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Abstract

This thesis presents the results of a numerical calculation of the light hadron
spectrum in the lattice formulation of Quantum Chromodynamics. Results were
obtained in both the quenched approximation, where the effects of quark loops
in the QCD vacuum were neglected, and in “full” QCD, where two degenerate
flavours of dynamical fermions were included in the simulation. All numerical
simulations employed the standard Wilson gauge action with an O(a) improved -
Wilson fermion action. This study confirms that the quenched light hadron mass
spectrum agrees with experiment at the 10% level. Finite size effects at one value
of the coupling were investigated and an improved scaling behaviour arising from
the implementation of the O(a) improvement programme was observed for the

quenched simulations.

With the aim of observing effects in the spectrum due to the inclusion of
fermion loops in the QCD vacuum, simulations in “full” QCD forming a matched
‘ensemble were compared with a quenched simulation at the same lattice spacing.
Each simulation in the matched ensemble was selected to have approximately the
same lattice spacing as defined with respect to a physical observable in order to
investigate chiral extrapolations independently from continuum extrapolations.
A further simulation with a lighter sea quark mass at a smaller lattice spacing was
included in the analysis for comparison. Evidence for small yet significant dynam-
ical effects arising from the comparison with the quenched data were observed
in the hyperfine splitting and partially quenched chiral extrapolations. Results
obtained from the matched ensemble displayed a reduced residual dependence

upon lattice artifacts.
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Chapter 1

Introduction

The success of perturbative methods in describing the short distance (large mo-
mentum transfer) behaviour of quarks and gluons has meant that Quantum Chro-
modynamics (QCD) has become well established as the theory of strong interac-
tions. Confirmation of this requires that QCD also explains the experimentally
observed phenomenon of quark confinement, whereby quarks are bound in colour
singlet states known as hadrons. Consequently, a complete understanding of the
strong interaction requires a theoretical explanation for the experimentally ob-
served hadron mass spectrum. Unfortunately at the low energies, p < 1 GeV,
associated with the characteristic length scale of a hadron of approximately 1 fm,
the asymptotic freedom property of QCD means that the strong coupling is of
O(1), and thus perturbative methods fail. Instead a non-perturbative approach,

such as Lattice QCD, is required.

Lattice QCD was formulated by K. G. Wilson [1] in 1974 in order to provide a
non-perturbative mechanism for confinement in the strong coupling limit and to
enable a numerical study of the low energy behaviour of QCD. In particular, it al-
lows a first principles determination of the mass spectrum of the lightest hadrons,
the first numerical results of which were reported in [2, 3j. Reproducing the exper-
imentally observed spectrum serves as a test of QCD and provides an important
check on the validity of the lattice approach. Confidence in the spectrum results
obtained from the lattice mean that the technique may be used as a predictive
tool for other phenomenologically interesting quantities which cannot be mea-
sured directly by experiment. The cost of the considerable computational effort

required to numerically determine these quantities has meant that the quenched
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approximation, where quark loops in the vacuum are neglected, is still widely
used. How closely this approximation describes the real world can be assessed
through a comparison of the numerical results for the quenched light hadron spec-
trum with experiment. In order to achieve the precision measurements required
for such a comparison 1t is necessary to have control over systematic effects such
as lattice artifacts. In chapter 3, residual lattice artifacts in the quenched spec-
trum results are reduced by using an improved action. The results confirm the
recent findings from unimproved simulations performed by the cP-PACS Collab-
oration [4] which showed that the quenched light hadron spectrum agrees with

experiment at the 10% level.

New theoretical developments and more powerful computational resources
have meant that recently progress towards simulations of full QCD has been
made. In particular, larger simulations with two degenerate flavours of light
dynamical quarks have become possible. A review of the results obtained from
the most recent simulations from around the world can be found in [5]. So far, full
QCD simulations have not reached the stage where precision measurements of the
spectrum can be made. However, it is still possible to investigate the evidence for
quark loop effects in spectral quantities by comparing full QCD simulations with
simulations performed in the quenched approximation. In chapter 4, “matched”
simulations (where the lattice spacing was measured to be the same) were selected
for comparison in order to separate the effects due to lattice artifacts from genuine

dynamical effects.
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1.1 Lattice QCD

The formulation of lattice gauge theories, first proposed in [1], is now the subject
of textbooks [6, 7] and introductory lecture courses (see for example [8, 9]). A
brief outline of the key elements of the theory required for the study of the light

hadron spectrum is presented in the following sections.

1.2 Path integral formulation of QCD

The information concerning physical observables in a quantum field theory is
contained within an infinite number of vacuum expectation values of time ordered
products of quantum field operators, known as Green’s functions. These quantum
probability amplitudes can be related to probability distributions of classical fields
via the path integral formalism [10]. For a gauge theory such as QCD this means
that the Green’s functions can be expressed in terms of the functional integral

over all field configurations
Ao 1 _ _ o
(0170154, 4,1 10) = 5 [ DIDIDAOID, b, 4,JF%41 (1)

where the partition function is defined by
Z = / DYDYDA, e 5WbAu (1.2)

The function @[J,zb,Au] on the left hand side of equation 1.1 corresponds to a
product of quantum operators and on the right hand side O[+, %, A,] corresponds
to a product of the anti-fermion, fermion and gauge fields. Here 7 denotes that
the operators are time ordered and S is the classical action. Note that natural

units where i = ¢ = 1 are used throughout this thesis.

