
1

Maximum-Likelihood Detection with QAOA for
Massive MIMO and Sherrington-Kirkpatrick Model

with Local Field at Infinite Size
Burhan Gulbahar, Senior Member, IEEE

Abstract—Quantum-approximate optimization algorithm
(QAOA) is promising in Noisy Intermediate-Scale Quantum
(NISQ) computers with applications for NP-hard combinatorial
optimization problems. It is recently utilized for NP-hard
maximum-likelihood (ML) detection problem with fundamental
challenges of optimization, simulation and performance analysis
for n × n multiple-input multiple output (MIMO) systems
with large n. QAOA is recently applied by Farhi et al. on
infinite size limit of Sherrington-Kirkpatrick (SK) model with a
cost model including only quadratic terms. In this article, we
extend application of QAOA on SK model by including also
linear terms and then realize SK modeling of massive MIMO
ML detection by ensuring independence from specific problem
instance and size n while preserving computational complexity
of O(16p) designed by Farhi et al. We provide both optimized
and extrapolated angles for p ∈ [1, 14] and signal-to-noise (SNR)
< 12 dB achieving near-optimum ML performance for 25 × 25
MIMO system with p ≥ 4 in extensive simulations where
236500 different QAOA circuits are simulated. We present two
conjectures about the concentration properties of QAOA and
its near-optimum performance for massive MIMO systems with
large sizes covering n < 300 promising significant performance
for next generation massive MIMO systems.

Index Terms—Quantum approximate optimization, massive
MIMO, Sherrington-Kirkpatrick model, maximum-likelihood de-
tection

I. INTRODUCTION

Quantum-approximate optimization algorithm (QAOA) is a
future promising quantum algorithm to be utilized on Noisy
Intermediate-Scale Quantum (NISQ) devices [1] to provide
high-performance solutions for NP-hard combinatorial opti-
mization problems [2]. It is applied on a rich set of engi-
neering problems with extensive theoretical and performance
simulation studies especially for Max-Cut problems in graphs
while promising quantum computational advantage (quantum
supremacy) on NISQ computers [3]. QAOA is a hybrid method
where the angle parameters of the layers of its quantum
circuit with a depth count denoted by p ≥ 1 are opti-
mized in a classical computer while the solution is obtained
among the measurement results of QAOA circuit running
on a quantum computer. There are extensive theoretical and
simulation studies for QAOA circuits with p = 1 calculating
the optimum angles and expected cost explicitly while it
becomes challenging to calculate for p ≥ 2 [4]. Besides that,

This work was supported by TUBITAK (The Scientific and Technical
Research Council of Turkey) under Grant #119E584. Burhan Gulbahar
is with the Department of Electrical and Electronics Engineering, Yaşar
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Sherrington-Kirkpatrick (SK) model denotes a spin system
with all-to-all couplings among the spins while defining a
combinatorial search problem to find the value of the lowest
energy with a recent classical solution [5], [6]. Application of
QAOA for general SK models including only quadratic terms
is introduced by Farhi et al. in [5] where an algorithm for
expectation calculation is presented with the computational
complexity of O(16p) for the infinite size limit of SK model.
In [7], a generalized multinomial theorem is provided to
calculate expectations at the infinite size limit for various
random ensembles including mixed spin models consisting of
a cost function not only including local and quadratic terms
but also higher order terms until q ≥ 2 including clauses with
more than two terms. The computational complexity is shown
to be either O(4q p) or O(p2 4p). In this article, we extend the
algorithm in [5] for SK models which include linear terms
in addition to quadratic terms and where the variances of
quadratic and linear cost coefficients increase as O(n) and
O(n2), respectively, with respect to problem size n. Then, we
apply QAOA with the extended SK model on NP-hard optimal
maximum likelihood (ML) detection problem [8]. We observe
near-optimum performance in extensive simulation studies
with promising applications of QAOA in NISQ devices.

QAOA is recently applied for optimal ML detection problem
especially for multiple-input-multiple-output (MIMO) com-
munication systems as a low complexity alternative for the
optimum ML detector for which the complexity increases
exponentially with respect to symbol size n for a general n×n
MIMO system with large number of users and transmitters
[8]. Massive MIMO systems with optimum ML detection
capability are highly promising to increase the performance
of next generation communication systems compared with
conventional solutions including minimum mean square error
(MMSE) detection with low error performance and sphere
decoding resulting in high complexity for large systems [9].
The number of studies analyzing the application of QAOA for
ML detection is highly limited. In [8], ML detection problem
is modeled as a quadratic unconstrained binary optimization
(QUBO) problem and QAOA implementation is proposed as
a solution for NP-hard ML detection problem with application
for binary-phase-shift-keying (BPSK) MIMO systems. On the
other hand, computational complexity of finding optimal angle
values for QAOA is presented as O(mp5 23n) where n is the
number of transmit antennas, p is the QAOA depth parameter
and m is the number of iterations. Theoretical analysis is
performed for p ≤ 3, while simulations are performed for
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significantly small scale systems with n ≤ 3 and p ≤ 20. It
is not clear how to calculate expectation of QAOA circuit,
to optimize angle parameters and to simulate performance
for large n and high depth p as a significant challenge for
the utilization of QAOA in practical ML detection problems.
Similarly, in [10], proposed design is generalized for higher
order modulation schemes as an extension of BPSK model.
In [11], a theoretical analysis of QAOA expectation for p = 1
for channel decoding with arbitrary binary linear codes is
presented and simulations are performed. In [12], QAOA is uti-
lized for turbo detection in coded MIMO systems by defining a
learning algorithm with recurrent neural networks to optimize
parameters with simulations showing high performance.

On the other hand, there are high number of studies ana-
lyzing the application of quantum annealing (QA) and Ising
machines for ML detection problems. In [9], Coherent Ising
Machines (CIMs) are presented for performing near-optimal
MIMO detection for MIMO systems as large as 64×256. The
importance of realizing massive MIMO systems with near-
optimal performance is emphasized for allowing both large
number of users and antennas at the same time. In [13], a
multi-stage version is presented for high order modulations
and large systems. In [14], QA is utilized for vector pertur-
bation precoding (VPP) in MIMO systems reaching sizes of
12 × 12. There are also additional studies including D-Wave
based experimental tests for MIMO ML decoding in [15]–
[17]. On the other hand, in [18], Grover search based quadratic
speed-up is utilized in MIMO ML detection.

A. Contributions

In this article, we firstly include linear terms for the local
fields in addition to quadratic terms of SK model by extending
the algorithm in [5]. Then, we apply QAOA on SK modeling
of ML detection problems for n × n massive MIMO sys-
tems. We present an optimization algorithm of QAOA angle
parameters with significant advantages of independence from
specific problem instance and n. The proposed algorithm is
an extended version of the expectation calculation algorithm
in [5] designed by Farhi et al. while preserving the computa-
tional complexity of O(16p). We present optimized angles for
p ∈ [1, 7] achieving near-optimum performance with p ≥ 4
for 25× 25 MIMO systems and SNR < 12 dB. Besides that,
we propose a heuristic extrapolation algorithm for p ∈ [8, 14]
achieving high performance in simulation studies with the ratio
of expected cost of QAOA to the optimum cost, i.e., denoted
as approximation ratio conventionally, reaching ≈ 0.9364
[19]. In addition, we define additional approximation ratio
performance metrics with respect to minimum measured cost
among QAOA circuit outputs and observing almost unity
ratios achieving ML performance with p ≥ 4. We present
two conjectures modeling the concentration properties and
performance of QAOA for ML problems. Conjecture 1 is
supported by extensive simulation studies for n ≤ 28 while
requiring theoretical and simulation based verifications for
larger n values as an open issue. Conjecture 2 promises
that presented angles for p ∈ [1, 14] achieve near-optimum
performance for massive MIMO symbol length n < 300.

We provide extensive simulation studies for QAOA in IBM
Quantum Lab by analyzing statistical properties of QAOA
measurement outputs for 236500 different QAOA circuits
corresponding to random problem instances for varying n,
p and SNR [20]. We share statistical properties for each
problem instance in a data repository in [21] by creating
an extensive data set for further analysis and verification by
researchers. We theoretically analyze and simulate problem
instance based mean and variance of measured minimum cost
of QAOA circuits as an extension to the statistical properties
of expected cost for SK models in [5]. Proposed solution
promises widespread industrial utilization of QAOA in NISQ
devices with error mitigation approaches [22]–[24] for near
future massive MIMO wireless communications.

