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Based on our original work published in Ref.1, we investigate an autonomous system
analysis in terms of new expansion-normalized variables for homogeneous and anisotropic
Bianchi-I spacetimes in f(R) gravity in the presence of anisotropic matter. It is demon-
strated that with a suitable choice of the evolution parameter, the Einstein’s equations
are reduced to an autonomous 5-dimensional system of ordinary differential equations
for the new variables. Furthermore, for a large class of functions f(R), which includes
several cases commonly considered in the literature, all the fixed points are polynomial
roots, and thus they can be determined with good accuracy and classified for stability.
In addition, typically for these cases, any fixed point corresponding to isotropic solutions
in the presence of anisotropic matter will be unstable. The assumption of a perfect fluid
as source and or the vacuum cases imply some dimensional reductions and even more
simplifications. In particular, it is found that the vacuum solutions of f(R) = Rδ+1

with δ a constant are governed by an effective bi-dimensional phase space which can be
constructed analytically, leading to an exactly soluble dynamics. It is also shown that
several results already reported in the literature can be re-obtained in a more direct and
easy way by exploring our dynamical formulation.
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1. Introduction

According to recent various cosmological observations including Type Ia Super-

novae, cosmic microwave background (CMB) radiation and large scale structure, in

addition to inflation2–4 in the early universe, the current expansion of the universe

is also accelerating. This is the so-called dark energy problem. There are two rep-

resentative approaches to study the issue of dark energy. One is to introduce some

unknown matter called dark energy with the negative pressure in general relativity.
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The other is to modify gravity at large scales (for reviews of dark energy and mod-

ified gravity theories, see, e.g., Refs.5–17). As one of the popular modified gravity

theories, f(R) gravity has been proposed.18–20

In this article, based on our original reference1, we extend the so-called

expansion-normalized variables21 to write down the dynamical equations of f(R)

gravity for a homogeneous and anisotropic Bianchi-I metric in the presence of an

anisotropic fluid, as a 5-dimensional system of ordinary differential equations. We

show that some further assumptions may lead to considerable simplifications in

the equations, and for several examples we end up with analytically soluble sys-

tems. For the sake of illustration, we consider explicitly the case of f(R) = R1+δ.

We demonstrate that the formulation of22, 23 is recovered in the isotropic matter

limit. Moreover, in a simpler and more direct way, we re-derive some uniqueness

and stability properties of the Starobinsky’s isotropic inflationary scenario in R2

gravity,24–26 which is consistent with the Planck 2018 results.27, 28

The article is organized as follows. In section 2, we describe the dynamical equa-

tions for a Bianchi-I cosmology in f(R) gravity in the presence of an anisotropic

fluid. We discuss the isotropic fluid limit and introduce the new expansion-

normalized variables for the system. In Section 3, we present cosmological appli-

cations. Finally, we summarize our results in Section 4.

2. Bianchi-I cosmology in f(R) gravity with anisotropic fluid

The action describing f(R) gravity is expressed as

S=
1

2κ

∫
d4x
√−gf(R) + SM , (1)

where κ = 8πG, c = � = 1, and SM stands for the usual matter contributions to

the totalaction.

We consider the homogeneous and anisotropic Bianchi-I metric, which can be

conveniently cast for our purposes in the following form29–31

ds2 = −dt2 + a2(t)

3∑
i=1

e2βi(t)(dxi)2, (2)

where a(t) is the average scale factor and the three functions βi, which characterize

the anisotropies, are such that β1 + β2 + β3 = 0. It is more convenient to employ

the variables

β± = β1 ± β2. (3)

The total amount of anisotropy in the metric (2) is given by the quantity

σ2 = β̇2
1 + β̇2

2 + β̇2
3 =

3

2
β̇2
+ +

1

2
β̇2
−. (4)

For σ = 0, one can show that the spatial coordinates xi can be suitably rescaled to

recast the Bianchi-I metric in the standard Friedmann-Lemaitre-Robertson-Walker
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(FLRW) form. The Ricci scalar for the metric (2) reads

R = 6Ḣ + 12H2 + σ2, (5)

where the average Hubble parameter H is given by the standard expression

H =
ȧ

a
. (6)

