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1 Introduction

The early history of our Universe has a large gap. On one side, cosmological observations
provide us with information about the initial quasi-de Sitter expansion through CMB measure-
ments. On the other side, a combination of astrophysical and particle-physics measurements
outlines the so-called hot Big Bang, that is to say the physical processes that lead to nucle-
osynthesis, and, ultimately, the large-scale Universe as we see it today. The period that goes
from the end of inflation to the beginning of Big Bang nucleosynthesis is a vast unknown
outside the reach of current telescopes and particle accelerators. The only messenger capable
of delivering us information about this primordial dark age is gravitational waves. Since the
revolutionary detection of black hole binary mergers in 2015 [1–3] and especially after the
detection of a stochastic background in 2023 [4–8], gravitational waves (GW) have become an
incredible tool for studying the physics of the early Universe and the violent phenomena that
characterise it. Therefore, it is crucial to thoroughly investigate the GW signal associated
to phase transitions, particle production, topological defects and other non-homogeneous
processes happening during the reheating phase, in order to evaluate a possible detection
by present-day and future GW experiments.

In this work, we present an exhaustive description of the Stochastic Gravitational Waves
Background (SGWB) produced by a Hubble-Induced Phase Transition (HIPT) [9] taking
place at the end of inflation. Such a phase transition is triggered whenever these two
assumptions are realised:

1. A phase of stiff expansion with w > 1/3 follows the end of inflation;

2. There exist a prototypical spectator field that is energetically subdominant and non-
minimally coupled to the background curvature.
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In this setting, the time-dependence of the Ricci scalar induces the appearance of a large
tachyonic mass for the spectator field at the beginning of the stiff expansion phase, acting like
a “cosmic clock” that sets off a crossover phase transition for the spectator field. Thanks to the
ensuing tachyonic instability, the scalar field modes are exponentially amplified, thus leading
to the production of large-amplitude GWs as the self-backreaction effects become strong and
put an end to the tachyonic phase. Such scenario has been considered in several works as an
efficient (re)heating mechanism in non-oscillatory models of inflation [10–14], with applications
to the Standard-Model Higgs [15] and the production of topological defects [16]. It has also
been considered for applications in Affleck-Dine baryogenesis [17], in non-thermal first-order
phase transition [18, 19] and for the late-time generation of neutrino masses [20]. However, a
thorough description of the GW signal from such phase transition is still missing. The present
work aims at filling this gap. Our approach is based on both analytical results and fully-fledged
classical lattice simulations. In particular, we will compute the evolution equation for the
metric tensor perturbations and the stress-energy tensor of a spectator field non-minimally
coupled to curvature that sources it. The exact expression of the stress-energy tensor is
instrumental in implementing the HIPT scenario in the publicly-available CosmoLattice

code [21, 22]. The numerical output of 60 individual simulations is summarised in a set of
easy-to-use parametric fitting formulas that eliminate the need for further time-consuming
simulations. In particular, we focus on studying the typical amplitude and frequency at the
peak of the spectrum, its integrated energy-density and its spectral shape. Notice that the
resulting GW signal is inherently linked to the appearance of a large-amplitude anisotropic
field distribution, a feature that cannot be described with the simplifying homogeneous field
approximation assumed in earlier works [14, 23–25]. To the best of our knowledge, this is the
first time that a parametric spectral shape is derived from lattice simulations for a crossover
phase transition. Finally, we make a comparison between the signal and the sensitivity curves
of several GW detectors and comment on the possibility of discovery.

The paper is structured as follows: in section 2 we introduce the HIPT scenario and
present some of its core features. In section 3 we present the equation of motion of the
transverse-traceless metric tensor perturbation and the stress-energy tensor sourcing GWs
from the inhomogeneous spectator field. In section 4 we describe some details of the numerical
lattice simulation and present some typical output. In section 5 we compute the parametric
formulas that summarise the characteristics of the GW signal. In section 6 we compare the
predicted signal with current proposals of GW detectors. Finally, in section 7 we make some
remarks about the work, presenting also some possible future research directions.

2 How to Hubble-induce a crossover phase transition

The HIPT scenario is based on a minimal number of assumptions that concern the field
content and interactions in the fundamental Lagrangian. In particular, we consider two
distinct sectors that are allowed to indirectly interact through gravity, namely an inflaton
field ϕ and a prototypical scalar field χ

L√
−g

= M2
P

2 R + Lϕ + Lχ , (2.1)
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with MP = 2.44 × 1018 GeV the reduced Planck mass and R the Ricci scalar. The details of
the inflationary stage are encoded in the Lagrangian density Lϕ, which we will not specify
in the following, as we only require that it produces a quasi de-Sitter phase (wϕ = −1)
followed by a kination phase, i.e. a stiff expansion phase where the inflaton’s equation of
state parameter is wϕ = +1. Such an expansion phase can be realised in a host of scenarios,
ranging from asymmetric α-attractors [26–29] to variable gravity settings [30–32] or axion-like
dynamics [33], but it is perhaps best described in terms of a non-oscillatory quintessential
inflation model [34, 35] in which the kination phase interpolates between the early- and late-
time accelerated expansion of the Universe (for a comprehensive review see [11]). Regarding
the spectator field Lagrangian density Lχ, we only assume it to be Z2-symmetric and to
contain a non-minimal interaction with curvature, namely

Lχ√
−g

= −1
2∂µχ∂µχ − 1

2ξRχ2 − λ

4 χ4 . (2.2)

The appearance of a non-minimal curvature coupling is a natural occurrence to be expected
for quantum fields on curved backgrounds. Indeed, as the renormalisation procedure of the
corresponding energy-momentum tensor involves the presence of such counter-terms, setting
ξ to vanish should be understood as an ad-hoc non-general choice viable only at a specific
energy scale [36, 37]. To complete the fundamental picture, we assume the scalar field to be
energetically subdominant (spectator scalar field) with respect to the inflaton counterpart and
in so doing, we neglect its backreaction effect on the background metric and the modification
to the graviton propagator that would otherwise be present.

