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Abstract 

This thesis presents the results of a numerical calculation of the light hadron 

spectrum in the lattice formulation of Quantum Chromodynarnics. Results were 

obtained in both the quenched approximation, where the effects of quark loops 

in the QCD vacuum were neglected, and in "full" QCD, where two degenerate 

flavours of dynamical fermions were included in the simulation. All numerical 

simulations employed the standard Wilson gauge action with an 0(a) improved 

Wilson fermion action. This study confirms that the quenched light hadron mass 

spectrum agrees with experiment at the 10% level. Finite size effects at one value 

of the coupling were investigated and an improved scaling behaviour arising from 

the implementation of the 0(a) improvement programme was observed for the 

quenched simulations. 

With the aim of observing effects in the spectrum due to the inclusion of 

fermion loops in the QCD vacuum, simulations in "full" QCD forming a matched 

ensemble were compared with a quenched simulation at the same lattice spacing. 

Each simulation in the matched ensemble was selected to have approximately the 

same lattice spacing as defined with respect to a physical observable in order to 

investigate chiral extrapolations independently from continuum extrapolations. 

A further simulation with a lighter sea quark mass at a smaller lattice spacing was 

included in the analysis for comparison. Evidence for small yet significant dynam-

ical effects arising from the comparison with the quenched data were observed 

in the hyperfine splitting and partially quenched chiral extrapolations. Results 

obtained from the matched ensemble displayed a reduced residual dependence 

upon lattice artifacts. 
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Chapter 1 

Introduction 

The success of perturhative methods in describing the short distance (large mo-

mentum transfer) behaviour of quarks and gluons has meant that Quantum Chro-

modynamics (QCD) has become well established as the theory of strong interac-

tions. Confirmation of this requires that QCD also explains the experimentally 

observed phenomenon of quark confinement, whereby quarks are bound in colour 

singlet states known as hadrons. Consequently, a complete understanding of the 

strong interaction requires a theoretical explanation for the experimentally ob-

served hadron mass spectrum. Unfortunately at the low energies, p < 1 GeV, 

associated with the characteristic length scale of a hadron of approximately 1 fm, 

the asymptotic freedom property of QCD means that the strong coupling is of 

0(1), and thus perturbative methods fail. Instead a rion-perturbative approach, 

such as Lattice QCD, is required. 

Lattice QCD was formulated by K. C. Wilson [1] in 1974 in order to provide a 

non-perturbative mechanism for confinement in the strong coupling limit and to 

enable a numerical study of the low energy behaviour of QCD. In particular, it al-

lows a first principles determination of the mass spectrum of the lightest hadrons, 

the first numerical results of which were reported in [2, 3]. Reproducing the exper-

imentally observed spectrum serves as a test of QCD and provides an important 

check on the validity of the lattice approach. Confidence in the spectrum results 

obtained from the lattice mean that the technique may be used as a predictive 

tool for other phenomenologically interesting quantities which cannot be mea-

sured directly by experiment. The cost of the considerable computational effort 

required to numerically determine these quantities has meant that the quenched 

1 
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approximation, where quark loops in the vacuum are neglected, is still widely 

used. How closely this approximation describes the real world can be assessed 

through a comparison of the numerical results for the quenched light hadron spec-

trum with experiment. In order to achieve the precision measurements required 

for such a comparison it is necessary to have control over systematic effects such 

as lattice artifacts. In chapter 3, residual lattice artifacts in the quenched spec-

trum results are reduced by using an improved action. The results confirm the 

recent findings from unimproved simulations performed by the CP-PACS Collab-

oration [4] which showed that the quenched light hadron spectrum agrees with 

experiment at the 10% level. 

New theoretical developments and more powerful computational resources 

have meant that recently progress towards simulations of full QCD has been 

made. In particular, larger simulations with two degenerate flavours of light 

dynamical quarks have become possible. A review of the results obtained from 

the most recent simulations from around the world can be found in [5]. So far, full 

Q CD simulations have not reached the stage where precision measurements of the 

spectrum can be made. However, it is still possible to investigate the evidence for 

quark loop effects in spectral quantities by comparing full QCD simulations with 

simulations performed in the quenched approximation. In chapter 4, "matched" 

simulations (where the lattice spacing was measured to be the same) were selected 

for comparison in order to separate the effects due to lattice artifacts from genuine 

dynamical effects. 
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1.1 Lattice QCD 

The formulation of lattice gauge theories, first proposed in [1], is now the subject 

of textbooks [6, 7] and introductory lecture courses (see for example [8, 9]). A 

brief outline of the key elements of the theory required for the study of the light 

hadron spectrum is presented in the following sections. 

1.2 Path integral formulation of QCD 

The information concerning physical observables in a quantum field theory is 

contained within an infinite number of vacuum expectation values of time ordered 

products of quantum field operators, known as Green's functions. These quantum 

probability amplitudes can be related to probability distributions of classical fields 

via the path integral formalism [10]. For a gauge theory such as QCD this means 

that the Green's functions can be expressed in terms of the functional integral 

over all field configurations 

(01 tfO[, 0 , A]} 0) = f VDDAO[, 0 , A]e' 1  

where the partition function is defined by 

Z 
= f VVVAe'' 1 	 (1.2) 

The function O[, 0 , A,j on the left hand side of equation 1.1 corresponds to a 

product of quantum operators and on the right hand side O[, i', A] corresponds 

to a product of the anti-fermion, fermion and gauge fields. Here 'T denotes that 

the operators are time ordered and S is the classical action. Note that natural 

units where h = c = 1 are used throughout this thesis. 

The functional integral in equation 1.1 is complex and strongly oscillating. 

This is hard to evaluate numerically. The standard method for dealing with this 

is to analytically continue from Minkowski to Euclidean spacetime via the Wick 

rotation, x o  -* -ix 4 . This corresponds to making the replacement, iS - —SE, 
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in the partition function [6] 

= 	 (1.3) 

where the Euclidean action, SE,  is defined later in section 1.3. The Green's 

functions defined in equation 1.1 are replaced by the corresponding Euclidean 

correlation functions. The partition function, now weighted by SE  is amenable 

to the numerical techniques used to study statistical mechanics provided SE is a 

real valued function of the field variables and is bounded from below. 

In practice, the theory is formulated in Euclidean spacetime and must sat-

isfy certain conditions which ensure that it provides information regarding the 

Minkowski theory [11]. The main condition is that of reflection positivity, a full 

description of which can be found in [7]. The proof that these conditions are 

satisfied for the lattice action considered here is beyond the scope of this thesis 

(see [12] for further details). For quantities which are not time dependent, such 

as the mass spectrum, it is not necessary to perform the continuation back to 

Minkowski spacetime, as will be seen in chapter 2. 

1.3 The continuum QCD action 

The QCD action is invariant under SU(3) local gauge transformations, G(x), 

where the fermion and gauge fields transform as 

(x) - G(x)O(x) 	 (1.4) 

(x) - 	(x)G 1 (x) 	 (1.5) 

A(x) -+ G(x)A(x)G 1 (x) - (öG(x))G'(x) 	(1.6) 

The continuum action in four dimensional Euclidean spacetime is then given by 

SE(x) 
= f d4 x 	Tr (F(x)F(x)) 

+ Nf 

j(x) ( + mj ) of (x) 	(1.7) 
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where Nf  is the number of quark flavours and t, ii = 1,. . . ,4. The first term is 

the Yang-Mills term describing the dynamics of the gluon gauge fields, A,, where 

the gauge field strength tensor, F(x), is defined in terms of the commutator of 

the covariant derivative, D. = 9 + A(x), by 

F(x) = [D, D] = 	- öA(x) + [A,(x), A(x)] 	(1.8) 

The gluori gauge fields are defined in terms of the generators of the SU(3) group 

	

A(x) = —A(x), 	A(x) = _igoA(x)Ta, 	a = 1,. . . , 8 	(1.9) 

where the eight A(x) are real fields and go  is the bare strong coupling constant. 

The generators satisfy the commutation relations and riormalisation condition 

[Ta ,  Tb] = jfabcT C , 	Tr [TTb] = (1.10) 

where fabc  are the anti-symmetric structure constants and the generators are rep-

resented in the standard way by the eight Cell-Mann matrices, Ta = )a/2 [7]. The 

second term in equation 1.7 is the Euclidean Dirac action, describing the interac-

tion of the fermion fields, j(x) and Of (x), where rnj  is the mass of the fermion 

with flavour f and the Dirac spinor and colour indices have been suppressed. The 

explicit sum over flavours is omitted from now on. Note that The 

Euclidean Dirac y  matrices are related to the Minkowski matrices, 

4 	
1 	 = -if 

	

= 	, 	 , 	j = 1,... ,3  

and satisfy the Hermiticity condition and commutation relations [7] 

= 	, 	 = 	 (1.12) 

The QCD action defined in equation 1.7 can now be substituted into the 

path integral formalism, where the subscript E is now dropped. However, the 

path integral is not well defined due to the gauge invariance of the action. This 
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means that the integration is performed over an infinite number of physically 

equivalent gauge field configurations. One approach which resolves this problem 

is to discretise spacetime by a four dimensional lattice. 

1.4 The lattice approach 

The original formulation of lattice gauge theory was proposed in [1]. To transcribe 

the continuum theory into the lattice description there are several key steps, 

each of which will be discussed briefly below. Further details can be found in [6, 

7]. First, spacetime is discretised and the representations of the fermion and 

gauge fields on the lattibe are discussed. The construction of the lattice action 

is presented after the integration measure of the path integral is defined and the 

numerical evaluation of observables is outlined. 

1.4.1 Discretisation of spacetime 

Spacetime is discretised by the introduction of a four dimensional isotropic hy-

percuhic lattice, AE, with lattice spacing a, where 

AE={xE4Jx/aEZ,ji=1,...,4} 	 (1.13) 

The integration over Euclidean spacetime in the action is then replaced by the 

sum over all sites on the lattice, x, 

(1.14) 

and dimensionful quantities are rescaled by the lattice spacing to yield dimen-

sionless variables. For example, the fermion mass is replaced by rn —* arn since 

in natural units mass has the dimensions of inverse length. 

1.4.2 Lattice representations of the fermion and gauge fields 

The fermion fields are represented on the lattice by anti-commuting Grassmann 

variables situated at the sites of the lattice. The Crassmann nature of the fields 

means that it is difficult to simulate the path integral numerically. Fortunately, 
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the action is bilinear in the quark fields and the integration over the fermion 

variables can be performed analytically, avoiding the problem. 

The representation of the gauge fields on the lattice is not so straightforward 

due to the requirements of gauge invariance. If the gauge fields are represented by 

field variables situated at each site, the gauge invariance of the action is spoiled 

due to the discretisation of the derivative by a finite difference. An alternative 

transcription of the gauge fields [1] which maintains gauge invariance is outlined 

below. In the presence of a gauge field in the continuum, a quark field transported 

from x to y accrues a phase factor 

(y) = Pexp 
{_ f A(z)dz} 0 (x) U(y,x)(x)  

where P denotes the path ordered product, required due to the non-abelian na-

ture of the gauge fields. Under a local SU(3) gauge transformation, the parallel 

transporter, U(y, x), transforms as 

U(y,x) 	G(y)U(y,x)G 1 (x) 	 (1.16) 

and hence 

(y)U(y,x)b(x)  

is gauge invariant. On the lattice the parallel transporter is represented by a 

link variable, U(x), associated with the link originating at site x oriented in the 

direction 

U,L(x) = _aA(x+) 	 (1.18) 

where the average gauge field over the link is conventionally defined to be at the 

midpoint. Here A is a unit vector in the lattice direction p. These directed gauge 

links are represented by 3 x 3 unitary matrices with unit determinant belonging to 

the fundamental representation of SU(3). The property that U(x) = UI,(x+a) 

follows from the path ordering condition. The gauge links transform under SU(3) 

as 

U(x) 	G(x)U(x)G' (x + a) 	 (1.19) 
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provided G(x) belongs to the same representation of the group as the gauge links. 

From this equation and the transformation equations for the fermion fields given 

by equations 1.4 and 1.5, two types of gauge invariant object can be formed on 

the lattice. The first of these is a string 

(y)U(y) ... U(x—aib(x) 	 (1.20) 

where the gauge links are path ordered and the trace over the colour indices is 

implicit. The second gauge invariant object is formed by taking the trace of a 

product of gauge links forming a closed loop, referred to as a Wilson loop. The 

simplest example of which is the plaquette, TrU 0 , where 

Uo  U(x)U(x + ai)U(x + ai)U(x)  

is the product of gauge links around an elementary square of the lattice. 

1.4.3 The lattice action 

The QCD action can be discretised in many ways. The choice of discretised 

action is governed primarily by the requirement that the action must reproduce 

the continuum action in the limit where the lattice spacing tends to zero. This 

allows higher order terms in the lattice spacing which vanish in the continuum 

limit to he added to the action. 

The lattice action is constructed from appropriate combinations of the gauge 

invariant objects defined in section 1.4.2, and is written in terms of a pure gauge 

action and a term dependent on the fermion fields 

S[b,U] = Sa[U]+SF[b,b,U] 	 (1.22) 

The fermion action for a single quark flavour can be written in the general form 

SF[l,,UI = 	 ( 1.23) 
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where M is the fermion matrix. The particular form used for each term in the 

action is discussed later in sections 1.7 and 1.8. 

1.4.4 The integration measure 

Once the fermion and gauge fields have been represented on the lattice and the 

action constructed, the partition function can now be expressed in terms of the 

lattice variables 

where 

—Sa[U]—> 7(x)M,,y[U]'çb(y) 
Z = f V

-
VVUe 	 (1.24) 

V'Vb fJd(x)db(x), 	VU fJdU(x) 	(1.25) 
x 	 xa 

Performing the integration over the Grassmann valued fermion fields, the parti-

tion function becomes 

Z = 	 C -SG 	 (1.26) 

where dU is the gauge invariant or Haar measure defined by the condition 

/dUf(U) = f dUf(UV) = j dUf (VU) 	 (1.27) 

where V E SU(3) and f(U) is an arbitrary function over the group. Since the 

gauge links are elements of a compact group the normalisation condition 

fG 
dU = 1 
	

(1.28) 

can be imposed. This condition reduces the path integral to a large but finite 

number of integrations and removes the need for gauge fixing. The precise form 

of the Haar measure can be found in [6]. The remaining integration over the 

gauge links is performed numerically. 
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1.4.5 Numerical simulation 

In section 1.2, the expectation values of quantum field operators corresponding 

to physical observables were expressed in the path integral formalism. In terms 

of the lattice variables, this statement becomes 

	

(01 {O(, o , U)} 0) = f DDDUO(, 0 , U)e 	 (129) 

Since the fermion term in the action is bilinear in the quark fields, the path inte-

gral over the Grassmann valued variables can be performed analytically. By 

considering the integration rules for Grassmann integrals [6], the observable, 

O(, 0 , U), must contain equal numbers of fermion and anti-fermion fields other-

wise the integral will vanish. This means that the integral over the fermion fields 

for a general operator will consist of integrals of the type 

J. DçbTh/ 
 

e ly 	 det M[U] 	 (1.30) 

and 

/ VV 
	(x')(y')c = M1[U]detM[U] 	(1.31) 

Dividing equation 1.31 by equation 1.30 yields the quark propagator in a back-

ground gauge field, G' 3 (x, y; U), in terms of the inverse of the fermion matrix 

y; U) = M,x; ,b,y [U] (1.32) 

where the colour indices (a, b) and the Dirac spinor indices (a, 0) are now indi-

cated. The quark propagator is the basic building block from which correlation 

functions, and in particular, hadron correlators, are constructed on the lattice. 

The determination of the masses from hadron correlators is the subject of chap-

ter 2. 

Once the integration over the fermion fields has been performed analytically, 

the expectation value of the general operator, O(, o , U), is given by the path 
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integral over the gauge fields 

t{O(, , U)} 0) = 	f DUO(U, M 1  [U])e Ui 	(1.33) 

(1.34) 

where the action has been replaced by the effective action 

Seff[U] = S[U] - in det M[U] 	 (1.35) 

The notation <>u has been introduced to denote the path integral over the 

gauge field configurations. Provided Seff is real valued, the remaining integra-

tion over the gauge links can be performed numerically using the technique of 

Monte Carlo integration with importance sampling [13]. This integration method 

generates gauge field configurations, labelled by {U}, where f Uj i  represents the 

assignment of a link variable to every link on the lattice, with a probability pro-

portional to e[U].  Successive configurations are obtained via an algorithmic 

update, where the specific algorithms used to generate the configurations anal-

ysed in this thesis are referenced later at the appropriate points. The data sets 

referred to throughout this thesis, are composed from an ensemble of N of these 

configurations, {U}, i = 1,. . . , N. Neighbouring configurations in the ensemble 

are separated by several algorithmic updates (known as sweeps or trajectories de-

pending on the type of algorithm) since successive updates of the configurations 

are in general highly correlated with each other. The expectation value of an 

observable is approximated by the ensemble average of the observable measured 

on each configuration 

( 0 1 0(1 U)} 0) 	O({U} , M 1 [{U}]) 	(1.36) 

where the statistical error in the average is 1//V for independent configurations. 

Correlations in the ensemble mean that this error is increased. 
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1.5 Simulating QCD 

The numerical simulation of QCD requires considerable computational effort in 

order to generate sufficient statistics to achieve reliable results with acceptable 

statistical errors. This section discusses the approximation which was made for 

the data sets analysed in chapter 3 in order to achieve this goal (the quenched 

approximation) and the subsequent process towards simulating full QCD, the 

Nf  = 2 dynamical fermion simulations investigated in chapter 4. 

1.5.1 The quenched approximation 

The most computationally intensive part of the configuration generation proce-

dure concerns the need to take into account the determinant of the fermion matrix 

which appears in the effective action, defined in equation 1.35. This is due to the 

non-local nature of the inverse of the fermion matrix, which is required in the 

algorithmic update of the configurations, and the fact that the matrix consists 

of a large number X 3colours  X Niatt ice  sites)2 of elements which increase with 

the lattice volume. The computational overhead can be significantly reduced if 

the approximation 

detM[U] = constant 	 (1.37) 

is made. The constant was set equal to one in this case. This approximation 

is known as the quenched approximation and corresponds to neglecting quark 

anti-quark loops in the QCD vacuum (effectively these quarks are made infinitely 

heavy and thus they decouple from the theory). The quarks and anti-quarks in 

these loops are commonly referred to as dynamical fermions. The only reason for 

making this approximation is to significantly simplify the configuration generation 

procedure. Some motivation for the use of the quenched approximation comes 

from phenomenological evidence, for example Zweig's rule, which suggests that 

the effects in the observed spectrum and decay modes due to quark loops are 

small. This rule is used to explain the dominant decay of the q meson to KK+ 

observed experimentally, even though the phase space available for the decay to 

37r's is significantly more favourable. The presence of quark loops in the latter 

decay is used to explain the suppression of the decay mode. Both decay modes 
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are depicted by quark line diagrams in Figure I.I. 

a) 	 b) 	 U 	+
TC 

K 
s 

C K 

ID I 

U 

Figure 1.1: Quark line diagrams of two possible decay modes of the meson. 
The decay represented by diagram b) q n + no is suppressed relative to the 
decay represented by diagram a) q -+ KK even though the available phase 
space for decay mode b) is much larger [14]. 

Fortunately quenched QCD retains most of the important features of full 

Q CD such as confinement and chiral symmetry breaking, and in essence, the 

spectrum calculation proceeds in a similar manner to the full QCD case. One of 

the main effects of quenching is to shift the value of the coupling. This means 

that quenched and dynamical simulations should be compared at the same value 

of the lattice spacing instead of at the same value of the coupling. Simulations 

with the same value of the lattice spacing defined with reference to a particular 

observable but with different lattice parameters are referred to as a "matched" 

ensemble of data sets. The method by which this was achieved for the data sets 

examined in this thesis is discussed in chapter 4. 

Neglecting the quark anti-quark loops in the vacuum has several important 

consequences. For example, resonances such as the p meson are stable in the 

quenched approximation (in full QCD the p mass receives a contribution from 

intermediate states composed from two 7r's) and this implies that the masses will 

he shifted. In the case of the p,  the broad resonance of 150 MeV [14] measured 

experimentally suggests that the coupling to the in's is relatively large and thus 

may have a significant impact on the p mass [15]. As a further consequence of the 

quenched approximation, the static quark potential between a quark anti-quark 
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pair is expected to rise linearly with distance. In full QCD the potential should 

level off due to the effects of string breaking, where quark anti-quark pairs are 

created from the vacuum as the separation is increased. In addition, the force 

between the quarks at small distances is expected to he larger in the dynamical 

case due to screening effects. The evidence for these effects in the potential is 

reviewed in chapter 4. One place where the inclusion of quark loops in the vacuum 

is expected to have a large effect is in the determination of the mass of the ij' 

meson. The axial U(1) flavour symmetry is spontaneously broken in the limit of 

massless quarks. However, the only candidate for the associated Goldstone boson, 

the 77', has a large mass of 958 MeV [14]. This is known as the U(1) problem. 

To solve this problem it has been proposed that the i' acquires its large mass 

through contributions arising from the QCD vacuum, for example from quark 

loop effects (a discussion of this can he found in [16]). As a consequence, the r' 

is degenerate with the n in the quenched approximation. 

Although the quenched approximation has successfully demonstrated that 

the non-singlet light hadron spectrum can be determined to within 10% of the 

experimental results, as confirmed by this thesis in chapter 3, it still represents 

an uncontrolled error in the simulation. Within recent years, the advent of more 

powerful computers and efficient configuration generation algorithms, has meant 

that it is now feasible to simulate two light degenerate flavours of dynamical 

quarks, denoted by Nf  = 2. It is straightforward to show the primary reason why 

the dynamical simulation has been limited to two degenerate quarks and not 

three quarks of different flavours, which would be required in order to simulate 

the three lightest quarks, the up, down and strange quarks (u, d, s). 

1.5.2 Nf  = 2 dynamical fermions 

Considerable simplifications in the numerical simulation of full QCD arise from 

considering pairs of degenerate quark flavours. In section 1.4.5, the numerical 

simulation required that the effective action, defined in equation 1.35, be real 

valued in order that importance sampling can be implemented easily. This re-

quirement means that det M[U] is real and positive. That the determinant of the 
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fermion matrix is real follows from the lattice Hermiticity relation 

M[U] = 75 M[U]'y5 	 (1.38) 

which holds in the case of the improved Wilson fermion matrix, defined later in 

section 1.8. However, equation 1.38 does not guarantee the positivity of det M[U]. 

Consider an action with two fermion terms, one describing the interaction of the u 

flavoured quarks and the other the d flavoured quarks. Performing the integration 

over the fermion fields results in the following determinant 

detM[U] -+ detMU [U]detMd [U] = (detM[U]) 2  >0 	(1.39) 

provided M = Md. Thus positivity is satisfied in the case of pairs of degenerate 

fermion flavours. 

In both the quenched approximation and the dynamical simulations, the in-

version of the fermion matrix must be performed in order to calculate the quark 

propagators corresponding to the valence quarks. This can be a computationally 

intensive process, particularly if simulations are performed at the physical masses 

of the light quarks. For this reason, quark propagators are generated at unphys-

ically heavy quark masses and the lattice masses extracted from the data are 

extrapolated to the physical light quark masses. These chiral extrapolations are 

discussed later in section 1.11, but first the form of the lattice action constructed 

within the 0(a) improvement programme is discussed. 

1.6 0(a) improvement 

One of the major sources of error in the lattice simulation arises from the dis-

crete nature of the lattice. The computational cost of simulating at arbitrarily 

small lattice spacings means that practical simulations must be performed at 

small yet finite lattice spacings. This is particularly applicable for simulations 

with two flavours of dynamical fermions which require significant computational 

resources and necessitate that simulations be carried out at relatively coarse lat- 
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tice spacings, a 	0.1 fm. As a consequence, the discretisation errors in spectral 

quantities become larger. One way to reduce the problem is to consider improved 

actions. Although the pure gauge action, defined later in section 1.7, can be im-

proved, this thesis investigates the effect of improving the fermion action. The 

improved fermion action considered here is based on the ideas of the Symanzik 

improvement programme [17] which aims to construct a lattice realisation of the 

theory with an improved approach to the continuum limit. This is achieved by 

the addition of appropriately chosen higher order terms in the lattice spacing to 

the lattice action and operators, selected to cancel the discretisation errors of 

a particular order of the lattice spacing in on-shell physical quantities, such as 

hadron masses. Spectral quantities should then show an improved approach to 

the continuum limit at the expense of only a relatively small rise in the compu-

tational cost of the simulation. With this in mind, the choice of lattice action 

used in this thesis is now discussed. 

1.7 The gauge action 

The pure gauge part of the action, S0[U], is defined to be the, standard Wilson 

gauge action [1] 

So[U] _— /I >I(1 _ eTrUo) (1.40)  
g0  

where 3 parametrises the dependence on the strong coupling constant. The sum is 

over all the positively oriented plaquettes originating from every lattice site, where 

U0  was defined in equation 1.21 and iRe denotes that the real part of the trace is 

taken. Upon substituting equation 1.18 into the gauge action, SG[U],  the Yang-

Mills term in the continuum action is obtained up to discretisation errors of 0(a2 ). 

However, this is only the simplest choice for the gauge action which can be made. 

Improved gauge actions, which aim to reduce the discretisation errors further, 

can be formed by adding a contribution from Wilson loops created from six (or 

more) gauge links. In "full" QCD simulations, the CP-PACS Collaboration [18] 

use the improved gauge action obtained from an approximate renormalisation 
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group analysis [19] 

S[U] = 0
(1X1  
 E  

 

W11  - 0.0907 	w12) 	W1  = eTrU0 	(1.41) 
1x2 

where W1>2  denotes the real part of the trace over a 1 x 2 rectangular Wilson 

loop in the i, v plane. The sums are over all the positively oriented Wilson loops. 

The motivation and method used to obtain this action are not discussed further 

and can be found in [19]. This choice of action is expected to eliminate the 0(a2 ) 

discretisation errors. 

1.8 The fermion action 

The fermion action used in this thesis is the 0(a) improved Wilson fermion action 

SF[3, , U] = Si0n[, , U] + Sr[, 0 , U] (1.42) 

The first term is the Wilson fermion action [20] and the second is the counter-

term known as the Sheikholeslami-Wohlert or Clover term [21], which can be 

tuned in order to cancel the 0(a) discretisation errors arising from the Wilson 

fermion action. The lattice fermion action is obtained through the discretisation 

of the continuum fermion action 

Sont[ 0, A] 
= f dx (x)( + rn)(x) 	 (1.43) 

where 	 In the discretisation known as the naïve discretisation the 

covariant derivative, D, is replaced by the symmetrised lattice derivative, 	= 

+ \7), where the forward and backward lattice derivatives are given by the 

finite differences 

V(x) = {U(x)(x + a) - 
a 

V(x) = 	{(x) - U(x - a(x - a)} 	 (1.44) 
a 
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The symmetrised form is taken to ensure that the action is Hermitian. The naïve 

fermion action is then 

	

S[,'çb,U] = 	 (1.45) 
Xly 

where 

	

M[U] = rn8, + 	 — 	 ( 1.46) 

and the lattice spacing has been set equal to unity. Taylor expanding the lattice 

fermion fields and the gauge links in equation 1.45 appears to give the correct 

classical continuum limit up to discretisation errors of 0(a2 ). Unfortunately it 

gives rise to 2d = 16 quark flavours instead of one, where d = 4 is the dimension 

of spacetime. This is most easily seen by examining the quark propagator in 

the free field case. Setting the gauge fields to the identity matrix, the quark 

propagator for a free fermion field is given by the inverse of the fermion matrix, 

as in equation 1.32. Inverting the naïve fermion matrix defined in equation 1.46 

by taking the momentum space Fourier transform, the quark propagator is 

	

CN(x,y) = 	
m+ iysin(p,) 	

(1.47) 

where the lattice delta function used in the Fourier transform is defined as 

	

= 	 (1.48) 
p 

and V is the lattice volume. The momentum p is periodic with period 27/a and 

is restricted to values in the Brillouin zone defined by 

{p E L31 — 	<p 	 (1.49) 
a 	aJ 

Taking the continuum limit (a -+ 0) of the propagator in equation 1.47 is equiva- 

lent to taking the limits, m -+ 0 and p. -+ 0. The resulting pole in the propagator 

corresponds to an on-shell fermion. However, additional poles in the propagator 
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occur when p = ± 7T (where a = 1), giving rise to 15 extra fermions - the fermion 

doubling problem. The doubling problem is not solved by including the gauge 

fields. 

To alleviate this problem, Wilson added a higher order term to the action 

which gives the fermion doublers a mass proportional to the inverse lattice spac-

ing. This is achieved by adding an additional term corresponding to the lattice 

discretisation of the second derivative to the discretisation of the covariant deriva-

tive 

— VV 	r = 1 	 (1.50) 
2 

which preserves the Hermiticity of the action. The parameter r is usually chosen 

to be one. The Wilson action is then written as 

Srs0n[, , U] = 	0 (x)M[U]b(y) 	 (1.51) 
x ,y 

where the Wilson fermion matrix is given by 

X"Y 1U1 = 	— 	[8(i — )U(x) + S_,(1 + )U(y)] 	(1.52) 

and the fermion fields in the action have been rescaled by making the replace-

ments, /'(x) —+ x)/ and (x) —+ b(x)/. The hopping parameter, ,, is 

related to the fermion mass via 

Ic; 
1 

(1.53) 
2rn + 8 

Note that additional flavours of quarks can be simulated by including terms with 

different hopping parameters in the action. In the continuum limit, the higher 

order term in the action vanishes and the masses of the fermion doublers become 

infinite, decoupling from the theory. This can be seen by considering the quark 
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propagator in the free field case for the Wilson fermion action 

e(x_y) 	
(1.54) 

p 

Gw(x,y) 	
rn + E,, r(1 - cos(p)) + isin(p) 

where tFiere are no longer poles arising from momenta at the edges of the Brillouin 

zone in the continuum limit. Unfortunately solving the fermion doubling problem 

is achieved at the expense of the global chiral symmetry of the action at zero 

quark mass, (where the fermion fields transform as x) = eb(x) and (x) = 

Although this is not considered to he a fundamental problem, since 

in the continuum limit it is expected that chiral symmetry will be restored, it is 

a big practical problem. Some of the consequences of sacrificing chiral symmetry 

are discussed in section 1.11. In fact it is not possible to define a Hermitian lattice 

action which is ultra-local, translationally invariant, preserves chiral symmetry 

and presents no fermion doublers. This is the statement of the "no-go" theorem 

by Nielsen and Ninomiya [22]. However, recent developments have meant that 

it is now possible to preserve chiral symmetry on the lattice at the expense of 

relaxing the criterion of ultra-locality, by requiring that the lattice discretisation 

of the Dirac operator, D, satisfies the Girisparg-Wilson relation [23], 

y5 D + Dy5  = aDy5 D 
	

(1.55) 

The condition of ultra-locality, where the Dirac operator only depends upon the 

gauge field variables in a finite neighbourhood, is relaxed in order to allow the 

spatial dependence of the operator to decay exponentially, provided the rate of 

decay is proportional to the lattice cutoff [24]. If this condition is satisfied, this 

definition of locality can be considered to be as good as ultra-locality. The major 

difficulty of simulating fermion actions which satisfy equation 1.55 is the need for 

further algorithmic developments in order to make numerical simulations feasible. 

The Wilson fermion action introduces discretisation errors of 0(a). For simu-

lations at relatively coarse lattice spacings, such as the dynamical fermion simula-

tions considered in this thesis, this introduces a potentially unacceptable discreti- 
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sation error. One way to reduce this error is to add 0(a) counter-terms to the 

action, which can be tuned to reduce the discretisation errors in on-shell quanti-

ties. By considering all terms of 0(a) which are gauge invariant and respect the 

discrete symmetries of the lattice, it can be shown [25] that the counter-term can 

be written in the continuum as a linear combination of five terms which satisfy 

these requirements. Two of the terms can he eliminated by applying the field 

equations and a further two amount to a rescaling of the bare parameters of the 

theory, the strong force coupling and the fermion mass, by a factor proportional 

to (1 + O(amq )), where m q  is the quark mass defined in section 1.11. The dis-

cretised form of the remaining term is referred to as the Sheikholeslami-Wohlert 

or Clover term [21] 

7,/c 	- 

Sr[,U] = —csw--  

x,p,1i 

where cr, = ['y1, y] and a symmetric definition of the lattice field strength 

tensor, F(x), is defined by 

F(x) = (Q(x) - Q(x)) 	 (1.57) 

where Q 1 (x) is the sum of the four plaquettes situated around a lattice site, x, 

in the plane defined by the lattice directions, ft and i-' 

Q(x) = 

+ 
It 

• 	Ut(x —1)U(x ——I)U,(x ——i)U(x -) 

• 
Pictorially, the field strength tensor resembles a four-leaf clover. The 0(a) im-

proved fermion action is then given by 

SF[b,b,U] = 	 ( 1.59) 
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where the fermion matrix is defined as 

M,[U] 	(I - CSW 

us; 

Ii,,) 

(1.60) 
LL 

The clover coefficient, c, w  in the Sheikholeslami-Wohlert term is a function of the 

bare coupling, go,  and can be tuned in order to remove the 0(a) discretisation 

errors in on-shell quantities. Two possible choices for c obtained from the 

tadpole and non-perturbative improvement schemes are discussed below. 

1.9 Tadpole improvement 

The gauge links, defined by equation 1.18, can be Taylor expanded in terms of 

the continuum gauge fields for small a to yield 

U(x) 	1 - aA(x) +... 	1 + iagoA(x)Ta  +... 	(1.61) 

where corrections to this relation would appear to vanish as powers of a. Un-

fortunately, this is not the case in the quantum theory [26]. Instead, when pairs 

of gauge fields present in higher order terms in the expansion are contracted to-

gether they generate tadpole contributions which exactly cancel the powers of a. 

These ultraviolet divergences, arising from momenta of the order of the lattice 

cutoff, mean that higher order terms in the expansion of equation 1.18 are only 

suppressed by powers of g. The large contribution from the tadpoles has the 

effect of renormalising the gauge links. In order to take account of this, the tad-

pole improvement scheme described in [26] advocates replacing the gauge links 

that appear in the lattice action and operators with 

U(x) -+ U,(x)/u o , 	uo  < 1 	 (1.62) 

where u0  is the mean field parameter representing the mean value of the gauge 

link. The mean value of a gauge link cannot be measured directly since the 



Chapter 1. Introduction 	 23 

expectation value of the gauge dependent link variables vanishes. Instead, a 

gauge invariant choice for u0  can he obtained by considering the expectation 

value of the plaquette 

-eTrUo \ 	 (1.63) K1 	
1/4 

uo 
3 	/U 

Other choices for u0 , such as the expectation value of a gauge link measured 

in a gauge fixed lattice simulation where the (continuum) Landau gauge fixing 

condition, = 0, transcribed on the lattice has been used [27], have not 

been considered in this thesis. Replacing the gauge links by the tadpole improved 

links amounts to rescaling the free parameters in the lattice action 

go -+go/u-g, #c-+icu0  (1.64) 

where g is the "boosted" coupling. From these replacements, the clover coefficient 

is redefined as 

—+ 	= 1/u 	 (1.65) 

where the original value of c,w  is taken to be the tree-level value of unity [21]. The 

tadpole improvement procedure is expected to reduce the 0(ag) discretisatioll 

errors present in the tree-level improved fermion action. 

1.10 Non-perturbative improvement 

The non-perturbative improvement scheme, discussed in [9, 25, 28, 29, 30], aims 

to completely eliminate the discretisation errors of 0(a) in on-shell quantities 

through improving the action and the operators non-perturbatively. Full 0(a) 

improvement of the action is achieved by choosing the clover coefficient appro-

priately. The clover coefficient is determined by requiring that the measured 

violation of chiral symmetry resulting from the Wilson fermion action is of 0(a2 ). 

In the limit of degenerate, massless quarks, chiral flavour symmetry in the 

continuum is spontaneously broken. As a consequence of the breaking of the 

SU(2) axial isospin symmetry for the u and d quarks, the ri's are identified as 

the three massless Goldstone bosons of the theory. However, physical quarks 
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have a small mass and thus the ir's are no longer true Goldstone bosoris but 

"pseudo-Goldstone hosons". This explicit breaking of the symmetry means that 

the associated conserved current in the massless case is replaced by the partially 

conserved axial current (PcAc) relation 

0,A 1 (x) = 2mpcAcP(x) 
	

(1.66) 

defined in the continuum, where mp cc  is the unrenormalised current quark mass 

(the determination of which is described later in section 3.3). The isovector axial 

current and pseudoscalar density are given by 

A(x) = (X)5(X), 	P(x) = (X)5(X) 	 (1.67) 

where the Pauli matrices, r, act on the flavour indices of the fermion fields. The 

index i = 1,2, 3 is referred to as the isospin index. In the Wilson fermion formu-

lation, correction terms of 0(a) arise in the lattice discretisation of equation 1.66, 

where the details of the discretisation are given later in section 3.3. The improve-

ment scheme then requires that these lattice artifacts in the discretisation of the 

PCAC relation are reduced to 0(a2 ). This can be achieved by eliminating the 

errors of 0(a) present in the determination of TflPCAC by tuning the improvement 

coefficients in the Clover term of the action and in the lattice axial current op-

erator. The strategy used to determine the improvement coefficients is outlined 

in [25, 301. In this case, the PCAC mass was measured in the Schrödinger func-

tional scheme in which Dirichlet boundary conditions are imposed in the time 

direction of the lattice. The improvement coefficients were determined by requir-

ing that the PCAC mass was independent of the kinematical parameters (such 

as the temppral insertion point of the axial current, x 4 , and the external fields 

employed in the Dirichiet boundary conditions) up to terms of 0(a2 ). This is 

equivalent to minimising the difference in the results obtained for the PCAC mass 

for two sets of kinematical parameters, A and B 

rnpcAc - rnpcAc = 0(a) 	 (1.68) 
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by tuning the improvement coefficients. In practice, a third value of mpcAc was 

considered as two improvement coefficients were determined. 

In section 1.8, it was noted that the full 0(a) improvement of the fermion ac-

tiori required the rescaling of the strong coupling constant and bare quark mass 

by a factor proportional to (1+0(amq )). This rescaling of the bare parameters is 

required in order that a mass independent renormalisation scheme which is con-

sistent with 0(a) improvement can be defined [25], and Fience spectral quantities 

approacFi the continuum limit with a rate proportional to 0(a2 ). The improved 

coupling constant and bare quark mass are defined by 

iq  = rnq (1 + bm (g)rnq ), 	 = g(1 + bg (g)rnq ) 	 (1.69) 

where bm  arid bg  are improvement coefficients which can be tuned in order to 

cancel the residual lattice artifacts of O(arnq ). Note that in the quenched ap-

proximation, bg  = 0, (since in the quenched case observables composed entirely 

from gluon fields which are improved at zero quark mass are also improved at 

non-zero quark mass [25]) where to one-loop in perturbation theory [31, 32] 

bg  = 0.012Nfg + 0(g) 	 (1.70) 

where Nf  is the number of dynamical quark flavours. For the Nf  = 2 dynamical 

fermion simulations the improvement of the coupling was neglected. The sta-

tistical accuracy of the dynamical fermion data considered here is not sufficient 

to observe any noticeable effects arising from the very small improvement in the 

hare coupling. The values for all the improvement coefficients used in this thesis 

are specified in the following chapters as required. 

1.11 C hiral limit 

In section 1.8, it was noted that chiral symmetry is explicitly broken by the 

Wilson fermion action when a 	0, even in the limit of vanishing quark mass. 

In addition to the 0(a) correction terms appearing in the PCAC relation for the 
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unimproved action, as discussed in section 1.10, this means that the fermion 

mass, rn, is additively (as well as multiplicatively) renormalised. The bare quark 

mass is then defined by 

m q  = rn - rn 	 (1.71) 

where rn is a constant which must be determined from the simulation. In terms 

of the hopping parameter, defined in equation 1.53, the bare quark mass is defined 

as 
1  

rnq 	 (1.72) 
2 \i 	kcrit) 

where 1crjt,  the critical value of the hopping parameter, depends on the lattice 

spacing. The value of /tcrit for each lattice simulation was determined in two ways 

by extrapolating two different quantities, the pseudoscalar meson mass and the 

PCAC mass, measured at several unphysical values of the quark mass. In each 

case an extrapolation to the chiral limit at zero quark mass was performed. The 

form of the extrapolations are given later in section 3.9. 

The critical value of the hopping parameter is measured through a statistical 

average over an ensemble of configurations. This means that the value of 'crjt 

for individual configurations will be distributed about the mean value. As a con-

sequence, it is possible that ic kcrjt for some configurations in the ensemble, 

particularly if small quark masses are considered. These configurations, where 

the fermion matrix has a zero mode, are referred to as exceptional configurations. 

(Other factors which contribute to the incidence of exceptional configurations are 

discussed later in section 3.1). In dynamical fermion simulations the occurrence of 

exceptional configurations in the configuration generation procedure is suppressed 

by the factor det M. However, this is not the case in the quenched approxima-

tion. Exceptional configurations in the quenched simulations considered here are 

discussed further in section 3.1. 

Once the bare quark mass has been defined in terms of 1criL,  the quark masses 

measured at the physical masses of the light mesons can be determined, as dis-

cussed later in section 3.10, and the physical masses of the lightest hadrons in 

lattice units can be calculated. The final stage in the lattice calculation is then 
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to determine the hadron masses in physical units by taking the continuum limit. 

1.12 Continuum limit 

In section 1.4.3, the addition of higher order terms in the lattice spacing to the 

action was permitted provided the continuum action was reached in the limit 

a -* 0, known as the classical continuum limit. This section contains a brief 

discussion of the main conditions required in order that the lattice theory can be 

used to extract continuum physics at finite values of the lattice spacing. Further 

details can be found in [6]. 

