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Abstract: Recent advances in machine learning have opened new avenues for optimizing
detector designs in high-energy physics, where the complex interplay of geometry, materi-
als, and physics processes has traditionally posed a significant challenge. In this work, we
introduce the end-to-end. Al Detector Optimization framework (AIDO), which leverages
a diffusion model as a surrogate for the full simulation and reconstruction chain, enabling
gradient-based design exploration in both continuous and discrete parameter spaces. Al-
though this framework is applicable to a broad range of detectors, we illustrate its power
using the specific example of a sampling calorimeter, focusing on charged pions and photons
as representative incident particles. Our results demonstrate that the diffusion model effec-
tively captures critical performance metrics for calorimeter design, guiding the automatic
search for a layer arrangement and material composition that align with known calorimeter
principles. The success of this proof-of-concept study provides a foundation for the future ap-
plications of end-to-end optimization to more complex detector systems, offering a promising
path toward systematically exploring the vast design space in next-generation experiments.

Keywords: computational modeling; machine learning; diffusion model; calorimeter;
particle detector; holistic optimization

1. Introduction

Designing a high-performance detector for particle physics is inherently a high-dimensional
optimization challenge, requiring the reconciliation of multiple objectives, such as energy or
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momentum resolution, timing accuracy, and cost. The design space may include both continu-
ous parameters (e.g., layer thickness) and discrete parameters (e.g., material choices), as well
as the reconstruction algorithms that translate raw detector signals into physics observables.
This complexity is further compounded by the stochastic nature of particle interactions, which
complicates the application of gradient-based methods [1]. While sufficiently generic and
differentiable reconstruction algorithms exist (e.g., Refs. [2-5]), the high-fidelity simulations
describing particle interactions with matter are typically not differentiable, preventing the
straightforward use of gradient descent. Ongoing efforts to overcome this limitation include
making established simulation packages directly differentiable [6-8], developing custom dif-
ferentiable simulation pipelines from the ground-up (e.g., TomOpt [9]), or employing local
surrogate models that are valid within a limited trust region and retraining them once that
region is exited [10]. Each of these approaches faces specific challenges, especially when dealing
with detectors containing hundreds of thousands of readout channels.

To address these difficulties, an end-to-end approach can be employed, whereby only
one global performance quantity is predicted by a surrogate neural model for each sample
in the dataset (event). This stands in contrast with approaches that use generative models to
recreate the statistic patterns of low-level information in the detector, such as [11-15]. The end-
to-end strategy abstracts the problem away from the microscopic details of the simulation and
reconstruction, permitting the integration of the model into a comprehensive software pipeline.
Such an end-to-end surrogate has the advantage of capturing the essential mapping from the
design parameters to physics-relevant performance metrics without having to explicitly model
each individual hit in a high-granularity detector. It also enables more direct optimization
loops, as the gradients obtained from the end-to-end model can directly steer the design
choices. Notably, discrete parameters such as the presence or absence of specific sub-detectors
or the choice of different materials can be accommodated by neural networks through careful
encoding, or with techniques that effectively smooth the discrete design space [9].

Among the various detector subsystems in modern particle physics experiments,
calorimeters stand out both for their critical role in measuring particle energies and for
their inherently large design space. Calorimeters have been widely used since the 1950s
to determine the energy of incident particles by sandwiching high-density passive layers
and active materials that produce measurable signals. In collider-based experiments,
the performance demands on calorimeters have rapidly evolved to address new challenges:
for instance, highly segmented calorimeters in both transverse and longitudinal directions
can identify the hadronic decays of boosted heavy particles inside wide jets [16-19], and the
availability of a large magnetic field combined with high segmentation permits efficient
particle flow algorithms [20,21] to significantly improve event reconstruction. Meanwhile,
new fabrication and sensor technologies, such as 3D-printed scintillators or the use of
highly granular silicon as the active medium [22], further expand the design space and
underscore the importance of systematic optimization.