The Einstein equations following from the variation of the action (2.1) with respect
to the metric take the form

Gµν = 1
M2

P

(
T ϕ

µν + T χ
µν

)
, (2.3)

with Gµν the Einstein tensor, T ϕ
µν the stress-energy tensor of the unspecified inflaton sector and

T χ
µν = ∂µχ∂νχ − gµν

(1
2∂αχ∂αχ + λ

4 χ4
)

+ ξ (Gµν + gµν□ − ∇µ∇ν) χ2 , (2.4)

the one associated to the spectator field χ. Note that the contraction of T χ
µν with arbitrary

timelike vectors uµ and uν is not necessarily positive definite at all times [38–41], opening the
door to potential violations of the weak energy condition T χ

µνuµuν ≥ 0 in this sector. Still,
the overall energy density of the Universe is positive definite at all times. The evolution of
the spectator field is dictated by the Klein-Gordon equation

χ̈ + 3Hχ̇ − 1
a2 ∇2χ + ξR(t)χ + λχ3 = 0 , (2.5)

where dots denote derivatives with respect to the coordinate time t. The effective time-
changing mass for χ depends on the evolution of the Ricci scalar. For a fixed flat Friedmann-
Lemaître-Robertson-Walker metric (FLRW) gµν = diag(−1, a2(t) δij) with scale factor a(t),
this quantity takes the form R = 3(1 − 3wϕ)H2 with H = ȧ/a the Hubble rate and wϕ

the effective inflaton equation-of-state parameter, identified with the overall background
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equation of state of the Universe during the early stages of our scenario. During inflation,
the non-minimal coupling to curvature acts as a large mass term, safely confining the scalar
field to its vacuum and preventing the formation of large isocurvature perturbations [9, 15].
During kination, the Ricci scalar becomes negative since wϕ = 1 and triggers the spontaneous
breaking of the Z2 symmetry in the χ sector. Two degenerate true vacua appear then at
large field values, but their position decreases monotonically towards zero as the Hubble
function decreases with time.

To study the dynamics of the spectator field in the kination phase, we assume the inflation-
to-kination transition to be instantaneous as compared with the evolution of the scalar field1

and parametrise the temporal dependence of the scale factor and the Hubble rate as

a = akin [1 + 3Hkin (t − tkin)]1/3 , H = Hkin
1 + 3Hkin(t − tkin) , (2.6)

with akin and Hkin the values of these quantities at the onset of kinetic domination, arbitrarily
defined at t = tkin. In terms of these quantities the energy density ρχ = T χ

00 and pressure
pχ =

∑
k T χ

kk/(3a2) of the spectator field following from (2.4) take the form

ρχ = χ̇2

2 + (∇χ)2

2a2 + 3ξ

(
H2 + H∂t − 1

3
∇2

a2

)
χ2 + λ

4 χ4 , (2.7)

pχ = χ̇2

2 − |∇χ|2

6a2 + 3ξ

(
H2 − 1

3
(
∂2

t + 2H∂t

)
+ 2

9
∇2

a2

)
χ2 − λ

4 χ4 .

In the following, it will be convenient to consider dimensionless quantities, which can be
achieved by normalising all dimensionful quantities, especially the scalar field χ, by the
kination scale Hkin. We also introduce the conformal time variable dτ = dt/a which we
then rescale to obtain

z = akinχkinτ , H(z) = a′

a
= 1

2(z + ν) , a(z) = akin

√
1 + z

ν
, ν =

√
3ξ

2 . (2.8)

with χkin =
√

6ξHkin. Note that, instead of working with the coupling parameter ξ, we
introduce a parameter ν following the conventions already used in [9–12]. The dynamics of the
system can be split into two phases. The initial phase is defined by the non-minimal coupling
term ∼ ν2Rχ2 dominating the dynamics. Expanding the scalar field into quantum modes
reveals that the amplitude of each mode undergoes an exponential tachyonic amplification
described in terms of Bessel functions [9]. These are the solutions to the mode equation
in momentum space

Y ′′ −
(
k2 − M2(z)

)
Y + λY 3 = 0 . (2.9)

1One could always embed the HIPT in a specific inflationary scenario with a model-dependent non-
instantaneous transition to kination. This is particularly important whenever the tachyonic phase is not
intense enough or when the non-minimal coupling parameter is small, namely ν < 5, so that a good separation
of scales in the tachyonic band cannot be maintained [9]. Such an approach was followed in [13] together
with a choice of smaller quartic couplings λ ∈ [10−15, 10−4] as compared to the typical Higgs-like values
λ ∈ [10−6, 10−1] in our study. Being ν ∈ [6, 24], our chosen parameter space realises strong phases of tachyonic
particle production where an instantaneous transition to kination constitutes a very good approximation.
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with vacuum initial conditions. The time-dependent effective mass M2(z) = (4ν2 − 1)H2

defines the band of tachyonic modes that grow exponentially at the beginning of kination.
Notice that we have rescaled fields, momenta and spatial coordinated to their conformal version