Observables measured on the lattice (such as the hadron masses) are expressed 

in terms of the lattice spacing. Since the only free parameters in the theory 

are the strong coupling and the quark masses, the lattice spacing is not known 

a priori. This means that physical predictions from the lattice are made by 

considering dimensionless ratios of observables. For the correct continuum limit 

to be reached these dimensionless ratios of observables should be independent of 

the lattice spacing and, in particular, the lattice masses should vanish in such a 

way that the corresponding mass in physical units remains finite as the lattice 

spacing is taken to zero. This occurs for simulations near criticality, where the 

lattice correlation length, (which is inversely related to the mass of a typical 

hadron in the simulation), diverges. At this point, where >> a, the theory no 

longer "sees" the underlying structure of the lattice as required in the continuum 

limit. In the case of massless quarks, the critical point is reached by tuning the 

strong coupling, go  (or equivalently 3), to the critical value, gt  defined at the 

point where the correlation length diverges. This means that the coupling can 

be expressed as a function of the lattice spacing. (When massive quarks are 

considered there is an additional dependence upon the n values). 

In the case of massless quarks, a generic hadron mass in lattice units, mH, at 

the physical quark masses measured on a particular lattice simulation, depends 

on /3 and hence go.  The physical value of the hadron mass, MH, obtained by 
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setting the lattice scale, is defined by 

MH(go,a) = rnH(go )/a 	 (1.73) 

where M depends on both the coupling and the lattice spacing. The physical 
Hph mass in the continuum limit, MYS,  can be reached in the limit a --~ 0 

limMH(go,a) = H 	 (1.74) 
a-O 

provided go (a) is a well defined function of a which tends to the critical value of 

the coupling, grit  in the limit. For QCD the critical value of the coupling occurs 
cr at gt = 0 due to asymptotic freedom, or in terms of the lattice parameters, as 

13 —+ cc. From the discussion above, the functional dependence of the coupling 

on the lattice spacing depends on the choice of observable. However, if the lattice 

spacing is sufficiently small a region of parameter space exists where a universal 

function can be defined for g o (a). This region of parameter space is known as the 

scaling region. 

Lattice simulations are said to be in the scaling region, S, if dimensionless 

mass ratios measured on lattices with different lattice spacings give the same 

result 
rni(go) - m1(g) = constant, 	go, g E S 
rn2(go) - m2(9) 

where go  and g label two simulations in the scaling region. In practice, residual 

lattice artifacts will result in scaling violations. The improvement programme, 

discussed in section 1.6, aims to reduce the scaling violations in order that sim-

ulations from a wider range of /3 values can be considered to lie in the scaling 

region. In the scaling region, lattice hadron masses can be parametrised in terms 

of a dimensionless constant c and their functional dependence on the strong cou-

pling. If the functional dependence on the coupling, f(g),  is the same for two 

different lattice masses, denoted by rn 1  and m2 

mj(go) = cjf(go ) 	ciALat a, 	i = 1,2 	 (1.76) 
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then the simulation is said to be in the scaling region of parameter space. As a 

consequence of requiring that the observables are independent of the lattice cutoff, 

a mass scale, AL at , is introduced through a process known as dimensional 

transmutation. 

The introduction of a mass scale is not unique to the lattice formulation, 

but parametrises the asymptotic freedom property of QCD. In order that the 

QCD Lagrangian simultaneously explains the high energy and the low energy 

behaviour, the functional dependence on the coupling in the lattice theory is 

defined from the renormalisation group equation 

Ia— 	Lat(9O) 	yLat(gO,mq)-1 (9(a,go ,m q ) 0 	(1.77) 
[ Da 	 go 	 Drnq j 

where O(a,go ,mq ) is an observable measured in physical units. Note that the 

dependence on the bare mass of one flavour of quark has now been included. The 

lattice 0-function and -y-function are defined by, 

ag0  
/3Lat(gO) =—a--- = —/3 og  - /3ig +... 	 (1.78) 

3a 

yLat(gO) = —a 
Dmq--- = — dogrnq  +... 	 (1.79) 

where the coefficients of the 0-function and 'y-function have been determined in 

perturbation theory [33, 34, 35, 36, 37]. In the quenched approximation, where 

the number of dynamical quark flavours is assumed to be zero (N f  = 0), they are 

given by 

Oo  = 11/167r 2 , 	f3 i  = 102/(167r 2 ) 2 , 	d0  = 8/167r 2 	(1.80) 

The 0-function in equation 1.78 can be integrated to yield the following expression 

for ALat which parametrises the dependence of the coupling on the lattice spacing 

ALat 	lexp( 	1 ) (0 
a 	

2/3ogg)_/3I/(2)[ + O(g)]  

where ALat  arises as an integration constant. Lattice simulations where ALat is 

given by equation 1.81 are said to be in the asymptotic scaling region. This is 
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the region in parameter space where lattice simulations should ideally be per-

formed. Equation 1.81 is related to the phenomenon of asymptotic freedom and 

describes how the coupling runs as the energy scale (defined by the lattice spac-

ing) is varied. Note that the strong coupling is usually expressed in terms of a, 

where a g/47r. In theory, ALat, can be measured on the lattice and compared 

with the perturbative expression in equation 1.81 in order to assess the scaling 

violations and ensure that a reliable extrapolation to the continuum limit can 

be performed. In practice, several lattice simulations are performed for differ-

ent lattice spacings in the scaling region and dimensionless mass ratios are then 

extrapolated to the limit a —+ 0 where the scale is set by comparing one of the 

hadron masses with its experimentally measured value. The details of the con-

tinuum extrapolations performed with the data from the quenched simulations 

are discussed in section 3.12. 

The 'y-function defined in equation 1.79 can be integrated to yield the renor-

malisation group invariant quark mass, M 

M = rnq(2og)_d0hf(20) [1 + O(g)] 	 (1.82) 

which describes how the current quark masses run with the coupling. This ex-

pression is used in section 3.10.1 where the determination of the renormalised 

current quark masses from the quenched simulations is discussed. 
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1.13 Overview of thesis 

In chapter 2, the construction of hadron correlators on the lattice is discussed, 

and the fit procedures used in this thesis to determine the light hadron masses 

from the hadron correlators are described. Chapter 3 presents the results of 

the light hadron spectrum determined from simulations employing the quenched 

approximation. The physical masses of the pseudoscalar and vector mesons, and 

the octet and decuplet baryons, are determined in the continuum limit from data 

sets at three values of the lattice spacing. The effect of the 0(a) improvement of 

the fermion action on the scaling behaviour of ratios of lattice masses at different 

lattice spacings is investigated. A comparison of the scaling behaviour was made 

between simulations using the two improvement schemes described in sections 1.9 

and 1.10. The error due to finite size effects is examined for one value of 0. Results 

for the ratio of the strange and "normal" current quark masses are presented, 

where the normal quark mass is defined as the average of the up and down quark 

masses. 

Chapter 4 presents the first results for the light hadron spectrum obtained 

from 'a matched ensemble of data sets with Nf  = 2 dynamical fermions. The 

results are compared with a data set in the quenched approximation at the same 

lattice spacing. Comparisons were made with a simulation with a lighter dynam-

ical fermion mass at a slightly smaller lattice spacing. The evidence for quark 

loops effects in the light hadron spectrum is examined. Evidence of dynamical ef-

fects observed in other quantities measured on the matched ensemble, such as the 

static quark potential, is reviewed. The final chapter summarises the conclusions 

obtained from the results presented in the previous chapters. 



Chapter 2 

Hadron masses from correlation functions 

This chapter discusses the methods used in this thesis to extract the lattice values 

of the hadron masses from Euclidean correlation functions. First, the construc-

tion of the correlators from interpolating quantum field operators is described, 

and the generation of the correlators on the lattice is discussed. The smearing and 

fuzzing techniques, used to improve the overlap with the ground state with re-

spect to the excited states, are introduced. The relationship between the hadron 

masses and the behaviour of the correlators at large times is presented. The 

types of fit investigated are then described and finally the general fit procedure 

and selection criteria for the best fit are outlined. 

2.1 Correlation functions 

Euclidean correlation functions, or correlators, are defined in terms of vacuum 

expectation values of time ordered products of quantum field operators. Hadron 

masses are determined from examining the large time behaviour at zero three-

momentum of the particular type of correlators known as two-point functions. A 

two-point function (which shall be considered to be the correlator which is referred 

to throughout this thesis), C(x,t), is defined to be the vacuum expectation value 

of the time ordered product of the interpolating quantum field operators 

C(x,t) = (Ot{O(x)Of(0)} 0) 	 (2.1) 

The interpolating operators represent the hadron under study, created at the 

origin by the source operator, (9t(o),  and annihilated at some other point in 

spacetime by the sink operator, 0(x). Each operator is chosen to have the same 

32 
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colour, spin, valence quark content and parity as the hadron it represents. The 

source operator acting on the vacuum creates a state which is a linear combina-

tion of all the eigenstates of the Hamiltonian with the same quantum numbers, 

including excited states of the Fiadron state in question. Many such operators can 

he formed and the local operators used in this thesis are detailed in section 2.2 

(operators which include a dependence on the spatial distribution of the hadron 

wavefunction are considered later in section 2.4). The main selection criterion 

for the interpolating operators is that they should have a non-zero overlap with 

the hadron state 

(010(x) l,p) 	0 	 (2.2) 

while minimising the overlap with the excited states. 

2.2 Interpolating operators for mesons and baryons 

Interpolating operators must possess the same quantum numbers as the hadron 

under study. Meson operators with the correct colour, spin and parity can be 

written generically in a form bilinear in the quark field operators [38] 

0M(x) = a (X)Fb a() 	 (2.3) 

where F represents one of the 16 possible Dirac gamma matrix combinations 

which lead to a operator invariant under the residual hypercubic symmetry of the 

lattice and a labels the colour index. The Dirac spinor and flavour indices have 

been suppressed for clarity. Table 2.1 shows the local operators corresponding to 

the pseudoscalar and vector mesons used in this thesis. (The axial pseudoscalar 

operator is required for later use in the determination of the partially conserved 

axial current mass). Considering only the lightest flavours of quark, up, down 

and strange (u, d and s), correlators constructed from these operators can be used 

to determine the masses of the pseudoscalar mesons (7r and K) and the vector 

mesons (p, K* and qf). Note that electromagnetic effects are neglected. Baryon 



Chapter 2. Hadron masses from correlation functions 	 34 

Lightest meson JPG Operator Channel 

O(135) 0 P(x) = 	a(x)'y5a(x) Pseudoscalar 
A 4 (x) = ba (x)74'y5 0a (x) Axial pseudoscalar 

p(770) 1 V(x) = Vector 

Lightest baryon I(JP)  Operator Channel 

N(940) 
() 

Nucleon 
(0(X)C475b(X))?/(X)E a b c  

A(1232) 
() 

((X)Cb(X))b(X)E a b e  Delta 

Table 2.1: Interpolating operators used in this thesis and the corresponding light-
est hadron state. The spin, parity and charge conjugation properties of the op-
erator are shown. The index i runs from 1 to 3 and i from 1 to 4. Note that 
charge conjugation is only defined for neutral mesons. 

operators are formed from three quark fields and take the general form 

O(x) = (2.4) 

where a, b, c are colour indices, a is the free spinor index and the flavour indices 

have been suppressed. Note that E a b c  is the totally anti-symmetric colour tensor. 

The charge conjugation matrix, C = 'Y4'Y2, transforms a quark field to an anti-

quark field while retaining the same spin orientation. This baryon operator does 

not have a well defined parity and in fact couples to both parity states. The 

operator can be modified by multiplication with the Dirac projection operator, 

(1 -I-'y4),  which projects out the positive parity state studied here. The negative 

parity state is similarly obtained by multiplication with the operator, (1 - 

In practice the positive parity correlator (denoted by C) is obtained from the 

baryon correlator by averaging over the (11) and (22) free spinor indices. Similarly 

the correlator corresponding to the negative parity state, C, can be obtained by 

averaging the (33) and (44) indices. 

Table 2.1 shows the baryon operators examined in this thesis. The delta 
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haryon operator contains both a spin-i and a spin-i- s tate [38]. In order for this 

operator to represent the spin-i decuplet baryons, the spin-i component is pro-

jected out by noting that the delta correlator created by the operator with -y,, = 74 

is a purespin-k state. The spin-i part of the delta correlator is then obtained 

by averaging over the correlators constructed from the three spatial gamma ma-

trices, 7i , and subtracting the delta spin- i  correlator. This is performed after 

the projection onto definite parity states described above. Note that the delta 

operator is flavour symmetric under the interchange of any two quarks. If non-

degenerate combinations of quark flavours are considered, this operator can be 

used to study the A, , E and Q decuplet baryons. 

The nucleon baryon operators in Table 2.1 are used to construct correlators 

corresponding to the spin-i- octet baryons. The octet correlators are harder to 

construct due to flavour symmetry considerations in the first two quarks, the 

full details of which can be found in [39, 40, 411. Basically, the octet baryon 

operators are composed from a linear combination of the general operator, chosen 

to have the appropriate flavours of quarks which make the flavour symmetry of 

the baryon explicit. Examples of the octet baryon operators, taken from [40], are 

shown below 

O(x) 	{(d(x)C s ub (x))d(x) + (d(X)Cdb(X))U(X)}E ab c  (2.5) 

O(x) = —{((x)Cy 5 ub(x))d(x) + ((X)C75db(X))U(X)} abc 	(2.6) 

O(x) 	{(u(x)C s db (x))s(x) + (u(x)C s sb(x))d(x) 

	

- (d(x)Cyssb(x))u(x) - (d(X)Cy5Ub(X))3(X)}E ab c 	(2.7) 

These symmetrised forms have been used in order to project against the flavour 

singlet state and the relative normalisation is governed by the SU(3) flavour sym-

metry. Note that the sign of each term flips under the interchange of the quark 

fields in parentheses. The spin- i  octet correlators are split into two main types, 

"sigma-like" (used to study the N, E and baryons) and "lamb da-like" (used 

to study the A baryon), referred to by the labels sigma and lambda respec-

tively. The operators used to construct the sigma/lambda correlators are flavour 
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symmetric/anti-symmetric under the interchange of the first two quarks. Al-

though created from linear combinations of the same basic operator, the symme-

try conditions enforce different contractions between the quark fields which result 

in the appropriate correlator. This can be seen more clearly in the next section 

which describes the construction of correlators from hadron operators. 

2.3 Hadron correlators from quark propagators 

Once a choice of hadron operator has been made, the corresponding correlator 

can then he constructed. This section describes how this is achieved, by using the 

generic meson operator as an example. The correlator is obtained by substituting 

the meson operator defined in equation 2.3 into equation 2.1 

CM(X, t) = OJ t {(x)F 	(x)(0)( 4 Ff74 ) 8 (0)} JO) 	(2.8) 

where the spinor (Greek) and colour (Latin) indices have been shown. Integrating 

out the fermions gives the following trace over the spin and colour indices 

	

CM(, t) = (—Tr c  {C(O, x; U)FG(x, 0; U)(74Ft4)8} ) 
	

(2.9) 

where the minus sign arises from the anti-commuting nature of the fermion fields 

and Ou denotes the average over the gauge field configurations. Here G(x, 0; U) ab 

is the quark propagator evaluated on each gauge configuration. If the quark fields 

in equation 2.8 all have the same flavour an additional contraction of the fermion 

fields is possible 

	

K Tr8  {G(x,x; U)F} Tr {c(o,o ;  U)( 4 Ft 4)}) 	(2.10)bb 

For the flavour non-singlet mesons considered here (e.g. ir° = itu - dd) these 

disconnected terms will largely cancel, assuming the approximate flavour sym-

metry of the vacuum [16]. (Indeed, these terms exactly cancel in this example 

since m 11  = md in the lattice simulation). For this reason, terms of this type have 

been neglected. Expression 2.9 can then be simplified by using the Hermiticity 
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relation for quark propagators 

x; U) = 	C a  (x, 0; U)-y 	 (2.11) 

where the adjoint (t) is defined with respect to the spinor and colour indices, to 

yield the final expression for the meson correlator 

CM(x,t) = (—Tr { s Gt(x,0; U) 5 FG(x,0; U)(4Ft 4)}) 	(2.12) 

The indices have now been suppressed for clarity. The correlator is then evaluated 

by performing the trace over the quark propagators and appropriate F matrices. 

A schematic diagram of the trace is shown in the meson contraction diagram in 

Figure 2.1. 

Baryon correlators are similarly constructed from quark propagators, summed 

with the relevant spin and colour contractions. As an example, consider the 

nucleon correlator 

CN(x, t) = (Tr [F(Gd, G, C 5 Gd (C 5 )t)] + . . .) 	( 2.13) 

where only the contribution from the first term in the operator defined in equa-

tion 2.5 has been written explicitly. The function, F, is defined following the 

notation of [42, 43] by 

F(G11 , G 2 , G 3 ) = 	abca'b'c' {G'(x, 0; U)Tr IG'(x, 0; U)G T (x, 0; U)] 

+ G'(x,0;U)G 
iT 

 (x,0; U)C'(x,0; U)} 	 (2.14) 

where the colour quantum numbers are labelled by the Latin indices and fj, i = 
1,2,3 labels the flavour of the quark propagator. Diagrams a) and b) in Figure 2.1 

show schematic depictions of each term in equation 2.14. Note that the trace over 

the spin and colour indices, as defined in 2.13, has still to be taken in order to 

obtain the baryon correlator. This would correspond to contracting the filled 

circles in the diagram together at both the source and the sink in order to form 
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a two-point function. The other baryons are constructed similarly. 

:f ! G
j\ Gf  

Meson Contraction 	 Baryon contractions 

Figure 2.1: Schematic diagrams of meson and baryon contractions formed by 
taking the trace over the spin and colour indices. Each line represents a quark 
propagator, G(x, 0; U), where the flavour is labelled by f. The F's denote the 
insertion points for the Dirac 'y matrices. Note that figures a) and b) correspond 
to each term in the intermediate stage, defined in equation 2.14, of the contraction 
to form the baryon correlator. The trace over the spin and colour indices must 
be performed in order to obtain the baryon correlator defined in equation 2.13. 

On the lattice, the correlator (as defined in equation 2.12 for a meson) is mea-

sured on each gauge configuration in the statistical ensemble, where the quark 

propagators are computed by inverting the fermion matrix. In order to obtain 

a Monte Carlo estimate, defined in equation 1.36, of the true hadron correlator, 

correlators evaluated on each gauge configuration are averaged. In practice, the 

discrete momentum space Fourier transform of the correlator on each gauge con-

figuration is taken (known as time slicing) and then the correlators are averaged 

over all configurations. 

2.4 Smearing 

The previous section has shown how local hadron operators can be used to create 

correlators composed from quark propagators. However, in section 2.1 it was 

suggested that hadron operators should ideally be selected in order to maximise 

the overlap with the hadron state under examination. This can be achieved 
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by modifying some or all of the fermion fields in the operator by making the 

appropriate replacements 

	

b(x,t) - >S'(x,y)b(y,t), 	(x,t) - 	(y,t)S(y,x)  

where the smearing functions, S or 5' model the spatial distribution of the hadron 

wavefunction. Note that S and 5' can be different. The smeared fermion fields 

result in a modification of the quark propagator in the background gauge field, 

G(x, 0; U). In order to show the explicit time dependence of the propagator, 

the notation G(x, t )  0) C(x, 0; U) in used in this section, where the subscript 

U indicates that the propagator is evaluated on each gauge configuration. The 

smeared propagator is then 

C(x, t; 0) = 	/ VVS'(x, y)(y,  t)(z, 0)S(z, O)6_3J 	(2.16) 

where Z is given by the integral in equation 1.30. The label SS denotes that both 

the source and the sink of the propagator are smeared. Note that the dependence 

of the smearing functions on the gauge configurations is implicit. Equation 2.16 

can be written as 

Gss 	t;O) = 	St(y)CL(yt;0) 	 (2.17) 

where the source smeared propagator, Gj(y, t; 0), is expressed in terms of the 

local propagator, Gu(y,t;z,0), by 

Gj(y,t; 0) =E Gu(y, t; z, 0)S(z, 0) 	 (2.18) 

Since the local propagator is derived from the inverse of the fermion matrix, the 

source smeared correlator on each configuration is then obtained by solving the 
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matrix equation 

Mu(z, t'; y, t)Gj(y, t; 0) = S(z, 0)&y, 	 (2.19) 

where M(z, y; U) is the fermion matrix defined in equation 1.60. (Note that this 

equation is used to obtain the local propagator if the smearing function, S, is re-

placed by Sz,O).  Correlators constructed from propagators which are smeared are 

found to be statistically noisier than local correlators, thus propagators smeared 

at only the source or only the sink have been included in the analysis. All that 

is needed now is an appropriate smearing function. One choice of function can 

he obtained via the Jacobi smearing procedure. 

2.5 Jacobi smearing 

Jacobi smearing [44] is used to obtain a smearing function which approximates 

the spherically symmetric ground state wavefunction of the hadron. The proce-

dure is a variant of the Wuppertal iterative scheme applied to Wuppertal scalar 

propagator smearing [45]. One advantage of this smearing method is that it cre-

ates a gauge invariant smearing function and hence there is no need to fix the 

gauge. In the Wuppertal scalar propagator scheme, the quark propagators are 

smeared by choosing S in equation 2.19 to be the three dimensional scalar prop-

agator. For free scalar field theory in the continuum, the scalar propagator takes 

the form of an exponential 

(0 	(x)(0) 0) cx 1 
	

(2.20) 
IxI 

where m is the mass of the scalar field. Since this form is spherically symmetric 

and vanishes as jxj -+ x, it is then expected that the lattice scalar propagator 

can be used to approximate the ground state wavefunction. On the lattice the 

scalar propagator, 5, is determined by solving the matrix equation 

K(, y)S(y, 0) = 	 (2.21) 
1J 
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where K is the three dimensional lattice Klein-Gordon operator 

K(x,y) = 	- 'csJ(,y) 	 (2.22) 

where 
3 

J(x, y) = 	 - j) + 	 (2.23) 
L= 1 

and the scalar hopping parameter, ics, is directly related to the mass and hence 

the radius of the wavefunction. The lattice spacing has been set equal to unity. 

A similar matrix equation can be solved for every time slice in order to obtain 

the sink smearing function. However this introduces a significant computational 

overhead. In order to reduce the computational effort, an alternative smearing 

function can be obtained by iteratively solving equation 2.21 as a power series in 

's• In this case, Jacobi iteration [7] given by 

0) = 	+ 	J(x, y)S'(y, 0), 	S° (x, 0) = 8 	(2.24) 
1! 

and applied JVijac  times, was used to obtain the source smearing function. The 

sink smearing function can be obtained in a similar manner. Note that if tS is less 

than some critical value then the power series converges to the scalar propagator. 

However, larger values of 's  which result in a divergent series still provide a valid 

smearing function. The two parameters in the smearing procedure, JVj ac  and 's 

were tuned to find the optimum radius of the wavefunction, where the radius is 

defined by 

= 	 (2.25) 

The number of iterations, JVjac , was selected to be the minimum number required 

to obtain a value of the radius which maximises the overlap with the ground state 

while keeping the statistical noise in the signal to a minimum. An investigation 

to determine the optimum smearing parameters used in this thesis was carried 

out in [39]. For the quenched simulations using the Jacobi smearing procedure, 

which are indicated by the label jac in Table 3.1,the values JVjac  = 16, 30 were 
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used for the data sets at 0 = 5.7, 6.0 respectively. A value of /t s  = 0.25 was used 

throughout. 

Although there is no direct physical motivation for modelling the smearing 

function by the scalar propagator, the Jacobi smearing technique does indeed 

increase the overlap with the ground state, as can be seen later in chapter 3. An 

alternative prescription used to obtain a smearing function is fuzzing. Fuzzing 

aims to reduce the contamination of the ground state due to excited state contri-

butions, and has the benefit that it is computationally less intensive than Jacobi 

smearing. 

2.6 Fuzzing 

Mesons composed from heavy quarks (for example cc and bb) are approximately 

non-relativistic. Assuming that the characteristic time scale associated with the 

movement of the heavy quarks is significantly larger than that of the gluons 

and light quark loops in the vacuum, the adiabatic approximation can be made. 

This approximation means that the effect of the gluons and quark loops can 

be modelled by an interaction potential between the heavy quarks. From these 

assumptions it is then expected that the spectra of these states can be approx-

imately described by heavy point particles bound by a non-relativistic central 

potential, V(r). The potential V(r) can be characterised by the energy of static 

colour sources separated by a distance r, where the static colour sources are 

connected by a colour flux tube or string. Although there is no corresponding 

physical interpretation for light quark hadrons, the fuzzing prescription described 

in [46] can be used to construct hadron operators which create such a colour flux 

tube connecting the quark fields. The implementation of the fuzzing procedure in 

this context was motivated by the consideration of the smeared meson operator 

defined by 

Oj(x) = 	(y, t)S(y, x)F(x, t) 	 (2.26) 

where the smeared anti-quark field defined in 2.15 has been substituted into equa- 

tion 2.3. The smearing function can be defined to he the path ordered product of 



Chapter 2. Hadron masses from correlation functions 	 43 

the spatial gauge links along the shortest path between the quark and anti-quark. 

In order to maintain the correct JPC,  the resulting operator is symmetrised by 

averaging over the six spatial directions. This operator is interpreted as a gluon 

flux tube between the fermion fields and has the advantage that this choice of 

operator leads to a gauge invariant correlator. However the operator has a poor 

overlap with the hadron state due to the fact that the probability that the gluon 

field is so localised is small [47]. The overlap can be improved by considering the 

contribution from non-local gluon fields. This is achieved through fuzzing the 

gauge links. 

Fuzzed gauge links were formed by iteratively updating each of the gauge field 

links in the spatial directions, U,(x), p = 1,. . . , 3, by adding a weighted sum of 

the four spatial staples associated with each link 

U(x) = PSU(3) [cun_1(x)+ 	 (2.27) 

where c is the link-staple mixing ratio and Psu(3)  denotes that the updated link 

must be projected back onto the SU(3) group manifold, since the SU(3) group 

is not closed under addition. This process was iterated times to obtain the 

fuzzed gauge link, U(x), used to create the smearing function. The smearing 

function is then given by 

S(y, 
= 	

U(x - i) + 	H U(x + (i - i))} 

(2.28) 

where the fuzzing radius, R, indicates the spatial extent of the function in lattice 

units. This smearing function can then be used to generate source and/or sink 

fuzzed propagators as described in section 2.4. 

For the quenched simulations where fuzzed correlators were generated, de-

noted by the label fuzz in Table 3.1, an investigation into the optimum fuzzing 

radius was performed in [39]. The fuzzing radius R was tuned to minimise the 
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overlap with the first excited state by examining the relative amplitudes of the 

ground and first excited states obtained through the fit procedure as described 

in [39]. This study indicated that the optimum radius was R = 6(8) for the 

13 = 6.0(6.2) data sets respectively. In both cases the fuzzing parameters Nf1 = 5 

and c = 2 were used. For all simulations examined in chapter 4 the values 

= 5, c = 2.5 and R = 2 were used. A larger link-staple mixing ratio and a 

reduced fuzzing radius were selected based on a study of the quenched data at 

13 = 5.7 and the fact that in this case the lattice spacing was coarser than for the 

quenched simulations in chapter 3. 

2.7 Notation conventions for correlators 

This section sets out the correlator notation used throughout this thesis. As de-

scribed in section 2.3, hadron correlators are constructed from tying together the 

appropriate number of quark propagators. Each quark propagator in a correlator 

can either be Jacobi smeared, fuzzed or local at the source and/or sink. Although 

in principle any combination can be formed, the Jacobi smeared hadron correla-

tors analysed in this thesis were created from quark propagators which all had the 

same smearing at the source and/or sink. It was observed [46] that correlators 

composed entirely from fuzzed propagators with the same fuzzing radius lead to 

a partial cancellation of the fuzzed gauge links between them, creating a com-

ponent which is essentially unfuzzed. Thus the fuzzed correlators were created 

by combining either one or two fuzzed quark propagators with a local propaga-

tor to form meson and baryon correlators respectively. For baryons where two 

fuzzed propagators were combined with a local propagator the source and/or sink 

fuzzing were the same. Taking this into consideration means that the smearing 

status of a correlator can be labelled by just two letters, one for the source and 

one for the sink. The types of smearing are denoted by; L for local or point 

operators, S for Jacobi smearing and F for fuzzed. For example, the label FL 

denotes a correlator which has been fuzzed at the source but not at the sink. 

Once the hadron correlators have been generated on the lattice, the next 

stage is to determine the ground state mass of the hadron in question. The next 
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section shows how the mass is obtained from the exponential decay of Euclidean 

correlation functions at large times. 

2.8 Hadron masses from correlation functions 

The functional dependence of the hadron correlator, defined in equation 2.1, on 

the mass can be seen by taking the discrete Fourier transform, a process referred 

to as time slicing 

C(p,t) = 	C(x,t)e 	 (2.29) 

where the lattice spacing has been set equal to unity. The values of the momenta 

in each spatial direction are restricted to the values p i  = 27ri/L, i = 1,. .. , 3, 

where ni  = 0,... , L-1 is an integer and L is the spatial extent of the lattice. Sub-

stituting equation 2.1 into equation 2.29 and inserting a complete set of discrete 

states defined by 

=2E(q) n, q) (n, q 	 (2.30) 

gives the momentum space correlator 

1 
(0 0(x) jn,q) (n,q Ot(o) 0) e' 	(2.31) C(p,t) = L

3 	2E(q) 

where E(q) is the energy of the state with momentum q. The operators are 

assumed to be time ordered. Using the Euclidean translational invariance relation 

for operators 

O(x) = Ht_Q.aQ(0)_Ht+iQ.x 	 (2.32) 

(where H and Q are the Hamiltonian and three momentum operators respec-

tively), and the lattice delta function defined as 

8q,p = 	 (2.33) 
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equation 2.31 can be written as 

1 
C(p,t) = :: 2E(p)01 

0(0) n,p)2e_En())t 	 (2.34) 

The masses of each state can be obtained by considering equation 2.34 at zero 

three momentum, p = 0. This results in the general form for the correlator 

C(o, t) = Ae (2.35) 

where the amplitude is defined as A = (0 0(0) In, 0) 2 /2rn. The behaviour of 

this equation at large times is dominated by the ground state mass 

lim C(0, t) —+ Aoe_mot (2.36) 

This relation shows that the ground state masses of the hadrons can be extracted 

from the exponential decay of time sliced correlators at large Euclidean times. 

2.9 The effect of periodic boundary conditions 

The discussion on obtaining masses from correlators in the previous section as-

sumed an infinite time direction. However for a lattice simulation on a finite 

lattice of spatial length L and temporal extent T, it is necessary to introduce 

boundary conditions. The choice of boundary conditions made for the simulations 

studied here imposed anti-periodic boundary conditions on quark propagators in 

the time direction (and periodic in the spatial directions). The anti-periodicity in 

the time direction allows the hadron to propagate both forwards and backwards 

in time. This means that the behaviour of the backward propagating hadron 

must be taken into account. The general form that the correlators can be fitted 

to is then 

C(o, t) = 	A_mnt + iBe_m(T_t) 	 (2.37) 
n 

where the second term corresponds to the backward propagating hadron. The 

parameter rl can be either ±1 depending upon how the hadron operators trans- 
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form under the time reversal operator defined by T = y4'y5. For mesons, the 

backward propagating state has the same mass as the forward propagating state 

(rn = rn) and in the limit of infinite statistics the correlator is symmetric (or 

anti-symmetric depending on the sign of 7]) about the mid time slice, T/2. As-

suming sufficient statistics so that this is nearly the case, the meson correlator 

is folded about the midpoint and averaged in order to increase the amount of 

information used in the fits. The ground state mass of the mesons can then be 

fitted to a cosh function 

CM(O,t) = Ao(e_moi + e_m0(T_t)) 

moT 	[ ( T 
= 2A 0 e 	cosh rn0 	- 	 ( 2.38) 

For haryon correlators the backward propagating state corresponds to the parity 

partner of the haryon, which has a different mass in general. In this case, the 

positive parity correlator, C, from the first half of the lattice is averaged with 

negative parity correlator, C, from the second half of the lattice 

CB(O, t) = [C(o, t) + C(O, T - t)]/2 	 (2.39) 

The ground state of the baryon is then extracted by fitting the averaged baryon 

correlator to the form 

CB(O,t) = Aoem0t 	 (2.40) 

Fits to extract the ground state mass can then be performed following the 

general procedure outlined later in section 2.12. However, fits to the ground 

state mass have to be carried out at sufficiently large times to ensure that the 

contamination from the excited states has died away. This means that the fits 

are performed over a small set of the available data points and, in particular, in 

a region where the statistical errors in the signal are becoming larger. In order 

to determine the ground state more accurately it is better to have an estimate of 

the first excited state. Fitting to both the ground and first excited states enables 

earlier time slices to be included in the fit. In practice, performing fits to both 
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the ground state and one (or more) excited states using a single correlator type 

are usually unstable. To achieve a more stable fitting procedure a variational 

basis of correlators with different smearing combinations can be used, provided 

that each correlator type has different overlaps with the ground and first excited 

states. This type of fit is referred to as simultaneous fitting. 

2.10 Simultaneous fitting 

The simultaneous fitting procedure described in this section is based on the tech-

nique detailed in [48]. The idea is that each correlator used in the simultaneous 

fit should have a significant overlap with one of the energy states to be deter-

mined. The simplest case is to consider a simultaneous fit to a pair of correlators 

to extract the ground and first excited states. The pairs of correlators used in 

this thesis consist of one local correlator, LL, and one correlator which has been 

either Jacobi smeared or fuzzed at the source and/or sink. In this case the Jacobi 

smeared correlator was selected because it has a large overlap with the ground 

state. Similarly fuzzed correlators have a good overlap with the ground state 

as the fuzzing procedure minimises the contamination from excited states. The 

local correlator included in the fit has a significant overlap with the first excited 

state and was used to provide an estimate of the excited state mass. Fits to more 

than one excited state were not considered further, as no correlators with a good 

overlap with the second excited state were generated. 

For a general simultaneous fit, several meson correlators, denoted by CSk  (0 1  t) 

where s  and 5k  label the type of smearing (L, S or F) used at the source and 

sink respectively, are simultaneously fitted to the equation 

C(0,t) = 	Ak (_mni + e_mn(T_t)) 	 (2.41) 
n=O 

where Ne ,, is equal to the number of excited states included in the fit. In or-

der to increase the stability of the fit, the number of fit parameters is reduced 

by constraining the masses extracted from each correlator type to be the same, 
rns,s k

M n - Baryon correlators are fitted in a similar manner to just the first 
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exponential in equation 2.41. In all the simultaneous fits considered here, two 

correlators were fitted simultaneously to the ground and first excited states, re-

sulting in a six parameter fit. For simulations containing a limited number of 

statistics (such as the dynamical simulations considered in this thesis), a further 

type of fit known as a factorising fit was considered. 

2.11 Factorising fits 

Factorising fits [48] are a generalisation of the simultaneous fits considered above 

which impose further constraints on the fit parameters. This is achieved by 

factorising the amplitudes of each state 

- D 3 k QSC 	 (2.42) n 	- 1n 
1-'n 

where the matrix elements given by 

B = (J °sk(°)  nO) /vi 	r2sc - (n,O O(0) 0) / \/ i 	(2.43) LJfl 
-SC 

are in general complex. The form of the factorising fit to the meson correlators 

is written as 
N. 

QSk "0, t) = 	BB (e_mnt + 6_mn(T_t)) 	 (2.44) 
n =0 

This equation is fitted simultaneously to several different correlator types. The 

factorised amplitudes, B 1  and B 1 , can be defined to be real since the hadron 

operators under consideration obey charge conjugation symmetry in the case 

of equal mass quarks [48]. Baryon correlators are fitted similarly to the first 

exponential term in equation 2.44. In practice, the factorising fits to the ground 

and first excited states performed with the data sets discussed in chapter 4 used 

three correlator types, LL, FL and FF, resulting in a six parameter fit. 

2.12 General fit procedure to extract lattice masses 

In this section the fit procedure used to determine the lattice values of the light 

hadron masses is described. The same general method was used for both the 
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quenched data and the dynamical data. A discussion of the x 2  fitting procedure 

is outlined, first defining the x 2  merit function and then the method used to find 

the minimum value of the x 2  and hence obtain the best fit parameters. There 

follows a brief discussion of the smoothing technique implemented to improve the 

general stability of the fit and the method used to obtain an estimate of the errors 

on the fitted masses. Finally the selection criteria used to determine the best fit 

interval are set out. 

2.12.1 Effective mass plots 

In the initial stages of the analysis it is often useful to consider effective mass 

plots. In order to extract the ground state mass the correlator data must be fitted 

over a time interval where the minimum time slice, t m j fl , is large enough that the 

excited states excluded in the fit can be considered to have decayed. One way to 

decide when this occurs is to examine the effective mass plot. 

On the lattice the correlators are measured on a data set of N gauge config-

urations. The average time sliced correlator over these configurations is defined 

by 

C(t) = 	C(o, t) 	 (2.45) 

The effective masses for mesons and baryons are then defined in terms of the 

averaged time sliced correlator by 

m°(t) = cosh1 I C(t - 1) + C(t + 1)I 
	barYon(t) = ln IC(t + 1)1 

eff 	 (2.46) 
2C(t) 	' Teff 	 C(t) j 

As time increases, the value of the effective mass will level off (i.e. begin to 

plateau), which indicates that all the excited states have decayed. The height of 

the plateau can be used to provide an estimate of the ground state mass. The 

time slice which marks the onset of the plateau can be used as a rough guide to 

select the appropriate fit interval over which to extract the ground state mass 

(a longer fit range can be selected when the first excited state is included in the 

fit). The final values for the lattice masses are then fitted over this interval by 
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minimising the x 2  merit function. 

2.12.2 x 2  fitting 

Minimising the x2  merit function is a standard procedure for fitting data to 

a model function [49]. The description below uses notation specific to fitting 

the correlator data considered here. The averaged correlator, C(t), defined in 

equation 2.45, is fitted to the model function, f(a, t), where a = (ai ,. . . ) a) 

represents the fit parameters to be determined. For example, in the case of a 

meson correlator the simplest f(a,t) is the function defined in equation 2.38. 

The data is fitted to the model function by minimising the x 2  statistic 

x2 = Ev(a,t) - C(t)]Cov1(t,t)[f(a,t) - C(t)] 	(2.47) 
t ,iJ  

This form for the x 2  takes into account the correlations in the data between 

different time slices via the covariance matrix. The covariance matrix, Cov(t, t i ), 

is computed using 

N 
1 

Cov(t, t) [Ck(t) - C(t)][Ck(t) - C(t)] 	(2.48) 
N(N - 1) kz=1 

where Ck(t) is the k'th time sliced correlator in the ensemble and C(t) has been 

defined in equation 2.45. When the data to be fitted to the model function is 

some function of several correlator types, i.e. C(t) in equation 2.47 is replaced 

by D(t) = f(CA(t) ,  CB(t) .... ), the covariance matrix is instead computed using 

the Jackknife sampling technique 

N 
N - 

 Cov(t1,t) 	
N 	

[Dk(t) - D(t)][Dk(t) - D(t)] 	(2.49) 
k=1 

where Dk(t) is the time sliced data function determined on the k'th jackknife 

sample obtained by removing the k'th configuration from the ensemble. In other 

words, Dk(t), is evaluated in terms of the appropriate averaged time sliced cor-

relators, defined by equation 2.45, where the correlators determined on the i = k 
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configuration have been removed from the average. The jackknife sampling tech-

nique repeats this for each configuration in the data set. The average data func-

tion Dk(t) is compared with D(t), the average of Dk(t) over all the jackknife 

samples, for each jackknife sample. In both cases the diagonal entries are just 

the variance of the data points. It is easier to see the correlations in the data by 

looking at the correlation matrix defined by 

Corr(t,t) = 
Cov(t, t) 

/Cov(t 1 , t)Cov(t, tj) 
(2.50) 

The entries of the correlation matrix are in the range [-1, 1], where 1 means the 

data are strongly correlated and -1 means that the data points are anti-correlated. 

Once the x 2  has been defined, the next stage is to determine the fit parameters, 

at which the minimum value of the x 2  occurs. 

2.12.3 Minimising the x2  

The x2  is minimised using the Marquardt-Levenherg method [49] which combines 

the method of steepest descent with the inverse Hessian technique. The Hessian 

matrix or curvature matrix a is constructed from the second derivatives of the x2  
with respect to the fit parameters. It is inverted using the SVD, singular value 

decomposition algorithm, to obtain the next guess for the fit parameters. The 

x2  is then re-evaluated using the new fit parameters. The algorithm is repeated 

until the minimum of the x2  is found and the best fit parameters are obtained at 

this point. 

2.12.4 Eigenvalue smoothing 

When performing simultaneous fits, the minimisation algorithm was found to be 

sensitive to the initial guesses for the excited state fit parameters. Varying the 

initial guesses for these parameters, even slightly, affected the ability of the algo-

rithm to converge to the minimum of the x2  as a result of the curvature matrix, 

a, becoming close to singular. This indicates that it is difficult to fit the ex- 

cited state. The method used to stabilise the fit was derived from the eigenvalue 
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smoothing technique for the correlation matrix described in reference [50]. In 

this thesis, the smoothing technique is applied to the eigenvalues calculated in 

the SVD process used to invert the a matrix. The three lowest eigenvalues, cor-

responding to the parameters associated with the excited state, were smoothed. 

This was achieved by comparing these eigenvalues with the average of the three 

eigerivalues. If a given eigenvalue was lower than the average then the eigenvalue 

was replaced by the average value. This procedure does not effect the position of 

the minimum of the x2  only the route taken through parameter space to reach 

it. It was found that with this technique the fitted parameter values were inde-

pendent of the initial guess and resulted in a more stable fitting procedure. This 

technique was implemented for both the simultaneous and factorising fits. 

2.12.5 Bootstrap re-sampling 

In order to obtain an estimate of the error on the fitted parameters the technique 

of bootstrap re-sampling [51] was used. A bootstrap sample is created by selecting 

N correlators from the data set at random and with replacement. The x 2  fit 
procedure described above is then repeated. This is repeated 1000 times for the 

quenched data sets and 500 times for the data sets in chapter 4, due to the fact 

that there are less statistics available for the dynamical data sets. The error 

is then calculated by taking the 68% confidence limits. This occurs when 68% 

of the results obtained from the bootstrap analysis are within a of the average 

value. Asymmetric errors are calculated by determining the difference between 

the parameter values obtained from the best fit (determined from the original 

ordering of the data set) and the upper and lower confidence limits. 