In this work, we illustrate how the end-to-end framework AIDO can be deployed to
optimize both continuous and discrete parameters of a sampling calorimeter. We focus on
a simplified setup involving only photons and charged pions as incident particles, and we
seek to identify the arrangement of passive and active layers that provides the best energy
reconstruction performance. Far from claiming to discover new, cutting-edge calorimeter
designs, our primary goal is to demonstrate that the pipeline can identify designs that align
with well-known calorimeter principles. This validation paves the way for future studies
involving more complex objectives and design choices, where human intuition alone may
fall short of identifying optimal solutions.

This paper is organized as follows. In Section 2, we motivate the comparison of
different detector designs based on a single metric computed from simulations. Section 3
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introduces the concept of a digital twin and explains how it boosts gradient computation,
making end-to-end optimization feasible. Section 4 details the workflow structure for
the iterative simulation-reconstruction-optimization loop, while Section 5 describes how
discrete detector parameters can be encoded and learned. In Section 6, we apply this
end-to-end optimization approach to a sampling calorimeter. Finally, Section 7 summarizes
our findings and outlines potential applications and improvements for future work.

2. Mapping of Detector Parameters to Performance

Geant4 [23-25] is a fast simulation framework that accurately reproduces the interac-
tion of particles with matter and is widely used in High-Energy Physics (HEP) to under-
stand the behavior of detectors. The framework provides a common core of functionalities,
on top of which developers can build a simulation software for their specific use-case. The
flexibility provided by Geant4 allows physicists and engineers to quickly test and refine
the design of new detectors by sharing some tunable parameters with other programs
(macro files, python bindings, or Command Line arguments). While these interfaces are
convenient for human users, they also open up another potential application if connected
with a hyper-network, as discussed in Section 3.

Typically, the outputs of a Geant4 simulation are divided into events, each repre-
senting the full initial-particles-to-final-readout chain, including, for example, the energy
deposited in a single cell, the number of particles that passed through a given layer, or the
direction of flight of a particle. This low-level information is fed into custom algorithms,
which compute further physical quantities of interest, such as the momentum, the total
recorded energy, or the flight time. One considerable advantage of simulations in general is
that, in contrast to real HEP experiments, the initial conditions of an event are precisely
known and reproducible. Consequently, reconstruction algorithms that produce high-level
variables, such as the energy resolution of a calorimeter or the accuracy of a tracking
component, can be evaluated in an unbiased way. It is this observation that motivates the
automatic optimization of detectors, which can be achieved by tuning the parameters and
computing the resulting performance with a reconstruction algorithm.

Given a detector simulation using a set of adjustable parameters 6, we denote the
configuration space of all possible detectors as @ = {8° x 8 --. x 6"}, where each pa-
rameter 07 describes a certain physical property of the detector. This includes continuous
parameters, such as the position or thickness of a component, and categorical parameters,
such as a material type. For continuous parameters, one must ensure that the physical
meaning is properly encoded by setting boundaries, e.g., forbidding negative thicknesses.
Further information about the translation of discrete parameters into a suitable format for
Machine Learning (ML) is detailed in Section 5.

As afirst step, we consider the simulation to be equivalent with a mapping f : 8, fext — Fsim
that takes as inputs 0 and a second set of external variables 0ct, which are potentially
pseudo-random, making f a stochastic process. We categorize the outputs into three terms,
Fsim = {x, T, C}, where x is the set of all low-level, hit-based features (the energy deposited
in each cell, the position of an individual hit, etc.). The targets T, or true information,
describe the known initial conditions of the simulation and are used for the evaluation of
the reconstruction algorithm (such as the true initial energy). Lastly, C denotes all additional
context information for each event (such as the initial particle type), which is used as input
and not for evaluation. This distinction is important to inform the reconstruction algorithm
of the differences between events that are not encoded in the hit-based features x.