Y = a

akin

χ

χkin
, y = akinχkinx , k = k

akinχkin
. (2.10)

In the linear phase, the original quantum nature of the system is quickly lost, thanks to
the fast classicalisation of the tachyonically-produced particle excitations. This causes the
appearance of amplified stochastic patches on typical scales ∼ H−1 that grow until the
self-interaction contribution ∼ λχ4 can no longer be neglected [42]. The time of backreaction
coincides with the completion of the first semi-oscillation, happening typically in less than
one e-fold from the onset of kination. At this time, the field enters a non-linear phase
characterised by the breaking of the locally-homogeneous patches. Contrary to the initial
tachyonic phase, numerical methods are necessary to follow the self-interacting dynamics,
since the contribution from spatial gradients and non-linear interactions cannot be longer
ignored [12, 42]. Eventually, the system develops into a regime of turbulence [43] with a
typical transfer of energy from IR modes to UV ones. In less than two e-folds, the average
equation of state of the spectator field reaches wχ = 1/3 and the following evolution of
the scalar field’s energy density can be tracked as that of a perfect relativistic fluid. The
(re)heating of the Universe is ultimately achieved when the inflaton energy density decays
below the scalar field’s energy density. The timescale of heating phase is then completely
defined in terms of the energy-density ρχ(zrad) and the scale of kination Hkin.

Thanks to the parametric formulas obtained in [12], we already possess a full charac-
terisation of the heating phase derived from hundreds of lattice simulation, where the main
quantities are defined as functions of (Hkin, ν, λ). In particular, the radiation time and the
energy-density at radiation time are described by the simple formulas

zrad(λ, ν) = γ1 + γ2 ν , ρrad(λ, ν) = 16H4
kin exp (δ1 + δ2 ν + δ3 ln ν) , (2.11)

with coefficients

γ1(λ) = 33.63 + 15.02 n − 0.22 n2 , γ2(λ) = 7.91 − 0.01 n + 0.02 n2 ,

δ1(λ) = −11.10 − 0.06 n , δ2(λ) = −0.04 − 0.03 n , δ3(λ) = 5.62 + 0.87 n ,

(2.12)

and n = − log10(λ). These expressions can be combined with the concept of heating ef-
ficiency [32]

Θht(λ, ν) ≡ ρχ(zrad)
ρϕ(zrad) = ρrad

3H2
kinM2

P

(
1 + zrad

ν

)3
, (2.13)

to gain a complete picture of the heating stage. In fact, this quantity will turn out to be very
useful in the following discussion, as it simplifies the task of rescaling a GW signal to the
present cosmological time. Lastly, the heating temperature can be computed by associating
an instantaneous temperature to the scalar field energy-density

Tht =
(

30 ρχ
ht

π2ght
∗

)1/4

. (2.14)
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where the subscript ht indicates quantities at the time of heating. Given that the typical
heating and thermalisation timescales are of comparable duration [43–45], the previous
definition is also a good estimate of the actual heating temperature. We assume ght

∗ = 106.75
at the end of the actual heating phase.

3 Stochastic background of gravitational waves

As the spectator field undergoes the tachyonically-unstable phase, its quantum fluctuations
are exponentially amplified, leading to large inhomogeneities on patches with typical scales
∼ H−1. These are the main large-amplitude source of the SGWB we will analyse through
lattice simulations. In this section, we describe the underlying physics and get an analytical
understanding of the final GW spectrum. The complete set of assumptions and explicit
derivation can be found in appendix A.

In the spectator field approximation (ξχ2 ≪ M2
P , ρχ ≪ ρϕ),2 the evolution equation

for a transverse-traceless (TT) gravitational wave perturbation hT T
ij (∂ih

T T
ij = hT T

ii = 0)
on a flat FLRW background

ds2 = −dt2 + a2(t)(δij + hT T
ij )dxidxj , (3.1)

takes the form

ḧT T
ij + 3HḣT T

ij −
∇2hT T

ij

a2 ≃ 2
a2M2

P

ΠT T
ij , (3.2)

with the source term ΠT T
ij standing for the TT part of the effective anisotropic energy-

momentum tensor

Πij = ∂iχ∂jχ − ξ∂i∂jχ2 . (3.3)

Knowing the solution of (3.2), the energy-density in GWs can then be computed as the
ensemble average

ρGW = M2
P

4 ⟨ḣT T
ij (t, x)ḣT T

ij (t, x)⟩ , (3.4)

with the corresponding power spectrum per logarithmic frequency interval given by

ΩGW = 1
ρc

dρGW
d log k

, (3.5)

2Notice that, in the limit of a spectator scalar field the correction to the Planck mass is negligibly small.
In [9, 12] for a field to be a spectator, the non-minimal gravitational coupling is allowed to contribute up to 10%
of the Planck mass squared. This upper bound can be saturated only at the end of the first semi-oscillation for
high values of non-minimal coupling parameter ξ, high kination scales Hkin and small values of self-coupling λ.
The parameter space in which we will perform our analysis is limited to small values of ξ that can at most
cause a 1% change in M2