The functional integral in equation 1.1 is complex and strongly oscillating.
This is hard to evaluate numerically. The standard method for dealing with this
is to analytically continue from Minkowski to Euclidean spacetime via the Wick

rotation, ¢ — —2z4. This corresponds to making the replacement, :5 — —Sg,
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in the partition function [6]
Z = / DYDYDA, e~ 5eld¥Au] (1.3)

where the Euclidean action, Sg, is defined later in section 1.3. The Green’s
functions defined in equation 1.1 are replaced by the corresponding Euclidean
correlation functions. The partition function, now weighted by e ™%, is amenable
to the numerical techniques used to study statistical mechanics provided Sg is a

real valued function of the field variables and is bounded from below.

In practice, the theory is formulated in Euclidean spacetime and must sat-
isfy certain conditions which ensure that it provides information regarding the
Minkowski theory [11]. The main condition is that of reflection positivity, a full
description of which can be found in [7]. The proof that these conditions are
satisfied for the lattice action considered here is beyond the scope of this thesis
(see [12] for further details). For quantities which are not time dependent, such
as the mass spectrum, it is not necessary to perform the continuation back to

Minkowski spacetime, as will be seen in chapter 2.

1.3 The continuum QCD action

The QCD action is invariant under SU(3) local gauge transformations, G(z),

where the fermion and gauge fields transform as

Y(z) = Ge)(z) | (1.4)
b)) = $(z)G(2) (1.5)
Alz) = G(2)Au(2)G\(z) — (8,6(2))G () (1.6)

The continuum action in four dimensional Euclidean spacetime is then given by

Sole) = [ 0 STe(Ful@)Ful@) + 3 0s(&) (D 4 m) () (1L7)

0 =1
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where Ng 1s the number of quark flavours and pu,v = 1,...,4. The first term is
the Yang-Mills term describing the dynamics of the gluon gauge fields, A,, where
the gauge field strength tensor, F,,(z), is defined in terms of the commutator of

the covariant derivative, D, = 9, + A,(z), by
Fun(z) = [Dy, Do) = 9, Ay (2) — 8, Ap(z) + [Au(z), Au(z)] (1.8)
The gluon gauge fields are defined in terms of the generators of the SU(3) group
Al(z) = —Au(z),  Au(z) = —igoA%(z)T*, a=1,...,8 (1.9)

where the eight A¢(z) are real fields and go is the bare strong coupling constant.

The generators satisfy the commutation relations and normalisation condition
[T, T%) = ifucT°,  Tr[T*T*) = L6.p (1.10)

where f,5c are the anti-symmetric structure constants and the generators are rep-
resented in the standard way by the eight Gell-Mann matrices, T* = A*/2 [7]. The
second term in equation 1.7 is the Euclidean Dirac action, describing the interac-
tion of the fermion fields, ¥(z) and %;(z), where m; is the mass of the fermion
with flavour f and the Dirac spinor and colour indices have been suppressed. The
explicit sum over flavours is omitted from now on. Note that ) = v,D,. The

Euclidean Dirac v matrices are related to the Minkowski matrices, vM, by

vy =), v = —ify;-“, j=1,...,3 (1.11)

and satisfy the Hermiticity condition and commutation relations [7]

7/3 = Yu» {7#)'71/} - 2(5;1.,1/ (112)

The QCD action defined in equation 1.7 can now be substituted into the
path integral formalism, where the subscript E is now dropped. However, the

path integral is not well defined due to the gauge invariance of the action. This
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means that the integration is performed over an infinite number of physically
equivalent gauge field configurations. One approach which resolves this problem

is to discretise spacetime by a four dimensional lattice.

1.4 The lattice approach

The original formulation of lattice gauge theory was proposed in [1]. To transcribe
the continuum theory into the lattice description there are several key steps,
each of which will be discussed briefly below. Further details can be found in [6,
7]. First, spacetime is discretised and the representations of the fermion and
gauge fields on the lattice are discussed. The construction of the lattice action
is presented after the integration measure of the path integral is defined and the

numerical evaluation of observables is outlined.
1.4.1 Discretisation of spacetime

Spacetime is discretised by the introduction of a four dimensional isotropic hy-

percubic lattice, Ag, with lattice spacing a, where
Ag={z€RYz,/a€Z, p=1,...,4} (1.13)

The integration over Euclidean spacetime in the action is then replaced by the

sum over all sites on the lattice, z,

/d‘l:c —->a4z (1.14)

T

and dimensionful quantities are rescaled by the lattice spacing to yield dimen-
sionless variables. For example, the fermion mass is replaced by m — am since

in natural units mass has the dimensions of inverse length.
1.4.2 Lattice representations of the fermion and gauge fields

The fermion fields are represented on the lattice by anti-commuting Grassmann
variables situated at the sites of the lattice. The Grassmann nature of the fields

means that it is difficult to simulate the path integral numerically. Fortunately,
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the action is bilinear in the quark fields and the integration over the fermion

variables can be performed analytically, avoiding the problem.

