de intrinsieke kT -
parameter qs te onderzoeken met de PB TMD-methode met een dynamische resolutieschaal.
Dit verbetert niet alleen ons begrip van de intrinsieke transversale momentumdistributie, maar
onderstreept ook het belang van het overwegen van de resolutieschaal in dergelijke analyses.
Bovendien stelt deze studie voor om verder onderzoek te doen naar het gedrag van de qs-
parameter en de afhankelijkheid daarvan van de COM-energie, aangezien dit gedrag nog niet
volledig begrepen is.
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Chapter 1

Introduction

The personal motivation of starting this research, comes from a deep fascination with ele-
mentary particle physics, it shows at the most fundamental level how the universe works and
how life depends on it. This gives opportunity to think about the reality in which we live, and
gain profound philosophical insights. Therefore, I wanted to gain an extensive understanding of
the current knowledge of these theories, and the topic of this thesis was a perfect reason to study
one of the four fundamental forces, the strong interaction. The theory that describes this inter-
action the best is called quantum chromodynamics (QCD), it is a quantum gauge field theory
based on a nonabelian Lie group. It works particularly well in high energy regions, where the
coupling is small due to the running coupling of QCD. This theory is thoroughly1 explained in
Chapter 2, starting from basic principles and going to advanced topics such as the factorisation
of dynamics to describe hadron collisions. This chapter is mostly a summary of the course I
took on quantum chromodynamics, taught by my supervisor Prof. Dr. Francesco Hautmann at
the University of Antwerp. Therefore, the first chapter is heavily inspired by the lecture notes
of this course taken by Thomas Van Laer [1].

The measurement of the vector boson transverse momentum (pT ) in Drell-Yan (DY) pro-
duction [2] in proton-proton (pp) collisions provides a detailed investigation into various aspects
of the strong interaction sector of the Standard Model, significantly impacting precision elec-
troweak measurements. Higher-order perturbative QCD calculations are required for a precise
description of DY production in pp collisions at the LHC (e.g. [3]). However, the very low pT
region of the DY cross section of Z-bosons (pT < O(mZ)) is sensitive to the nonperturbative
transverse motion of partons within hadrons and cannot be described by fixed-order calcula-
tions. Soft gluon resummation to all orders (e.g. [4]) is required. The precise description of the
Z/γ boson has been explored since the 1980s through various analytical transverse momentum
dependent (TMD) resummation methods (e.g. Collins-Soper-Sterman [5]) or in parton showers
of multi-purpose Monte Carlo (MC) event generators, such as Pythia8 [6] and Herwig7 [7],
matched with higher-order matrix elements [8–10]. These had varying success. In this thesis,
the parton branching (PB) TMD methodology in momentum space, introduced in [11, 12], is
employed. This PB TMD method is thoroughly explained in Chapter 3. Chapter 4 explains
how this method is applied to DY data, and it briefly summarises the results of previous studies.

Chapter 5 of this thesis delves into the behaviour of the intrinsic kT parameter qs in the

1In the context of this thesis, of course. There are lots of topics that are not discussed, as they would require
entire books and that would be outside the scope of the research.

Master’s Thesis 1 of 85



CHAPTER 1. INTRODUCTION

TMD distribution, examining its behaviour across different centre-of-mass (COM) energies,
√
s,

of various experiments. The analysis is focused on the small-pT region for a wide range of
COM energies. Despite being initially fitted only on deep-inelastic scattering (DIS) data from
HERA experiments, the PB-TMD methodology has demonstrated its capability to describe
DY pT spectra at both LHC [13] and lower energies [14] without parameter adjustment. This
approach simultaneously considers soft gluon radiations and the transverse momentum recoils in
the parton branchings along the QCD cascade, effectively addressing the multiple-scale problem
[15] of the DY transverse momentum for pT ≪ mDY . This confirms the universality of the
TMDs in the PB TMD method, as they can describe both DIS and DY cross sections at all
available center-of-mass energies.

This research aims to deepen the understanding of the intrinsic transverse momentum dis-
tributions and the question of their possible universal behaviour across different experimental
conditions. This work not only provides insights into the strong interaction but also contributes
to the broader field of high-energy particle physics by refining the theoretical tools needed for
precise predictions in particle collisions.
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Chapter 2

Basic Elements of Quantum
Chromodynamics

To start the theoretical introduction of the thesis, it is valuable to first give a historical
overview [16] of the evolution of Quantum Chromodynamics (QCD). It is the theory that ex-
plicates the strong force—one of nature’s four cardinal forces1—it traces its roots back to the
1960s and 1970s. This period marked a scientific endeavour to unravel the mysteries of the strong
force, which paradoxically binds protons within an atomic nucleus despite their similar positive
charges that should cause mutual repulsion due to electromagnetic forces. The advancement of
particle accelerators during this era led to the discovery of a plethora of subatomic particles,
underscoring the need for a more fundamental theory.

A breakthrough was achieved in 1964 with Murray Gell-Mann and George Zweig’s proposal
of quarks as the elementary building blocks of hadrons (including protons and other particles),
giving rise to the quark model. This model categorised hadrons based on their quark composition
but left the mechanism of quark binding unexplained.

The early 1970s witnessed the introduction of the colour charge concept, a quantum property
analogous to the electric charge in electromagnetism, yet more intricate with three varieties—red,
green, and blue—and their corresponding anti-colours for anti-quarks. This innovative concept
paved the way for Quantum Chromodynamics, which theorises that quarks are bound by the
exchange of gluons, the mediators of the strong force. Unlike electromagnetism, whose force
diminishes with distance, the quark-binding force intensifies as quarks separate, a phenomenon
known as asymptotic freedom. This pivotal discovery, predicted by David Gross, Frank Wilczek,
and David Politzer, earned them the Nobel Prize in Physics in 2004.

QCD swiftly ascended to become the definitive theory for strong interactions, elucidating
not only the cohesion of quarks within hadrons but also phenomena such as jet formation during
high-energy collisions. Decades of testing and validation, especially through experiments con-
ducted in particle accelerators like the Large Hadron Collider, have firmly established QCD’s
place as a fundamental pillar of the Standard Model of particle physics. This theoretical frame-
work has significantly advanced the understanding of the strong force.

1These are the electromagnetic, weak, strong and gravitational forces
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CHAPTER 2. BASIC ELEMENTS OF QUANTUM CHROMODYNAMICS

2.1 The Gauge Principle

The gauge principle posits that the laws of physics should remain invariant under local gauge
transformations, leading to the formulation of gauge theories that describe the fundamental
interactions. In practical terms, gauge invariance refers to the idea that physical phenomena
should not depend on arbitrary choices related to the phase of a field at local points in space-time.
This invariance under local transformations is a type of symmetry that dictates the interactions
between fields and particles.

The implementation of the gauge principle begins with the identification of symmetries
associated with a field. For example, quantum electrodynamics (QED) can be derived from an
abelian U(1) symmetry group. However, QCD must be derived from a nonabelian symmetry
group, this means that the symmetry group involves operators that do not commute. More
specifically, quantum chromodynamics is based on the SU(3) symmetry group. The choice of
this Lie group is not arbitrary; it is strongly supported by experimental evidence. The dynamics
of the quarks can only be explained with the introduction of an extra quantum number, called
colour2, and this colour quantum number has the characteristics that correspond to the SU(3)
symmetry group. Properties of the strong force, such as quark confinement and the behaviour of
the strong force at different energies, can only be explained using this colour quantum number.

2.1.1 Nonabelian Gauge Field

The Yang-Mills (YM) Lagrangian density is the most general nonabelian Lagrangian density
using the gauge principle. From the YM, the QCD Lagrangian density can be constructed by
choosing the specific Lie group and matter content.

Start with the Lagrangian density for a multiplet ψ of n fields,

L = ψ̄(i/∂ −m)ψ = iψ̄ /∂ψ −mψ̄ψ, (2.1.1)

where /∂ = γµ∂µ denotes the Feynman slash notation. It is easily verified that this Lagrangian
density exhibits an invariance to global phase transformations given by3

G = eiα
aTa

. (2.1.2)

These symmetry transformations G4, with generators T a, represent the elements of a Lie group.
The associated Lie algebra obeys the following commutation relations:

[T a, T b] = ifabcT c, (2.1.3)

where fabc is a constant and anti symmetric in all indices. Here, generator is synonymous
with the ”charge” of the theory, associated with a particular Lie group. For example, in QED,
there’s a single generator, so only one type of charge: the electric charge. This implies that
the electromagnetic force is mediated by a single type of force carrier. In contrast, QCD is
represented by eight generators. Consequently, there are eight distinct charges, each with its
corresponding force carrier.

2This is where the name of the theory came from, chromo literally means colour in ancient Greek.
3In this thesis the Einstein summation notation will be used: αaTa =

∑
a α

aTa.
4These are n× n dimensional, unitary operators, acting on ψ.
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CHAPTER 2. BASIC ELEMENTS OF QUANTUM CHROMODYNAMICS

The gauge principle dictates a promotion from a global invariance to a local invariance. This
transformation takes place by having the phase, αa, depend on the space-time position:

G→ G(x) = eiα
a(x)Ta

. (2.1.4)

However, the initial Lagrangian density described in Eq. (2.1.1) does not retain its form under
such local phase transformations, primarily because the partial derivative ∂µ acts on the field ψ
at distinct space-time coordinates. This discrepancy becomes apparent through the derivative’s
definition:

nµ∂µψ(x) = lim
ϵ→0

ψ(x+ ϵn)− ψ(x)

ϵ
. (2.1.5)

The process of making the Lagrangian invariant to local phase transformations can be found in
Ref. [1] on pages 45-50. Here, gauge invariance of the Lagrangian requires the introduction of
the covariant derivative:

Dµ = ∂µ − igAa
µT

a. (2.1.6)

where g denotes a constant, and Aa
µ are vector fields associated with each generator. The

meaning of the constant will become clear later in this section. The vector fields are called the
gauge fields and they represent the gluons within the strong interaction. Furthermore, ensuring
gauge invariance involves infinitesimally transforming the gauge fields as

Aa
µ → Aa

µ +
1

g
∂µα

a − fabcαbAc
µ, (2.1.7)

highlighting two key transformation components: the gradient term, responsible for translating
the field, and the gauge-rotation term, which signifies an internal space rotation specific to the
nonabelian nature of the gauge group.

With both these definitions, the following property holds true:

Dµψ(x) → DµG(x)ψ(x) = G(x)Dµψ(x), (2.1.8)

signifying that the Lagrangian, L = iψ̄ /Dψ − mψ̄ψ, is gauge invariant. Which means that
requiring local gauge symmetry, implies the existence of the gauge fields Aa

µ. The expanded
Lagrangian, using Eq. (2.1.6), is as follows:

L = iψ̄ /∂ψ + gψ̄ /Aψ −mψ̄ψ. (2.1.9)

Within this Lagrangian, the initial term with the derivative of the matter fields ψ facilitates the
fields’ propagation. The second term5, introduces an interaction between the matter fields ψ and
the gauge fields Aa

µ, indicating an exchange process. Here, the constant g emerges as a coupling
constant, analogous to the fine-structure constant in electromagnetism, defining the interaction
strength. The third term imparts mass m to the matter fields, completing the dynamics of field
propagation and interaction.

The Lagrangian, however, lacks a term to describe the propagation of the gauge fields them-
selves. Given that interactions are theorised to occur through the exchange of these fields, their
ability to propagate is implied. To address this, a gauge invariant term is introduced for the

5With definitions: /A = γµAµ, and Aµ = Aa
µT

a.
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propagation of the gauge fields Aa
µ. This is encapsulated by the kinetic term involving the field

strength tensor Fµν , defined through the commutation of covariant derivatives:

[Dµ, Dν ]ψ(x) = −igF a
µνT

aψ(x), (2.1.10)

and the nonabelian field tensor itself given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.1.11)

the derivative acting on the gauge fields implies the gauge fields’ capacity for propagation.
To maintain local symmetry in the Lagrangian with the inclusion of Fµν , the challenge that

this tensor is not inherently Lorentz nor gauge invariant needs to be confronted. The gauge
transformation modifies it according to

F a
µνT

a → G(x)FµνG
−1(x), (2.1.12)

The transformation law for the field strength tensor, along with the trace’s cyclic property6,
confirm the gauge and Lorentz invariance of the kinetic term. This is demonstrated7 through
the trace of the Lorentz contracted field strength tensor with itself:

LKinetic = −1

2
Tr[FµνF

µν ] = −1

4
F a
µνF

a,µν . (2.1.13)

Thus creating a gauge invariant kinetic term, accounting for the propagation of gauge fields and
leading to the formation of the Yang-Mills (YM) Lagrangian:

LYM = −1

4
F a
µνF

a,µν + ψ(i /D −m)ψ. (2.1.14)

This Lagrangian represents the most general nonabelian gauge-invariant form, preserving renor-
malisability, parity conservation, and time-reversal invariance. Detailed discussions on the renor-
malisability will be presented in Section 2.3. These symmetries may be broken by introducing
additional terms to the Lagrangian. The possibility of such terms for QCD is discussed on page
145-147 on Ref. [1]

2.1.2 QCD Lagrangian

The formulation of a specific Lagrangian in gauge field theory is contingent upon two choices:
the matter content of the fields and the gauge group describing the local symmetry.

Quantum chromodynamics was created to treat matter that carries the so-called colour
charge, and quarks are the only matter particles that carry colour charge. So, in this case, the
quarks make up the matter content. Not only matter carries colour, but the gluon fields are
also colour charged, but different from quarks. The effect of gluons are indirectly observed via
mathematical deductions from hadron decays. It is observed that a change of colour content for
quarks can occur, however the total colour charge is always conserved. This property is called
colour confinement and is a fundamental principle of QCD. It states that quarks cannot exist
in isolation but must always be found in colour-neutral combinations. The exchange of gluons

6The convention, Tr[TaT b] = 1
2
δab, for hermitian, traceless matrices used is.

7In Ref. [1] on pages 47-50
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between quarks changes their colour charge, ensuring that the overall colour charge of a hadron
remains neutral. Gluons are viewed as having one colour and one anti -colour charge, which
does not have to be the same colour. The matter fields in QCD, denoted by ψf , encompass six
quark flavours8 f ∈ {u, d, c, s, t, b}. The multiplet ψ will consist of these six quark fields that
correspond to the different flavours. These six flavoured particles do not all have the mass m,
they have different masses mf . Like previously discussed, the colour interactions of these quarks
necessitate adopting the SU(3) Lie group as the gauge group. The YM Lagrangian does not
change significantly when taking this group into account. The group’s dimension dictates the
number of generators, and therefore also the number of gauge fields. For SU(3), eight generators,
give rise to eight corresponding gauge fields—the gluons governing the strong interaction.

The first term in the Lagrangian represents the kinetic energy of the gluons and their self-
interactions. Gluons, unlike photons in QED, can interact with each other because of the
nonabelian nature of the colour charge. This is captured by the non-linear terms in the field
strength tensor, gsf

abcAb
µA

c
ν . These self-interactions lead to rich phenomena such as asymptotic

freedom, where the force between quarks becomes weaker at shorter distances or higher energies.
The second term describes the kinetic energy of the quarks and their interaction with the

gluon field. The covariant derivative Dµ incorporates the interaction between quarks and gluons
and ensures the gauge invariance of the theory. The quark fields ψf are spinor fields, reflecting
the fact that quarks are fermions with spin 1

2 .
The theory’s emphasis on colour might not be immediately apparent from the QCD La-

grangian’s initial appearance. This is because each flavour matter field ψf comprises of three
colour components.

ψf =

ψr
f

ψg
f

ψb
f

 . (2.1.15)

It are these components that are acted on and rearranged by the SU(3) operators.
The interaction with the SU(3) group, however, affects quarks and gluons distinctly, as

seen in their transformation properties under separate SU(3) representations, defined by the
dimension dR and generators T a

R specific to each representation. Quarks transform under the
fundamental representation associated with three-dimensional space, typically expressed using
Gell-Mann matrices λa

9. Antiquarks and gluons are represented by the conjugate and adjoint
representations, respectively, with dimensions dF = 3 for antiquarks and dA = 8 for gluons.
Consequently, the form of an SU(3) generator or element varies based on the object it is applied
to.

2.2 Quantisation of Gauge Field Theories

Central to QCD is the Lagrangian that governs the dynamics of quarks and gluons. The
interaction vertices and Feynman rules can be calculated based on these QCD Lagrangian terms.
However, this is not yet the complete picture. Everything conducted so far has been grounded

8The terms flavour and colour were historically coined by Murray Gell-Mann and his student Harald Fritzsch.
They came up with the idea of quark colour and flavour in an ice cream store, because ice cream also has a
colour and a flavour.

9The generators in this representation incorporate a factor 1
2
in front of the Gell-Mann matrices, notated as

Ta
F = 1

2
λa.
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in classical physics, but due to the microscopic scale of hadrons and the need to observe their
components at even finer resolutions, it becomes necessary to apply quantum theory. Addition-
ally, the high velocities at which the particles collide necessitate the consideration of special
relativity. These demands justify the quantum field theory treatment of the strong interaction;
which begins by quantising the theory.

The quantisation of gauge theories like QCD introduces challenges due to gauge redundancy,
which arises from the physically equivalent field configurations permissible by the theory. An
illustration of this redundancy is the gauge field transformation in abelian theories10,

Aµ → Aµ +
1

g
∂µα. (2.2.1)

Considering the Fourier transformation

A(x) =

∫
d4k

(2π)4
eik·xÃ(k) (2.2.2)

and the resulting longitudinal shift11 in Fourier space,

Ãµ(k) → Ãµ(k) +
1

g
kµα (2.2.3)

it becomes evident that such shifts do not yield new physical configurations. Gauge fields thus
exhibit only ’transverse’ degrees of freedom. By parametrising Aµ using a polarisation 4-vector
εµ,

Ãµ(k) = a(k)εµ (2.2.4)

where a(k) is called the field amplitude. Physical phenomena remain invariant under

εµ → εµ + αkµ. (2.2.5)

The photon, despite its spin-1 nature, exhibits only two transverse polarisation states, due to
its role as a gauge field’s quantum. In quantum mechanics, a spin-1 particle theoretically pos-
sesses three polarisation states. However, the uniqueness of photons stems from the necessity
to account for gauge redundancy in quantisation, distinguishing physically relevant degrees of
freedom. The intricacy of QCD quantisation emerges from the added layer of gauge rotation.
Without addressing gauge redundancy, quantisation efforts risk including non-physical degrees
of freedom. The strategy used in this thesis involves quantising all degrees initially, then iso-
lating the physical ones. Functional integral quantisation, utilising Lagrangian formalism and
path integrals, is particularly adept at handling the intricacies of gauge fields, albeit requiring
advanced mathematical concepts to derive the QCD Lagrangian’s quantum version.

2.2.1 The Abelian Case

It is, in fact, appealing to first take up the abelian case, recognise the problem within
quantisation of gauge field theories, solve it, and then move over to the nonabelian case. Within

10This transformation corresponds to the first term added in the nonabelian transformation equation (2.1.7).
11A differential operator becomes a multiplicative operator in Fourier space.