In the second step, the reconstruction is a second function g : 6, Fm + Ereco, Which
produces the reconstructed targets Ereco containing all the high-level variables of interest based
on the outputs of the simulation. This is usually the end of the reconstruction chain, but in the
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present work we are interested in comparing the performance of different detector designs. For
this purpose, we compare Eie and Ereco using a Loss function, yielding a single scalar Loss
term £ that describes the goodness of each detector design. In essence, we can combine the
effects of simulation and reconstruction on 6 into a single function V : 6 — L that yields a
unique Loss for each set of parameters 6, excluding stochastic effects. The function V, and by
extension the Loss £, include stochastic noise added by the simulation and potentially also by
the reconstruction itself, e.g., if it is computed using a Deep Neural Network (DNN). The stated
goal of this work is therefore to efficiently explore the performance-space of V : 8 — £ and find

Bopt = argmin(L, V). 1)
0

By definition, fopt is the set of (optimal) parameters that minimizes £. This minimum can be
found using conventional gradient descent methods [26], as long as the stochastic noise of £
is not too large. In practice however, this noise tends to dominate the local Loss landscape,
and methods such as the one described next are required to obtain meaningful gradients.

3. Digital Twin Approach and Optimization

In the previous Section, we introduced an example of a digital twin, namely the Geant4
simulation software that reproduces the behavior of a real-world detector. This Section
proposes a second digital twin to emulate the behavior of the combined simulation and
reconstruction system. This second digital twin is motivated by the fact that the loss £
is both highly noisy and computationally expensive. Indeed, even though a sequential
pipeline that computes V(0) = L is sufficient for the task of optimization, it would require
a full simulation and reconstruction from scratch for each gradient step and be highly
inefficient. We demonstrate a significant improvement in computational efficiency by
learning the expected detector performance with a Deep Neural Network, which addresses
both challenges: first, once learned, its evaluation is inexpensive, and second, it partially
smooths out irregularities in the gradient.

This approach starts by sampling a subset Ogample € @ = {0y, . .., 0n } from a confined
region within the larger parameter space. We sample using a multi-variate normal distribu-
tion Ogample = N (6,Ky) for a total of N simulations, where Ky is the sampling covariance
matrix. A generative DNN, named the surrogate model in the following, learns function
S, which locally approximates the effects of V(). In this way, the performance of a new
parameter Onew & Oample is approximated by evaluating S(fnew) = Lnew, provided that
Bnew 1s also within the training region Ogample- Figure 1 shows this equivalence between
the simulation—reconstruction system and the surrogate model.

Inputs
esamplea Tl c

¢ Oexct Extra
arguments,

Simulation e.q. initial
seed

Diffusion time
s
steps # v Trained io

emulate
Surrogate

Evaluation !
only T

Reconstruction

Y

i = LOSSTCQU(T’, T) L = Lo881eco (Trecm T)

Figure 1. Illustration of the surrogate model as a digital twin of the combined reconstruction and
simulation system. By avoiding the internal low-level information Fj,,, the surrogate is able to
efficiently produce similar outputs T’ & Treco-
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The minimization problem stated in Equation (1) is performed locally by minimizing
L' instead, which only requires the evaluation of S(0). This approach enables the sim-
ulation to run in parallel and the reconstruction algorithm to train on several detector
designs at the same time, greatly reducing computation time. To ensure that the learned
approximation of £’ ~ L holds, it is necessary to validate the predictions of the surrogate
model, as inaccuracies would lead to a misrepresentation of the physical detector.

3.1. Surrogate Model

The surrogate model is a DNN tasked with reproducing the performance £’ for any
fnew Within the sampled region. There are two main ways for the surrogate to learn £/, ei-
ther directly using Lreco or indirectly by learning Treco and evaluating £' = Lossreco (T, T).
For this application, we train a conditional De-noising Diffusion Probabilistic model
(DDPM) [27] on the targets Tieco. Diffusion models are able to generate new data by
training on progressively noisier samples and reversing the noise during evaluation. The
advantages of diffusion models include its stable training, high-fidelity samples and poten-
tially easier transfer learning due to their probabilistic nature.

For our purposes, the internal training model is a simple feed-forward network com-
posed of four linear layers using the architecture detailed in Table 1. The training is carried
out on the dataset {6, C, Treco }, where the goal of the model is to predict the added noise.
We train the model using the Adam optimizer [28] and a Mean Squared Error (MSE) loss be-
tween the predicted and the true added noise. The Adam optimizer is momentum-based and
enhances the transfer learning between iterations. During evaluation, the surrogate predicts
new targets T' = S(6’, C) used to approximate the reconstruction Loss £ = LosSreco (T’, T).

