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Abstract: The possibility of using spin connection components as basic quantization variables of a

conformal version of general relativity is studied. The considered model contains gravitational degrees

of freedom and a scalar dilaton field. The standard tetrad formalism is applied. Properties of spin

connections in this model are analyzed. Secondary quantization of the chosen variables is performed.

The gravitational part of the model action turns out to be quadratic with respect to the spin connections.

So at the quantum level, the model looks trivial, i.e., without quantum self-interactions. Meanwhile the

correspondence to general relativity is preserved at the classical level.
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1. Introduction

It is widely known that in the quantization of general relativity (GR), we face the
problem of non-renormalizability of the theory if we choose the space-time metric as
the basic variables. Non-renormalizability reveals itself starting from the 1-loop order in
perturbation theory. Therefore, with this approach, it is possible to construct a quantum
theory of gravity only in the one-loop approximation. To solve this problem, various
approaches have been proposed. The most popular of these are the effective field theory
approach (extending the Lagrangian of general relativity by terms quadratic in curvature
and additional scalar fields), string theory, loop quantum gravity, and the method of
functional integration.

The approach, which is called effective field theory, is based on the idea that the
Lagrangian of general relativity can be considered as a low-energy approximation of a
more general theory, which, as a rule, contains terms quadratic in curvature, such as the
curvature square and the Gauss–Bonnet term, and often some interaction with a scalar field.
Such theories can solve the problem of renormalization, but as a result, ghost and other
instabilities can arise and, accordingly, there emerge problems with unitarity. In addition,
this approach by default does not address the most important issues of the evolution of
topology and the causal structure of space-time. The global hyperbolicity is postulated by
default from the very beginning, and the theory of gravity is then treated in the standard
way, by analogy with non-gravitational field theories.

In this work, we study the conformal modification of the general theory of relativity
(conformal GR) and analyze the possibility of its quantization in variables that were
proposed to be used in [1,2]. The main idea of the conformal modification of GR is that
instead of the invariance with respect to the group of general covariant transformations
GL(4), the invariance with respect to a broader group of transformations is considered [3].
In this case, the action of the original GR undergoes a conformal (Weyl) transformation,
as a result of which there appear factors which depend on the dilaton field D. In particular,
for the interval, one obtains

gµνdxµ ⊗ dxν = e−2D g̃µν dχµ ⊗ dχν, (1)
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where g̃µν is the conformal metric. It is assumed that the actually observable quantities are
not the standard quantities of GR, but quantities that are conformally equivalent to them.

In the standard GR, Einstein’s equations are obtained as the result of variations of the
Einstein–Hilbert action

SHilbert =
∫

d4x
√
−g

[
M2

P

16π
(R − 2Λ) + Lmatter(gµν)

]
. (2)

When considering conformal general relativity (CGR), the Einstein–Hilbert action is
transformed into the action [4,5]

SCGR =
∫

d4χ
√
−g̃

[
M̃2

P

16π

(
R̃ − 2Λ̃

)
+

3M̃2
P

8π

(
g̃µν∇µD∇νD

)
+ Lmatter(g̃µν)

]
. (3)

Here, Λ is the cosmological constant, Λ̃ = e−2D
Λ is the conformal cosmological

constant, MP is the Planck mass, and M̃P = MPe−D is the conformal Planck mass. Note
that action (3) is not equivalent to the Einstein–Hilbert action due to the fact that it is
invariant under conformal transformations, while the Einstein–Hilbert action is not. Thus,
conformal general relativity is not equivalent to standard GR, i.e., it is actually a modified
theory of gravity, as discussed above. Therefore, we will call action (3) one of conformal
GR and denote it SCGR. It is important to note that this model is not a special case of the
well-known scalar-tensor Brans–Dicke gravity, since it corresponds to the choice of the
Dicke constant equal to −3/2, which leads to a singularity [4].

The phenomenological properties of the conformal modification of GR were con-
sidered in [6–8], in which much attention was paid to the study of data from type Ia
supernovae. Based on the results of calculations and subsequent analysis, the authors
come to the conclusion that the main contribution to cosmological density comes from
matter having a rigid, rather than a vacuum (dark energy), equation of state. This makes it
possible to explain the observed accelerated expansion of the universe without using the
cosmological constant.