We assume the presence of an anisotropic barotropic fluid with energy momentum

tensor parametrized as32

T νμ = diag (−ρ, p1, p2, p3) = diag (−ρ, ω1ρ, ω2ρ, ω3ρ) , (7)

and we define the anisotropic equation of state as

pi = (ω + μi)ρ, (8)

with i = 1, 2, 3, where ω is the average barotropic parameter and ωi = ω + μi, with

μ1 + μ2 + μ3 = 0 by construction. We parameterize our fluid by the constants ω

and μ± = μ1 ± μ2.31

The dynamics of the Bianchi-I metric (2) under f(R) gravity action (1), in the

presence of and anisotropic barotropic fluid with energy-momentum tensor (7), can

be described by the following set of equations,31

3H2 =
κ

f ′

(
ρ+

Rf ′ − f
2κ

− 3Hf ′′Ṙ
κ

)
+
σ2

2
, (9)

2Ḣ + 3H2 = − κ
f ′

⎛
⎝ωρ+

Ṙ2f ′′′ +
(

2HṘ+ R̈
)
f ′′

κ

−Rf
′ − f
2κ

)
− σ2

2
, (10)

β̈± +

(
3H +

Ṙf ′′

f ′

)
β̇± =

κρ

F
μ±, (11)

ρ̇+
(

3H (1 + ω) + δ · β̇
)
ρ = 0, (12)

where i = 1, 2, 3, and

δ · β̇ = μ1β̇1 + μ2β̇2 + μ3β̇3 =
3

2
μ+β̇+ +

1

2
μ−β̇−. (13)

Notice that in the presence of a perfect fluid, we have μ+ = μ− = 0 and the two

equations (11) for β+ and β− can be substituted with

σ̇ +

(
3H +

Ṙf ′′

f ′

)
σ = 0. (14)

In this case, there is no anisotropy in the matter sector and the single variable

σ is sufficient to describe the total amount of metric anisotropy in the system.
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In general, we have four functions of time H(t), ρ(t), β±(t) governing the dynam-

ics. The existence of the constraint equation (9) implies that only three of them

are indeed independent. Without loss of generality, we can choose them to be, for

instance, H(t) and β±(t). Given some specific form of the function f(R), they can

be determined by solving equations (10) and (11). The fluid energy density ρ(t) can

then be found using the energy constraint (9).

The traditional expansion-normalized variables were initially introduced for a

better dynamical analysis of the standard FLRW model, see, e.g., Ref.21. Here, we

expand the variables already introduced in22, 23 to include the case of the anisotropic

barotropic fluid (7). In this regard, let us introduce the monotonically increasing

variable

N = ε lna, (15)

known as the logarithmic time, where ε is defined to be +1 for expanding universe

and −1 for a contracting one. Without loss of generality, we choose the scale factor

at t = 0 to be a0 = 1. Therefore, as time progresses in the forward (positive)

direction, the logarithmic time N becomes positive and goes towards +∞ in case

of both expanding and contracting universes. One can notice that

Ṅ = εH, (16)

so that Ṅ is effectively always positive, justifying the use of N as the dimensionless

evolution variable for both expanding and contracting universes. On the other hand,

around a bounce or a turnaround point, this argument is not valid though and the

expanding and contracting branches must be considered separately.

The expansion-normalized dynamical variables suitable for the equations (9) -

(12) are the following dimensionless combinations

u1 =
Ṙf ′′

f ′H
, u2 =

R

6H2
, u3 =

f

6f ′H2
, (17)

u+4 =
˙β+

2

4H2
, u−4 =

˙β−
2

12H2
, u5 =

κρ

3f ′H2
.

in terms of which the energy constraint (9) reads simply

g = 1 + u1 − u2 + u3 − u+4 − u−4 − u5 = 0, (18)

from where we have that one of the expansion-normalized variables can always be

eliminated. Unless otherwise stated, we always choose the matter content variable

u5 to be expressed in terms of the others dynamical variables. The variable

u4 = u+4 + u−4 =
σ2

6H2
(19)

is also relevant for our purposes. It is important to stress that the variables u+4 and

u−4 are both non-negative by construction. Now, let us introduce the quantity

γ(R) =
f ′

Rf ′′
, (20)
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which contains the information about the form of f(R). Knowing the form of f(R),