Table 1. The architecture of the DNN used by the surrogate model. The input nodes of the first layer
are the detector parameters 6, the context information C, the target quantities T, and the internal time
step variable ns, which accounts for the +1 term.

Layer Input Nodes Output Nodes Activation Function
1 0+ C + Treco +1 200 ELU
2 200 100 ELU
3 100 T Linear

3.2. Optimizer

The optimizer object is a wrapper around the Adam optimizer that adjusts the param-
eters 6 in order to minimize

'Cop’t =L+ ['penalties + Lyoundariess 2)

where £’ is the Loss predicted by the surrogate, Lpenalties 1S a user-defined additional
term that takes into account effects such as total cost, maximum size or other physical
constraints, and Lpoundaries 15 @ penalty term that ensures that the parameters remain within
the evaluation space of the surrogate. This boundary loss is defined as

1 Omax 2 1 emin z
Lpoundaries = Mean 2 Relu( 0 — 11 + 7 Relu 11 -0 . 3)

The scaling 1/1.1 ensures that the penalty loss activates slightly before the actual limit

is reached, allowing the optimizer to adjust to the penalty sooner. After each parameter
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update, we check that the parameters are still within the well-defined region of the surrogate
evaluation space spanned by Ky with the binary decision

(61— 04)Ky 1 (031 — 04) <D, )

where 6,1 are the new parameters after the parameter update, 8, are the central parameters
of the trust region of the surrogate, and factor b < 1 is the scaling of the valid region for the
surrogate. We chose the conservative value b = 0.8 to ensure that the optimized parameters
68,+1 remain well within the valid region. As soon as this condition does not hold anymore,
an early stopping activates, and the surrogate model is retrained on the new region. This
stopping defines the end of a single iteration of the simulation-reconstruction-surrogate—
optimizer (SRSO) pipeline. In order to encourage exploration in the next iteration, we
adjust the sampling covariance Ky given by

(9n+1 — 971) ® (9n+1 — 971)

Ko = diag(co, ..., )"+ (s = 1) g G,
n n

©)

where (0,1 — 0,) is the distance between the current and previous parameters and
s = 0.8 -max(1,4/|6,+1 — 6,|) is an appropriate scaling factor if each 0, ~ O(1). Con-
cretely, after each iteration where the optimizer reaches the boundaries, the sampling
region expands in the direction of change. The resulting modified parameters 60,,,1 become
the new central values for the next iteration.

4. Workflow of the AIDO Package

The AIDO software is a dedicated python package that optimizes the arbitrary de-
tector hyperparameters, as described in the previous Section. The package is composed
of two layers: the first is a scheduler that coordinates the execution of the individual
sub-components using b2luigi [29]; second is the implementation of the surrogate and
optimizer models using pytorch [30]. The AIDO scheduler subdivides the SRSO chain into
independent Tasks that can be run on HPC using job schedulers such as HTCondor [31],
as shown in Figure 2.

Sample
locally

Generator

Geant4 ) .
Simulation & Sim
0 92 GSW

New parameters

0n+1

Reconstruction

Trained to emulate

Surrogate Optimizer

Fast
gradient
evaluation

Figure 2. Workflow of a single SRSO iteration using the AIDO package. The top-level generator
samples a new set of detector parameters, which are simulated in parallel with Geant4. The outputs

of the simulations are used to produce a single reconstruction £ loss. Based on these, the surrogate
and optimizer system predicts a new set of parameters for the next iteration.
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4.1. Generation

We start with an initial set of parameters 6,-g, which can be chosen manually or ran-
domly. For a set of N parallel simulations, we sample N times from the multivariate normal
distribution NV (6, Ky), where the sampling covariance matrix Ky encapsulates the corre-
lations between each parameters. This covariance is initialized as Ky = diag ((75, e, (7,2,1) ,
where 02, is the variance of each parameter. The choice of the initial variance for each
parameter is free, but is learned by the optimizer for all further iterations n > 0 according
to Equation (5). In addition, sampled parameters that lie outside the allowed boundaries
are resampled until valid. Each sampled §%™P!€ is then the configuration of a different
detector, which is simulated in the next step.