P for a kination scale below 1012 GeV and even smaller changes for lower scales. For
ν6H2

kin ≲ 0.5 × M2
P λ, our results are also compatible with the general restriction ⟨χ2⟩1/2 ≲ MP /ξ imposed by

the quantum self-consistency of this type of non-minimally scalar-tensor theories, see e.g. [48] and references
therein. This condition is satisfied in particular for all figures displayed in this work, with ⟨χ2⟩ at backreaction
time computed from the fitting formulas in [12]. Once this threshold is surpassed, the original Lagrangian
density (2.2) should be potentially supplemented by an infinite series of higher-dimensional operators to
preserve consistency, in line with the standard effective-field-theory approach.
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where ρc normalises the GW spectrum to a critical energy-density. We expect the GW
spectrum to be peaked at momenta somewhat above Hkin, as the backreaction associated
to the quartic self-interaction typically breaks down the larger homogeneous patches into
sub-horizon fluctuations. The brief life of these colliding “bubbly” features in the field
distribution sources a peaked GW signal [46]. Indeed, there exist a certain similarity to the
generation of GWs in first-order phase transitions, since the large-amplitude fluctuations
are coherent on Hubble-sized patches. One can now clearly appreciate the need for lattice
simulations, as such spatial non-linear features can only be studied in a fully-interacting
system. Any homogeneous approximation of the dynamics [14, 23–25] is indeed not suitable
for achieving a consistent physical description of the process [42].

4 Non-linear dynamics and lattice simulations

Studying the production of GWs during the non-linear phase that follows the onset of
backreaction effects requires the use of classical lattice simulations in 3 + 1 dimensions. To
this end, we will make use of a modified version of the public code CosmoLattice [21, 22]
to evolve a self-interacting scalar field in an expanding background while solving the tensor
perturbation evolution equation (3.2) that will give us the GW power spectrum (3.5). The
default lattice implementation of the Klein-Gordon equation of the spectator field has been
modified according to (2.5) to account for the Hubble-dependent mass term. The same is
true for the energy momentum tensor in (2.4) and the total energy and pressure (2.7) which
include additional terms derived from the extra non-minimal interaction with gravity. The
TT stress-energy tensor that sources GWs has also been modified according to the expression
in (3.3). We follow some uniform prescriptions in all our lattice simulations to ensure the
stability and reliability of the output:

1. The number of lattice points per dimension N = 288 (and therefore the comoving
lattice size L) are selected in such a way that all relevant modes are always well
within the associated infrared (IR) and ultraviolet (UV) resolution in momentum
space, thus covering the tachyonic band [17] as well as modes enhanced by subsequent
rescattering effects. This leads us to setting κIR = 2νH(0) and κUV ≫

√
4ν2 − 1κIR

with κ = k/Hkin.

2. The time-step variable is chosen according to the stability criterion δt/δx ≪ 1/
√

d [22],
with d = 3 the number of spatial dimensions and δx = 2π/(NκIR) the lattice spacing.
More specifically, we set δt = 0.1 for ν ≥ 10 and δt = 0.01 for ν < 10.

3. The background expansion in (2.6) is given by a fixed power-law and therefore, we
adopt a symplectic 4th order Velocity-Verlet evolver to achieve a satisfactory stability
and precision of the numerical solutions when the conservation of energy cannot be
explicitly checked.

4. The lattice initial conditions are set as χ(0) = χ′(0) = 0, as the spectator quantum field
finds itself in vacuum at the end of inflation, with fluctuations over the homogeneous
background included as Gaussian random fields. Given the fast classicalisation of the

– 7 –
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Figure 1. Typical output of a lattice simulation with ν = 10, λ = 10−4 and Hkin = 1010 GeV showing
the power spectrum ∆χ(κ) of the spectator field and the GW spectrum Ω̄GW(κ) normalised with
respect to the total energy density of the spectator field. Grey vertical lines indicate the momenta
scales corresponding to the typical amplified momentum κ⋆ and the maximum amplified momentum
κmax in the tachyonic band at z = 0. The spectra are plotted from the initial time until zrad is reached.
The orange line corresponds to the spectra measured at zbr while the red line in the second panel
shows the fitted spectral shape in (5.9).

field’s quantum fluctuations, the resulting evolution is deterministic up to a randomly-
generated initial seed. We choose to keep this base seed constant in all our simulations
so to make them exactly comparable, although a more robust but time-consuming
approach would require repeating the same simulations with different random seeds
and averaging over them. Given that the system looses memory of the initial conditions
soon after the development of the tachyonic instability, fixing the initial random seed
does not influence the overall macroscopic lattice-averaged evolution.

