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Abstract We investigate the influence of atomic uniform
motion on radiative energy shifts of a multilevel atom when it
interacts with black-body radiation. Our analysis reveals that
the atomic energy shifts depend crucially on three factors: the
temperature of black-body thermal radiation, atomic veloc-
ity, and atomic polarizability. In the low-temperature limit,
the presence of atomic uniform motion always enhances
the effect of the thermal field on the atomic energy shifts.
However, in the high-temperature limit, the atomic uniform
motion enhances the effect of the thermal field for an atom
polarizable perpendicular to the atomic velocity but weak-
ens it for an atom polarizable parallel to the atomic velocity.
Our work indicates that the physical properties of atom–field
coupling systems can in principle be regulated and controlled
by the combined action of the thermal field and the atomic
uniform motion.

1 Introduction

Quantum field theory predicts that quantum fields, even in
the vacuum state, can fluctuate and thus may have rich con-
tent. Theory and experiment have adequately shown that
vacuum fluctuations can give rise to some unusual physi-
cal consequences, such as spontaneous emission [1], Lamb
shift [2,3], Casimir effect [4,5], and Casimir–Polder effect
[6]. These effects are related to the interaction of matter (such
as atoms) with quantum fields. Here we focus on the Lamb
shift, i.e., the shift of the energy levels of an atom due to the
perturbation of the quantum vacuum. Just like atomic spon-
taneous emission [1], the Lamb shift process can also be
modified by external environments, for example, the pres-
ence of boundaries of quantum fields [7–14] or a change in
the spacetime background [15–17]. Further, the presence of
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real photons instead of virtual photons of vacuum fluctuations
can perturb the atomic radiative properties. Some works have
found a temperature dependence in the shift of the energy lev-
els for an atom immersed in a bath of black-body radiation
[18–22]. It was found that the interaction between the atom
and the black-body radiation produces two principal effects:
the black-body radiation can both induce a dynamic Stark
shift of the atomic energy levels and can drive transitions
between atomic states [21]. Undoubtedly, the existence of
boundaries can also modify thermal fluctuations. Zhu et al.
considered the modification of atomic energy shifts by the
presence of a conducting plane boundary in a thermal bath
and the Casimir–Polder force between the atom and the con-
ducting plane [12–14]. Some studies, inspired by the Unruh
effect [23], have investigated the influence of the acceler-
ation of the atom itself on the atomic radiative properties
[24–27] using the formalism proposed by Dalibard, Dupont-
Roc, and Cohen-Tannoudji (DDC) (see [28,29] for a separate
discussion on the contributions of vacuum fluctuations and
radiation reaction). When an atom is coupled to a massless
quantum scalar field, the transition rates or the Lamb shift
for a moving two-level atom with a constant acceleration
a in the Minkowski vacuum is the same as in the case for
a static two-level atom in a thermal bath of the same field
with the Unruh temperature T = a/(2π) [25]. The use of
the DDC formalism also reveals that the contribution of vac-
uum fluctuations is modified by the atomic uniform acceler-
ation, but the contribution of radiation reaction is completely
unaffected. However, in contrast to the scalar field case, the
effect of uniform acceleration on the atomic radiative prop-
erties is not totally equivalent to that of a thermal radiation
field when a multilevel atom is coupled to a quantum elec-
tromagnetic field [26,27]. This does not imply a failure of
the Unruh effect, because the Unruh effect just predicts that
a uniformly accelerated observer in the Minkowski vacuum
will observe a thermal bath (like black-body radiation) of
the Rindler particles instead of the Minkowski particles. The
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abovementioned works and other related works have clearly
indicated that the Lamb shift of atoms is strongly dependent
on the boundary of the quantum fields, the type and the state
of the quantum fields, the atomic motion, and the coupling
type between the atom and the field.

In order to bring classical thermodynamics into accord
with the principle of special relativity, some physicists are
occupied in constructing a theory of relativistic thermody-
namics. One key issue is the transformation laws of thermo-
dynamic variables (such as temperature, entropy, heat) under
Lorentz transformation. Initially, von Mosengil, Planck, and
Einstein argued that the temperature of a moving body with
a constant velocity v is given by T = T0

√
1 − v2, where T0

is the temperature measured in the co-moving frame of refer-
ence. This indicates that a moving body appears cooler than it
is at rest. However, after nearly half a century, this conclusion
was challenged by Ott in 1963 [30], who proposed a different
transformation form,T = T0/