4.2. Simulation

The simulations are executed in parallel, each with a unique set of detector parameters
and a designated output file path. In practice, the propagation of the parameters to Geant4
depends on the available interface. By default, programs and end-users can communicate
with a Geant4 executable by passing a macro file that lists a series of Geant4 commands.
The values of the detector hyperparameters can then be written with a single script to
this file. Some Geant4 programs are linked with a python interface (using C++ to python
binding, such as pybind [32]). This allows for a simple propagation of parameters to the
individual simulation software. Due to the external Geant4 libraries that are often required
by individual Geant4 programs, the approach of containerization is highly recommended.
While the output of Geant4 programs is, in most cases, a ROOT file [33], a specific file
format is not required by the AIDO software.

4.3. Reconstruction

Once all the simulations are run, the reconstruction computes the goodness of each
design. Since regular reconstruction algorithms (especially ML-based) are usually applied
to a single large dataset, the AIDO package provides a hook for merging and converting the
output files of the simulations into a single dataset and writing it to file. This step ensures
that the reconstruction runs on a homogeneous dataset, with the correct format and within
its own design conditions, providing maximal flexibility. It is then the responsibility of the
user to ensure that the reconstruction algorithm outputs a meaningful performance metric
L for each design.

5. Optimization of Discrete Parameters

Categorical parameters are, as such, not suitable for optimization due to their inherent
discontinuity. To overcome this, instead of tuning a single discrete parameter, we assign a
probability to each category, reflecting the model’s confidence in that category. Equivalently,
we can sample from these probability distributions to produce a representative dataset.
The sampled categorical values are encoded as one-hot vectors in the training dataset of the
surrogate. A parameter ¢ composed of i distinct categories ¢ = {¢°,...,¢'} is represented
by the i x i matrix My, defined as follows:

10 0
. 1 ... 0
00 ... 1

where category ¢’ is the i-th row vector. The one-hot encoding scheme is paramount
to ensure proper communication between the surrogate and the optimizer. While the
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surrogate is trained on a dataset composed of one-hot vectors, it is still able to interpret
the query of the optimizer, which is displayed as fractional values. This is due to the
inherent ability of DNNSs to interpolate between values within their training space. To
facilitate training, instead of learning the probabilities directly, the optimizer adjusts the
log-probabilities, or logits, {z, }, which are defined as P(¢,) = softmax(zy).

6. Application to a Sampling Calorimeter

As an illustration of possible applications for the AIDO framework, we showcase a
sampling calorimeter composed of an absorber and active scintillator layers. Absorber
material refers to any passive component that is not part of the readout. Scintillators, on the
other hand, are materials that emit optical photons when they are traversed by high-energy
particles, which allows for an electronic readout. The layers themselves are shaped as
rectangular cuboids with a side-length of 50 cm and are stacked longitudinally along the
beam axis, alternating between absorber and scintillator. We set the thickness along the
beam axis and the material of the six layers is used as the optimizable parameters. We
bound the thickness of all layers to be strictly positive in order to avoid unphysical layouts.
The material is a binary choice between either lead or iron for each one of the absorber layers
and between lead tungsten PbWO, and polystyrene (CgHg),, for each scintillator layer.

The task of the optimizer is then to improve the energy resolution by adjusting the
thickness of each layer and by choosing the suitable materials. From a physical standpoint,
a good calorimeter should maximize the amount of energy that is deposited by the particles
as they travel through the material. This can be achieved by increasing the volume of active
material while balancing the volume of the absorber, as passive material helps to slow
down highly energetic particles, making them more prone to interactions with the active
material. Based on the much shorter radiation length of PbWO, (1.27 cm) compared to
polystyrene (41.31 cm), we expect the optimizer to prefer the use of the former over the
latter for the scintillator layers, according to the values found in [34]. The choice of absorber
is not as decisive, as the radiation lengths of Fe (1.76 cm) and Pb (0.56 cm) are similar. In
the absence of any other constraints, the optimal calorimeter for these conditions would be
a single block of PbWO,. To address practical considerations, we introduce the cost and
size constraints.