The remainder of the paper is organized as follows. Next, in
Sections II and III, background about QAOA and application
of QAOA for ML problems are presented. In Section IV, SK
model of ML problem is given. In Section V, application of
QAOA on SK model is extended by including linear terms
for the local field. In Section VI, concentration properties
of QAOA measurements and problem based expectations
are discussed. Then, extensive simulation studies for QAOA
circuits solving ML problem are presented in Section VII.
Finally, in Section VIII, conclusions are presented.

II. BACKGROUND ABOUT QAOA
QAOA is a promising to be utilized on NISQ devices

for addressing combinatorial optimization problems [1], [2].
QAOA prepares a quantum state approximating the ground
state of a problem Hamiltonian which corresponds to the
optimal solution of a classical cost function C(z) defined
on n-bit strings z = (z1, z2, . . . , zn) ∈ {+1,−1}n [5]. A
typical cost function in a combinatorial optimization problem
is represented in Ising form as follows [4]:

C(z) =
∑
j<k

Jjk zj zk +
∑
j

hj zj (1)

where Jj,k values are the quadratic terms (interactions) and hj
terms are the linear terms (local fields). Besides that, SK model
generalizes the Ising model of a classical spin system with
couplings between all n spins while Jjk and hj are chosen as
independent Gaussian random variables [5]. Cost function is
mapped onto Ising model Hamiltonian HC defined as follows:

HC =
∑
j<k

Jj,k Zj Zk +
∑
j

hj Zj (2)

where Zj are Pauli-Z operators acting on the j-th qubit.
QAOA prepares a quantum state |Ψ(γ,β)〉 such that expec-
tation value of the problem Hamiltonian with respect to the
quantum state, i.e., 〈C〉 or 〈CQAOA〉, is minimized where the
expectation of the cost is defined as follows:

〈C〉 = 〈Ψ(γ,β)|HC |Ψ(γ,β)〉 (3)

State |Ψ(γ,β)〉 ≡ |Ψ〉 minimizing 〈C〉 is prepared as follows:

|Ψ〉 =

p∏
r=1

U(B, βr)U(C, γr) |+〉⊗n (4)

= U(B, βp)U(C, γp) · · ·U(B, β1)U(C, γ1) |+〉⊗n (5)
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where B =
∑n
j=1Xj is a mixing Hamiltonian, Xj is

the Pauli-X operator acting on jth qubit, initial state
|+〉⊗n = (1 /

√
2n)

∑
z |z〉 is the equal superposition state,

and U(B, βr) = e−ı βr B and U(C, γr) = e−ı γr HC are
unitary operators parametrized by the optimized angle sets
γ = (γ1, γ2, . . . , γp) and β = (β1, β2, . . . , βp) while p is
the layer depth of QAOA circuit. Angle parameters γ and
β are optimized classically to maximize the expectation of
the problem Hamiltonian [25]. The measurement of |Ψ(γ,β)〉
results in a string z such that C(z) is close to 〈C〉.

III. APPLICATION OF QAOA FOR ML PROBLEMS

On the other hand, QAOA is recently applied for optimum
ML detection in MIMO systems in [8], [10] by also proposing
QUBO model for the problem. Assume that H represents real
valued n×n channel gain matrix known by the receiver for a
specific instance of the estimated channel, H(k, l) is the ele-
ment ofH at the kth row and lth column, s = [s1 s2 . . . sn]

T

is the transmitted symbol of length n, si ∈ {−1, 1} and
n = [n1 n2 . . . nn]

T is the noise vector. Then, the received
vector y is given as follows:

y = H s + n (6)

Then, ML detection problem is defined as follows:

minimize
z

||y −H z||2 (7)

In [8], the cost function is transformed into the following form:

||y −H z||2 =
∑
j<k

Jjk zj zk +
∑
j

hj zj + A (8)

where Jjk, hj and constant A are defined as follows:

Jj,k = 2

n∑
l=1

H(l, j)H(l, k) (9)

hj = −
n∑
k=1

sk Jj,k − 2

n∑
l=1

nlH(l, j) (10)

A = yT y +

n∑
l=1

n∑
j=1

H2(l, j) (11)

and the corresponding quadratic term represented with the
matrix J including the elements Ji,j at ith row and jth
column, and linear term represented with the column vector
h with elements hj at the jth row are defined as follows:

J = 2HT H (12)
h = −2HT y (13)

The performance of QAOA is analyzed in [8] for small
length symbols, i.e., n ≤ 3, and for specific instances of H
by showing promising results for the application of QAOA for
large problem instances which is one of the the main targets
in this article. We not only provide optimization for large n
but also provide instance independent solution working for all
instances once the optimization is achieved classically for the
general model of the problem based on statistical properties
of channel matrix H and noise n, SNR and layer depth p.

Classical calculation of 〈C〉 for large values of n is required
to optimize γ and β without requiring a quantum computer to
calculate the expectation. The classical calculation is provided
explicitly for p = 1 in [4] while the complexity of the
calculation is not clearly defined for p ≥ 2 and for large
values of n in the fully coupled model of the cost function
in (8). Next, SK model of ML problem is defined which
allows to calculate 〈C〉 for large values of n and large
depth p for the typical instances of H with the elements
of the matrix H represented as independent and identically
distributed Gaussian random variables with zero mean.

IV. SK MODEL OF ML DETECTION PROBLEM

Conventional SK model as discussed in [5] includes the
classical cost function with a scaled Jj,k as follows:

C(z) =
∑
j<k

(Jjk /
√
n) zj zk (14)

where Jjk is a normal random variable. In [5], the expected
value of 〈C /n〉 and 〈(C /n)2〉 as n→∞ with respect to the
instances of Jj,k are calculated as follows:

lim
n→∞

EJ [〈Ψ(γ,β)| (C/n) |Ψ(γ,β)〉] = Vp(γ,β) (15)

lim
n→∞

EJ
[
〈Ψ(γ,β)| (C/n)2 |Ψ(γ,β)〉

]
= (Vp(γ,β))

2(16)

where 〈Ca / na〉 ≡ 〈Ψ(γ,β)| (Ca/na) |Ψ(γ,β)〉 for a ∈
[1, 2], EJ [.] denotes the statistical expectation with respect
to the instances of Jjk and explicit formula for Vp(γ,β) is
provided. It is conjectured that the variance of (C/n) goes to
zero as n→∞ showing an important concentration property
of the QAOA output strings. In other words, measurements of
QAOA circuit output for large values of n will result in a string
z with C(z)/n highly close to 〈Ψ(γ,β)| (C/n) |Ψ(γ,β)〉
which is approximated as Vp(γ,β) calculated explicitly. In
this article, we exploit the SK model of ML problem in order
to calculate statistical expectation of 〈Ψ(γ,β)|C |Ψ(γ,β)〉
for typical instances of ML problem. Besides that, in [7], a
generalization of multinomial theorem is presented to calculate
expectations at the infinite size limit for various ensembles of
random combinatorial optimization problems including mixed
spin models defined with the following cost function:

C(z) ≡
qmax∑
q=1

cq

n∑
i1,...,iq=1

Ji1,i2,...,iq zi1zi2 . . . ziq (17)

where cq for q ∈ [1, qmax] are real variables and Ji1,...,iq is
the cost tensor multiplying the expression zi1zi2 . . . ziq . The
model generalizes [5] by including not only linear terms but
also higher order terms compared with quadratic terms.

Since the elements of H are independent and identically
distributed Gaussian random variables with zero mean, Jj,k
and hj are approximated also as Gaussian random variables
due to law of large numbers for large n. As a result, ML
problem is modeled with SK model with the difference that it
also includes the linear terms hj zj compared with (14) and
without direct normalization of Jj,k and hj as described next.

Assume that variances of real H(l, k) for k, l ∈ [1, n] and
noise nk for k ∈ [1, n] are σ2

H and σ2
n, respectively, and their
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mean values are zero denoted with µH = µn = 0. SNR for
the `th element of y, i.e., y`, is calculated as follows:

SNR = EH[
( n∑
k=1

H(`, k)sk
)2

] / σ2
n = nσ2

H / σ
2
n (18)

As proved in Section V, SK model with independent Jj,k
and hj allows to calculate 〈C〉 with O(16p) complexity based
on the extended version of the algorithm presented in [5]. The
empirical mean and variance of Jj,k and hj are approximated
as follows for n � 1 and typical transmitted BPSK symbols
s with equally probable individual bits si ∈ {−1,+1} for
i ∈ [1, n] as proved in Appendix A:

µJ = µh ≈ 0 (19)
σ2
J ≈ n (4σ4

H) ≡ n σ̃2
J (20)

σ2
h ≈ n2 σ̃2

J

(
2− 1

n
+

n− 1

nSNR

)
≡ n2 σ̃2

h (21)

where µJ = EH[Jj,k], µh = EH,n[hj ], σ2
J = EH[(Jj,k −

µJ)2], σ2
h = EH,n[(hj − µh)2], σ̃2

J = 4σ4
H and σ̃2

h =
4σ4

H

(
2 − 1 / n + (n − 1) / (nSNR)

)
with the observation

that σ2
J and σ2

h increase as O(n) and O(n2), respectively,
with increasing n � 1. It is an open issue to extend the
algorithmic framework in [5] to extend for correlated J and
h. The correlations are neglected in this article to exploit the
described heuristic framework showing high performance.