γ can be determined in terms of the dynamical variables u2, u3 by inverting the

relation

u2
u3

=
Rf ′

f
. (21)

We return to the question of the invertibility of (21) in the last section. The 5-

dimensional system of autonomous first order differential equations fully equivalent

to (10) - (12) is given by

ε
du1
dN

= 1 + u2 − 3u3 − u4 − 3ωu5

−u1 (u1 + u2 − u4) , (22)

ε
du2
dN

= u1u2γ

(
u2
u3

)
− 2u2 (u2 − u4 − 2) , (23)

ε
du3
dN

= u1u2γ

(
u2
u3

)
− u3 (u1 + 2u2 − 2u4 − 4) , (24)

ε
du+4
dN

= −2u+4 (1 + u1 + u2 − u4) + 3μ+

√
u+4 u5, (25)

ε
du−4
dN

= −2u−4 (1 + u1 + u2 − u4) + μ−
√

3u−4 u5, (26)

ε
du5
dN

= −u5
(

3ω − 1 + u1 + 2u2 − 2u4 (27)

+3μ+

√
u+4 + μ−

√
3u−4

)
.

Notice that differentiating (18) with respect to N and using the equations (22)-(27),

we have

ε
dg

dN
= −(u1 + 2u2 − 2u+4 − 2u−4 − 1)g, (28)

showing that the constraint g = 0 is indeed conserved along the solutions of our

equations and the system (22) - (27) is effectively 5-dimensional.

The case of f(R) = R1+δ, with δ �= 0, is particularly important in our next

examples. For this choice of f(R), one has simply

γ = δ−1, (29)

and the equations (23) and (24) can be considerably simplified. In this case, the

right-handed side of the equations (22) - (27) involves only second degree polyno-

mials in u1, u2, and u3, and forth degree in
√
u−4 and

√
u+4 . Hence, the task of

finding the fixed points of our system reduce to finding polynomial roots, which

may be performed in general with good accuracy. Notice that there are other rel-

evant choices for f(R) leading to polynomial fixed points. Besides of the trivial
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extension f(R) = αR1+δ + Λ, with α and Λ constants, for which (29) also holds.

For f(R) = Ra + αRb, with a �= b constants, we have

γ =
u2

(b + a− 1)u2 − abu3 . (30)

Notice that, as in the exponential case, the function γ does not depend on the

parameter α. This, of course, does not mean that the dynamics in insensitive to the

value of α, since the expansion-normalized variables (17) depend explicitly on α.

The case a = 1 and b = 2 is the original Starobinsky inflationary scenario,4 and for

the vacuum case our approach reduces to that one considered recently in.33

3. Applications to cosmology

In the following, we consider the expanding universes (ε = 1). We investigate the

case f(R) = R1+δ, whose main motivations from a cosmological perspective can be

found in,22, 23, 34, 35 for instance. The case with δ = 0 is obviously pure GR, for which

the corresponding system is lower-dimensional, and our approach simply does not

apply. The case logarithmic case f(R) = lnR must be treated separately. Hence, we

start considering δ �= 0 and δ �= −1. Since we will deal with vacuum solutions, we

set u5 = 0 in the equations (18) and (22) - (27). In this case, notice that (25) and

(26) can be combined in only one equation for u4. We can use (18) to write u3 as

u3 = u2 − u1 + u4 − 1, (31)

and we are left with only three dynamical variables u1, u2, and u4. Now, there is an

interesting point to notice36 about the specific choice f(R) = R1+δ, with δ �= −1,

namely that

u2
u3

=
Rf ′

f
= 1 + δ, (32)

which combined with the constraint (31) implies

δu2 = (1 + δ)(u1 − u4 + 1), (33)

and we are left in fact with a two-dimensional phase space spanned by the variables

u1 and u4. The corresponding dynamical equations in this case are

du1
dN

= φ1(u1, u4) (34)

= −δ−1(1 + 2δ)(u1 − u∗1)(u1 − u4 + 1),

du4
dN

= φ4(u1, u4) (35)

= −2δ−1(1 + 2δ)u4 (u1 − u4 + 1),

where

u∗1 =
2(δ − 1)

1 + 2δ
. (36)
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The phase space (u1, u4) associated with the system (34) - (35) has some interesting

features. For instance, it has an one-dimensional invariant subspace (a continuous

line of fixed points) corresponding to the straight line u1−u4 = −1. However, from

(31) we have that u3 = u2 on this line, which implies from (17) and (32) that R = 0

on u1 − u4 = −1. Besides of this invariant straight line, we find the isolated fixed

(u∗1, 0), for δ �= − 1
2 . The case δ = − 1

2 is also discussed separately.