Master’s Thesis 8 of 85



CHAPTER 2. BASIC ELEMENTS OF QUANTUM CHROMODYNAMICS

the functional integral quantisation framework, the gauge theory’s dynamics are encapsulated
by the functional integral ∫

DAeiS[A] (2.2.6)

where A represents the gauge field and S denotes the action as a functional of A:

S[A] =

∫
d4xL. (2.2.7)

The gauge redundancy comes solely from the gauge transformations, this means that only
the bosonic part causes trouble. Therefore, the Lagrangian can be simplified to the kinetic term
for the gauge boson:

S[A] =

∫
d4x

(
−1

4
FµνF

µν

)
(2.2.8)

where Fµν is the field strength tensor defined by Fµν = ∂µAν − ∂νAµ and is inherently anti-
symmetric: Fµν = −Fνµ. Delving into the action’s exponent and employing this anti-symmetry
leads to

−1

4

∫
d4xFµνF

µν =
1

4

∫
d4x (∂µAν − ∂νAµ)(∂

νAµ − ∂µAν) (2.2.9)

=
1

4

∫
d4x (2∂νAµ∂

µAν − 2∂νAµ∂
νAµ) (2.2.10)

=
1

2

∫
d4x (∂µAν − ∂νAµ)(∂

νAµ) (2.2.11)

=
1

2

∫
d4x (∂νAµ)(∂µAν − ∂νAµ). (2.2.12)

Applying integration by parts yields

−1

4

∫
d4xFµνF

µν = −1

2

∫
d4xAµ(∂ν∂µAν − ∂ν∂νAµ) (2.2.13)

=
1

2

∫
d4xAµ(∂2gµν − ∂µ∂ν)A

ν (2.2.14)

where gµν signifies the metric’s components. The operator ∂2gµν denotes the application of ∂2

on Aν after it has been contracted with gµν , and it is important to note that the metric itself,
being constant in Minkowski space, does not undergo differentiation.

Proceeding by applying a Fourier transformation to the gauge field Aµ(x):

Aµ(x) =

∫
d4k

(2π)4
eik·xÃµ(k). (2.2.15)

Substituting this into the expression for the kinetic term:

−1

4

∫
d4xFµνF

µν =
1

2

∫
d4k

(2π)4
Ãµ(k)

(
−k2gµν + kµkν

)
Ãν(−k) (2.2.16)

=
1

2

∫
d4k

(2π)4
Ãµ(k)

(
−k2P⊥

µν

)
Ãν(−k) (2.2.17)
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where P⊥
µν denotes the transverse projection operator defined as

P⊥
µν = gµν − kµkν

k2
. (2.2.18)

This operator ensures that the longitudinal components of a 4-vector field (i.e. Aµ) are nulli-
fied while preserving its transverse components. The transverse components are the sole non-
vanishing contributions after the application of P⊥

µν . Longitudinal vectors parallel to kµ are
eigenvalues of this operator with an eigenvalue of zero:

Ãµ(k) = αkµ (2.2.19)

where α is a scalar. Therefore, the transverse projection operator will project the infinite many
longitudinal shifts – coming from the gauge redundancy – to zero. Consequently, this results in
an infinite multiplicity of field configurations where the action is nullified, leading to:∫

DAeiS[A] =

∫
DA · 1 =

∫
DA→ ∞, (2.2.20)

The action is exclusively dependent on the field’s transverse components due to the projection
operator in the Lagrangian. Nonetheless, the path integral extends over both transverse and
longitudinal components, which causes the divergence.

Overcoming the challenges presented by gauge redundancy in quantum field theories involves
discerning and accounting for physically equivalent configurations. These equivalent configura-
tions, such as kµ and all multiples thereof, αkµ, must be recognised as a single configuration
in the functional integral to avoid infinite overcounting. The goal is to isolate and count only
the physical configurations. A forthcoming section will introduce a method for integrating con-
straints into path integrals, it involves in fixing the gauge to eliminate the redundancy. Once a
specific gauge is chosen, gauge invariance, and thereby gauge-equivalent configurations, ceases
to exist.

The Faddeev-Popov (FP) method strategically incorporates gauge constraints into the path
integral, using Dirac-delta distributions to filter out equivalent configurations. This method
imposes a gauge condition on the transformed field by incorporating a function G of the field
post-transformation into the Dirac-delta argument. For instance, employing the Lorenz gauge
∂µA

µ = 0, the Dirac-delta distribution in the path integral becomes G(Aα) for the transformed
field Aα. The insertion of this distribution is not done arbitrarily, this would alter the integral,
but it is justified by a functional identity:

1 =

∫
Dα det

(
δG(Aα)

δα

)
δ(G(Aα)) with Aα

µ = Aµ + ∂µα, (2.2.21)

where Aα
µ is the gauge-transformed of Aµ. This identity is analogous to

1 =

∫
dx δ

(
δG

δx

)
δ(G(x− x′)) (2.2.22)

which corresponds12 to the sifting- or sampling property, 1 =
∫
dx δ(x − f(x′)). Applying this

12This becomes evident when the chain rule is used backwards.
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functional identity to the path integral:∫
DA exp(iS[A]) =

∫
DA exp(iS[A])

∫
Dα det

(
δG

δα

)
δ(G(Aα)) exp(iS[A])δ(G(Aα))

(2.2.23)

=

∫
Dα

∫
DA det

(
δG(Aα)

δα

)
δ(G(Aα)) exp(iS[A]), (2.2.24)

where the gauge fixing condition is given by:

G(Aα) = ∂µA
µα = 0, (2.2.25)

Aµα = Aµ +
1

e
∂µα. (2.2.26)

Using the Lorenz gauge in the abelian case, results in the determinant factor det(δG(Aα)/δα)
being independent of the field A:

det

(
δG(Aα)

δα

)
=

1

e
det ∂2. (2.2.27)

Adjusting the integration variable to A → Aα and renaming the dummy variable Aα back
to A, the integral (2.2.24) simplifies to∫

DA exp(iS[A]) =

∫
Dα det

(
δG(A)

δα

) ∫
DAδ(G(A)) exp(iS[A]). (2.2.28)

Since det(δG(A)/δα) is shown to be independent of A, it can be extracted from the integral over
A. This approach works for a specific gauge choice, but its applicability to a more general gauge
selection will also be explored. A gauge is chosen where the determinant det(δG/δα) remains
unchanged, allowing use of the results derived for the Lorenz gauge G(A) = ∂µA

µ. Adopting the
generalised Lorenz condition ∂µA

µ(x) = ω(x), instead of the specific ω(x) ≡ 0, and functionally
integrating over ω with a Gaussian weight exp(−ω2/2ξ), results in∫

DA exp(iS[A]) = C

∫
Dωe−

∫
ω2

2ξ d4x

∫
Dα det

(
δG(A)

δα

) ∫
DAeiS[A]δ(∂µA

µ − ω) (2.2.29)

= C

∫
Dα det

(
δG(A)

δα

) ∫
DAeiS[A]e−

∫ (∂·A)2

2ξ d4x (2.2.30)

= C

∫
Dα det

(
δG(A)

δα

) ∫
DAei

∫
d4x(− 1

4FµνF
µν− 1

2ξ (∂·A)2), (2.2.31)

Here are two integrals, the first one is an infinite gauge-volume factor, the second one is the
gauge-field functional integral, which contains the gauge-fixed Lagrangian LGF ,

LGF = −1

4
FµνF

µν − 1

2ξ
(∂ ·A)2. (2.2.32)

The resolving of gauge redundancy by factoring out the infinite gauge-volume factor comes at
the cost of amending the action. This formulation paves the way to evaluate physical observables
O through their vacuum expectation values:

⟨O⟩ =
∫
DAOeiS[A]∫
DAeiS[A]

=

∫
DAO exp

(
i
∫
d4xLGF

)∫
DA exp

(
i
∫
d4xLGF

) . (2.2.33)
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The operator O is purely physical, so it remains unaffected by the unphysical gauge-volume
factor. Which means that it can be pulled out from the integral. Consequently, the integral
divides into two segments: an infinite, non-physical part and a finite, physical part, the latter
stabilised by the gauge-fixing modification (characterised with the parameter ξ). This division
ensures that unphysical degrees of freedom, which could potentially lead to divergences, are
canceled out in both the numerator and the denominator of the path integral.

This reveals that in the abelian framework, the Lagrangian necessitates an additional term
for quantisation, ensuring physical outcomes. This transforms the previous choice of a specific
gauge into a choice of the value of ξ. This same scenario occurs for the nonabelian scenario, but
further modifications to the Lagrangian are needed.

2.2.2 The Nonabelian Case

Transitioning from the abelian to the more complex nonabelian gauge field theories intro-

duces a distinct difference: the functional determinant det
(

δG(Aα)
δα

)
becomes dependent on the

gauge field A due to
Aαµ = Aµ +Dµ,acαc. (2.2.34)

This results in the determinant being represented as

det

(
δG

δα

)
= det

(
1

g
∂µD

µ

)
, (2.2.35)

whereDµ,ac = ∂µδac+gfabcAµ,b denotes the covariant derivative in the adjoint representation13.
The inclusion of A in the covariant derivative introduces a dependence on A not present in
the abelian scenario, where differentiation with respect to α did not involve A. Unlike the
abelian case, where the functional determinant could be pulled out from the integral over A,
the nonabelian case does not permit this due to the A-dependence. An additional mechanism
is required to address the divergences.

Introducing the ghost c and anti-ghost c fields; which are adjoint, scalar and anti-commuting,
a functional integral is employed14 using Eq. (2.2.35)

det

(
δG

δα

)
=

∫
DcDc̄ exp

(
−i
∫
d4x c̄∂µD

µc

)
. (2.2.36)

Mirroring the abelian procedure but with the determinant integrated with the gauge fields. The
resultant functional integral for the nonabelian gauge field, starting from Eq. (2.2.29), is∫

DAeiS[A] = C

∫
Dα

∫
Dc
∫

Dc̄
∫

DA
[
ei

∫
d4xLQ

]
, (2.2.37)

with LQ = −1

4
F a
µνF

µν,a − 1

2ξ
((∂µA

µ)a)2 − c̄a∂µD
µ,accc. (2.2.38)

These new fields c and c are associated, respectively, with ’ghost’ and ’anti-ghost’ particles. They
are essential for the quantisation process and ensure that physical observables remain unaffected

13As previously mentioned, the adjoint representation is used for gluons and the quantisation problem occurs
for the gluon kinetic term due to the transverse projection operator.

14The derivation, which is complex, can be found detailed across pages 299–301 and 513–514 in [17].
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by ghost contributions. Ghost fields’ physical interpretation is rooted in the nonabelian nature
of QCD, particularly evident in small (αa ≪ 1) transformations of the gauge field:

Aµ,a → Aµ,a +
1

g
∂µαa + fabcAµ,bαc. (2.2.39)

This transformation showcases the longitudinal shift and the colour gauge rotation, underscoring
the unique interaction dynamics in nonabelian theories where gauge charges are matrices. In
the colour gauge rotation, the unphysical, longitudinal components reinteract with the physical
gauge field Aµ. However, this would result in unphysical contributions. To cancel these contri-
butions, it is precisely these unphysical ghost fields that need to be introduced. It is crucial to
note that ghost fields are non-observable and are absent in physical final states.

The inclusion of ghost terms in the nonabelian gauge theory Lagrangian, as necessitated by
Eq. (2.2.38), addresses the augmented gauge redundancy in QCD. This necessitates not only
a gauge-fixing term but also a ghost term for accurate quantisation. The Lagrangian for the
ghost fields specifically unfolds as:

Lghost = −c̄a∂µDµ,accc = −c̄a∂2ca − gfabcc̄a∂µ(Aµ,bcc), (2.2.40)

capturing both the ghost kinetic energy and the interaction between ghost and gauge fields. In
the abelian scenario, where fabc → 0, ghost fields disengage from gauge-field interactions.

All these additional quantisation terms result in the complete QCD Lagrangian at the quan-
tum level:

LQCD = −
8∑

a=1

1

4
F a
µνF

a,µν +
∑
f

ψf (i /D −mf )ψf − 1

2ξ
((∂µA

µ)a)2 − c̄a∂µD
µ,accc (2.2.41)

containing the quark segment from its classical counterpart, and the gauge invariant kinetic
term for gluons — these two terms form the classical Yang-Mills Lagrangian. The gauge-fixing
and ghost terms emerge distinctly in the quantum domain. In Appendix A.1, the Feynman rules
of the QCD Lagrangian are shown.

2.3 Renormalisation

The QCD Lagrangian details all possible vertices and propagators for particles with a non-
trivial colour quantum number, allowing for the construction of various diagrams representing
fundamental particle interactions at the tree level. However, the tree-level only provides an
approximation. The real complexity arises from interactions mediated by the exchange of a
boson. At this level, it might seem as if particles somehow pre-emptively ’know’ to exchange
a boson, but this is not the case. Instead, particles continuously emit bosons as they traverse
through spacetime; occasionally, these bosons are absorbed by other particles, constituting what
is recognised as an interaction. These emitted particles, termed ’virtual particles,’ are volatile
and are governed by the Heisenberg uncertainty principle. This constant emergence of virtual
particles leads to an infinite array of potential interaction diagrams, all contributing to a com-
prehensive description of particle interactions. The same initial and final states can be achieved
through a myriad of intermediate processes involving the creation and annihilation of virtual
particles. In QED, the likelihood of a process decreases with the increase in interaction vertices
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involving virtual particles, justifying the tree-level approximation within certain energy bounds
where the coupling constant remains small, suitable for perturbative approaches. However, this
series of interactions is inherently divergent. To render the results finite and physically inter-
pretable, renormalisation is employed. This process involves redefining the theory parameters,
like charges and wave functions, to remove divergences. Initially postulated theoretical con-
structs (from the Lagrangian) are thus not directly observable; renormalisation adjusts these to
reflect measurable properties, turning ’constants’ like coupling into variables dependent on the
energy scale. These divergences, specifically ultraviolet (UV) divergences15, arise from diagrams
that incorporate loops, such as a transient particle-antiparticle pair. To account for all possible
momenta in these loops—since arbitrarily high momenta lead to divergences—an integral over
all possible momenta is necessary, culminating in the UV divergences.

To determine the renormalisability of a theory, a clear mathematical definition of what
constitutes a renormalisable theory needs to be established. Renormalisation aims to refine
theoretical predictions, ensuring that all physical observables are devoid of UV divergences. A
mathematical framework for defining a renormalisable theory employs the method known as
ultraviolet power counting. Consider a Feynman graph characterised by a loop, resulting in an
integral of the form: ∫

d4k
N(k)

M(k)
, (2.3.1)

where N(k) and M(k) are functions of the loop momentum k. To assess potential divergences,
the superficial degree of divergence D is calculated,

D := 4 + degree of N in k − degree of M in k. (2.3.2)

If D ≥ 0, the integral is classified as UV divergent. A theory is deemed renormalisable if it
contains only a finite number of such divergent amplitudes. Examples of such theories include
QED and QCD, with respectively three and seven divergent amplitudes.

The term divergent amplitude specifically refers to the types of Feynman diagrams that
inherently include UV divergences, not to the unbounded number of UV divergent Feynman
graphs a theory might contain. The divergent amplitudes in QED are depicted in Figure 2.1
These configurations typically involve various combinations of incoming and outgoing particles
with unspecified interactions between them.

Once a theory is identified as renormalisable, the actual renormalisation process is carried
out in the following steps:

1. First, having identified all divergent amplitudes, such as those for QED in Figure 2.1,
renormalisation is initiated by employing a regularisation method. This involves introduc-
ing additional parameters, termed regulators, into the amplitudes. These regulators allow
a manipulation of the parameters instead of dealing directly with infinities. In a specific
limit of these parameters, the original divergent integral re-emerges. It is crucial that the
observables remain independent of these regulators. A divergent loop integral can be split
into a finite part, where the momentum ranges from zero to a chosen mass scale parame-
ter µ, called the renormalisation scale, and a divergent part that integrates all momenta
from µ to infinity. Introducing a cut-off Λ in the high-momentum (divergent) region is
one regularisation approach. Here, the upper bound of the integral’s divergent part is

15The momentum corresponding to these divergences lies in the high energy region, explaining the terminology
of ultraviolet
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Figure 2.1: UV divergent amplitudes in QED. The blobs indicate undetermined interactions
that could involve any number of loops allowed by the theory.[1]

Λ, rather than infinity. The original divergent integral is returned when taking the limit
Λ → ∞. Another prevalent method in QFT is dimensional regularisation, which maintains
the fundamental symmetries of the theory. This method involves reducing the spacetime
dimension to below four (e.g., 4− ϵ) to decrease the superficial degree of divergence, D.

2. The next step involves rescaling the parameters and wave functions within the theory. For
any quantity ϕ, the rescaling takes the form ϕ → ϕ0 = Zϕ,. Here, ϕ becomes the renor-
malised quantity and ϕ0 the unrenormalised quantity post-rescaling and Z is a calculable
renormalisation constant that absorbs the divergence. All renormalisation constants are
theoretically non-observable and potentially divergent, representing no physical quantity.

3. After completing the rescaling and expressing the theory entirely in terms of renormalised
quantities, all derived predictions are non-divergent. Physical quantities are finite, calcu-
lable, and free from divergences.

Through this outlined programme, renormalisability can be redefined: a theory that yields
finite results for all physical quantities post-renormalisation is renormalisable. Conversely, a non-
renormalisable theory has excessive divergences that cannot be absorbed by a finite number of
renormalisation constants. It is important to note that, while QED and QCD are gauge theories,
this renormalisation programme applies to other types of theories. Furthermore, gauge theories
require additional considerations. The renormalisation of gauge theories is intricately linked to
gauge symmetry, necessitating further constraints on the renormalisation constants to ensure
consistency within the theory.

2.3.1 Renormalisation Group

The process of renormalisation inherently introduces an arbitrary scale, the renormalisation
scale µ, which should not influence the physical outcomes of the theory, as it is not a physical
parameter, but merely a mathematical artefact. The Renormalisation Group (RG) formalism
ensures this scale invariance through specific equations that maintain the consistency of physical
predictions across different scales, providing deeper insights into the asymptotic behaviour of
coupling constants at large energy scales or short distances. In QED, the coupling constant
increases with energy (see Ref. [17] on p. 244-255), limiting the effectiveness of low-order
perturbative calculations to low energies. In contrast, QCD exhibits a decrease in coupling
strength at higher energies, this will be shown later in this chapter. This makes perturbative
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methods only viable above certain thresholds; below these thresholds, the theory becomes ’non-
perturbative’ due to inaccuracies in truncated series results.

To summarise the previous discussion on renormalisability: renormalisation aims to remove
divergences in physical quantities. A theory is renormalisable if for every unrenormalised quan-
tity ϕ0, its divergent components can be isolated and absorbed into a renormalisation constant
Z. Moreover, the renormalised quantity, denoted ϕ, should be expressed not just in terms of it-
self and its parameters, but explicitly in terms of the renormalisation scale and the renormalised
coupling constants. This relationship can be captured by the following equation:

ϕ(pi, α0) → ϕ0(pi, α0) = Zϕ(pi, α, µ). (2.3.3)

To clarify, in the unrenormalised theory, the physical quantity is referred to as ϕ, a func-
tion of the momenta pi and the bare coupling α0. However, this version of ϕ contains diver-
gences. Through renormalisation, this is transformed into ϕ0, effectively removing the divergent
parts and incorporating them into Z. The renormalised version, which is still denoted by ϕ,
thus becomes a fundamentally different function, now dependent on an additional variable, µ.
The relationship between the renormalised and unrenormalised quantities is therefore given by
ϕ0(pi, α0) = Zϕ(pi, α, µ), which highlights the transformation imposed by renormalisation.