√
1 − v2. In other words, mov-

ing objects appear warmer. Since then, there has been great
controversy over the theory of relativistic thermodynamics.
In 1966, Landsberg presented yet another opinion that these
thermodynamic variables are invariant under Lorentz trans-
formation, in particular T = T0 [31–33]. Some scholars tried
to clean up the mess and controversy by developing a covari-
ant theory of relativistic thermodynamics. Notably, van Kam-
pen redefined a series of four-vector thermodynamic quanti-
ties and generalized the laws of thermodynamics to a covari-
ant version [34]. Later, this theory was refined and developed
by Israel [35]. There are other covariant theories and ideas
from the perspective of statistical mechanics [36–40]. For a
specific and detailed history, please see comments about this
topic [41–46] and the references cited therein.

Black-body radiation, as a thermodynamic equilibrium
system, has always played a pivotal role in the develop-
ment of relativistic thermodynamics. Using the maximum
entropy principle, Eberly and Kujawski derived a manifestly
Lorentz-invariant generalization of the Gibbs’s canonical
density operator for free quantum electromagnetic fields [47].
The then-known results for the energy density, entropy, and
other thermodynamic variables of black-body radiation were
very simply re-derived. Contrary to the assertions of Ott and
others, they believed that temperature may be conveniently
considered as a purely rest-frame concept. Meanwhile, the
related works of cosmic microwave background radiation
(CMB) have contributed to the progress on the subject. CMB
has been proved as a perfect black-body radiation with tem-
perature 2.73 K in both theory and experiment. This boosts
the study on the distribution of black-body cavity radiation
in a moving frame of reference so as to estimate the velocity
of the earth’s motion with respect to the rest frame of CMB.
From different perspectives, some authors obtained the same
conclusion that the only effect of the uniform motion is to
introduce an angle-dependent effective temperature, which

replaces the rest-frame temperature [48–51]. This gives rise
to the concept of “directional temperature” or “effective tem-
perature,” Teff = T0

√
1 − v2/(1 − v cos θ).

From a completely different point of view, using the rela-
tivistic quantum field theoretical methods, Costa and Matsas
calculated the photon distribution detected by a uniformly
moving Unruh–DeWitt detector immersed in the thermal
bath of a massless quantum scalar field [52]. The moving par-
ticle detector, regarded as a special “thermometer” immersed
in the thermal bath, probes a non-Planckian spectrum, which
crucially depends on the detector’s velocity. Thereby Lands-
berg and Matsas pointed out the nonexistence of a relativis-
tic temperature transformation, because an observer mov-
ing in a heat reservoir cannot detect a black-body spectrum
[53,54]. In fact, by integrating the Planckian spectrum with
the directional temperature over the solid angle, the result
of the Unruh–DeWitt detector can be exactly found without
any appeal to quantum field theory. Nakamura argued that the
inverse-temperature four-vector βμ taken seriously in the van
Kampen–Israel theory has a clearer meaning than the direc-
tional temperature [55]. The well-known expression with the
directional temperature can be derived based on the inverse-
temperature four-vector. He also argued that the Boltzmann
factor e−βE should be replaced with a more general form
e−βμPμ

, with Pμ being the energy–momentum of the sys-
tem. Recently, in the framework of open quantum systems,
Papadatos and Anastopoulos analyzed the thermodynamics
of a uniformly moving quantum system interacting with a
static thermal bath of the massless quantum scalar field [56].
Their analysis shows that the heat bath, in motion in the
reference frame of the quantum system, is equivalent to a
continuum of heat baths at rest with respect to the moving
system, each with a different temperature. They then claimed
that there is no unique rule for the Lorentz transformation of
temperature. It should be noted here that although the pho-
ton number distribution or other physical quantities involving
the moving black-body radiation can be accurately calcu-
lated in the rest frame of the black body or through various
approaches, the description of the thermodynamic properties
of the moving black-body radiation still remains controver-
sial. As can be seen, relativistic thermodynamics has always
been, and will continue to be, a controversial topic.