6.1. Additional Constraints

In order to recreate a realistic engineering problem, we constrain the total length of
the detector to dmax = 200 cm. This is enforced with a penalty term of the form

Elength = 10(Relu(d — dmax))z' )

We set the maximal total cost for the whole detector at costmax = 200k EUR, which is
calculated based on the weighted cost for each layer

6
cost = Z dic;P(¢y), (8)
1=0

where c; is a vector of the same length as ¢;, describing the cost for each category. For the
three absorber layers, the cost is 25 EUR/cm for lead and 4.16 EUR/cm for iron, while for
the scintillator layers the cost is 2.5k EUR/cm for PbWO, and 0.01 EUR/cm for polystyrene.
We chose these values based on the approximate market price per volume, focusing on the
large discrepancy between PboWO, and polystyrene. In this way, we ask the optimizer to
balance the performance gained by choosing the better material against the increase in total
cost. The penalty scaling for exceeding the allowed cost is
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2
Ecost:Relu( cost —1) . )

COStmax

Finally, Figure 3 shows the starting and the optimized configuration of the detector
with the above cost and size constraints.

Starting configuration
Absorber (Pb/Fe)

Scintillator
(Either material)

Scintillator
(Polystyrene)

Scintillator
(PbWO4)

BN

Optimized configuration

Figure 3. Detector configuration before optimization (upper) and after (lower). The incoming particles
impinge perpendicularly on the detector. In the starting configuration, most particles are stopped
by the absorber before they can be recorded by the scintillators. In the optimized configuration,
photons are recorded by the large PbWO, block, while the longer pion showers are contained by the
polystyrene section.

6.2. Simulation and Reconstruction

For each iteration, we simulate 20 distinct detector configurations, as described in
Section 4.1. The simulations are run in parallel automatically by the AIDO scheduler,
and each simulation runs in single-threaded mode with 400 events. In each event, we shoot
a single initial particle, with a random energy that is uniformly sampled between 1 and
20 GeV; in half of the events, the particle is a photon, while in the other half it is a positively
charged pion. The goal of this example is to optimize the twelve detector parameters (layer
thickness and material composition) such that we minimize the energy resolution of the
total calorimeter. For this purpose, we record the idealized total deposited energy in each
of the three scintillator layers, without any readout effects.

The reconstruction algorithm is a feed-forward neural network implemented in py-
torch, composed of two distinct blocks: a pre-processing block and a main block, summa-
rized in Table 2 and Table 3, respectively. The pre-processing block consists of three fully
connected layers, designed to process the initial input parameters (#0 = 12). The main
block processes is composed of four fully connected layers with a single output node that
is the reconstructed energy. The learning is performed using the MSE loss between the
reconstructed energy Erec and the true initial energy Eirye of the particle in each event:

o (Erec - Etrue)2
L= mean( Eroo t 1 , (10)

where E,. is the energy predicted by the reconstruction model and Ee is the true MC
initial energy. We chose a scaling of 1/ (Eue + 1) to regulate the importance of events with
a higher initial energy. In Section 6.4, we will discuss the impact of this Loss on the final
detector configuration. During the forward pass, the output of the pre-processing block
is multiplied element-wise with the input vector Fgn,. The result is concatenated with the
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detector parameters 6 and passed into the main block. For the surrogate and optimizer,
we use the configuration detailed in Section 3, with a learning rate of Irg = 0.001 for the
surrogate and Irp = 0.01 for the optimizer. All computations were performed on a system
equipped with two Intel Xeon E5-2630 v4 processors and one NVIDIA Titan X GPU.

Table 2. Reconstruction model: pre-processing block architecture.

Layer Input Nodes Output Nodes Activation Function
1 6 100 ELU
2 100 100 ELU
3 100 Fsim Relu

Table 3. Reconstruction model: main block architecture. We have one output node (T = Erec):
the reconstructed energy per event.