The fundamental principle of the RG approach is to embed the invariance under changes
in µ directly into the renormalisation process. This is achieved using the Renormalisation
Group Equation (RGE). It is immediately evident from Eq. (2.3.3) that while the left-hand side
explicitly shows no dependence on µ, the right-hand side includes terms that do depend on µ.
This apparent contradiction implies that any dependence of ϕ on µ must be exactly offset by
the renormalisation constant Z. To express this cancellation of µ dependence, the derivative of
ϕ0 is considered with respect to µ:

dϕ0
dµ

= 0. (2.3.4)

For convenience in subsequent calculations, the derivative with respect to lnµ2 is taken instead:

dϕ0
d(lnµ2)

= 0. (2.3.5)

This equivalence is evident through the application of the chain rule

dϕ0
d(lnµ2)

=
dϕ0
dµ

dµ

d(lnµ2)
, (2.3.6)

where dµ
d(lnµ2) is nonzero, affirming that dϕ0

d(lnµ2) = 0 implies dϕ0

dµ = 0. Taking the right-hand side

of Eq. (2.3.3), it follows that
d(Zϕ)

d(lnµ2)
= 0. (2.3.7)

Applying the Leibniz rule and the chain rule, and noting that pi does not depend on µ and Z
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depends only on µ, yields:

d(Zϕ)

d(lnµ2)
= Z

dϕ

d(lnµ2)
+ ϕ

dZ

d(lnµ2)
(2.3.8)

= Z
∂ϕ

∂(lnµ2)
+ Z

∂ϕ

∂α

∂α

∂(lnµ2)
+ ϕ

dZ

d(lnZ)

d(lnZ)

d(lnµ2)
(2.3.9)

= Z
∂ϕ

∂(lnµ2)
+ Z

∂ϕ

∂α

∂α

∂(lnµ2)
+ ϕZ

d lnZ

d(lnµ2)
(2.3.10)

= Z

[
∂ϕ

∂(lnµ2)
+
∂ϕ

∂α

∂α

∂(lnµ2)
+ ϕ

d lnZ

d(lnµ2)

]
= 0. (2.3.11)

This relationship simplifies to

∂ϕ

∂(lnµ2)
+
∂ϕ

∂α

∂α

∂(lnµ2)
+ ϕ

d lnZ

d(lnµ2)
= 0. (2.3.12)

Alternatively, it can be expressed as[
∂

∂(lnµ2)
+

∂α

∂(lnµ2)

∂

∂α
+

d lnZ

d(lnµ2)

]
ϕ = 0. (2.3.13)

By defining the beta function β(α) and the anomalous dimension γ(α) as:

β(α) =
∂α

∂ lnµ2
, (2.3.14)

γ(α) =
∂ lnZ

∂ lnµ2
, (2.3.15)

Eq. (2.3.13) transforms into:[
∂

∂(lnµ2)
+ β(α)

∂

∂α
+ γ(α)

]
ϕ(pi, α, µ) = 0. (2.3.16)

Assuming that ϕ is measurable at a specific physical mass scale Q, ϕ can be determined as a
function evaluated at µ = Q. To facilitate this, the arguments (excluding the coupling) of ϕ are
rescaled based on Q, leading to the definition of a new function F , which represents the same
physical quantity as ϕ:

ϕ(pi, α, µ) = F (xi, t, α), (2.3.17)

where

xi :=
pi
Q
, t := ln

Q2

µ2
. (2.3.18)

This rescaling simplifies the model and when substituted into Eq. (2.3.16), results in:[
− ∂

∂t
+ β(α)

∂

∂α
+ γ(α)

]
F (xi, t, α) = 0. (2.3.19)
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This equation is known as the renormalisation group evolution equation. The solution to this
equation can be determined by setting a boundary condition such that at t = 0 (≡ µ = Q), F
is known and denoted by F (0, α). The form of the solution is16:

F (t, α) = F (0, α(t)) exp

(∫ α(t)

α

γ(α′)

β(α′)
dα′

)
, (2.3.20)

where α(t) is implicitly defined as:

t =

∫ α(t)

α

dα′

β(α′)
, (2.3.21)

with α = α(0). By applying a change of integration variable as per this definition, Eq. (2.3.20)
is transformed into:

F (t, α) = F (0, α(t)) exp

(∫ t

0

dt′γ(α(t′))

)
. (2.3.22)

This solution reveals significant insights into the physics of the problem, illustrating that the
coupling α varies with t, and consequently with µ, through the β function. The β function
elucidates how the coupling changes with the energy scale, demonstrating the initial signs of
breaking the scale invariance.

The exponential term further elucidates the role of the γ function, or the anomalous dimen-
sion, especially when γ(α) is approximated linearly as γ(α) = γ1α. Under this simplification,
the solution becomes as follows:

exp

(∫ t

0

dt′γ(α)

)
= exp

(∫ t

0

dt′γ1α

)
= exp (γ1αt) , (2.3.23)

which, using the definition of t, translates to:

exp

(∫ t

0

dt′γ(α)

)
= exp

(
γ1α ln

Q2

µ2

)
= exp

(
ln

((
Q2

µ2

)γ1α))
=

(
Q2

µ2

)γ1α

. (2.3.24)

Substituting this back into the solution of the RGE (Eq. (2.3.22)) yields:

F (t, α) = F (0, α(t))

(
Q2

µ2

)γ1α

∼ F (0, α(t))Q2γ1α = F (0, α(t))Q2γ(α). (2.3.25)

Here, the function F (t, α) acquires dimensions in Q modified by the factor Q2γ1α = Q2γ(α), indi-
cating that γ confers additional dimensions in Q and thus is termed the ‘anomalous dimension’.
This γ function introduces another mechanism for the breaking of scale invariance, alongside
the β function. As the physical scale Q changes, so does the physical quantity F , altering what
are known as the engineering dimensions17 of F by incorporating dependencies based on γ(α).

2.3.2 Running of The Coupling

Incorporating loops within quantum field theory necessitates the use of renormalisation to
manage quantum fluctuations at high-energy scales. This process introduces an unphysical

16The variable xi is left out in F as it is not relevant to the analysis.
17The dimensions of Q in F (0, α) are the intuitive dimensions associated to the quantity F .
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parameter, the renormalisation scale µ, which ultimately does not appear in the expressions
for any physical quantities in the renormalised theory. However, the inclusion of loops does
leave a physical imprint observable as the energy scale dependence of the coupling constants,
manifesting as a violation of scale invariance. The RG approach is apt for describing this effect,
particularly through the RGE that elucidate the behaviour of the strong coupling constant αs.
This property, known as asymptotic freedom, explains the nearly free behaviour of quarks at
high energies or, equivalently, short distances and their confinement within hadrons at lower
energies or longer distances. The universal functions β and γ govern the necessary adjustments
to parameters and wave functions to compensate for changes in µ, applicable across all theories.

For QCD, limited to one loop, this method extends to calculate the one-loop β function.
Three of the UV divergent amplitudes relevant to QCD are illustrated in Fig. 2.2, encompassing
the total corrections to the quark-gluon vertex, the quark propagator (quark self-energy), and
the gluon propagator (gluon self-energy). QCD contains seven such UV divergent amplitudes,
depicted in Appendix A.1, where modifications at the vertices or within the propagators are
marked by a blob.

(a)

(b)

(c)

Figure 2.2: One-loop contributions to three of the UV divergent amplitudes in QCD: (a)The
one-loop corrections to the quark-gluon vertex, (b) The one-loop correction to the quark self-
energy, (c) The four one-loop corrections to the gluon self-energy.

The necessary renormalisation constants in QCD are defined to absorb these divergences,
similar to (2.3.3):

A→ A0 =
√
Z3A, (2.3.26)

ψ → ψ0 =
√
Z2ψ, (2.3.27)

c→ c0 =

√
Z̃3c, (2.3.28)

m→ m0 =
Zm

Z2
m. (2.3.29)

Here, the first line adjusts the gluon wave function, followed by the fermion wave function, the
ghost wave function, and the fermion mass renormalisation. Vertex renormalisation must also
be addressed, and due to the gauge invariance, the coupling for each vertex is consistent. This
results in four relationships for two couplings, g0 (unrenormalised) and gs (renormalised), as
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follows:

Z2

√
Z3g0 = Z1gs, (2.3.30)

Z̃3

√
Z3g0 = Z̃1gs, (2.3.31)

Z
3/2
3 g0 = Z1,3gs, (2.3.32)

Z2
3g

2
0 = Z1,4g

2
s . (2.3.33)

The couplings for the quark-gluon vertex, the gluon-ghost vertex, the three-gluon vertex, and
the four-gluon vertex are described respectively. By standardising these equations under a sin-
gle form, the Slavnov-Taylor identities are established, Z̃1/Z̃3 = Z1/Z2 = Z1,3/Z3 =

√
Z1,4/Z3.

Which is a nonabelian generalisation of the Ward identity Z1 = Z2 in QED. These identities re-
veal the fundamental interrelations among the renormalisation constants and further emphasise
the underlying symmetry principles guiding their formulation.

To extract the renormalised coupling from the relationships described, dimensional regular-
isation18 is employed. Specifically focusing on the quark-gluon vertex relation and adding the
subscript ‘s’ to denote the strong interaction coupling:

αs(µ
2)ϵ =

Z2
2

Z2
1

Z3αs,0. (2.3.34)

In dimensional regularisation, UV divergences manifest as poles at ϵ = 0. Consequently, the Zi

coefficients are represented as:

Zi = 1 + αs
1

ϵ
ci + other finite terms, (2.3.35)

where ci denotes the coefficients associated with the divergent terms. By substituting Eqs.
(2.3.34) and (2.3.35) into Eq. (2.3.14), the β function at first order in αs with Zi ≈ 1 + αsci/ϵ
is expressed as:

β(αs) =
∂αs

∂ lnµ2
= −ϵαs,0(µ

2)−ϵ [1− 2(Z1 − 1) + 2(Z2 − 1) + (Z3 − 1)] = 2α2
s(c1 − c2 +

1

2
c3).

(2.3.36)
The Feynman graphs contributing to c1, c2, and c3 are one-loop graphs depicted in Fig. 2.2.
Detailed calculations of these graphs can be found in Section 7.1.1 of Ref. [1], pages 95-98,
particularly focusing on the fermion loop contribution calculated using Feynman gauge (ξ = 1).
The results for the renormalisation constants Zi are given by:

Z1 = 1− αs

4π
(CF + CA) , (2.3.37)

Z2 = 1−
(αs

4π

)
CF , (2.3.38)

Z3 = 1 +
αs

4π

(
5

3
CA − 4

3
NfTF

)
, (2.3.39)

18In dimensional regularisation, the space-time dimensions d are reduced to d = 4 − 2ϵ to manage the UV
divergences, as the divergences vanish when ϵ > 0. This method introduces the factor (µ2)ϵ, allowing calculations
to be performed before taking the limit as ϵ→ 0.
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where CA = N = 3, CF = (N2−1)/2N = 4/3, and TF = 1/2 denote the color factors, and Nf is
the number of quark flavours. These constants in Eqs. (2.3.37)-(2.3.39) lead to the coefficients
ci needed in Eq. (2.3.36), resulting in:

β(αs) = 2
α2
s

4π

(
−CF − CA + CF − 1

2

5

3
CA +

1

2

4

3
NfTF

)
= −α

2
s

4π

(
11

3
CA +

4

3
NfTF

)
= − α2

s

12π
(11N − 2Nf ) . (2.3.40)

This equation demonstrates that for Nf < 11N/2, the β function in nonabelian cases like QCD
is negative at small coupling, indicative of asymptotic freedom:

β(αs) = −β0α2
s +O(α3

s), (2.3.41)

where

β0 =
1

12π
(11N − 2Nf ). (2.3.42)

In the Standard Model, where N = 3 and Nf = 6, the coefficient β0 is negative, contrasting with
QED where the β function is positive at the lowest order. This difference illustrates that while
the electromagnetic coupling increases with energy, the strong coupling decreases, demonstrating
QCD’s property of asymptotic freedom. This behaviour is described using the β function, which
quantifies how the coupling changes with the energy scale. For QCD, the coupling weakens as
the energy increases or the distance decreases, as expressed by:

β(αs) =
∂αs

∂ lnµ2
⇒ αs(q

2) =
αs(µ

2)

1 + β0αs(µ2) ln q2

µ2

, (2.3.43)

which clearly shows the logarithmic decrease in coupling with increasing energy scale q2. Con-
versely, this formula predicts a large coupling at low q2, a condition known as infrared slavery.
The energy scale ΛQCD is defined as the energy scale where the coupling becomes infinite19:

1 + β0αs(µ
2) ln

Λ2
QCD

µ2
= 0, (2.3.44)

yielding

Λ2
QCD = µ2 exp

(
− 1

β0αs(µ2)

)
. (2.3.45)

This might suggest a dependence of ΛQCD on µ, yet it remains a physical and constant scale
because it is the energy at which the strong coupling grows unbounded. This scale is also known
as the ’Landau pole’, typically denoted by Λ. For QCD and QED, the Landau pole is illustrated
in Figure 2.3.

Equation (2.3.43) loses validity at the QCD scale, indicating the need for theoretical adjust-
ments near the Landau pole. It is important to demonstrate that ΛQCD and the coupling are
indeed physical quantities, invariant under changes in the renormalisation scale. Suppose the
renormalisation scale is transformed from µ to µ′:

µ2 → (µ′)2 := µ2et, (2.3.46)

19This is, of course, not physical. It just implies that around this energy scale the coupling will be very large.
It signifies that this theory, and subsequently perturbation theory, is not applicable in this energy region.
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(a) (b)

Figure 2.3: Illustration of the position of the Landau pole in (a) QED and (b) QCD.[1]

where t is a real number representing ln(µ′2/µ2). Under this transformation, the coupling
changes scale but not form:

α(µ2) → α(µ′2), (2.3.47)

leading to

α(µ′2) =
αs(µ

2)

1 + βαs(µ2)t
, (2.3.48)

and thus

Λ2
QCD = µ2 exp

(
− 1

β0αs(µ2)

)
→ µ′2 exp

(
− 1

β0αs(µ′2)

)
(2.3.49)

= µ2et exp

(
−1 + β0αs(µ

2)t

β0αs(µ2)

)
(2.3.50)

= µ2et exp

(
− 1

β0αs(µ2)
− t

)
(2.3.51)

= µ2 exp

(
− 1

β0αs(µ2)

)
= Λ2

QCD, (2.3.52)

confirming that ΛQCD is a genuine physical mass scale of QCD, independent of the chosen
renormalisation scale µ. Experimentally, ΛQCD is found to be approximately 200 MeV. The
renormalisation-scale invariance of the strong coupling constant, αs, can be demonstrated by
expressing it in terms of ΛQCD instead of µ, highlighting its independence from the renormali-
sation scale. Starting by rearranging Eq. (2.3.45) as:

µ2 = Λ2
QCD exp

(
1

β0αs(µ2)

)
. (2.3.53)
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This expression is substituted into the logarithmic term in Eq. (2.3.43),

αs(q
2) =

αs(µ
2)

1 + β0αs(µ2)
[
ln q2

Λ2
QCD

− ln exp
(

1
β0αs(µ2)

)] (2.3.54)

=
αs(µ

2)

1 + β0αs(µ2) ln q2

Λ2
QCD

=
1

β0 ln
q2

Λ2
QCD

. (2.3.55)

This formulation confirms that αs is independent of the renormalisation scale, reinforcing the
physicality of ΛQCD. According to this model, the denominator becomes zero when q2 equals
Λ2
QCD, indicating an undefined coupling at this scale.
The increasing coupling at decreasing energy scales presents challenges for this research. It

includes simulations of high-energy experiments such as those conducted at the LHC, where
protons collide at very high energies. In these simulations the strong interaction is adequately
described at high energies by perturbation theory. However, as the energy decreases during
the events, quarks produced in these collisions undergo hadronisation—they combine to form
hadrons—occurring at much lower energy scales near ΛQCD, where the current theoretical mod-
els become less precise. Understanding hadronisation, which typically occurs at energy scales
comparable to the masses of resultant hadrons, remains an elusive goal due to its occurrence
at these lower energies. As this process is crucial for interpreting collision outcomes, address-
ing these challenges is essential for advancing predictions in particle physics. This will be the
central focus of the next chapter, with aim to develop methods to navigate these complexities
effectively.

2.4 Hard Scattering Processes

In the introductory chapter, hadrons were viewed as composite particles bound by the strong
interaction. In the context of QCD, these composites are specifically configurations of quarks.
This perspective, established around the mid-20th century, categorises hadrons into two main
types: mesons and baryons. Mesons consist of a quark and an antiquark pair, while baryons are
made up of three quarks. This classification, though somewhat simplified, remains highly effec-
tive and is akin to Niels Bohr’s atomic model: not entirely precise but sufficiently accurate for
numerous practical applications. In this framework, quarks and antiquarks are bound together
by the exchange of gluons.

However, a more detailed examination reveals a more complex picture than just a few quarks
linked by gluons. This complexity is expected, especially considering what is understood about
renormalisation and loop corrections in quantum field theories. Exchanged gluons can form loops
before being absorbed by a quark or an antiquark, a process that can repeat multiple times.
It is overly simplistic, though sometimes practically adequate, to view gluon exchange merely
as one particle emitting and another absorbing. In reality, gluons are emitted spontaneously
throughout the interaction space, forming loops incidentally absorbed by quarks or antiquarks.
Consequently, hadrons are quite chaotic internally. Within a hadron, the constituent quarks,
antiquarks, and gluons are collectively termed partons. Observing these partons at closer range,
which corresponds to probing the hadron at higher energies or shorter distances, reveals the
quantum effects more distinctly, and a greater number of partons become detectable. Thus,

Master’s Thesis 23 of 85



CHAPTER 2. BASIC ELEMENTS OF QUANTUM CHROMODYNAMICS

the simple model of a hadron containing just three quarks, or a quark-antiquark pair, is some-
what misleading. In reality, there are numerous transient quarks and antiquarks flying around;
although they are temporary, their abundance means that, at any given moment, a hadron
contains effectively more than three quarks for a baryon or a pair for a meson. These tran-
sient particles are distinguished from the more stable constituents: the permanent, structural
partons are called valence partons, whereas the transient ones are referred to as sea partons.
At lower energies, the influence of sea partons is negligible. However, in high-energy collisions,
such as those studied in particle accelerators, both sea quarks and gluons significantly affect the
outcomes, necessitating a description that accounts for all partons.

2.4.1 Factorisation

The method known as factorisation is pivotal in describing collision processes involving
hadrons. It distinctly separates the long-distance (low-energy) dynamics from the short-distance
(high-energy) dynamics. The initial high-energy interactions occur shortly after the collision,
involving partons from one hadron and another particle, such as in electron-proton collisions, or
partons from another hadron, as seen in proton-proton collisions. These short-distance dynamics
are amenable to perturbative analysis due to the relatively weak QCD coupling at high energies.
In contrast, the long-distance dynamics, which involve the hadronisation of the partons into
observable hadrons, occur later and are not directly calculable using perturbation theory due to
the strong QCD coupling at lower energies.

To illustrate factorisation, consider a less complex scenario than a proton-proton collision,
such as deep inelastic scattering (DIS) of an electron on a proton, where the high-energy electron
interacts with a proton’s quark via the exchange of a photon or a weak boson. For simplicity,
the exchange of a photon is assumed in subsequent explanation. The proton’s initial momentum
is denoted by p and the momentum of the exchanged photon by q.

Figure 2.4: Feynman diagram for the DIS of an electron on a proton. The blob represents the
proton as a complex composition of partons.[1]

The square of the momentum transfer is defined as:

−Q2 := qµqµ, (2.4.1)

where
√
Q2 ≫ 1fm−1, indicating that Q2 is significantly larger than Λ2

QCD. This high momen-
tum scale is referred to as the hard scale. Conversely, the term soft in high-energy physics often
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refers to lower energies or momenta. Furthermore, the variable x—also known as the Bjorken
x—is defined as:

x =
Q2

2p · q . (2.4.2)

The interaction between the virtual photon and the quark occurs over a very short time scale,
approximately 1/

√
Q2 ≪ 1fm. An important aspect to consider in hadronic processes is the

continual interaction among quarks within the proton, which significantly influences their wave
functions prior to their interaction with the incoming electron via the virtual photon. This
sensitivity to longer-timescale interactions is a challenge unique to processes involving hadrons,
as opposed to something like electron-positron scattering where long- and short-time interactions
can be more easily separated using unitarity.