Let us note in advance that below we use four types of indices as follows: four-
dimensional coordinate indices without brackets will be denoted by Greek letters and run
through the values 0 . . . 3; three-dimensional coordinate indices without brackets from the
middle of the Latin alphabet i, j . . . denote three-dimensional spatial indices and take values
1, 2, 3; tetrad indices are enclosed in parentheses. Tetrad indices, like coordinate ones, can
take the values 0 . . . 3 (four-dimensional space-time) or 1, 2, 3 (three-dimensional spatial).

The article is structured as follows: First, the tetrad formalism and spin connections
will be considered as applied to conformal general relativity, and it will be shown that the
formalism in question is quite general and applicable to many modified theories of gravity.
Then, the dilaton degree of freedom will be extracted from the standard GR metric. Next,
the metric of a conformal, plane gravitational wave will be considered and the possibility
of its quantization in a standard way will be analyzed.

2. Spin Connections

The method that we develop in this work relies heavily on the tetrad formalism and
the concept of spin connectivity. In particular, the variables ωR

(a)(b),(c), which we propose

below to consider as the basic variables of quantum gravity, are directly related to the spin
connection. Therefore, the current section is devoted to a discussion of the concepts of
tetrad formalism and spin connectivity as applied to conformal general relativity.

In the classical general relativity, space-time (M, g) is described using a model of a
smooth four-dimensional Hausdorff manifold M endowed with a semi-Riemannian metric
gµν. Affine connection, which defines the rules for parallel transfer of tensors from one
tangent space to another, is considered symmetric and consistent with the metric. In this
situation, the affine connection is completely described by a metric and it is represented in
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components by Christoffel symbols Γ
α
βγ. Unfortunately, covariant differentiation of spinor

fields in the standard coordinate representation turns out to be a poorly defined operation.
The solution to this problem is carried out by passing to the orthonormal frame [9]. General
relativity can be formulated in terms of tetrads; the resulting method is called the tetrad
formalism [10,11] or the moving frame method. Using this method, one can introduce the
concept of a spin connection defined on a frame bundle and correctly define the covariant
differentiation procedure for spinor fields. A moving frame (tetrad) given on a manifold if
a basis of vectors e(a) is chosen in the tangent space to each point of the manifold [12].

Tetrad and co-tetrad can be expanded in a coordinate basis in the tangent and cotangent
spaces, respectively. The expansion of tetrad vectors with respect to a basis in the tangent
space has the form

e(a) = eα
(a)∂α, (4)

The decomposition of a co-tetrad in the basis of 1-forms (covectors) from the cotangent
space has the form

e(a) = eα
(a)dxα. (5)

It is assumed that the matrices eα
(a) and eα

(a) are non-degenerate and are sufficiently
smooth functions of points of the manifold. The following conditions on co-tetrads are imposed:

eα
(a)eα

(b) = δ
(b)
(a)

, (6)

eα
(a)eβ

(a) = δα
β. (7)

Let us also determine quantities eν(a) using the formula

eν(a) = η(a)(d)eν
(d), (8)

where η(a)(d) is the Minkowski metric. Since η(a)(d) are constants and do not depend on the
point of the manifold, then η(a)(d) can be freely brought in and out of the derivative.

Unlike coordinate basis vector fields, tetrad vector fields, generally speaking, do not
commute with each other. This is due, in particular, to the fact that a pair of arbitrary vector
fields on a manifold, generally speaking, do not commute with each other. Geometrically,
this means that a small parallelogram constructed using two arbitrarily chosen vector
fields will, in the general case, be open. The amount of “openness” in the leading order is

precisely expressed by the commutator of vector fields
[
e(a), e(b)

]
. Let us decompose the

commutator of a pair of tetrad vector fields into tetrad vectors

[
e(a), e(b)

]
= c(a)(b),

(c)e(c). (9)

The coefficients c(a)(b),
(c) are called nonholonomic coefficients. An explicit expression for

the nonholomony coefficients in terms of the tetrad components has the following form:

c(a)(b),
(c) =

(
eα

(a)∂αeβ
(b) − eα

(b)∂αeβ
(a)

)
eβ

(c). (10)