Inspired by the work of Costa and Matsas [52], Cai investi-
gated the transition process of a uniformly moving atom cou-
pled to a bath of the thermal quantum electromagnetic field
[57]. It was shown that the atomic transition rates depend cru-
cially on the atomic velocity, the temperature of the thermal
bath, and the atomic polarizability. Again, the moving atom
as a photon detector also probes a non-Planckian spectrum.
Notably, because the electric field of the moving black-body
radiation is anisotropic, the spectrum function recorded by
the atom polarizable perpendicular to the atomic velocity is
quite different from the case for the atom polarizable parallel
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to the atomic velocity. The abovementioned works clearly
imply that the thermal state of quantum fields is relativis-
tic and observer-dependent. It is clear that this characteristic
of black-body radiation can affect the transition processes
of a uniformly moving atom. Quite naturally, one should ask
whether it can also cause the shift of atomic levels. In fact, we
recently investigated the influence of this characteristic on the
energy shift of a two-level atom coupled to a thermal bath of
a massless quantum scalar field [58]. The study of this simple
model preliminarily revealed that the moving thermal radia-
tion field can shift the atomic levels in a way quite different
from that of the static ones. In this paper, we generalize this
toy model into the case of a real multilevel atom in electric
dipole interaction with a quantum electromagnetic field. It is
assumed that initially the atom in a certain stationary state
makes a uniform linear motion and that the quantum field
is in the thermal state at a finite temperature (i.e., the black-
body radiation field). Using the DDC formalism [28,29], we
separately calculate the contributions of thermal fluctuations
and radiation reaction on the atomic energy shifts and explore
how they are respectively modified by the coexistence of the
thermal bath and the atomic uniform motion. This may con-
tribute to further exploration on controlling and adjusting the
physical properties of an atom–field coupling system. On the
other hand, by examining the effect of the relativity of ther-
mal states on the atomic radiative properties in detail, it may
contribute to the further understanding of various theories of
relativistic thermodynamics. The natural units h̄ = c = 1
and kB = 1 are adopted throughout the paper.

2 The DDC formula for the energy shift of a multilevel
atom coupled to the quantum electromagnetic field

We consider the interacting system of a multilevel atom cou-
pled to a quantum electromagnetic field. The time evolu-
tion of the whole system with respect to the atomic proper
time τ can be governed by the total Hamiltonian H(τ ) =
HA(τ ) + HF (τ ) + HI (τ ). HA(τ ) is the Hamiltonian opera-
tor of the atom with a set of discrete levels,

HA(τ ) =
∑

n

ωnσnn(τ ), (1)

where σnn = |n〉〈n|, and ωn corresponds to the energy of the
stationary state |n〉. HF (τ ) is the Hamiltonian operator of the
quantum electromagnetic field, expressed as

HF (τ ) =
∑

kλ

ωka
†
kλakλ

dt

dτ
, (2)

where akλ (a†
kλ) is the annihilation (creation) operator for

a photon with wave vector k and polarization λ, and ωk is
the photon’s energy. The atom–field coupling is described by
the interaction Hamiltonian HI (τ ), and here we consider in

the multipolar coupling scheme the electric dipole interac-
tion [59]

HI (τ ) = −er(τ ) · E(XA(τ )), (3)

where e is the electron charge, er(τ ) denotes the atomic elec-
tric dipole moment operator, and E(X) is the electric field
operator. It should be noted that the coupling is effective only
on the spacetime trajectory XA(τ ) of the atom. Assume that
the atom is initially prepared in the stationary state |b〉 and the
quantum field is in an arbitrary quantum state |	〉. Since the
DDC formalism has been widely employed to investigate the
radiative properties of atoms in different situations in order to
separately discuss the contributions of quantum fluctuations
and radiation reaction [12–16,24–27], here we immediately
arrive at the general expression of quantum fluctuations and
radiation reaction contributions to the energy shift of the mul-
tilevel atom,

(δEb)qf = −ie2
∫ τ

τ0

dτ ′(CF
i j )	(XA(τ ), XA(τ ′))(χ A

i j )b(τ, τ
′), (4)

(δEb)rr = −ie2
∫ τ

τ0

dτ ′(χ F
i j )	(XA(τ ), XA(τ ′))(CA

i j )b(τ, τ
′). (5)

The symmetric correlation function (CF
i j )	 and the linear

susceptibility (χ F
i j )	 of the quantum electromagnetic field

in the state |	〉 are defined as follows:

(CF
i j )	

(
XA(τ ), XA(τ ′)

) = 1

2
〈	|{Ei (XA(τ )), E j (XA(τ ′))}|	〉,

(6)

(χ F
i j )	

(
XA(τ ), XA(τ ′)

) = 1

2
〈	|[Ei (XA(τ )), E j (XA(τ ′))]|	〉. (7)

(CA
i j )b(τ, τ

′) and (χ A
i j )b(τ, τ

′) are the statistical functions of
the atom in the stationary state |b〉. They are not dependent on
the trajectory of the atom, and their explicit forms are given
by