This complexity necessitates a nuanced approach to decouple the long-time dynamics from
the short-time interactions, which is the essence of the factorisation method employed in QCD
analyses. Factorisation not only enables the use of perturbation theory for calculating short-
distance dynamics but also helps relate measurable hadronic quantities to calculable partonic
interactions. The aim is to express the physical cross-section σ, as a function of both the hard
momentum scales (denoted by Q) and the soft momentum scales (denoted by m20). This is
achieved through a convolution formula:

σ(Q,m) = C(Q,parton momenta > µ)⊗ f(parton momenta < µ,m), (2.4.3)

where C incorporates only the hard parton momenta, and f is dependent solely on soft parton
momenta. Here, µ represents the factorisation scale, distinguishing between hard and soft
momenta: momenta greater than µ are considered hard, while those less are deemed soft.

This representation offers significant advantages. Firstly, the dependence of σ on Q is con-
fined to C, which is calculable using perturbative methods due to its reliance on high momenta.
Secondly, since the overall physical cross-section σ must remain independent of the factorisation
scale µ, any dependence of C on µ derived from f must precisely counteract that in f , ensuring
that σ is invariant under changes in µ.

To facilitate these calculations, an appropriate reference frame needs to be selected. Due
to the Lorentz invariance of the theory, the infinite-momentum frame can be chosen, where
the proton’s momentum along the z-axis is extremely large, and the electron’s momentum is
oriented oppositely in the negative z-direction. In this frame, the proton undergoes significant
Lorentz contraction due to its high momentum:

The Lorentz contraction reduces the time ∆tscatter it takes for the electron to traverse the
proton. As the proton’s momentum increases, this time diminishes further, while the internal
parton interactions within the proton experience time dilation, extending their typical interac-
tion time τparton. In the infinite-momentum frame, it holds that ∆tscatter ≪ τparton, indicating
that during the electron’s transit, it predominantly interacts with the valence quarks and any
sea quarks or gluons that were already present. Resulting in the assumption that each parton
will have a specific momentum during the interaction, characterised with a momentum fraction
ξ of the total momentum of the proton.

Moreover, it needs to be considered that the parton-electron interaction mediated by a virtual
photon assumes that Q2 is large. There are primarily two interactions: the photon with one or
more partons and the parton-parton interactions within the proton. Given that the interaction

20The m represents the hadronic mass scale
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Figure 2.5: DIS electron-proton scattering in the infinite-momentum frame along the z axis.
The elliptical shape represents the spatial distribution of the proton, highlighting the Lorentz
contraction.[1]

time of the photon with a parton is brief compared to τparton and Q2 is large, the distance ∆lγ
that the photon traverses is minuscule:

∆lγ ∼ 1√
Q2

≪ 1 fermi. (2.4.4)

In scenarios where the density of partons is sufficiently sparse, the photon typically interacts with
just a single parton. Given that the photon-parton interaction occurs over a time scale ∆tscatter
that is much shorter than τparton, the typical timescale for interactions among partons, these
processes are assumed to be temporally separable. This approximation enables the summation
of probabilities rather than quantum mechanical amplitudes when calculating the total cross-
section.

The cross-section for electron-proton DIS can therefore be expressed as a convolution of the
probability (or cross-section) of electron (or photon) scattering off a parton, and the probability
of finding that parton within the proton. The cross-section for electron scattering off a parton
i is denoted as σe−i, where i indicates a specific parton type. This parton carries a fraction ξ of
the total proton momentum, and σe−i encapsulates the hard component of the interaction.

The distribution of partons within the proton, representing the soft component, is char-
acterised by parton distribution functions (PDFs), which describe the likelihood of finding a
parton with a particular momentum fraction. The PDF for parton i is denoted by fi/p(ξ, µ,m).
The total cross-section for electron-proton DIS is as follows:

σe−p(x,Q,m) =
∑
i

∫ 1

x

dξσe−i

(
x

ξ
,Q, µ

)
fi/p(ξ, µ,m) +O

(
Λ2
QCD

Q2

)
. (2.4.5)

This formula integrates over all possible momentum fractions, and sums over all partons that
the electron can possibly interact with. m represents the typical interaction scale among partons
within the proton. The auxiliary mass scale µ defines what scales are considered hard or soft, it
only appears on the right-hand side. For notational simplicity, the interaction scale m will not
be shown explicitly in further derivations.

To provide more detail, the differential cross-section is expressed in terms of dimension-
less structure functions21 FL and FT , respectively for longitudinally and transversely polarised

21A structure function is a probability density function that characterises an interaction without having to
deal with all the underlying physics.
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virtual photons:

d2σ

dx dQ2
=

4πα2

xQ4

((
1− y +

y2

2

)
F2(x,Q

2)− y2

2
FL(x,Q

2)

)
, (2.4.6)

where

F2 = FL + FT and y =
Q2

xs
, (2.4.7)

with s being the square of the centre-of-mass energy. It’s important to highlight that an ex-
pression akin to the one for the cross-section exists for any fully inclusive22 hard-scattering
observable reliant on a hard mass scale Q. For instance, the structure functions FL and F2 can
be described as:

Fn(x,Q
2) =

∑
i

∫ 1

x

dξ

ξ
Cni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
fi(ξ, µ

2) +O
(
Λ2
QCD

Q2

)
, (2.4.8)

where the fi are universal PDFs that are not perturbatively calculable, and Cni are the coefficient
functions computable in perturbation theory as power series in the strong coupling constant αs

as follows:

Cni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
=
∑
k

C
(k)
ni

(
x

ξ
,
Q2

µ2

)
αk
s (µ

2), (2.4.9)

Mellin transformations facilitate the conversion of convolution integrals into products, greatly
simplifying the computation of structure functions like Fn in DIS. The Nth Mellin moment of
a function G, represented by GN (µ2), is defined by:

GN (µ2) =

∫ 1

0

dζζN−1G(ζ, µ2), (2.4.10)

Applying this to the structure function Fn, its Mellin transformed counterpart is defined as
Fn,N :

Fn,N (Q2) =
∑
i

Cni,N

(
αs(µ

2),
Q2

µ2

)
fi,N (µ2), (2.4.11)

where Cni,N and fi,N are the Mellin transforms of the coefficient functions and parton distribu-
tion functions, respectively. The transformation of Fn via Mellin moments proceeds as:

Fn,N (Q2) =

∫ 1

0

dxxN−1Fn(x,Q
2) (2.4.12)

=

∫ 1

0

dxxN−1
∑
i

∫ 1

x

dξCni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
fi(ξ, µ

2) (2.4.13)

=
∑
i

∫ 1

0

dx

∫ 1

x

dξ xN−1Cni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
fi(ξ, µ

2). (2.4.14)

22This term will become more clear in the section about Drell-Yan. For now it is enough to understand that
it means that you sum over all possible final states, without making distinctions.
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which, after rearranging the integration order and performing a substitution x′ = x/ξ, simplifies
to:

Fn,N (Q2) =
∑
i

∫ 1

0

dx

∫ 1

x

dξ xN−1Cni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
fi(ξ, µ

2) (2.4.15)

=
∑
i

∫ 1

0

dξ

∫ ξ

0

dxxN−1Cni

(
x

ξ
, αs(µ

2),
Q2

µ2

)
fi(ξ, µ

2) (2.4.16)

=
∑
i

∫ 1

0

dξ ξN−1fi(ξ, µ
2)

∫ 1

0

dx′ (x′)N−1Cni

(
x′, αs(µ

2),
Q2

µ2

)
(2.4.17)

=
∑
i

Cni,N

(
αs(µ

2),
Q2

µ2

)
fi,N (µ2). (2.4.18)

Here, the dependence on ξ and x′ in Cni,N and fi,N is removed by integrating over these
variables.

This formalism allows expressing Fn, or any hard-scattering observable that depends on a
hard momentum scale Q, in terms of simpler, product-based expressions suitable for compu-
tational analyses. Furthermore, it makes it possible to derive the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations. These equations form the theoretical basis for
Monte Carlo simulations used in predicting the outcomes of high-energy particle collisions.

2.4.2 Evolution Equations

The DGLAP equations are a specific set of RGEs where the dynamic variables are PDFs,
as those discussed in Section 2.3.1. These equations model how PDFs evolve with changes in
the mass scale, a critical aspect in describing parton dynamics up to the point of collision in
high-energy interactions. Starting from a known PDF at a certain mass scale, DGLAP equations
enable predictions of PDF behaviour at any other scale, where the internal complexity of hadrons
becomes progressively detailed at higher energies.

DGLAP equations incorporate ’splitting functions’, which quantify the likelihood that a
parton observed at a lower energy scale will manifest as multiple partons at a higher energy
scale. These functions are key to understanding both the emergence of new partons due to
energy input and the decay of a parton into multiple lower-energy partons.

To derive the DGLAP equations, the approach used for deriving the RGEs is extended.
Given that Eq. (2.4.8) remains invariant with respect to the scale µ, it is inferred that

d

d lnµ2
Fn,N (Q2) = 0. (2.4.19)

For simplicity23, the utilisation of the Mellin transform version of this equation from Eq. (2.4.11)
results in:

dCn,N

d(lnµ2)
fN + Cn,N

dfN
d(lnµ2)

= 0. (2.4.20)

Dividing through by the product fNCn,N and applying the chain rule:

d(lnCn,N )

d(lnµ2)
+
d(ln fN )

d(lnµ2)
= 0. (2.4.21)

23The flavour index is also left out for simplicity.
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By solving via separation of variables, the components are found to sum to zero independently:

d(ln fN )

d(lnµ2)
= γN = −d(lnCn,N )

d(lnµ2)
, (2.4.22)

where γN is a function computable via perturbation theory in terms of the strong coupling
constant αs:

γN (αs(µ
2)) =

∞∑
k=1

b
(k)
N αk

s (µ
2). (2.4.23)

Equation (2.4.22) enables a perturbative determination of the scale dependence of the PDFs,
fN , despite these functions not being directly computable through perturbation theory. The
evolution equation for fN are resolved from an initial scale µ2

0 to any scale µ2, giving:

fN (µ2) = fN (µ2
0) exp

(∫ lnµ2

lnµ2
0

γN (αs(µ
′2))d(lnµ′2)

)
(2.4.24)

= fN (µ2
0) exp

(∫ µ2

µ2
0

γN (αs(µ
′2))

µ′2 dµ′2

)
. (2.4.25)

This approach, analogously to Eq. (2.3.22), demonstrates the violation of scaling in PDFs. The
naming of this gamma function is not random, it is analogous to the anomalous dimension from
Section 2.3.1.

Transitioning back from Mellin-moment space to Bjorken-x space involves performing an
inverse Mellin transformation. The evolution equations then appear as follows24:

dfi(x, µ
2)

d(lnµ2)
=
∑
j

∫ 1

x

dξ

ξ
Pij

(
x

ξ
, αs(µ

2)

)
fj(ξ, µ

2), (2.4.26)

where Pij are the DGLAP splitting functions derived from the generalised anomalous dimensions
γij,N :

γij,N (αs(µ
′2)) =

∫ 1

0

dz zN−1Pij

(
z, αs(µ

2)
)
, (2.4.27)

implying that Pij corresponds to the inverse Mellin transform of γij,N . To simplify the no-

tation and calculations, PDFs are often presented in a momentum-weighted form, f̃i(x, µ
2) =

xfi(x, µ
2). Using this definition, the evolution equations for these functions are expressed as:

df̃i(x, µ
2)

d(lnµ2)
=
∑
j

∫ 1

x

dzPij(z, αs(µ
2))f̃j

(x
z
, µ2
)
. (2.4.28)

The evolution equations (2.4.26) or (2.4.28) are referred to as DGLAP evolution equations.
Note that the energy scale µ in the strong coupling αs(µ

2) does not need to be the same as the
factorisation scale µ in the PDF, in principle these can be different scales. In the section about
the Drell-Yan process this will be written explicitly. These equations are powerful because the

24Here, the dependence on parton flavours is reintroduced.
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splitting functions Pij can be deduced using QCD perturbation theory and expressed as power
series expansions in αs:

Pij(αs, z) =

∞∑
n=1

(αs

2π

)n
P

(n−1)
ij (z). (2.4.29)

The leading-order (LO) splitting functions P
(0)
ij illustrate the probability of a parton of type j

with momentum fraction xj emitting another parton and continuing as a parton of type i with
momentum fraction xi. The momentum fraction if the emitted parton is xj −xi = xj(1− z), or
z = xi/xj . These splitting functions embody fundamental interactions between partons, where
the specific parton type can be a gluon, quark, or antiquark. Charge conservation rules out

transitions, namely: P
(0)
q̄q (z) = P

(0)
qq̄ (z) = 0. This indicates that certain processes, such as a

quark turning into an antiquark (or vice versa) does not occur through gluon emission, due to
the conservation of electric charge and flavour (as can be seen Appendix A.1). It is important
to note this only counts for LO splitting functions25.

For other LO splitting functions, there is a symmetry between quarks and antiquarks, since
gluons interact identically with both. Thus:

P (0)
gqj (z) = P

(0)
gq̄j (z), (2.4.30)

P (0)
qig (z) = P

(0)
q̄ig (z), (2.4.31)

P (0)
qiqj (z) = P

(0)
q̄iq̄j (z). (2.4.32)

The graphical representations for these splitting processes are schematically depicted in Fig.
2.6. In this figure, p is the momentum of the hadron composed of the partons.

Figure 2.6: Schematic representation of a parton splitting process.

2.4.3 Drell-Yan Process

This thesis delves into the theory of proton-proton collisions, see Fig. 2.7 for an illustration
of such a process. Consider two colliding hadrons A and B at a centre-of-mass energy

√
s, a

parton from each hadron participates in the hard scattering process. The momentum-weighted

25Only higher-order processes can lead to flavour transitions. Diagrams representing these splittings are de-
tailed in Appendix A.2, each correlating to a specific nonzero lowest order splitting function.

Master’s Thesis 30 of 85



CHAPTER 2. BASIC ELEMENTS OF QUANTUM CHROMODYNAMICS

PDF for parton a from hadron A is represented by f̃a/A, and similarly, f̃b/B for parton b from
hadron B. The hard-scattering function Hab models the interaction between these partons,
resulting in various possible final states, such as hadronic jets or lepton pairs. If this process
leads to the production of a Z-boson or a virtual photon, which subsequently decays into a
lepton-antilepton pair, this is called the Drell-Yan process. The rest of this thesis will delve into
this process.

Figure 2.7: Illustration of the Drell-Yan process in a hadron-hadron collision.

Due to the involvement of two hadrons, the factorisation formula for this process is more
complex than that for DIS, it now involves two PDFs, one for each hadron. If the hard scale is
denoted by Q, the total cross-section for this process can be expressed as:

σ(s,Q2) =
∑
a,b

∫
dξ1

∫
dξ2f̃a/A(ξ1, µ

2
F )f̃b/B(ξ2, µ

2
F )Hab(ξ1ξ2s,Q

2, αs(µ
2
R), µ

2
F ) +O

(
Λ2
QCD

Q2

)
.

(2.4.33)
This equation introduces µF as the factorisation scale and µR as the renormalisation scale. They
are by definition not the same, however, they are often assumed to be equal in practice. The
PDFs are universal and can be determined from simpler processes like DIS, facilitating their
use in these hadron-hadron collisions. The cross-section that was just described refers to an
inclusive Drell-Yan cross-section, this is where the process of parton a + parton b goes to ll̄ +
all final states. So inclusive means that all final states are taken into account in the calculation.
On the other hand, exclusive Drell-Yan cross-sections are more restrictive and specify certain
characteristics of the final states. For example, ll̄+2 jets, here +all final states is left behind,
signifying the restrictive nature of an exclusive cross section. The inclusive approach depends
solely on the parton distributions in the hadrons and the hard interaction between the partons
a and b, independent of the specific final states or the interactions the partons a and b may have
had inside their respective hadrons before the collision. While exclusive cross-sections require
detailed descriptions of the final states and the partons’ pre-collision evolution, inclusive cross-
sections, such as those described by Eq. (2.4.33), do not. The latter simplifies the theoretical
analysis and computational modelling of high-energy particle collisions, focusing on the essential
dynamics of the interactions.
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Summary

Chapter 2, titled ”Basic Elements of Quantum Chromodynamics,” lays the theoretical ground-
work for understanding proton-proton collisions. It starts with an overview of Quantum Chro-
modynamics (QCD), explaining it as a non-Abelian gauge theory based on the SU(3) symmetry
group, which describes the strong interactions between quarks and gluons. The chapter details
the gauge principle, emphasising its role in ensuring local gauge invariance, and introduces the
QCD Lagrangian to describe the dynamics of quarks and gluons. The quantisation of gauge
field theories is explored, highlighting differences between Abelian and non-Abelian cases. Key
concepts such as renormalisation, the renormalisation group, and the running of the coupling
constant are discussed, illustrating how the strong force behaves differently at various energy
scales. The chapter also covers hard scattering processes, factorisation, evolution equations, and
the Drell-Yan process, all of which are crucial for analysing hadron collisions and understanding
the intrinsic transverse momentum distributions of partons within hadrons. This knowledge is
essential for the thesis’s focus on the inclusive Drell-Yan differential cross sections in the trans-
verse momentum of the lepton pair and their behaviour across different center-of-mass energies
in proton-proton collisions.

Next Chapter

The next chapter builds on the foundational concepts introduced in this chapter by applying
the theoretical framework of Quantum Chromodynamics to a practical computational method,
called Parton Branching. It starts with the reformulation of the renormalisation group evolu-
tion equations, specifically the DGLAP equations for PDFs, and allows to, both recast them as
an iterative Monte Carlo problem, and to treat by analogous methods the evolution of trans-
verse momentum dependent (TMD) parton distributions that take transverse momentum into
account.
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Parton Branching Method

The Parton Branching (PB) method allows the description of the QCD evolution of parton
distribution functions (PDFs) and transverse momentum dependent (TMD) distributions. The
method will be introduced by first reformulating the renormalisation group evolution equations
for PDFs. These are the DGLAP equations and they are explored in Section 2.4.2. Using the
unitarity formulation approach, the numerical solutions of the DGLAP equations are enabled
through an iterative Monte Carlo process by categorising branchings as resolvable and non-
resolvable and utilising Sudakov form factors. These form factors are crucial for modelling the
evolution between scales without a resolvable branching. In this context, ’branching’ refers to the
division of one parton into two, as governed by the splitting functions discussed in Section 2.4.2
(detailed in Appendix A.2). A resolvable branching is simply a parton splitting that becomes
observable when moving to a higher energy scale. Conversely, a non-resolvable branching is a
parton splitting that can’t be observed. In other words, it’s a branching event that does not
significantly alter the measurable characteristics of the partons beyond the resolution limits of
the theory.

The first three sections of the chapter are devoted to the case of PDFs. The last two sections
of the chapter are devoted to TMDs. We follow closely the approach in [11].

3.1 Unitarity Approach to the DGLAP Equations

The DGLAP equations, with momentum-weighted PDFs are:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ 1

x

dzPab(αs, z)f̃b

(x
z
, µ2
)
. (3.1.1)

The unitarity approach moves from the observation that, if a finite resolution is applied in
the transverse distance between partons, by energy and momentum conservation, the ability to
resolve partons with momentum fractions z very close to z = 1 is restricted. Therefore, a cutoff
zM is introduced such that z > zM and 1 − zM ≈ O(ΛQCD/µ), where µ relates to the hard-
scattering scale. Omitting these non-resolvable emissions can lead to unitarity violations, which
the parton branching method addresses by incorporating no-branching probabilities (Sudakov
form factors) and real-emission probabilities into the evolution equations. The introduction of
the resolution scale zM is formalised in Section 3.2.
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The framework is established by beginning with decomposing the splitting functions Pab(αs, z):

Pab(αs, z) = Dab(αs)δ(1− z) +Kab(αs)
1

(1− z)+
+Rab(αs, z), (3.1.2)

where the plus-distribution 1/(1− z)+ is defined through its action on any test function ϕ:∫ 1

0

1

(1− z)+
ϕ(z) dz =

∫ 1

0

ϕ(z)− ϕ(1)

1− z
dz. (3.1.3)

Equation (3.1.2) delineates the singular behaviour of the splitting functions Pab(αs, z) as z
approaches 1, categorising them into three distinct types: the δ(1−z) distribution, the 1/(1−z)+
distribution, and the remaining terms in Rab(αs, z), which include logarithmic contributions in
ln(1− z) and analytic terms as z → 1. The components δ(1− z) and 1/(1− z)+ in the splitting
functions are flavour-diagonal,

Dab(αs) = δabda(αs), Kab(αs) = δabka(αs), (3.1.4)

assuming no summation over repeated indices. The functions da and ka, along with the functions
Rab in Eq. (3.1.2) can be expanded in perturbation series:

da(αs) =

∞∑
n=1

(αs

2π

)n
d(n−1)
a , (3.1.5)

ka(αs) =

∞∑
n=1

(αs

2π

)n
k(n−1)
a , (3.1.6)

Rab(αs, z) =

∞∑
n=1

(αs

2π

)n
R

(n−1)
ab (z). (3.1.7)

The analytical approach of this section is solely based on the decomposition of Eq. (3.1.2)
and remains valid on all orders of αs. In practical scenarios, a specific truncation from Eqs.
(3.1.5–3.1.7) is employed, with numerical analyses in this thesis relying on this expansion up to
next-to-leading order (NLO), or n = 2.