The typical output of a lattice simulation is displayed in figure 1 for the model parameters
ν = 10, λ = 10−4. The scalar power spectrum ∆χ(k) = k3Pχ/(2π) is shown in the first
plot, where the two-point correlator is defined as ⟨χkχk′⟩ = (2π)Pχδ(k − k′), while the GW
power spectrum Ω̄GW(κ) is shown in the second plot. Notice that a bar on top of Ω̄GW
indicates that it is normalised with respect to the total energy density of the spectator field,
i.e. ρc = |ρχ|.3 The typical tachyonic momentum scale κ∗ = 2

√
ν + 1 κIR and the maximum

momentum in the tachyonic band κmax =
√

4ν2 − 1κIR are highlighted. Some features are
to be noted. After the initial violent tachyonic phase, the system slowly relaxes towards an
equilibrium state with a steady flow of energy from IR modes to UV ones. The production of
GWs is peaked around the time of backreaction zbr = 13 for the chosen model parameters, i.e.,
when the tachyonically-amplified fluctuations reach their maximum extension and lead to the
largest contribution to the anisotropy of the system. The orange lines in both plots highlight
the spectra at zbr. After the large-amplitude oscillations have been quenched, GWs are
produced at a lower rate and the spectrum tends to achieve a steady configuration, with some

3As the non-minimal interaction dominates the early dynamics, the total energy density of the field χ is
not positive definite, hence the need for taking the absolute value [10–12]. At later times, as the non-minimal
coupling becomes less relevant, ρχ becomes positive. In any case, the overall energy budget of the Universe is
always a positive quantity [38–41].
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residual sources given by the small-scale spatial oscillations of the spectator field. The final
shape at zrad is given by a simple broken-power law, highlighted by a red line in the figure.

We perform an extensive scanning of the parameter space that covers a large range in
non-minimal coupling parameters ν ∈ [6, 24], equivalent to ξ ∈ [24, 384], thus extending the
most typically studied range [24] up towards Higgs-Inflation-like values [47, 48]. Regarding
the self-interaction parameter, we probe the range λ ∈ [10−1, 10−6] which covers, among
other scenarios, the Standard-Model running of the Higgs self-coupling up to the proximity
of the instability scale [49–53]. Being the output of all simulations normalised with respect
to the mass-scale Hkin, each simulation is independent of the choice of such scale, which can
be reintroduced whenever dimensionful quantities are needed.

5 Parametric fitting formulas and spectral shape

The scanning of the (ν, λ) parameter space allows us to condense a large amount of numerical
information into a set of simple and useful fitting formulas, in the spirit of what has been
previously done in the HIPT scenario [12] and for parametric-resonant reheating [54]. We
take the radiation time zrad as the typical timescale at which we analyse the GW spectrum
in each simulation. As was shown in [12], this timescale represents the moment in which
the system gains its macroscopic lattice-averaged scaling behaviour, since for z > zrad the
lattice-averaged scalar field equation of state is ⟨wχ⟩ ≃ 1/3. We focus on measuring the peak
frequency, peak amplitude and integrated energy density of the GW spectrum at zrad. Given
that the energy-density stored into GWs also scales as radiation, it is convenient to use the
total energy of the spectator field χ as the critical energy-density in (3.5) and define

Ω̄GW(zrad) ≡ ρGW(zrad)
ρχ(zrad) . (5.1)

As most of the GW production process is active in the non-linear phase between backreaction
zbr and zrad, measuring Ω̄GW(zrad) gives a good estimate of the final GW energy density
at the time of reheating. On top of the previous considerations, quantities at zrad can be
more straightforwardly used together with the parametric formulas in [12] which are also
evaluated at the same timescale.

Following the previous considerations, we compute two fitting formulas from the GW
spectra at zrad for the peak momentum κp and the peak amplitude Ω̄GW,p = ρGW,p/|ρχ|
as a function of ν, n = − log10 λ and Hkin. For simplicity’s sake, we always understand
the quantities κp, Ω̄GW,p and Ω̄GW to be measured at zrad without writing it explicitly for
the remainder of this work. Using simple linear and exponential ansatz, we obtain that
the peak momentum is given by

κp(ν, λ) = α1 + α2ν , α1 = −15.36 − 1.95n , α2 = 5.29 − 0.08n , (5.2)

while the peak amplitude is

Ω̄GW,p(ν, λ) =
(

Hkin
1010 GeV

)2
exp [β1 + β2 log ν] ,

β1 = −50.92 + 0.40n , β2 = 7.80 + 0.55n . (5.3)
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Figure 2. Peak frequency κp and peak amplitude Ω̄GW,p evaluated at zrad as a function of the model
parameters (ν, λ). Regarding Ω̄GW,p, we have set a fiducial value of Hkin = 1010 GeV. Dots indicate
the output of single simulations in our scanning grid while black dashed lines display the resulting
fitting formulas.

A formula for the integrated energy density of GWs can be obtained in the same way and,
as can be expected from peaked production processes, it matches closely the expression
for Ω̄GW,p(ν, λ), namely

Ω̄GW(ν, λ) =
(

Hkin
1010 GeV

)2
exp [γ1 + γ2 log ν] ,

γ1 = −50.50 + 0.40n , γ2 = 7.70 + 0.55n ,

(5.4)

where the factor of (Hkin/1010 GeV)2 comes from the normalisation of tensor perturbations
in the lattice code [55]. The lattice-derived data points and the respective fitting functions
can be seen in figure 2. We note here that the fitting procedure has been monitored using a
R2-test that always yielded values greater than 0.99. As one would expect, a more intense
tachyonic phase leads to a larger portion of energy to be transferred to GWs, as is the case for
large values of ν and small values of λ. At the same time, the spectrum is typically peaked
at momenta κp one or two orders of magnitude larger than the Hubble scale at kination.
This is an expected feature since the initial IR amplification breaks turbulently into UV
inhomogeneities while GWs are produced.
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Once we have a complete picture of the GW spectrum at zrad, frequencies and energy-
densities can be rescaled to the present time taking into account the full cosmic history
post-production. Following the prescriptions in the literature [56–58], we obtain