A. QAOA Solution with SK Model

QAOA solution is simply realized by creating J and h
for a given problem instance with known values of H and
received vector y by using (12) and (13), respectively, and
then realize p-layer QAOA circuit with angle parameters γ
and β optimized with respect to SK model formed with zero
mean Jj,k and hj having variances n σ̃2

J and n2 σ̃2
h as defined

in (20) and (21), respectively. Then, we perform measurements
of the implemented QAOA circuit outputs. We calculate the
minimum cost corresponding to measured strings, i.e., denoted
as min

z
{CQAOA(z)} as defined in the next section, to obtain

the QAOA solution string z giving the minimum cost. In the
next sections, we interchangeably use 〈Ck〉 or 〈CkQAOA〉 for
k ∈ [1, 2] and EJ,h [.] denotes expectation with respect to
varying problem instances with different J and h.

V. QAOA FOR SK MODEL WITH LINEAR TERM

We extend the moment calculations of SK model at infinite
size limit in [5] for the cost function in (1) including the
local field term hj in addition to the quadratic term Jj,k. The
algorithm in [5] allows extension with a minor modification
for the following differences of the problem model. We follow
a similar method in [5], i.e., extended version of the equation
(76) in [5], while with the following fundamental differences:

1) 〈λC /n2〉 and 〈λC2 / n4〉 are calculated instead of
〈λC /n〉 and 〈λC2 / n2〉.

2) Linear hj terms are included in the cost function with
the assumption that Jj,k and hj are zero mean linearly
independent and identically distributed Gaussian random

Algorithm 1 Calculation of W̃u for u ∈ A (Local field
included extension of the algorithm in [5] for SK model)

1: Define A = {+1,−1}2p
2: Partition A into A = Ap+1 ∪D ∪ Dc based on grouping

definition such that b ∈ D and b ∈ Dc.
3: Index the strings in D = {u1, u2, . . . ,u|D|} and Dc =
{u1, u2, . . . ,u|D|} where the number of elements in D
is |D| = (22 p − 2p) / 2 such that if the group index of
uj is denoted with `j , then `j ≤ `k if j ≤ k.

4: for j ← |D| to 1 (starting with j = |D| and decreasing
to j = 1) do

5: Calculate X̃uj and ∆̃uk.uj for k > j with (27, 28).
6: W̃uj = X̃uj exp

(∑
k>j W̃uk ∆̃uk.uj

)
7: W̃uj = −W̃uj

8: end for
9: for a ∈ Ap+1 do

10: W̃a = Qa

11: end for

variables with variances σ2
J and σ2

h increasing as O(n)
and O(n2) with respect to n, respectively.

3) Optimized angles γ decrease with 1 / n as γ = γ̃ / n
for optimized γ̃ with elements γ̃p,r ∈ [0, 2π] for r ∈
[1, p]. We include additional term p in the subscripts of
γr, γ̃r and βr to better analyze in simulation studies.

On the other hand, the generalized algorithm for mixed spin
model of order q in [7] also assumes that the variance of
Ji1,i2,...,iq equals to 1 / nq−1. This assumption is also different
compared with our case that σ2

J = n σ̃2
J and σ2

h = n2 σ̃2
h

increasing as O(n3−q) with n. We provide the next theorem
as the extended version of [5]:

Theorem 1. Given the angles γp,r = γ̃p,r / n and βp,r for
r ∈ [1, p] for QAOA circuit and the problem Hamiltonian
HC =

∑n−1
j=1

∑n
k=j+1 Jj,k Zj Zk +

∑
j hj Zj where Jj,k and

hj are independent zero mean Gaussian random variables with
variances σ2

J = n σ̃2
J and σ2

h = n2 σ̃2
h for constant σ̃2

J and
σ̃2
h, respectively, the following equalities hold:

lim
n→∞

EJ,h

[
〈C/n2〉

]
= Ṽp(γ̃,β) (22)

lim
n→∞

EJ,h

[
〈C2/n4〉

]
= Ṽ 2

p (γ̃,β) (23)

where Ṽp(γ̃,β) is defined as follows:

Ṽp(γ̃,β) =
ı σ̃J

2

2

p∑
r=1

γ̃p,r Γ+
r Γ−r + ı σ̃h

2
p∑
r=1

γ̃p,r Γ−r (24)

where Γ±r ≡
∑

u∈A (ur:p ± u−r:−p) W̃u, A = {+1,−1}2p =
{a = (a1, a2, . . . , ap, a−p, . . . , a−2, a−1) : a±j ∈ {+1,−1}}
is the set of 22 p strings and W̃u is calculated in Algorithm 1.
Furthermore, EJ,h

[
〈C /n2〉

]
and EJ,h

[
〈C2 / n4〉

]
for large

n include additional terms decreasing with O(1 / n).

Proof. Proof is presented in Appendix B.
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As described in [5], the configuration basis
A is defined as follows such that kth index bit
(z

[1]
k , z

[2]
k . . . , z

[p]
k , z

[−p]
k , . . . , z

[−2]
k , z

[−1]
k ) ∈ A:

A = {+1,−1}2p = {a = (a1, . . . , ap, a−p, . . . , a−1)} (25)

where a±j ∈ {+1,−1}, z[±r] =
(
z
[±r]
1 , z

[±r]
2 , . . . , z

[±r]
n

)
∈

{+1,−1}n denotes n-bit strings corresponding to rth layer
for r ∈ [1, p]. It is expressed that A = A1 ∪ · · · ∪ Ap ∪
Ap+1 where A` for ` ∈ [1, p] and Ap+1 are defined such
that A` includes elements where a−k = ak for p − ` + 1 <
k ≤ p and a−p+`−1 = −ap−`+1. Ap+1 is such that a−k =
ak for 1 ≤ k ≤ p. On the other hand, the a operation is
defined in [5] as follows for a ∈ A` for 1 ≤ ` ≤ p:

ā±r =

{
a±r, r 6= p− `+ 1
−a±r r = p− `+ 1

. (26)

where a ∈ A` without changing the group, i.e., both a
and a are in A`. Furthermore, a group excluding Ap+1 is
defined as B ≡ A\Ap+1 and it is partitioned into two sets
D∪Dc distributing b and b into D and Dc, respectively. The
number of elements in D is equal to

(
22p − 2p

)
/2. Indices

are defined for the strings in D = {u1, u2, . . . ,u|D|} and
Dc = {u1, u2, . . . ,u|D|} such that if the group index of uj
is denoted with `j , then `j ≤ `k if j ≤ k. Then, W̃u for
u ∈ A is calculated in Algorithm 1 based on the iterative
formulation in page 26 in Section 6.2 in [5] with the main
difference of replacing Qb with Q̃b = Qb g

1 / 2
b where Qb

and gb are defined in (56) and (60), respectively. Some other
variables utilized in Algorithm 1 are described as follows
based on the extension of the iterative formulation in [5]:

X̃uj = exp

− σ̃2
J

2

∑
a∈Ap+1

Qa Φ̃2
a.uj

 Quj g
1 / 2
uj

(27)

∆̃uk.uj =
σ̃2
J

2

(
Φ̃2

uk.uj
− Φ̃2

uk.uj

)
(28)

where Φ̃a =
∑p
r=1 γ̃p,r (ar:p − a−r:−p) .

VI. CONCENTRATION PROPERTIES OF QAOA

Theorem 1 in this article and ‘Concentration Corollary’ in
Section 4 in [5] utilizing Chebyshev inequality result in the
following concentration properties as n→∞:

PJ,h

(∣∣∣〈C/n2〉 − Ṽp(γ̃,β)
∣∣∣ > ε

)
→ 0 (29)

EJ,h

[
PQ(|C(z)/n2 − 〈γ,β|C/n2|γ,β〉| > ε)

]
→ 0 (30)

where PQ denotes probability with respect to QAOA mea-
surement, The meaning of (29) is that for typical instances
of the SK model with local field and for large values of
n, QAOA measurements result in a symbol string z such
that C(z)/n2 ≈ 〈C /n2〉 ≈ Ṽp(γ̃,β). Therefore, Theorem
1 allows the following approximations for large n:

EJ,h [〈C〉] ≈ n2 Ṽp(γ̃,β) + O(n) (31)

EJ,h

[
〈C2〉

]
≈ n4 Ṽ 2

p (γ̃,β) + O(n3) (32)

Expected cost with a measured string at the QAOA cir-
cuit for typical instances of SK problem, e.g., in our case

ML problem, is very close to n2 Ṽp(γ̃,β) independent from
the specific instance of the problem. Besides that, σ〈C〉 ≡√
EJ,h

[
〈C〉2

]
− (EJ,h [〈C〉] )2 is bounded as follows:

σ〈C〉 ≤
√
EJ,h [〈C2〉] − (EJ,h [〈C〉] )2 ≈ O(n3) (33)

where 〈O〉2 ≤ 〈O2〉 is utilized for operators [5]. This means
that as the mean EJ,h [〈C〉] increases as O(n2), the standard
deviation for various instances of J and h increases with a
smaller rate of O(n

√
n) resulting in concentration property.