The connection on the frame bundle is related to the affine connection, which is given
on the tangent bundle by the formula

∇αeβ
(a) = ∂αeβ

(a) − Γαβ
γeγ

(a) + eβ
(b)ωα(b),

(a) = 0. (11)
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Here, ωα(a),
(b) are so-called spin connection components. We are interested in the case

when the connection is metric. That is, when the torsion tensor and the nonmetricity tensor
vanish: T(a)(b),(c) = 0 and Q(a),(b)(c) = 0. Note that the torsion tensor is skew-symmetric in
the first two indices, and the nonmetricity tensor is symmetric in the last two indices. In this
regard, these indices are separated by commas. In this case, the components of the spin
connection can be expressed through the nonholonomic coefficients by the formula [12]

ω(a),(b)(c) =
1

2

(
c(a)(b),(c) − c(b)(c),(a) + c(c)(a),(b)

)
, (12)

where the notation c(a)(b),(c) := η(c)(d)c(a)(b),
(d) is used.

The components of the curvature tensor in a nonholonomic basis will have the form

R(a)(b),(c)
(d) = ∂(a)ω(b)(c),

(d) − ∂(b)ω(a)(c),
(d) − ω(a)(c),

(e)ω(b)(e),
(d)

+ ω(b)(c),
(e)ω(a)(e),

(d) − c(a)(b),
(e)ω(e)(c),

(d),
(13)

where ω(a)(b),
(c) := eα

(a)ωα(b),
(c), ∂(a) := eα

(a)∂α, or if the two indices of the two-dimensional
direction in which the curvature is defined remain coordinate

Rµν,(c)
(d) = ∂µων(c),

(d) − ∂νωµ(c),
(d) − ωµ(c),

(e)ων(e),
(d) + ων(c),

(e)ωµ(e),
(e). (14)

In paper [1], the introduction of variables ωR
(a)(b),(c) was discussed and it was argued

that they can only be introduced using a nonlinear representation of the symmetry group,
but not within the framework of the classical general relativity. Note that such statements
should be treated with caution. Now, we will show that, in fact, it is possible to distinguish
ωR
(a)(b),(c) and ωL

(a)(b),(c) also in the classical GR. And their introduction does not require

either conformal transformations with the release of the dilaton or the use of a nonlinear
symmetry realization. It is enough to consider the bundle of frames with the structure
group SO(1, 3) and use the property that the torsion and nonmetricity tensors are equal to
zero. In fact, we omit the index in Formula (10) and substitute into Equation (12); taking
into account the indices, we obtain

c(a)(b),(c) =
(

eα
(a)∂αeβ

(b) − eα
(b)∂αeβ

(a)

)
eβ(c), (15)

c(b)(c),(a) =
(

eα
(b)∂αeβ

(c) − eα
(c)∂αeβ

(b)

)
eβ(a), (16)

c(c)(a),(b) =
(

eα
(c)∂αeβ

(a) − eα
(a)∂αeβ

(c)

)
eβ(b), (17)

and the expression for the spin connection components

ω(a),(b)(c) =
1

2

(
eα

(a)∂αeβ
(b) − eα

(b)∂αeβ
(a)

)
eβ(c) −

1

2

(
eα

(b)∂αeβ
(c) − eα

(c)∂αeβ
(b)

)
eβ(a)

+
1

2

(
eα

(c)∂αeβ
(a) − eα

(a)∂αeβ
c

)
eβ(b),

(18)

By rearranging the terms in the expression (18), we can distinguish ωL and ωR in it

ω(a),(b)(c) =
1

2
eα

(a)

(
eβ

(c)∂αeβ(b) − eβ
(b)∂αeβ(c)

)
+

1

2
eα

(b)

(
eβ

(a)∂αeβ(c) + eβ
(c)∂αeβ(a)

)

− 1

2
eα

(c)

(
eβ

(b)∂αeβ(a) + eβ
(a)∂αeβ(b)

)
:= ωL

(c)(b),(a) + ωR
(a)(c),(b) − ωR

(b)(a),(c).