The symmetries of charge conjugation and SU(Nf ) flavour enforce that the splitting func-
tions Pab adhere to certain relationships at all orders:

Pqig = Pq̄ig ≡ Pqg, Pgqi = Pgq̄i ≡ Pgq, (3.1.8)

Pqiqj = Pq̄iq̄j ≡ PNS
qq δij + PS

qq, Pqiq̄j = Pq̄iqj ≡ PNS
qq̄ δij + PS

qq̄, (3.1.9)

where the notations NS and S represent non-singlet and singlet, respectively. Consequently,
Pab features three independent quark-gluon or gluon-gluon components: Pqg, Pgq and Pgg, and
four quark-quark components: the non-singlet components PNS

qq and PNS
qq̄ , alongside the singlet

components PS
qq and PS

qq̄. Alternatively, the quark-quark components can be viewed as the three
combinations that diagonalise the evolution of non-singlet distributions, plus one governing the
evolution of the singlet quark distribution in conjunction with gluons.

At the one-loop level, it is observed that PNS
qq = PS

qq = PS
qq̄ = 0, signifying that all quark-

quark components are equivalent at this order. The coefficients for the perturbative expansions
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outlined in Eqs. (3.1.5–3.1.7) (da, ka, and Rab) are detailed in [18–20] and are provided as
follows:

d(0)q =
3

2
CF , d(0)g =

11

6
CA − 2

3
TRNf , (3.1.10)

k(0)q = 2CF , k(0)g = 2CA, (3.1.11)

R(0)
gg (z) = 2CA

[
1− z

z
+ z(1− z)− 1

]
, (3.1.12)

R(0)
gqi(z) = R

(0)
gq̄i(z) = CF

1 + (1− z)2

z
, (3.1.13)

R(0)
qig(z) = R

(0)
q̄ig(z) = TR

[
z2 + (1− z)2

]
, (3.1.14)

R(0)
qiqj (z) = R

(0)
q̄iq̄j (z) = −CF (1 + z)δij , (3.1.15)

R
(0)
qiq̄j (z) = R

(0)
q̄iqj (z) = 0, (3.1.16)

where the SU(Nc = 3) colour factors are specified as (for colour algebra, see Ref. [1] on p 65-68)

CA = Nc, CF =
N2

c − 1

2Nc
, Tr(tktm) = δkmTR =

1

2
δkm. (3.1.17)

At the two-loop level, the coefficients da, ka, and Rab begin to exhibit dependencies on the
chosen renormalisation scheme. Following Ref. [11], the MS scheme1 is adopted. The detailed
coefficients can be found in [21, 22]. At this level, PNS

qq , PS
qq, and PS

qq̄ become non-zero, thus

lifting the previous degeneracy, although PS
qq = PS

qq̄ still holds. The two-loop coefficients for da
and ka are provided by

d(1)q = C2
F

(
3

8
− π2

2
+ 6ζ(3)

)
+ CFCA

(
17

24
+

11π2

18
− 3ζ(3)

)
− CFTRNf

(
1

6
+

2π2

9

)
,

(3.1.18)

d(1)g = C2
A

(
8

3
+ 3ζ(3)

)
− 4

3
CATRNf − CFTRNf , (3.1.19)

where ζ denotes the Riemann zeta function, and

k(1)q = 2CFΓ, k(1)g = 2CAΓ, (3.1.20)

with Γ = CA

(
67

18
− π2

6

)
− TRNf

10

9
.

The detailed expressions for the two-loop Rab coefficients are more extensive and are provided
in Appendix A.3. As previously mentioned, these formulations through two loops will be used
for the NLO numerical calculations in this thesis.

3.2 Nonresolvable and Resolvable Branchings

This section introduces the soft-gluon resolution parameter [12] into the evolution equations
(3.1.1), this parameter is denoted by zM . This is achieved by dividing the integration on the

1This is the modified minimal subtraction scheme, which incorporates both the divergent parts and a universal
constant that appear in Feynman diagram evaluations into the counter-terms.
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right-hand side into two regions: the resolvable region (z < zM ) and the non-resolvable region
(zM < z), where 1− zM ∼ O(ΛQCD/µ). Then the decomposition (3.1.2) is applied within each
region, including terms to (1− zM )0 while the contributions of order O(1− zM )n for n ≥ 1 are
omitted.

The contribution from the Kab term as z approaches 1, utilising the plus-distribution from
Eq. (3.1.3), is given by:∑

b

∫ 1

x

dz
Kab(αs)

(1− z)+
f̃b

(x
z
, µ2
)
=
∑
b

∫ 1

x

dz
Kab(αs)

1− z
f̃b

(x
z
, µ2
)

−
∑
b

∫ 1

0

dz
Kab(αs)

1− z
f̃b(x, µ

2). (3.2.1)

For the non-resolvable region z ∈]zM , 1[ the momentum-weighted PDF is expanded as:

f̃b

(x
z
, µ2
)
= f̃b(x, µ

2) + (1− z)
∂f̃b
∂ lnx

(x, µ2) +O(1− z)2. (3.2.2)

Using Eq. (3.2.2), the Eq. (3.2.1) can be rewritten as:∑
b

∫ 1

x

dz
Kab(αs)

(1− z)+
f̃b

(x
z
, µ2
)
=
∑
b

∫ zM

x

dz
Kab(αs)

1− z
f̃b

(x
z
, µ2
)

−
∑
b

∫ zM

0

dz
Kab(αs)

1− z
f̃b(x, µ

2). (3.2.3)

Next, the contributions from the other terms in Eq. (3.1.2), Dab and Rab, are considered.
The contribution from Rab is combined with the first term on the right-hand side of Eq. (3.2.3)
to add a factor proportional to f̃b(x/z, µ

2) to the evolution. The contribution from Dab, using
the δ(1− z), is combined with the second term on the right-hand side of Eq. (3.2.3) to yield a
factor proportional to f̃b(x, µ

2).
Notably, Rab has no power divergences of the form (1− z)−n and is at most logarithmic as

z approaches 1, meaning integration over Rab for z > zM results in O(1− zM ) contributions:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ zM

x

dz

(
Kab(αs)

1− z
+Rab(αs, z)

)
f̃b

(x
z
, µ2
)

+
∑
b

(∫ 1

x

Dab(αs)δ(1− z)dz −
∫ zM

0

Kab(αs)

1− z
dz

)
f̃b(x, µ

2). (3.2.4)

The first line of this equation includes contributions from real parton emissions, while the second
line includes contributions from virtual corrections. The kernels in the bracket of the first line
are defined as real-emission branching probabilities P

(R)
ab (αs, z):

P
(R)
ab (αs, z) =

Kab(αs)

1− z
+Rab(αs, z). (3.2.5)

These real-emission branching probabilities P
(R)
ab (αs, z) are derived from the splitting functions

Pab(αs, z) in Eq. (3.1.2) by excluding the δ(1− z) terms and substituting the plus-distribution
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1/(1− z)+ with 1/(1− z). Thus, it can be reformulated as:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ zM

x

dzP
(R)
ab (αs, z)f̃b

(x
z
, µ2
)

+
∑
b

(∫ 1

x

Dab(αs)δ(1− z)dz −
∫ zM

0

Kab(αs)

1− z
dz

)
f̃b(x, µ

2). (3.2.6)

The virtual terms in the second line of this equation are addressed by applying the momentum
sum rule, ∑

c

∫ 1

0

zPca(αs, z) dz = 0 (for any a). (3.2.7)

Specifically, this rule is integrated into the evolution equations by subtracting the integral of
the momentum sum from the expression in the curly brackets of the second line in Eq. (3.2.6).
This rule allows a systematic replacement of the D-terms in Eq. (3.1.2) within the evolution
equations with K-terms and R-terms.

Given the diagonal nature of Dab and Kab terms as outlined in Eq. (3.1.4), indices are
rearranged and from Eq. (3.2.6) it is derived that:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ zM

x

dzP
(R)
ab (αs, z)f̃b

(x
z
, µ2
)
+
∑
c

(∫ 1

x

Dca(αs)δ(1− z) dz

−
∫ zM

0

Kca(αs)

1− z
dz −

∫ 1

0

zPca(αs, z) dz

)
f̃a(x, µ

2). (3.2.8)

Implementing the decomposition (3.1.2) for Pca(αs, z) in the last term of Eq. (3.2.8) reveals
that the Dca term cancels the first term in the curly brackets, whereas the Rca term remains
valid within z < zM , up to order O(1− zM ). The Kca term combines with the second term in
the brackets to simplify the evolution equation:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ zM

x

dz P
(R)
ab (αs, z)f̃b

(x
z
, µ2
)

−
∑
c

(∫ zM

0

dz z
Kca(αs)

1− z
+

∫ zM

0

dz zRca(αs, z)

)
f̃a(x, µ

2). (3.2.9)

By applying Eq. (3.2.5), the evolution equations (3.2.6) are expressed as:

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

{∫ zM

x

dz P
(R)
ab (αs, z)f̃b

(x
z
, µ2
)

−
∫ zM

0

dz zP
(R)
ba (αs, z)f̃a(x, µ

2)

}
. (3.2.10)

Eq. (3.2.10) redefines the evolution dynamics of each parton a via the real-emission probabilities

P
(R)
ab and P

(R)
ba , and the resolution parameter zM .

The Sudakov form factor ∆a(zM , µ
2, µ2

0) is introduced because it is computationally advanta-
geous as it can be used in a Monte Carlo procedure. This form factor represents the probability
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that parton a does not undergo branching between scales µ0 and µ, given the resolution param-
eter zM and it is defined as:

∆a(zM , µ
2, µ2

0) = exp

(
−
∑
b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0

dz zP
(R)
ba (αs, z)

)
. (3.2.11)

Using this Sudakov factor and noting that:

∂∆a(zM , µ
2, µ2

0)

∂ lnµ2
= −∆a(zM , µ

2, µ2
0)
∑
b

∫ zM

0

dz zP
(R)
ba (αs, z). (3.2.12)

Eq. (3.2.10) results in2

∂f̃a(x, µ
2)

∂ lnµ2
=
∑
b

∫ zM

x

dz P
(R)
ab (αs, z)f̃b

(x
z
, µ2
)
+

1

∆a(µ2)

∂∆a(µ
2)

∂ lnµ2
f̃a(x, µ

2). (3.2.13)

Reformulating the evolution equation using real-emission probabilities P
(R)
ab and Sudakov form

factors, results in a similar the structure as in Eq. (3.1.1):

∂

∂ lnµ2

(
f̃a(x, µ

2)

∆a(µ2)

)
=
∑
b

∫ zM

x

dz P
(R)
ab (αs, z)

f̃b(x/z, µ
2)

∆a(µ2)
. (3.2.14)

The integration of this equation, while assuming ∆a(µ
2
0) = 1, gives the following:

f̃a(x, µ
2) = ∆a(µ

2, µ2
0)f̃a(x, µ

2
0)

+
∑
b

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ

2, µ2
0)

∆a(µ′2, µ2
0)

∫ zM

x

dzP
(R)
ab (αs(µ

′2), z)f̃b

(x
z
, µ′2

)
, (3.2.15)

where the energy scale arguments are explicitly stated for αs and the Sudakov factor ∆a. The
argument zM is not restored in the Sudakov factor, since it will not vary when going to higher
steps in the iteration.

The introduction of the Sudakov form factor transforms the evolution equation into a type
of integral equation reminiscent of the Fredholm equation:

f(t) = f0(t) + λ

∫ b

a

K(t, y)f(y) dy, (3.2.16)

which can be iteratively solved as an infinite series:

f(t) = lim
n→∞

n∑
i=0

λiui(t), (3.2.17)

2Where zM and µ20 are removed from the argument list for better readability
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where the sequence is defined as follows:

u0(t) = f0(t), (3.2.18)

u1(t) =

∫ b

a

K(t, y)f0(y) dy, (3.2.19)

u2(t) =

∫ b

a

∫ b

a

K(t, y1)K(y1, y2)f0(y2) dy2 dy1, (3.2.20)

...

un(t) =

∫ b

a

. . .

∫ b

a

∫ b

a

K(t, y1) · · ·K(yn−1, yn)f0(yn) dyn . . . dy2 dy1. (3.2.21)

The splitting functions are positive definite for LO in αs; however, this is does not hold at
NLO. Despite the integrands potentially being negative at NLO, the integrals of the splitting
functions, which contribute to the evolution kernels and Sudakov form factors, remain positive.
This enables the application of a Monte Carlo method for solving the evolution equations, which
will be used in the computer code for the simulations in this thesis. The next section will detail
this iterative procedure.

3.3 The Iterative Procedure

The parton branching method, clarified by Equation (3.2.15), offers a systematic approach
for evolving parton distributions from an initial scale µ0 to a final scale µ. The first term in
(3.2.15) can be intuitively understood. It involves the PDF at the initial scale µ0, modulated
by the Sudakov form factor up to scale µ. This term captures the scenario where a parton of
type a evolves from µ0 to µ without any intermediate emissions. This is given in the schematic
(a) in Figure 3.1 and represents the first iteration in the evolution process.

The Fredholm nature of the equations result in the full PDF, denoted f̃a(x, µ
2), being ex-

pressible as a convergent series comprising of contributions from each iterative step of the evo-
lution:

f̃a(x, µ
2) =

∞∑
i=0

f̃ (i)a (x, µ2). (3.3.1)

Here, the term f̃
(0)
a (x, µ2) coming from Eq. (3.2.15), given by

f̃ (0)a (x, µ2) = ∆a(µ
2, µ2

0)f̃a(x, µ
2
0), (3.3.2)

serves as an initial approximation of f̃a(x, µ
2), approximating the PDF after the first step of the

branching without any emissions. Subsequent terms can be derived by incorporating this result
back into the iterative integral in Eq. (3.2.15), yielding the contribution from the next step:

f̃ (1)a (x, µ2) =
∑
b

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ

′2, µ2
0)

∆a(µ2, µ2
0)

∫ zM

x

dzP
(R)
ab (αs, z)f̃

(0)
b

(x
z
, µ′2

)
(3.3.3)

=
∑
b

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ

′2, µ2
0)

∆a(µ2, µ2
0)

∫ zM

x

dzP
(R)
ab (αs, z)∆b(µ

′2, µ2
0)f̃b

(x
z
, µ2

0

)
. (3.3.4)
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Figure 3.1: Illustration of the iteration process: a parton can evolve from scale µ0 to scale µ
without any branching (a), having one branching (b), or two branchings (c). It goes further on
like this, also the relevant variables are indicated.

In this expression, f̃
(1)
a (x, µ2) corresponds to the evolution of a parton type b into a parton type

a, incorporating a branching at scale µ′. This represents an evolution involving an emission,
as illustrated in schematic (b) in Fig. 3.1. The momentum fraction of the emitted parton is
derived from x0 − x = (1− z)x0, yielding z = x/x0. The probability for the parton with flavour
b to evolve from µ0 to µ′ without any resolvable branching is given by the Sudakov form factor
∆b(µ

′2), which results in an updated approximation to the full PDF:

f̃a(x, µ
2) ≈ ∆a(µ

2, µ2
0)f̃a(x, µ

2
0)

+
∑
b

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ

2, µ2
0)

∆a(µ′2, µ2
0)

∫ zM

x

dzP
(R)
ab (αs, z)∆b(µ

′2, µ2
0)f̃b

(x
z
, µ2

0

)
. (3.3.5)

To incorporate the effects of a second branching, the previous needs to be repeated. The
evolution model starts with a parton of flavour b and momentum fraction x0 at scale µ0. This
parton evolves into a parton of flavour a with a reduced momentum fraction x at scale µ,
undergoing two branchings in the process. Initially, at scale µ′, the parton transitions to flavour c
with momentum fraction x1. The momentum fraction ratio z1 = x1/x0 quantifies the momentum
fraction carried by parton c relative to parton b. A subsequent branching at scale µ′′ further
modifies the parton c to flavour a. The corresponding momentum fraction ratio z2 = x/x1
delineates the transition. This detailed evolution is illustrated in schematic (c) of Fig. (3.1).

Considering the iterative nature of the branching, the second branching represents an ad-

ditional modification to the initial branching. The function f̃
(1)
a quantifies the PDF post-first

branching. To compute f̃
(2)
a , appropriate energy scales and momentum fractions must be used.

Specifically, the function arguments for f̃
(1)
a are set as µ′′2 for the energy scale and x1 = x/z2
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for the momentum fraction, reflecting the conditions post-second branching, illustrated as:

f̃ (2)a (x, µ2) =
∑
c

∫ µ2

µ2
0

dµ′′2

µ′′2
∆a(µ

2, µ2
0)

∆a(µ′′2, µ2
0)

∫ zM

x

dz2P
(R)
ac (αs(µ

′′2), z2)f̃
(1)
c

(
x

z2
, µ′′2

)
. (3.3.6)

To further clarify this expression, f̃
(1)
c (x/z2, µ

′′2) is substituted in3

f̃ (2)a (x, µ2) =
∑
c

∫ µ2

µ2
0

dµ′′2

µ′′2
∆a(µ

2, µ2
0)

∆a(µ′′2, µ2
0)

∫ zM

x

dz2P
(R)
ac (αs(µ

′′2), z2)

×
∑
b

∫ µ′′2

µ2
0

dµ′2

µ′2
∆c(µ

′′2, µ2
0)

∆c(µ′2, µ2
0)

∫ zM

x/z2

dz1P
(R)
cb (αs(µ

′2), z1)∆b(µ
′2, µ2

0)f̃b

(
x

z1z2
, µ2

0

)
.

(3.3.7)

Starting from a parton b at scale µ0 and momentum fraction x0 = x
z1z2

, with f̃b

(
x

z1z2
, µ2

0

)
depicting the parton’s distribution. The evolution from µ0 to µ′ without resolvable emission
is characterised by ∆b(µ

′2, µ2
0). The branching into parton c at µ′ with the associated mo-

mentum fraction (1 − z1)x0 occurs with probability P
(R)
cb (αs(µ

′2), z1). Subsequently, parton c
evolves to µ′′ without resolvable emissions, managed by the ratios of the Sudakov form fac-
tors ∆c(µ

′′2, µ2
0)/∆c(µ

′2, µ2
0). The final branching at µ′′ results in a parton of flavour a with

probability P
(R)
ac (αs(µ

′′2), z2) for the momentum fraction (1 − z2)x1, completing the series of
transformations before evolving from µ′′ to µ represented by ∆a(µ

2, µ2
0)/∆a(µ

′′2, µ2
0).