On the other hand, we observe in our simulations in Section
VII that instance based mean of the distance between mea-
surement mean, i.e., 〈CQAOA〉, and the minimum measured
value, i.e., minz{CQAOA(z)}, shows O(gp(n)n2) increase
with increasing n as presented in the following conjecture:

Conjecture 1. Problem instance based expectation of the
difference between the measured mean cost and minimum cost
denoted by 〈CQAOA〉 and minz{CQAOA(z)}, respectively,
for QAOA circuit measurements of ML problem increases as
O
(
gp(n)n2

)
with increasing n� 1:

EJ,h

[
< CQAOA > −min

z
{CQAOA(z)}

]
= gp(n)n2 (34)

where gp(n) > 1 /
√
n is a slowly decreasing function

of n for each p. Besides that, instance based variance of
min
z
{CQAOA(z)} ≡ mQ increases as O(n3) leading to the

following equality for some constant cp depending on p:

EJ,h
[
m2
Q

]
− E2

J,h [mQ] = cp n
3 (35)

The supporting evidence is provided in simulations in Sec-
tion VII. Although standard deviation of minz{CQAOA(z)}
with respect to problem instances increases as O(n

√
n),

it is conjectured that distance between 〈CQAOA〉 and
minz{CQAOA(z)} increases with a larger rate of O(gp(n)n2)
compared with O(n

√
n) satisfying gp(n)n2 > n

√
n at least

until some large value of n depending on p. We observe in
simulations that variances in (33) and (35) increase as O(n3)
supporting Theorem 1 and conjectures. It is an open issue to
determine the probability distribution type for ML problems
while QAOA measurements are observed to have approximate
Boltzmann distribution in [26], [27].

We assume that ML cost and solution cost are close to
each other for high SNR as shown in Section VII. Based on
our observations in simulation studies, we assume distribution
of 〈CQAOA〉 with respect to varying problem instances has a
Gaussian form as a simplified assumption. For simplicity, if
minz{CQAOA(z)} is assumed to have mean 〈CQAOA〉 with
a variance denoted by σ2

QAOA(p) combining the variance of
distributions of 〈CQAOA〉 with respect to J ,h and distribution
of the measurements for an individual problem instance, then
probability of minz{CQAOA(z)} < C(s) with respect to
instances J and h becomes proportional to the following:

∝ Φ
(
EJ,h [C(s)− 〈CQAOA〉] / σQAOA(p)

)
(36)

where σ2
QAOA(p) increases as O(n3) with increasing n based

on observations in simulations and Φ(.) is the cumulative
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distribution function of a normal random variable. We heuris-
tically define a variance combining the variances with respect
to both all the problem instances and individual measurement
outcomes of a single QAOA circuit as follows:

σ2
QAOA(p) ≡ EJ,h

[
〈CQAOA〉2

]
− E2

J,h [〈CQAOA〉]

+EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉
2
]

(37)

= EJ,h

[
〈C2

QAOA〉
]
− E2

J,h [〈CQAOA〉] (38)

This definition allows us to include the effects of the variance
of the mean 〈CQAOA〉 with respect to different problem
instances, i.e., EJ,h

[
〈CQAOA〉2

]
− E2

J,h [〈CQAOA〉], and
variance of the QAOA circuit output measurement for each in-
dividual instance, i.e., EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉
2
]

. Then,
n̂max is approximated by setting input to Φ (.) function in
(36) to a constant value

√
α2(r∗) depending on the target

approximation ratio r∗ resulting in the following:

|EJ,h [C(s)− 〈CQAOA〉] |
σQAOA(p)

= A(p)
√
n̂max =

√
α2(r∗) (39)

where both C(s) and 〈CQAOA〉 increase as O(n2) and
σQAOA(p) increases as O(n

√
n) such that left hand side of

(39) is proportional to O(
√
n̂max),

√
α2(r∗) is the perfor-

mance constant for r∗ and A(p) is calculated as follows:

A(p) =
limn→∞ |EJ,h [〈CQAOA〉 − C(s)] | / n2

limn→∞(σQAOA(p) / n3/2)
(40)

Then, n̂max ∝ α2(r∗) /A2(p) is obtained. Substituting (31)
and (38) into (39) and including additional constant for fitting
result in the following:

Conjecture 2. The maximum value of n denoted by n̂max
for p-layer QAOA circuits achieving near-optimum ML perfor-
mance for high SNR ( ≥ 12 dB) is approximated as follows:

n̂max(r∗, p) ≈ α1(r∗) + α2(r∗)χ(p) (41)

where α1(r∗) and α2(r∗) are empirical approximation con-
stants depending on the target approximation ratio r∗ and
EJ,h [〈CQAOA〉] and EJ,h

[
〈C2

QAOA〉
]

are problem instance
based expectations of 〈CmQAOA〉 for m ∈ [1, 2] corresponding
to first and second moments of the measured costs for p-layer
QAOA circuits and χ(p) is defined as follows:

χ(p) =
limn→∞

(
EJ,h

[
〈C2

QAOA〉
]
− E2

J,h [〈CQAOA〉]
)
/ n3(

limn→∞ EJ,h [〈CQAOA〉 − C(s)] / n2
)2

(42)

The proofs and verification of both conjectures require
to obtain QAOA performance for large n which is beyond
our capability with access to public simulators with qubit
numbers smaller than 32. Extensive simulation results show
that n̂max ≈ 28 for p = 4 and SNR = 15 ≈ 12 dB with
near-optimum performance.

VII. QAOA SIMULATIONS

We provide extensive simulations by using IBM Quantum
Lab and “ibmq qasm simulator” back-end by IBM Quan-
tum [20]. Simulation parameters are presented in Table I.

The number of instances denoted by M is the number of
realizations of the main ML problem in (6) with randomly
generated real valued H, symbols s ∈ {−1,+1}⊗n and noise
n in each instance. Elements of H and n are generated with
variances σ2

H = 1 and σ2
n = nσ2

H / SNR = n /SNR,
respectively, for each instance. Therefore, the number of in-
stances is also equal to the total number of estimated symbols
with length n allowing to calculate total probability of bit
error with Pe = Nb / (M n) where Nb is the total number
of bit errors in all M symbols. J and h are calculated with
(9) and (10) and then QAOA circuit output is simulated. The
number of measurements (shots) obtained in each simulation
instance is chosen as 4096. We simulated a total of 236500
QAOA circuits for varying n, p and SNR by providing
an extensive result set for the performance of QAOA for
ML problems. We share measurement results for 〈CQAOA〉,
〈C2

QAOA〉, minz{CQAOA(z)}, C(s) and nb for each random
problem instance in [21] as a data repository to be utilized in
research studies of QAOA where nb denotes the total number
of bit errors in a single problem instance among n bits.

We simulate QAOA performance for varying symbol lengths
n ∈ [10, 28], SNR ∈ {1, 5, 10, 15} and circuit depth p ∈ [1, 14]
as shown in Table I. The maximum value of SNR is set
to 15 ≈ 12 dB due to the requirement of very high M to
reliably calculate Pe. We achieve 4000 ≤ M ≤ 5000 for
the cases requiring accurate estimation of Pe such as for the
combinations of p ∈ [4, 6], SNR = 15 and n = 25 or for
varying n to accurately observe the highest performance value
n̂max achieving ML performance in Section VII-E.