(CA
i j )b(τ, τ

′) = 1

2
〈b|{ri (τ ), r j (τ

′)}|b〉

= 1

2

∑

d

[〈b|ri (0)|d〉〈d|r j (0)|b〉eiωbd�τ

+〈b|r j (0)|d〉〈d|ri (0)|b〉e−iωbd�τ ], (8)

(χ A
i j )b(τ, τ

′) = 1

2
〈b|[ri (τ ), r j (τ

′)]|b〉

= 1

2

∑

d

[〈b|ri (0)|d〉〈d|r j (0)|b〉eiωbd�τ

−〈b|r j (0)|d〉〈d|ri (0)|b〉e−iωbd�τ ], (9)

where the notations �τ = τ − τ ′ and ωbd = ωb − ωd are
adopted, and the sum extends over a complete set of atomic
states. The result of energy shifts can be quite different for
different trajectories XA(τ ) and quantum states of field |	〉.
We will discuss a specific case in the following.
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3 The case for a uniformly moving atom in black-body
radiation

Now we apply the above formalism to calculate the energy
shifts of a uniformly moving atom immersed in a black-body
radiation field at a finite temperature T . The atom moves at
a constant velocity v along a certain direction, for example,
the z direction, and then its world line is denoted in Cartesian
coordinates as

XA(τ ) = (γ τ, x0, y0, z0 + vγ τ), (10)

where (x0, y0, z0) is the atomic initial spatial coordinates,
and the relativistic factor γ = 1/

√
1 − v2. The thermal state

of the quantum field is described by the density operator
ρ = e−βHF with the inverse temperature β = 1/T . By the
formula 〈β|G|β〉 = tr(ρG)/tr(ρ) with G being an arbitrary
field operator, the two-point correlation function of the elec-
tromagnetic four-vector potential Aμ(X) in the thermal state
|β〉 is given by

〈β|Aμ(X)Aν(X
′)|β〉 = −ημν

∫
d3k

×
[

eω/T

eω/T − 1
uk(X)u∗

k(X
′) + 1

eω/T − 1
u∗
k(X)uk(X

′)
]
, (11)

where ημν = (1,−1,−1,−1) and

uk(X) =
√

1

2ω(2π)3 e
ik1xeik2 yeik3ze−iωt . (12)

Due to the relation Ei (X) = ∂i A0(X)−∂0Ai (X), after inser-
tion into the atomic trajectory (10) and some calculations and
simplifications, the correlation functions of the electric field
in the instantaneous reference frame of the atom are found
to be [57]

〈β|Ei (XA(τ ))E j (XA(τ ′))|β〉 = δi j
1

3π

∫ ∞

0
dω ω3

×
[
e−iω�τ

(
1 + fi (ω, β, v)

)
+ eiω�τ fi (ω, β, v)

]
, (13)

where the functions fi (ω, β, v) with i = 1, 2, 3 are defined
as

f1(ω, β, v) = 3

4

∫ π

0
dθ

(
1 − 1

2
sin2 θ

)
sin θ

eωβγ (1−v cos θ) − 1

= −3

4

∞∑

k=1

1

k3ω3β3v3γ 3

[(
1 + kωβvγ + k2ω2β2v2γ 2

)
e−kωβ(1+v)γ

−
(

1 − kωβvγ + k2ω2β2v2γ 2
)
e−kωβ(1−v)γ

]
, (14)

f2(ω, β, v) = f1(ω, β, v), (15)

f3(ω, β, v) = 3

4

∫ π

0
dθ

(
1 − cos2 θ

) sin θ

eωβγ (1−v cos θ) − 1

= 3

2

∞∑

k=1

1

k3ω3β3v3γ 3

[(
1 + kωβvγ

)
e−kωβ(1+v)γ

−
(

1 − kωβvγ
)
e−kωβ(1−v)γ

]
. (16)

Here we have used the identity
∑∞

k=1 e
−ka = 1

ea−1 (a > 0)

to give two different forms of fi (ω, β, v). Then the symmet-
ric correlation function and the linear susceptibility of the
field are easily given by

(CF
i j )β

(
XA(τ ), XA(τ ′)

) = δi j
1

3π

∫ ∞

0
dω ω3

(
1 + 2 fi (ω, β, v)

)

×(
e−iω�τ + eiω�τ

)
, (17)

(χ F
i j )β

(
XA(τ ), XA(τ ′)

) = δi j
1

3π

∫ ∞

0
dω ω3(e−iω�τ − eiω�τ

)
.