The stability of the isolated fixed point can be inferred from the linearization of

(34) - (35). The Jacobian matrix of (34) - (35) at the point (u∗1, 0) reads(
∂(φ1, φ4)

∂(u1, u4)

)
= −δ−1(4δ − 1)

(
1 0

0 2

)
, (37)

from where we see that such fixed point is stable for δ > 1
4 or for δ < 0. For the

stability of the invariant straight line, we can consider the divergence of the vector

field (φ1, φ2). One has

∇ · φ =
∂φ1
∂u1

+
∂φ4
∂u4

= δ−1((1 + 2δ)u4 + 4δ − 1) (38)

on the invariant line. Recalling that u4 ≥ 0, we find that the invariant line is entirely

repulsive (positive divergence) for δ > 1
4 or for δ ≤ − 1

2 . For − 1
2 < δ ≤ 1

4 , we can

obtain some attractive segments, depending on the value of u4. We return to the

physical interpretation of this R = 0 invariant line in a following sub-section. The

case δ = − 1
2 is particularly curious, since the isolated fixed point is absent and we

get a second one-dimensional invariant line, namely u1 = 0, which is also entirely

repulsive. On the other hand, the case f(R) = lnR cannot be incorporated in the

present analysis since (32) is not valid for δ → −1, and in fact we have a three-

dimensional phase space for such case.

The solutions of (34) and (35) are curves on the plane (u1, u4), and it turns out

that such curves can be determined analytically. Notice that the solutions are such

that

u′4
u′1

=
2u4

u1 − u∗1
, (39)

which can be integrated as

u4 = c (u1 − u∗1)
2
, (40)

with arbitrary c. Thus, the phase space trajectories of all solutions of (34) and (35)

are simply parabolas centered in the isolated fixed point, irrespective of the value

of δ, provided the fixed point exists. Since we know the trajectories graphs, one can

infer the dynamics direction and, consequently, the dynamical properties of the fixed

point and the invariant line, directly form the equations (34) and (35) as follows.

Consider the phase space function L = u1 − u4 + 1. It is clear that L = 0 is the

invariant line. On the other hand, L = c constant is a parallel line located below the

invariant line if c > 0, or above if c < 0. The invariant line is the boundary between

two semiplanes with reverse dynamics direction, and the dynamical properties of the
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1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4
u1

0.0

0.2

0.4

0.6

0.8

1.0
u 4

Fig. 1. Phase space for the system (34) - (35), for δ = 1. The fixed point (0, 0) is located in
the semiplane below the critical line. The solutions are restricted to parabolas centered in the
attractive fixed point. The region below the invariant line corresponds to the attraction basin of
the fixed point. Any solution starting there tends to the fixed point asymptotically. All solutions
starting in the region above the critical line will diverge to infinity. Notice that the critical line is
entirely repulsive. Such phase space is rather generic, it is essentially the same for all theories of
the type f(R) = R1+δ such that the fixed point is attractive and is located below the invariant

line.

fixed point and of the invariant line depend on the relative position between then,

see Figs 1 and 2, which correspond, respectively, to the cases δ = 1 and δ = 1
10 .

The former is the important case of the Starobinsky’s inflationary scenario with

f(R) = R2.

We note that the solutions are constrained to the parabolas (40), the exact

solutions of (34) and (35) boils down to a simple quadrature of a rational function

dū1
cū31 − ū21 − (u∗1 + 1)ū1

= −δ−1(1 + 2δ)dN, (41)

with u1 = ū1 + u∗1. For the case δ = − 1
2 , u4 is a constant and (34) also reduces to

a simple rational quadrature. It has been shown that the vacuum solutions for the

f(R) = R1+δ case, for δ �= −1, are exactly soluble.