The representation of the gauge fields on the lattice is not so straightforward
due to the requirements of gauge invariance. If the gauge fields are represented by
field variables situated at each site, the gauge invariance of the action is spoiled
due to the discretisation of the derivative by a finite difference. An alternative
transcription of the gauge fields [1] which maintains gauge invariance is outlined
below. In the presence of a gauge field in the continuum, a quark field transported

from z to y accrues a phase factor

s =Pex{- [ Az, | MU (1)

where P denotes the path ordered product, required due to the non-abelian na-
ture of the gauge fields. Under a local SU(3) gauge transformation, the parallel

transporter, U(y, z), transforms as
U(y,2) = G)U(y, z)G (=) (1.16)

and hence

LU (y, z)Y(z) | (1.17)

is gauge invariant. On the lattice the parallel transporter is represented by a
link variable, U,(z), associated with the link originating at site z oriented in the

direction p

Uu(z) = e~ “Anlo+5) (1.18)

where the average gauge field over the link is conventionally defined to be at the
midpoint. Here /i is a unit vector in the lattice direction p. These directed gauge
links are represented by 3 x 3 unitary matrices with unit determinant belonging to
the fundamental representation of SU(3). The property that U,(z) = Uiu(:c—l—a,&)
follows from the path ordering condition. The gauge links transform under SU(3)

as

Uulz) = G(z)U,(2)G(z + aji) (1.19)
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provided G(z) belongs to the same representation of the group as the gauge links.
From this equation and the transformation equations for the fermion fields given
by equations 1.4 and 1.5, two types of gauge invariant object can be formed on

the lattice. The first of these is a string

b(¥)Uu(y) .- Uu(z — ad)(z) (1.20)

where the gauge links are path ordered and the trace over the colour indices is
implicit. The second gauge invariant object is formed by taking the trace of a
product of gauge links forming a closed loop, referred to as a Wilson loop. The

simplest example of which is the plaquette, TrUg, where
Ua = U, (2)U,(z + ap)U}(z + ad)U](z) (1.21)

is the product of gauge links around an elementary square of the lattice.
1.4.3 The lattice action

The QCD action can be discretised in many ways. The choice of discretised
action is governed primarily by the requirement that the action must reproduce
the continuum action in the limit where the lattice spacing tends to zero. This
allows higher order terms in the lattice spacing which vanish in the continuum

limit to be added to the action.

The lattice action is constructed from appropriate combinations of the gauge
invariant objects defined in section 1.4.2, and is written in terms of a pure gauge

action and a term dependent on the fermion fields

The fermion action for a single quark flavour can be written in the general form

Selh, v, U] = Z¢ My, [UT(y) (1.23)
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where M is the fermion matrix. The particular form used for each term in the

action is discussed later in sections 1.7 and 1.8.
1.4.4 The integration measure

Once the fermion and gauge fields have been represented on the lattice and the
action constructed, the partition function can now be expressed in terms of the

lattice variables

-Sa [U]~xEy (@) Ma,y [U4(y)

7= / DEDYDUe (1.24)

where

DYDY = [[ dib(e)dip(z), DU =[] dUu(=) (1.25)

T,
Performing the integration over the Grassmann valued fermion fields, the parti-

tion function becomes
7= / T 2V, (=) det M[U]e=5e (1.26)
o,

where dU is the gauge invariant or Haar measure defined by the condition

/Gde(U) =/Gde(UV):/Gde(VU) (1.27)

where V € SU(3) and f(U) is an arbitrary function over the group. Since the

gauge links are elements of a compact group the normalisation condition

/GdU . (1.28)

can be imposed. This condition reduces the path integral to a large but finite
number of integrations and removes the need for gauge fixing. The precise form
of the Haar measure can be found in [6]. The remaining integration over the

gauge links is performed numerically.
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1.4.5 Numerical simulation

In section 1.2, the expectation values of quantum field operators corresponding
to physical observables were expressed in the path integral formalism. In terms

of the lattice variables, this statement becomes

(0| T{O(b, %, U)}0) = —;- / DY DYDUO (3, 1, U)e 4] (1.29)

Since the fermion term in the action is bilinear in the quark fields, the path inte-
gral over the Grassmann valued variables can be performed analytically. By
considering the integration rules for Grassmann integrals [6], the observable,
O(2,,U), must contain equal numbers of fermion and anti-fermion fields other-
wise the integral will vanish. This means that the integral over the fermion fields

for a general operator will consist of integrals of the type

C - 3 P(2) Mz y [Ulb(v)
/wm e = = det M[U] (1.30)
and
S _ = 3 W) M,y [UT(v)
[ DD w3 Yo MZLU et MU]  (131)

Dividing equation 1.31 by equation 1.30 yields the quark propagator in a back-

ground gauge field, G:f(a:, y; U), in terms of the inverse of the fermion matrix
G (2, y; U) = M7} o4, [U] (1.32)

where the colour indices (a,b) and the Dirac spinor indices (a, #) are now indi-
cated. The quark propagator is the basic building block from which correlation
functions, and in particular, hadron correlators, are constructed on the lattice.
The determination of the masses from hadron correlators is the subject of chap-

ter 2.