Various performance metrics of QAOA are defined. 〈C〉 ≡
〈CQAOA〉, 〈C2〉 ≡ 〈C2

QAOA〉 and minz{CQAOA(z)} ≡
min
z
{CQAOA(z)} correspond to expectation of the cost

C(z), C2(z) and the minimum cost, respectively, based
on the observed measurement outputs z of QAOA cir-
cuit in each simulation instance. We calculate mean of
all these expectations with respect to all M different
problem instances with different H, s, n, J and h
by using the expectation operator defined as EJ,h [.].
The values EJ,h

[
〈CQAOA〉2

]
− E2

J,h [〈CQAOA〉] and

EJ,h

[(
min
z
{CQAOA(z)}

)2]− E2
J,h

[
min
s
{CQAOA(s)}

]
de-

note statistical variances of 〈CQAOA〉 and minz{CQAOA(z)}.
On the other hand, EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉
2
]

denotes
the instance based mean of the variance of CQAOA with
respect to measured costs in each problem instance.
C(s) corresponds to the solution cost for the problem with

the transmitted symbol s while CML and CMMSE denote the
costs for ML and MMSE solutions in each problem instance.
We compare QAOA performance with both ML and MSSE
solutions. MMSE solution is defined as follows [28]:

ŝ = fsign
(
(HT H + σ2

n I)
−1 HT y

)
(43)

where fsign(.) is the sign function since we utilize BPSK
symbols with equally probable {±1} values. We obtain cost
values of ML solution for n = 25 with classical simulation for
the number of simulation instances being equal to 1500, 2500,
5000 and 5000 for SNR ∈ {1, 5, 10, 15}, respectively. Pe is
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TABLE I
SIMULATION PARAMETERS OF QAOA (M: THE NUMBER OF PROBLEM INSTANCES)

SNR p n M SNR p n M SNR p n M

15 1

{10, 12, 13, 14} 4000

15 4

{18, 20} 2000
15

∈ [1, 3]
25

1500

{16, 18, 20, 22} 2000 {14, 22, 23, 24} 4000 ∈ [4, 14] 5000

{24, 26, 28} 1000 {10, 12, 16, 26, 28} 2500

SNR p n M SNR p n M SNR p n M

15 2

{10, 12, 13, 14, 15, 16, 18, 19} 4000

15 3

{14, 16, 18, 19, 20, 21} 4000 ∈ {1, 5} ∈ [1, 7]

25
1000

{20, 22, 24} 2000 {10, 12, 13, 22, 23, 24} 3000 10 {1, 2, 3, 7}
{26, 28} 1000 {26, 28} 1250 10 ∈ [4, 6] 5000

TABLE II
INITIAL POINTS FOR ANGLE OPTIMIZATION OF QAOA FOR p ∈ [1, 6]

p Initial point boundaries of (γ̃p,p, βp,p) Grid dimensions

[1, 3] ([0, 2π], [0, 2π]) 100 × 100

4 ([0, 2π], [0.5β3,3, 1.5β3,3]) 100 × 25

5 ([0, π / 10], [0.85β4,4, 1.15β4,4]) 15 × 16

6 ([0.9 γ̃5,5, 1.1 γ̃5,5], [0.9β5,5, 1.1β5,5]) 20 × 20

calculated by using 10000 instances for n ∈ [10, 26] and SNR
= 15. MMSE performances are calculated with M = 5000.

We define various approximation ratios in addition to the
conventional approximation ratio rML as the ratio of the
expected cost obtained for a specific problem instance to the
minimum possible cost. We revise the definition by using ex-
pectations with respect to varying problem instances. We also
utilize normalization for a smooth performance comparison as
a precaution due to finite number of simulation instances and
difference in the number of simulations among various p and
SNR values. The following are defined:

r ≡ EJ,h [〈CQAOA〉 /C(s)] (44)

r∗ ≡ EJ,h

[
min
z
{CQAOA(z)} /C(s)

]
(45)

rML ≡ EJ,h [〈CQAOA〉 /C(s)]

EJ,h [CML /C(s)]
(46)

r∗ML ≡
EJ,h

[
min
z
{CQAOA(z)} /C(s)

]
EJ,h [CML /C(s)]

(47)

where we normalize costs for the definitions of rML and
r∗ML by dividing with C(s). r and r∗ measure performance
of QAOA with respect to the solution cost while rML and
r∗ML measure with respect to the performance of optimum
ML solution which is the conventional performance metric.
We achieve approximation ratio r ≈ rML ≈ 0.9364 with
p = 14 for SNR ≈ 12 dB while r∗ ≈ 1 with p ≥ 5 for
SNR ≥ 10. In addition, QAOA solution is highly close to
ML solution with r∗ML ≈ 1 with p ≥ 5 for SNR ≥ 5.

A. Optimization of QAOA angle parameters

We optimize angles γ̃ = nγ and β for p ∈ [1, 7] based
on (31) by minimizing Ṽp(γ̃,β) while obtaining Ṽp(γ̃,β)

for each γ and β with substitution of W̃u into (24) while
W̃u is calculated by using Algorithm 1. The optimization is

performed in classical computer by providing initial points as
shown in Table II and then applying unconstrained nonlinear
optimization with quasi-Newton method as a type of gradi-
ent based methods available in various numerical packages.
(γ̃1,1, β1,1) region covering an area of (2π×2π) is discretized
into a 100 × 100 grid for p = 1 by determining 100 × 100
initial points where γ̃p,j and βp,j denote jth angle parameters
for p-layer QAOA circuit for j ≤ p. Then, optimization is
performed by starting with each initial point and the angles
giving the minimum cost are chosen as the optimum angles
for p = 1. For p = 2 and p = 3, the initial points are chosen
such that γ̃p,r = γ̃p−1,r and βp,r = βp−1,r for r ∈ [1, p − 1]
while (γ̃p,p, βp,p) region covering an area of (2π × 2π) is
discretized. It is observed that optimized γ̃p,p and βp,p are
in the neighborhood of γ̃p−1,p−1 and βp−1,p−1, respectively,
for p ∈ [1, 3]. This observation is utilized while determining
the grid sizes and boundaries for the initial point regions for
p ∈ [4, 6] while with decreased number of points due to
complexity as shown in Table II. For p = 7, initial point is
chosen with a heuristic extrapolation method described next
and the same nonlinear optimization method is applied only for
a single point. Extrapolation methods are also applied for Max-
Cut problems in QAOA for high depths [5], [29]. Optimized
angles for p ∈ [1, 5] and SNR = 15 are presented in Table
III. The values of γ̃ for SNR = 15 are shown in Fig. 1(a) by
including the extrapolated curves for p ∈ [8, 14] as discussed
in the next section. All optimized parameters are available in
data repository [21].

B. Extrapolation of γ and β for higher depths
We design a heuristic method to calculate angles for p ∈

[8, 14] by observing the pattern of the optimized angles for
p ∈ [1, 7]. The angles of γ̃p,r for p ∈ [1, 7] and r ∈ [1, p]
are presented in Fig. 1(b) for SNR = 15. It is observed that
γ̃p,r values increase as r increases while the curves shift to
the right as p increases. Similar pattern is observed also for β
values. Then, an initial estimation is performed manually for
p = 7 and an optimization is performed with this initial point
to calculate the angles for p = 7. For the values p ∈ [8, 14],
a numerical algorithm is designed which is composed of
three basic steps as shown in Algorithm 2. Firstly, we realize
extrapolation for γp,p by using the following interpolation
function based on the observation of a saturation behavior for
γ̃r,r for r ∈ [1, p− 1]:

fσ,~b(r) ≡ b1 +
b2

1 + exp
(
− (r − b3) / b4

) (48)
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TABLE III
OPTIMIZED ANGLE PARAMETERS OF QAOA FOR SNR = 15 AND p ∈ [1, 5]

p = 1 p = 2 p = 3 p = 4 p = 5

γ̃ = nγ 0.1438 0.1009, 0.1836 0.0809, 0.1502, 0.2177 0.0678, 0.1300, 0.1885, 0.2198 0.0625, 0.1206, 0.1711, 0.1985, 0.2275

β 2.5422 2.3830, 2.7575 2.3439, 2.6162, 2.8963 2.3426, 2.5491, 2.7937, 2.9631 2.3078, 2.5215, 2.7408, 2.8822, 3.0037

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0
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0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b) (c) (d)

Fig. 1. Optimized and extrapolated (a) γ̃ for SNR = 15 and p ∈ [1, 14]. The values for p ∈ [8, 14] are extrapolated from p ∈ [1, 7]. Heuristic extrapolation
steps to calculate angles for p = 8 with (b) sigmoid, (c) exponential and (d) linear fitting.

Algorithm 2 Extrapolation algorithm for γ̃p,r and βp,r for
p ∈ [8, 14] and r ∈ [1, p]

1: Choose saturation fitting curve defined in (48) and opti-
mize coefficients bj for j ∈ [1, 4] of fσ,~b(r) by using NLS
and set χp,p equal to fσ,~b(p) where χ is either γ̃ and β.

2: Choose exponential curve fitting model fe,~dr (p
′) in (49)

for r ∈ [1, 3] and optimize its coefficients dr,j for j ∈
[1, 4] with NLS and set χp,r = fe,~dr (p) for r ∈ [1, 3].