This methodology underscores the necessity for a Monte Carlo scheme in order to simulate
these iterative processes, where the iterations will be limited by reaching the scale µ. Fur-
thermore, the iterative model naturally generates transverse momenta at each branching, this
occurs when a parton is emitted. However, these are not yet incorporated in this model, which
focusses solely on collinear distributions. To extend towards transverse momentum dependent
parton distribution functions (TMD PDFs or TMDs), an adaptation of the equations in (3.2.15)
is required. This adjustment allows for the integration of transverse momenta in branchings,
enhancing the model’s complexity and realism.

The transition from collinear to transverse momentum considerations involves a connection
between the evolution scale µ and the kinematic variables, this is called kinematic mapping.
This will be further explained in subsequent section.

3.4 TMDs and Ordering Variables

The transverse momentum dependent parton distribution (TMD) Aa(x, k⊥, µ
2) characterises

a parton of type a with longitudinal momentum fraction x and transverse momentum k⊥
4 at the

scale µ. This TMD is more susceptible to infrared effects compared to the collinear counterpart
f̃a(x, µ

2). Infrared sensitivity implies a dependency on low-energy or long-distance physics,
complicating perturbative calculations (see Ref. [23], p193). Without going into detail, to
address this issue in the PB TMD framework, a specific conditions is required. Like those

3The variables which are used, align with the previous definition of a two-branching process.
4The notation that is used follows k = (k0, k1, k2, k2) = (Ek, k⊥, k

2) and k⊥ = (k1, k2) with k⊥ = |k⊥|.
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provided by angular ordering, which is detailed in references such as [23] and further discussed
in [24] regarding its necessity for TMDs.

Referring to schematic (b) in Fig. 3.1, consider a branching event involving an emitted
parton of flavour c. The longitudinal direction is denoted as the z-axis, with the transverse
plane defined by two perpendicular directions. The transverse momenta for partons a, b, and
the emitted parton c are represented by the vectors k⃗a,⊥, k⃗b,⊥, and k⃗c,⊥, respectively.

The kinematic mapping for angular ordering [25] is given by:

µ′ =
|kc,⊥|
1− z

=
q⊥

1− z
(3.4.1)

The transverse momentum of the emitted parton receives its own symbol q⊥, because it has
computational significance. This will become clear in the subsequent sections. During hard
scattering, the transverse momentum of the interacting parton is the vector sum of the trans-
verse momenta from all emitted partons plus the original parton’s momentum. Momentum
conservation in each branching dictates that the transverse momenta of the resulting partons a
and c are equal and opposite. Thus, the total5 transverse momentum of the parton entering the
hard scattering is:

k⊥ = kb,⊥ −
∑
c

kc,⊥. (3.4.2)

The relationship between the TMD Aa(x,k⊥, µ
2) and the collinear PDF f̃a(x, µ

2) is established
by integrating the TMD over the transverse momentum and weighting by the longitudinal
momentum fraction: ∫

xAa(x,k⊥, µ
2)
d2k⊥

π
= f̃a(x, µ

2). (3.4.3)

Further, from the angular ordering in (3.4.1) and the parton branching equation (3.2.15), the
evolution equation for TMDs can be derived as:

Ãa(x,k⊥, µ
2) = ∆a(µ

2, µ2
0)Ãa(x,k⊥, µ

2
0) +

∑
b

∫
d2µ′

πµ′2
∆a(µ

2, µ2
0)

∆a(µ′2, µ2
0)
Θ(µ2 − µ′2)Θ(µ′2 − µ2

0)

×
∫ zM

x

dzP
(R)
ab (αs, z)Ãb

(x
z
,k⊥ + (1− z)µ′, µ′2

)
, (3.4.4)

where Ãa denotes the momentum-weighted distribution defined by Ãa := xAa. The iterative
approach applied to f̃a(x, µ

2) is similarly employed here, following the series

Ãa(x,k⊥, µ
2) =

∞∑
i=0

Ã(i)
a (x,k, µ2), (3.4.5)

with

Ã(0)
a (x,k⊥, µ

2) = ∆a(µ
2)Ãa(x,k⊥, µ

2
0), (3.4.6)

Ã(1)
a (x,k⊥, µ

2) =
∑
b

∫
d2µ′

πµ′2
∆a(µ

2)

∆a(µ′2)
Θ(µ2 − µ′2)Θ(µ′2 − µ2

0)

×
∫ zM

x

dzP
(R)
ab (αs, z)∆b(µ

′2)Ãb

(x
z
,k⊥ + (1− z)µ′, µ2

0

)
. (3.4.7)

5Instead of the process that occurs in schematic (b) in Fig. 3.1, now there can be multiple emitted partons.
Which necessitates the summation over all emitted partons.
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and continuing accordingly. This includes the angular ordering successfully in the PB TMD
model. This model is integral to simulations of proton-proton collisions within the software this
thesis employs, describing the evolution of partons that participate in the hard interaction and
enabling predictions of parton emissions prior to the hard process.

Analogously to the case of ordinary, collinear PDFs, the distribution Ãa(x,k⊥, µ
2
0) at the

starting scale µ0 of the evolution is a nonperturbative boundary condition to the evolution
equation, and is to be determined from experimental data (as in Ref. [11]). In general, the
nonperturbative starting distribution Ãa(x,k⊥, µ

2
0) can be flavour- and x-dependent; however,

for simplicity a factorised form is used:

Ãa(x,k⊥, µ
2
0) = f̃a(x, µ

2
0) ·

exp
(
−|k⊥|2/σ2

)
2πσ2

, (3.4.8)

in which the intrinsic k⊥-distribution is given by a Gaussian distribution with width σ = qs/
√
2,

and it is independent of parton flavour and x. The parameter qs is called the intrinsic-kT
parameter.

A remark can be made that the structure of the TMD distribution is not the same for quarks
and gluons in the PB method: both the evolution kernels P (R) and the intrinsic distributions
A0 are in general different for different parton species. Taking a simple flavour-independent
(and x-independent) Gaussian in the starting distribution is not a feature of the PB method,
but rather it is motivated by the finding in Ref. [26] that the precision DIS data from HERA
used for the fits are not sensitive to the flavour structure of the intrinsic distribution.

3.5 Dynamical Resolution Scale

The previously discussed PB formalism formulates the QCD evolution of TMD distribution
functions by considering soft-gluon coherence effects. This formalism introduces a soft-gluon
resolution scale, which distinguishes resolvable from non-resolvable branchings, exploiting the
relationship between transverse-momentum recoils and branching scales. An important point
in obtaining TMD distributions from the PB method concerns the ordering variables used to
perform the branching evolution. Because the transverse momentum generated radiatively in
the branching is sensitive to the treatment of the non-resolvable region [27], a supplementary
condition is needed to relate the transverse momentum recoil and the scale of the branching.
This relation embodies the well-known property of angular ordering, and it implies that the soft-
gluon resolution scale can be dynamical, i.e. dependent on the branching scale. This dynamic
approach contrasts with fixed resolution scales and accounts for the angular ordering property
of soft-gluon emissions.

The implementation of a dynamical resolution scale starts by introducing the parameter q0,
it is the minimum transverse momentum for an emitted parton that can be resolved. In other
words:

q⊥ > q0. (3.5.1)

Using the angular ordering relation of Eq. 3.4.1 in this inequality, the condition for resolving
soft gluons becomes:

z < zM (µ′) = 1− q0/µ
′ (3.5.2)

where q0 ≳ ΛQCD.
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This means that the full kernels6 of Eqs. (3.2.15) and (3.4.4) are supported in the resolvable
emission region x < z < zM . To understand this in detail, several key components of the
evolution equations need to be considered. Although some of it has been previously explained,
it is important to reiterate certain things in this context.

Evolution equation (3.4.4) describes how the transverse momentum dependent distributions
evolve with respect to the energy scale. This equation involves probabilities of parton branchings
or emissions. The kernels are functions that describe the probability density of parton b splitting
into parton a and c with a specific fraction of momentum z at a specific scale µ.

The resolvable emission region is defined by the constraints on the variable z:

� x < z: Ensures that the momentum fraction z transferred during the branching is greater
than the longitudinal momentum fraction x of the parton in the hadron.

� z < zM : Ensures that the branching is within the resolvable range, meaning the emission
can be resolved (detected or distinguished) given the resolution scale zM .

The kernels are designed to be active only within the range where x < z < zM . This means that
only emissions resulting in a parton carrying a fraction of momentum z within this range are
considered in the evolution process. Emissions outside this range are considered non-resolvable
and do not contribute to the evolution described by these kernels. This constraint ensures that
the evolution equations account only for emissions that can be physically resolved, given the
resolution scale. This aligns with the practical limitations of detecting very soft or very collinear
emissions in high-energy experiments. By focusing on the resolvable emission region, the evolu-
tion equations effectively models the realistic scenario in high-energy collider experiments where
only emissions above a certain threshold can be detected and analysed.

The support of the evolution kernels in the resolvable emission region can be further under-
stood by considering two distinct cases based on the value of x relative to 1− q0/µ0:

� Case 1: x ≥ 1− q0/µ0

� Case 2: x < 1− q0/µ0

These can be seen in Figure 3.2 [24]. By considering these two cases, it can be better understood
how the evolution kernels are supported in different regions depending on the value of x. This
distinction is crucial for accurately modelling the evolution of TMD distributions and ensuring
that only physically detectable emissions are considered in theoretical predictions.

Summary

Chapter 3, titled ”Parton Branching Method,” builds on the principles of QCD introduced
in Chapter 2 by presenting the Parton Branching (PB) method to describe the QCD evolution
of both PDFs and TMDs. This method reformulates these evolution equations using a unitarity
approach, distinguishing between resolvable and non-resolvable parton branchings and employ-
ing Sudakov form factors to model the probability of no branching events between scales. The
PB method is implemented numerically through iterative Monte Carlo techniques, enabling the
evolution of parton distributions within hadrons from lower to higher energy scales. A signifi-
cant aspect of this chapter is the extension of the PB method to include Transverse Momentum

6These full kernels are real splitting functions, P (R), together with the theta-functions, Θ, added by the
angular ordering.
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Figure 3.2: Resolvable and non-resolvable emission regions in the (z, µ′) plane for evolution in
the cases (a) 1 > x ≥ 1− q0/µ0 and (b) 1− q0/µ0 > x > 0.[24]

Dependent parton distributions (TMDs), by explaining that the PB TMD method incorporates
a kinematic mapping that connects the evolution scale with the transverse momentum of the
emitted parton. Which is crucial for accurately describing the TMDs in processes like Drell-
Yan production and for understanding parton dynamics. Furthermore, it also introduces the
factorised form of the TMD; the collinear part together with an intrinsic transverse (kT ) dis-
tribution. The chapter ends with the introduction of the dynamical resolution scale zM , this is
a new approach to the treatment of soft gluons and the resolvable and non-resolvable parton
emissions. It is based on the kinematic mapping that was done in order to take the transverse
momentum into account in the PB TMD method. This comprehensive approach ensures that
the complexities of TMDs are effectively managed within the PB framework.

Next Chapter

The PB TMD approach introduced in this chapter can be used to analyse the DY lepton pair
hadroproduction process, which is introduced in section 2.4.3. The next chapter will establish
the inclusive DY differential cross section in the transverse momentum of the lepton pair, carried
by the exchanged vector boson. It will also show literature results to validate it’s application to
DY.
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Chapter 4

Application of PB TMD Method
to Drell-Yan

The Drell-Yan (DY) process is crucial in high-energy physics for several reasons. It’s a key
tool in precision electroweak measurements because it provides a clean and well-understood
production channel. DY data are also essential for determining parton distribution functions
(PDFs), and at low masses and energies, they help us study the internal motion of partons.
Additionally, DY is important for understanding how QCD works, especially in terms of how
particles evolve and how soft gluons behave. When jets are added to DY processes, they become
even more significant because these scenarios are often involved in key precision measurements
and searches for new physics beyond the Standard Model. DY + jets also form an important
background in many experiments, making them a critical part of high-energy physics research.

To study the DY process, consider the collinear factorisation formula for the inclusive DY
cross section given in Eq. (2.4.33). This formula effectively describes the total cross section by
integrating over all possible transverse momenta of the produced lepton pair. However, when the
transverse momentum (pT ) distribution of the DY process is of interest, the situation becomes
more complex.

The formula in Eq. (2.4.33) relies on collinear factorisation, where PDFs f(x, µ2) depend
only on the longitudinal momentum fraction x and a factorisation scale µ. This approach works
well for the total cross section but is not sufficient when considering the pT -differential cross
section, where the effects of transverse momenta k⊥ emitted during parton branching become
significant. To accurately describe the pT distribution, it must go beyond collinear factorisation
and incorporate Transverse Momentum Dependent (TMD) parton distributions, Ã(x, k⊥, µ

2),
as defined in Eqs. (3.4.4) and (3.4.5).

In this generalisation, the collinear PDFs f(x, µ2) in Eq. (2.4.33) are replaced by the full
TMD distributions A(x, k⊥, µ

2), which depend on both the longitudinal momentum fraction x
and the transverse momentum k⊥ of the incoming partons. The TMD distributions are then
convoluted with hard scattering functions H, which describe the short-distance interactions and
are computed using perturbative QCD at next-to-leading order (NLO) in the strong coupling
constant αs.

It is important to note that while the inclusive cross section (integrated over pT ) remains
unchanged, the differential cross section with respect to pT requires this more detailed treatment.
The Monte Carlo event generator MadGraph5 aMC@NLO [28] (referred to as MC-at-NLO
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hereafter) is employed to construct the hard scattering events, and when combined with the
TMD parton distributions, it enables predictions for the DY transverse momentum distribution.
Specifically, MC-at-NLO normalises the pT -differential cross section to ensure that its integral
matches the known next-to-next-to-leading order (NNLO) total cross section.

The precise procedure to combine the results from MC-at-NLO with the TMD evolution
provided by the CASCADE generator [29, 30] has been developed in Refs. [13, 14], and will be
briefly summarised in this chapter. This combination allows for accurate predictions of the DY
pT spectrum while maintaining consistency with the total cross section calculated at NNLO.

4.1 Determination of TMD Distributions

The initial parton distributions at the starting evolution scale, µ0, need to be determined
through fits to experimental data. To achieve this, the PB approach employs the xFitter

platform [31, 32] to perform fits for the collinear part of the starting distribution. This collinear
part is the f̄(x, µ2

0) in Equation (3.4.8). In a previous study [26], the most commonly used PB
parton distributions were derived from fits to precision Deep Inelastic Scattering (DIS) data
from HERA [33] at Next-to-Leading Order (NLO). Specifically, these PDFs were obtained using
NLO evolution convoluted with NLO DIS matrix elements.

The scale at which the strong coupling αs should be evaluated in Eqs. (3.4.4) and (3.2.11)
depends on the branching variables. Two specific cases have been investigated in Refs. [11, 24,
26]:

i) αs = αs(µ
′2) (4.1.1)

ii) αs = α(µ′2(1− z)2) = αs(q
2
⊥) (4.1.2)

For scenario i), it has been demonstrated in [11] that Eq. (3.4.4) accurately reproduces the
DGLAP evolution (2.4.28) of parton densities when integrated over all transverse momenta,
representing the collinear scenario. Ref. [24] discusses how for scenario ii), after integrating over
transverse momenta and properly handling the resolution scale, Eq. (3.4.4) yields the angular-
ordered CMW-type evolution [34]. Consequently, PB-NLO-HERAI+II-2018 set 1 (abbreviated
as PB-NLO-2018 Set1), which uses the DGLAP-type αs(µ

′2), and PB-NLO-HERAI+II-2018 set
2 (abbreviated as PB-NLO-2018 Set2), which uses the angular-ordered CMW-type αs(q

2
⊥), are

obtained. Both sets of distributions assume a fixed resolution scale zM → 1, and the intrinsic-kT
parameter qs as 0.5 GeV. The detailed investigation of qs will be a subject of Chapter 5.

It has been found that both scenarios yield fits to the precise DIS HERA data [33] with
satisfactory χ2 values. These results confirm the accuracy of the PB evolution in reproducing
either DGLAP or CMW evolution when integrated over the relevant variables. Both PB-NLO-
2018 Set1 and Set2 are available in the TMDlib [35, 36] and can be accessed through the graphical
interface TMDplotter.

The significance of the angular-ordered coupling αs(q
2
⊥) in regions dominated by soft-gluon

emissions is evidenced by the improved performance of PB-NLO-2018 Set2 compared to PB-
NLO-2018 Set1. This is specifically true for the description of the measured Z/γ transverse
momentum spectra at the LHC [3], as well as in low-energy experiments [14]. It is also true for
the description of di-jet azimuthal correlations [37, 38] measured at the LHC [39]. Based on this
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insight, the second scenario, the approach1 used in PB-NLO-2018 Set2, will be utilised in Chap-
ter 5, with the aim of examining the sensitivity of these measurements to the nonperturbative
TMD intrinsic-kT parameter qs, and determining its value.

However, as highlighted in Refs. [13, 26], to fully define scenario ii), the handling of the
strong coupling in the region of small transverse momenta q⊥ ≲ qcut, where qcut ∼ O(1 GeV)2

is a semi-hard scale, needs to be specified:

αs = αs(max(q2cut, q
2
⊥)). (4.1.3)

This is needed to avoid the nonperturbative region, since with large z the scale q⊥ in the angular
ordering equation (3.4.1) can become very small. The research of this thesis in Chapter 5 will
use fits that use this treatment, which were done in Refs. [40, 41].

4.2 Semi-hard Parton Emissions

Ref. [42] discusses the treatment of nonperturbative contributions and the handling of the
small pT region in the PB TMD approach, aiming to clarify the underlying physical picture. The
PB TMD method incorporates Sudakov evolution by integrating appropriate kernels over the
phase space within the resolvable region, i.e. over momentum fractions z up to the soft-gluon
resolution scale zM . For each branching evolution scale µ′2, it is useful to distinguish between
parton emissions with transverse momenta above the semi-hard scale q0 (q⊥ > q0) and those
below q0 (ΛQCD < q⊥ ≲ q0).

Using the angular ordering relation (3.4.1), these emissions correspond to the following re-
gions:

(a) z < zdyn = 1− q0/µ
′, (4.2.1)

(b) zdyn ≲ z < zM , (4.2.2)

where zdyn is the dynamical resolution scale discussed previously in Section 3.5. Region (a)
covers the perturbative regime, where the strong coupling αs(q

2
⊥) is evaluated at the scale of

the emitted transverse momentum. The contribution from region (a) to the evolution equations
(3.4.4) and (3.2.11) corresponds to the perturbative Sudakov resummation, as discussed in [43].
Region (b) covers the nonperturbative regime, where the strong coupling is effectively frozen
at the semi-hard scale, αs(q

2
0), if qcut ∼ q0

3. The contribution from region (b) to the evolution
constitutes the nonperturbative Sudakov form factor within the PB TMD approach.

Notably, PB-NLO-2018 Set2 is designed to accurately describe both regions (a) and (b), as
they used the fixed resolution scale zM → 1. In contrast, standard Monte Carlo generators
typically employ a dynamical resolution scale setting, zM = zdyn, which effectively bypasses
the nonperturbative Sudakov in the evolution. Chapter 5 explores scenarios that mimic the
behaviour of standard Monte Carlo generators by focusing on configurations with a dynamic
zM , thereby covering only region (a).

1Only the fact that this set uses scenario ii) is meant here. The research will use a dynamical, instead of a
fixed, resolution scale.

2It is often assumed that the value of qcut does not have a significant impact on the treatment of the strong
coupling, as long as it stays around the order of 1 GeV.

3Although not necessary, most studies take these semi-hard scales to be equal: qcut = q0.
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4.3 Calculation of Drell-Yan Cross Sections

Now the technicalities of generating collider predictions within the PB approach are de-
scribed, focusing on matching NLO matrix elements with PB TMDs, as introduced in Refs. [13,
14].