(19)
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To derive the Formula, (19) was also used eβ(c)∂αeβ
(b) = −eβ

(b)∂αeβ(c), which follows

from the fact that η(c)(b) = eβ(c)e
β
(b). The Formula (19) differs in sign from those presented

in [1,2], but this does not in any way affect the results presented below.

ωL
(c)(b),(a) =

1

2
eα

(a)

(
eβ

(c)∂αeβ(b) − eβ
(b)∂αeβ(c)

)

=
1

2

(
eβ

(c)(e
α
(a)∂αeβ(b))− eβ

(b)(e
α
(a)∂αeβ(c)

)
,

(20)

ωR
(a)(c),(b) =

1

2
eα

(b)

(
eβ

(a)∂αeβ(c) + eβ
(c)∂αeβ(a)

)

=
1

2

(
eβ

(a)(e
α
(b)∂αeβ(c)) + eβ

(c)(e
α
(b)∂αeβ(a))

)
,

(21)

ωR
(b)(a),(c) =

1

2
eα

(c)

(
eβ

(b)∂αeβ(a) + eβ
(a)∂αeβ(b)

)

=
1

2

(
eβ

(b)(e
α
(c)∂αeβ(a)) + eβ

(a)(e
α
(c)dx(c)∂αeβ(b))

)
,

(22)

In [13], up to the index notation, ωL
(a)(c),(α) and ωR

(a)(c),(α) are expressed as

ωL
(a)(c),αdxα =

1

2

(
eβ

(c)deβ(b) − eβ
(b)deβ(c)

)
, (23)

ωR
(a)(c),αdxα =

1

2

(
eβ

(c)deβ(b) + eβ
(b)deβ(c)

)
. (24)

Note that in deriving these formulas, we never used either conformal symmetry or
the nonlinear representation of the extended symmetry group [3]. However, the introduc-
tion of ωR

(a)(b),(c) and ωL
(a)(b),(c) by means of the nonlinear symmetry group, as described

in [1–3], still looks more natural from a physical point of view. This happens through the
establishment of a connection ωR

(a)(b),(c), ωL
(a)(b),(c) with Goldstone-type fields. For more

information about this relationship, see the review article [14].
Note further that when ωR

(b)(a),(c) and ωL
(a)(b),(c) are mentioned in the text, we omit the

indices where this does not lead to loss of meaning and denote them simply as ωR and
ωL, respectively.

It should be noted here that in the general case, the components of the spin connection
are expressed through the nonholomonicity coefficients, the metric tensor, the torsion
tensor, and the nonmetricity tensor. A spin connection on a tetrad bundle is generally
associated with the group GL(4) corresponding to the tetrad rotations. In the general
theory of relativity, in the case of a coordinate description, an affine connection is used,
which is considered symmetric (zero torsion tensor) and consistent with the metric (zero
nonmetricity tensor). When reformulating GR in terms of the tetrad formalism, instead
of the affine connection, the spin connection is used, which is considered metric (both
nonmetric and torsion tensors are zero) to be consistent with the standard coordinate
formulation of GR. The components of the metric spin connection will be expressed only
in terms of nonholonomic coefficients. In this case, the reduction of the group GL(4) to
the group SO(1, 3) follows immediately from the equality of the nonmetricity tensor to
zero. This result is essentially a well-known fact (see, for example, monograph [12]). Here,
we note that, just as in the case of the tetrad formulation of standard general relativity, we
consider the metric spin connection. That is, in the tetrad formulation of conformal GR,
the same spin connection is used as in the tetrad formulation of standard GR. It follows
from this that considering the spin connection with respect to the SO(1, 3) group does not
change the essence of the theory, at least not at the classical level.
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It is also worth noting here that quantization of the GL(4) theory should be different
from quantization of the SO(1, 3) theory. Our work is devoted to the consideration of
a special set of variables for the quantization of conformal general relativity associated
with spin connection and tetrad formalism. That is, we are studying one of many possible
approaches. The question of what differences should exist when quantizing a theory with
a symmetry group other than GL(4) is an interesting one. A meaningful study of such a
difference is by no means trivial and is the topic of a separate work. It is known that the
use of tetrads and spin connections helps to construct a quantum theory of spinor fields in
a curved space-time. In this regard, in this work, we consider that it is worth considering a
similar approach to gravity.