3: Calculate χp,r for r ∈ [4, p−1] with linear fitting between
χp,3 and χp,p.

where r ∈ [1, p] and the optimized value of ~b ≡ [b1 b2 b3 b4]
is calculated by using nonlinear curve-fitting in least-squares
(LS) sense by minimizing

∑p−1
r=1

(
fσ,~b(r)−γ̃r,r

)2
with respect

to ~b. Then, γ̃p,p is set equal to fσ,~b(p). The values of γ̃p,r for
p ∈ [1, 7] and r ∈ [1, p], interpolation curve and the value of
γ̃8,8 are shown in Fig. 1(b). Secondly, we calculate the first
three elements of γ̃8,r for r ∈ [1, 3] by using an exponential
fitting based on the observation that the values γ̃p′,r are
decreasing exponentially while the values of p′ increasing from
r to p − 1 for r ∈ [1, 3] as shown in Fig. 1(c). Exponential
fitting curve is defined as follows:

fe,~dr (p
′) ≡ dr,1 exp (dr,2 p

′) + dr,3 exp (dr,4 p
′) (49)

where ~dr ≡ [dr,1 dr,2 dr,3 dr,4] is calculated with nonlinear
LS (NLS) algorithm by minimizing

∑p−1
p′=r

(
fe,~dr (p

′)−γ̃p′,r
)2

with respect to ~dr. Then, γ̃p,r for r ∈ [1, 3] is calculated as
γ̃p,r = fe,~dr (p). Finally, the values γ̃p,r for r ∈ [4, p− 1] are
calculated by realizing linear fitting between γ̃p,3 and γ̃p,p as
shown in Fig. 1(d). The same algorithm is utilized to calculate
the extrapolation for β values. The extrapolated values of γ̃p,r
for SNR = 15 are shown in Fig. 1(a). It is observed that γ̃p,r
values increase almost linearly with respect to r as p increases.

C. QAOA performances for n = 25

Pe values obtained with QAOA, ML and MMSE solutions
for varying SNR and depth p ∈ [1, 7] are shown in Fig.
2(a). It is observed that p ≥ 4 reaches near-optimum ML
performance for all SNR values while MMSE performance
is significantly worse compared with QAOA and ML. In Fig.
2(b), the performance is shown for SNR = 15 and p ∈ [1, 14]
showing the saturation at the optimum performance for p ≥ 5
with small oscillations due to finite number of experiments M
and potentially finite size effects for various p.

The cost performances are shown in Fig. 2(c) for varying
SNR for QAOA, ML and MMSE where expected costs are
normalized by multiplying with (−2n2 σ2

H) /EJ,h [C(s)] to
obtain smoother and accurate comparison between the results
due to different number of simulation instances for varying
SNR and p. In Fig. 2(c), it is observed that as p increases
from 1 to 7, expectation EJ,h [〈CQAOA〉] curves for varying
SNR get closer to the ML cost curve. Expected solution
cost EJ,h [C(s)] = −2n2 σ2

H = −2n2 is also shown for
reference. In Fig. 2(d), performance is shown for high depths
with p ∈ [1, 14] and SNR = 15. It is observed that at
high SNR, ML cost is almost equal to solution cost while
EJ,h [〈CQAOA〉] is getting closer to ML cost compared with
the performances for p ∈ [1, 7]. Therefore, our heuristic
extrapolation method surprisingly provides significant perfor-
mance even though they do not include any optimization. It
is observed in Fig. 2(e) that observed minimum values of
the cost among QAOA circuit output measurement results
are significantly close to ML cost. For example, at p = 3,
EJ,h [minz{CQAOA(z)}] is close to ML cost EJ,h [CML].

Approximation ratios r, r∗, rML and r∗ML are shown for
varying p ∈ [1, 7] and SNR values of 1, 5 and 10 in Figs.
3(a), (b) and (c), respectively, while for varying p ∈ [1, 14] and
SNR = 15 in Fig. 3(d). It is observed in Figs. 3(a), (b) and (c)
that r∗ML ≈ 1 for p ≥ 5 and SNR ∈ {1, 5, 10}, respectively.
In Fig. 3(d), it is observed that both r∗ and r∗ML values ≈ 1
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Fig. 2. Pe obtained with ML, MMSE and QAOA for varying (a)
SNR ∈ {1, 5, 10, 15} and layer depths p ∈ [1, 5], and (b) SNR =
15 and p ∈ [1, 14]. EJ,h [CML] and EJ,h

[
〈CQAOA〉

]
normalized

with multiplication by (−2n2 σ2
H) /EJ,h [C(s)] for (c) varying SNR

∈ {1, 5, 10, 15} and p ∈ [1, 7] and (d) SNR = 15 and p ∈ [1, 14]
compared with EJ,h [CMMSE ] and EJ,h [C(s)] = −2n2 σ2

H . (e)
Normalized EJ,h [CML] and EJ,h

[
minz{CQAOA(z)}

]
for varying SNR

∈ {1, 5, 10, 15} and p ∈ [1, 7] compared with −2n2 σ2
H .

for p ≥ 5 and SNR = 15. Both ML and QAOA solutions are
more separated from the solution for low SNR value of 1 as
shown in Fig. 3(a). r is not close to 1 for SNR = 1 for all
p values while still r∗ML ≈ 1 with larger difference compared
with SNR ≥ 5. Similar observation is obtained for rML for
SNR = 1 with an increase towards unity as p increases.

D. Statistical properties of QAOA cost metrics for varying n

We simulate statistical properties formulated in Theorem
1 and the corresponding results in (31-35) allowing us to

present Conjecture 2. In Figs. 4(a) and (b), (31) and (32)
are verified with simulations for p ∈ [1, 4] and n ∈
[10, 28] showing that EJ,h [〈CQAOA〉] and EJ,h

[
〈C2

QAOA〉
]

increase as O(n2) and O(n4), respectively, with respect to
n. On the other hand, in Figs. 4(c) and (d), it is ob-
served that variances EJ,h

[
〈C2

QAOA〉
]
− E2

J,h [〈CQAOA〉]
and EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉
2
]

increase as O(n3) with
respect to n supporting concentration property defined in
(33). It also shown that measurement result of each QAOA
instance is also showing an increase of variance as O(n3)
on average over many individual instances with respect to
the symbol length n. In Fig. 4(e), variances are shown for
n = 25 and varying p ∈ [1, 14] observing that measurement
variance EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉
2
]

decreases with re-
spect to p resembling a saturation while instance variance
of the mean 〈CQAOA〉 has a much smaller oscillation with
respect to p while saturating for large p. On the other
hand, in Fig. 4(f), it is observed that distance between
the measured minimum cost and mean normalized by n2,
i.e., EJ,h [< CQAOA > −minz{CQAOA(z)}] / n2, decreases
slowly for p = 1 and p = 2 as n increases supporting (34) in
Conjecture 1. The same decrease is not observed for p = 3 and
p = 4 probably due to their much slower decay function gp(n)
compared with g2(n) and g1(n). In other words, it is conjec-
tured that EJ,h [< CQAOA > −minz{CQAOA(z)}] / n2 for
p ≥ 3 starts to slowly decrease with increasing n if n > 28.
Similarly, variance of minz{CQAOA(z)} increases with n as
O(n3) as shown in Fig. 4(g) supporting (35) in Conjecture 1.

E. Simulations for Conjecture-2

Pe for QAOA circuits optimized for p ∈ [1, 4] is calculated
for varying n ∈ [10, 28] and compared with Pe of ML solution
to estimate the maximum n value denoted by n̂max for QAOA
circuits achieving ML performance. In Fig. 5(a), Pe of QAOA
circuits for p ∈ [1, 4] are compared with Pe of ML detection.
It is observed that Pe with respect to n shows a local minimum
approximately at the point n̂max where its performance starts
to degrade compared with ML for increasing n. Approxima-
tion ratio r∗ performance for varying n and p ∈ [1, 4] is shown
in Fig. 5(b). We obtain n̂max ∈ {16, 18, 23, 28} with the
corresponding depth values of p ∈ {1, 2, 3, 4}, respectively,
for r∗ = 0.9995 and n̂max ∈ {18, 22, 28} with p ∈ {1, 2, 3},
respectively, for r∗ = 0.9967. In Fig. 5(c), extrapolation
based on (41) in Conjecture 2 is shown where n̂max for
varying EJ,h [〈CQAOA〉 − C(s)] / n2 is shown. The first four
points for p ∈ [1, 4] are extracted from simulations shown in
Fig. 5(b),