ΩGW,0 = 1.67 × 10−5h−2
(100

ght
∗

)1/3
× Ω̄GW , (5.5)

Indeed, Ω̄GW = ρGW/|ρχ| measures already the energy-density of GWs at the end of the
heating phase, when the spectator field becomes the dominating energy component of the
early Universe. The numerical factor encodes the usual dilution due to matter-domination.
The dependence of this quantity on the scale of kination is only present implicitly in the
fitting formula (5.4). Regarding the shifting in frequency of the spectrum, we compute
the rescaling to be

fp,0 = arad
a0

fp,rad ≃ 1.3 × 109 Hz κ

2π

(
Hkin

1010 GeV

)1/2 ( Θht
10−8

)−1/4 √
arad , (5.6)

where we have normalised the scale factor to the kination scale akin = 1, set aeq/a0 ≃ 1/3400,
Heq ≃ 10−37 GeV and identified 1 GeV = 1.5 × 1024 Hz. We have also used the relations

Θht =
(

aht
arad

)−2
=
(

Hht
Hrad

)2/3
,

(
aht
aeq

)
=
(

Heq
Hht

)1/2
,

(
arad
aht

)
=
(

Hht
Hrad

)1/3
. (5.7)

involving the different energy scalings during kination and radiation-domination. The
tachyonic production process leads to a typical energy density of the scalar field ρχ ∼ H4

kin,
which translates into to Θht ∼ H2

kin. Indeed, in terms of the parametric formulas in [12],
we have

Θht(λ, ν) = 16
3

(
Hkin
MP

)2 (
1 + γ1 + γ2 ν

ν

)3
exp (δ1 + δ2 ν + δ3 ln ν) , (5.8)

and all dependence on the kination scale in (5.6) vanishes. This exact cancellation is an
effect of the tight connection between Hkin and the scale of heating Hht via the heating
efficiency. Qualitatively speaking, the period of kination causes a blueshift of the spectra
frequencies that is Hkin-dependent and compensates exactly any change in the initial scale
Hkin. Figure 3 shows the parametric dependence of fp,0 and ΩGW,0, the latter for an
indicative scale of kination of Hkin = 1010 GeV. The typical GW spectrum in our chosen
parameter space is placed at 10−100 GHz, while its amplitude can be as large as O(10−10)
for Hkin = 1010 GeV. It is interesting to notice that lower values of λ cause the spectrum
to be shifted at smaller frequencies.

Given the extensive information about GW spectra at zrad obtained previously, it is
possible to match the simulation output to a simple broken power-law fit. A customary
ansatz for peaked sources of GWs is given by the shape function

Ω̄GW(f) = Ω̄GW,p(a + b)c[
a
(

f
fp

)b/c
+ b

(
f
fp

)−a/c
]c , (5.9)
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Figure 3. Integrated GW energy density h2ΩGW,0 and frequency of the peak fp,0 at the present
cosmological time as a function of the model parameters ν and λ within the parameter space under
study. For the energy-density contours, we have set a fiducial value Hkin = 1010 GeV.

frequently adopted to describe the GW signal from first-order phase transitions [71, 72]. The
fitting procedure consists in computing the best values for free parameter a, b and c in (5.9)
for each simulation output using a χ-squared algorithm. The coefficients a and b control the
IR and UV slopes respectively, while c determines the overall width. Spectra taken at zrad
are typically self-similar and smooth, as the production process has already quenched. This
fact allows us to simply perform the fitting procedure for every power spectrum extracted
at zrad and compute the coefficient’s best values, finding

a = 3.00 , b = 152.34 − 6.57 ν , c = 105.85 − 4.79 ν . (5.10)

The average value a = 3 is expected from causality arguments at small momenta [73, 74],
while both b and c show a decreasing trend proportional to ν. Such a feature is linked to
the underlying differences of the system at zrad: this timescale is generically longer for more
intense tachyonic phases (large ν), thus causing the appearance of larger fluctuations in the
UV region. Therefore, the resulting GW spectrum is less steep in the UV as compared to
weaker tachyonic phases (small ν).

It has to be noted that two factors can contribute to the uncertainty in measuring the
shape coefficients. In the IR region, because of the strong initial amplification of the scalar
field modes, some secondary peaks can still be present at the time zrad. These lead to the
appearance of a somewhat flatter portion of the spectrum around κ⋆, with a ∼ f2 scaling (see
figure 1). In the UV region, the finite size of the lattice and its limited capability in resolving
small modes can lead to some well-known artefacts that can be avoided with an optimal choice
of lattice parameters [75, 76]. By sampling the parameter space with a few simulations with
increased lattice size, we have verified that N = 288 is an adequate number of lattice points
to avoid the formation of such artefacts while covering all of the relevant momenta range.
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Moreover, different definitions of power spectra can lead to discrepancies in the UV counting
of modes [55]. In order to minimise the effects of such unphysical artefacts, we set the fitting
domain to be κ < κUV and we examine only the spectra of those simulations with 10 < ν < 20.
Following this approach, the values in (5.10) give a good estimate of the overall shape of the
spectrum and can be adopted to study a larger range of frequencies. Notice also that the IR
and UV features we are discussing have a negligible effect on the integrated power spectrum.