Let us show that the derivatives of the metric tensor cannot depend on the components
of ωL and, thus, ωL cannot play the role of dynamic variables. The coordinate components
of the metric tensor are related to the coordinate components of the tetrads by the formula

gµν = eµ
(a)eν(a). (25)

dgµν = dxα∂αgµν = d
(

eµ
(a)eν(a)

)
= d

(
eµ

(a)
)

eν(a) + eµ
(a)d

(
eν(a)

)
, (26)

Using the Formulas (23) and (24), we have

deµ
(a) = eµ

(b)
(

ωR
(b)

(a)
,(dxα) + ωL

(b)
(a)

,(dxα)
)

, (27)

deν(a) = eν
(b)
(

ωR
(b)(a),(dxα) + ωL

(b)(a),(dxα)
)

, (28)

Substituting (27) and (28) into (26), we obtain the following expression for the total
differential of the metric tensor:

dgµν = dxα∂αgµν = d
(

eµ
(a)eν(a)

)
= d

(
eµ

(a)
)

eν(a) + (eµ
(a)d

(
eν(a)

)

= eν(a)eµ
(b)
(

ωR
(b)

(a)
,(dxα) + ωL

(b)
(a), (dxα)

)
+ eµ

(a)eν
(b)
(

ωR
(b)(a),(dxα) + ωL

(b)(a),(dxα)
)

.
(29)

Omitting the index (a) in the expression
(

ωR
(b)(a),(dxα) + ωL

(b)(a),(dxα)
)

, and at the

same time raising (a) to eν(a), we take out the common factor and obtain from (29) the
following expression:

dgµν = dxα∂αgµν = d
(

eµ
(a)eν(a)

)
= d

(
eµ

(a)
)

eν(a) + (eµ
(a)d

(
eν(a)

)

= eν(a)eµ
(b)
(

ωR
(b)

(a)
,(dxα) + ωL

(b)
(a), (dxα)

)
+ eµ

(a)eν
(b)
(

ωR
(b)(a),(dxα) + ωL

(b)(a),(dxα)
)

=
(

eµ
(b)eν

(a) + eµ
(a)eν

(b)
)(

ωR
(b)(a),(dxα) + ωL

(b)(a),(dxα)
)

=
(

eµ
(b)eν

(a) + eµ
(a)eν

(b)
)

ωR
(b)(a),(dxα).

(30)

Although in the modification of GR we are considering, where the torsion and non-
metricity tensors are equal to zero, the congruences of world lines, just like in classical
GR, can have non-zero rotation. When considering dynamic variables, we would like to
separate the gravitational properties of the theory from properties that are not directly
related to gravity and characterize the congruence of world lines (the reference system).
Therefore, the disappearance of ωL variables in the equation should be interpreted as the
separation of the properties of the reference system (congruence of world lines) associated
with rotation from the gravitational properties of the theory.

The standard expression for spin connection components in the absence of torsion
and nonmetricity is represented in terms of nonholonomic coefficients (metric connection).
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A new result of this Section is the substantiation of the possibility of separating the variables
ωR and ωL from the standard expression for the components of the spin connection, and the
possibility of writing the expression for its components in terms of the variables ωR and
ωL in the form in which it appears in earlier works [1,2]. In paper [1], it was argued that to
introduce the variables ωR and ωL, the presence of a nonlinear realization of the symmetry
group is necessary. In this paper, we show that the variables ωR and ωL can be introduced
in any theory of gravity in which the spin connection is metric.

3. ADM Formalism as Applied to Conformal General Relativity

In this section, we will discuss the application of the Arnowitt–Deser–Miesner for-
malism to conformal general relativity. Here, we will limit ourselves to considering only
globally hyperbolic space-times (M, g). From the condition of global hyperbolicity of
space-time and Geroch’s splitting theorem [15–17], it follows that (M, g) is representable
as a direct product M = R× S, where S is a spacelike Cauchy 3-surface (hypersurface).
Consequently, for a given space-time, the Arnowitt–Deser–Misner Formalism is valid,
which allows us to represent the conformal metric in the form [18]

d̃s
2
= g̃ij(dxi + Nidt)(dxj + N jdt)− (N0dt)2. (31)

As already mentioned in Section 1, the standard metric is related to the conformal
metric by the Formula (1). In tetrad representation, the metric will look like

gµνdxµ ⊗ dxν = e−2D g̃µν dχµ ⊗ dχν = e−2Dη(a)(b)e
(a) ⊗ e(b)

= e−2Dη(a)(b)(eµ
(a)dxµ)(eν

(b)dxν). (32)

The 1-forms e(a) are related to the metric in the Arnowitt–Deser–Miesner representation
through the formulas

{
e(0) = Ndx0,

e(j) = ei
(j)
[
dxi + Nidx0

]
.