2.12.6 Goodness of fit 

One indication of the goodness of the fit can be obtained by considering the 

minimum value of the x 2  An acceptable x2  value should be close to the number 

of degrees of freedom (d.o.f) in the fit. The d.o.f in this case is equal to the 

number of time slices in the fit interval minus the number of fit parameters, 

d.o.f = t - m ii. In addition to the x 2  the quality of the fit can be assessed by 
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computing the incomplete gamma function 

7 v x2 	1 

 f  Q 	 e_tt1)dt 	 (2.51) 
' 	) = F() x2/2 

The Q value is the probability that the x2  (assuming that the errors on the data 

are normally distributed) should exceed the particular value of the x 2  obtained, 

by chance. A value for Q < 0.001 means that either the model function does 

not describe the data or the size of the errors are too small or are not normally 

distributed. Values for Q close to 1 indicate too good a fit and usually means 

that the errors on the data points have been overestimated. Ideally the Q value 

should be around 0.5. 

2.12.7 Sliding window analysis 

To determine the optimum fit range over which the lattice masses are extracted, 

a sliding window analysis was performed. This was achieved by first selecting 

the maximum time slice, I max , included in the fit and gradually pushing the 

minimum time slice, tmj fl , closer towards the origin. Fits were then performed for 

each interval and compared. Unless otherwise stated in the text, the maximum 

time slice was selected to be half the temporal extent of the lattice, provided an 

acceptable X 2 /d.o.f. was obtained from the fit. Where this was not the case, tm ax 

was reduced. The final fit range was determined by considering the following 

criteria, 

• The value of the fitted mass should be consistent within errors when tmjfl  is 

changed by one time slice. 

• The fit should have X 2 /d.o.f. of around 1. 

• The Q value should ideally be approximately 0.5. 

A further consideration is that the fit interval should be as long as possible while 

satisfying the points above. This includes as much of the available information 
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in the fit in order to reduce the bias of the fit due to the correlated fluctuations 

present in the data. 

2.13 Application of the fitting procedure 

The determination of the best fits for the ground state masses for all the mesons 

and baryons considered in this thesis implemented the general fit procedure out-

lined above. The selection of the type of fit (ground state only, simultaneous or 

factorising) is discussed for each simulation in the following chapters. Fits to sec-

ondary quantities determined from the masses were also determined using the x2  
minimisation technique. The next two chapters present the results obtained for 

the light hadron spectrum in the quenched approximation and for the dynamical 

simulations respectively. 



Chapter 3 

Quenched spectrum results 

In this chapter the results obtained from the analysis of the data sets generated 

in the quenched approximation are presented. The results for the lattice values of 

the hadron masses obtained by implementing the general fit procedure described 

in section 2.12 in the previous chapter are discussed in detail for each data set. 

All the final values for the lattice masses can be found in appendix A. In addition, 

the Partially Conserved Axial Current (PcAc) mass is determined for each data 

set. Then results which can be obtained without requiring any extrapolations, 

such as the hyperfine mass splitting and the J parameter are discussed. Chiral 

extrapolations are tFien performed followed by continuum extrapolations which 

are compared with experiment. Some of the quenched data has been analysed 

independently by other members of the UKQcD Collaboration. Results obtained 

from the tadpole improved data sets have been published in [52, 53, 54, 55] 

and results for both the tadpole and non-perturbatively improved data sets were 

presented in [39]. The results presented here represent the final results for the 

quenched light hadron mass spectrum to be published in [56]. 

3.1 Simulation parameters 

This section outlines the simulation parameters used in the quenched light hadron 

spectrum analysis. Data sets at three values of the lattice parameter 0 were gener-

ated in order to explore the continuum limit. The hybrid over-relaxed algorithm 

described in [57] was employed in the production of the gauge configurations, 

which use the standard Wilson plaquette action. The quark propagators were 

generated using 0(a) improved Wilson fermions. 

56 
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Tadpole improved data sets 

0 cSW L 3  T L[fm] Ic # conf. smearing 

5.7 1.5678 16 32 2.7 0.13843, 0.14077 147 jac 
6.0 1.4785 16 48 1.5 0.13856, 0.13810, 0.13700 499 fuzz 
6.2 1.4424 24 48 1.6 0.13745, 0.13710, 0.13640 218 fuzz 

Non-perturbatively improved data sets 

13 cSW L 3  . T L[fm] Ic # conf. smearing 

6.0 1.7692 16 48 1.5 0.13455, 0.13417, 0.13344 496(3) fuzz 

6.0 1.7692 32 3 . 64 3.0 0.13455, 0.13417, 0.13344 70(2) jac 
6.2 1.6138 24 3 . 48 1.6 0.13530, 0.13510, 0.13460 216 fuzz 

Table 3.1: Simulation parameters for the quenched data sets. The parenthe-
ses show the number of exceptional configurations removed from the ensemble. 
The lattice size in physical units has been estimated using r 0  (defined later in 
section 3.7) to set the scale. 

Table 3.1 summarises the simulation parameters for the quenched data sets. 

The ic values have been chosen to lie in the region of the strange quark mass in 

order to study the strange sector of the spectrum. Meson and baryon correlators 

have been computed using non-degenerate combinations of quark masses for all 

data sets except for the 13 = 5.7 data set where non-degenerate baryons were not 

generated. Some quark mass combinations of baryon correlators from the 0 = 6.2 

tadpole improved data set were generated on only 200 configurations. For the 

non-perturbatively improved data sets the number of exceptional configurations 

which have been removed from the ensemble are noted in the parentheses. The 

exceptional configurations present in the original ensemble were identified by the 

inability of the numerical inversion of the fermion matrix to converge for some 

components of the quark propagator. This is due to the occurrence of near zero 

eigenvalues of the fermion matrix, known as zero modes, the presence of which 

has been verified for the exceptional configurations encountered here [58, 59]. 

Note that in simulations with dynamical fermions the incidence of exceptional 

configurations is suppressed due to the inclusion of the fermion determinant in 
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the gauge generation procedure, where the presence of zero modes means that 

det M[U] is very small. 

The fraction of exceptional configurations within a particular ensemble is 

expected to increase for smaller quark masses and/or larger values of g, and 

L/a [30]. This was investigated in [56] by comparing the LL correlator at T/2 for 

the smallest quark mass from both the tadpole and non-perturbatively improved 

data sets at /9 = 6.0. The width of each distribution of the correlator data was 

defined by 

AX u /X m , 	Ax = X u  - 	 ( 3.1) 

where Xm is the median and x is the upper value of the 68% confidence limit. 

In both cases the width was approximately the same, LX U /Xm  0.65 and the 

distribution was found to extend smoothly out to Xm+9Xi. The main difference 

occurred in the number of points lying far beyond this region. In the tadpole data 

set only one such point at approximately 37Ax above the median was encoun-

tered as opposed to three points at 44x, 65Ax and 360Ax above the median 

for the non-perturbatively improved data set. This indicates that although the 

level of statistical fluctuations is approximately the same, the incidence of ex-

ceptional configurations is indeed observed to be higher for larger values of the 

clover coefficient. A third exceptional configuration was found in the process 

of fuzzing the propagators in the non-perturbative data set. Attempts to treat 

the exceptional configurations using techniques such as the Modified Quenched 

Approximation described in [60, 61, 621 have not been implemented here. In the 

case of the small volume at 3 = 6.0, these exceptional configurations account for 

less than 1% (3% for the large volume) of the total number of configurations. 

Thus their removal should not seriously distort the results. 

3.2 Fitting the lattice hadron masses 

The detailed mass results obtained from the fitting procedure are explained in 

the following sections for all the quenched data sets. The analysis of the data 

sets with fuzzed correlators proceeded in a similar manner and are thus discussed 
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together. The 0 = 5.7 and large volume 13 = 6.0 data sets, which implement the 

Jacobi smearing technique described in section 2.5, are discussed separately. 

3.2.1 Fits to the fuzzed data sets 

Fuzzed correlators have been generated for both the tadpole and non-perturbatively 

improved data sets at 13 = 6.0 and 0 = 6.2. The details of the fuzzing technique 

and the particular parameters used for each data set were described in section 2.6. 

Correlators with the fuzzing combinations LL, FL, LF and FF, have been con-

structed where the notation used has been defined in section 2.7. 

Meson correlators were fitted by simultaneously fitting a pair of correlators 

to the ground and first excited states using the function 

CM(O,t) = A0 (_mo + _mo(T_t))  + A1 (_m1t + e_m1(T_t)) 	(3.2) 

as described in section 2.10. Both the correlator combinations LL,FL and LL,FF, 

were considered for the fits to the pseudoscalar and vector channels. Combina-

tions involving the sink fuzzed correlator LF were not considered because this 

correlator behaves in a similar manner to the source fuzzed correlator FL but 

has a lower signal to noise ratio. The degenerate nucleon and delta baryons were 

analysed in the same way, to a double exponential form 

CB(O,t) = Aoe_mot + A16_mlt 	 (3.3) 

For the delta, sigma and lambda non-degenerate baryons it was only possible 

to consider simultaneous fits to the LL,FL combination of correlators, as these 

were the only correlators generated due to limits imposed upon the computing 

resources. 

The optimum fit range for each correlator combination considered was selected 

by performing a sliding window analysis as described in section 2.12.7. As an 

illustration of the information obtained from this type of analysis, the 3 = 6.0 

non-perturbatively improved data set has been chosen as an example. Figure 3.1 



Chapter 3. Quenched spectrum results 	 60 

shows the values obtained from the sliding window fits to the correlators with 

the heaviest quark mass, ic = 0.13344, for the pseudoscalar and vector mesons. 

The top row of plots show the fitted value of the mass obtained as tmjfl  is varied. 

The maximum time slice was held fixed at tmax  = 23. The plots directly below 

show the X2/d.o.f.  and the Q values for each fit. Using the criteria that the fit 

range should be as long as possible while observing an acceptable X 2 /d.o.f. and Q 

value, the fit range was selected to be [6-23]. The final tmjfl  selected is indicated 

on the plots by the arrow. In general fits to the pseudoscalar were found to he 

very stable under small variations of the fitting range. For the vector channel, 

systematic effects in the value of the fitted mass were observed by varying the fit 

interval. The variation was around one a for the worst case. The sliding window 

plots for the vector show an example of an unstable fit for the fit range [7-23]. For 

this point the fitting routine failed to find the minimum of the x 2  as occasionally 

happens for the vector channel. The fit range of [6-23] has been chosen for the 

best fit as the effect of decreasing tmjfl  by two time slices gives a result for the 

mass which is consistent within errors. 

Figure 3.2 shows an example of the sliding window plots obtained for the 

degenerate nucleon and delta for the heaviest quark mass correlator. The final 

fit range selected was [9-23] as this gives the longest possible fit range with an 

acceptable X 2 /d.o.f. and Q value. Plots for correlators with lighter quark masses 

show the same general trend but the errors are larger due to increased noise in the 

signal. For the other data sets considered here, a similar sliding window analysis 

for all the baryon data was performed. 

Figures 3.3 to 3.6 show example effective mass plots, as described in sec-

tion 2.12.1, for all four data sets for the pseudoscalar, vector, nucleon and delta 

channels for the heaviest quark mass. Plots for correlators composed from lighter 

quark masses show a similar picture but with noisier signals. Effective mass plots 

for the non-degenerate baryons show the same qualitative features as the degener-

ate delta and nucleon and hence have not been shown. The data points show the 

effective mass determined from each of the correlators used in the final fit. The 

effective masses obtained from the fuzzed correlators for the non-perturbative 
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Figure 3.1: Sliding window plots from the /t = 6.0 non-perturbatively improved 
data set for the degenerate pseudoscalar and vector at i't = 0.13344. The top plots 
show the values obtained for the fitted mass when tmax = 23 and tmjfl  has been 
varied. The plots beneath show the resulting X 2 /d.o.f. and Q for each fit. An 
arrow marks the value of tmjfl  selected for the final fit. In this case a correlated 
double cosh form has been fitted simultaneously to the LL,FF combination of 
correlators. 
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Figure 3.2: As for figure 3.1 for the nucleon and delta. In this case a correlated 
double exponential form has been fitted simultaneously to the LL,FF combination 
of correlators. 
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data sets are in general noisier than the tadpole improved data, however this 

difference did not have a significant effect on the relative ease of fitting the data. 

Superimposed on the graphs is the actual fitted value obtained for the mass, the 

horizontal length of which corresponds to the fit range. This straight line is not 

a fit to the data points shown on the graph. The X 2 /d.o.f. indicated on each 

graph was obtained in the best fit for the mass. The graphs show that the fuzzed 

correlator isolates the ground state before the local correlator, but the signal is 

noisier. Where the source fuzzed correlator has been used to fit the vector for the 

0 = 6.2 data sets, the plots show that the effective mass approaches the plateau 

from below. This is because the matrix element is not constrained to be positive 

definite. 

Data set Pseudoscalar Vector Nucleon Delta 

13 =6.0 TAD LL,FF LL,FF LL,FL LL,FL 
/3 =6.2 TAD LL,FF LL,FL LL,FF LL,FF 
/3 =6.0 N-P LL,FF LL,FF LL,FF LL,FF 
/3 = 6.2 N-P LL,FF LL,FL LL,FF LL,FF 

Table 3.2: Correlator combinations selected for the final fit for the /3 = 6.0, 6.2 
data sets. Note that TAD indicates tadpole improvement and N-P indicates 
non-perturbative improvement. All fits are simultaneous fits to the ground and 
first excited states. 

The results for all the hadron masses obtained from simultaneous fits to both 

correlator combinations were found to be in agreement with each other within 

errors and with fits performed to the ground state of a single correlator type. 

The correlator combination chosen for the final fit was selected on the basis that 

the best fit gave a lower 2 /d.o.f. and better overall stability of the fitted mass 

as tmin  was varied. Table 3.2 shows the correlator combinations selected for the 

final fit for the mesons and degenerate baryons. For the non-degenerate baryons, 

double exponential fits to the LL,FL correlator combination were chosen. 
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set for K = 0.13460. 
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3.2.2 Fitting the 3 = 5.7 tadpole improved data set 

The correlators from the 0 = 5.7 tadpole improved data set were generated using 

the Jacobi smearing technique detailed in section 2.5. Both local correlators, 

LL, and source smeared correlators, SL, were used in the analysis. Simultaneous 

fits were performed using the double cosh form of equation 3.2 to the LL,SL 

pair of correlators. Figure 3.7 shows the effective mass plots for the LL and SL 

correlators for the heaviest quark mass. The final mass values are superimposed 

on the graph, showing the fit ranges selected. Following a sliding window analysis 

and a consistency check with the results obtained from a single cosh fit to the SL 

correlator, a fit range of [6-15] or [5-15] was selected for the pseudoscalar as this 

gave the best X 2 /d.o.f. The vector was fitted similarly in the range [7-15]. For this 

data set only degenerate correlators were generated for the baryons. Fits were 

performed using a double exponential fit to the LL,SL combination of correlators. 

A fit range of either [6-15] or [7-15] was selected for the delta and nucleon. 

3.2.3 Fitting the 0 = 6.0 large volume data set 

The large volume non-perturbatively improved correlators at 0 = 6.0 were gen-

erated using Jacobi smearing. Correlator combinations smeared at the source, 

SL, or at the source and sink, SS, were simulated. For this data set purely local 

correlators were not created. This means that it was no longer possible to per-

form simultaneous fits to pairs of correlators to extract the ground and excited 

state. The final fits for the mesons were selected from a single cosh fit to the SL 

correlator. The SS correlator was examined using a similar fit but the signal was 

much noisier and a better X 2 /d.o.f. was not obtained. It was possible to fit the 

pseudoscalar all the way out to tmax = 31, since the signal to noise ratio does not 

increase with time for the pseudoscalar meson. This can be seen by examining 

the variance of a general hadron correlator 

= ~ J OH(x)2o(0)}2) - ~ 014(X)OHt
o)) 2 	 (3.4) 
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The error in the signal is dominated by the exponential decay of the lightest state 

which is created by the first term in this equation [63]. Through the squaring of 

the hadron operators, the first term has positive charge conjugation and parity 

quantum numbers which means that the lightest state is given by 2 7r's for mesons 

and 3 ir's for baryons. Thus the variance is approximately 

a2  o em_2mt 	n = 2,3 	 (3.5) 

where n = 2 for meson correlators and ri = 3 for baryons. This shows that 

the error in the mass grows exponentially with time except for the pseudoscalar 

correlator where a 2  cx constant, since rnH = rn and n = 2 in this case. 

For the vector channel, tmax  was reduced to 20. After this point the signal 

became too noisy and the fits were unstable. Figure 3.8 shows the effective mass 

plots for the SL correlator for the heaviest quark mass, for the pseudoscalar, vec-

tor, nucleon and delta. The final fitted results for the masses, and the X 2 /d.o.f., 

are superimposed on the plots. For the baryons it was possible to perform a 

double exponential fit to both the ground state and first excited state using the 

SL correlator. At large times the signal becomes noisy and tmax  was reduced to 

18 for the nucleon and 16 for the delta. The minimum time slice selected was 

tm in  = 2 or tmjfl = 3, where tmlfl was able to be reduced much further due to the 

fact that the first excited state was included in the fit. 

3.3 Computation of the PCAC mass 

This section discusses the determination of the partially conserved axial current 

(PcAc) mass for all the quenched data sets. The method described below can be 

used to directly extract lattice estimates of the bare unrenormalised quark mass 

from the correlator data. 

In the continuum, using Euclidean spacetimé co-ordinates, the isovector axial 

current, A(x), satisfies the PCAC relation (previously defined in equation 1.66) 

3A(x) = 2mpcAcP(x) 	 (3.6) 
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where P(x) is the pseudoscalar density and TflPCAC is the current quark mass. 

The isospin indices have been suppressed for clarity. On the lattice this relation 

can be expressed as [25] 

a. (A,(x)0t(0)) = 2rnpcAc (P(x)0t(0)) + 0(a) 	 (3.7) 

where D, denotes the average of the forward, a, and backwards, 91 , lattice 

derivatives and 0 is any operator. This holds everywhere except when x = 0. 

In the scheme of 0(a) improvement, the axial vector operator is replaced by the 

improved operator 

A(x) 	A(x) + acA aP(x) 	 (3.8) 

where the improvement coefficient, CA has been determined in one-loop pertur-

bation theory using the bare coupling [29] 

CA = —0.00756 g + 0(g) 	 (3.9) 

and more recently non-perturbatively [30] 

CA 	—0.00756 g 	
1 - 0.748 g0 + 

0(g), 	0 <g < 1 	(3.10) 
1 - 0.977 gg 

Choosing the operator 0 to be the pseudoscalar operator defined in Table 2.1, 

the 0(a) improved identity is 

ö (A(x)Pt(0)) + aCAöö (P(x)Pt(0)) = 2mpcAc (P(x)Pt(0)) + 0(a2 ) ( 3.11) 

Note that trace over the isospin indices in the operators as defined in equation 1.67 

has been taken, where the normalisation condition for the Pauli matrices results 

in an overall constant which can be divided out. Taking the Fourier transform 

and writing equation 3.11 in terms of momentum space correlation functions with 

zero three-momentum, the PCAC mass can be determined from 

mpcAc = 
34CA 4 pf(0,t) + aCA304Cppt(0,0 

2Cpp1(O,t) 
(3.12) 
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where 54 is the temporal lattice derivative and the lower indices on each correlator 

indicate the operators (defined in Table 2.1) from which they are composed. A 

fit to this ratio of correlators was performed using a correlated least- 2  fit to 

a plateau function to determine the PCAC mass. For the tadpole data sets the 

one-loop value for CA was used. The non-perturbative value was used for the 

other data sets. Local sink and source fuzzed or smeared correlators were used 

in the analysis. Figure 3.9 shows an example effective mass plot and sliding 

window analysis plots for the /3 = 6.0 non-perturbatively improved data set for 

= 0.13344. The effective mass was evaluated by performing the ratio of the 

relevant time sliced correlators. The graphs show that the plateau is very stable 

over a large range of time slices and that the mass determined from a sliding 

window analysis has very small errors. The fit range selected was [12-22]. Note 

that the errors on the PCAC mass are in general very small. Heavier quark 

masses show a similar picture, but with a slightly noisier signal. The final results 

for TT1PCAC  can be found in appendix A. 

3.4 Finite volume effects 

The finite size of the lattice simulation is a potential source of large errors in 

the spectrum calculation if the lattice dimensions are too small. Finite volume 

effects can originate from several sources. The volume can be too small to contain 

the wavefunction of the bound state as discussed in [64, 65], or errors can arise 

from the squeezing of the cloud of virtual particles which surround point-like 

hadrons [66]. Both of these effects occur as a result of virtual particle propagation 

across the lattice boundary due to the imposition of periodic boundary conditions. 

In a hadron state consisting of loosely bound constituents, the particle which 

propagates across the boundary can be one of the constituents. Multiple copies 

of the hadron can also interact directly across the boundary [67]. Finite size effects 

can be reduced by simulating at large enough lattice volumes. To compensate for 

the finite size of the lattice, simulations should ideally be performed at several 

diffrent volumes to enable an extrapolation to the infinite volume limit. However, 

in this case, an estimate of the finite volume effects present in the quenched 
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calculation was investigated for two different volumes (1.5 and 3.0 fm) at 0 = 6.0 

for the non-perturhatively improved fermion action. 

For the pseudoscalar, the percentage difference for the masses determined on 

the two different volumes was approximately 0.6% for the heaviest quark mass, 

rising to 1.5% for the lightest. In all cases the difference was a 2C7 effect. The 

pseudoscalar masses, shown in Table A.2, are smaller for the larger volume and 

the difference between the two results tends to increase with decreasing quark 

mass. This is in line with expectations that lighter hadrons, having a greater 

Compton wavelength and thus a greater extent on the lattice, are more susceptible 

to finite volume effects. In the case of the vector meson a comparison of the results 

in Table A.4 indicated that statistically significant finite volume effects were not 

observed. At the lightest quark mass, the difference was just 0.7cr. In contrast to 

the pseudoscalar, the vector masses for the larger volume were slightly larger. 

In order to investigate whether this mass difference in the pseudoscalar could 

he attributed to the fact that no mass estimate for the excited state was available 

for the large volume, single cosFi fits were performed on the smaller lattice. These 

results were entirely consistent with those obtained from the double cosh fits. 

However, it was possible to choose small fitting intervals close to tmax for the 

single cosh fits which yielded mass results compatible with those obtained on the 

larger volume, albeit with larger errors. The conclusion is then that no finite size 

effects are observed for the vector, and small yet statistically significant effects 

appear to be present in the pseudoscalar mass. However, it cannot be ruled 

out that the finite size effects in the pseudoscalar mass have a statistical origin 

without further investigation. 

Finite size effects are expected to be more pronounced in the baryons, due 

to the greater extent of the bound state wavefunction. Examining the masses 

obtained for both volumes for the octet baryons in Tables A.8, A.12 and A.15, 

the percentage difference in the masses ranges from 1.2% for the heaviest quark 

masses to 3.6% for the lightest. The deviation is around one cr, where the 

masses on the larger volume are smaller. For the decuplet haryons in Tables A.6 



Chapter 3. Quenched spectrum results 	 76 

and A.10, a greater finite volume effect was observed. The mass difference ranges 

from 2.3% to 5.3% at the lightest quark mass. Here the deviation is around 20 

and again the masses are in general lighter for the larger volume. The effect in 

the octet baryons, although twice as large as the effect in the pseudoscalar, is not 

significant given the level of statistical accuracy of the data. However the finite 

size effects in the decuplet baryons have a more significant impact on the final 

results. 

3.5 The Edinburgh plot 

The Edinburgh plot [681 is a useful way of comparing results for different actions 

and lattice spacings without the need for any extrapolations of the data. The 

mass ratio of the nucleon and vector meson is plotted against the mass ratio of 

the pseudoscalar to vector meson for the degenerate data. Figure 3.10 shows the 

Edinburgh plots for the tadpole and non-perturbatively improved data sets. If 

the data sets exhibit scaling as described in section 1.12, then the data points 

should lie on the same universal curve. Shown on the graphs are the experimental 

ratios and the values obtained in the static quark limit, where the hadron mass 

is equal to the sum of the valence quark masses. The data is compared with the 

curve obtained from the phenomenological model for the hadron masses described 

in [69]. The model predicts the hadron masses from the following equations 

3 

Mbaryon = Mb + 	Mi + eb 	
SiS3 	

(3.13) 
i=1 	

•. rnm 

(3.14) 
rn-rn 

where the constants are taken to have the values, Mb = 0.077 0eV, M n  = —0.057 

GeV, 6b = 0.02205 0eV 3  and m = 0.0715 0eV3 . These formulae depend on the 

masses, m, and the spin, s 1 , of the constituent quarks of the hadron in question. 

The curve is shown as a guide for the eye. The data points show good agreement 

with the model curve, but it is hard to draw conclusive evidence of the effect of 

improvement between the tadpole and the non-perturbatively improved results. 
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To investigate the effect of improvement, the large volume data can he com-

pared with recent results reported in [70] for 8 = 6.0, shown in Figure 3.11. At 

lighter quark masses the results are all in agreement within errors, with the unim-

proved results increasing more rapidly as the quark mass is increased. The data 

from [70] have been compared with the large volume data set rather than the 

small volume data. The reason for this was because of the finite volume effects 

present in the nucleon for the smaller volume which has the effect of increasing 

the nucleon mass as can be seen from Figure 3.10. To observe any deviation of 

the quenched spectrum results from experiment it is better to study quantities 

which are defined purely in terms of the meson masses, such as the J parameter. 

3.6 The J parameter 

The J parameter [71] is defined as 

drnv 	my 
J=rnv 

2MK.  ) phys rnps 	rnps 	
(3.15) 

d  

where J is evaluated at the experimental mass ratio of the K and K*  mesons. 

(Throughout this thesis, lower case letters denote lattice masses while capitals 

denote their physical values). It enables a comparison of the meson sector of 

the spectrum with experiment without the need for a chiral extrapolation. As 

an alternative, the J parameter can instead be evaluated at the mass ratio, 

M 1 /M = 1.49, where this value has been obtained by assuming the valence 

quark content of the the i pseudoscalar meson is purely strange, (strictly speak-

ing the meson is not detected experimentally). The J parameter is determined 

by performing a correlated fit to the linear relation 

mv = A + Bm 5 	 (3.16) 

to calculate the slope, B, which is then multiplied by the K*  mass in lattice 

units, where the mass of the K*  is determined from the intercept of equation 3.16 

with the experimental ratio, MK*/MK. Figure 3.12 shows the results of a fit to 

equation 3.16 for the 0 = 6.0 non-perturbatively improved data set. The lattice 
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values for the meson masses at the mass ratios, MK*/MK and Mc1,/M, have been 

included in the plot. The plot shows that the data is well represented by a linear 

fit. 
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Figure 3.12: The vector meson mass plotted against the squared pseudoscalar 
mass for the /3 = 6.0 non-perturbatively improved data set. A correlated linear 
fit was performed to the data. The lattice masses at the MK*/MK mass ratio and 
the ratio M/M, have been shown by the crosses on the plot. 

Using experimental values as input, the phenomenological value for J = 

0.48(2). Figure 3.13 shows the values obtained for the J parameter for all the 

quenched data sets, plotted against the value of the lattice spacing in units of the 

Sommer scale, r 0 , defined later in section 3.7. The plots show that while the re-

sults for each data set are consistent with each other, showing little a dependence, 

they fail to reproduce the experimental value. Evaluating J at the q  meson mass 

ratio, gives an increased value, but which is still inconsistent with experiment. 

Since J is consistently low, this suggests that the discrepancy in the J parameter 

has little to do with lattice artifacts and instead appears to he an intrinsic feature 

of the quenched approximation. In the left-hand plot in Figure 3.13 the result 

for J determined by D. Becirevic et al. [72] for their 0 = 6.2 non-perturbatively 
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improved data set is shown. Their result is consistent with the findings reported 

here. 

Related to the J parameter, the vector-ps eudoscalar hyperfine splitting is an-

other quantity which can be compared with experimental results without requir-

ing an extrapolation to the physical quark masses. In order to compare the results 

from data sets with different /3's first the lattice scale must be set. 

3.7 Setting the scale 

The lattice spacing, a, is set by comparing a physically measured quantity with 

its value in lattice units. One quantity which can be used to set the scale is the 

Sommer scale r0  [73], given by 

F(ro /a)(ro /a)2  = 1.65, 	r0  = 0.5fm 	 (3.17) 

where F(ro /a) is the force between a static quark anti-quark pair separated by 

a distance ro /a. The value of 1.65 has been chosen such that r0  = 0.5fm in 

physical units when compared with phenomenological effective potential models. 

This characteristic length scale, r0 , has been chosen to be in the region where the 

potential is well defined. However since the pure gauge theory is unphysical, r0  

cannot be determined directly by experiment. Choosing r0  to set the lattice scale 

has the advantage that it can be calculated with good statistical precision and is 

defined in the same way for both quenched and dynamical gauge configurations, 

which means it can be used to compare results in both regimes. In contrast, 

selecting the string tension, K, to set the scale 

K = urn F(r/a) 	 (3.18) 
a -+00 

requires that the limit of infinite distance be taken for the potential, which be-

comes more difficult as the errors in the potential measurement increase with the 

separation. Additionally, the string is expected to break in dynamical simulations 

where pair production is expected to occur as the separation increases. 
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The ALPHA Collaboration [74] have performed an interpolation of their results 

for r0  to yield the formula 

ln(a/ro ) = —1.6805 - 1.7139(0 - 6) + 0.8155(0 - 6)2 - 0.6667(0 - 6) (3.19) 

from which n o /a can be determined for 0 values in the range 6.57 > 13 > 5.7. All. 

the values for the Sommer scale for the quenched data sets have been computed 

from equation 3.19, where the relative error has been evaluated using the linear 

relation, described in [74] 

Crc 1 = 10/29 X 0 - 1.67 	 (3.20) 

The scale can be set using the lattice values of various hadron masses. The 

method used to determine the K*  mass was described in section 3.6. The p meson 

mass can be determined in the same way by instead considering the physical 

ratio, MP /MIr. Although the p meson is stable in the quenched approximation, 

it is expected to couple to two 7r's in dynamical fermion simulations. For this 

reason the p was only used to set the scale in order to compare the final results. 

3.8 Hyperfine splitting 

Experimentally the vector-pseudoscalar hyperfine mass splitting has a roughly 

constant value of my 2  - mps 2  0.55GeV2  for a wide range of quark masses. 

Heavy quark symmetry [75] predicts that this should indeed be the case for 

heavy-light mesons. For mesons composed from one light quark, (u, d, s) and one 

heavy quark, (c, b), only the quantum numbers associated with the light degrees 

of freedom (the light quark and the gluons) dictate the properties of the bound 

state. This means that the hyperfine splitting for heavy-light mesons should be 

independent of the mass and spin of the heavy quark up to correction terms 

proportional to the inverse of the square of the heavy quark mass. This thesis 

only examines mesons composed from light quarks, but by studying the results 

as the quark mass is increased, the probable results for the splitting in the heavy- 
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light sector can be inferred. A detailed study of heavy-light meson spectroscopy 

in the quenched approximation can he found in [76], which finds that the physical 

mass splittings are significantly greater than the values obtained from the lattice 

simulation. 

The hyperfine splitting has been plotted against the pseudoscalar mass squared 

in Figure 3.14 where the scale has been set by both r0  and the K*  mass. The 

data sets which use tadpole and rion-perturbative improvement have been shown 

in separate plots in order to study the effect of improvement. The results are 

compared with the experimental results obtained from [14]. The physical mass 

values used for the r and K*  have been computed by taking the average mass 

of the charged states with the neutral particle. The has been assumed to be 

composed purely of strange valence quarks. Comparing the tadpole and non-

perturhatively improved plots, the a dependence appears reduced for the fully 

0(a) improved case, particularly when the scale is set by r. (This could be 

confirmed by comparing the results obtained on different lattices extrapolated to 

the same values of the meson masses). 

Setting the scale with r0 , the results obtained overshoot the experimental 

points for the lighter quark masses. However if the scale is set from the K*  mass 

the splittings underestimate the experimental results, as has been observed in a 

previous analysis of the quenched results [77]. This is because the results are 

very sensitive to the lattice scale. Choosing different quantities to set the scale 

results in slight differences which are magnified in the hyperfine splitting. In 

all cases there is a small but significant negative slope in the data as the quark 

mass is increased. This slope is shallower than results from the unimproved case 

reported in [57]. However this suggests that the results obtained from the lattice 

simulation fail to reproduce the observed very weak dependence of the hyperfine 

splitting on the quark mass. The implication is that for heavy-light mesons the 

hyperfine splitting will not be consistent with the experimental results. 

Figure 3.15 compares the non-perturbatively improved data at 0 = 6.0 for 

the hyperfine splitting with the results reported in [70]. The results obtained 
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Figure 3.14: Vector-pseudoscalar hyperfine splitting for the tadpole improved 
and non-perturbative improved data sets. The scale has been set by the Sommer 
scale, To, and by the K*  meson mass. 
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for the non-perturbatively improved data sets are in agreement with the results 

from [70] within errors, with closer agreement occurring with the large volume 

data set. The unimproved Wilson data is much lower, showing that the effect of 

improvement is to increase the hyperfine splitting. 

3.9 Chiral extrapolations 

The hadron masses determined so far have been obtained at unphysical values of 

the quark masses. To determine the physical masses of the hadrons, they must 

first be extrapolated to the chiral limit, where the bare quark mass vanishes. 

This section discusses two ways of calculating the critical value of the hopping 

parameter, kcrjt, which determines the vanishing quark mass in the chiral limit. 
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3.9.1 Determination of kcrjt from the pseudoscalar mass 

The Wilson fermion action explicitly breaks chiral symmetry and results in the 

additive renormalisation of the bare quark mass. The bare quark mass is defined 

as 

m
1 (2 - 	 (3.21) q 	
2 	'Qrit) 

The value of /tcrit is determined in the chiral limit when the quark mass is zero. 

From the partially conserved axial current (PcAc) relation this occurs when the 

squared mass of the pseudoscalar meson vanishes, rn = 0. ps 

At lowest order in the chiral expansion of rnps , this relationship can be ex-

pressed as 

rn 5  = B(nq1  + mq2 ) 	 ( 3.22) 

This is the simplest form consistent with 0(a) improvement for non-degenerate 

combinations of quarks, where the improved quark mass [25] is defined by 

Fnqi = rnq (1 + bm rnq ), 	Z = 1,2 	 (3.23) 

The improvement coefficient, bm  has been determined in one-loop perturbation 

theory [78] as 

b 	i - 0.0962g + O(g) 	 (3.24) m - — 2 

Recently a non-perturbative determination of bm  was performed at fi = 6.2 as 

detailed in [79]. 

If the quark masses are very light, equation 3.22 will have additional terms 

from quenched chiral perturbation theory [80, 81]. The identification of the if 

meson as a pseudo-Goldstone boson in the quenched theory results in the addition 

of terms proportional to the log of the quark mass. These terms will only have 

an appreciable effect on the fit for small values of the quark mass. For the 

range of quark masses considered here the quark masses are sufficiently large 

that these correction terms are not representative of the data and hence they 

have not been taken into account. Significant contributions from quenched chiral 
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logs have only been observed for quark masses smaller than the lightest mass 

used in these quenched simulations [4]. At the other end of the scale, possible 

contributions from higher order terms in the quark mass have to be considered. 

These higher order terms can occur from two possible sources. One possibility is a 

phenomenological effect, motivated by the Gell-Mann-Oakes-Renner formula [82] 

2 
M P= -- Kh) mq  + 0(rn) 	 (3.25) 

J 

where f7 is the n decay constant and () is the chiral condensate. The other 

is due to lattice artifacts, which can be eliminated to 0(a) by using the im-

proved quark mass. The latter is investigated using the following fit ansatz [83], 

constructed by inserting the improved mass into equation 3.22 and writing the 

resulting expression in terms of the hopping parameters 

7) 
rris= a 	

1 
+/3(—+ 

1 	

1 	i 
— +y —+--- 	 (3.26) 

\ki 	2 

( 	

2) 

where the coefficients a, 0 and y  are related to B, bm  arid kcrit  in the following 

way 

a =
" B (_

I+ 
 bm ) 
	

Bbm 

	

1crit 	 —j-- 	
(3.27) 

'crit 

The fits were performed using an uncorrelated least- 2  fit to equation 3.26 for the 

parameters, B and k crit . The value of bm  was used as input to the fit in order to 

constrain the fit and was thus not determined. Correlated fits were investigated, 

but resulted in large values for the X 2 /d.o.f. of up to 17 in the worst case. This 

may be due to the fact that the errors on the pseudoscalar mass squared are very 

small and thus the fit is tightly constrained. Large X 2 /d.o.f.'s have been observed 

by other collaborations [72, 84] for linear fits. Uncorrelated fits were therefore 

selected for the final choice of fits. 

The effect on the fitted value of s'tcrjt , resulting from varying the definitions of 

bm  used in the fit, was investigated. The tree-level (TL) value, corresponding to 
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bm (TL) = — 0.5 was compared with bm  as determined from equation 3.24 using 

both the bare coupling, g02  = 6//3, and the "boosted" coupling, g 2  = g/u. Fits 

for the unimproved case, ba-, = 0, were investigated for completeness. The non-

perturbative result for bm  at 3 = 6.2, where bm (NP) = — 0.62(3), has also been 

included in the fits for the non-perturbative data set at 0 = 6.2. Table 3.3 shows 

the results for / crj t  obtained for each data set. 

The results show that rl,rit  is not very sensitive to the choice made for bm . 

The greatest deviations occur for the 0 = 5.7 data set which could be due to the 

fact that only three points were used in the extrapolation. For the /3 = 6.2 non-

perturbatively improved data set, the result obtained using the non-perturhative 

estimate for bm  is entirely consistent with the results obtained from the one-

loop values. In order to be consistent for all the data sets, the boosted one-loop 

estimate for bm  was selected for the best fit. The final results are highlighted in 

bold in Table 3.3. 

Comparing these results with the unimproved case yields results for kcrjt which 

are significantly higher. The X 2 /d.o.f. obtained in the fits for the unimproved case 

is slightly lower, suggesting that this is a better fit to the data. Other collabora- 

tions [72] have concluded that this suggests that there is an additional factor of 

that must be included in the fit which is attributed to a real physical effect 

as in equation 3.25. However this may be due to the fact that they include heav- 

ier quark masses in the extrapolation. Another possibility is that the fit ansatz is 

too simple and a more complicated fit as described in [79] should be considered. 

This type of fit includes higher order terms in the improved quark mass fitted to 

a wide range of non-degenerate and degenerate combinations of quark masses, in 

order to distinguish between contributions from terms depending upon bm  and 

terms depending on the difference of further improvement coefficients (chosen to 

reduce the O(arnq ) errors) of the axial-vector and pseudoscalar operators, bA — bp. 

To examine these issues, the pseudoscalar mass squared was plotted against the 

averaged quark mass, (iq 1  + i'q2 )/2 in lattice units. Figure 3.16 shows the fit 

to equation 3.22 for the 0 = 6.0 non-perturbative data set. The averaged quark 

mass has been determined using the value of 'crjt  selected as the best fit. Note 
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Tadpole improved data sets 

/3 	L 3  T Value of bm  'crit x 2 /d.o.f. 

5.7 	16 	32 bm 	= 0 0.143408 -45 0.08 / 1 

bm (TL) 	= -0.5 0.143240 -40 0.08 / 1 

bm (g) 	= -0.6013 0.143206 +26  
-39 0.08 / 1 

bm (g2 ) 	 = -0.6844 0.143178 39 0.08 / 1 

6.0 	16 3 . 48 b 1 	= 0 0.139240 +20 1.33 / 4 

bm (TL) 	= 0.5 0.139216 2.43 / 4 

bm (g) 	= -0.5962 0.139212 2.74 / 4 

bm (g2 ) 	= -0.6620 0.139209 ±19  2.98 / 4 

6.2 	24 3 
.48  bm 	= 0 0.137912 13 1.48 / 4 

bm (TL) 	= -0.5 0.137900 -12 1.93 / 4 

bm (g) 	= -0.5931 0.137898 -12 2.03 / 4 
bm (g2 ) 	 = -0.6517 0.137897 12 2.10 / 4 

Non-perturbatively improved data sets 

0 	L 3  . T 	Value of bm  NI crit 

6.0 	16 	. 48 	bm 	= 0 0.135280 +17  0.14 / 4 

bm (TL) 	= -0.5 0.135259 +16  0.42 / 4 

bm (g) 	= -0.5962 0.135255 0.51 / 4 

bm (g 2 ) 	 = -0.6620 0.135252 0.58 / 4 

6.0 	32 3 .64 	bm = 0 0.135260 0.19 / 4 

bm (TL) = -0.5 0.135241 t i  0.34 / 4 

bm (g) -0.5962 0.135237 0.41 / 4 

bm (g2 ) = -0.6620 0.135235 -10 0.47 / 4 

6.2 	24 3 . 48 	bm  = 0 0.135828 +17  
-14 0.34 / 4 

bm (TL) = 	0.5 0.135818 -14 0.40 / 4 

bm (g) = -0.5931 0.135816 -14 0.42 / 4 
bm (NP) = -0.62 0.135816 -14 0.42 / 4 

bm (g2 ) = -0.6517 0.135815 -14 0.43 / 4 

Table 3.3: Results for 'crjt  obtained from an uncorrelated fit to equation 3.26 
using different values for bm . Definitions of bm used were: no improvement, 
tree-level and one-loop perturbation theory using both the bare and "boosted" 
coupling. For the non-perturbative 0 = 6.2 data set, the non-perturbative value 
for bm  has been included. The final results used in the rest of this thesis are 
highlighted in bold. 



Chapter 3. Quenched spectrum results 	 90 

that in all the plots in this thesis the quark mass is always the improved quark 

mass. 

0.2 

/3 = 6.0 N—P 

0.1 

X2/dof=0.57/4 

0.0 - 
0.00 
	

0.02 	 0.04 	 0.06 
a(m q  + 

Figure 3.16: The pseudoscalar mass squared as a function of the average improved 
quark mass for the 0 = 6.0 non-perturbative data set. The data has been fitted 
to equation 3.22 using an uncorrelated fit. 