Once the integration over the fermion fields has been performed analytically,

the expectation value of the general operator, @(1/3,1&, U), is given by the path
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integral over the gauge fields

(O T{O@, ,U)} [0) = %/DU@(U,M-I[U])e- Wl (1.33)
(O, M~'[U))), (1.34)

I

where the action has been replaced by the effective action
Seff[U] = Sg[U] —ln det M[U] (135)

The notation <>y has been introduced to denote the path integral over the
gauge field configurations. Provided Ses 1s real valued, the remaining integra-
tion over the gauge links can be performed numerically using the technique of
Monte Carlo integration with importance sampling [13]. This integration method
generates gauge field configurations, labelled by {U};, where {U}; represents the
assignment of a link variable to every link on the lattice, with a probability pro-
portional to e~%Vl Successive configurations are obtained via an algorithmic
update, where the specific algorithms used to generate the configurations anal-
ysed in this thesis are referenced later at the appropriate points. The data sets
referred to throughout this thesis, are composed from an ensemble of N of these
configurations, {U};, 1 = 1,..., N. Neighbouring configurations in the ensemble
are separated by several algorithmic updates (known as sweeps or trajectories de-
pending on the type of algorithm) since successive updates of the configurations
are in general highly correlated with each other. The expectation value of an
observable is approximated by the ensemble average of the observable measured

on each configuration

2

(O] T{O(, 4, U)} 0) ~ Z (U}, M7 {U})) (1.36)

where the statistical error in the average is 1/+/ N for independent configurations.

Correlations in the ensemble mean that this error is increased.
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1.5 Simulating QCD

The numerical simulation of QCD requires considerable computational effort in
order to generate sufficient statistics to achieve reliable results with acceptable
statistical errors. This section discusses the approximation which was made for
the data sets analysed in chapter 3 in order to achieve this goal (the quenched
approximation) and the subsequent process towards simulating full QCD, the

Ny = 2 dynamical fermion simulations investigated in chapter 4.
1.5.1 The quenched approximation

The most computationally intensive part of the configuration generation proce-
dure concerns the need to take into account the determinant of the fermion matrix
which appears in the effective action, defined in equation 1.35. This is due to the
non-local nature of the inverse of the fermion matrix, which is required in the
algorithmic update of the configurations, and the fact that the matrix consists
of a large number (4qpins X 3colours X Mattice sites)> of elements which increase with
the lattice volume. The computational overhead can be significantly reduced if

the approximation

det M[U] = constant (1.37)

is made. The constant was set equal to one in this case. This approximation
is known as the quenched approzimation and corresponds to neglecting quark
anti-quark loops in the QCD vacuum (effectively these quarks are made infinitely
heavy and thus they decouple from the theory). The quarks and anti-quarks in
these loops are commonly referred to as dynamical fermions. The only reason for
making this approximation is to significantly simplify the configuration generation
procedure. Some motivation for the use of the quenched approximation comes
from phenomenological evidence, for example Zweig’s rule, which suggests that
the effects in the observed spectrum and decay modes due to quark loops are
small. This rule is used to expliain the dominant decay of the ¢ meson to K- K+
observed experimentally, even though the phase space available for the decay to
3m’s 1s significantly more favourable. The presence of quark loops in the latter

decay is used to explain the suppression of the decay mode. Both decay modes
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are depicted by quark line diagrams in Figure 1.1.

a) . )
¢ — ¢
§ K+ §

Figure 1.1: Quark line diagrams of two possible decay modes of the ¢ meson.
The decay represented by diagram b) ¢ — 7+7%7~ is suppressed relative to the
decay represented by diagram a) ¢ — K~K* even though the available phase
space for decay mode b) is much larger [14].

Fortunately quenched QCD retains most of the important features of full
QCD such as confinement and chiral symmetry breaking, and in essence, the
spectrum calculation proceeds in a similar manner to the full QCD case. Oné of
the main effects of quenching is to shift the value of the coupling. This means
that quenched and dynamical simulations should be compared at the same value
of the lattice spacing instead of at the same value of the coupling. Simulations
with the same value of the lattice spacing defined with reference to a particular
observable but with different lattice parameters are referred to as a “matched”
ensemble of data sets. The method by which this was achieved for the data sets

examined in this thesis is discussed in chapter 4.