(33)

Here, e0, e(j) are a set of basic co-tetrads (1-forms conjugate to tetrad vectors), e(j)i.

The quantities N and Ni are called the lapse function and the shift vector, respectively.
The lapse function can be represented as

N(χ0, χ1, χ2, χ3) = N0(χ
0)N (χ0, χ1, χ2, χ3), (34)

having identified in it a part that depends only on time (global) and a part that depends on
coordinates (local part) [19]. In (34), N0 is the global part of the lapse function, and N is
the local part of the lapse function. The volume shape then, taking into account (34), can be
written as

d4x
√
−g̃ = dχ0N0 d3χ

√
γ N , (35)

where γ is the determinant of the spatial metric. This allows us to separately highlight
integration over space in action. Action (3) will then have the form

SGravitons =
∫

dχ0N0

∫
d3χ

√
γ N M̃2

P

16π
R̃. (36)

Thus, (36) is divided into temporal and spatial parts. We also omitted the Λ term,
since its presence is not essential for our further analysis.
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4. Analysis of Variables Proposed for Gravity Quantization

The purpose of this section is to analyze the possibility of constructing a quantum
theory of gravitational waves and their interaction with matter within the framework
of conformal general relativity if we accept the variables ωR as basic variables when
quantizing gravity, as was proposed in [1,2].

Quantization of gravity in the general case is known to be an extremely difficult
problem. In this regard, following [1] in this work, we will consider the simplest special
case of a plane wave and some questions that arise when trying to quantize conformal
general relativity. We are interested in the question of quantization of gravitational waves,
so we will now focus on the purely gravitational part of the action (3), which we presented
in Section 3 as (36), explicitly separating the temporal and spatial parts.

Since in CGR, the quantities that are actually observable in experiment are those that
are obtained from standard ones using the Weyl transformations, we need to consider the
conformal metric g̃µν, which describes the gravitational wave. We will call gravitational
waves in conformal general relativity conformal gravitational waves. The conformal metric
is obtained from the standard metric using the appropriate conformal transformation (1).
Thus, in conformal GR, the main task is to find a conformal transformation that would
bring the standard metric to a conformal (actually observable) metric.

In standard general relativity, there are different metrics that can be interpreted as
metrics describing gravitational waves. The simplest of them is the nonlinear (strong) plane
wave metric, which can be represented in the form [18]

g = −dχ0 ⊗ dχ0 + dχ3 ⊗ dχ3 + eΣ

[
eσdχ1 ⊗ dχ1 + e−σdχ2 ⊗ dχ2

]
. (37)

Without loss of generality, we can set eΣ = 1 and, accordingly, Σ = 0. It is natural to
look for a solution like gravitational waves in CGR, considering metric (37) as an ansatz.
Then, taking into account the condition Σ = 0 imposed above, the metric of the conformal
g̃µν gravitational wave (37) can be written in the form

g̃ = −dχ0 ⊗ dχ0 + dχ3 ⊗ dχ3 + eσdχ1 ⊗ dχ1 + e−σdχ2 ⊗ dχ2. (38)

Below, the metric and ωR everywhere refer to conformal general relativity; therefore,
to simplify the notation, we will further omit the symbol ∼ above all conformal quantities.
We also need to impose a gauge condition. We choose the so-called Lichnerovich gauge
condition [20], which is that the determinant of the conformal three-dimensional metric is
γ = 1. The action for gravity (36) can be written as

SGravitons =
∫

dχ0 d3χ

{
1

2



(

∂σ

∂χ0

)2

−
(

∂σ

∂χ3

)2



− e−Σ

(
e−σ ∂2

Σ

∂(χ1)2
+ eσ ∂2

Σ

∂(χ2)2

)}
. (39)

We can represent (33) in the equivalent form





e0
(0) = N,

ei
(0) = 0,

e0
(a) = ei

(a)Ni.