6 Potential for detection

The final step in our analysis consists in comparing the fitted spectra with the sensitivity
curves of various proposed GW detectors. Figure 4 shows the spectra sourced by the HIPT,
rescaled to the present time and for different values of λ and a fiducial scale of kination
Hkin = 1012 GeV. The GW signal produced by the phase transition is always fulfilling the
BBN bound on the relativistic number of degrees of freedom ∆Neff for all the parameter
space under consideration [58]. Indeed, any integrated contribution of a GW power-spectrum
has to satisfy the constraint [77]

h2
∫

df

f
ΩGW,0 ≲ 5.6 × 10−6∆Neff = 1.1 × 10−6 , (6.1)

which can be recast as a condition on the parameters of the model, namely

Ω̄GW(ν, λ, Hkin) ≲ 6.7 × 10−2 . (6.2)

For Hkin = 1012 GeV, the bound excludes a portion of parameter space outside our chosen
parameter range, see the grey-shaded region in figure 4. The tilt in the low-frequency portion
of the spectrum depends on the expansion rate at the horizon-reentry of IR modes, namely
ΩGW,0 ∼ f4 during kination and ΩGW,0 ∼ f3 during radiation-domination [33, 78].

As noted in figure 3, the larger anisotropy generated by stronger tachyonic phases sources
a stronger signal at lower frequencies. This is the case for a lower value of λ, which drives the
typical frequencies closer to the Hubble scale at the beginning of kination, as the subsequent
heating phase is short-lived and radiation-domination is quickly achieved. This effect reduces
the blueshifting, thus opening the possibility for peak detection at 108 − 109 Hz as can be
seen in figure 5. Notice that in figure 5 we have fixed the scalar field self-coupling to be
λ = 10−10 thus extrapolating from the clear trend in figure 3, based on the simplicity and
self-similarity of the fitting functions.

In principle, the signal in figure 4 can be directly amplified by choosing larger kination
scales due to the multiplication in (5.4). However, one has to take into account the existence
of a maximum and minimum kination scale. The minimum scale guarantees reheating before
BBN for a chosen set of model parameters, namely that Tht ≳ 5 MeV [79, 80] and can
be computed from the definition of heating efficiency in (2.13) and heating temperature
in (2.14). A maximum scale is set by the requirement of sub-Planckian non-minimal-
coupling contributions, i.e. guaranteeing the subdominance of the spectator field and the
consistency of the analysis. In figure 5 we show the full GW signal for different scales of
kination. In this case, for ν = 10 and λ = 10−10 the kination scale has to be in the range
105 GeV ≲ Hkin ≲ 1011 GeV.

– 13 –



J
C
A
P
0
3
(
2
0
2
5
)
0
2
7

Figure 4. Spectra of the SGWB signal from a HIPT as a function of the self-coupling parameter
λ for a fixed value of ν = 10 and Hkin = 1012 GeV. Several sensitivity curves of proposed future
detectors are being shown: Laser Interferometer Space Antenna (LISA) [59, 60], Big Bang Observer
(BBO) [61, 62], UltimateDECIGO [63–65], Einstein Telescope (ET) [66, 67], and Cosmic Explorer
(CE) [68, 69]. The grey-shaded area corresponds to the region excluded by the bound on the integrated
energy-density in GWs at BBN in (6.1).

Figure 5. Spectra of the SGWB signal from a HIPT as a function of the scale of kination Hkin for
fixed values of ν = 10 and λ = 10−10. The grey-shaded area corresponds to the region excluded by
the bound on the integrated energy-density in GWs at BBN in (6.1).
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Figure 6. Stochastic strain hc of the GW background from a HIPT for different kination scales while
the other model parameters are set to λ = 10−10 and ν = 10. The bound on the effective numbers of
degrees of freedom at BBN is shown as a grey-shaded area.

The low-frequency tail in figure 6 shows the unavoidable contribution to the stress-energy
tensor given by perturbations generated during inflation from quantum fluctuations. Being
this source uncorrelated to the HIPT one, we can simply compute the inflationary GW
power spectrum and add it to the one generated by the spectator field’s fluctuations. It is
well-known [14, 56, 81] that a stiff expansion phase following inflation leads to an amplification
of the GW modes over the cosmological background and a blue-tilting of the spectrum. This
is described in terms of two different scalings. For modes reentering during the phase of
radiation-domination, i.e. f < fht the power spectrum nowadays is described by

h2Ωinf
GW, 0(f) ≃ 10−16

(
Hkin
Hmax

)2
(

f

fpivot

)nt

, (6.3)

while for modes reentering during the stiff phase of kination, i.e. f > fht, we rather have

h2Ωinf
GW, 0(f) ≃ 10−16

(
Hkin
Hmax

)2
(

f

fpivot

)nt (
f

fht

)
, (6.4)

where Hmax is the highest inflationary scale measured at the pivot scale kpivot =
0.002 Mpc−1 [82], fpivot is the corresponding frequency of the pivot scale and nt is the
spectral tilt of inflationary perturbations. The range of frequencies that experience such
amplification is limited to f > fht, where fht is the frequency of the mode exiting the horizon
at the end of heating. The typical amplitude of such contribution is negligible as compared
to the HIPT signal, unless the anisotropies generated during the tachyonic phase do not
achieve a large amplitude and the kination phase is long-lasting. This is the case that can
be observed in figure 6 for low kination scales, i.e. small heating efficiencies, where we have
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converted amplitudes into stochastic strain via the standard relation [83]

ΩGW = 4π2

3H2
0

f2h2
c(f) . (6.5)

As figures 4, 5 and 6 show, the GW signal is peaked at typical frequency scales far from
the reach of most ground-based and space-based detectors. This is a core feature of peaked
violent processes taking place at high energy scales. Moreover, the peculiar scaling features of
our scenario limit the possibility of reducing the typical frequency below the MHz threshold.
At the present time, high-frequency detector designs [83, 84] have the potential to reach
the MHz–GHz range, but only with maximum sensitivities far above the bound imposed
by ∆Neff at BBN.