Neglecting the quark anti-quark loops in the vacuum has several important
consequences. For example, resonances such as the p meson are stable in the
quenched approximation (in full QCD the p mass receives a contribution from
intermediate states composed from two 7’s) and this implies that the masses will
be shifted. In the case of the p, the broad resonance of 150 MeV [14] measured
experimentally suggests that the coupling to the 7’s is relatively large and thus
may have a significant impact on the p mass [15]. As a further consequence of the

quenched approximation, the static quark potential between a quark anti-quark
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pair is expected to rise linearly with distance. In full QCD the potential should
level off due to the effects of string breaking, where quark anti-quark pairs are
created from the vacuum as the separation is increased. In addition, the force
between the quarks at small distances is expected to be larger in the dynamical
case due to screening effects. The evidence for these effects in the potential is
reviewed in chapter 4. One place where the inclusion of quark loops in the vacuum
1s expected to have a large effect is in the determination of the mass of the 7’
meson. The axial U(1) flavour symmetry is spontaneously broken in the limit of
massless quarks. However, the only candidate for the associated Goldstone boson,
the n’, has a large mass of 958 MeV [14]. This is known as the U(1) problem.
To solve this problem it has been proposed that the n’ acquires its large mass
through contributions arising from the QCD vacuum, for example from quark
loop effects (a discussion of this can be found in [16]). As a consequence, the n’

is degenerate with the 7 in the quenched approximation.

Although the quenched approximation has successfully demonstrated that
the non-singlet light hadron spectrum can be determined to within 10% of the
experimental results, as confirmed by this thesis in chapter 3, it still represents
an uncontrolled error in the simulation. Within recent years, the advent of more
powerful computers and efficient configuration generation algorithms, has meant
that it is now feasible to simulate two light degenerate flavours of dynamical
quarks, denoted by Ny = 2. It is straightforward to show the primary reason why
the dynamical simulation has been limited to two degenerate quarks and not
three quarks of different flavours, which would be required in order to simulate

the three lightest quarks, the up, down and strange quarks (u, d, s).
1.5.2 Ny = 2 dynamical fermions

Considerable simplifications in the numerical simulation of full QCD arise from
considering pairs of degenerate quark flavours. In section 1.4.5, the numerical
simulation required that the effective action, defined in equation 1.35, be real
valued in order that importance sampling can be implemented easily. This re-

quirement means that det M[U] is real and positive. That the determinant of the
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fermion matrix is real follows from the lattice Hermiticity relation
MU) = 4 M'[U)vs (1.38)

which holds in the case of the improved Wilson fermion matrix, defined later in
section 1.8. However, equation 1.38 does not guarantee the positivity of det M[U].
Consider an action with two fermion terms, one describing the interaction of the u
flavoured quarks and the other the d flavoured quarks. Performing the integration

over the fermion fields results in the following determinant
det M[U] — det M,[U] det My[U] = (det M,[U])*> > 0 (1.39)

provided M,, = My. Thus positivity is satisfied in the case of pairs of degenerate

fermion flavours.

In both the quenched approximation and the dynamical simulations, the in-
version of the fermion matrix must be performed in order to calculate the quark
propagators corresponding to the valence quarks. This can be a computationally
intensive process, particularly if simulations are performed at the physical masses
of the light quarks. For this reason, quark propagators are generated at unphys-
ically heavy quark masses and the lattice masses extracted from the data are
extrapolated to the physical light quark masses. These chiral extrapolations are
discussed later in section 1.11, but first the form of the lattice action constructed

within the O(a) improvement programme is discussed.

1.6 O(a) improvement

One of the major sources of error in the lattice simulation arises from the dis-
crete nature of the lattice. The computational cost of simulating at arbitrarily
small lattice spacings means that practical simulations must be performed at
small yet finite lattice spacings. This is particularly applicable for simulations
with two flavours of dynamical fermions which require significant computational

resources and necessitate that simulations be carried out at relatively coarse lat-
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tice spacings, a = 0.1 fm. As a consequence, the discretisation errors in spectral
quantities become larger. One way to reduce the problem is to consider improved
actions. Although the pure gauge action, defined later in section 1.7, can be im-
proved, this thesis investigates the effect of improving the fermion action. The
improved fermion action considered here is hased on the ideas of the Symanzik
improvement programme [17] which aims to construct a lattice realisation of the
theory with an improved approach to the continuum limit. This is achieved by
the addition of appropriately chosen higher order terms in the lattice spacing to
the lattice action and operators, selected to cancel the discretisation errors of
a particular order of the lattice spacing in on-shell physical quantities, such as
hadron masses. Spectral quantities should then show an improved approach to
the continuum limit at the expense of only a relatively small rise in the compu-
tational cost of the simulation. With this in mind, the choice of lattice action

used in this thesis i1s now discussed.