Since the stable fixed points of a cosmological model correspond to the cosmo-

logical histories which dominate the asymptotic evolution of the system, it worth

to look more closely on them. By using (31) and (32), we see that the isolated fixed

points are given by

u3 =
4δ − 1

δ(1 + 2δ)
, (42)
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1.0 1.8 1.6 1.4 4.2 4.0 4.8 4.6 4.4
u1

4.4

4.6

4.8

4.0

4.2

1.4

u 8

Fig. 2. Phase space for the system (34) - (35), for δ = 1
10

. The fixed point
(− 3

2
, 0
)

is now located
in the semiplane above the critical line. The solutions are also restricted to parabolas centered in
the attractive fixed point. However, the attraction basin of the fixed point is now in the region
above the critical line. Notice that the invariant line in this case has an attractive and a repulsive
segment located, respectively, above and below the depicted point

(− 1
2
, 1
2

)
. The divergence (38)

always vanishes in limit points between attractive and repulsive segments like this one.

with δ > 1
4 or δ < 0. From the definition of u3 and (5), we have that (42) implies

that

Ḣ = ΔH2, (43)

where

Δ =
δ − 1

δ(1 + 2δ)
. (44)

It is clear that for δ = 1, the stable fixed point corresponds to de Sitter solution with

a(t) = eHt, with constant H . (The case H = 0 corresponds to the flat Minkowski

spacetime). This is namely the well known Starobinsky’s inflationary solution. For

δ �= 1, the solutions are

H(t) =
H0

1−ΔH0(t− t0)
, (45)

where H(t0) = H0, which interpretation is straightforward. For Δ > 0, which

corresponds to − 1
2 < δ < 0 or δ > 1, we have a future finite time big rip singularity,

while for Δ < 0 (δ < − 1
2 or 0 < δ < 1), the Hubble parameter H decreases as t−1

for large t, i.e., the solution asymptotically tends to a power law expansion.
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The Starobinsky’s R2 inflationary scenario is unique among the F (R) = R1+δ

theories of gravity, since only for δ = 1 the stable de Sitter fixed point (0, 0) is

available, a result indeed known for a long time, see,24–26 for example. We can,

however, easily prove a stronger result for generic f(R) theories. The de Sitter

solution a(t) = eHt, with constant and arbitrary H , implies u1 = u4 = 0, and also

R = 12H2, (46)

which, on the other hand, determine that u2 = 2 and u3 = 2f
Rf ′ and, hence, the

constraint (18) reads

Rf ′(R) = 2f(R). (47)

Since we assume that de Sitter solution exists for arbitrary H , we have from (46)

that it should exist for any R > 0, and hence equation (47) can be seen as a ordinary

differential equation for f(R), which unique solution is f(R) = αR2, establishing in

this way a stronger result: the case R2 is unique among all vacuum f(R) theories

with respect to the existence of a de Sitter solution with arbitrary H . The condi-

tion (47) was first obtained by Barrow and Ottewill in24 by using a more intricate

approach, but here we see that it appears from a very simple analysis of fixed points.

It is noted that in the case with anisotropic fluids, all isotropic fixed points are

unstable (there is no asymptotically stable isotropic solutions in the presence of

anisotropic matter). It is also mentioned that several known results as the existence

of vacuum Kasner-like solutions for − 1
2 ≤ δ ≤ 1

4
34, 35 are found. Moreover, for

the case of exponential gravity,37–40 f(R) = eαR, all isotropic fixed points in the

presence of an anisotropic barotropic fluid are unstable.

4. Summary

In this article, we have introduced a new set of expansion-normalized variables for

homogeneous and anisotropic Bianchi-I spacetimes in f(R) gravity in the presence

of anisotropic matter. In terms of these new dynamical variables, the full set of

Einstein’s equations boils down to a 5-dimensional phase space. As applications of

the proposed dynamical approach, we have explicitly explored the f(R) = R1+δ

modified theory of gravity, and shown that its vacuum dynamics is exactly solv-

able. Furthermore, in a easier and more direct way, we have re-obtained several

well known results for this particular choice of f(R) such as Bleyer and Schmidt

isotropic solutions.41–43 We have also extended a uniqueness result for Starobisnki

inflationary scenario, namely that the case R2 is unique among all vacuum f(R) the-

ories with respect to the existence of a de Sitter solution with arbitrary H , a result

obtained previously by Barrow and Ottewill by using a more intricate approach.24
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