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Based on our original work published in Ref.!, we investigate an autonomous system
analysis in terms of new expansion-normalized variables for homogeneous and anisotropic
Bianchi-I spacetimes in f(R) gravity in the presence of anisotropic matter. It is demon-
strated that with a suitable choice of the evolution parameter, the Einstein’s equations
are reduced to an autonomous 5-dimensional system of ordinary differential equations
for the new variables. Furthermore, for a large class of functions f(R), which includes
several cases commonly considered in the literature, all the fixed points are polynomial
roots, and thus they can be determined with good accuracy and classified for stability.
In addition, typically for these cases, any fixed point corresponding to isotropic solutions
in the presence of anisotropic matter will be unstable. The assumption of a perfect fluid
as source and or the vacuum cases imply some dimensional reductions and even more
simplifications. In particular, it is found that the vacuum solutions of f(R) = RO+1
with § a constant are governed by an effective bi-dimensional phase space which can be
constructed analytically, leading to an exactly soluble dynamics. It is also shown that
several results already reported in the literature can be re-obtained in a more direct and
easy way by exploring our dynamical formulation.

Keywords: Modified gravity theories; autonomous system analysis

1. Introduction

According to recent various cosmological observations including Type la Super-
novae, cosmic microwave background (CMB) radiation and large scale structure, in
addition to inflation? * in the early universe, the current expansion of the universe
is also accelerating. This is the so-called dark energy problem. There are two rep-
resentative approaches to study the issue of dark energy. One is to introduce some
unknown matter called dark energy with the negative pressure in general relativity.
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The other is to modify gravity at large scales (for reviews of dark energy and mod-

517). As one of the popular modified gravity

18-20

ified gravity theories, see, e.g., Refs.
theories, f(R) gravity has been proposed.

In this article, based on our original reference!, we extend the so-called
expansion-normalized variables?! to write down the dynamical equations of f(R)
gravity for a homogeneous and anisotropic Bianchi-I metric in the presence of an
anisotropic fluid, as a 5-dimensional system of ordinary differential equations. We
show that some further assumptions may lead to considerable simplifications in
the equations, and for several examples we end up with analytically soluble sys-
tems. For the sake of illustration, we consider explicitly the case of f(R) = R'*°.
We demonstrate that the formulation of?? 23 is recovered in the isotropic matter
limit. Moreover, in a simpler and more direct way, we re-derive some uniqueness
and stability properties of the Starobinsky’s isotropic inflationary scenario in R?
gravity,?* 26 which is consistent with the Planck 2018 results.?”>28

The article is organized as follows. In section 2, we describe the dynamical equa-
tions for a Bianchi-I cosmology in f(R) gravity in the presence of an anisotropic
fluid. We discuss the isotropic fluid limit and introduce the new expansion-
normalized variables for the system. In Section 3, we present cosmological appli-
cations. Finally, we summarize our results in Section 4.

2. Bianchi-I cosmology in f(R) gravity with anisotropic fluid
The action describing f(R) gravity is expressed as

S-g / d'a/"Gf (R) + Sur, (1)

where kK = 87G, ¢ = h = 1, and S); stands for the usual matter contributions to
the totalaction.

We consider the homogeneous and anisotropic Bianchi-I metric, which can be
conveniently cast for our purposes in the following form? 3!

3
ds® = —dt* + a*(t) Y _ P (da')?, (2)
i=1

where a(t) is the average scale factor and the three functions 3;, which characterize
the anisotropies, are such that 8y + B2 + 83 = 0. It is more convenient to employ
the variables

B+ = P1 £ fo. (3)
The total amount of anisotropy in the metric (2) is given by the quantity
. . . 3. 1.
of = Bi + 05 + B3 = 5B + 582 (4)

For o = 0, one can show that the spatial coordinates =’ can be suitably rescaled to
recast the Bianchi-I metric in the standard Friedmann-Lemaitre-Robertson-Walker
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(FLRW) form. The Ricci scalar for the metric (2) reads

R=6H +12H% 4+ o2, (5)
where the average Hubble parameter H is given by the standard expression
a
H=-. 6
! (6)

We assume the presence of an anisotropic barotropic fluid with energy momentum
tensor parametrized as>?

T;L/ = dlag (7p7p17p27p3) = dlag (7[)7 wip,w2p, (.(}3[)) ) (7)

and we define the anisotropic equation of state as

pi = (W + pi)p, (8)

with ¢ = 1,2, 3, where w is the average barotropic parameter and w; = w + u;, with
1+ po + pu3 = 0 by construction. We parameterize our fluid by the constants w
and pe = pun + o

The dynamics of the Bianchi-I metric (2) under f(R) gravity action (1), in the
presence of and anisotropic barotropic fluid with energy-momentum tensor (7), can

be described by the following set of equations,>!

r 1T 2
K <p+Rf f 3Hf R) o

H?*=— —
3 f! 2K K + 2 ’ )

B2+ (2HE+ R) 1

OH +3H? =~ [wp+

I K
2k 27

. Rf"\ . Kp
3H = — 11
5i+< + f,>5i falaes (11)
p+(3H(1+w)+5-B>p=0, (12)

where i = 1,2, 3, and
. ) . .3 . 1.