1.7 The gauge action

The pure gauge part of the action, Sg[U], is defined to be the standard Wilson
gauge action [1]

SalU]=4Y_ (1 —~ %?ReTrUg> ,  B= —65 (1.40)

o Yo

where 8 parametrises the dependence on the strong coupling constant. The sum is
over all the positively oriented plaquettes originating from every lattice site, where
Un was defined in equation 1.21 and Re denotes that the real part of the trace is
taken. Upon substituting equation 1.18 into the gauge action, Sg[U], the Yang-
Mills term in the continuum action is obtained up to discretisation errors of O(a?).
However, this is only the simplest choice for the gauge action which can be made.
Improved gauge actions, which aim to reduce the discretisation errors further,
can be formed by adding a contribution from Wilson loops created from six (or
more) gauge links. In “full” QCD simulations, the cP-pPACS Collaboration [18]

use the improved gauge action obtained from an approximate renormalisation
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group analysis [19]

SelU) =8 (Z Wi — 0.0907 ) wm) , Wia=ReltUa  (1.41)
1x1 1x2

where Wiy, denotes the real part of the trace over a 1 x 2 rectangular Wilson

loop in the p, v plane. The sums are over all the positively oriented Wilson loops.

The motivation and method used to obtain this action are not discussed further

and can be found in [19]. This choice of action is expected to eliminate the O(a?)

discretisation errors.

1.8 The fermion action

The fermion action used in this thesis is the O(a) improved Wilson fermion action
Selth v, Ul = S&""(b, 1, U] + Sp " b, 4, U] (1.42)

The first term is the Wilson fermion action [20] and the second is the counter-
term known as the Sheikholeslami-Wohlert or Clover term [21], which can be
tuned in order to cancel the O(a) discretisation errors arising from the Wilson
fermion action. The lattice fermion action is obtained through the discretisation

of the continuum fermion action
SE 1B, A = [ e B@)( + m)(a) (4)

where I) = ~,D,. In the discretisation known as the naive discretisation the
covariant derivative, D,, is replaced by the symmetrised lattice derivative, @u =
$(V,.+ V,), where the forward and backward lattice derivatives are given by the

finite differences

Vab(e) = AU ()bl + ai) — b(2))

Vib(e) = —{(z) - Ule - op)p(e — i)} (1.44)
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The symmetrised form is taken to ensure that the action is Hermitian. The naive

fermion action is then

SN[, 4, U] = Z¢(x) L [UT(y) (1.45)

where

1
ng[U] = 10y, + 5 Z'Yﬂ[5x+[&,yUu($) - 5w—ﬁ,yU;(y)] (1.46)
”w

and the lattice spacing has been set equal to unity. Taylor expanding the lattice
fermion fields and the gauge links in equation 1.45 appears to give the correct
classical continuum limit up to discretisation errors of O(a?). Unfortunately it
gives rise to 2¢ = 16 quark flavours instead of one, where d = 4 is the dimension
of spacetime. This is most easily seen by examining the quark propagator in
the free field case. Setting the gauge fields to the identity matrix, the quark
propagator for a free fermion field is given by the inverse of the fermion maftrix,
as in equation 1.32. Inverting the naive fermion matrix defined in equation 1.46

by taking the momentum space Fourier transform, the quark propagator is

zp(:v y)

Gn
)= L T )

(1.47)

where the lattice delta function used in the Fourier transform is defined as
5, =L S el (1.48)
Y V .

and V is the lattice volume. The momentum p is periodic with period 27/a and

is restricted to values in the Brillouin zone defined by

T

{peBl—%<m§;} (1.49)

Taking the continuum limit (¢ — 0) of the propagator in equation 1.47 is equiva-
lent to taking the limits, m — 0 and p, — 0. The resulting pole in the propagator

corresponds to an on-shell fermion. However, additional poles in the propagator
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occur when p, = +7 (where a = 1), giving rise to 15 extra fermions - the fermion
doubling problem. The doubling problem is not solved by including the gauge
fields.

To alleviate this problem, Wilson added a higher order term to the action
which gives the fermion doublers a mass proportional to the inverse lattice spac-
ing. This is achieved by adding an additional term corresponding to the lattice
discretisation of the second derivative to the discretisation of the covariant deriva- .
tive

. ar_,
D — Dy =~v,V,— ?Vﬂvﬂ, r=1 (1.50)

which preserves the Hermiticity of the action. The parameter r is usually chosen

to be one. The Wilson action is then written as
SE o[, b, Ul = b(x) MY, (U (y) (1.51)
z,y
where the Wilson fermion matrix is given by

MUY = 6oy = 5 ) [Satan(l = 1) Uu(@) + 6oy (L +7)UNw)] (152)

and the fermion fields in the action have been rescaled by making the replace-
ments, ¥(z) = ¥(2)v2x and ¥(z) — ¥(z)v/2k. The hopping parameter, &, is

related to the fermion mass via

1
K =
2m + 8

(1.53)