Figure 3.17 shows fits to equation 3.22 for all data sets in units of r o  in order 

to compare the tadpole improved and non-perturbatively improved data sets. 

The fit in units of r 0  has been performed using an uncorrelated fit using linear 

regression [49] to minimise the x 2  Only the best fit has been shown. There is 

no evidence from the plots to suggest any deviation from the linear ansatz for 

the range of quark masses studied. Further analysis of the chiral behaviour of 

the pseudoscalar in [85] showed that the contributions of terms proportional to 

(qi q)2 constitute less than 1% of the overall error. The plots show improved 

scaling behaviour for the pseudoscalar meson for the non-perturbatively improved 

data sets relative to the tadpole data sets. 
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Figure 3.17: 	The pseudoscalar mass squared for the tadpole and 
non-perturbatively improved data sets plotted against the averaged improved 
quark mass, + thq2 )/2 in units of r0. The improved quark mass has been 
determined using the boosted one-loop perturbative value of bm . 

3.9.2 Alternative determination of Kent 

The critical value of the hopping parameter can alternatively be defined at the 

point where the unreriormalised PCAC mass vanishes [30] 

mpcAc = B(iq1  + mq2 ) 	 ( 3.28) 

The same fit ansatz in equation 3.26, used to extract i1 from the pseudoscalar 

mass squared, was used where m 2p5  was replaced by rnpcAc. Following the same 

general fit procedure, the results for kent are listed in Table 3.4. The results 

obtained for different definitions of bm  are again stable for 3 > 6.0, with the 

largest difference arising when using the unimproved value for Correlated fits 

were considered, but the resulting X 2 /d.o.f. was very large due to the fact that 

the errors on the PCAC mass are so small, thus tightly constraining the fit. The 

final values reported in Table 3.4 have been obtained from uncorrelated fits. 
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The results obtained for 'crit  from this method differ by terms of 0(a2 ) from 

Ii crit determined from the pseudoscalar mass. Comparing the results for ftcrjt 

from both methods shows that values determined from rnpcc are in general 

lower with much smaller errors. At the smallest 0 the difference in the results 

for both methods is of 0(10). For the chiral extrapolations of all the other 

hadrons, the improved quark mass was determined using the one-loop boosted 

perturbation theory value for bm  and kcrit from the pseudoscalar extrapolation, 

in preference to 'crit  determined from the PCAC mass. This was because the 

functional dependence of the baryons on the PCAC mass is more complicated. 

3.9.3 Vector chiral extrapolation 

Motivated by the results obtained for the quark mass dependence for the pseu-

doscalar meson, the lowest order chiral expansion for the vector meson was se-

lected as the fit ansatz. Ignoring terms arising from quenched chiral perturbation 

theory, the fit ansatz was 

my = A + C( q1  + rnq2 )/2 	 (3.29) 

In principle higher order terms in the improved quark mass can be included in the 

fit. Previous experience [39, 53, 861 has shown that for the range of quark masses 

considered here, the data shows no conclusive evidence of any deviation from the 

linear relation. An uncorrelated 1east- 2  fit was performed for all data sets, in 

order to maintain consistency with the pseudoscalar extrapolations, the results 

of which are displayed in Table 3.5. Figure 3.18 shows a fit to equation 3.29 for 

the 0 = 6.0 non-perturbative data set. This plot shows that the data is well 

described by the linear ansatz. Figure 3.19 shows the chiral extrapolations for 

the vector meson mass for all the quenched data sets where the scale was set 

by r0 . A reduced dependence on the lattice spacing for the non-perturbatively 

improved data sets is observed in the plots. 
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Tadpole improved data sets 

f3 	L 3  T 	Value of bm  'crit X 2/O 

5.7 	16 3 	32 	bm 	= 0 0.143149 -13 4.49 / 1 

bm (TL) 	= -0.5 0.143005 -12 4.49 / 1 

bm (g) 	= -0.6013 0.142976 4.49 / 1 

bm (g2 ) 	= -0.6844 0.142953 -11 4.49 / 1 

6.0 	16 3 
.48 	bm 	= 0 0.139170 5.08 / 4 

bm (TL) 	= 0.5 0.139148 + 6 / 
b(g) 	= -0.5962 0.139143 3.69 / 4 

bm (g2 ) 	= -0.6620 0.139140 3.83 / 4 

6.2 	24 3 
.48 	bm  = 0 	0.137911 2.96 / 4 

bm (TL) = 	0.5 	0.137899 1.67 / 4 

bm (g) = -0.5931 	0.137897 1.83 / 4 

bm (g2 ) = -0.6517 	0.137896 1.99 / 4 

Non-perturbatively improved data sets 

[ 	L 3  . T 	Value of bm  1crit 2 /d.o.f. 

6.0 	16 3 
.48 	bm 	= 0 0.135209 3.36 / 4 

bm (TL) 	= 	0.5 0.135190 1.22 / 4 

bm (g) 	= -0.5962 0.135186 t 0.99 / 4 

= -0.6620 0.135184 t 0.86 / 4 

6.0 	32 	64 	bm  = 0 	0.135222 1.82 / 4 

bm (TL) = 	0.5 	0.135202 0.63 / 4 

bm (g) = -0.5962 	0.135199 0.54 / 4 

bm (g2 ) = -0.6620 	0.135196 0.51 / 4 

6.2 	24 3 . 48 	bm  = 0 0.135819 0.86 / 4 

bm (TL) = -0.5 0.135809 0.32 / 4 

bm (g) = -0.5931 0.135807 t 0.30 / 4 

bm (NP) = 	0.62 0.135807 0.30 / 4 

bm (g2 ) = -0.6517 0.135806 0.30 / 4 

93 

Table 3.4: As for Figure 3.3 with ttcri t  determined from the PCAC mass. 
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/3 .c L 3  T A C 2 /d.o.f. 

5.7 1.56 16 32 0.669 2.40 0.09 / 1 

6.0 1.76 16 48 0.404 2.79 II 0.08 / 4 

6.0 1.76 32 64 0.414 2.61 0.04 / 4 -20 

6.0 1.47 16 48 0.391 2:65 0.25 / 4 

6.2 1.61 24 3 . 48 0.304 2.61 0.08 / 4 -26 

6.2 1.44 24 48 0.298 2.64 II 0.09 / 4 

Table 3.5: Fit parameters obtained for the vector from uncorrelated fits to equa-
tion 3.29 for all data sets. 
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Figure 3.18: The vector mass as a function of the improved quark mass for the 
/3 = 6.0 non-perturbative data set. The data has been fitted to equation 3.29 
using an uncorrelated fit. 
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Figure 3.19: The vector mass for the tadpole and non-perturbatively improved 
data sets plotted against the averaged improved quark mass, (i + q )/2 in 
units of ro . The improved quark mass has been determined using the boosted 
one-loop perturbative value of bm . 

3.9.4 Baryon chiral extrapolations 

Chiral extrapolations for the baryons have been performed using the simple fit 

ans atz 

mB = A + C(tq1  + 	+ m q3 )/3 	 (3.30) 

Terms arising from quenched chiral perturbation theory have been neglected since 

the simulated quark masses are too heavy to produce an observable effect. Higher 

order terms in the quark mass have been omitted from the fit as previous expe-

rience [39] indicates that the quality of the data is not sufficient to include them. 

For the spin-i haryons the following fit ansatz has been motivated in [40] 

mB = A + B'fii q1  + C'( q2  + mq3)/2 (3.31) 

where the last term is composed from the quark masses which are symmetric/anti-

symmetric under interchange of the quark flavours. In reference [39], the fit pa- 
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rameters obtained from fits to the degenerate spin-i baryons using equation 3.30 

can be compared to those obtained from fits to equation 3.31 to all the quark 

mass combinations. The results show that C B' + C' within errors. This sug-

gests that the simple fit ansatz in equation 3.30 is sufficient to model the chiral 

behaviour at the current level of accuracy of the baryon data. 

Uncorrelated fits were performed using equation 3.30 to the degenerate delta 

and nucleon baryons for all data sets (3 point fit). The 0 = 5.7 data set con-

sists of only two degenerate combihations for the baryons and thus the chiral 

extrapolations are not well controlled. For the other data sets, a 7 point fit to 

the non-degenerate delta data and a 15 point fit to the non-degenerate sigma 

and lambda baryons were examined. Finally fits were performed to both the 

degenerate and non-degenerate baryon data: a 10 point fit for the delta and an 

18 point fit for the sigma and lambda. The degenerate nucleon data points were 

included in these fits to the sigma and lambda. Table 3.6 shows the fit param-

eters obtained from these three different fits for the delta for the 3 = 6.0 and 

= 6.2 non-perturbatively improved data sets. For the /3 = 6.2 data set the 

Baryon 	Data set 	# points A C X 2 /d.o.f. 

Delta 	/3 = 6.2 N-P 	3 0.540 ±27  
20 4.03 	+ 52 

-77 

  

0.001 / 1 

7 0.540 +25 
-17 

+ 4.11 	45 
-78 0.034 / 5 

10 0.542 ±23   43 4.00 + 
-17 	 -68 	0.144 / 8 

/3 = 6.0 N-P 	3 0.728 +61  
42 86 + 

-130 0 89 	/ 1 u  

7 0.775 t 45 
 

42 . 2.87 + 
99 0.359 / 5 

10 0.762 +49 
 36 17 + 72 

-112 2.120 / 8 

Table 3.6: Fit parameters obtained for the delta baryons from fits to equation 3.30 
for the 0 = 6.0 and 0 = 6.2 non-perturbatively improved data sets. The fits 
corresponding to the number of points has been described in the text. 

fit parameters do not depend on the choice of fit. There is a bigger variation in 

the 13 = 6.0 fit parameters, however the results are still compatible within errors. 

Figure 3.20 shows the fits to all the delta combinations for these two data sets. 
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The 0 = 6.0 plot shows that the point corresponding to the lightest quark mass 

is off the best fit, explaining why, for this data set, there is a greater deviation of 

the fit parameters when the degenerate points are included. This problem only 

occurs in this data set as can be seen by examining Figure 3.21, which shows 

the delta extrapolations for the other data sets plotted in units of To. The large 

volume data set has been excluded from, the plots for clarity. The plots show that 

the data is consistent with a linear fit. For the delta baryons the final fit selected 

was an uncorrelated linear fit to all the quark mass combinations. 
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0.8 

/3 = 6.0 N—P 

2/dof=2.12/8 

0.70 

0.65 

0.60 

0.55 

' 7 
X 4/d0f0.14/8 

07 
	

0.50 
0.00 	 0.02 	 0.04 	 0.06 	0.00 	0.01 	0.02 	0.03 	0.04 

a(m q  +M% + rn q)/3 	 a(m ,  + m q  + 

Figure 3.20: The delta mass as a function of the average improved quark mass 
for the 0 = 6.0 and 0 = 6.2 non-perturbative data sets. The data has been fitted 
to equation 3.30 using an uncorrelated fit. 

Figure 3.22 shows the chiral extrapolations for the lambda and sigma baryons 

for the 0 = 6.0 rion-perturbatively improved data set. These plots show that 

the linear ansatz is a good fit to the data and that the lambda and sigma are 

almost degenerate in mass. The chiral extrapolations for the spin-i baryons in 

units of r0  are shown in Figure 3.23. The figure shows the improved scaling 

behaviour for the rion-perturbatively improved data sets. The 0 = 5.7 data set 

does not include non-degenerate baryons and thus does not differentiate between 
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Figure 3.21: The delta mass for the tadpole and non-perturbatively improved 
data sets plotted against the averaged improved quark mass, (c +q2 +mq3 )/3 
in units of r0 . The large volume data set has been omitted for clarity. 

the sigma and lambda states. For clarity, the 0 = 5.7 nucleon extrapolation has 

only been included in the plot of the lambda extrapolation. Table 3.7 gives the fit 

parameters obtained from linear chiral extrapolations for the /9 = 6.0 and 0 = 6.2 

non-perturbatively improved data sets. The degenerate fits to the nucleon can be 

compared with the non-degenerate fits to the sigma and lambda baryons. From 

the table, the fit parameters are consistent within errors for each of the different 

fits. The 18 point fit was selected as the final fit for all the data sets, except at 

/3 = 5.7. 

3.10 Determination of Mn and m 

The next stage is to determine the physical quark masses in lattice units in order 

to extract the physical hadron masses. On the lattice the up and down quarks 

are degenerate in mass. The normal quark mass, rn, is defined to be the average 

of the light quark masses, M n  = ( m 11  + md). The value of Mn  is determined 

at the physical value of the 7r mass. This is achieved by choosing an observable 
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Baryon Data set # points A C 2 /d.o.f. 

Nucleon ,8 = 6.2 N-P 3 0.409 + 6 
22 

+ 66 
-20 0.30 / 1 

/3 = 6.0 N-P 3 0.567 +31 
35 U 

+ 68 . 0. 02  / 1 

Sigma /3 = 6.2 N-P 15 0.409 8 
21 4.99 + 

-35 7.56 / 13 

18 0.406 + 6 
-19 '-' 	' 2° + 62 

- 23 11.77 / 16 

/3 = 6.0 N-P 15 0.567 23  
28 4.96 + 62 

-42 u. ° 70 / 13 

18 0.568 +24  
-26 ..0  

+ 56 3.73 	/ 16 

Lambda /3 = 6.2 N-P 15 0.410 + " 
29 . 4.89 +107 

- 12 4.20 / 13 

18 0.404 + 4 
-23 U.0 

+ 76 
- 10 9.88 / 16 

/3 = 6.0 N-P 15 0.560 +23 
28 

1 
U..I. 

+ 65 
-41 2.43 / 13 

18 0.563 ±24 508 + 57 2.58 / 16 -27  

Table 3.7: Fit parameters obtained for the spin-i baryons from fits to equa-
tion 3.30 for the /3 = 6.0 and 3 = 6.2 rion-perturbatively improved data sets. 
The fits corresponding to the number of points included in the fit is described in 
the text. 
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a(m q  + mq  +  

X/dof3.73/1 6 

0.02 	 0.04 	 0.06 
a(m q  + mq  + mq)/3 

Figure 3.22: The lambda and sigma masses for the /3 = 6.0 non-perturbative data 
set plotted against the averaged improved quark mass, (tq +q2  +iq3 )/3. The 
data has been fitted to equation 3.30 using an uncorrelated fit. 
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quantity, Q to set the lattice scale. Rearranging equation 3.22, the improved 

normal quark mass is determined by 

rn = 
Q 2  (M/Q) YS 	

(3.32) 

where (M/Q)hYS  is the physical ratio of the ir mass over Q. In the quenched 

approximation the lattice scale, a, depends on the choice of Q. This scale ambi-

guity arises because the neglected fermion loops affect each observable differently. 

Different choices for Q were used to set the scale: the p mass, the K*  mass, the nu-

cleon mass and the Sommer scale r o  1 . This was done to estimate the systematic 

error resulting from different determinations of the lattice spacing. 

Tadpole improved data sets 

1/a [GeV] 

/3 . T Q = m Q = rnK* Q = MN Q  = ro
1  

5.7 16 3 . 32 1.140 +25  
23 1185 +22  

-20 0998 ±25  
-23 1.156 + 

-4 

6.0 16 3 . 48 1.935 +36  
39 . 2.005 +28  

34 . 1.715 +51 
-81 . 2119 +8 

- 8 

6.2 24 .48 2.556 -74 2 653 -60 . 2 392 +101 
- 2 .905 +13 

-13 

Non-perturbatively improved data sets 

1/a [GeV] 
/3 L 3  . T Q = rn Q = TflK* Q = rnj Q = ro  

6.0 16 . 48 1.890  +27 
49 . 1.947 +27  

-38 1.622 +71  
-67 2.119 + 8 

-8 

6.0 32 3 . 64 1.851 +36  
47 1.918 ±32  

39 1.667 -8  2.119 + 8 

6.2 24 3 . 48 2.544 +46  
-87 . 2.631 -65 2.266 +109  

-32 2.905 ±13 
-13 

Table 3.8: Inverse lattice spacing 1/a measured in GeV from four different quan-
tities. 

Table 3.8 shows the values obtained for the inverse lattice spacing in GeV 

when different quantities set the scale. The smallest spacing in fm occurs when 

To sets the scale and the largest when the nucleon sets the scale. The percent- 
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age difference between the lowest and highest values is up to 30%. The method 

for determining the lattice value for Q has been described in section 3.7 for the 

Sommer scale and the mesons. The lattice value for the nucleon mass at the 

physical value is determined by combining the chiral extrapolations for the pseu-

doscalar mesons (equation 3.22) and the sigma baryons (equation 3.30). Making 

the assumption that the average quark mass for the pseudoscalar is equal to the 

average quark mass for the nucleon 

(rnq  + mq)/2 = (q + i q  + i q3 )/3 	 (3.33) 

which is valid since linearity is observed in the chiral extrapolations, the nucleon 

mass can be constructed from the relationship 

2 	 ( \M 

 MN 
mN = A+ 	 mps = N 	 (3.34) 

 phys 

Inserting the physical ratio of the 71 to the nucleon mass determines the lattice 

nucleon mass. 

Setting the scale with these four different quantities, the normal quark mass is 

determined from equation 3.32. The normal quark mass is then used to determine 

the corresponding value of the hopping parameter, ic, 

= rn1 (1 + bm rnn ), 	Mn = 
i/i - i 

	
(3.35) 

the results of which are presented in Table B.1 in appendix B. The errors from 

the lattice determination of r 0  used to set the scale have not been taken into 

account at this stage. The results for the normal quark mass obtained using 

different quantities to set the scale, were found to be consistent within errors at 

0(10). The largest error (discounting the uncertainty arising from quenching) 

in the normal quark mass arises from setting the scale from the nucleon mass. 

The strange quark mass can be determined by considering the physical ratio 
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of the K meson mass with Q 

Q 2  (M/Q) 

	

Ins  =
B 	

- rn 	 (3.36) 

subtracting the normal quark mass calculated previously. This method to de-

termine the unrenormalised strange quark mass is referred to as "K - input". 

Alternatively the strange quark mass can be determined by considering the vec-

tor masses. Rearranging the chiral extrapolation for the vector meson mass in 

equation 3.29, the strange quark mass can be determined from 

Q (MoMphys  - A 

C 
(3.37) 

using the q meson as input ("q - input"). The normal quark mass can also in 

principle be determined from the vector masses, using the physical p mass as 

input. In practice the larger statistical errors in the vector data meant that a 

precise determination of the normal quark mass was not possible. The results for 

the strange quark mass and corresponding tc 5  value obtained from both methods 

are listed in Table B.2 in appendix B. Comparing results when the scale is set 

by the same quantity, the "q - input" strange quark masses are significantly 

different from the "K - input" masses. This effect has also been observed in [40] 

and has been attributed to quenching errors. The statistical errors resulting from 

the "q - input" method are much larger in comparison, due to the difficulty in 

fitting the vector meson masses. In addition, the physical 0 meson is a mixed 

singlet and octet state unlike the pure octet K meson. On the lattice the q  meson 

can be assumed to be predominately s.. In practice, this assumption does not 

matter, but is a potential source of error. Resuits  from " - input" were thus not 

considered further. Comparing the results from "K - input" when the scale was 

set by different physical quantities Q, shows that the effect of small differences in 

the lattice spacing results in quark masses consistent within the statistical errors. 
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3.10.1 Renormalised quark masses 

Quark masses in the continuum depend on the running of the strong coupling. 

Their values are thus dependent on the energy scale, y. In addition the masses 

are dependent on the renormalisation scheme used. One choice is to renormalise 

the quark masses, q, in the modified minimal subtraction scheme, (M), 

m(t) = Z(a1u) q 	 (3.38) 

where ZM S  is the renormalisation constant. The renormalisation constant, Zm, 

relating current quark masses to the renormalisation group invariant quark mass 

has recently been determined non-perturbatively in the region 6.0 > 3 > 6.5 in 

the Schrödinger functional scheme, as described in [87]. This determination of 

Zm  can then be converted into the _Kffs scheme. However, in order to treat all the 

quenched data sets on an equal footing, the perturbative definition for ZS  [70] 

to one-loop in perturbation theory was used. Choosing the scale, ft = 1/a, in 

order to avoid problems arising from terms logarithmic in t, the perturbative 

expression is 

Z(1) = [1 - 	
n 

4(-4.11 - 10.317cu + 1.84( cswu ) 2 )] /u0 	(3.39) 

where this equation has been tadpole improved. The values for the strong cou-

pling, aMS(1/a),  for each 3 value were taken from [26]. They are: yMS(1/ a ) = 

0.2579, 0.1981, 0.1774 at = 5.7, 6.0, 6.2 respectively. 

The renormalised masses, m(1/a), for the normal and strange quark masses 

have been converted into MeV using the value of the lattice spacing obtained 

from the quantity that was used to set the scale. The results can be found in ap-

pendix B in Tables B.1 and B.3. It is usual to quote the final quark masses at the 

energy scale ' = 2 GeV. The transformation of the masses to any other energy 

scale is achieved by application of the renormalisation group formula (defined in 
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equation 1.82) at lowest order 

Tfl q 	t) 
= 	a(t) 

) 

do/2o 

rn() 	 (3.40) MS 	

(a') 

where 

00 = 11/16r 2 , 	d0 = 8/16 71 2 	 (3.41) 

The strong coupling at = 2 GeV was evaluated from the lowest order expression 

for the running coupling 

1 a htS (/) = - 	 ( 3.42) 
871,@o In (A/1t) 

after first using the value of a(1/a) to set A. A continuum extrapolation 

as described in detail later on in section 3.12 of the quark masses at ,u' = 2 

GeV was performed for all the different quantities, Q, chosen to set the scale. 

Table 3.9 shows the continuum values for the normal and strange quark mass in 

the M scheme at u' = 2 0eV in MeV. There is a marked variation in the quark 

masses resulting from the choice of scale of approximately 2o. The mass ratio 

rn/m'5  is consistent for each choice, which should be expected as the mass 

ratio is independent of the lattice spacing. The result can be compared with the 

Q m 	[MeV] rn [MeV] M
MS 

rn 4. 28 +33  
-18 107 + 8 

- 5 2 + 
- 2 

mK* 
41 

.1
4 ±25 

-16 103 + 6 
- 4 25 + 2 

mN .0 
+16 
-38 113 + ' 

-13 25 + 1 

r 3 . 71 +11 
'l 93  +3  

- 
25 

Table 3.9: Continuum extrapolated values for the normal and strange quark 
masses in the -fv-Fs scheme at u' = 2 0eV in MeV. The lattice spacing has been 
set by the quantity Q in each case. The dimensionless ratio of the quark masses 
has been quoted for comparison. 

theoretical prediction made in quenched chiral perturbation theory [88], which 



Chapter 3. Quenched spectrum results 	 106 

finds the mass ratio to he, MSIM = 24.3 + 1.0. A similar analysis carried out 

in [70] found a mass ratio of MS /Mn  = 22 + 3. 

3.11 Physical hadron masses in lattice units 

Interpolating the chiral extrapolations for the hadron masses to the values ob-

tained for the unrenormalised improved normal and strange quark masses, the 

physical hadron masses in lattice units can be determined. Table 3.10 shows the 

results obtained for the meson masses at the physical quark masses for all the 

data sets when the K*  meson sets the scale. In this case only the p and qf mesons 

can be determined from the simulation, the other mesons have been used to set 

the quark masses and the lattice spacing. The meson masses obtained for each 

quantity which sets the scale are listed in Table B.4 in appendix B. 

0 CSW L 3  . T rn rn,1, rnK. 

5.7 1.56 16 3 .32 0.676 0.833 0.754 +13  
-14 

6.0 1.76 16 48 0.408 0.511 0.459 + 
-6 

6.0 1.76 32 64 0.419 t 0.518 0.466 +10  
-s 

6.0 1.47 16 48 0.396 + 9  0.493 + 0.446 + 8 
-6 

6.2 1.61 24 . 48 0.307 0.378 t 0.340 + 
-5 

6.2 1.44 24 3 .48 0.301 + 9  0.373 + 0.337 + 
-4 

Table 3.10: Lattice values of the meson masses at the physical quark masses 
obtained using K*  to set the scale. The results for rny. are at the physical value 
of the K*  meson in lattice units. 

The haryon masses for the quenched data sets are reported in appendix B in 

Tables B.5 and B.6 for all the different quantities used to set the scale. Table 3.11 

shows the baryon results when the K*  sets the scale. The results for all the 

octet haryons are obtained from the sigma chiral extrapolation, except for the 

A. Results for the 0 = 5.7 data set are taken from the degenerate delta and 

nucleon extrapolations and interpolated assuming linearity to the non-degenerate 

baryons. Mass results in this case for the and A are assumed to be degenerate. 
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This assumption was made in order to perform continuum extrapolations for 

these baryons. 

Decuplet baryons 

0 cSW L 3  T rnA mE. rn. rnç1 

5.7 1.56 16 3  •32 1.122 +42 1207 +35  292 +30  1. 378  +28  
-32 -28 -23 -20 

6.0 1.76 16 3 .48 0.767 +48  0.806 . 0.845 0.884 ±13 
35 -28 -14 

6.0 1.76 32 3 .64 '-' 
( 	711 +26 0.762 t 0.813 0.864 +18  

-18 -15 

6.0 1.47 16 3 .48 0.733 +20  0.774  +15  0.814 0.854 + 
-29 -23 -13 

6.2 1.61 24 48 0.547 0.583 t 0.619 ±13  0.656 +10  
-8 

6.2 1.44 24 48 0.539 0.574 0.610 0.646 ± 
-6 

Octet baryons 

13 T mN mA mE rn= 

5.7 1.56 16 3 .32 0.935 ±21  
-23 1. 035  +19  

-19 1.035 t 1.134 -4-17 
-17 

6.0 1.76 16•48 0575 +23  
-25 0633 +19  

-18 0.636 t 0.696 +16  
-13 

6.0 1.76 32 . 64 
• 

0 560 +19  
-27 0.623 0.626 0.692 +13  

-16 

6.0 1.47 16 3 .48 0.544 0.605 0.607 t 0.669 ±17 
-9 

6.2 1.61 24 3 .48 
• 

0 412 + 6 
-19 0.458 0.459 t 0.506 + 

-10 

6.2 1.44 24 • 48 0.391 + 8 
-16 0.442 t 0.442 t 0.494 + 

- 8 

Table 3.11: Lattice values for the octet haryons using an uncorrelated linear fit 
to all the sigma baryons. The scale was set by K* .  

3.12 Continuum extrapolations 

To compare the light hadron spectrum results with experiment, an extrapolation 

to the continuum limit is required. Ideally, simulations would be performed 

at more values of the lattice spacing in order to have more control over the 

extrapolation, however a continuum extrapolation can be still be performed using 

all the quenched data sets except the large volume simulation. 

Tadpole improvement aims to reduce the leading order corrections in the 
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results for the masses, but does not completely eliminate the errors of 0(a). 

Terms of 0(a2 ) are also included in the extrapolation as they form an important 

contribution to the error. Taking this into account, the following fit ansatz to 

the tadpole data sets was made 

rnr/Q = A + BQ + CQ2 	 (3.43) 

where Q is the lattice quantity used to set the lattice spacing. In this analysis, 

Q was selected to be the same quantity which set the scale in the determination 

of the quark masses. 

The non-perturbative improvement of the fermion action reduces the leading 

order lattice spacing dependence of the masses to 0(a2 ). Thus the fit ansatz for 

the non-perturbative data sets was 

m/Q = A + DQ2 	 (3.44) 

Independent fits to the tadpole and non-perturbatively improved data sets 

using these fit ansãtze are uniquely determined. In order to perform a best fit 

analysis, the continuum result from each fit was constrained to have the same 

value in a simultaneous fit to all the data points. Continuum extrapolations 

for the p and 0 mesons using an uncorrelated simultaneous fit are shown in 

Figure 3.24. The scale has been set by the K*  meson, i.e. Q = mK*. Only the 

best fits have been displayed in the plots for clarity. The experimental values are 

indicated by the burst points. The mass ratio has been plotted as a function of 

Q 2  to show the linear dependence of the non-perturbatively improved data points 

more clearly. 

When the vector mesons are used to set the scale, the improved scaling be-

haviour of the tadpole data over the non-perturbative data cannot be examined 

for the vector mesons. This is because the data points have been been deter-

mined from an analysis of the same correlator channel. When the ratio of vector 

meson masses are formed in order to perform the continuum extrapolation, the 
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Figure 3.24: Continuum extrapolations for the mesons. The scale was set by the 
meson. The burst points indicate the experimental values. 

statistical fluctuations tend to cancel out. Thus the leading order corrections in 

the mass ratio could be significantly reduced. One way to examine the effect of 

improvement is to set the scale with a quantity such as r 0  which has been de-

termined independently. Figure 3.25 shows the continuum extrapolations for the 

vector mesons when the scale is set by ro. The non-perturbative points exhibit 

slightly less dependence on the lattice spacing than the tadpole points. This 

becomes more apparent for the ç  meson. Comparing the extrapolations for the 

mesons, the continuum results are significantly larger when the lattice spacing 

is set by the Sommer scale. Indeed this appears to be a systematic effect which 

affects all the hadron masses. 

The continuum extrapolations for the baryons should be approached with 

caution as the / = 5.7 data set does not include non-degenerate baryons. However 

assuming linearity for the chiral extrapolations, continuum extrapolations for 

the baryons were investigated. For the decuplet baryons, the simultaneous fits 

to the lightest, A, and heaviest, Q, baryons are shown in the left-hand plot 

in Figure 3.26, where the scale has been set by the K*  meson. An improved 
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Figure 3.25: Continuum extrapolations for the mesons. The scale was set by r0 . 

The burst points indicate the experimental values. 

scaling behaviour for the non-perturbatively improved data can be observed for 

the decuplet baryons, although the mass results are consistent within errors. The 

and have not been shown in the plots for clarity. The extrapolations for 

these baryons are very similar to the ones shown. The z extrapolation was 

performed to masses with very large errors, resulting in a large uncertainty in the 

continuum value. Extrapolations for the nucleon and HE octet baryons are shown 

in the right-hand plot. The E and A extrapolations have not been shown as they 

are effectively degenerate. The same conclusions concerning improved scaling can 

be drawn as for the octet baryons. 

Continuum extrapolations were performed using the p mass, nucleon mass 

and Sommer scale to set the lattice spacing, in addition to the K*  mass, in 

order to quantify the dependence on the ambiguity of the lattice spacing. The 

errors in r0  were added in quadrature and the extrapolations were performed 

using a standard linear regression technique. The final results for the spectrum 

obtained through different choices to set the scale, are shown in Figure 3.27. The 

results are compared with the experimental values taken from [14]. When the 
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Figure 3.26: Continuum extrapolations for the baryons. The scale was set by the 
meson. The burst points indicate the experimental values. 

scale is set using a hadron mass, the results form a consistent picture for the final 

masses. Setting the scale with the nucleon results in very small errors for the octet 

baryons and even for the mesons. In the octet sector, cancellation of statistical 

fluctuations in the ratio of the octet baryons to the nucleon is expected as the 

same chiral extrapolation was used in both cases, resulting in smaller errors. The 

results for the decuplet baryons are comparable with the results determined when 

the mesons set the scale. 

When the scale is set using the Sommer scale, the final results are much 

larger with greater errors. As stated previously, this may be an indication of 

a systematic effect. Comparing the results when the scale is set by the vector 

mesoris, the continuum extrapolation results are in agreement within errors. The 

final results were selected when the K*  meson sets the scale. This gives smaller 

errors and means that a chiral extrapolation in the quantity which sets the scale 

was avoided. It could be argued that the scale should preferably be set by a stable 

particle, such as the nucleon, instead of a resonance. Comparing the spectrum 

results obtained from the nucleon and K*,  the maximum difference in the results 
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Figure 3.27: Spectrum results. The results obtained using different quantities to 
set the scale are compared. The horizontal lines are the experimental results [14]. 
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is observed for the p at 10%. This is the maximum error in the spectrum results 

obtained by setting the scale by hadron masses. 

Hadron Experiment [GeV] Mass [0eV] Deviation 

p 0.770 0.835 +29  8.4% 2.2a 

1.019 0.992 t 19 -2.6% 1.4o 

N 0.938 1.020 + 57 
-161 8.7% 0.5a 

A 1.116 1• 155 + 40 
-130 0.3a 

1.193 • 1157 + 
-122 -3.0% 0.3u 

1.315 1.293 + 38 
-93 -1.7% 0.2a 

1.232 1.337 ±149 
-15 8.5% 0.7a 

1.384 1.468 ±116 
-119 6.1% 0.7a 

1.532 1.596 + 84 
-92 4.2% 0.7a 

1.672 1.723 + 61 
-72 3.1% 0.7u 

Table 3.12: Spectrum results. The scale has been set by the K*  meson throughout. 
The last column shows the deviation from experiment. 

The final spectrum results are compared with the results determined by the 

CP-PACS Collaboration. They have performed a quenched calculation of the light 

hadron mass spectrum using a Wilson fermion action for 4 values of 3 in the range 

5.90 </3 < 6.47 on lattices with a physical extent of 3fm for five quark masses in 

the range m/m 0.75-0.4. The results quoted in [4] have been compared with 

the results determined here when the K*  meson sets the scale in the uppermost 

plot in Figure 3.28. CP-PACS have set the scale from the p mass. The bottom plot 

in Figure 3.28 shows the direct comparison with the CP-PACS data when the scale 

in both cases has been set from the p mass. The statistical errors on their data 

are much smaller due to the increased number of configurations included in their 

calculation. CP-PACS find that the maximum deviation of the spectrum results 

from the experimental values is 11%. Due to the fact that they have simulated 

at a lighter quark mass than the data presented here, their chiral extrapolations 

included terms arising from quenched chiral perturbation theory, which could 

explain why they observe a greater deviation from experiment, attributed to the 
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quenched approximation. 

The baryon masses are larger then the CP-PACS results. This could be due to 

the significant finite size effects observed in the baryon masses. However the errors 

on the baryon masses are large and no firm conclusions can be drawn. Table 3.12 

contains the final spectrum results used in Figure 3.28. The deviation from the 

experimental values have been included. The greatest deviation (8.4%) occurs 

for the p meson. Increased statistics and simulations at lighter quark masses 

could be considered in order to obtain more precise statements concerning the 

effect of quenching errors in the light hadron spectrum. Another way to examine 

the effect of making the quenched approximation is to compare with simulations 

in full QCD - dynamical fermion simulations. This is the subject of the next 

chapter. 



Chapter 4 

Dynamical spectrum results 

The results for the light hadron spectrum obtained from dynamical fermion simu-

lations are presented in this chapter. An additional quenched simulation has been 

analysed and the results included in this chapter to facilitate a direct comparison 

with the dynamical results. The motivation for the study of a matched ensemble 

of data sets is discussed and a brief description of the method used to determine 

the matched simulation parameters is outlined. Details of all the simulation pa-

rameters are then reported. Measurements of the Sommer scale, r0 , determined 

by A. C. Irving [89] are included in order to set the lattice scale and estimate 

the accuracy of the matching technique. For each data set, the analysis of the 

correlator data is discussed in detail and the resulting hadron masses in lattice 

units are collated in appendix C. Those results which do not require a chiral 

extrapolation are then discussed. Chiral extrapolations in the partially quenched 

approximation are investigated, and finally the evidence for dynamical effects in 

the spectrum is examined. Preliminary light hadron spectrum results have been 

reported in [90] and the final results quoted in this thesis will be included in [91]. 

4.1 Motivation for the matched ensemble 

First results from the initial dynamical simulations with two degenerate flavours 

of 0(a) improved Wilson fermions have been presented in [92, 93]. These simula-

tions were performed at fixed 13 = 5.2 for various sea quark masses, referred to by 

the corresponding value of the hopping parameter, ksea. The hopping parameter 

associated with the hadron correlators generated on the dynamical configurations 

now corresponds to the valence quark mass and is referred to as 'vai  in the follow- 

116 



Chapter 4. Dynamical spectrum results 	 117 

ing. Data sets for this first exploratory dynamical simulation were generated at 

three different volumes, 8 24, 12 24 and 16 24. A preliminary estimate for the 

non-perturbatively improved value of the clover coefficient, c %., provided by the 

ALPHA Collaboration, was used to reduce but not completely eliminate errors of 

0(a) present in the action. The main focus of the analysis on these initial simu-

lations was to study the effects of varying the sea quark mass and to investigate 

finite size effects. The results of this analysis were used to motivate the current 

choice of simulation parameters used to generate the data sets discussed in this 

chapter. 

I 	
III IIIIj 	

III 

	

= 5.2, c 	= 1.76 

O:V12 3 x24 

0.20 

0.15 

I 	 I 	 I 	 I 	I 	L 
0.137 	0.136 	0.139 	0.140 

Ksea 

Figure 4.1: The lattice spacing determined from r 0  for the / = 5.2, Csw = 1.76 
dynamical simulations on the 12 . 24 volume, taken from [92] 

From the investigation in [92], a significant lattice spacing dependence on the 

sea quark mass was observed. Figure 4.1 shows the lattice spacing as determined 

from r0  for the 0 = 5.2, c = 1.76, data set on the 1224 volume reported in [92]. 

The percentage difference between the largest and smallest lattice spacings is ap-

proximately 37%. Preliminary measurements of a determined for the current dy -

namical simulation at / = 5.2, with the fully 0(a) non-perturbatively improved 

clover coefficient, were reported in [94]. The lattice spacings measured for simu- 
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lations with different 'sea,  albeit with limited statistics, again show a significant 

dependence on the sea quark mass. A percentage difference of 24% was ob-

served [94] when comparing a for simulations at sea = 0.1330 and tsea = 0.1350. 

This means that chiral extrapolations in the sea quark mass, for hadron masses 

obtained from correlators with 'sea = 'vaI, are complicated by an additional 

dependence on the lattice spacing. 

To investigate chiral extrapolations independently from continuum extrapo-

lations, it was proposed that simulations with different sea quark masses should 

he carried out at the same lattice spacing defined with respect to a given physical 

quantity and hence at the same effective volume. In this way observed effects 

in the spectrum can he attributed to the inclusion of sea quarks rather than po-

tenitially large lattice artifacts or finite volume effects. In addition, simulating at 

a fixed volume facilitates direct comparisons with the quenched approximation. 

Three dynamical data sets with fixed a forming a matched ensemble were gener-

ated and compared with a quenched simulation at the same lattice spacing. The 

parameter details are described in section 4.3. In order to simulate at the same 

effective lattice spacing for different sea quark masses and hence form a matched 

ensemble of data sets, the bare lattice parameters, / and 1sea  must be tuned. 

4.2 Tuning the bare parameters of the action 

In [95] the method used to tune the bare lattice parameters in order to achieve the 

same value of the lattice spacing for different (3, /sea)  combinations was outlined 

and preliminary tests of the procedure were presented. This section discusses the 

criteria used to match the current simulations and a brief description of the basic 

idea. The analysis involved to determine the matched parameters was carried 

out by A. C. Irving and J. C. Sexton. 

One dynamical simulation (9, ksea), is said to be matched to another simula-

tion (/', 'ea), in this particular context, when the expectation value of a lattice 
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observable, 0, measured on each data set is equal 

= 	 (4.1) 

Provided the simulations are in the scaling region this condition implies that 

the lattice spacing is the same to leading order for both data sets. The initial 

simulation is performed with the parameters (8, sea)  and the chosen observable 

is measured on the gauge configurations. Since the matched simulation shares 

the same gauge configuration space as the original simulation the expectation 

values of the observable can be related by the cumulant expansion [96] to first 

order 

= ()te + (6)6,ea  +. 	 (4.2) 

where 

O 	0 - (0), 	Sj3, e  - Si3F,t ea 	 (4.3) 

and A is the difference between the original action and the matched action. The 

action, defined in equation 1.22 can be split into a pure gauge part depending 

only on /3 and a fermion part depending on both tsea  and /' through the inclusion 

of the clover term 

S sea  = Sa(/9) + 5 F(C5(/), 'csea) 	 (4.4) 

By requiring that the following expectation value measured on the original data 

set vanishes 

= 0 	 (4.5) 

the matching condition in equation 4.1 is satisfied. This relationship can then 

be used to determine the parameter values (i3', ea)  of the matched simulation. 

Assuming the matched parameters are related by a small shift in the original 

parameters, /3' = /3 + 60 and ea = 1 sea + 8 'sea equation 4.5 can be written as 

d13 - 	( 0,csea)fi,'ea 	
(4.6) 

di'csea  - - (Ô(- + 

where the expression for L has been Taylor expanded and the limit 80, 8ksea  + 0 
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taken. This means that the corresponding shift in /3 needed to match a small 

change in ksea can he determined from computing the expectation values in equa-

tion 4.6. The methods used to evaluate these expectation values are described in 

detail in [95, 96]. The main complication arises from the fact that equation 4.6 

is a non-linear function of 6 due to the clover coefficient in the fermion part 

of the action. However c, w  is a well known function of @ and the derivative is 

easily determined. Evaluating equation 4.6 requires an initial estimate of the /3 

shift, 8/3 in order to determine a first estimate of the matched value of /3'. A 

self-consistency check can be performed by measuring the actual slope between 

the original and predicted parameters. In practice the expectation value of the 

observable is measured on the original data set for a range of 0 values and inter-

polated to perform the matching. Further details of the matching technique will 

be included in [91]. 

In general the matched parameters will depend on the choice of observable 

used in the tuning procedure [95]. In this case r 0  was selected. The Sommer scale 

has the advantage that it is independent of the valence quark mass and is defined 

and measured in the same way for both dynamical and quenched simulations. 

At this intermediate quark separation, phenomenological static quark potential 

models are tightly constrained by the spectrum of heavy mesons, such as bb. 

Confidence in r0  is gained from the fact that its physical values obtained from 

different models are in good agreement and that lattice calculations have a high 

degree of accuracy, particularly for fine lattices [73]. For these reasons it is 

expected that r0  will he a good choice to highlight sea quark effects. Since 

r0  is a derived quantity, the matching is actually performed with fuzzed paths of 

gauge links, defined later in section 4.4. These fuzzed paths are determined at 

the estimated values of the matched lattice parameters for a range of 8/3 shifts 

and r0  is then extracted by the methods of section 4.4. A linear interpolation of 

the predicted r 0  values was then performed to do the matching. 