0B =P+ p2f2 + pusfs = §M+5+ + §H757~ (13)
Notice that in the presence of a perfect fluid, we have uy = p— = 0 and the two

equations (11) for 84 and S_ can be substituted with

R "

d+<3H+ fJi>a=0. (14)

In this case, there is no anisotropy in the matter sector and the single variable
o is sufficient to describe the total amount of metric anisotropy in the system.
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In general, we have four functions of time H(t), p(t), B+ (t) governing the dynam-
ics. The existence of the constraint equation (9) implies that only three of them
are indeed independent. Without loss of generality, we can choose them to be, for
instance, H(t) and S (t). Given some specific form of the function f(R), they can
be determined by solving equations (10) and (11). The fluid energy density p(¢) can
then be found using the energy constraint (9).

The traditional expansion-normalized variables were initially introduced for a
better dynamical analysis of the standard FLRW model, see, e.g., Ref.?!. Here, we
expand the variables already introduced in?2 23 to include the case of the anisotropic
barotropic fluid (7). In this regard, let us introduce the monotonically increasing
variable

N =¢€lna, (15)

known as the logarithmic time, where € is defined to be +1 for expanding universe
and —1 for a contracting one. Without loss of generality, we choose the scale factor
at ¢ = 0 to be ap = 1. Therefore, as time progresses in the forward (positive)
direction, the logarithmic time N becomes positive and goes towards +oo in case
of both expanding and contracting universes. One can notice that

N = eH, (16)
so that NN is effectively always positive, justifying the use of N as the dimensionless
evolution variable for both expanding and contracting universes. On the other hand,
around a bounce or a turnaround point, this argument is not valid though and the
expanding and contracting branches must be considered separately.

The expansion-normalized dynamical variables suitable for the equations (9) -
(12) are the following dimensionless combinations

uy = —Rf” Uy = B uz = S (17)
l—f,Ha 2_6H27 3_6f,H27
.2 .2
4T 4H? Y T 12HZ T 3fH?

in terms of which the energy constraint (9) reads simply
g=14u; —us +uzg—uf —u; —us=0, (18)

from where we have that one of the expansion-normalized variables can always be

eliminated. Unless otherwise stated, we always choose the matter content variable

us to be expressed in terms of the others dynamical variables. The variable
o2

6H?

is also relevant for our purposes. It is important to stress that the variables ujf and

ug = ul +u; = (19)

u, are both non-negative by construction. Now, let us introduce the quantity

A(R) = % (20)
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which contains the information about the form of f(R). Knowing the form of f(R),
~ can be determined in terms of the dynamical variables us, us by inverting the
relation

U2 Rf

" (21)

We return to the question of the invertibility of (21) in the last section. The 5-

dimensional system of autonomous first order differential equations fully equivalent
to (10) - (12) is given by

du1
=1 — — g —

€ N + uo — 3ug — ug — 3wus

—U1 (u1 + Uz — U4) , (22)

d

e% = ujugy (Z—i) — 2ug (ug — ug — 2), (23)
d

Eﬁ = wyusy (Z-i) — ug (ug + 2us — 2uy — 4), (24)
duy + [0t

€N = —2uy (14 uy + ug — ua) + 3p41/uyg us, (25)
duy _ _

ST —2uy (1+u1 + ug — uq) + p—/3ug us, (26)
d

eﬁ = —us <3w — 1+ up + 2us — 2uy (27)

+3p/uf + u\/3u2> .

Notice that differentiating (18) with respect to N and using the equations (22)-(27),
we have

dg

e—2

dN

showing that the constraint ¢ = 0 is indeed conserved along the solutions of our
equations and the system (22) - (27) is effectively 5-dimensional.

= —(u1 + 2ug — 2uf —2u; —1)g, (28)

The case of f(R) = R, with § # 0, is particularly important in our next
examples. For this choice of f(R), one has simply

y=06", (29)

and the equations (23) and (24) can be considerably simplified. In this case, the
right-handed side of the equations (22) - (27) involves only second degree polyno-

mials in g, ug, and ug, and forth degree in y/u, and \/E. Hence, the task of
finding the fixed points of our system reduce to finding polynomial roots, which
may be performed in general with good accuracy. Notice that there are other rel-
evant choices for f(R) leading to polynomial fixed points. Besides of the trivial
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extension f(R) = aR' + A, with o and A constants, for which (29) also holds.