Note that additional flavours of quarks can be simulated by including terms with
different hopping parameters in the action. In the continuum limit, the higher
order term in the action vanishes and the masses of the fermion doublers become

infinite, decoupling from the theory. This can be seen by considering the quark
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propagator in the free field case for the Wilson fermion action

etP(z-v)

1
% Zp: m + Eu (1 — cos(pu)) + 1yusin(p,)

Gw(z,y) = (1.54)

where there are no longer poles arising from momenta at the edges of the Brillouin
zone in the continuum limit. Unfortunately solving the fermion doubling problem
is achieved at the expense of the global chiral symmetry of the action at zero
quark mass, (where the fermion fields transform as ¥(z) = €% (z) and ¥(z) =
(z)e’®). Although this is not considered to be a fundamental problem, since
in the continuum limit it is expected that chiral symmetry will be restored, it is
a big practical problem. Some of the consequences of sacrificing chiral symmetry
are discussed in section 1.11. In fact it is not possible to define a Hermitian lattice
action which is ultra-local, translationally invariant, preserves chiral symmetry

and presents no fermion doublers. This is the statement of the °

‘no-go” theorem
by Nielsen and Ninomiya [22]. However, recent developments have meant that
it is now possible to preserve chiral symmetry on the lattice at the expense of
relaxing the criterion of ultra-locality, by requiring that the lattice discretisation

of the Dirac operator, D, satisfies the Ginsparg-Wilson relation [23],

The condition of ultra-locality, where the Dirac operator only depends upon the
gauge field variables in a finite neighbourhood, is relaxed in order to allow the
spatial dependence of the operator to decay exponentially, provided the rate of
decay is proportional to the lattice cutoff [24]. If this condition is satisfied, this
definition of locality can be considered to be as good as ultra-locality. The major
difficulty of simulating fermion actions which satisfy equation 1.55 is the need for

further algorithmic developments in order to make numerical simulations feasible.

The Wilson fermion action introduces discretisation errors of O(a). For simu-
lations at relatively coarse lattice spacings, such as the dynamical fermion simula-

tions considered in this thesis, this introduces a potentially unacceptable discreti-
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sation error. One way to reduce this error is to add O(a) counter-terms to the
action, which can be tuned to reduce the discretisation errors in on-shell quanti-
ties. By considering all terms of O(a) which are gauge invariant and respect the
discrete symmetries of the lattice, it can be shown [25] that the counter-term can
be written in the continuum as a linear combination of five terms which satisfy
these requirements. Two of the terms can be eliminated by applying the field
equations and a further two amount to a rescaling of the bare parameters of the
theory, the strong force coupling and the fermion mass, by a factor proportional
to (1 4+ O(amg)), where mq is the quark mass defined in section 1.11. The dis-
cretised form of the remaining term is referred to as the Sheikholeslami-Wohlert

or Clover term [21]

- K -
SV, U] = sy D P(2) 0 Fru(2)3(2) (1.56)
Ty
where o, = %[fyﬂ,’y,,] and a symmetric definition of the lattice field strength

tensor, F,,(z), is defined by

Funl#) = £(Quul#) = QL (=) (1.57

where (), (z) is the sum of the four plaquettes situated around a lattice site, x,

in the plane defined by the lattice directions, p and v

Qun(z) = Uu(2)U,(z+ 2)Ul(z + 0)Ul(=)
+ U (2)Ulz = i+ ) Ulz — p)U,(z — 1)
+ Ul(e = p)Ulz = p = 2)Uu(e — o= 2)U, (z — 2)
+ Ulz = ) Uu(z — 0)U,(z + o — D) Ul () . (1.58)

Pictorially, the field strength tensor resembles a four-leaf clover. The O(a) im-

proved fermion action is then given by

Sely, ¥, U] = Z¢ M, [U)(y) (1.59)
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where the fermion matrix is defined as

iK
Mz y[U] = bay <1 - CSW? Z ar#,,FW(ac)>
%%

- K Z [5x+ﬁ,y(1 = %) Un(z) + Gopy (1 + 7M)U;t(y)] (1.60)

“

The clover coefficient, cgy in the Sheikholeslami-Wohlert term is a function of the
bare coupling, go, and can be tuned in order to remove the O(a) discretisation
errors in on-shell quantities. Two possible choices for ¢, obtained from the

tadpole and non-perturbative improvement schemes are discussed below.