The DY pT cross section in proton-proton collisions at the LHC is computed at NLO using
MC-at-NLO. In the standard collinear MC-at-NLO approach, the NLO cross section’s collinear
and soft contributions are subtracted, as these will be included later when applying the parton
shower. When combining MC-at-NLO with TMDs, the TMDs play a similar role as the parton
shower, so subtraction has to be involved as well. Herwig6 subtraction terms are used within
the MC-at-NLO framework, as this parton shower generator operates under the same angular
ordering conditions as the PB TMD parton distribution set PB-NLO-2018 Set2, described in
a previous section. The consistency and validity of using Herwig6 subtraction terms together
with PB TMD distributions in MC-at-NLO have been examined in Ref. [44]. Since MC-at-
NLO is a collinear matrix element generator, an integrated TMD (iTMD) has to be used to
generate cross sections. MC-at-NLO generates weighted events, stored in a format compatible
with parton shower event generators (LHE format [45]).

The factorisation scale µF for the hard process calculation is set to µF = 1
2

∑
i

√
m2

i + p2t,i,

summing over all final state particles i. For DY and Z production, this includes all decay leptons
and the final jet. The factorisation scale µ for generating transverse momentum according to the

PB-TMD distributions is set to µ = mDY for the Born configuration4 and µ = 1
2

∑
i

√
m2

i + p2t,i
for real emission contributions. The generated transverse momentum is constrained by the
matching scale µm = scalup [29], which prevents double counting between the matrix element
calculation’s real emission contribution and the PB-TMD contribution. This scale, determined
by the NLO calculation, is passed to the user via the scalup parameter (included in the LHE
file).

In the next step, transverse momentum k⊥ is introduced to the subtracted collinear matrix
element using an algorithm within CASCADE [29, 30]. This momentum is incorporated into the
event record following the distribution prescribed by the TMD function. The TMD applied in
CASCADE corresponds to the same iTMD used during the initial generation of the matrix element.
To ensure energy-momentum conservation and preserve the Drell-Yan system’s invariant mass,
the longitudinal momentum fractions of the incoming partons must be recalibrated. CASCADE

also provides the option to include a parton shower (PS), it is the only Monte Carlo generator
that implements an initial-state TMD PS. However, a TMD final-state PS is not yet available, so
PYTHIA is used to handle the final-state showering. For inclusive Drell-Yan (DY) predictions, the
initial-state parton shower is not required since the complete kinematic information is already
embedded within the TMDs. Furthermore, Cascade3 allows the Les Houches Event (LHE)
files to be read and output files to be generated for analysis with Rivet [46].

The pT spectrum of Z-bosons coming from the MC-at-NLO calculation at a purely partonic
level (LHE level) is presented in Fig. 4.1 (left). This figure illustrates the distributions obtained
using Herwig6 andHerwig++ subtraction terms. In Fig. 4.1 (right), the distribution is shown
after incorporating transverse momenta based on the PB TMDs. The differences between the
calculations using different subtraction terms are minimal, as evidenced by the ratios in the

4This terminology is used to describe a reaction that occurs in one step; in other words, a reaction between
two particles in the classic sense.
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lower panels. The PB TMDs contribute to the pT spectrum of the Z-boson up to the hard
process scale, not only in the non-perturbative region, since the TMDs extend to large kt [13].

Figure 4.1: Transverse momentum spectrum of Z obtained for different subtraction terms: (left)
at parton level (LHE level), (right) after inclusion of PB-TMDs. [13]

4.4 Results on Drell-Yan from PB TMD

This section will demonstrate how good the PB TMD approach works for predicting the
inclusive DY pT data.

Ref. [13] combined the PB TMD method with NLO collinear matrix element calculations
for the first time and compared it to ATLAS data at

√
s = 8 TeV. This can be seen in the figure

they obtained, here Figure 4.2. A very good agreement with the ATLAS measurements for the

Figure 4.2: Transverse momentum pT spectrum of Z-bosons as measured by ATLAS at
√
s = 8

TeV compared to the prediction from MC-at-NLO with PB-TMD NLO 2018 [26][13].

low transverse momentum cross sections of Z-boson production is observed. This agreement
goes well until approximately 40 GeV, higher order contributions are needed to obtain good
agreement for higher pT . Such higher order contributions can be efficiently taken into account
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by TMD multi-jet merging [47–49] technique as can be seen in Fig. 4.3 [47]. The description of
the Z-boson spectrum is good throughout the range in pT .

Data
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Figure 4.3: Transverse momentum pT spectrum of Z-bosons as measured by ATLAS at
√
s = 8

TeV compared to the prediction from TMD multi-jet merging [47].

In reference [14], the PB TMD approach was employed to analyse the DY pT spectrum
across a broad kinematic range, encompassing various center-of-mass (COM) energies (

√
s) and

DY masses. This approach was validated using data from multiple experiments: R209, Phenix,
NUSEA, and CMS. In Fig. 4.4, the DY pT cross sections are shown for various COM energies.
A significant finding was that the PB approach effectively described all these kinematic regions
with a consistent set of parameters, PB-NLO-2018 Set2. This consistency was crucial because,
unlike standard Monte Carlo generators, which often require parameter tuning—particularly for
the intrinsic kT—the PB TMD approach utilised fixed parameters throughout the analysis. Fur-
thermore, these results addressed an issue known as the low qT crisis, noticed in the literature
by Bacchetta et al. [50]. This issue pertains to the inadequacy of perturbative fixed-order calcu-
lations within collinear factorisation for describing DY pT spectra at fixed target experiments,
particularly in the pT ∼ Q region where perturbation theory was expected to be effective. Ref-
erence [14] confirmed this observation and clarified the underlying problem using a subtraction
method. Specifically, at higher DY masses and LHC energies, the soft gluon contribution in the
region pT /mDY ∼ 1 is minimal, with the spectrum being predominantly influenced by hard real
emission. Conversely, at lower DY masses and energies, even in the region pT /mDY ∼ 1, the
contribution from soft gluon emissions is significant and is encapsulated in TMDs.

Summary

Chapter 4 begun with explaining the procedure of obtaining the initial collinear PDFs for
the TMD in Eq. 3.4.8. Afterwards, it detailed the use of the PB TMD method of Chapter
3 for collider predictions. It explained how PB TMDs are matched with Next-to-Leading Or-
der (NLO) matrix elements using the Cascade generator [29, 30]. This approach increases the
accuracy of collider predictions by integrating PB TMDs with standard collinear matrix ele-
ment generators. Additionally, the chapter provides an overview of significant results related
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Figure 4.4: Transverse momentum spectrum of Drell-Yan production measured by NuSea, R209,
PHENIX and CMS, compared to predictions at NLO using PB-TMDs [14].

to inclusive DY transverse momentum (pT ) data. Key findings include the effectiveness of the
method in describing DY transverse momentum spectra across various kinematic ranges and
energy scales. It creates a clear picture of the description that the PB TMD method is able to
provide for inclusive DY pT cross sections.

Next Chapter

Instead of the fixed resolution scale that was used for the results summarised in this chapter,
the dynamical resolution scale of section 3.5 can also be used in the PB TMD method. This
will be done for the first time on Drell-Yan data in the next chapter.
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Chapter 5

Analysis of Drell-Yan Data for
Varying COM Energies

5.1 Background

As discussed in Chapter 4, the PB TMD approach has been applied to the study of the
Drell-Yan (DY) transverse momentum distributions in Refs. [13, 14, 42, 47], where theoretical
predictions have been successfully compared with experimental measurements at the LHC as
well as at lower energies. In all these works, the PB TMD scenario with a fixed soft-gluon
resolution scale zM has been employed. On the other hand, as discussed in Section 3.5, PB
TMD scenarios with dynamical resolution scales zM are important for understanding aspects
of the physics of QCD coherence and the angular ordering of gluon radiation. The purpose of
the research reported in this chapter is to analyse, for the first time, inclusive DY transverse
momentum distributions across a wide range of energies using PB TMD with a dynamical
resolution scale.

The study with dynamical zM also influences the general area of Monte Carlo parton-shower
event generators. A long-standing question in this area has been the mismatch between the
PDFs, which are evolved without any zM , and the parton shower whose evolution does include
the resolution scale. This is exemplified in the cases of Herwig [7] and Pythia [6] parton show-
ers. This question has recently been revisited in studies such as Refs. [51, 52]. This issue is
further affected by the transverse momentum recoils in the initial state shower [53, 54], and
the corresponding longitudinal momentum shifts. Indeed, it is observed in Refs. [42, 55] that
the treatment of soft gluons in the non-resolvable region, identified according to the dynami-
cal resolution scale, can strongly influence the determination of the intrinsic kT parameter qs
in TMD distributions and in parton showers. With the analysis of DY data using PB TMD
with dynamical zM in the present chapter, it will be shown that it is possible to investigate
the behaviour of the parameter qs with varying COM energies, and compare it with the results
from Refs. [42, 55] and from parton showers, e.g., [56, 57]. It is worth noting that analogous
correlations between the intrinsic kT distribution and nonperturbative Sudakov effects are also
studied, in the context of the CSS approach [5], in Ref. [58].

The research work reported in this chapter follows the same methodology as in Ref. [42], but
with a dynamical resolution scale zM , such that the collinear distributions are fitted to Deep
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Inelastic Scattering (DIS) data which are determined in Refs. [40, 41]. The nonperturbative
parameter q0 in the dynamical zM is set to 0.5 GeV. The same value is used for the cut in αs,
qcut, as explained in Sec. 4.1.

5.2 Methodology

The chapter will investigate the inclusive DY pT spectrum from the data of experiments
across a large COM energy range, namely R209 (62 GeV), Phenix (200 GeV), CDF (1.96 TeV),
D0 (1.96 TeV), ATLAS (8 TeV) and CMS (13 TeV).

First, the Transverse Momentum Dependent distributions (TMDs) are obtained from Refs.
[40, 41]. These TMDs serve as the basis for further analysis. For each experiment, multiple
replicas of the TMD distribution are generated, with each replica differing in the intrinsic trans-
verse momentum parameter, qs. It is important to note that all these replicas, when integrated
over the transverse momentum kT , yield the same collinear distribution. This consistency is
due to qs being generated from a normalised Gaussian distribution.

Subsequently, predictions are made for the DY pT spectrum for each experiment based on
these replicas. Les Houches Event (LHE) files are generated using the intrinsic TMDs from
Refs. [40, 41], combined with the Next-to-Leading Order (NLO) matrix element from MC-
at-NLO. The matrix element is enhanced by incorporating transverse momentum through the
combination of the MC-at-NLO matrix element with the corresponding TMD replica within the
Cascade generator, following the procedure described in Chapter 4.

The results are then plotted using Rivet [46]. Rivet includes a built-in chi-squared (χ2)
function, which is used to assess the quality of each prediction against the experimental data.

For each experiment, the value of the χ2 function is evaluated across the replicas, i.e., for
varying values of qs; by minimising χ2, the optimal qs value is determined. Finally, the optimal
qs values from each experiment are compiled and plotted against the corresponding center-of-
mass energy (

√
s). This plot provides a comprehensive overview of the behaviour of qs as a

function of the center-of-mass energy.

5.3 Initial Studies

A calculation for the DY pT cross section with qs = 0.7 GeV for ATLAS data is plotted in
Figure 5.1 across the entire pT range. Such a plot is created 15 times (for each qs value) for
each experiment. Two preliminary tests can be done in order to make sure the calculations are
not influenced by statistical factors and that the optimal pT range is studied.

The first test that was performed was to determine the number of LHE files required to
produce results independent of statistical fluctuations. Every LHE file has 500000 events. This
process is summarised in Figure 5.2 (right). Initially 2000 LHE files were used to determine if
this number was sufficient to mitigate statistical influences. The results were compared against
those obtained with 1000 and 500 LHE files. While the results for 500 LHE files showed some
statistical variations (notably small outliers in the red curve), the results between 1000 and 2000
LHE files were largely consistent. Thus, it was concluded that 2000 LHE files are adequate to
produce results without significant statistical uncertainties.

Furthermore, in Figure 5.1, it is evident that beyond approximately 40 GeV, the MC ap-
proach significantly underestimates the experimental data at the LHC (as was explained in
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Figure 5.1: The differential cross section in function of the transverse momentum, calculated
with a TMD using q0 = 0.5 GeV and qs = 0.7 GeV. The experimental data comes from ATLAS.
The χ2/n value gives the overall goodness of the fit. On the bottom is the ratio of Monte Carlo
with data, showcasing the correctness of the TMD fit in a certain pllT area.

Figure 5.2: (Left) The χ2/n vs qs plot for different ranges of transverse momentum in the
calculation of the differential cross section, all LHE files are used (2000). (Right) The χ2/n vs
qs plot for different amount of LHE files used, pT,max = 15 GeV is used.
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Chapter 4). This is because the TMD dynamics is expected to be relevant for pT /M ≪ 1, con-
sequently, analysing the small pT range becomes crucial. For this research, the value pT,max = 15
GeV was chosen. It was identified as the optimal value within the range pT,max = [5, 10, 15]
GeV, as demonstrated in Figure 5.2 (left). This figure shows that pT,max = 5 GeV does not
produce a clear minimum, rendering it unsuitable for the ATLAS experiment. This observation
holds true across all experiments examined. Conversely, both pT,max = 10 GeV and pT,max = 15
GeV yield good results, with pT,max = 15 GeV providing a superior overall fit (lower χ2/n
values). However, for some experiments, the transverse momentum range of the experimental
data does not extend to pT,max = 15 GeV; specifically, Phenix has pT,max = 6 GeV and R209
has pT,max = 5 GeV. For these experiments, their respective maxima were chosen.

5.4 PB TMD Analysis for Different DY Datasets

A calculation for each experiment, with qs = 0.7 GeV, is presented in Figures 5.3 (a)–(f).
Among other things, they illustrate the number of data points per experiment for the given pT
region. These data points are listed in Table 5.1 and represent the degrees of freedom (n) in
the χ2/n value. These are remarkable plots, most plots have a satisfactory prediction of the DY

Experiment # of Data Points
CMS 15

ATLAS 8
CDF 30
D0 4

Phenix 12
R209 13

Table 5.1: Experiments and their amount of data points in their respective pT range.

data, which indicates that the PB TMD method is a valid approach. There are two exceptions:
CDF and D0, Figure 5.3 (c) and (d), respectively, for CDF it can be seen that the prediction
is less satisfactory as it fails to accurately describe the entire data set. The implications of this
will be discussed in further detail later. Additionally, the D0 experiment exhibits a a limited
number of data points, which leads to a predictable low sensitivity to the qs value, as many
TMDs could potentially fit these sparse data points. This issue will be shown in a subsequent
section.

For each qs value within the range of 0.1—1.5 GeV, calculations were performed and the
χ2/n values were recorded. These results can be condensed into a single plot of qs versus χ2/n
for each experiment. The goal is to identify the qs value that minimises the χ2/n value for each
experiment. To quantify the uncertainty associated with this minimum, a one-sigma confidence
region is constructed. This involves creating an uncertainty interval for qs where χ2(qs) <
min(χ2) + 1. The boundary values of this interval are then used to define the uncertainty.

For the CMS experiment, the covariance matrix of the measurements is available, providing
a more precise error analysis. However, this is not the case for the other experiments. Due to the
lack of comprehensive error breakdowns for most measurements, all uncertainties are treated
as uncorrelated and do not account for systematic uncertainties arising from scale variations
in the theoretical calculations. This methodology is applied consistently across all experiments
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Differential cross section in function of pT for: (a) CMS, (b) ATLAS, (c) CDF, (d)
D0, (e) Phenix, and (f) R209.
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discussed in the following sections. The precise correlated uncertainties for the CMS experiment
were taken into account in Ref. [42], but within the fixed resolution scale framework. It is
important to perform a comparable analysis for the dynamical resolution scale framework, but
due to time constraints this is left to future work.

CMS

As can be seen on Figure 5.3 (a), the CMS data is very well described by the PB TMD
method. Therefore, the best fit will have a meaningful result. In Figure 5.4, a clear minimum
can be seen at qs = 0.73 GeV. This minimum was determined by a polynomial fit of the χ2/n
vs qs data and the local minimum was computationally found. The uncertainty is shown as
the blue shaded area above the minimum, this corresponds to the one-sigma confidence region,
which is determined by the χ2 + 1 technique. Therefore a qs value of 0.73 GeV is found with
a one-sigma confidence interval ranging from 0.55 GeV to 0.88 GeV. In Appendix A.4 all the
calculations for the varying qs predictions are shown.

Figure 5.4: The reduced χ2/n distribution as a function of qs for the CMS experiment at√
s = 13 TeV. The shaded area corresponds to the one-sigma confidence region around the local

minimum of the distribution, which is found to be qs = 0.73 GeV.

ATLAS

As can be seen on Figure 5.3 (b), the ATLAS data is also well described by the PB TMD
method. However, the χ2/n value is higher compared to the other experiments, this does not
pose any problem. Only the minimum in the reduced χ2/n distribution is needed. It does
not have to be a small χ2/n value. The reduced χ2/n distribution can be seen in Figure 5.5.
Analogous to the CMS section, a qs value of 0.62 GeV is found with a one-sigma confidence
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interval ranging from 0.42 GeV to 0.78 GeV. In Appendix A.5 all the calculations for the varying
qs predictions are shown.

Figure 5.5: The reduced χ2/n distribution as a function of qs for the ATLAS experiment at√
s = 8 TeV. The shaded area corresponds to the one-sigma confidence region around the local

minimum of the distribution, which is found to be qs = 0.73 GeV.

CDF and D0

The reduced χ2/n distributions for CDF and D0 can be seen in Figures 5.6 and 5.7. These
are shown together because they are both anomalous and they do not give a usable result.

For the CDF data, there is no observed minimum in the χ2/n as a function of qs. A detailed
comparison of the predictions with the CDF data is provided in Appendix A.6, which presents
the analysis across various qs values. It is important to note that the CDF data is not adequately
described using the PB TMD method. Consequently, evaluating the χ2/n values appears to be
of limited significance, given that the data is consistently not well-represented by the model.

For the D0 data there is no observed minimum either, however, this time it is due to a
certain insensitivity to the qs value. In Appendix A.7 all the calculations for the varying qs
predictions are shown. There are multiple qs values that obtain the exact same χ2/n value.
The likely reason is that in this pT range, the D0 data only has 4 data points. This is a very
small amount, and the model will always fit these data points very well. This results in overall
low χ2/n values, so a large uncertainty, and most importantly, it leads to no clear minimum.
Resulting in no usable result from the D0 data either.

This leaves a large energy gap in the central energy spectrum that is yet to be researched.
This study tried to perform extra calculations using data from Tevatron with energy 1.8 TeV,
but problems with the computer cluster were experienced. Therefore such computations could
not be performed on time and determining the qs value in this range is left as future research.
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Figure 5.6: The reduced χ2/n distribution as a function of qs for the CDF experiment at√
s = 1.96 TeV.

Figure 5.7: The reduced χ2/n distribution as a function of qs for the D0 experiment at
√
s = 1.96

TeV. The shaded area corresponds to the one-sigma confidence region around the local minimum
of the distribution.
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Phenix

As can be seen on Figure 5.3 (e), the Phenix data is also well described by the PB TMD
method. Despite the presence of certain outlier data points, the overall fit appears to be reason-
ably accurate. The reduced χ2/n distribution can be seen in Figure 5.8. Analogous to previous
sections, a qs value of 0.69 GeV is found with a one-sigma confidence interval ranging from 0.54
GeV to 0.84 GeV. In Appendix A.8 all the calculations for the varying qs predictions are shown.

Figure 5.8: The reduced χ2/n distribution as a function of qs for the Phenix experiment at√
s = 200 GeV. The shaded area corresponds to the one-sigma confidence region around the

local minimum of the distribution, which is found to be qs = 0.69 GeV.