(40)

e0
(0) = 1, e3

(3) = 1, e1
(1) = e

1
2 σ, e2

(2) = e−
1
2 σ, (41)

e0(0) = −1, e3(3) = 1, e1(1) = e−
1
2 σ, e2(2) = e

1
2 σ. (42)
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The expression eσ(a)deσ
(b) is symmetric in the indices µν, so we can write ωR as

ωR
(a)(b),αdxα = eσ(a)dxα

∂eσ
(b)

∂xα
=

1

2
dxα ∂σ

∂xα

(
δ(a)(1)δ(b)(1) − δ(a)(2)δ(b)(2)

)
. (43)

Hence, further, as shown in [1,2], the following representation is valid for variables

ωR
(a)(b),(c) =

∫ d3k

(2π)3

1√
2ωk

ik(c)

[
ϵR
(a)(b)(k)g+k eik·x + ϵR

(a)(b)(−k)g−k e−ik·x
]
, (44)

where g±k pretend to be the operators of creation and annihilation of conformal gravitons.
Let us now analyze how gravity interacts with itself and with matter if we accept

the variables ωR as the fundamental variables of quantum gravity, as proposed in [1,2].
Expression (44) was proposed to be considered as a conformal free plane gravitational
wave. First of all, we note that the expression (44) contains momentum k(c). From this alone,
we can conclude that this expansion does not describe an ordinary plane wave. Let us first
show that in the action (3), there are no terms from which a propagator of a conformal
graviton could be obtained. To do this, we will use the expression for the curvature tensor
in the nonholonomic basis (13). Making the contraction in the expression (13) using the
indices (b), (d), we obtain the Ricci tensor

R(a)(c) = R(a)(b),(c)
(b) = ∂(a)ω(b)(c),

(b) − ∂(b)ω(a)(c),
(b) − ω(a)(c),

(e)ω(b)(e),
(b)

+ ω(b)(c),
(e)ω(a)(e),

(b) − c(a)(b),
(e)ω(e)(c),

(b).
(45)

Now, raising one of the lower indices using the conformal metric η(a)(c) and perform-
ing convolution, we obtain the following expression for the scalar curvature expressed in
terms of the components of the spin connection ω(b)(c)

(d):

R = η(a)(c)R(a)(c) = η(a)(c)R(a)(b),(c)
(b) = η(a)(c)∂(a)ω(b)(c),

(b) − η(a)(c)∂(b)ω(a)(c),
(b)

− η(a)(c)ω(a)(c),
(e)ω(b)(e),

(b) + η(a)(c)ω(b)(c),
(e)ω(a)(e),

(b) − η(a)(c)c(a)(b),
(e)ω(e)(c),

(b).
(46)

Raising the index in the expression for the spin connection (19) through ωR and ωL,
up to the designation of the indices, we obtain the formula for its components in the form
in which we need it in the expression (45). Since the dynamic variables in this case are ωR,
and not ωL, we will explicitly write out the formula only for them

ω(b),(c)
(d) = η(d)(a)

(
ωL
(a)(c),(b) + ωR

(b)(a),(c) − ωR
(c)(b),(a)

)
. (47)

Then, ω(b),(c)
(b) is expressed by the formula

ω(b),(c)
(b) = η(b)(a)

(
ωL
(a)(c),(b) + ωR

(b)(a),(c) − ωR
(c)(b),(a)

)
, (48)

and ω(a),(c)
(b) by the formula

ω(a),(c)
(b) = η(b)(d)

(
ωL
(d)(c),(a) + ωR

(a)(d),(c) − ωR
(c)(a),(d)

)
, (49)

Due to the gauge conditions imposed above N = 1, Ni = 0 and γ = 1, only the volume
shape components

√−g = 1 and ωR can be contained in the expression calculated above
for scalar curvature. Then, by substituting (48) and (49) into (46), taking into account the
location of the indices, one can obtain an expression for the derivatives of ωR, from which
it is clear that in the Lagrangian, there are no terms containing the square of derivatives
ωR from which, after integration by parts, a conformal graviton propagator could arise.
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Thus, if we accept ωR as the fundamental variables of quantum gravity, then we discover
the absence of an analogue of the wave equation for the gravitational variables ωR that is
familiar to us in quantum field theory.