The matching technique is only practicable for small changes in the bare 

parameters. In particular it was not suitable to directly match the dynamical 

simulations with the quenched approximation. The matching of the quenched 
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simulation was instead achieved by direct investigation. This is only possible be-

cause quenched configurations can be generated comparatively quickly. An initial 

estimate for the matched quenched /3 value was obtained from the interpolating 

formula for r0  as a function of the strong coupling in the quenched approxima-

tion, reported in [97]. A trial quenched run was performed at this value of,8, and 

the Sommer scale was measured on the resulting configurations using the same 

method as for the dynamical simulations. This allowed a correction to the initial 

estimate of 3 to be made, which was then used for the final production run. 

4.3 Simulation parameters 

In addition to the three dynamical data sets forming a matched ensemble and the 

corresponding quenched simulation, a further dynamical data set at a lighter sea 

quark mass was simulated. To observe the greatest effects due to the inclusion 

of dynamical fermions the sea quark mass should be made as light as possible, 

ideally in the region of the up and down quark masses. However, simulations 

at light quark masses are more computationally intensive and not feasible with 

the current level of computing resources. The lightest sea quark mass simulated 

here represents the smallest quark mass at which meaningful statistics could be 

achieved within an acceptable time period. 

Gauge configurations were generated with two degenerate flavours of 0(a) im-

proved dynamical Wilson fermions using the Hybrid Monte Carlo algorithm [98] 

on the Cray T3E supercomputer in Edinburgh. The implementation and verifi-

cation of the code was described in [93, 99]. A summary of the algorithm details 

was reported in [92]. For all the dynamical simulations, gauge configurations 

were separated by 40 trajectories. This figure was reached from a study of the 

autocorrelation times measured for the plaquette on every trajectory [92, 93, 100]. 

The matched quenched gauge configurations were generated by the hybrid over-

relaxed algorithm with the compound sweep ratio of 7:1, over-relaxed to Cabbibo-

Marinari sweeps [57]. Gauge configurations used for measurements were sepa-

rated by 700 compound sweeps. 
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0 Csw 'sea Iva1 # conf. 
5.29 1.9192 0.1340 0.1335, 0.1340, 0.1345, 0.1350 101 
5.26 1.9497 0.1345 0.1335, 0.1340, 0.1345, 0.1350 101 
5.2 2.0171 0.1350 0.1335, 0.1340, 0.1345, 0.1350 150 
5.93 1.82 Quenched 0.1327, 0.1332, 0.1334 160 

0.1337, 0.1339 

Lightest ksea simulation. 

5.2 	2.0171 	0.1355 	0.1340, 0.1345, 0.1350, 0.1355 	102 

Table 4.1: Simulation parameters for all the dynamical simulations and matched 
quenched simulation. 

Quark propagators were generated using 0(a) improved Wilson fermions. 

Correlators were constructed from fuzzed propagators for degenerate combina-

tions of 1va1  for the dynamical simulations. The range of valence quark masses 

was chosen to be close to the sea quark mass, and in all cases correlators were 

computed at 1 sea = /t val. For the quenched simulation, degenerate and non-

degenerate meson correlator combinations were generated for three values of the 

hopping parameter. Following the analysis of this data, a further two kval values 

were included in the simulation in order to achieve lower mps/mv mass ratios, 

comparable with the lighter dynamical simulations. The non-degenerate combi-

nation of these final two quark propagators was used in the quenched analysis. 

Only degenerate baryon correlators were included in the analysis. 

Table 4.1 shows the simulation parameters for all the data sets. All simula-

tions were carried out on a 16 3 . 32 lattice. The finite volume investigation in [92] 

suggested that this increase in lattice size would be necessary in order to keep 

finite size effects to a minimum as the sea quark mass was reduced (and hence 

the lattice spacing) for the current simulations. In particular the temporal ex-

tent of the lattice was increased to allow sufficient time for a clear plateau to be 

observed when considering effective mass plots for all hadron channels. In order 

to ensure a large enough spatial volume to accommodate hadrons ( > 1.5 fm) at 
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this lattice size, a coarse lattice spacing of a > 0.09 fm is required. This means 

that simulations must be performed with a low value of /3. The dynamical 0 
value was selected to he as low as possible while remaining within the parameter 

range where a valid non-perturbative estimate of the clover coefficient had been 

determined. 

The fully non-perturbatively 0(a) improved value for c, determined by the 

ALPHA Collaboration in [101] and given by 

dynam - 1 - 0.454g - 0.175g + 0.012g + 0.045g 
cSW - 	 (4.7) 

1 - 0.720g 

was used for all the dynamical simulations. This interpolation formula is valid 

for 0 values as low as 5.2, the minimum 0 value included in the simulations. 

Thus residual lattice artifacts are expected to be of 0(a2 ), which on the coarse 

lattices simulated here could still be significant. The clover coefficient used in 

the quenched simulation was determined by the SCRY Collaboration [102] 

quen - 
£sw  

1 - 0.6084g - 0.2015g + 0.03075g 

1 - 0.8743g /9 > 5.7 	(4.8) 

This result extends the analysis of the ALPHA Collaboration to lower values of /3. 

Although the interpolating formula in equation 4.7 for c, w  is only accurate to 3 

decimal places, 5 significant figures were used in the generation of configurations 

for the purposes of reproducibility. For technical reasons, 3 significant figures for 

c, were used in the generation of quark propagators. 

4.4 Determination of r 0  

To determine the lattice spacing, r0  was measured for every data set. The Sommer 

scale is defined in terms of the force between a static quark anti-quark pair as in 

equation 3.17, or in terms of the potential 

DV(r/a) 

I r=r0 
(ro /a) 2  = 1.65 	 (4.9) 
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In this case the physical value of r0  was chosen to be 0.49 fm. What follows is a 

brief description of the method used to extract To, employed by A. C. Irving [89]. 

Further details of the method will be included in [91], which differs in part from 

the technique used for the previous dynamical simulation reported in [92]. 

The lattice static quark potential, V(r), is determined from the exponential 

decay of Wilson loops at large times. Wilson ioops, W(r, t) are the product 

of gauge links in a closed loop, where r defines the spatial orientation of the 

loop and t is the temporal extent. In [92] only on-axis Wilson loops, where 

r = (n, 0,0), n = 1, 2,... were considered. Here the off-axis directions, (1, 1,0), 

(2,1,0), (2,2,0), (3,1,0), (3,2,0) and (3,3,0), as used in [103], were included 

in the analysis in order to estimate the effects of lattice artifacts due to the 

breaking of rotational symmetry. To increase the overlap of the Wilson loops 

with the ground state potential the gauge links were fuzzed, as described in 

section 2.6. Wilson loops were then constructed by correlations of two spatial 

paths of fuzzed gauge links, fuzzed using two possible levels of iteration of the 

fuzzing algorithm [104]. Using a variational technique [105], estimates for the 

ground and first excited state eigenvalues from the resulting 2 x 2 matrix of 

Wilson loops can be made. The ground state eigenvector can then be used to 

project out a linear combination of Wilson ioops with a greater overlap with the 

ground state, denoted by WLcj (r,t). An estimate of the ground state potential 

can be determined from the long time behaviour of the effective "mass" of the 

linear combination of Wilson loops [103] 

V(r) = iirnV('r,t) 	 (4.10) 

where 

V(r , t) = in 
WLC(r,t) 	

(4.11) 
WLC(r,t+1) 

To extrapolate to the infinite time limit, corrections to the ground state potential 

are made by subtracting the contamination due to the contribution of the first 

excited state. This correction can be estimated from the ratio of the correspond-

ing eigenvalues for both states, following the methods of [106]. The final value 
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for the potential was determined by computing the weighted average of V(r,t) 

in the range tmjfl = 3 to tmax = 5, where the relative weights were given by the 

inverse of the statistical errors. 

Once V(r) had been determined, r 0  was extracted using a similar analysis to 

that described in [97] and originating in [103]. The data was fitted to the ansatz 

V(r) = Vo  + ar - eGL(r) +1 (GL(r) - (4.12) 

where GL(r) is the tree-level lattice expression for the exchange of one gluon 

given by 

GL(r) = 4 
,j 	dk 	cos(k . r) 

(4.13) 
(27r)34 E3 I  sin 2 (k/2) 

The string tension, a describes the potential at large distances, r = ri, while at 

short distances the potential is described by the lattice Coulomb term, eGL(r). 

The term proportional to I takes into account lattice artifacts beyond tree level. 

Of course, for large enough separations the string is expected to break for the 

dynamical simulations. Thus the fits were performed over small fit intervals 

chosen to straddle r0 . Systematic errors were estimated by choosing different fit 

ranges. The statistical errors were determined by the bootstrap method. The 

lattice potential can be equated with the continuum equation to within 0(a2 ) 

through a subtraction of the form 

V(r) = Vo  + ar - 	V(r) + (e —I) (GL(r) 
- 	

(4.14) 
r 

Differentiating the left hand expression for V(r) with respect to r and substituting 

into equation 4.9, r0  in lattice units is determined by 

/1.65 - 
= 	 (4.15) 

V or 

Table 4.2 displays the results for r0  and the corresponding lattice spacing for 

each data set. The table shows that the 0 = 5.2, 'sea = 0.1350 and ,@ = 5.26, 

sea = 0.1345 data sets are the most closely matched. The value of r0  for the 
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/3 'sea ro/a a [fm] 1/a [GeV] rnps/mv 

5.93 Quenched 4.612(30) + 	1  0.1O62(7 1 
+ 14 
—3 1.86(1) 

5.29 0.1340 4.450(61") + 29 
- 61 0.1101(15) 13  1.79(2) 0.830 + 6 

—7 

5.26 

5.2 

0.1345 

0.1350 

4.581(59) 

4.576(80' 
/ 

+
-120 

0 

+ 14 
—130 

0.1070(14) 

0.1071(19) t 
' 	

1 .84(3). 

1.84(2) 0.791 

0.688 

+ 
—8 
±12 
—8 

5.2 0.1355 4.914(82' 
) 

+ 70 
- 

0.0997(17) 1.98(3) 0.584 ±23 
—19 

Table 4.2: ro /a and the corresponding lattice spacing. The statistical error is in 
parentheses and the second error is an estimate of the systematic errors. The 
mass ratio rnps/mv for the dynamical data sets at ksea  = 1 va1 is included in the 
table. 

heaviest sea quark mass data set, differs from the other matched data sets by 

at most 3.5%. Of course the matching procedure is expected to be less accurate 

when larger shifts in the parameters are considered. The systematic errors quoted 

for r0  have not been taken into account in the subsequent analysis. The effective 

lattice volume of the matched ensemble is 1.71 fm and for the lightest sea quark 

mass, slightly smaller at 1.60 fm. The mass ratio rnps/mv at ttsea = "va1, obtained 

from the fitting procedure described in the following sections, is shown for the 

dynamical data sets. This ratio gives an indication of the value of the sea quark 

mass at which the simulations are performed. The lightest mass ratio is 0.584 

which, at around the mass of the strange quark, is still relatively heavy. 

4.5 Fitting the data 

The following sections discuss the results of the analysis procedure to determine 

the lattice masses of the hadrons for the four dynamical data sets and the matched 

quenched data set. The analyses of all the simulations were carried out in the 

same way, as described in chapter 2. All fits used 500 bootstrap samples to 

estimate the errors. Fits were performed to the pseudoscalar, vector, nucleon 

and delta for degenerate combinations of kval for the dynamical simulations. The 

quenched analysis included some non-degenerate meson correlators. As in the 

previous chapter, effective mass plots were studied in order to determine the 
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onset of the ground-state plateau. Fits to extract the ground state mass were 

then performed to the FL and FF correlators using a sliding window analysis 

as described in section 2.12.7. These fits are referred to by the notation FL 

and FF in the following. The correlator notation introduced in section 2.7 has 

been modified in this chapter to additionally refer to the type of fits that were 

performed. More complicated fits were then attempted. Simultaneous fits to 

the correlator combinations, LL,FL and LL,FF to the ground and first excited 

state using equation 3.2 for the mesons and equation 3.3 for the baryons were 

investigated. Finally a factorising fit to the LL,FL,FF correlator combination, as 

described in section 2.11, was considered. In this case the fit was performed to 

the ground and first excited states. The notation for the fit types is described 

in appendix C. In all the fits under consideration, a cosh was used to fit the 

mesons and the baryons were fitted by an exponential, which is implicit in the fit 

notation. In the sliding window analysis, the maximum time slice was able to be 

pushed to the latest time slice possible, tmax  = 15, for all the fits. For each type 

of fit considered the best fit range was selected based on the selection criteria in 

section 2.12.7, the results of which are tabulated in appendix C. The tables in the 

appendix include the values of the masses in units of r 0  to facilitate comparisons 

between the data sets. The systematic error associated with the choice of fit type 

has not been included in results obtained from the subsequent analysis of the 

fitted masses. 

The fit results for each of the dynamical and matched quenched data sets are 

now discussed in turn. The final choice of fit type in each case is explained and the 

results obtained from the analysis for correlators where 1 sea = 1 va1 is showcased 

for each data set. Plots of the fitted masses for the pseudoscalar, vector, nucleon 

and delta resulting from a sliding window analysis are shown to illustrate the 

choices made for the final fit intervals. Figure 4.2 shows an example of this type 

of plot. The masses obtained from different fit procedures have been offset to the 

right for clarity. For example, points corresponding to tmj fl  = 10 are displayed 

in the interval [9-10] for each type of fit. Below the main plot, is a plot of the 

corresponding X 2 /d.o.f. for each point, where the plotting symbols correspond 
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to the legend in the main plot. In general the X 2 /d.o.f. is plotted in the range 

0-3. For some of the fitted masses the corresponding value of the X 2 /d.o.f. is not 

shown in the plot. This is because the X 2 /d.o.f. is greater than the range shown. 

In these cases the fitted mass for the particular fit interval was not considered 

further in the analysis. The final fitted mass used in the subsequent analysis is 

marked by an arrow. 

Effective mass plots of the three correlator types considered in the analysis 

(LL, FL and FF) are shown together with the final fitted mass superimposed 

on the plot as in Figure 4.4. Note that all the effective masses approach the 

plateau from above, with the FF correlator making the shallowest approach. If 

the effective mass plots are compared with the ones obtained in the previous 

chapter for the quenched simulation, the increase in the length of the plateau for 

the fuzzed correlators is less pronounced for the data sets considered here. This 

is probably due to differences in the choice of fuzzing radius which has not been 

optimised for the current simulations. 

For the mesons, preference for the final fit selected was given to fits to both the 

ground and first excited state. The selection of the best fit type was made based 

on the maximal fit range possible, stability of the fitted masses with respect to 

small variations in the fit interval, fits with small and more symmetric errors, and 

a value of 2 /d.o.f. 1. In addition, agreement with the masses obtained from 

fits to purely the ground state was considered important. Of course, sometimes 

compromises had to made between these different criteria in the final analysis. 

The same criteria were used to select the fits for the baryons, although in some 

cases the simple fits to the ground state were chosen over more complicated fits 

which were unstable. 

4.5.1 Fitting the lightest ksea data set. 

The data set at f3 = 5.2 and 1 sea = 0.13550 was the lightest sea quark mass 

simulated. Correlators generated with ksea = kval, discussed as an example here, 

are thus expected to have the largest signal to noise ratio. This can be seen in 
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Figure 4.2: Sliding window plot for the pseudoscalar and vector masses for the 
= 5.2, rl,,a = 0.13550 data set at kval = 0.13550. The fitted masses obtained 

for each type of fit have been offset for clarity. The arrow marks the final value 
selected. 
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the effective mass plots shown in Figure 4.4, particularly for the delta. 

Figure 4.2 shows the fitted masses for the pseudoscalar and vector obtained 

from a sliding window analysis for each type of fit attempted. For the pseu-

doscalar, the mass results from all the fits start to agree from the fit range [9-15]. 

The LL,FL and LL,FF fits are in close agreement from tmjfl = 5 onwards. How-

ever the mass starts to rise slightly as tmjfl is pushed further out and it is only 

at tmjfl = 9 that the mass becomes stable as t is varied by one. Fits to the 

heavier tva1  correlators show the same general trend, the mass becoming stable 

at around tmin  = 9. From this point, the errors on the fitted masses from the 

LL,FL fit are larger than those obtained from the LL,FF fit and thus the LL,FF 

fit was selected in preference. Comparing these results with those obtained from 

the single cosh fits, the results are in agreement within statistical error. The 

factorising fit gave results consistent and a reasonable X 2 /d.o.f. for tmjfl ~ 10 but 

was not selected for the final fit as the errors tended to be less symmetric. The 

percentage difference in the fitted masses rises from 0.6% to 1.4% as the valence 

quark mass becomes lighter. The deviation in the mass is less than one a in all 

cases. In general the choice of fit does not have a significant impact on the final 

results. The effective mass plot in Figure 4.4 shows the final mass selected from 

the LL,FF fit. 

The sliding window plot for the vector in Figure 4.2 shows that the fitted 

masses from each fit type start to agree from t m jfl  = 9. Simultaneous fits to 

the LL,FL correlator combination resulted in larger errors than both the LL,FF 

and LL,FL,FF fits, either of which could have been selected for the final results. 

However the factorising fits were not as stable as the LL,FF fits with respect to 

small variations in t m j fl . The maximum deviation in the fitted masses from each 

type of fit amounts to less than one a with the greatest percentage difference of 

2.3% at the lightest valence quark mass. The effective mass plot in Figure 4.4 

shows the final fitted mass selected from the LL,FF fit. 

A similar sliding window analysis was performed for the degenerate nucleon 

and delta baryons, shown for ic val = 0.13550 in Figure 4.3. For the nucleon the 
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fitted masses are in agreement from tmjfl = 9. The final fit selected was the 

double exponential fit to the LL,FF correlators in the range [10-15] as this gave 

the lowest errors for most cases, excepting the simple fits to the ground state. At 

later time slices the errors on the fitted nucleon masses became increasingly large 

as can he seen from Figure 4.3. This was in part due to the increased noise in 

the nucleon correlator, a problem which was worse for the delta. Hence for the 

delta, the effect of reducing the maximum time slice to 14 was investigated. No 

significant improvement in the fits was observed and so the maximum time slice 

was selected to be tmax = 15. The LL,FF fit proved unstable at the heaviest kval 

for the delta and the masses obtained from the factorising fit were very susceptible 

to small changes in the fit interval. The final fit selected was a double exponential 

fit to the LL,FL correlator combination, which gave consistent results with the 

single cosh fit to the FL correlator. The deviation of the masses for the baryons 

was less than 1.7a between the largest and smallest mass estimate in every case. 

The percentage difference in the masses increases dramatically at the lightest 

valence quark mass if the extreme values taken from the FL and LL,FL,FF fits 

are compared. The other three types of fit give much closer agreement. This 

highlights the difficulty observed in extracting the mass for the delta. 

4.5.2 Fitting the /3 = 5.2, Ksea = 0.13500 data set. 

The data set at /3 = 5.2, 'sea = 0.13500 had the largest statistics of all the dy-

namical data sets and hence the jackknife errors calculated for the time sliced 

correlator data were greatly reduced. One consequence of this was that it became 

harder to fit the data, particularly for the pseudoscalar which has the smallest 

errors in any case. This can be seen from the sliding window plot for the pseu-

doscalar in Figure 4.5 where the X 2 /d.o.f. lies in the range 2-3 for the majority of 

fits. One noticeable feature of this plot is the large skewed errors for the masses 

obtained from fits to the LL,FL pair of correlators. In fact the masses from this 

fit have not been included in the plot for tmjfl > 8 as they lie below the range 

of the graph. The corresponding X 2 /d.o.f. for these fits have been shown and 

have acceptable values. However this was because the errors on the fitted masses 

were so large. The results from the LL,FL fit were thus not considered further. 
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Masses from the factorising fit were not selected for the best results as they were 

slightly larger than the results from the other fits, although still consistent within 

statistical errors. The X 2 /d.o.f. for the LL,FF fits reached acceptable values at 

tmin  = 11 or tmin = 5 except at the heaviest kval where only the tmin  = 11 value 

was acceptable. These fits were then selected for the final fits. Examining the 

effective mass plot in Figure 4.7 there is a clear "wiggle" in the plateau which 

could account for some of the difficulties encountered in fitting the pseudoscalar. 

The mass results for the vector for different fit types were in close agreement 

for fit ranges with tmjfl  > 10. The LL,FF fits were not as stable with respect 

to small variations in the fit range as the LL,FL fits, which were selected in 

preference for the final results. Factorising fits gave slightly larger errors than 

those obtained from the single cosh fits and were not used for the best results. 

Similar variations in the mass results for the mesons obtained from different fits 

were observed as for the 0 = 5.2, tsea  = 0.13550 data set. 

For the nucleon and delta both simultaneous fits (LL,FF and LL,FL) proved 

highly unstable, in particular for the LL,FL correlator combination. The LL,FF 

fits gave mass results with values of X 2 /d.o.f. < 4 for the nucleon and X 2 /d.o.f. < 

5 for the delta, with skewed error bars in both cases. Simultaneous fits using 

both correlator combinations were only possible for the nucleon at the lightest 

/tval as can be seen from Figure 4.6. This could be due to the fact that this 

correlator has the noisiest signal, reducing the constraints imposed upon the fit. 

The factorising fits for the nucleon gave similarly high values for the X 2 /d.o.f. 

and hence the single exponential fits were considered for the final results. From 

the effective mass plot of the nucleon in Figure 4.7, the onset of the ground state 

plateau occurs very early around t = 8. This meant that single exponential fits 

were stable for a wide range of fit intervals, the FL fits more stable than the FF 

fits. A long fit interval of [8-151 was selected for the final fit for the nucleon. For 

the delta a clear signal of the plateau was not observed in the effective mass plot. 

In this case the factorising fits, despite larger errors and X 2 /d.o.f. were the most 

stable as the minimum time slice was varied and thus were selected for the final 

fits. 
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4.5.3 Fitting the 0 = 5.26, ksea = 0.13450 data set. 

The sliding window plots for the pseudoscalar and vector for ksea  = /tval are shown 

in Figure 4.8. Figure 4.10 shows the corresponding effective mass plots. The final 

fit for the pseudoscalar was selected to he in the range [9-15] for the LL,FF fit, in 

preference to the LL,FL fits which gave slightly larger errors. Thefactorising fit 

gave consistent results but with a Fiigher X 2 /d.o.f. than the LL,FF fits. The mass 

difference for the different fit types was less than 0.5%, 0.8a for the pseudoscalar, 

indicating that mass is independent of the choice of fit. For the vector the LL,FL 

fit in the range [9-15] was selected as the final fit. Both the factori sing fit and the 

LL,FF fit, resulted in slightly higher mass values with a correspondingly larger 

X2 /d.o.f. and hence were not selected. The early plateau of the ground state at 

= 8 allowed long fit ranges to be considered even for the single cosh fits. The 

systematic error in the mass arising from the choice of fit was around 1% for the 

vector in all cases. 

All types of fit were possible for the nucleon. The LL,FF fit was selected 

as the best fit as this was the most stable fit with low values of the X 2 /d.o.f. 

in the sliding window analysis. This can he seen in Figure 4.9. Fitted nucleon 

masses deviate at most by 1.7o when different fit types are compared. Fitting 

the delta using the LL,FF type of fit proved difficult, with unacceptable fits over 

any fit interval for the correlators with tt val = 0.13450. Factorising fits gave 

results consistent within statistical errors, however the errors were larger than 

those obtained from single exponential fits. In addition, the single exponential 

fits showed the greatest stability as the fit interval was changed slightly. The FF 

fit was thus selected to be the final fit. As an indication of the uncertainty in 

the delta mass, the deviation between different mass estimates determined from 

different fit procedures was at most 2cr. 

4.5.4 Fitting the /3 = 5.29, ksea = 0.13400 data set. 

The 0 = 5.29, 1 sea = 0.13400 data set was the heaviest sea quark mass consid- 

ered in the matched ensemble. As can be seen from the sliding window plot for 
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the pseudoscalar in Figure 4.11, the fitted masses are in close agreement for fit 

intervals with tmjfl >_ 9 for all the fits that were possible. Factorising fits were at-

tempted, however these proved extremely unstable, with values of X 2 /d.o.f. > 6. 

The factorising fits were then repeated using an uncorrelated fit. This was stable 

with low X 2 /d.o.f. values and mass results compatible with those obtained from 

the other types of fit. This indicates that correlations in the data contributed to 

the instability of the fits. The results from the uncorrelated fits were not con-

sidered further as it was clear that the data is correlated. The LL,FF fit was 

selected as the final fit inpreference to the LL,FL fit which had much larger 

errors. Although the final tmjfl selected in Figure 4.11 for the pseudoscalar may 

seem a little high, Table C.14 in appendix C shows that the mass results were in 

extremely good agreement for all fit types. 

Figure 4.13 shows that there was not a clear signal of the ground state plateau 

for the vector. The vector mass was subsequently hard to extract, with the LL,FL 

fits only possible for two of the 'vaI  values considered. Single cosh fits to the FL 

correlator gave large X 2 /d.o.f. values which could be the cause of the instability 

in the LL,FL fits, as can be seen from Figure 4.11. Indeed the range of 2 /d.o.f. 

displayed in this plot has been doubled compared with the other plots and all 

the values lie within the range 2-6. The factorising fit was chosen in preference 

to the LL,FF fit as this resulted in a more consistent (although high) X 2 /d.o.f. 

across the full range of valence quark masses. 

The simultaneous fits (LL,FF and LL,FL) for the nucleon gave mass results 

with very skewed error bars, as can be seen from Figure 4.12. In addition, fac-

torising fits were highly unstable and hence no results are reported. The final 

fits were taken from the single exponential fit to the FL correlator as this fit 

was the most stable under small yariations in the minimum time slice. For the 

delta all the types of fits considered were possible. Fits to the ground and first 

excited states were ruled out by the instability of the fitted mass as tmjfl  was 

varied slightly. The final fit was selected to be a single exponential fit to the FF 

correlator. As can be seen from the graph in Figure 4.13 the effective mass for 

the delta continues to drop until t = 13. 
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4.5.5 Fitting the matched quenched data set 

The analysis of the matched quenched data set at 0 = 5.93 is now discussed. A 

sliding window analysis was undertaken for the pseudoscalar, vector, nucleon and 

delta. The results of all the fits investigated for the pseudoscalar and vector are 

displayed in Figure 4.14 for the lightest valence quark mass at 'va1 = 0.13390. 

The LL,FF fit was selected for the final fit for the pseudoscalar in the range [9-

15] as this was the most stable fit with the smallest statistical errors. Final mass 

results differ by less than 1% between the largest and smallest values. Figure 4.16 

shows that the effective mass plots appear very similar to those obtained from 

the dynamical simulations. For the vector, the best fit was chosen to be the 

factorising fit. This gave the most stable results with respect to small variations 

in the fit interval and mass estimates compatible with the single exponential fits. 

The onset of the ground state plateau for the nucleon occurs relatively early 

around t = S. This meant that all the fits had acceptable 2 /d.o.f. values for 

long fit intervals. The LL,FF fits to the heaviest valence quark mass proved very 

unstable and no mass result is quoted for this fit. The final fit was selected to 

be the LL,FL fit as this gave reasonablely small errors and low 2 /d.o.f. values. 

All other fits gave consistent results as can be seen in Figure 4.15. For the delta 

all fit types were possible. However the factorising fit and the LL,FF fit were the 

least stable. For this reason the LL,FL fit was chosen as the best fit. This gave 

the lowest 2 /d.o.f. and consistent results with the single exponential fits. The 

deviation between the largest and smallest delta masses estimates was around 

one 0. 

4.6 Summary of fit results 

In general the choice of fit procedure to extract the lattice masses did not make 

a significant impact on the final results for all the data sets considered. Different 

fit types were selected according to greater stability in the fitted masses and 

smaller statistical errors. Table C.1 in appendix C contains a summary of the 

final fit types selected for each data set. The data set with the greatest statistics 
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(i3 	5.2, ksea = 0.13500) proved more difficult to fit due to a reduction in 

the jackknife errors on the time sliced correlator data and fluctuations in the 

ground state plateau. Stability of the fits also proved a problem for the data set 

with the largest 3 = 5.29 with difficulties arising from identifying the onset of the 

plateau. Extracting the masses from correlators generated at the heaviest valence 

quark mass was usually easier due to a higher signal to noise ratio. Comparing 

the analysis of the matched quenched data set with the dynamical simulations 

resulted in no noticeable differences in the relative ease of extracting the mass 

information. 

4.7 The PCAC mass 

The partially conserved axial current (PcAc) mass was determined for all the 

data sets considered in this chapter. The definition of mpcc and the method of 

determination has previously been described in section 3.3. For N f  = 2 simula-

tions the axial vector improvement coefficient, CA has not yet been determined 

non-perturbatively. Thus in the analysis of the dynamical data sets the one-loop 

result for CA from perturbation theory, defined in equation 3.9, was used. The 

one-loop value of CA was also used for the quenched matched simulation for con-

sistency. In both cases the bare coupling was used to determine CA. Fits were 

performed to the FL correlator using equation 3.12. The sliding window analysis 

was very stable with respect to variations in the fit range as was observed in the 

quenched analysis. Values for the X 2 /d.o.f. were in general around 1, rising to 2 

for the lightest sea quark mass simulation. Figure 4.17 shows example effective 

mass plots obtained for MPCAC  for the dynamical data sets at 1 sea = 1 vaI The 

results for rnpcc from all the data sets are collected in appendix C. 

4.8 Comparing the lattice results 

One way to compare the mass results obtained in the meson sector for each data 

set is to plot the vector mass against the pseudoscalar mass squared. Figure 4.18 

displays this type of plot where the masses are in units of r 0 . The experimental 

points corresponding to the K and K*,  and the 0 and ij mesons are shown for 
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Figure 4.17: The PCAC mass for all the dynamical data sets at 'sea = tt val. The 
final masses have been superimposed on the effective mass plot. 

comparison. (Note that the i is not a physical meson). Comparing the dynamical 

simulation at the lightest sea quark mass with the quenched results, the dynamical 

data show an improved trend towards the experimental points as can be seen from 

the upper plot. It is encouraging that the data at the lightest sea quark mass 

tends to decrease towards the experimental points as the valence quark mass is 

reduced. Simulations at lighter quark masses are of course needed in order to 

confirm this behaviour. Indeed the dynamical simulations all show a similar trend 

towards the experimental values. Within the three matched dynamical data sets 

themselves however, this trend appears in the opposite direction to what might 

he expected, the heavier sea quark mass data lying below the lighter quark mass 

data. This behaviour was also observed for the previous dynamical simulation 

reported in [92], as can be seen when the results from this paper for the 3 = 5.2, 

= 1.76 data set on the 12 3 .24 volume are compared with the dynamical 

matched ensemble data in the lower plot of Figure 4.18. This trend need not be a 

cause for concern as the effect on the spectrum resulting from changing the lattice 

spacing towards the continuum limit is as yet unknown. Examining Figure 4.18 
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Figure 4.18: Vector mass plotted against the pseudoscalar mass squared in units 
of r0 . The top plot shows the results for all the data sets. The lower plot com-
pares the matched dynamical ensemble with the previous dynamical simulation 
reported in [92]. The experimental values are indicated by the burst points. 
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further, the current dynamical data tend to lie above the data obtained from the 

previous simulations. This however could be a consequence of small yet significant 

differences in the determination of the Sommer scale arising from residual lattice 

artifacts due to the different fit procedures employed for both data sets. 

4.9 Hyperfine splitting 

In section 3.8, the quenched spectrum failed to reproduce the experimentally 

observed approximately constant dependence of the hyperfine mass splitting on 

the quark mass. Setting the scale with r 0 , the upper plot in Figure 4.19 shows 

the vector pseiidoscalar hyperfine splitting for all the data sets. Since this plot 

comprises of the same data illustrated in Figure 4.18 plotted in a different way, 

the discussion and conclusions of the previous section apply here. The matched 

quenched data over shoots the experimental results, as expected from the results 

of the analysis discussed in section 3.8. The dynamical data is lower and although 

there is still a small slope in the data for the lightest sea quark mass, the matched 

dynamical data appears much flatter than the quenched data. The lower plot 

in Figure 4.19 again compares the dynamical matched ensemble data with the 

previous dynamical simulation data reported in [92]. The recent data at lighter 

sea quark masses show an improved trend towards the experimental values. 

4.10 The J parameter 

In the quenched analysis the I parameter, defined in equation 3.15, was found 

to be more than 17% lower than the experimental value for all quenched data 

sets under consideration. The reason for this discrepancy has been attributed to 

errors associated with the quenched approximation. Thus it is expected that the 

situation will improve with the inclusion of dynamical fermions in the simulations. 

Evaluating J in the quenched approximation does not require an extrapolation 

to the chiral limit. As pointed out in [107], for Nf  = 2 dynamical fermion 

simulations this is not necessarily the case. In this type of simulation, the sea 

quark mass can be identified with the light quarks and the valence quarks are 
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then associated with the strange quark. In this scenario the strange quark is 

still treated within the quenched approximation. Since the light and strange 

quark masses are treated differently, this means for example, that the vector 

mass depends not only upon the valence quark mass but also upon the sea quark 

mass. Thus it may be necessary to perform a chiral extrapolation in the sea 

quark mass in order to observe an improvement towards the experimental result 

for J. From the observation that the J parameter determined at fixed ksea for 

each data set shows no significant difference from the quenched data result, as can 

be seen from the left hand plot in Figure 4.20, it appears that an extrapolation 

may indeed be required to reproduce the experimental value. Note that the J 

parameter determined from the matched ensemble at K,,a = kval yields a result 

of J = 0.352
+25 

 which is consistent with the other determinations of J. —25 
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Figure 4.20: The J parameter determined with K*  input. The left hand plot 
shows the results obtained for all the data sets considered in this chapter plotted 
against the lattice spacing in units of r0 . The points have been offset horizontally 
for clarity. The right hand plot compares these results with the previous dynam-
ical simulation results at /3 = 5.2, c = 1.76, V = 12 . 24 taken from [92]. The 
results have been plotted against the mass ratio rnps/rnv. The dashed 
lines represent the limits of the quenched results as determined in section 3.6. 
Results from the SEsAM Collaboration are shown for comparison [107]. 
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Figure 4.20 shows the results for J when the K and K*  mesons have been used 

as input. Using the purely strange mesons as input (q and h)  gives similar results 

but slightly larger values, as was observed in the quenched case. The statistical 

errors on the results are such that there are no significant differences between 

the quenched and dynamical results. Within the data for the dynamical matched 

ensemble a slight increase in J is observed as the sea quark mass becomes lighter. 

However, this trend is not continued by the simulation at the lightest sea quark. 

Again this need riot be too concerning as the situation could well change for 

simulations at finer lattice spacings. 

The right hand plot in Figure 4.20 compares the current results for I with 

the results obtained for the previous dynamical simulation reported in [92]. The 

values shown were obtained from the 12 . 24 volume at /J = 5.2, c = 1.76, 

for different sea quark masses. To compare all the results on the same plot, 

the J parameter has been plotted against the mass ratio rnps/mv, evaluated 

at Iisea = 1 va1 For the matched quenched simulation the mass ratio at the 

lightest valence quark was used. The dashed lines on the graph represent the 

maximum range of I as determined in the previous chapter for the quenched 

data sets. This plot shows that the dynamical results discussed here are in 

agreement with those from the previous simulation. There is some evidence 

that the recent data are slightly closer to the experimental values, although not 

significantly. Results from the SESAM Collaboration [107] using data at fixed sea 

quark mass are included on the plot for comparison. Their results for Wilson 

fermions are similar to the results reported here with improved Wilson fermions. 

(For comparison, the parameter values of the SESAM data are: 16 3 . 32, /3 = 

5.6, four values of ksea in the range 0.1560 - 0.1575, corresponding to 1.44 < 

a 1 [GeV]< 1.88 and 0.69 < rn71./m < 0.83). In addition to the linear fit used 

to determine the slope, SESAM investigated using more complicated fit ansätze 

including terms with higher powers in the valence quark mass. They find that the 

J parameter is further reduced in this case. The cP-PAC5 Collaboration find that 

the I parameter for relatively large sea quark masses is roughly consistent with 

their quenched value of I = 0.346(22) [108]. Only at lighter sea quark masses 
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(rnps/rnv 	0.5) do they find that J shows an increase (J < 0.41) towards the 

experimental point J = 0.48(2). (For comparison, the parameter values of the 

CP-PACS data are: 12 24, 16 32, and 24 48 at 0 = 1.8, 1.95, 2.1, 2.2 for 

four values of ic at each /3 value, corresponding to 1.93 < a 1 [GeV]< 2.58 and 

0.5 < rn/rn < 0.8 using the improved gauge action defined in equation 1.41 

and mean field improved Wilson fermions.) 

4.11 The Edinburgh plot 

Figure 4.21 shows the Edinburgh plot, described in section 3.5, for all the data 

sets. Data for all the degenerate combinations of kval for each data set have been 

included in the plot. At the heaviest valence quark masses the dynamical data 

lie close to the pFieniomenological curve. However, as the mps/rnv mass ratio 

decreases the dynamical data points lie significantly higher than the matched 

quenched data, whicFi are in close agreement with the curve, bearing in mind that 

the curve only serves as a guide. One explanation of this observation could be 

the presence of significant finite size effects in the dynamical data, in particular 

for the nucleon. Finite volume effects are expected to be larger in full QCD 

simulations [109] than in the quenched approximation. In both quenched and 

dynamical simulations, one of the constituent valence quarks of a correlator can 

propagate across the spatial boundary, resulting in possible finite volume effects. 

However in the quenched approximation, the expectation value of these correlator 

loops is zero due to the centre Z(3) global symmetry of the pure gauge action. 

The existence of this exact symmetry means that there is no preferred direction 

in the complex plane for these loops. In contrast, the inclusion of the mass term 

in the action in the dynamical simulation breaks the Z(3) symmetry giving rise 

to a non-zero expectation value for the correlator loops. This enhances the finite 

size effects in the dynamical case. 

The analysis of the previous dynamical fermion simulations reported in [92], 

included a study of finite volume effects. From these simulations using the pre-

liminary estimate of the clover coefficient, it was concluded that finite sizes ef- 

fects were practically absent for lattices with a spatial extent of L > 1.6 fm 
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Figure 4.21: The Edinburgh plot for all the data sets. All degenerate kval cor-
relators have been included. The phenomenological curve derived from [69] has 
been shown to guide the eye. 

and for sea quark masses corresponding to mps/mv > 0.67. This is the case 

for the matched ensemble where the spatial extent is greater than 1.71 fm and 

rnps/rnv > 0.69. However at the lightest sea quark mass simulation, L = 1.60 

fm and mps/rnv = 0.58, below this approximate bound. This suggests that finite 

size effects may well he significant for this data set. Additional simulations at 

different lattice volumes would be needed in order to fully investigate finite size 

effects. 

4.12 Chiral extrapolations 

In the quenched approximation, chiral extrapolations of the unphysically heavy 

lattice hadron masses were performed to make contact with physically observed 

hadrons composed from light quarks. Traditionally this is achieved by extrapo-

lating the hadron masses in terms of the valence quark mass to the normal quark 

mass, m defined in section 3.10. With dynamical fermion simulations extrapola-

tions can now be performed in the sea quark mass. By associating the sea quark 
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mass with the light quarks, extrapolations were performed using hadron masses 

determined from correlators with 1 sea =kval. This means that light hadrons can 

be studied in a background sea of light quarks. Hadrons composed from strange 

quarks must still be considered within the quenched approximation. In order to 

perform extrapolations at 'sea = 1 va1 an extrapolation of the pseudoscalar mass 

squared to find 'crit  is required to determine the sea quark mass. The previ-

ous dynamical fermion simulations at fixed 0 in [92] determined kcrjt from the 

lightest three pseudoscalar masses, although five data points were available. As 

noted earlier, the reason for this was the strong dependence of the lattice spac-

ing on the sea quark mass, particularly at the heavier quark masses. The current 

matched set of dynamical simulations were generated in order to investigate chiral 

extrapolations at a fixed value of the lattice spacing. 

4.12.1 Pseudoscalar extrapolation at ksea  = va1 

For the matched ensemble of dynamical data sets, chiral extrapolations of the 

pseudoscalar mass were investigated using the masses determined at tsea  = /tval. 

The critical value of the hopping parameter associated with the sea quark mass, 

can be defined to be the point where the pseudoscalar mass is zero, assuming 

the PCAC relationship holds. Of course since 0 varies throughout the extrapola-

tion this is only one possible definition of kcrit. From this, an uncorrelated linear 

fit in the improved sea quark mass of the form 

2 
ms=a+(/3+ 

'sea 

where the coefficients are given by 

	

B 	(_
1+

bm 	B 

	

)sea 	 2
\

crit 	 crit / 

(4.16) 
'sea) 

bm \ 	Bbm  
(4.17) 

"crit/ 

was examined. This expression is just the simplified form of equation 3.26 for 

degenerate values of the hopping parameter. Naturally there is no question of 

using a correlated fit as each data point is taken from an independently gen-

erated simulation. The improvement coefficient bm , used as input, has not yet 
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been determined non-perturbatively and the one-loop perturbative expression in 

equation 3.24 was thus used as a preliminary estimate. Note that bm  depends on 

13 and so was different for each point in the matched extrapolation. This fit was 

investigated primarily as the simplest choice available which allowed a degree of 

freedom in the fit and was consistent with 0(a) improvement. From this fit 

sea = 0.135988 	 (4.18) crit 	 —40 

Figure 4.22 shows the pseudoscalar mass squared plotted against the improved 

sea quark mass defined by 

171 	i sea = msea(1 + bmm a), 	rna 	
(i - -- ) 	(4.19) 

crit / 

both in lattice units and in units of r0 . The resulting X 2 /d.o.f. = 5.55/1 shows 

that the linear ansatz clearly does not represent the current data, even in the 

case where the masses have been scaled by r 0 . Additional matched data points 

would be required to refute this. (A similar extrapolation performed with mpcAc 

gave a value of , = 0.135892 with X 2 /d.o.f. = 59.18/1. The X2/d.o.f. was-13 crit

large due to the very small statistical errors in mpcAc and again a linear ansatz 

was not suitable.) For completeness, fitting the unimproved sea quark mass by 

setting bm  = 0 gave a slightly higher X 2 /d.o.f. value. However, assuming that the 

value obtained for sea  is reliable, chiral extrapolations can then be investigated crit 

for the other hadrons. 