Layer Input Nodes Output Nodes Activation Function
1 0 + Fsim 100 ELU
2 100 100 ELU
3 100 100 Relu
4 100 T=1 Linear

6.3. Training Validation

To evaluate the performance of the reconstruction and surrogate models on unseen
data, we generate a validation dataset under the same conditions as the training dataset;
see Section 4.1. Before describing the validation results, it is important to emphasize that
the goal of AIDO is to provide an algorithm capable of optimizing the detector design. The
use of a high-performing reconstruction algorithm is not the primary objective as long as
it performs adequately and consistently for all detector configurations. Building on this
premise, the validation of the reconstruction model is presented in addition to the surrogate
model, which serves as a key step of the AIDO framework.

Figure 4 compares the distribution of the simulated energy with the energy predicted
by the reconstruction and the surrogate models. The reconstruction model reproduces the
overall distribution of the targets and the surrogate model generates a similarly distributed
sample over the range of targets. As already pointed out in Ref. [10], the surrogate only
needs to provide a reasonable gradient estimate and does not need to model specific details
in most cases.

AIDO Detector Optimization

AIDO Detector Optimization

> rSampling Calorimeter . . > rSampling Calorimeter . .
8 140 [50% photons and 50% pions = Etwe (Simulation) & 14%150% photons and 50% pions 1 Ftree (Simulation)
o 20 x 400 MC Events / Iteration [ E' (Surrogate) o 20 x 400 MC Events / Iteration [ E' (Surrogate)
2120k =11,20] GeV dati 2 120k . =[1,20] Gev dati
=) true = L1, € [0 Ereco (Validation) =) rue =11, € [ Erec (Validation)
3 100 [iteration = 5 % 100 [teration = 200
€ €
3 3
S sor S sl
60 [ 6oL
40 - 40 -
20| 20F
0 . . . . . . . 0 . . . . . . .
0.0 25 5.0 7.5 10.0 12,5 15.0 175 20.0 0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Initial Energy [GeV] Initial Energy [GeV]
(a) (b)

Figure 4. Distribution of the initial energy of the primary particle as predicted by the reconstruction
model (Ereco) and surrogate model (E’), along with the true simulated energy (Erue). The training
was performed on 20 x 400 Monte Carlo events and the validation on 5 x 400 MC events. (a) shows
the validation before and (b) after optimization. In both cases, the surrogate successfully emulates
the distribution of samples produced by the reconstruction model.
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6.4. Results

The evolution of the detector composition is shown in Figure 5 with the correspond-
ing optimizer loss displayed in Figure 6. From a purely machine learning standpoint,
the demonstration is successful: the target metric decreases in a reliable way, confirming the
ability of the model to solve the optimization task. However, we can gain further insights
into the decisions taken by the model with some task-specific knowledge.

AIDO Detector Optimization

FSampling Calorimeter

200 (50% photons and 50% pions
[20 x 400 MC Events [ Iteration
175 e = [1, 20] GeV

PbwO4
Pb

150 [

125 [

100 |
75 F

50 |

25

Longitudinal Calorimeter Composition [cm]

0 25 50 75 100 125 150 175 200
lteration

[
Polystyrene
Fe

Figure 5. Sliced view of the longitudinal detector composition, with the initial setup at iteration = 0
and the optimized setup at iteration = 220. Each slice on the x-axis represents the currently learned
detector configuration (with the side at y = 0 facing in the direction of the incoming particle beam,
as shown in Figure 3). During training, the large block of the first absorber is gradually thinned while
the scintillator layers grow in size.

The initial setup has a large absorber block at the front which traps most of the particles
before they can reach the first scintillator layer. Only a few particles are recorded by the
subsequent scintillator, so only a small fraction of the training dataset carries meaningful
information. In turn, the reconstruction performance is poor, the energy resolution is large,
and the optimizer loss is high.

AIDO Detector Optimization

FSampling Calorimeter

-50% photons and 50% pions

[ 20 x 400 MC Events / Iteration
Eqwwe =[1, 20] GeV

10!