For f(R) = R* + aR’, with a # b constants, we have
U2

b+a— 1)us — abug’

V= (30)
(

Notice that, as in the exponential case, the function v does not depend on the

parameter a.. This, of course, does not mean that the dynamics in insensitive to the

value of «, since the expansion-normalized variables (17) depend explicitly on a.

The case @ = 1 and b = 2 is the original Starobinsky inflationary scenario,* and for

the vacuum case our approach reduces to that one considered recently in.??

3. Applications to cosmology

In the following, we consider the expanding universes (e = 1). We investigate the
case f(R) = R'"® whose main motivations from a cosmological perspective can be
found in,?% 23,3435 for instance. The case with § = 0 is obviously pure GR, for which
the corresponding system is lower-dimensional, and our approach simply does not
apply. The case logarithmic case f(R) = In R must be treated separately. Hence, we
start considering 6 # 0 and § # —1. Since we will deal with vacuum solutions, we
set us = 0 in the equations (18) and (22) - (27). In this case, notice that (25) and
(26) can be combined in only one equation for us. We can use (18) to write uz as

U3 = Uz — Ul +ug — 1, (31)

and we are left with only three dynamical variables w1, us, and uy. Now, there is an
interesting point to notice® about the specific choice f(R) = R'*?, with § # —1,
namely that

u9 Rf/
— == =144, 32
ug f &2
which combined with the constraint (31) implies
dug = (1 + 6)(11,1 — Uy + 1), (33)

and we are left in fact with a two-dimensional phase space spanned by the variables
w1 and uy. The corresponding dynamical equations in this case are

D (34
=0 114 20)(uy — ul)(ug —uq + 1),
I Ga(ur,ua) (35)

= =201 (1 + 26)uyg (ug —ug + 1),

where
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The phase space (u1, uq) associated with the system (34) - (35) has some interesting
features. For instance, it has an one-dimensional invariant subspace (a continuous
line of fixed points) corresponding to the straight line uy —uy = —1. However, from
(31) we have that uz = us on this line, which implies from (17) and (32) that R =0
on u; — ug = —1. Besides of this invariant straight line, we find the isolated fixed
(u3,0), for 6 # —3. The case § = —1 is also discussed separately.

The stability of the isolated fixed point can be inferred from the linearization of
(34) - (35). The Jacobian matrix of (34) - (35) at the point (uj,0) reads

(Fereg) =-ras-0(; 3): (37)

from where we see that such fixed point is stable for § > i or for 6 < 0. For the
stability of the invariant straight line, we can consider the divergence of the vector
field (¢1, ¢2). One has

Op1 Oy
3’(},1 + 8U4

on the invariant line. Recalling that us > 0, we find that the invariant line is entirely
repulsive (positive divergence) for ¢ > % or for § < —%. For —% <0< i,

obtain some attractive segments, depending on the value of us. We return to the

V-¢p= =0 (1 +20)uy +40 — 1) (38)

we can

physical interpretation of this R = 0 invariant line in a following sub-section. The
case § = —% is particularly curious, since the isolated fixed point is absent and we
get a second one-dimensional invariant line, namely u; = 0, which is also entirely
repulsive. On the other hand, the case f(R) = In R cannot be incorporated in the
present analysis since (32) is not valid for 6 — —1, and in fact we have a three-
dimensional phase space for such case.

The solutions of (34) and (35) are curves on the plane (u1,u4), and it turns out
that such curves can be determined analytically. Notice that the solutions are such
that

i (39)
uj Uy —uj ’
which can be integrated as

g = c(ug —ub)?, (40)

with arbitrary ¢. Thus, the phase space trajectories of all solutions of (34) and (35)
are simply parabolas centered in the isolated fixed point, irrespective of the value
of §, provided the fixed point exists. Since we know the trajectories graphs, one can
infer the dynamics direction and, consequently, the dynamical properties of the fixed
point and the invariant line, directly form the equations (34) and (35) as follows.
Consider the phase space function L = u; — ug + 1. It is clear that L = 0 is the
invariant line. On the other hand, L = ¢ constant is a parallel line located below the
invariant line if ¢ > 0, or above if ¢ < 0. The invariant line is the boundary between
two semiplanes with reverse dynamics direction, and the dynamical properties of the
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Fig. 1. Phase space for the system (34) - (35), for 6 = 1. The fixed point (0,0) is located in
the semiplane below the critical line. The solutions are restricted to parabolas centered in the
attractive fixed point. The region below the invariant line corresponds to the attraction basin of
the fixed point. Any solution starting there tends to the fixed point asymptotically. All solutions
starting in the region above the critical line will diverge to infinity. Notice that the critical line is
entirely repulsive. Such phase space is rather generic, it is essentially the same for all theories of
the type f(R) = Rt such that the fixed point is attractive and is located below the invariant
line.