(18)

Substituting (17) and (18) into Eqs. (4) and (5), and assum-
ing sufficiently long time evolution τ − τ0 → ∞, we then
obtain the contributions of thermal fluctuations and radiation
reaction to the energy shift of the atom in the state |b〉,

(δEb)tf = e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3(1 + 2αi fi (ω, β, v)

)
P

(
1

ω + ωbd
− 1

ω − ωbd

)
,

(δEb)rr = − e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3P

(
1

ω + ωbd
+ 1

ω − ωbd

)
, (19)

where we have used the notation αi = |〈b|ri (0)|d〉|2/
|〈b|r(0)|d〉|2, and P denotes the Cauchy principal value.
Compared with the case for a static atom in a black-body
radiation field [18–21,26], it can be seen that the contribu-
tion of thermal fluctuations is modified by the atomic inertial
motion, as the factor 2αi fi (ω, β, v) is a nonthermal term
(i.e., not 2

eωβ−1
). However, the contribution of radiation reac-

tion is the same as in the case for an inertial atom in vacuum
or for a static atom in a thermal bath [26], which is indepen-
dent of both the temperature and the atomic velocity. Adding
up the two contributions, we can obtain the total energy shift

δEb = 2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3P

([
αi fi (ω, β, v)

] 1

ω + ωbd

−[
1 + αi fi (ω, β, v)

] 1

ω − ωbd

)
. (20)
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The energy shift can be divided into two parts, δEb =
(δEb)0 + (δEb)T,v , where

(δEb)0 = −2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3P

(
1

ω − ωbd

)
(21)

and

(δEb)T,v = 2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3αi fi (ω, β, v)P

(
1

ω + ωbd
− 1

ω − ωbd

)
. (22)

Here, (δEb)0 refers to the known Lamb shift term caused by
vacuum fluctuations. (δEb)T,v is exactly the modification of
the energy shift caused by the combination of the black-body
radiation field and the atomic uniform motion, which depends
on the temperature of the thermal field, the atomic velocity,
and the atomic polarizability. Since the renormalized (δEb)0

is a constant, we focus only on the term (δEb)T,v .
In particular, for the isotropic polarization, i.e., αi =

( 1
3 , 1

3 , 1
3 ), the result becomes

(δEb)T,v = 2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3h(ω, β, v)P

(
1

ω + ωbd
− 1

ω − ωbd

)
, (23)

where

h(ω, β, v) = 1

2

∫ π

0
dθ

sin θ

eωβγ (1−v cos θ) − 1

=
∞∑

k=1

√
1 − v2

2kωβv

[
e
− kωβ(1−v)√

1−v2 − e
− kωβ(1+v)√

1−v2

]

=
√

1 − v2

2ωβv
ln

⎛

⎜⎝
1 − e

− ωβ(1+v)√
1−v2

1 − e
− ωβ(1−v)√

1−v2

⎞

⎟⎠ . (24)

The function h(ω, β, v) is exactly proportional to the known
spectrum function of the black-body radiation in the moving
reference frame already obtained in previous studies [48–52].

It is often difficult to eliminate this principal integral
in (22). However, approximate analytical results can be
obtained in some limited cases. Meanwhile, numerical results
can be given in order to analyze the behavior of the atomic
energy shifts. In the following, we will examine them in
detail.

4 Analytical analysis and numerical analysis

Choosing the dimensionless variables λ0 = ωbdβ and λ =
ωβ, one has

(δEb)T,v = 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd F(λ0, v) (25)

where the dimensionless factor

F(λ0, v) = 1

λ3
0

∫ ∞

0
dλ λ3αi fi (λ, v)P

×
(

1

λ + λ0
− 1

λ − λ0

)
. (26)

In the limit of low temperature, i.e., |h̄ωbd | 	 kBT holds
for all ωbd , the energy shift becomes approximately

(δEb)
perp
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[

2π4(1 + v2)

15(1 − v2)

(
T

ωbd

)4

+ 16π6(1 + 17
5 v2 + 2

5 v4)

63(1 − v2)2

(
T

ωbd

)6
]

(27)

for the polarizability αi = (1, 0, 0) or αi = (0, 1, 0),

(δEb)
para
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[

2π4

15

(
T

ωbd

)4

+ 16π6(1 + v2/5)

63(1 − v2)

(
T

ωbd

)6
]