100

Energy Resolution [GeV]

101

—— Mean Reconstruction Loss

| —— Optimizer Loss
10—2|||||||||||||\|||||||\|||\||||||||||||\|||
0 25 50 75 100 125 150 175 200
lteration

Figure 6. Evolution of the mean reconstruction loss £ for the nominal design during training,
as provided by Equation (10), and the synthetic reconstruction loss £’ used as the optimizer loss.
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During training, the undesirable absorber layer is gradually removed, which has a net
positive impact on the target energy resolution, as shown in Figure 7. At the same time,
the scintillator layers increase in length, and since the energy resolution of a calorimeter
scales with 1/+/E [34], a larger active volume leads directly to more deposited energy and
better energy resolution. As expected, the optimizer chooses PbWO, over polystyrene for
the first layer. This makes sense when measuring the energy of photons, as electromagnetic
showers benefit from a short but dense active material.

AIDO Detector Optimization AIDO Detector Optimization
§ Sampling Calorimeter — . = Sampling Calorimeter :
3 160 [50% photons and 50% pions Iteratfon 8 8 50% photons and 50% pions — Iterat!on o
S |0 [20 X 400 MC Events / Iteration ] Keration 10 9 103 |20 x 400 MC Events | Iteration L1 Iteratich 10
S Etrue =[1,20] GeV Iteration 20 S Etrue =[1,20] GeV Iteration 20
S 120f [ lteration 200 = [ Iteration 200
9

= 8
u c
£ 100 - 2 102
=3 (]
8 sof

60 -

MLiLh
a0f 10°FR |
20 j
1 R bt o o - "H ’-H H‘ H
-4 -2 0 2 ” 4 " 0 lO
(Erec — Etrue)/Egrie [GEV?] Reconstructlon Loss [GeV]
(a) Energy resolution scaled with 1/+/Ejrye. (b) Reconstruction Loss.

Figure 7. Scaled energy resolution (a) and reconstruction loss (b) of the nominal training dataset
(400 MC events) for selected iterations. The narrowing of both distributions indicate the gradual
improvement achieved by the network.

After this electromagnetic section, the calorimeter displays a long heterogeneous part.
Given the radiation length of PbWQ,, electromagnetic showers are not expected to have
a longitudinal profile that significantly extends beyond 25 cm of material. However, for
early showering charged pions, PbWQO, has excellent properties. Therefore, as can be seen
in Figure 8, the available budget is fully exploited, with a focus on the earlier layers and
very little or no absorber material.

%105

Cost [EUR]

0 Il Il | Il Il | | Il
0 25 50 75 100 125 150 175 200

lteration

Figure 8. Evolution of the cost constraints during training. The initial growth is mainly due to the
increase in the thickness of the scintillator layers made out of the more expensive PbWOj,.

Once the current composition exhausts the total available budget, the last layer changes
to a less expensive material with large radiation length, and therefore requires an absorber
to consistently shower the particles. The large iron absorber and the polystyrene scintillator
build the last layer, with the shift from PbWO, to polystyrene clearly shown in Figure 9.
This last section of the detector helps by measuring high-energy pions that shower in
the iron block, leaving a meaningful signal in the polystyrene downstream. It can be
concluded that the method is able to reconcile multi-target optimization, taking the physics
performance into account, as well as cost and length constraints. In particular, the system
is capable of optimizing discrete material choices with vastly different costs.
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(Pb or Fe) (PbWO4 or Polystyrene)
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Figure 9. Evolution of the confidence of the optimizer in each material choice. The figures show the
fraction of material proposed by the optimizer, with high fractions being considered more desirable
by the optimizer. Crucially, the optimizer correctly chooses PbWQO, as the material for the first and
second scintillator layers (b,d). The third layer (f) also starts with PbWO, but revert to polystyrene
once the cost constraints apply, in order to save costs.

7. Conclusions

In this work, we demonstrate a novel method for investigating the configuration
phase space of modern detectors. By using a diffusion-based surrogate model that locally
interpolates the behavior of the detector, we are able to efficiently explore and optimize
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