fixed point and of the invariant line depend on the relative position between then,
see Figs 1 and 2, which correspond, respectively, to the cases § = 1 and § = %.
The former is the important case of the Starobinsky’s inflationary scenario with
f(R) = R%

We note that the solutions are constrained to the parabolas (40), the exact
solutions of (34) and (35) boils down to a simple quadrature of a rational function

duy

-1
T B =—0""(1+2§)dN, (41)
with u; = 4y + uj. For the case 6 = f%, ug is a constant and (34) also reduces to
a simple rational quadrature. It has been shown that the vacuum solutions for the
f(R) = R case, for § # —1, are exactly soluble.

Since the stable fixed points of a cosmological model correspond to the cosmo-
logical histories which dominate the asymptotic evolution of the system, it worth
to look more closely on them. By using (31) and (32), we see that the isolated fixed
points are given by

46 — 1

5(1 1 25)" (42)

us =
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Fig. 2. Phase space for the system (34) - (35), for 6 = %. The fixed point (—%, 0) is now located
in the semiplane above the critical line. The solutions are also restricted to parabolas centered in
the attractive fixed point. However, the attraction basin of the fixed point is now in the region
above the critical line. Notice that the invariant line in this case has an attractive and a repulsive
segment located, respectively, above and below the depicted point (—%, %) The divergence (38)
always vanishes in limit points between attractive and repulsive segments like this one.

with § > 1 or § < 0. From the definition of us and (5), we have that (42) implies
that

H=AH? (43)
where
§d—1
A= 5(1426) (44)

It is clear that for § = 1, the stable fixed point corresponds to de Sitter solution with
a(t) = ') with constant H. (The case H = 0 corresponds to the flat Minkowski
spacetime). This is namely the well known Starobinsky’s inflationary solution. For
0 # 1, the solutions are

Hy

) == AHo(t — to)

(45)
where H(typ) = Hp, which interpretation is straightforward. For A > 0, which
corresponds to f% < d <0ord > 1, we have a future finite time big rip singularity,
while for A <0 (6§ < —4 or 0 < § < 1), the Hubble parameter H decreases as ¢!
for large t, i.e., the solution asymptotically tends to a power law expansion.
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The Starobinsky’s R? inflationary scenario is unique among the F(R) = R'*?
theories of gravity, since only for § = 1 the stable de Sitter fixed point (0,0) is
available, a result indeed known for a long time, see,?* 26 for example. We can,
however, easily prove a stronger result for generic f(R) theories. The de Sitter

solution a(t) = ef*, with constant and arbitrary H, implies u; = u4 = 0, and also

R =12H? (46)

which, on the other hand, determine that uy = 2 and usz = 1%—}{, and, hence, the
constraint (18) reads

Rf'(R) = 2f(R). (47)

Since we assume that de Sitter solution exists for arbitrary H, we have from (46)
that it should exist for any R > 0, and hence equation (47) can be seen as a ordinary
differential equation for f(R), which unique solution is f(R) = aR?, establishing in
this way a stronger result: the case R? is unique among all vacuum f(R) theories
with respect to the existence of a de Sitter solution with arbitrary H. The condi-
tion (47) was first obtained by Barrow and Ottewill in?* by using a more intricate
approach, but here we see that it appears from a very simple analysis of fixed points.

It is noted that in the case with anisotropic fluids, all isotropic fixed points are
unstable (there is no asymptotically stable isotropic solutions in the presence of
anisotropic matter). It is also mentioned that several known results as the existence
of vacuum Kasner-like solutions for —1 < § < i34’35 are found. Moreover, for
the case of exponential gravity,>” 4 f(R) = e®f, all isotropic fixed points in the
presence of an anisotropic barotropic fluid are unstable.

4. Summary

In this article, we have introduced a new set of expansion-normalized variables for
homogeneous and anisotropic Bianchi-I spacetimes in f(R) gravity in the presence
of anisotropic matter. In terms of these new dynamical variables, the full set of
Einstein’s equations boils down to a 5-dimensional phase space. As applications of
the proposed dynamical approach, we have explicitly explored the f(R) = R't?
modified theory of gravity, and shown that its vacuum dynamics is exactly solv-
able. Furthermore, in a easier and more direct way, we have re-obtained several
well known results for this particular choice of f(R) such as Bleyer and Schmidt
isotropic solutions.*! 43 We have also extended a uniqueness result for Starobisnki
inflationary scenario, namely that the case R? is unique among all vacuum f(R) the-
ories with respect to the existence of a de Sitter solution with arbitrary H, a result
obtained previously by Barrow and Ottewill by using a more intricate approach.??
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