(28)

for the polarizability αi = (0, 0, 1), and

(δEb)
iso
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[

2π4(1 + v2/3)

15(1 − v2)

(
T

ωbd

)4

+ 16π6(1 + 2v2 + 1
5 v4)

63(1 − v2)2

(
T

ωbd

)6
]

(29)

for the polarizability αi = ( 1
3 , 1

3 , 1
3 ). In contrast to Eq. (12)

in [21], the presence of the atomic uniform motion clearly
modifies the level shift of the atom in thermal radiation. We
find that for an atom polarizable parallel to the direction of
atomic motion, the leading term is not affected and the second

term is enhanced by the factor 1+v2/5
1−v2 . However, for an atom

polarizable perpendicular to the direction of atomic motion,
both the leading term and the second term are amplified. As a
result, the energy shift for an atom polarizable perpendicular
to the direction of atomic motion is slightly more obvious
than that for an atom polarizable parallel to the direction of
atomic motion. In short, in the low-temperature limit, the
uniform motion always enhances the effect of the thermal
field on the atomic energy shifts no matter what the atomic
polarizability is. As shown in Eq. (12) in [21], the energy shift
of a static atom in the low temperature limit is proportional to
T 4. Replacing the temperature T by the effective temperature
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Teff = T
√

1 − v2/(1 − v cos θ) in the result of the static
atom and integrating it over the solid angle with different
density factors, i.e., (1 − 1

2 sin2 θ), (1 − cos2 θ) and 1 in
Eqs. (14)–(16) and (24) respectively for atoms with different
polarizabilities, the above results (27)–(29) can be recovered.
Due to the form of the atom-field interaction Hamiltonian
(3), the moving atom polarized along the x (or z) direction
perceives only the x (or z) component of the electric field.
The dependence of the results on the atomic polarizabilities
is exactly due to the anisotropy of the two-point correlation
functions for the spatial components of the electric field (see
Eq. (13) with Eqs. (14)–(16)). This absolutely reflects the fact
that the black-body radiation seen by the moving observer is
anisotropic due to the relativistic Doppler effect.

In the high-temperature limit, i.e., |h̄ωbd | � kBT holds
for all ωbd , one has

(δEb)
perp
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[

3(1 − v2) ln 1−v
1+v

+ 6v

4v3

(
− π2

3

)(
T

ωbd

)2]
(30)

for the polarizability αi = (1, 0, 0) or αi = (0, 1, 0),

(δEb)
para
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[
(v2 − 1)

(
6v + 3 ln 1−v

1+v

)

2v3

(
− π2

3

)(
T

ωbd

)2]
(31)

for the polarizability αi = (0, 0, 1), and

(δEb)
iso
T,v ≈ 2e2

3π

∑

d

|〈b|r(0)|d〉|2ω3
bd

×
[(

− π2

3

)(
T

ωbd

)2]
(32)

for the polarizability αi = ( 1
3 , 1

3 , 1
3 ). Notably, the energy

shift of the isotropically polarizable atom is not affected by
the uniform motion. In contrast to Eq. (11) in [21], it is easy
to prove that the presence of the uniform motion always
enhances the action of the thermal field on the energy shift for
an atom polarizable perpendicular to the direction of atomic
motion, but weakens that for an atom polarizable parallel to
the direction of atomic motion. As shown in Eq. (11) in [21],
the energy shift of a static atom in the high-temperature limit
is proportional to T 2. Again, replacing the temperature T
by the effective temperature Teff = T

√
1 − v2/(1 − v cos θ)

in the result of the static atom and integrating it over the
solid angle with different density factors, the above results
(30)–(32) can be recovered. The insensitivity to the atomic
velocity for the result of the isotropically polarizable atom is
due to the fact that the average temperature squared defined
as 〈T 2

eff〉 = 1
4π

∫
T 2

eff(v, θ)d� is independent of v.