4.12.2 Hadron extrapolations at ksea = rl,al 

Taking the result in equation 4.18 for 	uncorrelated linear extrapolations in 

the improved sea quark mass were investigated for the vector, nucleon and delta 

using fits of the form 

mH = A + 	ea 	 (4.20) 

where mH represents the appropriate hadron mass. This is the simplest fit con-

sistent with 0(a) improvement which can be considered with the current number 

of data points. Additional terms in the baryon extrapolations arising from chi- 



CFiapter 4. Dynamical spectrum results 	 161 

ea = 0.135988± 	 /7 rit I? = 5.29.
40  

fl = 5.26 

= 5.2 

X/d0f5.55/1 

Matched extrapolation 

0.0 IL 

 fft  0.04 0.0 	 0.2 	 0.3 
am 	 r 0m 

Figure 4.22: CFiiral extrapolation of the pseudoscalar for the dynamical matched 
ensemble at. 1 sea = 1 vaI plotted against the improved sea quark mass. The fit is 
an uncorrelated linear fit to equation 4.16. The masses are in lattice units in the 
left hand plot and in units of r 0  in the right hand plot. 

ral perturbation theory have been investigated by [110] using baryon data taken 

from UKQCD's previous dynamical fermion simulation, reported in [92]. They 

find that no firm conclusions can be drawn regarding significant improvements 

obtained from using this type of fit until the systematic errors are reduced be 

low 10% arid data points at lower quark masses are included in the simulation. 

With only three points at relatively heavy quark masses, the linear fit ansatz was 

adopted throughout this analysis. Figure 4.23 shows the corresponding extrap-

olations both itt lattice units and in units of r 0 . All the fits gave a reasonable 

2 /d.o.f. for the linear fit ansatz. However since only three points are included 

in the extrapolations and the errors on the data points are quite large, particu-

larly for the baryons, more data points would be required to investigate possible 

curvature in the data. 

To arrive at lattice values of the masses for the hadrons composed of light 

quarks, the improved normal quark mass must first be determined. Following 
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Figure 4.23: Chiral extrapolations of the vector, nucleon and delta for the dy-
namical matched ensemble at sea = 'vaI plotted against the improved sea quark 
mass. The fit is an uncorrelated linear fit to equation 4.20. The masses are in 
lattice units in the left hand plot and in units of r 0  in the right hand plot. 

the procedure outlined in section 3.10 the improved normal quark mass was de-

termined from the pseudoscalar extrapolation using equation 3.32. The improve 

ment coefficient bm  varies in an undefined way along the course of the extrapola-

tion. Thus it was not possible to determine the unimproved normal quark mass 

and the corresponding value of i. Since the sea quarks are degenerate with the 

valence quarks in this case, the p mass was used to set the scale as opposed to the 

mass. Of course the p mass extracted this far from the region of the dynam-

ical data should be viewed with caution. The p mass in lattice units was fixed 

from a linear extrapolation of the vector with the pseudoscalar mass squared to 

the physical M.Ir /MP  ratio. Figure 4.24 shows this extrapolation including the 

points corresponding to the physical meson ratios. The MK/MK* mass ratio is 

shown although these mesons are composed from both strange and light valence 

quarks. The left hand plot in lattice units shows an extremely good fit with a 

very low X 2 /d.o.f. When plotted in units of r 0  in the right hand plot, the residual 

discrepancies in the determination of r 0  are exposed resulting in a higher but still 
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Figure 4.24: The vector mass against the pseudoscalar mass squared fitted by an 
uncorrelated linear fit. The left hand plot is in lattice units and the right hand 
plot is in units of r0 . Extrapolated lattice masses determined at the physical 
meson ratios have been included in the left hand plot. 

The improved normal quark mass was then substituted into the baryon ex-

trapolations defined in equation 4.20 to determine the nucleon and A masses. 

Table 4.3 shows the masses of the light hadrons in lattice units together with the 

improved normal quark mass. The ir and p meson are fixed to be at the physical 

mass ratio and hence have only been quoted in lattice units. The nucleon and 

mass have been converted into physical units using the lattice spacing deter-

mined from p meson, 1/a,, = 1.612 	GeV. This corresponds to a larger lattice 
59 

spacing in fm than determined from r 0 . The difference is consistent with the 

variation in a observed in the quenched analysis. This simple analysis results in 

physical values which are significantly higher than experiment. Data at different 

values of the lattice spacing would be required in order to perform an extrapo-

lation to the continuum limit to make a more realistic comparison. The SESAM 

Collaboration [107] have performed chiral extrapolations of hadron masses with 
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Particle Value in lattice units Value in GeV 

rn n 0.00114 +83  
—87 

rn7, 0.085 t 

rn 0.478 +18  
—18 

raN 0.722 	23 1165 +67  
. 	 57 

mA 0 .814  _74 1313 . 	 t 

Table 4.3: Lattice masses at the normal quark mass. Where physical units have 
been quoted the scale has been set by the p meson. 

/t sea  = tvaI against the sea quark mass at fixed 0 for four sea quark masses. Since 

they use unimproved Wilson fermions they do not improve the quark mass. They 

find that their meson data are well described by both linear and quadratic fits. 

Comparing the lattice spacing from the p mass obtained from both types of fit 

they see a change of 10% consistent with the difficulties obtained in performing 

the chiral extrapolation. Their results for the nucleon and A failed to reproduce 

the experimentally observed N - A mass splitting. 

With only three matched data sets with which to perform chiral extrapolations 

at a constant a, an investigation in the partially quenched approximation was 

carried out on all data sets. The main aim was to compare results with the 

quenched simulation and with the lightest sea quark mass data set at the smaller 

lattice spacing. 

4.13 Partially quenched analysis 

Unlike previous dynamical simulations at fixed 0 [92, 107, 108, 111] the cFiiral 

extrapolations at ksea = kvat just described depend on both the sea quark mass 

and 0. In this case, it is not clear that the linear behaviour of the pseudoscalar 

mass squared in equation 4.16 should be expected. Indeed from Figure 4.22, it is 

possible that a more complicated functional form may be required to extrapolate 

the data. This highlights the difficulty in defining ic for the matched ensemble. crit 
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For this reason, it was decided to concentrate on results which can he reached 

through an analysis of the data in the partially quenched approximation. The 

partially quenched approximation means that extrapolations are performed at 

fixed 1sea  In effect, the sea quark mass is held fixed in or above the region of the 

strange quark mass, rather than extrapolated to the light quark masses. This 

results in an approximation which is somewhere between the quenched approx-

imation and full QCD. To proceed within the partially quenched scheme, Kval 

must first be extrapolated to the chiral limit for each data set. 

4.13.1 Partially quenched chiral extrapolations 

Chiral extrapolations to determine the critical value of the valence hopping pa-

rameter, kcrjt were carried out in the same way as described in section 3.9, but 

this time in the partially quenched approximation. Extrapolations were made 

using both the pseudoscalar mass squared and the PCAC mass at fixed 'sea  for 

each data set. An investigation into the dependence of t crit on the quark mass 

improvement coefficient bm  was performed. The results for all data sets were then 
PC compared. The partially quenched bare quark mass, m, is defined as 

rnPC = 1 j_ - 	 (4.21) q 	2 (Ivai 	'ct) 

in analogy with equation 3.21. Assuming this definition of the bare quark mass, 

the rest of the equations in section 3.9 follow. The critical value of the hopping 

parameter occurs when the bare quark mass vanishes. The PCAC relation states 

that the quark mass vanishes when the pseudoscalar mass squared is zero. To 

lowest order in chiral perturbation theory this is expressed by the functional form 

TflS = B(i 	+ iiPC) 	 (4.22)qj 	q2 

where the improved quark masses, ffip i' are defined as in section 3.9. For each 

data set, kcrit  was determined from an uncorrelated fit to 

2 	 2 / 
rnps =a+—(/3+-----) 	 (4.23) 

	

kval \ 	FCval / 
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where the coefficients a, 0 and y are as defined for equation 3.26. In the partially 

quenched approximation there are expected to be additional terms to be included 

in the general fit function from chiral logarithms [112, 113] as the valence quark 

mass becomes small. As with the quenched analysis in the previous chapter, the 

masses studied here are too heavy for the effect of these terms to be felt and so 

have not been included in the fits. For extrapolations of the PCAC mass, r4s 
was replaced by MPCAC  in equation 4.23. Variations in the extracted value of 

crit were investigated using different values for bm : no improvement, tree-level 

improvement and the one-loop value, as defined in equation 3.24. The bare strong 

coupling constant, g was used throughout. The results for kcri t  are presented in 

Table 4.4 for the pseudoscalar extrapolation, and in Table 4.5 for the PCAC mass. 

In addition to the fit results included here, correlated fits were performed 

for all the data sets. The resulting X 2 /d.o.f. was less than 0.5 in all cases for 

the pseudoscalar extrapolation. Since the K,rit  values were in agreement within 

the statistical errors, the uncorrelated fits were selected in preference in order 

to be consistent with the procedure adopted for the quenched simulations. For 

correlated PCAC mass extrapolations, the very small errors on the masses resulted 

in unacceptably large X 2 /d.o.f. values, and uncorrelated fits were again selected. 

From Tables 4.4 and 4.5, the results obtained using different values of bm  decrease 

slightly as bm becomes more negative. However, for all values of bm  the results 

were consistent. The one-loop value for bm  was selected for both methods of 

1crit determination, as this is the current best determination of the quark mass 

improvement coefficient. Comparing 'crit  determined from both methods, the 

results agree within statistical errors. At this level of accuracy it is hard to 

quantify the errors of 0(a2 ) arising between the two methods. Figure 4.25 shows 

the chiral extrapolations for the lightest sea quark mass simulation. The left 

Fiänd plot shows an uncorrelated linear fit to equation 4.23 using the one-loop 

value for bm . The right hand plot shows the same type of fit to the PCAC mass. 

Clearly the data satisfy the linear ansatz and thus higher order terms were not 

considered in the analysis. 
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ksea 	Value of bm  Ncrit x 2 /d.o.f. 

5.2 	0.13550 	bm 	= 0 0.136363 +67  
-38 0.12 / 2 

bm (TL) 	= 0.5 0.136334 ±64 
-36 0.23 / 2 

brn (g) 	= -0.611 0.136327 -35 0.26 / 2 
5.2 	0.13500 	bm 	= 0 0.136652 +58  

-61 0.15 / 2 

bm (TL) 	= 0.5 0.136575 -56 0.37 / 2 

bm (g) 	= -0.611 0.136558 -55 0.43 / 2 

5.26 	0.13450 	bm  = 0 	0.137100 -45 0.03 / 2 

bm (TL) = 	0.5 	0.136989 -42 0.01 / 2 

bm (g) = -0.6097 	0.136965 -41 0.02 / 2 
5.29 	0.13400 	bm  0 0.137267 -68 0.08 / 2 

bm (TL) = 	0.5 0.137139 -62 0.26 / 2 

bm (g) -0.6091 0.137112 -61 0.32 / 2 

5.93 	Quenched 	bm  = 0 0.135193 -31 0.24 / 7 

bm (TL) = 	0.5 0.135145 -30 0.54 / 7 

bm (g) = -0.5973 0.135136 32  
-29 0.61 / 7 

Table 4.4: Results for kcr i t  obtained from an uncorrelated fit to equation 4.23 
using different values for bm . The tree-level (TL) and one-loop value of bm  from 
perturbation theory are compared with the unimproved case for all the data sets. 
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0 	Nsea 	Value of bm  'crit X2 /d.o.f. 

5.2 	0.13550 	bm 	= 0 0.136311 16 0.26 / 2 

b 1 (TL) 	= -0.5 0.136280 t 0.87 / 2 

bm (g) 	= -0.611 0.136273 -15 1.06 / 2 

5.2 	0.13500 	bm 	= 0 0.136644 -14 0.05 / 2 

b(TL) 	= -0.5 0.136568 -13 0.95 / 2 

bm (g) 	= -0.611 0.136552 t 1.34 / 2 

5.26 	0.13450 	bm  = 0 0.137090 -17 0.34 / 2 

bm (TL) = -0.5 0.136982 -16 1.35 / 2 

bm (g) = -0.6097 0.136959 t 1.69 / 2 

5.29 	0.13400 	bm  0 0.137313 16 0.17 / 2 

bm (TL) = 	0.5 0.137188 -15 0.87 / 2 

bm (g) = -0.6091 0.137161 -15 1.12 / 2 
5.93 	Quenched 	bm  = 0 0.135147 0.07 / 7 

bm (TL) = 	0.5 0.135101 0.25 / 7 

bm (g) = -0.5973 0.135092 0.39 / 7 

Table 4.5: Results for 	obtained from an uncorrelated fit to the PCAC mass 
using equation 4.23, with the pseudoscalar mass replaced by the PCAC mass, using 
different values for 	The same values for bm  are compared as in Table 4.4. 

0 'sea B X 2 /dl.° 

5.93 Quenched 3.721 -47 0.61 / 7 

5.29 0.13400 4.172 34 0.32 / 2 

5.26 0.13450 4.078 -69 0.02 / 2 

5.2 0.13500 4.017 -68 0.43 / 2 

5.2 	0.13550 	3.635 	0.26 / 2 -90 

Table 4.6: Fit results for the pseudoscalar mass squared against the improved 
quark mass using equation 4.22 in lattice units. 
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Figure 4.25: Chiral extrapolations in the valence hopping parameter for the pseu-
doscalar mass and the PCAC mass. Fits are an uncorrelated linear fit to equa-
tion 4.23 with the appropriate L.H.S using the one-loop value of bm  = — 0.611 
for the 0 = 5.2, ksea = 0.13550 dynamical data set. 

Using the final selection of kcrjt as highlighted in bold in Table 4.4, the chiral 

extrapolations of the pseudoscalar mass in the improved partially quenched quark 

mass can be compared for all the data sets. The results are first compared in 

lattice units in Figure 4.26. The fits to equation 4.22 have not been shown on 

the graph for clarity, instead the fit parameters are presented in Table 4.6. 

The slopes of the matched dynamical extrapolations are in much closer agree-

ment with each other than the matched quenched or the lightest sea quark mass 

data sets. The fits are uniformly good indicating that the data is well described 

by the linear fit ansatz. The unmatched dynamical data set clearly has a shal-

lower slope than the matched data which could be due to the difference in the 

lattice spacing. To eliminate any residual a dependence the fits were repeated 

after scaling the masses by r0 . The resulting fits are shown in Figure 4.27 for 

all the data sets. This time the quenched data has the shallowest slope and 

the lightest sea quark mass data are much closer to the matched dynamical data. 
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The difference between the slopes of the matched dynamical data sets and the 

quenched slope is a one a effect, which could be interpreted as a small dynamical 

effect. 

4.13.2 Partially quenched vector extrapolation 

Chiral extrapolations in the partially quenched approximation were carried out 

for the vector. Table 4.7 shows the fit results of an uncorrelated linear fit to the 

form 

mv = 	 ffipc 
	

(4.24) 

sea A B X2 /d.o 1/a,, [GeV] 

5.93 Quenched 0.501 +17  2.35 ±25  0.25 / 7 1.519 +53  
—17 —20 —48 

5.29 0.13400 0.462 +18 
 2.90 + 8 0.03 / 2 1.650 +32  

9 —14 —61 

5.26 0.13450 0.461 +15 
 2.88 + 0.01 / 2 1.652 +28  

—8 —15 —51 

5.2 0.13500 0.461 +13  3. 02  +12  0.05 / 2 1.648 +45  
—11 —13 -49 

5.2 0.13550 0.429 +16  2. 69  +30  0.04 / 2 1.771 +95  
—22 . —27 -73 

Table 4.7: Fit results for the vector mass against the improved partially quenched 
quark mass using equation 4.24. The lattice spacing quoted in 0eV was deter-
mined from the p mass as extracted from an uricorrelated linear fit of the vector 
mass with the pseudoscalar mass squared in the partially quenched approxima-
ti on. 

As can be seen from Table 4.7 and Figure 4.28 the intercepts of the dynamical 

matched data sets are in close agreement and the slopes are compatible within the 

statistical errors. This indicates that matching mo  results in very similar vector 

masses for the matched ensemble. Table 4.7 includes the lattice spacing as set by 

the p mass from a linear extrapolation of the vector mass with the pseudoscalar 

mass squared. The lattice spacings of the matched dynamical ensemble are in 

close agreement which confirms that the vector mass is well matched. These 

results are 10% larger than the lattice spacings set by r 0 , similar to the results 

observed in the quenched simulations. The quenched data set, although close to 

the matched data, clearly has a different slope and a different lattice spacing as 
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determined from the p. The lightest sea quark data set shows the largest effect, 

lying lower than the matched data. This difference in the intercept was due to 

the smaller lattice spacing for the lightest sea quark data set. Figure 4.29 shows 

the fits repeated when the masses are scaled by r 0  in order to compare all the 

data on the same footing. From Figure 4.29 the lightest 'sea  data set is brought 
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Figure 4.28: Plot of the vector mass against the average improved partially 
quenched quark mass for all data sets in lattice units. 

closer into line with the matched data sets. All the dynamical data sets result 

in a consistent intercept in the chiral limit. The quenched data was in general 

higher than the dynamical data and the intercept was over 1.6o- higher than the 

dynamical results. This can be seen as a small but significant effect resulting from 

the inclusion of dynamical fermions in the simulation. For all of the data sets the 

linear fit was a good description of the data at the current level of accuracy. 
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Figure 4.29: Vector mass against the average improved partially quenched quark 
mass plotted in units of r. 

4.13.3 Partially quenched baryon chiral extrapolations 

Extrapolations of the degenerate nucleon and delta masses were performed using 

an uncorrelated linear fit of the form 

rn = A + B( 	+ M q2 + 	/ 3 	 ( 4 . 25 )(11 

In this case all three constituent quark masses were degenerate. Due to the level 

of statistical accuracy of the baryon data, particularly for the delta which was 

significantly more difficult to fit, small dynamical effects were hard to distinguish 

from the statistical errors. Table 4.8 shows the results of the fit to equation 4.25 

for the nucleon and delta. The corresponding data points are plotted in Fig-

ure 4.30. 

For the nucleon the matched dynamical data points lie close together with 

the quenched data lying just below. As in the case of the vector, the lightest sea 

quark mass data set gave the lowest mass results. For the delta this was also the 

case. In the plot for the delta the matched dynamical points lie slightly below the 

3.5 

3.0 

2.6 
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Baryon f 	6sea 	 A 	B X2 /d.oI 

Nucleon 	5.93 Quenched • 0.692 +31  
-26 4.46 -39 0.721 / 3 

5.29 0.13400 0.704 26 4.67 +23  
-30 0.015 / 2 

5.26 0.13450 0.721 +27  
-24 4.40 -24 0.012 / 2 

5.2 0.13500 • 0.689 +23  
-19 • 5. 04  ±20  

-21 0.005 / 2 

5.2 0.13550 ' 638 J.  

+38  
43 • 4. 64  +67  

-61 0.007 / 2 

Delta 	5.93 Quenched 0.816 ±42 
31 • 

+42  
-50 0.004 / 3 

5.29 0.13400 0.792 47 
 

25 4.23 • 
+25  
-38 0.0004 / 2 

5.26 0.13450 0.754 +31 
 25 • 4.58 ±24 

-29 0.005 / 2 

5.2 0.13500 0.799 +46  
-40 4. 15  +52  

-41 0.089 / 2 

5.2 0.13550 0.712 54 . 4. 72  +90  
-69 0.265 / 2 

Table 4.8: Fit results for the baryon masses fitted in terms of the improved 
partically quenched quark mass using equation 4.25. 

quenched data, however it is hard to say that there is any significant difference 

between the dynamical and quenched data. This is in part due to the difficulties 

involved in obtaining reliable estimates for the delta masses. Figure 4.31 shows 

the linear extrapolations of the baryons in units of r 0 . 

In the chiral limit the intercepts agree within the statistical errors for all the 

data sets for both the nucleon and the delta. At the current level of statistics it 

is impossible to identify effects due to the inclusion of dynamical fermions. More 

data points and configurations would be needed in the analysis. 

4.13.4 Summary of partially quenched analysis 

Due to the difficulties in defining a physical interpretation of the mass results 

for the hadrons in a background sea of strange quarks, the main focus of the 

chiral extrapolations performed above was to compare the matched dynamical 

simulations at different sea quark masses with the quenched approximation. It 

was found that the matched dynamical data were very well matched and produced 

similar results. No significant differences were observed as the sea quark mass was 
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Figure 4.30: Nucleon and delta masses plotted against the average improved 
partially quenched quark mass. 

changed for the matched ensemble. However, comparing the dynamical data with 

the case of infinitely heavy dynamical quarks in the quenched approximation, 

small but significant departures from the matched data were observed in the 

meson sector. The main conclusion is that lighter sea quarks will be needed to 

observe greater effects of unquenching. 

4.14 The continuum limit 

The matched ensemble have, by construction, approximately the same fixed value 

of the lattice spacing, a 0.11 fm as defined by r 0 . This means that extrapola-

tions to the continuum limit can not be undertaken with the current dynamical 

data sets. Including the unmatched data set at the lightest sea quark mass, the 

lattice spacing measured on this data set, a 0.10 fm is not sufficiently different 

to provide a reliable continuum extrapolation. Future simulations at different 

lattice spacings are required to explore this issue. 

1.2 

1.1 

1.0 

0.9 

0.8 

0.7 
0.00 

0 : /C sea  = 0.1340 

	

1.2 
	

o 	= 0.1345 

o : 	= 0.1350 	 4 
th 

X : 	= 0.1355 	. 

C 

	

1.0 

	 4 th 

(d 



Chapter 4. Dynamical spectrum results 	 176 

I 	 I 	 I 	I 
sea = 0.1340 

sea = 0.1345 

= 0.1350 	 - 

= 0.1355 

X fl=5.93, Quenched 

3 

0.0 	 0.1 	 0.2 	 0.3 	 0.4 

	

r o(m + 	-I- m )/3
1. 

u.0 	 0.1 	 0.2 	 0.3 	 0.4 
ro(m + m + m )/3 

Figure 4.31: As Figure 4.30 plotted in units of r0 . Fits are an uncorrelated linear 
fit. 

5 

z 

0 



Chapter 4. Dynamical spectrum results 	 177 

4.15 Other evidence for dynamical effects? 

The dynamical configurations have been analysed by other members of the UKQCD 

Collaboration in order to investigate the evidence for dynamical effects in other 

measurable quantities. The static quark potential was measured by A. C. Irving 

using the method described in section 4.4, the preliminary results of which were 

presented in [90]. Full results will appear in [91]. The continuum form for the 

potential 

V(r) = Vo  + ur - 	 (4.26) 

has been rescaled in terms of r0  as 

[V(,r) - V(r o )]ro  = (1.65— 	_i) - 	_i) 	(4.27)  e( "o  

in order to compare data from different simulations. This rescaled potential 

was plotted against the separation scaled by r 0  for all the dynamical data sets 

in Figure 4.32. The data is compared with the universal string model of the 

potential, in which the coefficient of the Coulomb term e in equation 4.26 is set to 

the Lüscher value of 7/12 [114]. Good agreement of the data with the string model 

is observed. At large separations the string is expected to break, which would be 

indicted by a flattening of the potential. From the figure there is no sign that this 

is happening for distances of r/r 0  < 2. Other collaborations [18, 115, 116] also 

see no indication of string breaking as yet. Reasons for this might be that the sea 

quark masses are still too heavy to show a significant departure from the string 

model or that the current maximum separation is not large enough for the creation 

of a quark anti-quark pair to be energetically favourable. Another explanation 

may be that the Wilson loop operators used to determine the potential do not 

have a good overlap with the broken string state [116]. 

At short distances there is evidence for discretisation errors in the potential. 

This can be clearly seen by examining the deviation of the potential results from 

the string model in the lower plot of Figure 4.32. These errors are still present 

even after lattice artifacts have been taken into account in the fitting procedure, 
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as explained in 4.4. In addition, there is some evidence that the lighter sea quark 

data lie somewhat below the heavier quark data at short distances, indicating the 

presence of small dynamical fermion effects. This difference at small separations 

is indicative of a higher value of the Coulomb coefficient e than in the string 

model. Fits to the data to extract a value for e reveal an increase of 15% ± 4% 

over previous quenched fits. Figure 4.33 shows the increase in the fitted value of 

e for the dynamical data sets compared with a previous quenched result. This is 

consistent with the predicted increase in e from perturbation theory of 14% [117]. 

The SESAM Collaboration [115] have observed a similar increase of 11% in the 

value of e when comparing Nf  = 2 simulations with the quenched approximation. 
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Figure 4.33: Fitted values for the Coulomb coefficient, e, for all the dynamical 
data sets taken from [90]. The solid line is the Lüscher value, e = 7/12. 

Investigations of the topological susceptibility, x, using the cooling method 

have been carried out by A. Hart and M. Teper in [118]. The topological suscep-

tibility was fitted to 

X = frn/2Nf  + O(m.) 	 (4.28) 

where the number of quark flavours is Nf  = 2 and f7, is the ir decay constant. 

Equation 4.28 indicates that the topological susceptibility is expected to decrease 
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with the sea quark mass. Preliminary studies [118] on the matched dynamical 

ensemble show that the measured value for x is indeed lower for the two lightest 

sea quark mass data sets, providing evidence of dynamical effects. The data for 

the heaviest sea quark data set is statistically consistent with the quenched result. 

A more sophisticated analysis of the data is currently ongoing. 

Finally, preliminary measurements of the ij mass on the 13 = 5.2, c, w  = 1.76 

data sets (where the notation ri' is reserved for the N f  = 3 case) have been 

carried out by C. Michael and collaborators in [119]. The ij meson is expected 

to obtain a large contribution to its mass from quark ioop effects, as discussed in 

section 1.5.1. This investigation reported a mass of approximately 800 MeV for ij 

in the chiral limit with an uncontrolled systematic error, which can be compared 

with the experimental result for ij' of 958 MeV [14]. Of course, a quantitative 

analysis of the systematic errors would be required to corroborate this result. 



Chapter 5 

Conclusions 

This thesis has presented results obtained for the light hadron spectrum from 

the numerical simulation of lattice QCD. In this chapter, the main conclusions 

reached in this thesis are summarised and possible extensions of the analysis 

indicated. First the main results obtained from the quenched simulations are 

summarised. 

5.1 Summary of the quenched analysis 

In chapter 3, the results for the light hadron spectrum determined from simu-

lations within the quenched approximation were presented. Data sets at three 

values of the lattice spacing were analysed in order to explore the continuum 

limit. A programme of improvement was investigated in order to reduce the 

discretisation errors which are inherent in any lattice simulation. Three of the 

quenched data sets implemented the tadpole improvement scheme with the aim 

of reducing the 0(ag) errors. A further two data sets were simulated using full 

0(a) non-perturbative improvement in order to examine any improvement in the 

scaling behaviour over the tadpole improved data sets. At one value of 0 a com-

parison of the lattice masses obtained from two data, sets with different physical 

volumes was carried out in order to investigate the error in the analysis due to 

finite volume effects. 

The comparison of the lattice mass results obtained in the finite volume anal-

ysis at /3 6.0 demonstrated that although there were no finite size effects in the 

lattice values for the vector mass prior to extrapolation a small, yet statistically 

significant, effect of around 2cr was observed for the pseudoscalar. However, with- 
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out further investigation it could not be ruled out that this effect has a statistical 

origin. In the haryon sector, finite size effects were more pronounced, particularly 

for the decuplet baryons where a 2a effect was observed. The 10 effect in the 

octet haryons was not considered particularly significant given the level of sta-

tistical accuracy of the data. There was a noticeable improvement in the scaling 

behaviour of the non-perturbatively improved data sets over the tadpole data, 

particularly in the continuum extrapolations where r 0  was chosen to set the scale. 

Improved scaling was clearly observed in the chiral extrapolations, particularly 

for the mesons. The value of the J parameter was found to be significantly be-

low the experimental value even in the continuum limit, suggesting that the low 

value obtained for J is an intrinsic feature of the quenched approximation. The 

vector-pseudoscalar hyperfine splitting showed a noticeable variation when the 

scale was set by either the K*  mass or r0 , slightly undershooting or overshooting 

the experimental values respectively. In both cases there was a small negative 

slope in the data as the quark mass was increased which suggested that the ex-

perimentally observed values for the hyperfine splitting in the heavy-light sector 

would be underestimated. 

An investigation of the ratio of the strange quark mass to the normal quark 

mass at 2 0eV in the modified minimal subtraction (K[) renormalisation scheme, 

yielded a result of m/rn 25 + 3. The renormalised quark masses used to 

determine this ratio were calculated using renormalisationi constants from pertur-

bation theory. The results for the quark mass ratio were found to be compatible 

with the theoretical prediction made in quenched chiral perturbation theory [88], 

where Mc /Mn  = 24.3 ± 1.0. 

The continuum values of the non-singlet quenched light hadron spectrum ob-

tained by extrapolating the lattice data in terms of the four different quantities 

chosen to set the lattice scale, resulted in a 10% uncertainty in the final spec-

trum results. Assuming that this difference was not due to finite size effects, 

this uncertainty can then he attributed to the scale ambiguity in the quenched 

approximation. The results of the continuum extrapolation of the light hadron 

masses confirmed the evidence previously presented by CP-PACS [4], which showed 
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that the light hadron spectrum in the quenched approximation agrees with ex-

periment to within 10%. The statistical precision of the CP-PACS results is in 

general better than the results presented here. However the implementation of 

the improvement programme has shown that extrapolations to the continuum 

show a milder a dependence. In order to improve the precision of the contin-

uum extrapolations, additional points at different lattice spacings are required. 

Of course the usual caveats of larger physical volumes, smaller lattice spacings, 

more statistics and lighter quark masses also apply. The quenched approximation, 

hoever, represents an uncontrolled error in the simulation, the effects of which 

can only be assessed in "full" QCD simulations. The results of chapter 4, which 

investigated the evidence for the effects of dynamical fermions in the spectrum, 

are summarised in the next section. 

5.2 Summary of the dynamical analysis 

In chapter 4, dynamical simulations with two degenerate flavours of 0(a) im-

proved Wilson fermions were analysed with the main aim of investigating the 

effects in the light hadron spectrum arising from the inclusion of fermion loops in 

the QCD vacuum. Three dynamical simulations with different sea quark masses, 

forming a matched ensemble, were analysed. The aim of the matching proce-

dure, where each simulation was selected to have approximately the same lattice 

spacing as defined with respect to the physical value of the Sommer scale, was 

to facilitate a direct comparison with a quenched simulation at the same lattice 

spacing. Additionally, choosing the lattice volume to be fixed for each data set 

meant that chiral extrapolations could be considered separately from continuum 

extrapolations. The results showed that the matched ensemble displayed a re-

duced residual dependence upon lattice artifacts, indicated by the similar slopes 

and intercepts observed in the partially quenched chiral extrapolations. A further 

simulation with a lighter sea quark mass at a smaller lattice spacing was analysed 

with the hope of observing a larger effect due to dynamical fermions. Within the 

dynamical data, no significant effects arising from the small changes in the sea 

quark mass were observed. Instead the main evidence for sea quark effects came 
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from comparisons with the quenched data. Below is a list describing the evidence 

for dynamical quark effects in the main observables investigated in chapter 4: 

• The hyperfine splitting showed an improved trend towards the experimental 

values for the dynamical data sets. A flattening of the data as the valence 

quark mass was increased was observed for the matched dynamical ensem-

ble. However this effect was not mirrored by the lightest sea quark mass 

data. 

• There was no significant improvement in the J parameter towards the ex-

perimerital value, particularly at the lightest sea quark mass. This is in 

line with the results reported by SESAM [107]. However there was some 

evidence for a slight increase in J as the quark mass was reduced within 

the matched dynamical ensemble. 

• The Edinburgh plot showed that the dynamical data was significantly higher 

than the quenched data, which was in good agreement with the phenomello-

logical curve. This suggested the possibility of larger finite size effects in 

the dynamical simulations, particularly for the baryons, which should be 

investigated further. 

• Some evidence for dynamical effects was observed in the partially quenched 

chiral extrapolations of the mesons where the scale was set by r0 . The slope 

of the quenched pseudoscalar extrapolation differed by approximately icr 

from the slopes obtained by extrapolating the dynamical data. A similar 

effect was observed for the vector, where the intercept of the quenched data 

was noticeably higher than in the dynamical case. In the baryon sector, 

dynamical effects were hard to quantify given the statistical accuracy of 

the data. 

• The static inter-quark potential showed good agreement with the universal 

string model with no firm evidence of string breaking. At smaller distances 

discretisation errors were observed and there was evidence that the lighter 

sea quark mass data lie below the heavier sea quark data indicating charge 
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screening. Indeed, fits to the Coulomb term of the potential model indicated 

a 15%+4% rise in the value of e from the value of the Liischer coefficient, e = 

ir/12. This is consistent with the predicted increase in e from perturbation 

theory of 14% for Nf  = 2 simulations [117]. 

• The topological susceptibility was observed to decrease as the dynamical sea 

quark mass became smaller, as anticipated for dynamical fermion simula-

tions. 

• Preliminary evidence indicates that the mass of the singlet i meson lies 

somewhere between the experimental masses of the ij and i ' . 

There are a number of directions which could be taken in the analysis of 

further dynamical fermion simulations. A few of the possible directions are men-

tioned below. Hadron masses determined from. correlators with non-degenerate 

valence quarks and from additional data sets at different values of the sea quark 

mass included within the matched ensemble would enable other more complicated 

fits to be investigated for the chiral extrapolations at ksea = 1 vaI The effect of 

increasing the fuzzing radius, such that a longer plateau for the ground state 

mass is achieved (at the cost of increased statistical noise), on the extraction of 

the hadron masses is currently under investigation by other members of UKQCD. 

Dynamical simulations (perhaps a further matched ensemble) at different lattice 

spacings should be performed in order to extrapolate to the continuum limit to 

compare the light hadron spectrum with experiment. Lighter dynamical quark 

masses could be included in the simulations in an attempt to observe an increased 

difference from the quenched approximation, and of course, increased statistics, 

larger volumes and smaller values of the coupling are needed in order to improve 

the precision of the analysis. 



Appendix A 

Fitted lattice masses for the quenched 

simulations 

The following tables contain the final results for the fitted hadron masses in lat-

tice units for the quenched simulations considered in chapter 3. The tables are 

arranged in the following order: pseudoscalar, vector, degenerate delta, nucleon, 

non-degenerate delta, sigma and lambda, where the data sets have been grouped 

in terms of their improvement scheme: tadpole or non-perturbative. The un-

renormalised PCAC mass results are included at the end of the appendix. A full 

description of the final fit procedure used to obtain these results can be found 

in chapter 3. For the octet baiyons, ic2 and ic3 label the pair of quarks which 

are flavour symmetric/anti-symmetric under interchange for the sigma/lambda 

haryons and 'i  labels the third quark. 



Appendix A. Fitted lattice masses for the quenched simulations 	187 

T ii K2 amps Fit x 2 / d.o.f. 

5.7 	16 3 . 32 0.13843 0.13843 0.7350 ii [ 
 6-15] 23.99 / 14 

0.14077 0.13843 0.6404 t [ 5-15] 16.89 / 16 

0.14077 0.14077 0.5307 20 [ 5-15] 16.00 / 16 

6.0 	16 3 .48 0.13700 0.13700 0.4131 t [ 6-23] 22.57 / 30 

0.13810 0.13700 0.3572 t [ 6-23] 21.97 / 30 

0.13856 0.13700 0.3320 t 2  [ 6-231 27.82 / 30 

0.13810 0.13810 0.2927 ii2 [ 6-23] 26.93 / 30 

0.13856 0.13810 0.2621 [ 6-23] 29.93 / 30 

0.13856 0.13856 0.2268 [ 6-23] 30.40 / 30 

6.2 	24 	48 0.13640 0.13640 0.3033 [ 8-23] 30.03 / 26 

0.13710 0.13640 0.2643 -11 [ 8-23] 29.29 / 26 

0.13745 0.13640 0.2436 -13 [ 8-231 29.02 / 26 

0.13710 0.13710 0.2206 -12 [ 8-23] 31.97 / 26 

0.13745 0.13710 0.1959 -16 [ 8-23] 30.92 / 26 

0.13745 0.13745 0.1680 -18 [ 8-23] 31.13 / 26 

Table A.1: Pseudoscalar meson masses for the tadpole improved data sets. 
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3 	L 3  T K i  K2 amps Fit X 2 /d.o.f. 

6.0 	16 	. 48 0.13344 0.13344 0.3977 ii' [ 
 6-23] 23.82 / 30 

0.13417 0.13344 0.3553 [6-23] 24.18 / 30 

0.13455 0.13344 0.3319 +17 [ 6-23] 26.70 / 30 

0.13417 0.13417 0.3077 [ 6-23] 26.14 / 30 

0.13455 0.13417 0.2805 10 [6-23] 27.37 / 30 

0.13455 0.13455 0.2493 [6-23] 30.84 / 30 -12 

6.0 	32 	. 64 0.13344 0.13344 0.3952 +16  [15-31] 14.49 / 15 

0.13417 0.13344 0.3524 [15-31] 14.86 / 15 

0.13455 0.13344 0.3284 [15-31] 13.56 / 15 

0.13417 0.13417 0.3048 [15-31] 13.64 / 15 

0.13455 0.13417 0.2769 [15-31] 12.22 / 15 

0.13455 0.13455 0.2457 -10 II
+1 [15-31] 13.04 / 15 

6.2 	24 3 .48 0.13460 0.13460 0.2803 [8-23] 30.99 / 26 -10 

0.13510 0.13460 0.2492 -12 [8-23] 29.08 / 26 

0.13530 0.13460 0.2361 [8-23] 28.42 / 26 -14 

0.13510 0.13510 0.2149 [ 8-23] 31.54 / 26 

0.13530 0.13510 0.1998 17 [ 8-23] 31.18 / 26 

0.13530 0.13530 0.1836 [8-23] 32.04 / 26 -18 

Table A.2: Pseudoscalar meson masses for the non-perturhatively improved data 
sets. 
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13 	L 3  . T r, i  K2 amy Fit X 2 /d.o.f. 

5.7 	16 3.  32 0.13843 0.13843 0.9332 +45 
 -37 7-15] 12.80 / 12 

0.14077 0.13843 0.8688 t [ 7-15] 11.96 / 12 

0.14077 0.14077 0.8090 i [ 7-15] 10.76 / 12 

6.0 	16 	. 48 0.13700 0.13700 0.5386 t [ 7-23] 23.82 / 28 

0.13810 0.13700 0.5030 t [ 6-231 27.20 / 30 

0.13856 0.13700 0.4889 -41 [ 6-23] 27.83 / 30 

0.13810 0.13810 0.4652 -44 [ 6-23] 26.92 / 30 

0.13856 0.13810 0.4501 t [ 6-23] 29.23 / 30 

0.13856 0.13856 0.4353 76 [ 6-23] 25.43 / 30 

6.2 	24 	48 0.13640 0.13640 0.4005 -26 [ 8-231 32.65 / 26 
0.13710 0.13640 0.3761 t [ 8-23] 28.79 / 26 

0.13745 0.13640 0.3648 +39 
 -44 8-23] 25.39 / 26 

0.13710 0.13710 0.3522 -44 [ 8-23] 26.83 / 26 

0.13745 0.13710 0.3412 -63 [8-23] 24.85 / 26 

0.13745 0.13745 0.3306 t [ 8-23] 28.83 / 26 

Table A.3: Vector meson masses for the tadpole improved data sets. 
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0 	L 3  T K i  K2 amy Fit X2 /d.o.f. 

6.0 	16 	48 0.13344 0.13344 0.5397 [ 6-23] 24.02 / 30 -30 

0.13417 0.13344 0.5124 -32 [6-23] 27.16 / 30 

0.13455 0.13344 0.4997 -50 [ 6-23] 29.71 / 30 

0.13417 0.13417 0.4852 [ 6-23] 27.92 / 30 -53 

0.13455 0.13417 0.4713 -68 [ 6-23] 31.96 / 30 

0.13455 0.13455 0.4577 -83 [ 6-23] 30.16 / 30 

6.0 	32 	. 64 0.13344 0.13344 0.5400 [10-20] 13.68 / 9 

0.13417 0.13344 0.5143 -39 [10-20] 14.44 / 9 

0.13455 0.13344 0.5019 -46 [10-20] 13.75 / 9 

0.13417 0.13417 0.4887 -48 [10-20] 13.30 / 9 

0.13455 0.13417 0.4762 -59 [10-20] 10.31 / 9 

0.13455 0.13455 0.4636 -76 [10-20] 6.69 / 9 

6.2 	24 	. 48 0.13460 0.13460 0.3887 -28 [ 8-23] 33.55 / 26 
0.13510 0.13460 0.3708 -36 [ 8-23] 28.99 / 26 

0.13530 0.13460 0.3645 -47 [ 8-231 26.51 / 26 

0.13510 0.13510 0.3531 -51 [ 8-23] 29.56 / 26 

0.13530 0.13510 0.3471 -61 [ 8-23] 27.91 / 26 

0.13530 0.13530 0.3414 II+7[ 
 -82 8-23] 30.98 / 26 

Table A.4: Vector meson masses for the non-perturbatively improved data sets. 
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/ 	T r, I  K2 It3 arnA Fit X 2 /d.o.f. 

5.7 	16 3 . 32 0.13843 0.13843 0.13843 1.539 
t 2  [ 7-15] 23.62 / 12 

0.14077 0.14077 0.14077 1.334 -17 [7-15] 10.59 / 12 

6.0 	16 	48 0.13700 0.13700 0.13700 0.909 i [10-23] 23.49 / 22 

0.13810 0.13810 0.13810 0.810 [ 8-23] 23.95 / 26 

0.13856 0.13856 0.13856 0.774 [8-23] 41.53 / 26 -26 

6.2 	16 	48 0.13640 0.13640 0.13640 0.691 [11-23] 19.42 / 20 

0.13710 0.13710 0.13710 0.620 [11-23] 23.87 / 20 10 

0.13745 0.13745 0.13745 0.577 1.3  [11-23] 20.60 / 20 

Table A.5: Degenerate delta masses for the tadpole improved data sets. 

f 	L 3  . T 	n i 	K2 	It3 	 arnA 	Fit 	X 2 /d.o.f. 