Let us now find out what the terms of the interaction of gravity with matter look
like if we choose ωR as the basic variables when quantizing conformal general relativity.
First of all, let us note the following fact: In modified theories of gravity, the interaction
with matter fields is either minimal or non-minimal. If the interaction is minimal, then the
corresponding Lagrangian terms can contain metric components, but not their derivatives.
If the interaction under consideration is non-minimal, then the Lagrangian may contain
derivatives of the metric components.

Let us look again at action (50). Due to the gauge conditions already imposed above
N = 1, Ni = 0 and γ = 1, we have

√−g = 1, and for the action of matter, the Lagrangian
will have the form

S =
∫

d4χLmatter(g̃µν). (50)

Note that if we consider only the interaction terms in (50), then by virtue of (53), we have

dgµν = dxα ∂gµν

∂xα
=
(

eµ
(b)eν

(a) + eµ
(a)eν

(b)
)

ωR
(b)(a),αdxα (51)

=
(

eµ
(b)eν

(a) + eµ
(a)eν

(b)
)

ωR
(b)(a),αdxα. (52)

Accordingly, after passing to tetrad indices using e(c)
α, we obtain a system of first-order

differential equations

∂gµν

∂x(c)
=
(

eµ
(b)eν

(a) + eµ
(a)eν

(b)
)

ωR
(b)(a),(c), (53)

which must be solved in order to express the components of the metric tensor through
the variables ωR, but in the absence of a propagator for ωR, it is impossible to construct a
standard quantum theory of the interaction of ωR with matter fields.

5. Conclusions

In this work, some properties of the conformal modification of general relativity
related to the spin connections were investigated. In particular, it was shown that the
expression for the spin connection components (19) expressed in terms of ωL and ωR can
be obtained through formal transformations of the standard formula for spin connection,
which is usually written in terms of nonholonomic coefficients in the form (12). It is
demonstrated that conformal symmetry and its nonlinear realization is not mandatory for
the introduction of the variables ωR,L for construction of the spin connection (19). This
provides an extension of the approach presented in [1]. Thus, we generalized the expression
for the spin connection components (19), written in terms of ωR,L, to a much wider range
of theories of gravity. Namely, the components of the spin connection can be represented
as (19) in any theory of gravity in which the spin connection is a metric one. Note also
that our approach is alternative with respect to the attempts of gravity quantization in
terms of tetrads as the basic variables. On the other hand, variables ωR,L are related to
tetrads through the formulae (24) and (23), so the former can be exploited in the general
tetrad formalism.

We also performed an analysis of the construction of quantum gravity formulated
on the basis of the standard quantum field approach in terms of ωR variables in Section 4.
It was shown that the gravitational Lagrangian not only lacks interaction terms, as has
been noted in [1], but also does not contain terms being quadratic in derivatives of ωR,
of which, after integration by parts, a propagator of the conformal graviton would arise in
the terms of variables ωR. Here, one can note a similarity to quantization of a free Dirac
spinor field. One can see that the constructed (strong) gravitational waves do not interact
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either with each other or with any matter field. So, the obtained quantum theory looks
trivial. Nevertheless, there are still minimal couplings (of the classical type) to the matter
field and gravity though the metric tensor. Note that the classical GR is reproduced.

As a result, we come to the conclusion that formulation of quantum gravity in terms of
ωR as the fundamental quantum variables yields an almost trivial theory, which is, never-
theless, worthy of further investigation. In particular, emission, propagation, and detection
of the gravitational waves have to be analyzed. Moreover, there is another issue for further
studies, associated with the fact that quantities ωR do not form a tensor, and, thus, covari-
ant integration by parts in an arbitrary curved space-time turns out to be an ill-defined
operation (the results will depend on the parameterization). In any case, we argue that spin
connections are definitely useful for studies of its properties in the tetrad formalism, as in
general relativity itself, as well as in its modifications, including the conformal one.
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