When the atomic velocity is small as compared with the
light velocity (|v| � 1), one has

f1(ω, β, v) = f2(ω, β, v) ≈ 1

eωβ − 1
+ f̃1(ω, β)v2, (33)

f3(ω, β, v) ≈ 1

eωβ − 1
+ f̃3(ω, β)v2, (34)

h(ω, β, v) ≈ 1

eωβ − 1
+ h̃(ω, β)v2, (35)

where we have defined the functions

f̃1(ω, β) = 2

5

(
ωβ

eωβ − 1
+ ωβ

2
− 5

4

)(
1

eωβ − 1
+ 1

)

×
(

ωβ

eωβ − 1

)
, (36)

f̃3(ω, β) = 1

5

(
ωβ

eωβ − 1
+ ωβ

2
− 5

2

)(
1

eωβ − 1
+ 1

)

×
(

ωβ

eωβ − 1

)
, (37)

h̃(ω, β) = 1

3

(
ωβ

eωβ − 1
+ ωβ

2
− 3

2

)(
1

eωβ − 1
+ 1

)

×
(

ωβ

eωβ − 1

)
. (38)

Then the energy shift reduces to

(δEb)T,v = (δEb)T + (δEb)v, (39)

where

(δEb)T = 2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3 1

eωβ − 1
P

(
1

ω + ωbd
− 1

ω − ωbd

)
(40)

and

(δEb)v =
[

2e2

3π

∑

d

|〈b|r(0)|d〉|2

×
∫ ∞

0
dω ω3αi f̃i (ω, β)P

(
1

ω + ωbd
− 1

ω − ωbd

)]
v2.

(41)

Here, (δEb)T refers to the result of a static multilevel atom
immersed in a bath of thermal radiation [21], and (δEb)v
refers to the sole modification due to the slow motion of the
atom. (δEb)v is proved to be convergent and nonzero; then the
modification of the energy shift due to the slow motion of the
atom is proportional to v2. The slow motion of the atom can
enhance or weaken the action of the thermal bath, as (δEb)v
can be positive or negative depending on the temperature of
the thermal radiation, the atomic level distribution, and the
atomic polarizability.

The dependence of the atomic energy shift on the temper-
ature and the velocity is entirely contained in the function
F(λ0, v). For general values of T and v, here we give some
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(a) (b)

(c) (d)

Fig. 1 The behavior of the function λ3
0F(λ0, v) with the increase in λ0.

The dashed, dotted, and dot-dashed lines refer to the cases for an atom
polarizable perpendicular to the atomic velocity, parallel to the atomic
velocity, and isotropically, respectively. As a contrast, the black solid

line refers to the case for a static atom in the same thermal radiation
(v = 0). a The case for v = 0.1, b the case for v = 0.3, c the case for
v = 0.5, d the case for v = 0.9

numerical results. In Fig. 1, for better presentation, we depict
the function λ3

0F(λ0, v) instead of F(λ0, v), just as in the
reference [21]. Here we only show the case for positive ωbd ,
and the result for negative ωbd can be obtained by the rela-
tion (−λ0)

3F(−λ0, v) = −λ3
0F(λ0, v). As can be seen, the

function is always negative in the zone of small ωbd/T , but
it is always positive in the zone of big ωbd/T . This means
that when the temperature is fixed, those states |d〉 close to
the atomic state |b〉 tend to draw the atomic level closer to
themselves, whereas those states |d〉 distant from the atomic
state |b〉 tend to repel it. This characteristic is also tenable in
the case of a static atom in thermal radiation [21]. Although
the presence of uniform motion can reinforce or weaken this
feature, it does not reverse it. By Fig. 2 we depict the behavior
of the function F(λ0, v) with the increase in the magnitude
of the atomic velocity. Notably, the behavior of F(λ0, v) is
quite different for different polarizabilities. The graph of the
function can also be of various shapes for different cases of
ωbd/T . The function F(λ0, v) always ends up returning to
0 when v → 1. This means that the energy shifts of ultra-

relativistic atoms are unaffected by the thermal radiation as
if the atom were in vacuum. This characteristic also appears
in the investigation of the transition rates for a uniformly
moving Unruh–DeWitt detector or atom in a thermal radia-
tion field [52,57]. Costa and Matsas in [52] explicitly point
out that this can be understood physically on the basis of
energy conservation. In this respect, if the relativistic trans-
formation law of temperature exists, Einstein–Planck trans-
formation law, T = T0

√
1 − v2, may be more reasonable

than that of Ott. However, we should note that for the atom
polarizable perpendicular to the atomic velocity or polariz-
able isotropically, the fall to 0 is swift as v → 1. Only for the
atom polarizable parallel to the atomic velocity does the line
fall smoothly to 0. Thus, for high velocity (for example, the
velocity is greater than v = 0.9), the value of F(λ0, v) can be
still considerable. On the whole, in the zone of high velocity,
the deviation from the case of v = 0 due to the effect of uni-
form motion is prominent. By contrast, with the curves for a
static atom in thermal radiation (the transverse solid lines),
it is clearly shown that the presence of uniform motion can
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(c) (d)