6.0 16 48 0.13344 0.13344 0.13344 0.913 t [9-23] 21.84 / 24 22 

	

0.13417 0.13417 0.13417 0.852 	[9-23] 31.33 / 24 23 

	

0.13455 0.13455 0.13455 0.768 	[10-23] 40.37 / 22 -36 

6.0 323  64 0.13344 0.13344 0.13344 0.899 413 [ 2-16] 17.56 / 11 -14 

	

0.13417 0.13417 0.13417 0.818 	[ 2-161 20.09 / 11 -13 

	

0.13455 0.13455 0.13455 0.781 	[2-16] 21.66 / 11 -14 

	

6.2 24 48 0.13460 0.13460 0.13460 0.671 	[11-23] 20.35 / 20 

	

0.13510 0.13510 0.13510 0.618 	[11-23] 21.54 / 20 -12 

	

0.13530 0.13530 0.13530 0.596 	[11-23] 20.31 / 20 13 

Table A.6: Degenerate delta masses for the non-perturbatively improved data 
sets. 
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0 	L 3  T ic1 K2 It3 arnJ Fit X 2 /d.o.f. 

5.7 	16 3 . 32 0.13843 0.13843 0.13843 1.423 [ 7-15] 7.37 / 12 

0.14077 0.14077 0.14077 1.183 -11 [6-15] 15.96 / 14 

6.0 	16 3  '48 0.13700 0.13700 0.13700 0.817 i [10-23] 21.26 / 22 

0.13810 0.13810 0.13810 0.678 +17  [10-23] 27.46 / 22 

0.13856 0.13856 0.13856 0.616 [10-23] 26.95 / 22 -16 

6.2 	24 	48 0.13640 0.13640 0.13640 0.608 [11-23] 34.87 / 20 

0.13710 0.13710 0.13710 0.509 +12  [11-23] 38.62 / 20 

0.13745 0.13745 0.13745 0.467 -20 [11-23] 22.68 / 20 

Table A.7: Degenerate nucleon masses for the tadpole improved data sets. 

/3 	L 3  . T 	 K2 	 IC3 	 arnN 	Fit 	X 2 /d.o.f. 

6.0 16 3 .48 0.13344 0.13344 0.13344 0.808 +10 [ 9-231 25.42 / 24 

	

0.13417 0.13417 0.13417 0.711 	[ 9-23] 25.74 / 24 -13 

	

0.13455 0.13455 0.13455 0.665 t 	[9-23] 26.98 / 24 

	

6.0 32 3 . 64 0.13344 0.13344 0.13344 0.799 	[3-18] 16.82 / 12 10 

	

0.13417 0.13417 0.13417 0.700 	[3-18] 	15.99 / 12 15 

	

0.13455 0.13455 0.13455 0.641 	[ 3-18] 14.63 / 12 -20 

	

6.2 24 . 48 0.13460 0.13460 0.13460 0.586 	[10-23] 42.46 / 22 

	

0.13510 0.13510 0.13510 0.509 	[10-23] 41.09 / 22 10 

0.13530 0.13530 0.13530 0.487 t [10-23] 30.35 / 22 14  

Table A.8: Degenerate nucleon masses for the non-perturhatively improved data 
sets. 
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L 3  T r, I  K2 K3 arnA Fit X 2 /d.o.f. 

6.0 	163 	48 0.13700 0.13700 0.13810 0.873 [8-23] 24.87 / 26 

0.13700 0.13700 0.13856 0.882 t [8-23] 33.70 / 26 

0.13700 0.13810 0.13810 0.853 [8-23] 29.14 / 26 -18 

0.13700 0.13810 0.13856 0.845 t [ 8-23] 34.77 / 26 17 

0.13700 0.13856 0.13856 0.832 [8-23] 32.84 / 26 -17 

0.13810 0.13810 0.13856 0.810 [8-23] 36.09 / 26 -20 

0.13810 0.13856 0.13856 0.787 [8-23] 33.95 / 26 19 

6.2 	16 	. 48 0.13640 0.13640 0.13710 0.656 [11-23] 13.69 / 20 

0.13640 0.13640 0.13745 0.652 [10-23] 31.97 / 22 

0.13640 0.13710 0.13710 0.642 [10-23] 26.04 / 22 

0.13640 0.13710 0.13745 0.627 [10-23] 29.50 / 22 

0.13640 0.13745 0.13745 0.619 +11  [10-23] 29.43 / 22 

0.13710 0.13710 0.13745 0.602 10 [10-23] 27.46 / 22 

0.13710 0.13745 0.13745 0.593 t [10-23] 29.06 / 22 

Table A.9: Non-degenerate delta masses for the tadpole improved data sets. 
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L 3  T K, K2 Ic3 arnA Fit X 2 /d.o.f. 

6.0 	16 	48 0.13344 0.13344 0.13417 0.894 [9-23] 28.91 / 24 12 

0.13344 0.13344 0.13455 0.890 [9-23] 32.61 / 24 -12 

0.13344 0.13417 0.13417 0.872 -13 [9-23] 25.97 / 24 

0.13344 0.13417 0.13455 0.871 t [9-23] 31.06 / 24 

0.13344 0.13455 0.13455 0.860 i!i  [9-23] 27.57 / 24 

0.13417 0.13417 0.13455 0.845 [9-23] 29.17 / 24 -20 

0.13417 0.13455 0.13455 0.837 -27 [9-23] 27.81 / 24 

6.0 	32 	64 0.13344 0.13344 0.13417 0.873 [2-16] 18.33 / 11 -14 

0.13344 0.13344 0.13455 0.859 t [2-16] 18.62 / 11 

0.13344 0.13417 0.13417 0.845 [ 2-161 19.13 / 11 -14 

0.13344 0.13417 0.13455 0.832 [2-16] 19.32 / 11 13 

0.13344 0.13455 0.13455 0.820 -13 [2-16] 19.42 / 11 

0.13417 0.13417 0.13455 0.805 t [ 2-16] 20.43 / 11 

0.13417 0.13455 0.13455 0.793 [ 2-16] 20.93 / 11 14 

6.2 	24 	. 48 0.13460 0.13460 0.13510 0.656 t [10-23] 32.08 / 22 

0.13460 0.13460 0.13530 0.648 [10-23] 34.17 / 22 

0.13460 0.13510 0.13510 0.638 [10-23] 29.22 / 22 

0.13460 0.13510 0.13530 0.630 [10-23] 30.35 / 22 

0.13460 0.13530 0.13530 0.623 [10-23] 29.17 / 22 

0.13510 0.13510 0.13530 0.611 i]  [10-23] 28.84 / 22 

0.13510 0.13530 0.13530 0.606 -11 [10-23] 29.74 / 22 

Table A.10: Non-degenerate delta masses for the non-perturbatively improved 
data sets. 
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13 	V . T r, , K2 Ic3 arar Fit X 2 /d.o.f. 

6.0 	16 3 	48 0.13700 0.13700 0.13810 0.777 t [10-23] 33.07 / 22 

0.13700 0.13700 0.13856 0.761 +12  [10-23] 35.36 / 22 

0.13700 0.13810 0.13810 0.722 [10-23] 34.31 / 22 

0.13700 0.13810 0.13856 0.713 ii
+1 [10-23] 28.68 / 22 

0.13700 0.13856 0.13856 0.678 12 [10-23] 30.82 / 22 

0.13810 0.13700 0.13700 0.766 [10-23] 24.29 / 22 

0.13810 0.13700 0.13810 0.733 +14  [10-23] 24.95 / 22 

0.13810 0.13700 0.13856 0.706 t [10-20] 30.48 / 16 

0.13810 0.13810 0.13856 0.659 13  [10-23] 32.66 / 22 

0.13810 0.13856 0.13856 0.634 -19 [10-23] 27.15 / 22 

0.13856 0.13700 0.13700 0.741 +13  [10-23] 26.87 / 22 

0.13856 0.13700 0.13810 0.698 +17  [10-23] 27.18 / 22 

0.13856 0.13700 0.13856 0.697 [10-23] 28.44 / 22 

0.13856 0.13810 0.13810 0.654 -11 [10-23] 25.59 / 22 

0.13856 0.13810 0.13856 0.642 [10-23] 27.54 / 22 

6.2 	24 3 .48 0.13640 0.13640 0.13710 0.576 [11-23] 34.85 / 20 

0.13640 0.13640 0.13745 0.554 [12-23] 28.30 / 18 

0.13640 0.13710 0.13710 0.539 [13-23] 32.50 / 16 

0.13640 0.13710 0.13745 0.526 [13-23] 29.71 / 16 

0.13640 0.13745 0.13745 0.504 [13-23] 34.91 / 16 13 

0.13710 0.13640 0.13640 0.563 [12-23] 30.13 / 18 

0.13710 0.13640 0.13710 0.539 [12-23] 41.45 / 18 

0.13710 0.13640 0.13745 0.515 t [13-23] 31.06 / 18 

0.13710 0.13710 0.13745 0.494 11 [13-23] 35.07 / 16 

0.13710 0.13745 0.13745 0.463 -24 [14-23] 26.09 / 14 

0.13745 0.13640 0.13640 0.540 [12-23] 31.09 / 18 

0.13745 0.13640 0.13710 0.510 [13-23] 33.24 / 16 

0.13745 0.13640 0.13745 0.497 +15  [13-23] 32.69 / 16 

0.13745 0.13710 0.13710 0.470 19 [14-23] 36.98 / 16 

0.13745 0.13710 0.13745 0.455 [14-23] 32.15 / 14 -22  

Table A.11: Non-degenerate sigma masses for the tadpole improved data sets. 



Appendix A. Fitted lattice masses for the quenched simulations 	196 

/' 	L 3 . T r, I  K2 K3 arnE Fit X2 /d.o.f. 

6.0 	16 3 . 48 0.13344 0.13344 0.13417 0.780 +10  [9-23] 40.18 / 24 

0.13344 0.13344 0.13455 0.766 +11  [9-23] 41.16 / 24 

0.13344 0.13417 0.13417 0.743 [9-23] 41.76 / 24 

0.13344 0.13417 0.13455 0.735 -10 [9-23] 38.36 / 24 

0.13344 0.13455 0.13455 0.708 [9-23] 40.86 / 24 -14 

0.13417 0.13344 0.13344 0.771 [ 9-23] 31.74 / 24 

0.13417 0.13344 0.13417 0.745 II
+1 [9-23] 33.32 / 24 

0.13417 0.13344 0.13455 0.728 -10 [9-23] 42.71 / 24 

0.13417 0.13417 0.13455 0.697 [ 9-23] 40.45 / 24 -13 

0.13417 0.13455 0.13455 0.677 [ 9-23] 37.07 / 24 -17 

0.13455 0.13344 0.13344 0.750 [9-23] 33.71 / 24 

0.13455 0.13344 0.13417 0.719 -10 [9-23] 35.97 / 24 

0.13455 0.13344 0.13455 0.717 [9-23] 38.68 / 24 -12 

0.13455 0.13417 0.13417 0.689 [9-23] 35.86 / 24 13 

0.13455 0.13417 0.13455 0.679 [9-23] 39.77 / 24 -15 

6.0 	32 3 . 64 0.13344 0.13344 0.13417 0.769 [ 3-18] 16.59 / 12 

0.13344 0.13344 0.13455 0.755 [ 3-18] 16.76 / 12 12 

0.13344 0.13417 0.13417 0.732 [ 3-18] 16.71 / 12 13 

0.13344 0.13417 0.13455 0.726 [ 3-18] 16.11 / 12 13 

0.13344 0.13455 0.13455 0.695 [3-18] 17.47 / 12 -16 

0.13417 0.13344 0.13344 0.764 t [3-18] 17.12 / 12 

0.13417 0.13344 0.13417 0.740 [ 3-181 16.11 / 12 12 

0.13417 0.13344 0.13455 0.716 [3-18] 16.71 / 12 

0.13417 0.13417 0.13455 0.684 [ 3-18] 15.62 / 12 -16 

0.13417 0.13455 0.13455 0.659 [ 3-18] 15.91 / 12 19 

0.13455 0.13344 0.13344 0.745 [3-18] 18.19 / 12 

0.13455 0.13344 0.13417 0.712 [3-18] 17.62 / 12 14 

0.13455 0.13344 0.13455 0.711 [ 3-18] 16.10 / 12 

0.13455 0.13417 0.13417 0.678 [3-18] 16.55 / 12 -16 

0.13455 0.13417 0.13455 0.666 [3-18] 14.94 / 12 -18 

Table A.12: Non-degenerate sigma masses for the non-perturbatively improved 
data sets. 
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/3 	L 3  . T 	r, I 	 It2 	 Ft3 	 amE 	Fit 	X2 /d.o.f. 

	

6.2 24 3 .48 0.13460 0.13460 0.13510 0.555 t 	[12-23] 29.96 / 18 

	

0.13460 0.13460 0.13530 0.547 t 	[12-23] 30.38 / 18 

0.13460 0.13510 0.13510 0.528 t [13-23] 32.65 / 16 10 

	

0.13460 0.13510 0.13530 0.522 	[13-23] 31.14 / 16 

	

0.13460 0.13530 0.13530 0.513 	[13-23] 33.49 / 16 12 

	

0.13510 0.13460 0.13460 0.545 	[13-23] 31.02 / 16 

	

0.13510 0.13460 0.13510 0.525 	[13-23] 35.60 / 16 

	

0.13510 0.13460 0.13530 0.514 t 	[13-23] 32.29 / 16 

	

0.13510 0.13510 0.13530 0.500 	[13-23] 34.46 / 16 11 

0.13510 0.13530 0.13530 0.497 II[13-23] 33.27 / 16 11 

0.13530 0.13460 0.13460 0.530 t [13-23] 31.30 / 16 

	

0.13530 0.13460 0.13510 0.509 	[13-23] 34.99 / 16 11 

	

0.13530 0.13460 0.13530 0.503 	[13-23] 34.51 / 16 

0.13530 0.13510 0.13510 0.493 t [13-23] 38.57 / 16 12 

	

0.13530 0.13510 0.13530 0.487 	[13-23] 35.94 / 16 13 

Table A.13: Non-degenerate sigma masses for the non-perturbatively improved 
data sets. 
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3 	L 3  . T n i  K2 1c3 aMA Fit X2 /d.o.f. 

6.0 	16 	. 48 0.13700 0.13700 0.13810 0.771 +11  [10-23] 26.43 / 22 

0.13700 0.13700 0.13856 0.749 +13  [10-23] 29.00 / 22 

0.13700 0.13810 0.13810 0.732 [10-23] 28.57 / 22 

0.13700 0.13810 0.13856 0.703 [10-23] 31.14 / 22 

0.13700 0.13856 0.13856 0.697 +15  [10-23] 30.32 / 22 

0.13810 0.13700 0.13700 0.778 [10-23] 32.41 / 22 

0.13810 0.13700 0.13810 0.718 ii
+1 [10-23] 36.92 / 22 

0.13810 0.13700 0.13756 0.707 t [10-23] 28.00 / 22 

0.13810 0.13810 0.13856 0.659 [10-23] 27.49 / 22 -12 

0.13810 0.13856 0.13856 0.643 [10-23] 27.63 / 22 

0.13856 0.13700 0.13700 0.763 [10-23] 35.09 / 22 

0.13856 0.13700 0.13810 0.710 +16  [10-23] 35.05 / 22 

0.13856 0.13700 0.13856 0.672 [10-23] 35.56 / 22 -12 

0.13856 0.13810 0.13810 0.655 [10-23] 31.43 / 22 12 

0.13856 0.13810 0.13856 0.626 [10-23] 28.39 / 22 

6.2 	24 3 .48 0.13640 0.13640 0.13710 0.568 [13-23] 28.45 / 16 -13 

0.13640 0.13640 0.13745 0.545 [13-23] 30.52 / 16 

0.13640 0.13710 0.13710 0.535 [13-23] 34.43 / 16 

0.13640 0.13710 0.13745 0.510 [13-23] 32.27 / 16 

0.13640 0.13745 0.13745 0.491 [13-23] 29.70 / 16 

0.13710 0.13640 0.13640 0.571 [13-23] 25.83 / 16 

0.13710 0.13640 0.13710 0.532 [13-23] 32.33 / 16 

0.13710 0.13640 0.13745 0.518 [13-23] 37.35 / 16 

0.13710 0.13710 0.13745 0.491 [13-23] 40.78 / 16 

0.13710 0.13745 0.13745 0.457 t 2  [14-23] 31.06 / 14 

0.13745 0.13640 0.13640 0.558 t [13-23] 25.76 / 16 
0.13745 0.13640 0.13710 0.522 +10  [13-23] 29.20 / 16 

0.13745 0.13640 0.13745 0.492 II [13-23] 31.84 / 16 15 

0.13745 0.13710 0.13710 0.492 t [13-23] 32.65 / 16 

0.13745 0.13710 0.13745 0.451 [14-23] 22.15 / 14 -25 

Table A.14: Non-degenerate lambda masses for the tadpole improved data sets. 
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0 	L 3  . T r. , K2 K3 amA Fit X 2 /d.o.f. 

6.0 	16 3 . 48 0.13344 0.13344 0.13417 0.775 ±11 
[ 9-23] 34.81 / 24 

0.13344 0.13344 0.13455 0.757 [9-23] 36.88 / 24 

0.13344 0.13417 0.13417 0.744 [9-23] 36.25 / 24 

0.13344 0.13417 0.13455 0.722 -10 [9-23] 38.22 / 24 

0.13344 0.13455 0.13455 0.713 II+1[ 
 -11 9-23] 36.58 / 24 

0.13417 0.13344 0.13344 0.781 [ 9-23] 38.65 / 24 

0.13417 0.13344 0.13417 0.739 +12  [9-23] 42.45 / 24 

0.13417 0.13344 0.13455 0.727 +14 
[ 9-23] 38.60 / 24 

0.13417 0.13417 0.13455 0.692 [ 9-231 38.47 / 24 -12 

0.13417 0.13455 0.13455 0.679 [9-23] 38.06 / 24 -15 

0.13455 0.13344 0.13344 0.769 t' [9-23] 40.67 / 24 

0.13455 0.13344 0.13417 0.734 -10 [ 9-23] 40.73 / 24 

0.13455 0.13344 0.13455 0.702 [ 9-23] 40.76 / 24 -14 

0.13455 0.13417 0.13417 0.698 [9-23] 40.07 / 24 -13 

0.13455 0.13417 0.13455 0.674 [9-23] 35.69 / 24 -19 

6.0 	32 3 . 64 0.13344 0.13344 0.13417 0.765 [ 3-18] 16.96 / 12 

0.13344 0.13344 0.13455 0.748 [ 3-18] 17.76 / 12 13 

0.13344 0.13417 0.13417 0.737 [ 3-18] 16.31 / 12 12 

0.13344 0.13417 0.13455 0.711 [3-18] 17.61 / 12 15 

0.13344 0.13455 0.13455 0.704 [3-18] 16.35 / 12 15 

0.13417 0.13344 0.13344 0.772 [ 3-18] 16.37 / 12 

0.13417 0.13344 0.13417 0.730 [ 3-18] 16.92 / 12 13 

0.13417 0.13344 0.13455 0.719 [3-18] 16.87 / 12 14 

0.13417 0.13417 0.13455 0.680 [3-18] 16.22 / 12 -16 

0.13417 0.13455 0.13455 0.664 [ 3-18] 15.21 / 12 -18 

0.13455 0.13344 0.13344 0.759 [ 3-181 16.15 / 12 

0.13455 0.13344 0.13417 0.724 [ 3-181 15.95 / 12 14 

0.13455 0.13344 0.13455 0.691 [ 3-181 18.26 / 12 -16 

0.13455 0.13417 0.13417 0.684 II [4-18] 14.59 / 11 17 

0.13455 0.13417 0.13455 0.657 [ 3-181 16.34 / 12 

Table A.15: Non-degenerate lambda masses for the non-perturhatively improved 
data sets. 
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V T 	r, 1 	 K2 	 K3 	 amA 	Fit 	X 2 /d.o.f. 

	

6.2 24 48 0.13460 0.13460 0.13510 0.548 	[13-23] 31.68 / 16 

	

0.13460 0.13460 0.13530 0.534 	[13-23] 32.28 / 16 

	

0.13460 0.13510 0.13510 0.524 	[13-23] 34.93 / 16 

	

0.13460 0.13510 0.13530 0.510 	[13-23] 34.48 / 16 11 

0.13460 0.13530 0.13530 0.502 II[13-23] 33.53 / 16 12 

	

0.13510 0.13460 0.13460 0.552 	[13-23] 27.59 / 16 

	

0.13510 0.13460 0.13510 0.522 	[13-23] 31.55 / 16 10 

	

0.13510 0.13460 0.13530 0.516 	[13-23] 37.31 / 16 10 

	

0.13510 0.13510 0.13530 0.497 	[13-23] 39.22 / 16 11 

	

0.13510 0.13530 0.13530 0.474 I2 	[14-23] 34.28 / 14 

0.13530 0.13460 0.13460 0.543 +10  [13-23] 27.91 / 16 

	

0.13530 0.13460 0.13510 0.516 	[13-23] 30.42 / 16 10 

	

0.13530 0.13460 0.13530 0.507 	[13-23] 31.56 / 16 14 

	

0.13530 0.13510 0.13510 0.497 t 	[13-23] 32.42 / 16 

	

0.13530 0.13510 0.13530 0.497 	[13-23] 31.10 / 16 15 

Table A.16: Non-degenerate lambda masses for the non-perturbatively improved 
data sets. 
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13 	L 3  T r, I  K2 ampcAc Fit X  2 /d.o.f. 

5.7 	16 	32 0.13843 0.13843 0.10935 II [ 9-14] 1.93 / 5 28 

0.14077 0.13843 0.08108 t [ 9-14] 1.46 / 5 

0.14077 0.14077 0.05430 [ 9-14] 1.02 / 5 -26 

6.0 	16 	•48 0.13700 0.13700 0.05392 [13-22] 11.12 / 9 

0.13810 0.13700 0.04007 I [13-22] 11.43 / 9 

0.13856 0.13700 0.03421 t [13-22] 10.35 / 9 

0.13810 0.13810 0.02647 t [13-22] 10.89 / 9 

0.13856 0.13810 0.02070 t [13-22] 11.40 / 9 

0.13856 0.13856 0.01498 t [13-22] 12.45 / 9 

6.2 	24 	48 0.13640 0.13640 0.04176 [ 9-22] 9.67 / 13 

0.13710 0.13640 0.03201 [ 9-22] 8.57 / 13 

0.13745 0.13640 0.02710 ' [ 9-22] 7.89 / 13 

0.13710 0.13710 0.02234 [ 9-22] 8.05 / 13 

0.13745 0.13710 0.01747 [ 9-22] 7.58 / 13 

0.13745 0.13745 0.01262 [ 9-22] 7.25 / 13 

Table A.17: The unrenormalised PCAC masses for the tadpole improved data 
sets. 
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9 	T r, I  K2 arnpcAc Fit X2/d.o.f. 	1 
6.0 	16 	48 0.13344 0.13344 0.04801 [12-22] 15.54 / 10 

0.13417 0.13344 0.03803 t 10 [12-22] 16.49 / 10 

0.13455 0.13344 0.03275 10 II+ 1[12-22] 16.74 / 10 

0.13417 0.13417 0.02817 [12-22] 16.04 / 10 

0.13455 0.13417 0.02292 [12-22] 16.68 / 10 

0.13455 0.13455 0.01766 -11 [12-22] 16.06 / 10 

6.0 	32 	64 0.13344 0.13344 0.04828 [19-30] 10.18 / 11 14 

0.13417 0.13344 0.03832 [19-30] 11.34 / 11 15 

0.13455 0.13344 0.03304 t 15 [19-30] 13.36 / 11 

0.13417 0.13417 0.02845 t [19-30] 12.93 / 11 15 

0.13455 0.13417 0.02321 [19-30] 14.93 / 11 16 

0.13455 0.13455 0.01801 +12  -17 [19-30] 17.75 / 11 

6.2 	24 	48 0.13460 0.13460 0.03526 [ 9-22] 8.35 / 13 

0.13510 0.13460 0.02798 i [  9-22] 7.47 / 13 

0.13530 0.13460 0.02505 [ 9-22] 7.28 / 13 

0.13510 0.13510 0.02075 [ 9-22] 7.96 / 13 

0.13530 0.13510 0.01783 [ 9-22] 8.05 / 13 

0.13530 0.13530 0.01491 [ 9-221 8.34 / 13 

Table A.18: The unrenormalised PCAC masses for the nori-perturbatively im-
proved data sets. 



Appendix B 

Light hadron spectrum results for the quenched 

simulations 

This appendix contains the results for the normal and strange quark masses 

obtained for the quenched simulations discussed in chapter 3. In addition, the 

lattice values of the light hadron spectrum at the physical quark masses are 

reported for each data set. The results are quoted in every case for each of the 

four choices of quantity used to set the scale in the determination of the physical 

values of the quark masses: the p mass, the K*  mass, the nucleon mass and ro  

The uppermost table on each page refers to the tadpole improved data sets, while 

the lower tables correspond to the non-perturbatively improved data sets. 
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0 	L3  T Q m(1/a) MeV] 

5.7 	16 	32 m 0.00297 0.14306 ± +23 
-24 

rnK* 0.00274 0.14307 ± ±18 
-21 

mN 0.00387 0.14302 ± 5.65 +30  
-31 

r' 0.00288 + 0.14306 + 4.87 + 2 
-4 

6.0 	16 3 .48 rn 0.00165 + 0.13914 + 4.36 +20  
-18 

rnK* 0.00154 0.13915 + 4.22 ±15 
-13 

InN 0.00211 0.13913 4.94 +49  
-37 

r 0.00138 + 0.13916 + 3.99 + 3 
-3 

6.2 	24 3 . 48 rn 0.00123 + 0.13785 + 4.18 +28  
-16 

rnK* 0.00114 + 0.13785 + 4.02 +22  
-14 

rrlN 0.00140 0.13784 + 4.46 +27  
-39 

r 0.00095 + 0.13786 + 3.67 + 
-4 

/9 	L 3 	T Q mMS(1/ a ) MeV 

6.0 	16 3 .48 rn 0.00163 + 0.13519 + 2 
1 

y +22 
-15 

rn. 0.00153 ± 0.13520 + 2 
1 1 u 

+17  
-13 

MN 0.00221 - 0.13517 + 2 
I . 4.97 +48  

47 

0.00130 0.13520 3.97 t 
6.0 	32 3 .64 rn 0.00170 + 0.13517 + 1 

I 
±22 
-21 

rnK* 0.00159 + 0.13518 + 4.23 ±17
-18 

mN 0.00210 0.13516 + 4.89 +42  
-51 

0.00130 0.13519 3.82 + 

6.2 	24 	. 48 rn 0.00121 + 9  0.13577 + 2 4.13 +32 
-20 

rnK* 0.00113 0.13577 + 2 
U. 

±21 

mN 0.00153 t 0.13576 + 2 
I 4.66 +27  

43 

r 1 000093 t 0.13578 t 3.63 + 

Table B.1: Lattice values for the improved normal quark mass, with the corre-
sponding ic value, for the quenched data sets. The quark mass has been evaluated 
in the M renormalisation scheme at 1/a. The scale is set by the physical quantity 

Q. The error in m0 has not been taken into account. 



Appendix B. Light hadron spectrum results for the quenched simulations 205 

"K - input" "q - input" 
. T Q 

5.7 	16 3 	32 rn 0.0741 0.14004 0.0938 0.13916 +28  
-27 

mK. 0.0685 0.14029 h1 
 -10 0.0795 +38  

-38 0.13980 ±17 
-18 

rnT 0.0966 44  0.13904 +22  0.1468 +94  0.13670 +56  
-46 

0.0719 j  0.14013 + 2 
-2 0.0884 j 0.13941 +10  

-10 

6.0 	16 3 
. 48 rn,, 0.0413 0.13758 + 6 

-6 
0.0510  +38 

 0.13719 ±14 
-14 

mK* 0.0385 0.13769 + 
5 0.0441 0.13747 + 8 

-9 

mN 0.0526 0.13712 +13  
-20 0.0766 +105  

-68 0.13614 +29  
-43 

r' 0.0345 + 0.13785 + 
1 -0 0.0338 0.13788 + 

-5 

6.2 	24 3 
. 48 mn , 0.0306 0.13672 + 

- 7 0.0381 +42  
-14 0.13643 + 6 

-16 

rnK* 0.0284 +14  0.13680 + 0.0326 +26  0.13664 + 
-10 

InN 0.0350 jj+10.13655 +12  
- 6 . 

0.0485 +36  
-69 0.13602 +27  

-14 

r(1 0.0237 0.13699 + 0.0200 +18  
-20 0.13713 + 8 

- 7 

"K - input" - input" 

L 3 T Q 
6.0 	163.  48 rn P 0.0407 0.13374 + 

-8 0.0484 0.13345 + 
-17 

mrlK* 0.0383 0.13383 + 
-6 0.0427 +28 

 0.13366 + 
-10 

1 N 0.0552 0.13318 +19  
-18 . 

00803 + 
-102 0.13221 +40  

-38 

0.0324 + 0.13405 + 0.0275 0.13423 + 
-7 

6.0 	32 	64 rn 0.0426 0.13365 + 
-8 0.0521 0.13329 +13  

-18 

rflk* 0.0397 0.13376 + 0.0448 0.13357 + 
-12 

rrtN 0.0525 0.13327 +19 
 -14 0.0754 + 89 

-1 19 0.13239 +45 
-35 

0.0325 0.13403 0.0255 +19  
-28 0.13429 +11  

- 7 

6.2 	24 	. 48 rrt 0.0303 0.13468 + 
-8 0 0371 0.13443 + 

-19 

rnK* 0.0283 +15  0.13476 + 
5 0.0320 0.13462 + 

-11 

mN 0.0382 0.13438 +13  0.0560 +31  0.13370 +33 

0.0233 0.13495 0.0180 0.13515 + 9 
-7 

Table B.2: Lattice values for the strange quark mass, with the corresponding ic 
value, for the quenched data sets using the "K - input" and " - input" methods. 
The scale is set by the physical quantity Q. The error in r0 has not been taken 
into account. 
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rn(l/a) MeV 
f3 L 3  T Q "K - input" " 	 - input" 

5.7 16 3 . 32 rn 123 + 156 +11 
-11 

rn1<. 119 	-   - ; 138 -7 
mN 141 + 214 +15  

-18 

121 149 -4 
6.0 16 3 .48 mn p 109 + 

-4 134 + I  -9 

mK* 105 	3 121 

mN 123 	±12 179 +25  
-18 

ro  ioot 98 -5 
6.2 24 48 rn 104 + 130 +14  

-6 
mflK* 100 t 115 -4 
mN 111 	+ 

-10 154 ±13 
-22 

92 77+7 
-8 

mn(1/a) MeV 

. T Q "K - input" - input" 

6.0 16 3 .48 rn,, 107 t 127 t' 
rnK* 103 + 4 

-3 115 + 8 
-4 

mN 124 +12 -12 181 +23 
-24 

ro  95 t 81+6 -6 
6.0 32 3 . 64 mn,., 109 + 5 

-5 134 +12  
-9 

rnK* 106 + " 

-4 119 + 8 
-7 

mN 121 	+11 
-13 174 +22 

-28 
-1 

To  96 75±6 
-8 

6.2 24 48 rn 104 ± 8 
-5 127 ±18 

-9 

rnK* 100 + 6 
-4 113 +11  

-6 
mflN 116 	+ ' 

-11 170 +12  
-26 

- 1 r0 +1 
91 70±8 

-9 

Table B.3: The strange quark mass has been evaluated in the M renormalisation 
scheme at 1/a for the quenched data sets using the "K - input" and " - input" 
methods. The scale is set by the physical quantity Q. The error in r 0  has not 
been taken into account. 



Appendix B. Light hadron spectrum results for the quenched simulations 207 

J 	L 3 T Q m rno rn1< 	1 
5.7 	16 	32 rn 0.676 0.849 +13  

18 0.765 +14  
-20 

mK. 0.676 +13  0.833 0.754 +13  

MN 0.683 +15  
-24 0.902 t 0.792 +11  17 

r1 0.676 0.842 0.759 -13 

6.0 	16 	. 48 rn 0.398 + 0.501 0.448 + 

rn. 0.396 ± 9  0.493 + 0.446 + S 

mN 0.397 + 9  0.531 0.464 + 

0.395 0.483 j  0.439 t 
6.2 	24 3 .48 rn,, 0.301 i 0.379 t 0.340 t 

rnK* 0.301 + 9  0.373 t 0.337 + 

rnJ..J 0.302 + 9  0.390 + 0.346 + 

0.300 0.361 0.331 t 

3 	L3  . T Q rn m1, rnK* 

6.0 	16 3 • 48 rn 0.407 0.518 + 0.463 +10  
-8 

mK* 0.408 0.511 + 0.459 + 
-6 

mN 0.410 0.558 0.484 + 
-9 

0.408 0.495 + 0.451 + 
-8 

6.0 	32 3 .64 rn 0.416 +10  0.525 +10  0.472 +10  
-8 

TflK . 0.419 0.518 0.466 ±10 
-8 

rnJ\ 0.420 +11  0.551 0.486 + 
9 - 

r 0.418 t 1  0.499 0.458 + 8 
-7 

6.2 	24 	. 48 m 0.303 +10  0.383 -- 0.345 + 8 
-8 

mK* 0.307 t 0.378 0.340 + 
-5 

mN 0.308 t 0.403 t 0.356 + 
-8 

r(  0.306 ii1  0.364 t 0.335 + 
-7 

Table B.4: Lattice values of the mesons at the physical quark masses obtained 
using Q to set the scale for the quenched data sets. The ir and K meson can not 
he determined since they are used to set the quark masses. Note that the p and 

mass cannot be predicted in the case where they set the scale. 
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/3 	L 3  . T Q MA mE. rn. mn 

5.7 	16 	. 32 Tn p 1123 +41  
-32 1.215 -27 . 1.307 +30  

-23 1.399 ±29 
-20 

rnk* 1122 . 
42  

-32 1.207 35  
-28 1.292 +30  

-23 1.378 +28  
-20 

mN 1126 41  
-32 . 1.247 -25 1.367 1.487 +30  

-20 

T0 1  1122 ±41  
-32 1.212 -25 1.302 ±27  

-19 1.391 +23  
-13 

6.0 	16 3 .48 rn p . 0 734 ±20  
-29 0 777 ±15  

-23 0.820 0.864 + 
-14 

0.733 +20  
-29 0.774 +15  

-23 . 0.814 +12  
-18 0.854 + 

-13 

mN . 0 .735 +20  
-28 0.790 t 0.845 -17 0901 ±17 

-16 

ro 0.733 20  
-29 . 0.769 +16  

-24 0.805 t 0.841 ± 8 
-14 

6.2 	24 	. 48 mn 0.539 0.578 0.616 ±11  0.655 ±10 
-7 

rnK. 0.539 0.574 +12  0.610 0.646 + 
-6 

mN 0.540 +14 
 

+10 0.628 0.672 + 8 
-13 

TO '  0.538 0.568 +12  0.598 ± 0.628 + 
-6 

/3 	L 3 	T Q rna mE* rn. mç 

6.0 	16 	48 Tfl P 0 768 ±48  
-35 0 809 -26 0 850 +22  

-18 0.891 +13 
-13 

rrl K* . 0 767 ±48  
35 . 0 806 -28 0.845 0.884 +13  

-14 

mN . 0 769 35 0.826 0.882 ±16  
19 . 0.938 +18  

-26 

To ' 
 0.767 ±48  

35 0.799 +36  
-30 0 832 ±26  

-22 0 865 ±16 
-17 

6.0 	32 3 . 64 mn p . 0 711 ±26  
-18 . 0 766 +21  

-15 0 821 ±18  
-14 0.876 -15 

mfl K* . 0 711 +26  
-18 . 0.762 +21  

-15 0.813 ±18  
-14 0 	64 ±18 

-15 

raN 0.713 +26 
-18 0.780 t 0 848 ±20  

-22 . 0.916 ±21 
-29 

r0  0.709 +26  
-18 . 0.751 +22  

-15 0.793 ±18  
-14 0.835 t 15 

6.2 	24 3 . 48 rn,, 0.547 t 0.586 t 0.625 +13  0.664 +11  

rnK . 0.547 0.583 0.619 ±13  0.656 ±10 

MN 0.548 0.597 0.646 1J 0 695 ± 
-17 

To '  0.546 -16  576 ±18  
-13 0.605 ±13  

-10 0.635 + 

Table B.5: Lattice values of the decuplet baryons at the physical quark masses 
obtained using Q to set the scale for the quenched data sets. 
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/1' 	L 3 	T Q mJ MA mE rn 

5.7 	1632 rn P 0936 +21  
-23 1.044 1.044 - 1.152 ±19 

-17 

rn< 0.935 1.035 1.035 1.134 +17  
-17 

mN 0 94fl '-' 
±22 
-24 

1.081  ±24 
-23 . 

1.081  +24 
-23 1.221 +26  

-24 

09 -"-' 
+21  
-23 1.040 1.040 1.145 +15  

-13 

6.0 	16 3 
. 48 rn 0.545 -16 0.610 +20  

-13 0.612 0.679 +16  
-10 

rnj< 0.544 +25 
 0.605 0.607 0.669 +17  

-9 

mN U 
+26  
-16 0.631 0.632 0.718 +28  

-18 

m 0.543 0.597 t 0.599 t 0.655 +16  
-10 

6.2 	24 	48 in P 0 	91 "- + 8 
-16 0.447 0.447 0.502 + 8 

-8 

rnK* 0.39 1 + 8 
-16 0.442 t 0.442 -12  0.494 + 

-8 

mnj\T 0.392 -17  0.456 -17  0.456 -17  0.519 + 
-18 

r 90 0.3 16 
+ 8 0.433 -13 0.433 t 1  0.476 + 5 

-9 

3 	L 3  T Q mN mA mE rn 

6.0 	16 	48 mn 0.576 0.638 0.640 0.704 +17  
-11 

mK* "-'' 
23 

-25 0.633 0.636 0.696 +16  
-13 

mn .0 0 	78 +24  
-25 0.664 +24  

-25 . 
0.666 +24  

-24 0.754 +24  
-24 

m 0"-'i 4 +23  
-25 . 

0.622 +19 
 -20 . 0. 625 '-' 

+19  
-20 0.676 +16  

-14 

6.0 	32 3 
. 64 mn 0.560 +19 

 -27 . 
0.629 +15 

 -20 0.631 +16  
-20 0.702 +14  

-15 

rnjK* 0 	60 +19  
-27 0.623 +15 

 0.626 0.692 +13  
-16 

mN 0 " +20  
-28 . 

0.648 +19 
 -29 u 0.650 +19  

-28 0.737 +20  
-30 

v 0.558 t 0.609 t 0.612 0.666 +12  
-17 

6.2 	24 3 
. 48 rrtP 0 412 + 6 

-19 0.447 t 0.463  t 1  0.513 + 
-9 

172 K 0.412 t 1 0.458 t 0.459 0.506 ± 
-10 

inN 0.414 -20  0.476 -20  0.478 t 0.541 + 6 
-19 

0.411  + 6 
-19 0.448 t 1  0.450 t 1  0.488 + 

-11 

Table B.6: Lattice values of the octet baryons at the physical quark masses 
obtained using Q to set the scale for the quenched data sets. Note that the 
nucleon mass cannot be predicted when Q = mj. 



Appendix C 

Fitted lattice masses for the dynamical 

simulations 

This appendix contains the results for the fitted lattice masses for the dynamical 

fermion simulations considered in chapter 4. The masses in lattice units and in 

units of r0  have been determined by considering different types of fit as described 

in section 4.5. The notation FF or FL labels a single cosFi (exponential) fit to the 

correspondingly fuzzed meson (baryon) correlator. The label LL,FF or LL,FL 

corresponds to a simultaneous double cosh (exponential) fit to those pair of cor-

relators for the mesons (haryons). Finally the notation LL,FL,FF corresponds to 

a factorisinig fit to the ground and excited states to the three correlator combi-

nations, LL, FL and FF. The final fits selected for the subsequent analysis are 

listed in Table C.1 and are highlighted in bold in the results tables. Mass results 

obtained from the matched quenched simulation at j@ = 5.93 are included in this 

appendix for comparison. Where N/A appears in the table, an acceptable fit 

could not be obtained. Note that where a type of fit was unstable for all 'vaI 

values, no results are reported. 

13  s't sea  Pseudoscalar Vector Nucleon Delta 

5.2 0.13550 LL,FF LL,FF LL,FF LL,FL 
5.2 0.13500 LL,FF LL,FL FL LL,FL,FF 

5.26 0.13450 LL,FF LL,FL LL,FF FF 
5.29 0.13400 LL,FF LL,FL,FF FL FF 
5.93 Quenched LL,FF LL,FL,FF LL,FL LL,FL 

Table C.1: The final fits types selected for each data set. 

210 
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Fuzzing 1 va1 romps amps Fit X 2 /d.o.f. 

FE 0.13400 2"3 +42  0.470 [10-15] 2.54 / 4 -40 

0.13450 2.036 0.414 j [10-15] 2.72 / 4 

0.13500 1.733 +31 
 + [10-15] 3.31 / 4 

0.13550 1 0.282 [10-15] 4.32 / 4 -30 

FL 0.13400 2.309 0.470 [10-15] 0.65 / 4 

0.13450 2. 036 39  0.414 [10-15] 0.29 / 4 

0.13500 1.731 0.352 [10-15] 0.44 / 4 

0.13550 1.379 0.281 [10-15] 1.17 / 4 

LL,FF 0.13400 2.324 0.473 [ 9-15] 11.86 / 8 

0.13450 2.051 0.417 [ 9-15] 12.21 / 8 

0.13500 1.746 II+30.355 [ 9-15] 11.60 / 8 

0.13550 1.399 +44  0.285 t [ 9-15] 10.30 / 8 -30 

LL,FL 0.13400 2.316 ±42  0.471 [ 9-15] 6.01 / 8 

0.13450 2.041 0.415 [ 9-15] 6.62 / 8 

0.13500 1.751 ±32  0.356 [ 8-15] 10.21 / 10 69 -13 

0.13550 L  1.382 0.281 [ 8-15] 5.21 / 10 45 

LL,FL,FF 0.13400 2.316 +43  0.471 [10-15] 14.27 / 12 -40 

0.13450 2.047 +40  0.416 [10-15] 16.42 / 12 

0.13500 1.747 0.356 [10-15] 16.75 / 12 

0.13550 1.398 0.285 [10-15] 12.05 / 12 -29 

Table C.2: Pseudoscalar masses for 0 = 5.2, 1 sea = 0.13550. 
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Fuzzing Nval rornv amy Fit X 2 /d.o.f. 