R209

As can be seen on Figure 5.3 (f), the R209 data is well described by the PB TMD method.
Again, despite the presence of certain outlier data points, the overall fit appears to be reasonably
accurate. The reduced χ2/n distribution can be seen in Figure 5.9. Analogous to previous
sections, a qs value of 0.53 GeV is found with a one-sigma confidence interval ranging from 0.46
GeV to 0.60 GeV. In Appendix A.9 all the calculations for the varying qs predictions are shown.
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Figure 5.9: The reduced χ2/n distribution as a function of qs for the R209 experiment at√
s = 62 GeV. The shaded area corresponds to the one-sigma confidence region around the local

minimum of the distribution, which is found to be qs = 0.53 GeV.

5.5 Summary and Discussion

These results can be summarised in one qs vs COM energy plot, as can be seen in Figure 5.10.
Here the value for the nonperturbative intrinsic-kT parameter qs remains, within uncertainty, a
constant value. This means that there is no significant dependence of the qs parameter on the
COM energy when using the dynamical resolution scale, with q0 = 0.5 GeV.

This result provides a new insight into the long-standing issue concerning the intrinsic-kT
parameter qs and its dependence on COM energy. Previous studies using standard Monte
Carlo (MC) event generators such as Herwig [7] and Pythia [6] had shown that qs varies
with COM energy, necessitating extensive parameter tuning to accurately describe inclusive
Drell-Yan transverse momentum cross sections across different energies [56, 57]. However, Ref.
[14] demonstrated that the PB TMD method, when employing the PB-NLO-2018 Set2, could
achieve consistent results for varying COM energies without requiring any parameter tuning.
This surprising outcome led to a detailed investigation of the intrinsic-kT parameter qs.

Studies have been conducted on Drell-Yan transverse momentum data using the PB TMD
framework with both fixed and dynamical resolution scales zM . In particular, Ref. [42] analysed
the PB-NLO-2018 Set2 (which utilises a fixed zM ), finding that the dependence of qs on

√
s

(COM energy) was insignificantly weak, indicating a stable qs across different energy scales.
On the other hand, Ref. [55] explored toy models with a dynamical zM and large initial q0
values (1.0 and 2.0 GeV), revealing a much stronger dependence of qs on

√
s. Additionally, the

references [40, 41] also provided collinear fits for q0 = 1.0 GeV. For this case, a preliminary
investigation of COM energy dependence of qs was performed by an unpublished study [59] and
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Figure 5.10: The qs value in function of the central energy, for q0 = 0.5 GeV. A gap exists for
∼ 2 TeV, due to computational errors. The legend displays the corresponding experiment.

this study did observe a COM energy dependence. Their preliminary data points1, without
uncertainties, are plotted in Figure 5.11. The results of the COM dependence of the parameter
qs, presented on a log-log scale, displayed a linear relationship, with the slope increasing as q0
increased.

The contrasting behaviour between the fixed and dynamical zM cases was particularly note-
worthy. When using dynamical zM , the results closely matched the behaviour observed in
standard MC generators, which also treat the soft gluons dynamically. This strong qs versus

√
s

dependence was tracked down to the treatment of soft gluon emissions via the zM parameter,
underscoring the critical role of soft gluon treatment in the PB TMD method.

Interestingly, this investigation of the PB TMD method with a dynamical zM and a smaller
q0 value of 0.5 GeV revealed no significant COM energy dependence for qs, a result that con-
trasts with the stronger dependence observed in previous studies with larger q0. Two possible
conclusions can be drawn from this: either the correlation between q0 and qs is so strong that
increasing q0 from 0.5 GeV to 1.0 or 2.0 GeV drastically alters the qs behaviour (which does not
necessarily contradict previous results), or this finding for a dynamical resolution scale challenges
prior results.

The first conclusion suggests that the observed COM energy dependence in qs is sensitive to
the initial q0 setting and the resolution scale treatment. Which suggests that the result may act
as an intermediary between the two resolution scale scenarios. If fixed zM is viewed as a limiting

1The reader with an eye for detail might notice that the absolute values for the qs parameter are quite different
for different q0. This behaviour is not yet understood. It is known to originate from the soft gluon treatment,
because with increasing q0 some soft emissions are cut away. Furthermore, q0 and qs are not independent
parameters, but there is an interplay. Why does it manifest itself in

√
s dependence? That’s still a mystery.

Some people link it with some saturation/black disc limit effects.
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Figure 5.11: The preliminary results for q0 = 1.0 GeV that showcase a COM energy dependence
of the qs parameter across a large COM spectrum. [59]

case of a dynamical zM at very small q0 values, smaller than ΛQCD, then the approach effectively
lowers q0 from 1 or 2 GeV toward ΛQCD. This suggests that it is possible to use a dynamical zM
while allowing sufficient soft emissions—similar to the fixed zM case—and including enough of
the infrared region, resulting in a flattening of qs vs COM energy, rather than the rise observed
when q0 is fully within the perturbative region above 1 GeV.

The second conclusion remains also possible, particularly concerning the role of the strong
running coupling. The interplay between αs and the energy dependence requires deeper inves-
tigation. Notably, in previous PB TMD models, the coupling αs is typically cut off at a scale
of 1.0 GeV or higher. However, in the current study, the parameter q0 = 0.5 GeV also serves as
the cut-off scale for αs.

The observed new behaviour in the study remains not fully understood. A potential avenue
for further research would involve examining a model where the parameter zM is also defined
dynamically, with q0 set to 0.5 GeV, but with an additional cut-off for αs set at a higher value,
such as 1.0 GeV. This would help determine whether the distribution of qs versus

√
s remains flat

or if a slope emerges. In essence, this investigation could clarify whether the running coupling
significantly impacts these results or if the observed COM energy dependence of qs is primarily
driven by the soft gluon resolution scale. If this alternative model were to exhibit different
behaviour depending on the choice of q0, it would indicate a non-negligible contribution from
αs to the qs COM energy dependence, challenging previous assumptions that αs had a minimal
effect.

As mentioned at the end of Section 3.4, the current PB TMD calculations do not include
any flavour dependence in the intrinsic transverse momentum (kT ) distribution. This choice
was driven by the minimal sensitivity to flavour structure observed in precision DIS data, as
discussed in Ref. [26]. However, recent studies using the CSS approach [5] have shown that
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DY data and semi-inclusive DIS data can indeed provide sensitivity to flavour dependence, as
highlighted in Refs. [60, 61]. Given these findings, it would be valuable to extend current PB
TMD analyses of DY data to include flavour-dependent intrinsic-kT distributions.

In addition, as noted in Section 5.4, the present analysis does not account for correlated
systematic uncertainties. These uncertainties are available for certain data sets and have been
shown to play a significant role in analyses based on the fixed resolution scale framework, as
observed in Ref. [42]. Therefore, it would be beneficial to extend the current study to incorporate
all available correlations, enhancing the robustness of the analysis.
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Conclusion

This thesis was driven by a deep fascination with elementary particle physics and the pro-
found philosophical insights it offers into the nature of the universe. The research aimed to
explore, for the first time, the behaviour of the qs parameter in the intrinsic-kT distribution
(Eq. (3.4.8)) across various center-of-mass (COM) energies, employing the parton branching
(PB) Transverse Momentum Dependent (TMD) methodology [11, 12] with a dynamical resolu-
tion scale (zM ) with q0 = 0.5 GeV as introduced in Section 3.5. The PB TMD methodology
stands out due to its comprehensive consideration of soft gluon radiations and transverse momen-
tum recoils in parton branchings along the QCD cascade. This innovative approach effectively
addresses the complexities associated with multiple energy scales in the inclusive DY transverse
momentum distribution.

The PB TMD method was applied to experiments across a wide COM energy range (62
GeV – 13 TeV); using data from the experiments: CMS, ATLAS, CDF, D0, Phenix, and R209,
demonstrating a consistent fit for most datasets, with a few exceptions due to systematic dis-
crepancies (CDF) and limited data points (D0). The analysis revealed that the parameter qs
is independent, within uncertainty, of the COM energy. This presents a new behaviour in the
energy dependence of qs, that warrants further investigation. Notably, Ref. [42], using a fixed,
non-dynamical zM , found a nearly flat qs behaviour with energy from fits to DY pT data. In
contrast, Ref. [55] reported a different trend, and Refs. [56, 57] observed a similar different
trend in standard Monte Carlo generators. This thesis, however, reveals that when working
with a dynamical zM and a small transverse momentum scale of q0 = 0.5 GeV, the behaviour
of qs with energy flattens, aligning more closely with the findings of Ref. [42] and mimicking
nonperturbative Sudakov effects. The calculation in this thesis appears to be the first instance
where a dynamical zM approach, when compared with DY data, results in a nearly flat qs,
challenging earlier results reported in Ref. [55].

However, it is important to compare these findings with the fixed zM calculation of Ref.
[42], and closely examine the minimum transverse momentum scales used in this thesis versus
those in previous dynamical zM calculations. It was reported in Refs. [55–57] that the slope
was decreasing with decreasing q0. Which could suggest that the result of this study is the
bridge between the two situations; the scenario with a fixed zM can be seen as the limit of a
dynamical zM with q0 very small—allowing significantly more soft emissions than calculations
with q0 values of 1 GeV or higher.

While the research has provided valuable insights, it is essential to acknowledge certain
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limitations. The primary limitation of this study is the incomplete and limited data from certain
experiments. Specifically, the data points for the CDF and D0 experiments at 1960 GeV did
not yield usable results. The limited number of data points and their systematic discrepancies
impacted the robustness of the analysis. This underscores the need for more comprehensive and
higher-quality datasets to validate the findings across all energy scales and experimental setups.
Furthermore, this study does not take correlated uncertainties into account, which have shown
to play a significant role in analyses with fixed resolution scale [42].

Building on the results of this thesis, several avenues for future research are recommended.

� The main question that is obtained from the result is the role of the strong running
coupling αs(µ

2). Research into this can be done by varying the cut-off in αs for q0 = 0.5
GeV, and to see if the distribution of qs vs

√
s remains flat or if a slope appears. This

would give insight in the contribution to the qs COM energy dependence, whether it only
comes from the soft gluon resolution scale or if it also comes from the treatment of the
strong coupling.

� A potential research avenue could involve extending the current PB TMD analysis to
incorporate flavour-dependent intrinsic-kT distributions. While the existing calculations
do not include this flavour dependence, recent studies [60, 61] have demonstrated that DY
can be sensitive to flavour structure.

� Additionally, further investigations could focus on applying the PB TMD methodology to
experimental data in the 1960 GeV region, to validate its applicability. Furthermore, the
correlated uncertainties should be taken into account for the CMS experiment.

In conclusion, this thesis has significantly contributed to particle physics by enhancing the
understanding of the dynamical resolution scale zM . This was done by investigating the pa-
rameter qs in the intrinsic-kT distribution across varying COM energies using the PB TMD
method with dynamical zM . The application of the PB TMD methodology has demonstrated
its robustness, providing a valuable tool for precise predictions in high-energy particle collisions.
This research advances theoretical knowledge and paves the way for future studies to build upon
these findings.
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Appendix A: Appendices
A.1 Feynman Rules

The full QCD Lagrangian is

LQCD =
∑
f

∑
i,j

∑
α,β

iψ
iα

f (γµ)αβδ
ij∂µψ

jβ
f +

∑
f

∑
i,j

∑
α,β

gsψ
iα

f (γµ)αβA
a
µT

a
ijψ

jβ
f

− 1

2
δab
(
∂µA

b
ν∂

µAνa − ∂νA
b
µ∂

µAνa +
1

ξ
∂µA

b
µ∂

µAµa

)
− gs∂µA

a
νf

abcAµbAνc

− 1

4
g2sf

abcfadeAb
µA

c
νA

µdAνe − c̄a∂2ca + gsf
abc(∂µc

a)Aµbcc −
∑
f

mfψfψf . (A.1.1)

All QCD Feynman rules are summarised in Fig A.1 .

Figure A.1: The QCD Feynman rules and the corresponding diagrams. The numbers in paren-
theses correspond to the term in the Lagrangian in (A.1.1). The (1)–(3) terms are kinetic
terms.The interactions are displayed in (4)–(7). Quarks: full lines, gluons: curled lines, and
ghosts: dashed lines. i and j are for the colours, a, b, c and d are for gluons, µ, ν, ρ, σ are
Lorentz indices, and α and β are spinor polarisation indices.[62]
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A.2 Splitting Functions

In this appendix, the nonzero, lowest order splitting functions are given in Fig. A.2, together
with the vertex diagrams they represent. The indices i, j and k denote the flavour. When
changing all quarks to antiquarks and vice versa, the splitting function remains the same. This
is elucidated by writing those splitting functions on the same row.

Figure A.2: The lowest order splitting functions and their corresponding diagrams for the ver-
tices they represent.[62]
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A.3 The Two-Loop R-Coefficients

In this appendix, the two-loop coefficients of the perturbative expansion for the functions
Rab are given. As in Section 3.1, the coefficients can be read from the two-loop results in [21,
22]. Introducing the functions

pqq(z) =
2

1− z
− 1− z, (A.3.1)

pqg(z) = z2 + (1− z)2, pgq(z) =
1 + (1− z)2

z
, (A.3.2)

pgg(z) =
1

1− z
+

1

z
− 2 + z(1− z), (A.3.3)

S2(z) = −2Li2(−z) +
1

2
ln2 z − 2 ln z ln(1 + z)− π2

6
, (A.3.4)

where the dilogarithm function is defined by

Li2(y) = −
∫ y

0

dt

t
ln(1− t). (A.3.5)

The two-loop contributions R
(1)
ab for quark-gluon and gluon-gluon cases are given by

R(1)
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2
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, (A.3.6)
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. (A.3.7)
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And
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The two-loop contributions R
(1)
ab for the non-singlet case, given the definitions in Eq. (3.1.9),

are given by

R
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The evolution of the singlet quark distribution coupled to gluons is controlled by the linear
combination of the splitting functions in Eq. (3.1.9), which is defined as:

Pqq = PNS
qq + PNS

qq̄ +Nf (P
S
qq + PS

qq̄). (A.3.11)

The corresponding two-loop contribution to Rab in Eq. (3.1.7) is given by
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A.4 CMS Calculations

In this appendix, the calculations for CMS (for qs ∈ [0.1, 1.5] GeV) are shown in Figs. A.3
and A.4. The calculations are done with the PB TMD method using a dynamical resolution
scale with q0 = 0.5 GeV.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.3: Calculation of DY pT spectrum of CMS data: (a) qs = 0.1 GeV, (b) qs = 0.2 GeV,
(c) qs = 0.3 GeV, (d) qs = 0.4 GeV (e) qs = 0.5 GeV, (f) qs = 0.6 GeV, (g) qs = 0.7 GeV, (h)
qs = 0.8 GeV (i) qs = 0.9 GeV.
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(a) (b) (c)

(d) (e) (f)

Figure A.4: Calculation of DY pT spectrum of CMS data: (a) qs = 1.0 GeV, (b) qs = 1.1 GeV,
(c) qs = 1.2 GeV, (d) qs = 1.3 GeV (e) qs = 1.4 GeV, (f) qs = 1.5 GeV.

A.5 ATLAS Calculations

In this appendix, the calculations for ATLAS (for qs ∈ [0.1, 1.5] GeV) are shown in Figs. A.5
and A.6. The calculations are done with the PB TMD method using a dynamical resolution
scale with q0 = 0.5 GeV.

(a) (b) (c)

Figure A.5: Calculation of DY pT spectrum of ATLAS data: (a) qs = 0.1 GeV, (b) qs = 0.2
GeV, (c) qs = 0.3 GeV.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.6: Calculation of DY pT spectrum of ATLAS data: (a) qs = 0.4 GeV, (b) qs = 0.5
GeV, (c) qs = 0.6 GeV, (d) qs = 0.7 GeV (e) qs = 0.8 GeV, (f) qs = 0.9 GeV, (g) qs = 1.0 GeV,
(h) qs = 1.1 GeV, (i) qs = 1.3 GeV (j) qs = 1.4 GeV, (k) qs = 1.5 GeV.
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A.6 CDF Calculations

Listing CDF calculations of the differential cross sections for TMDs with qs = [0.1, 1.5] GeV.
These can be seen in Figures A.7 and A.8. They are provided to showcase the unsatisfactory
description the PB TMD method provides for the CDF data at COM energy

√
s = 1.96 TeV.

It can be clearly seen on all plots that the predictions do not effectively match the CDF data,
resulting in the conclusion that this part of the research cannot be used.

Further research is recommended to analyse another CDF run at a different energy, to see
if this data is accurately described with the PB TMD method using the dynamical resolution
scale.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7: Calculation of DY pT spectrum of CDF data: (a) qs = 0.1 GeV, (b) qs = 0.2 GeV,
(c) qs = 0.3 GeV, (d) qs = 0.4 GeV (e) qs = 0.5 GeV, (f) qs = 0.6 GeV, (g) qs = 0.7 GeV, (h)
qs = 0.8 GeV (i) qs = 0.9 GeV.
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(a) (b) (c)

(d) (e) (f)

Figure A.8: Calculation of DY pT spectrum of CDF data: (a) qs = 1.0 GeV, (b) qs = 1.1 GeV,
(c) qs = 1.2 GeV, (d) qs = 1.3 GeV (e) qs = 1.4 GeV, (f) qs = 1.5 GeV.

A.7 D0 Calculations

In this appendix, the calculations for D0 (for qs ∈ [0.1, 1.5] GeV) are shown in Figs. A.9 and
A.10. The calculations are done with the PB TMD method using a dynamical resolution scale
with q0 = 0.5 GeV.

(a) (b) (c)

Figure A.9: Calculation of DY pT spectrum of D0 data: (a) qs = 0.1 GeV, (b) qs = 0.2 GeV,
(c) qs = 0.3 GeV.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.10: Calculation of DY pT spectrum of D0 data: (a) qs = 0.4 GeV, (b) qs = 0.5 GeV,
(c) qs = 0.6 GeV, (d) qs = 0.7 GeV (e) qs = 0.8 GeV, (f) qs = 0.9 GeV, (g) qs = 1.0 GeV, (h)
qs = 1.1 GeV, (i) qs = 1.3 GeV (j) qs = 1.4 GeV, (k) qs = 1.5 GeV.
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A.8 Phenix Calculations

In this appendix, the calculations for Phenix (for qs ∈ [0.1, 1.5] GeV) are shown in Figs. A.11
and A.12. The calculations are done with the PB TMD method using a dynamical resolution
scale with q0 = 0.5 GeV.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.11: Calculation of DY pT spectrum of Phenix data: (a) qs = 0.1 GeV, (b) qs = 0.2
GeV, (c) qs = 0.3 GeV, (d) qs = 0.4 GeV (e) qs = 0.5 GeV, (f) qs = 0.6 GeV, (g) qs = 0.7 GeV,
(h) qs = 0.8 GeV (i) qs = 0.9 GeV.
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(a) (b) (c)

(d) (e) (f)

Figure A.12: Calculation of DY pT spectrum of Phenix data: (a) qs = 1.0 GeV, (b) qs = 1.1
GeV, (c) qs = 1.2 GeV, (d) qs = 1.3 GeV (e) qs = 1.4 GeV, (f) qs = 1.5 GeV.

A.9 R209 Calculations

In this appendix, the calculations for R209 (for qs ∈ [0.1, 1.5] GeV) are shown in Figs. A.13
and A.14. The calculations are done with the PB TMD method using a dynamical resolution
scale with q0 = 0.5 GeV.

(a) (b) (c)

Figure A.13: Calculation of DY pT spectrum of R209 data: (a) qs = 0.1 GeV, (b) qs = 0.2 GeV,
(c) qs = 0.3 GeV.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.14: Calculation of DY pT spectrum of R209 data: (a) qs = 0.4 GeV, (b) qs = 0.5 GeV,
(c) qs = 0.6 GeV, (d) qs = 0.7 GeV (e) qs = 0.8 GeV, (f) qs = 0.9 GeV, (g) qs = 1.0 GeV, (h)
qs = 1.1 GeV, (i) qs = 1.3 GeV (j) qs = 1.4 GeV, (k) qs = 1.5 GeV.
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