7 Conclusion and outlook

The present work has filled in a gap in the study of primordial fields undergoing a Hubble-
induced phase transition. The building blocks of the model are minimal and require only
the presence of non-minimally-coupled spectator fields in the early Universe as well as a
stiff expansion phase. Any model satisfying these two assumptions experiences such phase
transition which, for values of the non-minimal coupling parameter ξ of the order 101−103,
can lead to the successful heating of the Universe with an associated gravitational-wave
signal. By performing a large number of 3 + 1-dimensional classical lattice simulations, we
have thoroughly investigated the stochastic background of gravitational waves produced
by such phase transition. We have summarised our findings in a set of parametric fitting
formulas that conveniently encode the main characteristic quantities: the integrated power
spectrum, its peak amplitude and the corresponding frequency. We have also provided the
first characterisation of the spectral shape for a crossover phase transition using a broken
power-law fit.

The advantages of such parametric formulas are clear: key quantities can be estimated
without the need for more time-consuming simulations. Moreover, such results can be
taken as starting points for extending the analysis to neighbouring scenarios involving, for
example, a different stiff equation of state, additional field content and interactions [85, 86],
additional non-standard expansion phases etc. In particular, the early-Universe evolution
of the Standard Model Higgs field considered in [15] represents a natural application of our
results, offering the chance to correlate the gravitational-wave spectrum to the running of the
Higgs self-coupling at high energies. This new connection can lead to an interesting interplay
between cosmological and particle-physics measurements, in particular the top quark mass.
We plan on further investigating this scenario in a follow-up work.
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A Derivation of the source term for gravitational waves

In this appendix, we present a detailed derivation of the GW equations (3.3). To this end, we
employ the spectator field approximation, specifically assuming that the dominant inflaton
field remains strictly homogeneous. Under this assumption, the spatial components of the
perturbed Einstein equations take the form(

1 − ξχ2

M2
P

)
δGij = 1

M2
P

δΠ̃ij , (A.1)

with

δΠ̃ij ≡ Π̃ij − 1
3gijΠ̃ = ∂iχ∂jχ − 1

3gij∂kχ∂kχ − ξ

(
∇i∇j − 1

3gij∇k∇k

)
χ2 (A.2)

an anisotropic stress tensor quantifying the deviation of the spatial-spatial components of
the “reduced” energy-momentum tensor,

Π̃µν = ∂µχ∂νχ − gµν

(1
2∂λχ∂λχ + λ

4 χ4
)

+ ξ (gµν□ − ∇µ∇ν) χ2 , (A.3)

from a perfect fluid. Particularising this expression for a perturbed FLRW Universe,

gij = a2γij = a2(δij + hij) , ∇i∇jχ = ∂i∂jχ − (Γσ
ij + δhΓσ

ij) ∂σχ , Γ0
ij = a2Hδij ,

we get

δΠ̃ij = ∂iχ∂jχ − 1
3a2γij∂kχ∂kχ

− ξ

(
∂i∂j − Γ0

ij∂0 − δhΓ0
ij∂0 − δhΓk

ij∂k − 1
3a2γij∇k∇k

)
χ2 . (A.4)

The evolution equation for the physical transverse-traceless gravitational degrees of freedom
hT T

ij actually propagating and carrying energy away from the source is derived by first
transforming (A.1) into Fourier space and then applying spatial projectors Pij = δij − k̂ik̂j ,
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Figure 7. Time-evolution of the ratio χ̇rms/χrms, where a prime indicates a derivative with respect
to z. Different colours indicate the numerical output of different lattice simulations with constant
ν = 10.

with k̂i = ki/k the unit vector along the wave vector direction. This procedure removes
all pure trace of components in (A.4), and in particular those associated with the δij part
in γij and the background Christoffel symbols Γ0

ij = a2Hδij . Further neglecting metric
backreaction terms of the form hij∂kχ∂kχ, δhΓσ

ij∂σχ2 and hij∂k∂kχ2 in consistency with
the spectator field approximations ξχ2/M2

P ≪ 1 and (∂χ)2 ≪ H2
kinM2

P , and transforming
the result back into position space, the TT part of perturbed Einstein equations (A.1) takes
the approximate form (3.5), namely

ḧT T
ij + 3HḣT T

ij − 1
a2 ∇2hT T

ij ≃ 2
a2M2

P

ΠT T
ij , (A.5)

with ΠT T
ij the TT part of the effective stress tensor Πij ≡ ∂iχ∂jχ−ξ∂i∂jχ2. Note in particular

that the contribution arising from the term proportional to χ̇/χ remains much smaller than
the Hubble scale as long as ξχ2/M2

P ≪ 1. This is illustrated in figure 7, which displays
the lattice-averaged rms quantities.
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