(
EJ,h

[
〈C2

QAOA〉
]
− E2

J,h [〈CQAOA〉]
)
/ n3 in the

numerator of (41) is calculated based on the observations in
Fig. 4(e) and EJ,h [〈CQAOA〉 − C(s)] / n2 is calculated based
on experiments for calculating the values in Fig. 2(d). Then,
n̂max is extrapolated for target r∗ values. We estimate that
approximately n̂max < 200 and n̂max < 300 for r∗ = 0.9995
and r∗ = 0.9967 with p ∈ [5, 14] and p ∈ [4, 14], respectively.
It is an open issue to verify the extrapolated performance
with high number of qubits in NISQ devices and near future
quantum computer simulators.
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Fig. 3. Ratios r, r∗, rML and r∗ML are shown for varying p ∈ [1, 7] and SNR of (a) 1, (b) 5 and (c) 10 while (d) for varying p ∈ [1, 14] and SNR = 15.
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Fig. 4. Statistical properties of QAOA measurements with respect to problem instance based expectations for SNR = 15. (a) EJ,h

[
〈CQAOA〉 / n2

]
and (b) EJ,h

[
〈C2

QAOA / n
4〉
]

for varying n ∈ [10, 28] and p ∈ [1, 4]. (c)
(
EJ,h

[
〈C2

QAOA〉
]
− E2

J,h

[
〈CQAOA〉

] )
/ n3 and

(d)
(
EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉2
] )
/ n3 for varying n ∈ [10, 26] and p ∈ [1, 4]. (e)

(
EJ,h

[
〈C2

QAOA〉 − 〈CQAOA〉2
] )
/ n3 and(

EJ,h

[
〈CQAOA〉2

]
− E2

J,h

[
〈CQAOA〉

] )
/ n3 for n = 25 and p ∈ [1, 14]. (f) The distance EJ,h

[
< CQAOA > −minz{CQAOA(z)}

]
/ n2 and (g)

variance
(
EJ,h

[(
min
z
{CQAOA(z)}

)2] − E2
J,h

[
minz{CQAOA(z)}

] )
/ n3 for varying n ∈ [10, 28] and p ∈ [1, 4].
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Fig. 5. (a) Pe for QAOA is compared with ML detection and (b) approximation ratio r∗ for varying n ∈ [10, 28] and p ∈ [1, 4]. (c) Extrapolation of
maximum n denoted by n̂max based on (41) in Conjecture 2 for target r∗ = 0.9995 and r∗ = 0.9967 with p ∈ [5, 14] and p ∈ [4, 14], respectively.
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VIII. CONCLUSIONS

We apply QAOA on ML detection of massive MIMO
systems with an optimization algorithm of angle parameters
having computational complexity of O(16p) for p-layer QAOA
circuits based on SK modeling. Proposed algorithm optimizes
angles independent from n and specific problem instance
with significant practicality. We provide extensive simula-
tion studies for QAOA by analyzing statistical properties of
QAOA measurements in IBM Quantum Lab. We present a
conjecture about concentration property of QAOA and share
corresponding measurement statistics of 〈CQAOA〉, 〈C2

QAOA〉,
minz{CQAOA(z)}, C(s) and total number of bit errors for
a total of 236500 individual QAOA circuits for varying n, p
and SNR as a data repository in [21]. We observe that QAOA
for p ≥ 4 achieves near-optimum ML performance in terms
of Pe for large scale 25× 25 MIMO systems and SNR < 12
dB. In addition, we present extrapolated angles for p ∈ [8, 14]
for SNR ≈ 12 dB with a conjecture claiming that presented
angles achieve near-optimum performance for n ≤ 300 with
applicability for next generation massive MIMO systems.
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APPENDIX A
STATISTICAL PROPERTIES OF

SHERRINGTON-KIRKPATRICK MODEL OF ML PROBLEM

The law of large numbers allows to approximate the dis-
tributions of Jj,k and hj as Gaussian for n � 1. We
also assume typical input symbols s of length n with si
being equal to ±1 with equal probability of 1 / 2 leading to
µs = 0. Then, the approximate values of mean and variance
are calculated for typical instances of H , n, J , h and s by
using µJ ≈ 1

n (n−1) / 2
∑
j<k Jj,k, µh ≈ 1

n

∑
j hj , σ

2
J ≈

1
n (n−1) / 2

∑
j<k(Jj,k − µJ )2 and σ2

h ≈ 1
n

∑
j(hj − µh)2.

Furthermore, we utilize 1
n

∑
`H`,k = 1

n

∑
kH`,k ≈ µH =

0, 1
n

∑
`H

2
`,k = 1

n

∑
kH

2
`,k ≈ σ2

H , 1
n

∑
` n` ≈ µn = 0,

1
n

∑
` n

2
` ≈ σ2

n = nσ2
H / SNR, 1

n

∑
k sk ≈ µs = 0. Then,

by substituting (9) and (10), we obtain µJ ≈ 2nµ2
H = 0

and µh ≈ 0. σ2
J is approximated where the terms pro-

portional to µH and O(1 / n2) are excluded in the steps
of the derivation by setting them equal to zero resulting in
σ2
J ≈ n (4σ4

H). In a similar manner, σ2
h is approximated

as σ2
h ≈ n2 (4σ4

H)
(
2 − 1

n + n−1
n

1
SNR

)
where we use the

fact that the expectation of H4(`, j) is equal to 3σ4
H and we

excluded the terms proportional to O(1/n2).
On the other hand, the mean and variance of the cost for

the target solution are calculated by using (1), (9) and (10) as
µCs ≡ EH,n [C(s)] = −2n2 σ2

H . The variance denoted by
σ2
Cs

is trivially calculated after a set of conversions as σ2
Cs
≡

EH,n

[
C2(s) − µ2

Cs

]
= σ4

H (2 + 6 / n + 4 / SNR)n3 =
O(n3). This results in concentration property as follows:

PH,n

(∣∣C(s)/n2 + 2σ2
H

∣∣ > ε
)
→ 0 as n→∞ (50)

APPENDIX B
PROOF OF THEOREM 1

Following the approach in [5] as defined between equations
(73)-(76), 〈 eı

λC
n2 〉 is calculated as follows by also including

the effect of the local field of SK model:

〈 eı
λC
n2 〉 =

1

2n

∑
zm

∑
z[±1],...,z[±p]

( p∏
r=1

fr(z
[r]) f∗r (z[−r])

)

× exp

 ı

n

∑
j<k

Jj,k z
m
j zmk

(
φ̃j,k +

λ

n

)
× exp

 ı

n

∑
j

hj z
m
j

(
φ̃j +

λ

n

) (51)

where z
[r:p]
j ≡

∏p
l=r z

[l]
j and z

[−r:−p]
j ≡

∏−r
l=−p z

[l]
j

are consecutive multiplications for the indices, z[±r] =(
z
[±r]
1 , z

[±r]
2 , . . . , z

[±r]
n

)
∈ {+1,−1}n denote n-bit strings

for r ∈ [1, p], zm = (zm1 , z
m
2 , . . . , z

m
n ) ∈ {+1,−1}n,

fr(z.z
′) ≡

〈
z
∣∣eı βr B∣∣ z′〉 = 〈z.z′|eı βr B |1〉 =

(cosβr )g
+(z) (ı sinβr )g

−(z), z.z′ is the bit-wise product of z
and z′, g+(z) and g−(z) count the number of ones and minus
ones in z, respectively, and φ̃j,k and φ̃j defined as follows:

φ̃j,k =

p∑
r=1

γ̃p,r

(
z
[r:p]
j z

[r:p]
k − z

[−r:−p]
j z

[−r:−p]
k

)
(52)

φ̃j =

p∑
r=1

γ̃p,r

(
z
[r:p]
j − z

[−r:−p]
j

)
(53)

where γp,r ≡ γ̃p,r / n for r ∈ [1, p] based on our assumption.
The characteristic function of a Gaussian random vari-

able X with mean µX and variance σ2
X or the expectation

EX [exp(ı tX)] equals to exp(ı µX t) exp(−σ2
X t

2 / 2). Fur-
thermore, taking expectation with respect to Jj,k z

m
j zmk and

hj z
m
j are the same with taking the expectation with respect

to Jj,k and hj , respectively, due to symmetry. After replacing
Jj,k with Jj,k z

m
j zmk and hj with hj z

m
j , the expectation of

〈eı λC /n2〉 with respect to J and h is calculated as follows:

EJ,h

[
〈eı λC /n

2

〉
]

=
∑

z[±1],...,z[±p]

p∏
r=1

(
fr(z

[r]) f∗r (z[−r])