(a) (b)

Fig. 2 The behavior of the function F(λ0, v) with the increase in v.
The dashed, dotted, and dot-dashed lines refer to the cases for an atom
polarizable perpendicular to the atomic velocity, parallel to the atomic
velocity, and isotropically, respectively. As a contrast, the transverse

solid line refers to the case for a static atom in the same thermal radia-
tion (v = 0). a The case for ωbd/T = 0.5, b the case for ωbd/T = 1,
c the case for ωbd/T = 5, d the case for ωbd/T = 10

enhance or weaken the effect of the thermal radiation at dif-
ferent levels, depending on the specific values of T , v, and
the atomic polarizability. Moreover, the sign of F(λ0, v) can
vary with v, and thus the uniform motion can reverse the
sign of the atomic energy shift in appropriate conditions. It
should be noted that the numerical images here also confirm
the correctness of the previous analytical results.

5 Conclusions

Using the DDC formalism, we have separately calculated the
contributions of thermal fluctuations and radiation reaction
to the energy shifts of a uniformly moving multilevel atom in
a black-body radiation field. The result shows that the contri-
bution of thermal fluctuations is strongly affected by the com-
bined action of thermal radiation and atomic uniform motion.
However, that of radiation reaction is completely impervious.
This is because the linear susceptibility of the electric field
defined in Eq. (7) is not affected by either the uniform motion
or the state of the field (see Eq. (18)). The total energy shifts

depend crucially on the temperature of the thermal radiation,
the atomic velocity, and the atomic polarizability. Notably,
the behavior of energy shifts can be quite different when
the atom has different polarizabilities. The dependence on
the atomic polarizability reflects the anisotropy of the mov-
ing black-body radiation as seen by the atom regarded as
a special photon detector. In the low-temperature limit, the
presence of the atomic uniform motion always enhances the
action of the thermal bath on the atomic energy shifts. The
impact of uniform motion for an atom polarizable perpen-
dicular to the direction of atomic motion is stronger than that
in the case for an atom polarizable parallel to the direction
of atomic motion. However, the situation is different in the
high-temperature regime. The presence of uniform motion
always enhances the action of the thermal field on the energy
shift for an atom polarizable perpendicular to the direction
of atomic motion but weakens that for the atom polarizable
parallel to the direction of atomic motion. These peculiar-
ities for the energy shifts in the low or high regime are in
sharp contrast to the case for a uniformly moving two-level
atom coupled to a thermal bath of a massless quantum scalar
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field [58]. Moreover, the modification of the energy shift due
solely to the slow motion of the atom is always proportional
to v2. Our results indicate that the moving black body as
seen by the atom indeed shifts the atomic levels in a way
quite different from that of the static one. More specifically,
by adjusting the abovementioned influencing parameters, the
atomic uniform motion can raise or lower the atomic energy
levels. We thus conclude that the relativity of the thermal
state of a quantum electromagnetic field can both affect the
transitions between atomic states [57] and cause the shift of
the atomic levels. Theoretically, the radiative properties of
the atom–field coupling system can be regulated by the com-
bination of the thermal field and the atomic uniform motion.
This may have theoretical value and guiding significance for
some areas of atomic physics and optics. In fact, our results
can also be obtained in the co-moving frame of reference
of the atom by using the manifestly Lorentz-invariant gen-
eralization of the Gibbs’s canonical density operator derived
in [47], ρ = e−VμPμ/(kBT ), where Vμ/kBT is exactly the
inverse-temperature four-vector βμ. The inverse-temperature
four-vector can be regarded as a combination of the temper-
ature and the four-velocity. This reminds us of the energy–
momentum four-vector of a particle in relativistic mechan-
ics as a combination of the mass and the four-velocity,
pμ = mVμ, where m is the rest mass of the particle. Just
like the relation between the rest mass and the relativistic
mass of a particle, M = mV0 = m√

1−v2 associated with Ein-

stein’s mass–energy relation E = Mc2, one can also define
the “relativistic temperature” of the thermodynamic equilib-
rium system, Tv = T/V0 = T

√
1 − v2, which is in line with

the transformation law of von Mosengil, Planck, and Ein-
stein. Of course, it would be better to hold the view that the
temperature is the parameter just defined in the rest frame of
the system like the rest mass. We tend to argue that the mov-
ing thermal radiation field, at least for the massless quantum
scalar field and the quantum electromagnetic field, should
be described by the density operator ρ = e−βμPμ

instead of
ρ = e−βHF .
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