FF 0.13400 2.908 + 0.592 [10-15] 3.23 / 4 • -54 

0.13450 2.720 + 58 0.553 + [10-15] 1.78 / 4 • -55 

0.13500 2.548 + 74 0.519 +12  [10-15] 0.66 / 4 -66 • -10 

0.13550 2.425 0.493 [10-15] 0.74 / 4 -19 

FL 0.13400 2.916 + 55 0.593 + [10-15] 4.58 / 4 55 

0.13450 2.725 + 56 0.555 t [10-15] 2.29 / 4 55 

0.13500 2.545 + 65 0.518 [10-15] 1.00 / 4 -64 -10 

0.13550 2 ±116 0.487 [10-15] 1.55 / 4 -88 -16 

LL,FF 0.13400 2.919 + 56 0.594 i [10-15] 7.92 / 6 54 

0.13450 2.736 + 55 0.557 [ 9-15] 9.48 / 8 -60 

0.13500 2.579 + 57 0.525 + 8 
[ 9-15] 7.24 / 8 -67 -10 

0.13550 2.397 0.488 II [ 9-15] 4.27 / 8 - 71 

LL,FL 0.13400 2.915 + 54 0.593 [10-15] 6.09 / 6 -61 

0.13450 2.746 + 60 0.559 [ 9-15] 15.10 / 8 55 

0.13500 2.552 0.519 [ 9-151 4.13 / 8 - 70 

0.13550 2.400 144  0.488 [10-15] 2.26 / 6 -109 -21 

LL,FL,FF 0.13400 2.938 + 56 0.598 i [10-15] 12.89 / 12 53 

0.13450 2.744 ' 0.558 [10-15] 7.94 / 12 - 52 

0.13500 2.558 0.521 [10-15] 5.69 / 12 - 57 

0.13550 2.368 0.482 [10-15] 7.59 / 12 - 75 -13 

Table C.3: Vector masses for /3 = 5.2, sea 0.13550. 
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Fuzzing 'vaI r()rnJ arflN Fit X 2 /d.o.f. 

FF 0.13400 4.47 +11  0 910 +18  [11-15] 3.02 / 3 • -10 -12 

0.13450 4.14 +14 
 [11-15] 1.33 / 3 -13 

0.13500 3.85 +16  0.783 [9-15] 0.10 / 5 -11 

0.13550 • 
59 ±16 0.731 ±29 [10-15] 1.91 / 4 -14 -25 

FL 0.13400 444 +11 
 0.903 ±17 [11-15] 1.33 / 3 -10 

0.13450 4.16 ±13  0.847 [10-15] 1.98 / 4 -12 

0.13500 3.83 ±17  0.779 [11-15] 1.51 / 3 -11 -18 

0.13550 3.55 +15  0.723 [ 8-15] 2.99 / 6 -15 

LL,FF 0.13400 4.53 0.923 [10-15] 7.34 / 6 -12 

0.13450 4.24 13  0.862 [10-15] 7.37 / 6 -10 -15 

0.13500 3.93 +15  0.801 +27  [10-15] 7.04 / 6 -12 • -20 

0.13550 3.65 II
+1 0.743 [10-15] 3.96 / 6 -32 

LL,FL 0.13400 4.45 11 
 0.905 [10-15] 4.81 / 6 -10 -13 

0.13450 4.23 16  0.862 +29  [9-15] 8.06 / 8 -13 • -23 

0.13500 3.94 16  0.802 [ 9-15] 8.02 / 8 -17 -32 

0.13550 3.65 +18 
 0.743 [9-15] 5.76 / 8 -18 • 33 

LL,FL,FF 0.13400 4.59 ±12  0.935 [10-15] 15.49 / 12 -10 -14 

0.13450 4.26 +14  0 867 ±23 [10-15] 17.39 / 12 11 • -18 

0.13500 3.94 15  0.803 ±27 [10-15] 13.92 / 12 -14 • -24 

0.13550 3.70 +12  0.754 +21  [10-15] 6.87 / 12 25 • -50 

Table C.4: Nucleon masses for 0 5.2, 'sea = 0.13550. 
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Fuzzing 'vai rornA amA Fit /d.o.f. 

FF 0.13400 4.87 +12  0.992 [10-15] 5.70 / 4 • -10 -12 

0.13450 4.57 j
+1 0.930 [10-15] 5.25 / 4 -15 

0.13500 4.26 ±13  0.866 +22 
 [10-15] 6.09 / 4 • -13 -23 

0.13550 4.08 ±18  0.831 [ 8-15] 6.64 / 6 • -15 -28 

FL 0.13400 4.92 ±13 1.001 jj [10-15] 5.06 / 4 • -10 

0.13450 4.62 0.939 [10-15] 5.34 / 4 -15 

0.13500 4.40 15 
 0.895 28  [9-15] 7.20 / 5 15 • -27 

0.13550 0.890 [8-15] 7.96 / 6 -27 -53 

LL,FF 0.13400 4.89 +14  0.994 Y [11-15] 6.77 / 4 -10 

0.13450 N/A 

0.13500 4.26 +15  0.866 [10-15] 8.39 / 6 -14 -24 

0.13550 4.11 +16  0.836 +30  [10-15] 8.45 / 6 -24 • 47 

LL,FL 0.13400 4.92 +13  1.002 [10-15] 7.79 / 6 -13 

0.13450 4.62 +12  0.941 t [10-15] 8.00 / 6 -12 

0.13500 4.27 +16  
-13 0.869 -22 [10-15] 9.22 / 6 

0.13550 4.09 +21  0.832 0 [ 9-15] 15.96 / 8 • -24 -46 

LL,FL,FF 0.13400 4.98 +15  1 014 +26  [10-15] 12.88 / 12 -10 • -12 

0.13450 4.68 15  0.952 [10-15] 12.00 / 12 -12 -17 

0.13500 4.26 ±17  0.867 [11-15] 10.53 / 9 -15 -26 

0.13550 3.95 25  0.804 [11-15] 15.90 / 9 29 -56 

Table C.5: Delta masses for 3 = 5.2, ksea = 0.13550. 



Appendix C. Fitted lattice masses for the dynamical simulations 	215 

Fuzzing kval romps amps  Fit X 2 /d.o.f. 

FF 0.13350 2 .588 +46 0.566 t [10-15] 5.04 / 4 -46 

0.13400 2.365 43  0.517 [10-15] 5.63 / 4 

0.13450 2.125 0.464 + [10-15] 6.11 / 4 

0.13500 1.861 ±36  0.407 [10-15] 5.91 / 4 • -35 

FL 0.13350 2 .593 +46 0.567 [11-15] 5.04 / 3 -46 

0.13400 L
' 69 .0 

+42  0.518 jj [11-15] 5.36 / 3 -42 

0.13450 2.129 0.465 [11-15] 5.60 / 3 

0.13500 1.864 36  0.407 [11-15] 5.52 / 3 35 

LL,FF 0.13350 0 	91 h.0 0.566 [11-15] 9.86 / 4 -46 

0.13400 2.366 0.517 [5-15] 23.15 / 16 

0.13450 2.129 +40  0.465 [5-15] 23.94 / 16 -41 

0.13500 1.867 0.408 [5-15] 24.26 / 16 

LL,FL 0.13350 2.580  +48  0.564 [ 6-151 16.17 / 14 -50 

0.13400 2.357  
•U i •U 

+ 2 [7-15] 18.36 / 12 -76 -14 

0.13450 2.099 0.459 [ 6-15] 20.51 / 14 -56 

0.13500 1.855 0 40 u -i6  
+ [ 6-15] 22.93 / 14 

LL,FL,FF 0.13350 2.597  +47  0.568 t [11-15] 17.17 / 9 -46 

0.13400 2.377 V 
.0 

+43 0.519 [11-15] 19.59 / 9 

0.13450 2.140 0.468 [11-15] 21.88 / 9 

0.13500 1.878 0.410 [11-15] 22.01 / 9 

Table C.6: Pseudoscalar masses for / = 5.2, /tsea  = 0.13500. 
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Fuzzing vaI rornv amy Fit X2 /d.O.f. 

FF 0.13350 3.191 59  0.697 + [10-15] 3.05 / 4 • -59 

0.13400 3.017 0.659 t [10-15] 2.93 / 4 • -57 

0.13450 2.839 0.620 [10-15] 2.82 / 4 • -56 

0.13500 2.655 0.580 ± [10-15] 2.57 / 4 

FL 0.13350 3.204 jj
+5 0.700 + [10-15] 3.46 / 4 

0.13400 3.029 +58  0.662 [10-15] 2.85 / 4 -56 

0.13450 2.852 0.623 [10-15] 2.26 / 4 -55 

0.13500 2.670 60  0.584 [10-15] 1.56 / 4 -55 

LL,FF 0.13350 3.200 0.699 [11-15] 7.46 / 4 

0.13400 3.051 0.667 t [9-15] 15.04 / 8 -58 

0.13450 2.880 0.629 [ 9-15] 15.51 / 8 

0.13500 2.696 0.589 + 7 
[ 8-15] 18.17 / 10 -65  -10 

LL,FL 0.13350 3.209 0.701 [10-15] 10.37 / 6 

0.13400 3.037 0.664 [10-15] 8.35 / 6 

0.13450 2.860 56  0.625 [10-15] 7.14 / 6 -55 

0.13500 2.669 62  0.583 ' [10-15] 5.54 / 6 59 

LL,FL,FF 0.13350 3.218 0.703 [ 9-15] 19.39 / 15 

0.13400 3.048 0.666 [ 9-15] 17.84 / 15 

0.13450 2.878 0.629 ' [9-15] 18.97 / 15 

0.13500 2.707 +62  0.592 [ 9-15] 22.38 / 15 54 

Table C.7: Vector masses for 0 = 5.2, 'sea = 0.13500. 
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Fuzzing 'vaI TOTflN arnN Fit X 2 /d.o.f7  

FF 0.13350 5.01 t 1.094 [ 7-15] 22.48 / 7 

0.13400 4.73 1.033 [ 7-15] 22.83 / 7 

0.13450 4.42 +11 
 0.966 +16  [7-15] 19.85 / 7 -10 

0.13500 4.08 0.891 +19  
[ 7-15] 11.25 / 7 

FL 0.13350 4.99 t 1.090 t [ 8-151 6.83 / 6 

0.13400 4.70 1.027 i'  [8-15] 7.50 / 6 

0.13450 4.40 i'i' 0.962 t [8-15] 7.90 / 6 

0.13500 4.10 0.897 [8-15] 7.35 / 6 

LL,FF 0.13350 5.03 1.098 [ 8-15] 47.41 / 10 

0.13400 4.80 +11  1.050 t' [ 7-15] 47.21 / 12 

0.13450 0.969 t [ 7-15] 33.24 / 12 -12 

0.13500 4.09 13  0.895 [ 7-151 21.26 / 12 -11 -17 

LL,FL 0.13350 N/A 

0.13400 N/A 

0.13450 N/A 

0.13500 4.11 0.899 -12 [ 7-15] 16.57 / 12 

LL,FL,FF 0.13350 5.03 +13  1 099 +21  [10-15] 61.60 / 12 11 . -14 

0.13400 4.77 1.042 [10-15] 54.98 / 12 -14 

0.13450 4.47 14  0 980 +24  [10-15] 44.15 / 12 -10 -14 

0.13500 4.16 15  0.909 [10-15] 29.24 / 12 -10 -14 

Table C.8: Nucleon masses for 0 = 5.2) sea = 0.13500. 
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Fuzzing n,, j  rornA amA Fit X 2 /d.o.f. 

FF 0.13350 5. 29 +13  1.156 t 2  [8-15] 7.69 / 6 • -10 

0.13400 5.04 ±14 1.101 ii2 [8-15] 7.61 / 6 • -10 

0.13450 4.86 + 12  1.062 ±18 
[ 7-15] 11.71 / 7 

0.13500 4. 60  h1  1.006 [ 7-15 1  8.99 / 7 • -10 

FL 0.13350 5.34 1.167 ii2 [ 8-15] 6.99 / 6 

0.13400 5.09 t 1.112 +24  [8-15] 7.41 / 6 

0.13450 4.83 +13  1.055 +22  [8-15] 5.91 / 6 

0.13500 4.55 0.995 [8-15] 3.26 / 6 

LL,FF 0.13350 5.18  +13 1.131 t [11-15] 12.86 / 4 • -11 

0.13400 4.82 +12  1.052 [11-15] 8.50 / 4 12 -20 

0.13450 5.13 1.120 [ 7-15] 65.41 / 12 -12 -16 

0.13500 4.87 14  1.063 [7-15] 52.94 / 12 -12 -18 

LL,FL,FF 0.13350 5.18  +14 1.131 t2 [11,15] 14.61 / 9 -10 

0.13400 4.92 +15  1.074 -10 [11,15] 14.95 / 9 -10 

0.13450 • 4.67 +16  
-10 1.021 -1-29  

-14 [1115] ,  15.28 / 9 

0.13500 4.46 +16  0.975 [11,15] 15.30 / 9 -13 -23 

Table C.9: Delta masses for 3 = 5.2, tc sea = 0.13500. 
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Fuzzing 1 va1 romps amps Fit X 2 /d.o.f. 

FF 0.13350 2.763 0.603 [9-15] 4.09 / 5 

0.13400 2.553 0.557 [ 9-15] 4.05 / 5 

0.13450 2.331 0.509 [ 9-15] 4.18 / 5 

0.13500 2.095 0.457 [ 9-151 4.52 / 5 

FL 0.13350 2.764 0.603 [ 8-15] 3.26 / 6 

0.13400 2.553 0.557 [ 8-15] 2.40 / 6 

0.13450 2.330 0.509 [8-15] 1.71 / 6 

0.13500 2.094 0.457 [ 8-15] 1.33 / 6 

LL,FF 0.13350 2.765 0.604 [ 9-15] 6.69 / 8 

0.13400 2.562 0.559 [ 9-15] 5.70 / 8 

0.13450 2.344 0.512 [ 9-15] 6.09 / 8 

0.13500 2.098 0.458 [ 9-151 7.93 / 8 

LL,FL 0.13350 2.761 0.603 t [ 9-15] 5.01 / 8 

0.13400 2.549 0.556 [ 9-15] 3.79 / 8 

0.13450 2.331 0.509 [ 9-15] 4.22 / 8 

0.13500 2.100 0.458 [ 9-15] 5.45 / 8 

LL,FL,FF 0.13350 2.766 0.604 [ 9-15] 18.03 / 15 

0.13400 2.556 0.558 [ 9-151 18.05 / 15 

0.13450 2.335 0.510 ' [.9-15] 19.31 / 15 

0.13500 2.105 0.459 [10-15] 19.76 / 12 

Table C.10: Pseudoscalar masses for j3 = 5.26, ka = 0.13450. 
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Fuzzing tsval rornv amy Fit X 2 /d.o.f. 

FF 0.13350 3.281 0.716 [ 9-15] 4.31 / 5 

0.13400 3.116 0.680 t [ 9-151 3.56 / 5 

0.13450 2.950 0.644 + [ 9-151 2.92 / 5 -46 

0.13500 2.786 0.608 t [ 9-15] 2.73 / 5 

FL 0.13350 3.274 0.715 + [10-15] 2.35 / 4 

0.13400 3. 109 0.679 [10-15] 1.72 / 4 45 

0.13450 2945 45  0.643 [ 9-15] 1.18 / 5 44 

0.13500 2. 780  0.607 [ 9-15 1  1.06 / 5 • -43 

LL,FF 0.13350 3.3018 +48  0.722 [10-15] 12.38 / 6 -48 

0.13400 3.148 0.687 [10-15] 11.28 / 6 • -47 

0.13450 2.988 I!I
+4 0.652 [10-15] 10.04 / 6 

0.13500 2.818 0.615 [10-15] 7.90 / 6 48 

LL,FL 0.13350 3 290 +48  0.718 [ 9-151 18.58 / 8 -46 

0.13400 3.126 0.682 [ 9-15] 15.54 / 8 44 

0.13450 2.961 0.646 [ 9-15] 12.83 / 8 

0.13500 2. 789  0.609 [ 9-15] 10.90 / 8 • -39 

LL,FL,FF 0.13350 3.314 ±° 0.723 [ 9-15] 37.02 / 15 -46 

0.13400 3.158 ±50  0.689 [ 8-15] 41.70 / 18 44 

0.13450 2.990 0.653 [ 8-15] 36.81 / 18 43 

0.13500 2 819 +50 0.615 [ 8-15] 34.08 / 18 43 

Table C.11: Vector masses for /3 = 5.26, 'sea = 0.13450. 
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Fuzzing rornN arnN Fit X 2 /d.o.f. 

FF 0.13350 5.08 1.108 +10  [9-15] 5.62 / 5 

0.13400 4.81 ii 1.051 i1 [9-15] 4.83 / 5 

0.13450 4.55 0.993 Ii [9-15] 3.87 / 5 

0.13500 4.28 0.934 [9-15] 2.78 / 5 -12 

FL 0.13350 5.05 1.103 [10-15] 1.13 / 4 

0.13400 4.80 1.048 [10-15] 0.96 / 4 -10 

0.13450 4.55 0.993 II [10-15] 0.93 / 4 

0.13500 4.31 0.941 -14 [10-15] 1.09 / 4 
LL,FF 0.13350 5.10 1.114 [ 9-15] 8.96 / 8 

0.13400 4.85 1.058 [9-15] 8.07 / 8 

0.13450 4.59 1.002 [9-15] 7.88 / 8 

0.13500 4.34 0.948 -10 [9-15] 8.78 / 8 
LL,FL 0.13350 5.10 i 1.113 [ 9-151 10.33 / 8 

0.13400 4.84 1.057 +11  [9-15] 11.38 / 8 

0.13450 4.60 1.003 ±14 [ 9-15] 13.06 / 8 

0.13500 4.37 0.954 [ 8-15] 16.22 / 10 -12 

LL,FL,FF 0.13350 5.14 1.122 [9-15] 21.19 / 15 

0.13400 4.88 1.065 [9-15] 21.46 / 15 

0.13450 4.62 1.008 [ 9-15] 21.82 / 15 

0.13500 4.36 0.951 [ 9-15] 21.54 / 15 

Table C.12: Nucleon masses for 3 = 5.26, 'sea = 0.13450. 
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Fuzzing N Va l rornA amA Fit X 2 /d.o 

FF 0.13350 5.32 1.162 it' [ 9-15] 6.23 / 5 

0.13400 5.07 + 9  1.106 t [ 9-15] 5.16 / 5 

0.13450 4.80 1.048 [ 9-15] 4.20 / 5 -11 

0.13500 453 +11  0.989 t [ 9-15] 3.58 / 5 

FL 0.13350 5.28 1.152 [10-15] 3.19 / 4 -10 

0.13400 5.03 +10  1.098 [10-15] 3.97 / 4 -11 

0.13450 4.78 1.044 [10-15] 4.65 / 4 -13 

0.13500 4.54 0.991 [10-15] 5.03 / 4 -16 

LL,FF 0.13350 5.44 ii+11  1.188 [ 9-15] 20.83 / 8 

0.13400 5.17 +12  1.129 [10-15] 16.32 / 6 

0.13450 N/A 

0.13500 4.57 0.999 ii' [ 9-15] 9.62 / 8 

LL,FL 0.13350 5.36 1.170 [10-15] 19.82 / 6 -11 

0.13400 5.17 1.128 [11-15] 7.98 / 4 -18 

0.13450 4.94 1.078 [10-15] 19.24 / 6 -13 

0.13500 4.71 + 12  1.028 [ 9-15] 18.43 / 8 -14 

LL,FL,FF 0.13350 5.35 1.168 [11-15] 18.87 / 9 

0.13400 5.13 +12  1.120 +22  [11-15] 19.46 / 9 

0.13450 4.93 +12  1.075 [11-15] 20.40 / 9 -11 

0.13500 4.75 1.037 [11-15] 21.78 / 9 -17 

Table C.13: Delta masses for 3 = 5.26, ksea  = 0.13450. 
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Fuzzing 1 vaI romps amps Fit X 2 /d.o.f. 

FF 0.13350 2.770 39  0.623 [ 8-15] 3.47 / 6 • -38 

0.13400 2.572 0.578 [8-15] 3.41 / 6 • -36 

0.13450 2.363 35  0.531 [ 8-151 3.51 / 6 33 

0.13500 2.141 +32  0.481 [8-15] 3.82 / 6 -31 

FL 0.13350 2.768 0.622 [ 9-15] 3.15 / 5 

0.13400 2.570 0.578 t [ 9-151 3.11 / 5 

0.13450 2.362 0.531 [ 9-15] 3.26 / 5 

0.13500 2.140 +32 
 0.481 ' [9-15] 3.62 / 5 

LL,FF 0.13350 2.770 0.623 [ 9-15] 15.50 / 8 39 

0.13400 2.571 0.578 1 9-151 13.67 / 8 

0.13450 2.363 34 0.531 1 9-151 13.35 / 8 

0.13500 2.139 -36  0.481 [8-15] 12.57 / 10 

LL,FL 0.13350 2.688 ±38  0.621 [ 7-15] 17.19 / 12 -38 

0.13400 2.496 0.576 [ 7-15] 18.70 / 12 

0.13450 2.356 0.529 [ 8-15] 20.34 / 10 

0.13500 2.136 0.480 [8-15] 22.62 / 10 -58 -11 

Table C.14: Pseudoscalar masses 0 = 5.29, Itsea  = 0.13400. 
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Fuzzing 1 va1 romv amy Fit X2 /d.o.f. 

FF 0.13350 3.248 0.730 [10-15] 9.83 / 4 

0.13400 3.091 ±48  0.695 + [10-15] 8.91 / 4 45 

0.13450 2.932 48  0.659 [10-15] 7.11 / 4 44 

0.13500 2 771 51  0.623 [10-15] 4.71 / 4 44 

FL 0.13350 3.247 0.730 [11-15] 7.90 / 3 48 

0.13400 3.088 t 0.694 [11-15] 6.49 / 3 

0.13450 2.928 0.658 [11-15] 4.77 / 3 

0.13500 2.767 52  0.622 [11-15] 3.00 / 3 -46 

LL,FF 0.13350 3.256 0.732 [11-15] 20.42 / 4 

0.13400 3.097 +51  0.696 [11-15] 15.91 / 4 -46 

0.13450 2.927 0.658 [11-15] 9.18 / 4 

0.13500 2.773 56  0.623 [11-15] 6.51 / 4 45 

LL,FL 0.13350 N/A 

0.13400 N/A 

0.13450 2.925 0.657 [11-15] 6.69 / 4 

0.13500 2.770 56  0.623 [11-15] 5.07 / 4 49 

LL,FL,FF 0.13350 3.251 +51  0.731 [11-15] 31.42 / 9 -47 

0.13400 3.090 52  0.694 [11-15] 27.35 / 9 -46 

0.13450 2.928 0.658 [11-15] 22.87 / 9 

0.13500 2.766 ±58  0.622 t [11-15] 18.62 / 9 44 

Table C.15: Vector masses for /3! = 5.29, tsea  = 0.13400. 
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Fuzzing kval rOMN amN Fit 2 /d.o.f. 

FF 0.13350 5.02 1.129 [11-15] 0.32 / 3 

0.13400 4.77 II 1.071 -12 [11-15] 0.29 / 3 
0.13450 4.56 1.025 [8-15] 3.62 / 6 

0.13500 4.25 0.955 -21 [12-15] 0.22 / 2 
FL 0.13350 5.06 1.137 -12 [11-15] 1.96 / 3 

0.13400 4.81 1.080 -13 [11-15] 1.18 / 3 
0.13450 4.55 1.021 -14 [11-15] 0.54 / 3 
0.13500 4.27 0.960 -16 [11-15] 0.68 / 3 

LL,FF 0.13350 5.08 +12  1.141 +21  [ 9-15] 11.98 / 8 

0.13400 4.80 +13  1.079 +24  [ 9-15] 9.25 / 8 

0.13450 4.52 t 1  1.016 +28  [ 9-15] 7.73 / 8 

0.13500 4.26 0.956 t [10-15] 5.92 / 6 

LL,FL 0.13350 5.08 t 1.140 t [ 9-15] 12.75 / 8 

0.13400 4.82 t 1.082 t 2  [ 9-15] 8.87 / 8 

0.13450 4.54 
t' 1.020 +25  [ 9-15] 6.08 / 8 

0.13500 4.27 +15  0.959 [ 9-15] 4.03 / 8 

Table C.16: Nucleon masses for 0 = 5.29, ksea = 0.13400. 
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Fuzzing kval r0 rn am Fit 2 /d.o.f. 

FF 0.13350 5.27 +10  1.184 [10-15] 1.94 / 4 

0.13400 5.03 t 1.131 [10-15] 1.74 / 4 

0.13450 4.80 II
+1 1.079 [10-15] 1.68 / 4 

0.13500 4.56 +14  1.024 [10-15] 1.60 / 4 -14 

FL 0.13350 5.30 1.191 ii'  [11-15] 2.18 / 3 

0.13400 5.07 t' 1.139 [11-15] 2.37 / 3 -10 

0.13450 4.84 +12  1.087 [11-15] 2.62 / 3 -10 

0.13500 4.60 +14  1.033 [11-15] 2.81 / 3 -14 

LL,FF 0.13350 5.29 t 1.189 II'  [11-15] 9.46 / 4 

0.13400 5.06 1.136 +19  [11-15] 9.21 / 4 

0.13450 4.93 +11  1.107 t' [9-15] 13.49 / 8 

0.13500 4.70 1.056 [ 9-15] 11.48 / 8 -10 

LL,FL 0.13350 5.30 1.191 t [11-15] 6.03 / 4 

0.13400 5.06 t' 1.137 +21  [11-15] 6.45 / 4 

0.13450 4.95 1.112 +17  [ 9-151 14.84 / 8 

0.13500 4.63 1.041 [10-15] 13.48 / 6 -33 

LL,FL,FF 0.13350 5.36 +17  1.204 [11-15] 33.06 / 9 -10 

0.13400 5.13 1.152 [11-15] 29.71 / 9 -10 

0.13450 4.89 + 16  1.097 [11-15] 26.68 / 9 -12 

0.13500 4.78 1.074 [ 9-15] 39.61 / 15 -11 

Table C.17: Delta masses for f3 = 5.29, ksea = 0.13400. 
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zzing K I  K2 romps amps Fit X 2 /d.o.f. 

FF 0.13270 0.13270 2.275 0.493 [ 9-151 0.70 / 5 

0.13320 0.13270 2.153 0.467 [ 9-15] 0.68 / 5 

0.13340 0.13270 2.102 0.456 [ 9-15] 0.68 / 5 -16 

0.13320 0.13320 2.025 0.439 [ 9-15] 0.72 / 5 

0.13340 0.13320 1.972 0.428 i [ 9-15] 0.74 / 5 

0.13340 0.13340 1.919 0.416 [ 9-15] 0.79 / 5 

0.13370 0.13370 1.749 0.379 t [ 9-15] 1.06 / 5 

0.13390 0.13370 1.690 0.366 [ 9-15] 1.26 / 5 

0.13390 0.13390 1.629 0.353 t [ 9-15] 1.58 / 5 

FL 0.13270 0.13270 2.276 0.494 [ 9-15] 1.75 / 5 

0.13320 0.13270 2.154 0.467 [ 9-15] 1.59 / 5 

0.13340 0.13270 2.103 0.456 [ 9-15] 1.53 / 5 

0.13320 0.13320 2.026 0.439 [ 9-15] 1.50 / 5 

0.13340 0.13320 1.973 i+10.428 [ 9-15] 1.43 / 5 

0.13340 0.13340 1.920 0.416 [ 9-15] 1.41 / 5 

0.13370 0.13370 1.751 0.380 [ 9-15] 1.40 / 5 

0.13390 0.13370 1.691 0.367 [ 9-151 1.46 / 5 

0.13390 0.13390 1.631 0.354 [ 9-151 1.57 / 5 

LL,FF 0.13270 0.13270 2.276 0.493 [ 9-151 4.99 / 8 

0.13320 0.13270 2.154 0.467 t [ 9-15] 5.35 / 8 

0.13340 0.13270 2.103 0.456 [ 9-15] 5.35 / 8 

0.13320 0.13320 2.027 0.439 [ 9-15] 4.98 / 8 

0.13340 0.13320 1.974 0.428 [ 9-15] 5.02 / 8 

0.13340 0.13340 1.920 0.416 [ 9-15] 4.80 / 8 

0.13370 0.13370 1.752 0.380 [ 9-15] 4.60 / 8 

0.13390 0.13370 1.693 0.367 [ 9-15] 4.36 / 8 

0.13390 0.13390 1.633 0.354 [ 9-15] 4.28 / 8 

Table C.18: Pseudoscalar masses for the 0 = 5.93 quenched matched data set. 
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Fuzzing K I  K2 romps amp5 Fit X 2 /d.o.f. 

LL,FL 0.13270 0.13270 2.276 0.494 t [10-15] 5.71 / 6 

0.13320 0.13270 2.154 0.467 [10-15] 6.20 / 6 

0.13340 0.13270 2.104 +25 
 0.456 [10-15] 6.38 / 6 

0.13320 0.13320 2.026 III  0.439 [10-15] 6.65 / 6 

0.13340 0.13320 1.973 0.428 [10-15] 5.70 / 6 

0.13340 0.13340 1.920 I
+3 0.416 [10-15] 5.96 / 6 

0.13370 0.13370 1.752 0.380 t [10-15] 6.39 / 6 

0.13390 0.13370 1.696 0.368 [10-15] 6.46 / 6 

0.13390 0.13390 1.640 0.356 [10-15] 6.53 / 6 

LL,FL,FF 0.13270 0.13270 2.276 0.494 [ 9-15] 17.87 / 15 

0.13320 0.13270 2.154 0.467 [ 9-15] 18.39 / 15 

0.13340 0.13270 2.103 0.456 [ 9-15] 18.67 / 15 

0.13320 0.13320 2.026 0.439 [ 9-15] 18.76 / 15 

0.13340 0.13320 1.973 0.428 ' [ 9-15] 18.99 / 15 

0.13340 0.13340 1.919 0.416 [ 9-15] 19.02 / 15 

0.13370 0.13370 1.748 0.379 [ 9-15] 19.03 / 15 

0.13390 0.13370 1.688 0.366 [ 9-15] 19.08 / 15 

0.13390 0.13390 1.626 0.353 [ 9-15] 18.58 / 15 

Table C.19: Pseudoscalar masses for the f9 = 5.93 quenched matched data set. 
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Fuzzing K 1  K2 rornv amy Fit X 2 /d.o.f. 

FF 0.13270 0.13270 3. 008 0.652 [10-15] 4.86 / 4 -31 

0.13320 0.13270 2.939 0.637 + [16-15] 5.12 / 4 

0.13340 0.13270 2.914 0.632 [10-15] 5.18 / 4 

0.13320 0.13320 2.862 0.621 [10-15] 4.11 / 4 

0.13340 0.13320 2.837 +42  0.615 [10-15] 4.16 / 4 " -40 

0.13340 0.13340 2.807 44  0.609 i!i  [10-15] 3.77 / 4 -42 

0.13370 0.13370 2.734 0.593 [10-15] 3.22 / 4 -10 

0.13390 0.13370 2. 721   ±60 0.590 t [10-15] 3.17 / 4 -58 

0.13390 0.13390 2.697 67  0.585 t [10-15] 2.90 / 4 -65 

FL 0.13270 0.13270 3. 017 0.654 [10-15] 6.57 / 4 -30 

0.13320 0.13270 2.947 0.639 t [10-15] 6.77 / 4 

0.13340 0.13270 2.922 +36 
 0.634 [10-15] 6.85 / 4 

0.13320 0.13320 2.871 Il  • 
+39 0.622 [10-15] 5.39 / 4 

0.13340 0.13320 2.846 +40  0.617 [10-15] 5.46 / 4 • -36 

0.13340 0.13340 2.817 +42  0.611 [10-15] 4.89 / 4 • -38 

0.13370 0.13370 2.744 51  0.595 ' [10-15] 4.10 / 4 -48 -10 

0.13390 0.13370 2.730 0.592 [10-15] 4.12 / 4 -11 

0.13390 0.13390 2 0.587 t [10-15] 3.55 / 4 -58 

LL,FF 0.13270 0.13270 2.990 0.648 [ 9-15] 7.82 / 8 

0.13320 0.13270 2.921 0.633 t [ 9-15] 8.03 / 8 -28 

0.13340 0.13270 2.895 +42  0.628 [9-15] 9.25 / 8 

0.13320 0.13320 2.838 0.615 [ 9-151 7.28 / 8 

0.13340 0.13320 2.812 0.610 [ 9-15] 7.42 / 8 

0.13340 0.13340 2.790 0.605 [ 9-15] 10.11 / 8 

0.13370 0.13370 2.710 0.588 [ 9-15] 9.09 / 8 

0.13390 0.13370 2.688 0.583 +10 
[ 9-15] 7.87 / 8 • -46 

0.13390 0.13390 2.665 0.578 [ 9-15] 8.25 / 8 -11 

Table C.20: Vector masses for the 3 = 5.93 quenched matched data set. 
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Fuzzing K I  K2 rornv amy Fit 2 /d.o.f. 

LL,FL 0.13270 0.13270 3.016 0.654 [10-15] 7.12 / 6 

0.13320 0.13270 2.925 0.639 [10-15] 7.73 / 6 

0.13340 0.13270 2.920 0.633 [10-15] 7.97 / 6 

0.13320 0.13320 2.867 0.622 [10-15] 6.17 / 6 

0.13340 0.13320 2.842 0.616 t [10-15] 6.27 / 6 

0.13340 0.13340 2.811 0.610 [10-15] 5.75 / 6 

0.13370 0.13370 2.741 0.594 [ 9-15] 8.36 / 8 -10 

0.13390 0.13370 2.724 0.591 [ 9-151 8.30 / 8 -11 

0.13390 0.13390 2.661 0.577 [9-15] 8.45 / 8 -10 

LL,FL,FF 0.13270 0.13270 3.021 II
+3 0.655 [10-15] 12.64 / 12 

0.13320 0.13270 2.950 0.640 [10-15] 13.10 / 12 

0.13340 0.13270 2.923 0.634 [10-15] 13.26 / 12 

0.13320 0.13320 2.870 -34 0.622 [10-15] 10.85 / 12 
0.13340 0.13320 2.843 0.616 [10-15] 10.98 / 12 

0.13340 0.13340 2.812 0.610 [10-15] 10.45 / 12 

0.13370 0.13370 2.731 0.592 [10-15] 10.26 / 12 

0.13390 0.13370 2.713 0.588 -11 [10-15] 10.24 / 12 
0.13390 0.13390 2.685 0.582 [10-15] 10.57 / 12 -12 

Table C.21: Vector masses the 3 = 5.93 quenched matched data set. 
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Fuzzing kval romN arnN Fit X 2 /d.o.f. 

FF 0.13270. 4.53 0.983 II [ 9-15] 1.16 / 5 

0.13320 4.25 0.922 [9-15] 1.29 / 5 -12 

0.13340 4.15 0.899 [8-15] 1.50 / 6 -10 

0.13370 3.97 t 0.861 [8-15] 1.86 / 6 -11 

0.13390 3.86 0.837 [8-15] 2.03 / 6 

FL 0.13270 4.54 i 0.984 +12  [9-15] 1.57 / 5 

0.13320 4.25 0.922 +14 
 [9-15] 1.43 / 5 

0.13340 4.14 0.898 II [ 9-15] 1.35 / 5 

0.13370 4.00 0.867 -11 [ 8-15] 1.50 / 6 
0.13390 3.87 0.838 +17 

 -13 [8-15] 1.68 / 6 
LL,FF 0.13270 N/A 

0.13320 4.23 0.918 -10 [9-15] 2.89 / 8 
0.13340 4.12 t 0.894 -11 [9-15] 2.74 / 8 
0.13370 3.97 0.862 -11 [8-15] 3.39 / 10 
0.13390 3.87 0.839 -12 [8-15] 4.49 / 10 

LL,FL 0.13270 4.53 0.982 [ 7-15] 8.24 / 12 

0.13320 4.24 0.918 -10 [9-15] 2.77 / 8 
0.13340 4.19 ' 0.908 t [ 7-15] 5.29 / 12 

0.13370 3.98 0.864 ii [ 8-15] 2.70 / 10 

0.13390 3.85 0.836 -16 [8-15] 3.28 / 10 
LL,FL,FF 0.13270 4.54 0.984 [10-15] 5.58 / 12 

0.13320 4.25 ii1 0.921 +21  [10-15] 5.74 / 12 

0.13340 4.14 +11  0.897 [10-15] 6.40 / 12 

0.13370 3.97 +12  0.861 [10-15] 8.89 / 12 -12 

0.13390 3.86 0.838 -14 [10-15] 11.67 / 12 

Table C.22: Nucleon masses for the 0 = 5.93 matched quenched data set. 
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Fuzzing kval rornA arnA Fit X 2 /d.o.f. 

FF 0.13270 5.02 1.089 (8-15] 2.42 / 6 -11 

0.13320 4.79 1. 039 +14  [ 8-15] 3.18 / 6 -13 

0.13340 4.70 1.019 [8-15] 3.70 / 6 -14 

0.13370 4.53 0.982 [9-15] 4.44 / 5 -21 

0.13390 4.43 15  0. 960  +31  [ 9-15] 5.09 / 5 12 -25 

FL 0.13270 5.01 1.087 [ 9-15] 5.28 / 5 -13 

0.13320 4.77 j 1.033 jj [9-15] 5.05 / 5 

0.13340 4.67 1.012 jj [9-15] 4.83 / 5 

0.13370 4.53 0 981 +28  [10-15] 4.38 / 4 12 -25 

0.13390 4.41 +17  0. 955  +36  [10-15] 4.30 / 4 -14 . -30 

LL,FF 0.13270 5.02 1.089 +14  [9-15] 9.05 / 8 

0.13320 4.76 + 1.032 [8-15] 7.91 / 10 -11 

0.13340 4.64 +10  1.007 t [ 9-15] 6.33 / 8 

0.13370 4.53 +14  0 982 +29  [10-15] 7.17 / 6 -10 -20 

0.13390 4.41 16  0. 957  [10-15] 8.05 / 6 -12 -24 

LL,FL 0.13270 5.00 1.084 [9-15] 8.42 / 8 

0.13320 4.75 + 8 1.030 ±16 [9-15] 6.97 / 8 6 -12 

0.13340 4.65 1.009 t [9-15] 6.75 / 8 

0.13370 4.50 t 0.976 [9-15] 6.57 / 8 -17 

0.13390 4.39 t 13  0.952 +28  [9-15] 6.61 / 8 9 -19 

LL,FL,FF 0.13270 5.03 '° 1. 090 ±20 [10-15] 21.81 / 12 7 -12 

0.13320 4,79 1.039 23  [10-15] 25.73 / .12 -16 

0.13340 4.70 +12  1 018 +26  [10-15] 27.06 / 12 -10 ' -20 

0.13370 4.54 0.984 [10-15] 27.97 / 12 -26 

0.13390 4.56 +17  0.989 [9-15] 36.08 / 15 -17 

Table C.23: Delta masses for the 0 = 5.93 matched quenched data set. 
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/3 'sea 	6val TOTflPCAC ampcAc Fit X 2 /d.o.f. 

5.2 0.13550 	0.13400 0.317 0.0645 j [ 9-141 2.19 / 5 

0.13450 0.246 0.0501 [ 9-141 2.25 / 5 

0.13500 0.178 + 0.0361 + [ 9-14] 2.55 / 5 

0.13550 0.110 0.0225 + [ 9-14] 2.60 / 5 

5.2 0.13500 	0.13350 0.407 0.0890 i [ 9-14] 12.86 / 5 

0.13400 0.341 i 0.0745 [ 8-14] 14.24 / 6 
0.13450 0.275 0.0602 [ 8-14] 12.61 / 6 

0.13500 0.211 0.0460 [ 8-14] 11.37 / 6 

5.26 0.13450 	0.13350 0.481 0.1050 [ 9-141 8.07 / 5 

0.13400 0.411 0.0898 [ 9-14] 8.13 / 5 

0.13450 0.343 0.0750 [ 9-14] 7.60 / 5 

0.13500 0.277 0.0605 t [ 9-14] 6.35 / 5 

5.29 0.13400 	0.13350 0.497 0.1117 [ 9-14] 6.09 / 5 

0.13400 0.430 0.0965 [ 9-14] 6.42 / 5 

0.13450 0.363 ' 0.0816 [ 9-14] 6.55 / 5 

0.13500 0.298 0.0670 [ 9-141 6.35 / 

0 	K I  K2 rompcAc ampcAc Fit X 2 /d.o.f. 

5.93 	0.13340 0.13340 0.248 0.0538 [10-14] 5.36 / 4 

0.13340 0.13320 0.263 0.0569 [10-14] 5.50 / 4 

0.13320 0.13320 0.277 0.0600 t [10-14] 5.36 / 4 

0.13340 0.13270 0.298 0.0647 [10-14] 5.69 / 4 

0.13320 0.13270 0.313 0.0679 t [10-14] 5.47 / 4 

0.13270 0.13270 0.349 0.0757 [10-14] 4.94 / 4 

0.13370 0.13370 0.205 0.0445 [10-14] 5.05 / 4 

0.13390 0.13370 0.191 0.0413 [10-14] 5.03 / 4 

0.13390 0.13390 0.176 0.0382 [10-14] 4.75 / 4 

Table C.24: The PCAC mass for the dynamical data sets and the matched 
quenched simulation. 
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