)

exp

− σ̃J2
2n

∑
j<k

(
φ̃j,k +

λ

n

)2

− σ̃h
2

2

∑
j

(
φ̃j +

λ

n

)2


(54)
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where σ̃J
2

= σ2
J / n, σ̃h

2
= σ2

h / n
2. In Section 6 of [5], a

simplifying approach is proposed to calculate a similar form by
summing in a configuration basis instead of all (2n)

2p possible
strings

(
z[1], . . . ,z[p], z[−p], . . . ,z[−1]

)
in (54). Summation in

(54) is converted into the following by expanding the square
terms and then taking the first derivative of both sides with
respect to λ at λ = 0 (similar to the formulation between the
equations (86)-(95) and (117)-(118) in [5]):

EJ,h

[
〈C /n2〉

]
=
∑
{na}

(
n

{na}

) ∏
a∈A

Qnaa ı
σ̃J

2

2n2

∑
u,v∈A

Φu.vnunv + ı
σ̃h

2

n

∑
u∈A

Φunu


exp

− σ̃J2
4n

∑
a,b∈A

Φ2
a.bnanb −

σ̃h
2

2

∑
a∈A

Φ2
ana

 (55)

where a.b denotes bitwise product of a and b, multinomial co-
efficient

(
n
{na}

)
is equal to the value of n! / (n1!n2! . . . n22p !)

such that
∑22p

i=1 ni = n, Φa =
∑p
r=1 γ̃p,r (ar:p − a−r:−p),

ar:p =
∏p
l=r al, a−r:−p =

∏−r
l=−p al for r ∈ [1, p] and Qa is

defined as follows:

Qa =

p∏
j=1

(cosβp,j)
1+

aj+a−j
2 (sinβp,j)

1−
aj+a−j

2 (i)
a−j−aj

2

(56)
Similarly, the following is obtained for the second moment:

EJ,h

[
〈C2 / n4〉

]
=
σ̃J

2
(n− 1)

2n2
+
σ̃h

2

n

−
∑
{na}

(
n

{na}

) ∏
a∈A

Qnaa

[
σ̃J

4

4n4

 ∑
u,v∈A

Φu.vnunv

2

+
σ̃h

4

n2

(∑
u∈A

Φunu

)2

+
σ̃J

2
σ̃h

2

n3

 ∑
u,v∈A

Φu.vnunv

(∑
u∈A

Φunu

)]

exp

− σ̃J2
4n

∑
a,b∈A

Φ2
a.bnanb −

σ̃h
2

2

∑
a∈A

Φ2
ana

 (57)

Assume that the set R denotes one of sets {u,v,x,y},
{u,v,x}, {u,v} or {u} for given strings u,v,x and y. Fol-
lowing the similar methodology in [5], the following functions
corresponding to Su,v,x,y , Su,v,x, Su,v and Su are defined:

SR =
∑
{na}

(
n

{na}

) ∏
a, b∈A

g
na nb / 2
a.b

∏
a∈A

gna / 2
a∏

a∈A
Qnaa f̃(R,n) (58)

where ga.b and ga are defined as follows:

ga.b ≡ exp
(

(−σ̃J2 / (2n)) Φ2
a.b

)
(59)

ga ≡ exp
(
−σ̃h2 Φ2

a

)
(60)

and the function f̃(R,n) is defined as follows:

f̃(R,n) =


(
nu

n

) (
nv

n

) (
nx

n

) (ny

n

)
, if R = {u,v,x,y}(

nu

n

) (
nv

n

) (
nx

n

)
, if R = {u,v,x}(

nu

n

) (
nv

n

)
, if R = {u,v}(

nu

n

)
, if R = {u}

(61)
Then, (55) and (57) are transformed into the following:

EJ,h

[〈
C

n2

〉]
=

ı σ̃J
2

2

∑
u,v∈A

Φu.vSu,v

+ ı σ̃h
2
∑
u∈A

ΦuSu (62)

EJ,h

[〈
C2

n4

〉]
=

σ̃J
2
(n− 1)

2n2
+
σ̃h

2

n

− σ̃J
4

4

∑
u,v,x,y∈A

Φu.v Φx.y Su,v,x,y

− σ̃h4
∑

u,v∈A
Φu Φv Su,v

− σ̃J2σ̃h2
∑

u,v,x∈A
Φu.vΦx Su,v,x (63)

Therefore, the problem is converted to the calculations of
Su,v,x,y , Su,v,x, Su,v and Su for u,v,x,y ∈ A. In a similar
manner to the proof of Lemma-2 in Section 6.2 in [5], these
functions can be expressed by separating the summation with
respect to {na} into two subsets of the set A. The partition
of A as A = B ∪ Ap+1 = D ∪ Dc ∪ Ap+1 is described in
Section V. Then, SR is expressed as follows:

=

n∑
t=0

(
n

t

) ∑
{na:a∈Ap+1}

∑
{nb:b∈B}

(
t

{nb}

)(
n− t
{na}

)
∏

b,b′∈B

g
nbnb′/2
b.b′

∏
a,a′∈Ap+1

g
nana′/2
a.a′

∏
a∈Ap+1, b∈B

g
nanb/2
a.b∏

a∈B, b∈Ap+1

g
nanb/2
a.b

∏
a∈Ap+1

gna / 2a

∏
b∈B

g
nb / 2
b∏

a∈Ap+1

Qna
a

∏
b∈B

Qnb

b f̃(R,n) (64)

The following observations as described in Sections 6.1 and
6.2 in [5] are used to simplify the equation. It is observed that
ga.b = gb.a, ga.a′ = 1 since Φa.a′ = 0 for a, a′ ∈ Ap+1

and ga = 1 since Φa = Φa.1 = 0 where both all ones
string 1 and a ∈ Ap+1. Then, (64) is converted into SR =∑n
t=0 sR(t, n) where sR(t, n) is simplified as follows:

sR(t, n) =

(
n

t

) ∑
{nb:b∈B}

(
t

{nb}

) ∏
b,b′∈B

g
nbnb′/2
b.b′

∏
b∈B

Q̃nb

b

∑
{na:a∈Ap+1}

(
n− t
{na}

)
∏

a∈Ap+1, b∈B

gnanb

a.b

∏
a∈Ap+1

Q̃na
a f̃(R,n) (65)

where Q̃b = Qb g
1 / 2
b . The only difference between (65) and

the equation (132) in Proof of Lemma-2 in Section 6.2 in [5] is
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that Qb is replaced with Q̃b = Qb g
1 / 2
b where g1 / 2b does not

depend on n in a similar manner with Qb. Therefore, all the
following proofs and calculations in [5] are directly applicable
for the current model in this article without requiring the
repetition of the proof in [5]. It is shown that sR(t, n) is
expressed as sR(t, n) = `R(t) (1 + O(1 / n)) with some
calculated `R(t) not depending on n. As a result, based on the
proofs described in Lemma-2 in [5], the following equalities
are obtained:

lim
n→∞

SR ==


W̃u W̃v W̃x W̃y, if R = {u,v,x,y}
W̃u W̃v W̃x , if R = {u,v,x}
W̃u W̃v, if R = {u,v}
W̃u, if R = {u}

(66)
where the algorithm to obtain W̃u for u ∈ A is presented in
Algorithm 1 based on the iterative formulation in page 26 in
Section 6.2 in [5] with the main difference of replacing Qb
with Q̃b = Qb g

1 / 2
b . Besides that, after the observation in the

equations (119) and (120) in [5] and inserting (66) into (62),
the following is obtained for limn→∞ EJ,h

[
〈C /n2〉

]
:

=
ı σ̃J

2

2

p∑
r=1

γ̃p,rΓ
+
r Γ−r + ı σ̃h

2
p∑
r=1

γ̃p,r Γ−r (67)

while the following is obtained for limn→∞ EJ,h

[
〈C2 / n4〉

]
:

= lim
n→∞

σ̃J
2
(n− 1)

2n2
+ lim

n→∞

σ̃h
2

n

−

(
σ̃J

2

2

p∑
r=1

γ̃p,r Γ+
r Γ−r

)2

−

(
σ̃h

2
p∑
r=1

γ̃p,rΓ
−
r

)2

−

(
σ̃J

2
p∑
r=1

γ̃p,rΓ
+
r Γ−r

) (
σ̃h

2
p∑
r=1

γ̃p,rΓ
−
r

)
(68)

It is easily shown that the concentration property holds by
excluding the first two terms decreasing with O(1 / n) and
observing the remaining terms being equal to (68) as follows:(

lim
n→∞

EJ,h

[
〈C /n2〉

])2
= lim

n→∞
EJ,h

[
〈C2 / n4〉

]
(69)

Besides that, observe that both EJ,h

[
〈C /n2 〉

]
and

EJ,h

[
〈C2 / n4〉

]
include additive terms decreasing with

O(1 / n). This completes the proof.
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