1.9 Tadpole improvement

The gauge links, defined by equation 1.18, can be Taylor expanded in terms of

the continuum gauge fields for small a to yield
U.(z) — 1——(114_”(93)-]—... =1 +iagoAZ(x)Ta+... (1.61)

where corrections to this relation would appear to vanish as powers of a. Un-
fortunately, this is not the case in the quantum theory [26]. Instead, when pairs
of gauge fields present in higher order terms in the expansion are contracted to-
gether they generate tadpole contributions which exactly cancel the powers of a.
These ultraviolet divergences, arising from momenta of the order of the lattice
cutoff, mean that higher order terms in the expansion of equation 1.18 are only
suppressed by powers of g2. The large contribution from the tadpoles has the
effect of renormalising the gauge links. In order to take account of this, the tad-
pole improvement scheme described in [26] advocates replacing the gauge links

that appear in the lattice action and operators with
Uu(z) = Uu(z)/uo, ug < 1 (1.62)

where 1 is the mean field parameter representing the mean value of the gauge

link. The mean value of a gauge link cannot be measured directly since the
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expectation value of the gauge dependent link variables vanishes. Instead, a
gauge invariant choice for uo can be obtained by considering the expectation

value of the plaquette
1/4

up = <%§ReTrUg> (1.63)

U
Other choices for ug, such as the expectation value of a gauge link measured
in a gauge fixed lattice simulation where the (continuum) Landau gauge fixing
condition, d,A, = 0, transcribed on the lattice has been used [27], have not
been considered in this thesis. Replacing the gauge links by the tadpole improved

links amounts to rescaling the free parameters in the lattice action

go = go/ud =g, K — Kug (1.64)

where g is the “boosted” coupling. From these replacements, the clover coefficient

is redefined as
Cow = Cow/Uus = 1/ud (1.65)

where the original value of ¢y is taken to be the tree-level value of unity [21]. The
tadpole improvement procedure is expected to reduce the O(ag?) discretisation

errors present in the tree-level improved fermion action.

1.10 Non-perturbative improvement

The non-perturbative improvement scheme, discussed in [9, 25, 28, 29, 30], aims
to completely eliminate the discretisation errors of O(a) in on-shell quantities
through improving the action and the operators non-perturbatively. Full O(a)
improvement of the action is achieved by choosing the clover coefficient appro-
priately. The clover coefficient is determined by requiring that the measured

violation of chiral symmetry resulting from the Wilson fermion action is of O(a?).

In the limit of degenerate, massless quarks, chiral flavour symmetry in the
continuum is spontaneously broken. As a consequence of the breaking of the
SU(2) axial isospin symmetry for the u and d quarks, the 7’s are identified as

the three massless Goldstone bosons of the theory. However, physical quarks
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have a small mass and thus the 7’s are no longer true Goldstone bosons but
“pseudo-Goldstone bosons”. This explicit breaking of the symmetry means that
the associated conserved current in the massless case is replaced by the partially

conserved axial current (PCAC) relation
8;#42(33) = QmPCACPi(a:) (166)

defined in the continuum, where mpcac is the unrenormalised current quark mass
(the determination of which is described later in section 3.3). The isovector axial

current and pseudoscalar density are given by

7_’L

Aw) = Bl S, o) =B@hgbe)  (L67)

where the Pauli matrices, 7¢, act on the flavour indices of the fermion fields. The
index 1 = 1,2, 3 is referred to as the isospin index. In the Wilson fermion formu-
lation, correction terms of O(a) arise in the lattice discretisation of equation 1.66,
where the details of the discretisation are given later in section 3.3. The improve-
ment scheme then requires that these lattice artifacts in the discretisation of the
PCAC relation are reduced to O(a?). This can be achieved by eliminating the
errors of O(a) present in the determination of mpcac by tuning the improvement
coefficients in the Clover term of the action and in the lattice axial current op-
erator. The strategy used to determine the improvement coefficients is outlined
in (25, 30]. In this case, the PCAC mass was measured in the Schrodinger func-
tional scheme in which Dirichlet boundary conditions are imposed in the time
direction of the lattice. The improvement coefficients were determined by requir-
ing that the PCAC mass was independent of the kinematical parameters (such
as the temporal insertion point of the axial current, x4, and the external fields
employed in the Dirichlet boundary conditions) up to terms of O(a?). This is
equivalent to minimising the difference in the results obtained for the PCAC mass

for two sets of kinematical parameters, A and B

méc;xc - Tn’ECAC = O(a) (1-68)
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by tuning the improvement coefficients. In practice, a third value of mpcac was

considered as two improvement coefficients were determined.

In section 1.8, it was noted that the full O(a) improvement of the fermion ac-
tion required the rescaling of the strong coupling constant and bare quark mass
by a factor proportional to (1+O(amq)). This rescaling of the bare parameters is
required in order that a mass independent renormalisation scheme which is con-
sistent with O(a) improvement can be defined [25], and hence spectral quantities
approach the continuum limit with a rate proportional to O(a?). The improved

coupling constant and bare quark mass are defined by
g = mq(1 + bm(g5)mq), 9o = 95(1 + bg(95)maq) (1.69)

where b, and b, are improvement coefficients which can be tuned in order to
cancel the residual lattice artifacts of O(amg). Note that in the quenched ap-
proximation, b, = 0, (since in the quenched case observables composed entirely
from gluon fields which are improved at zero quark mass are also improved at

non-zero quark mass [25]) where to one-loop in perturbation theory [31, 32]
be = 0.012N;rg2 + O(gp) (1.70)

where Ny is the number of dynamical quark flavours. For the N; = 2 dynamical
fermion simulations the improvement of the coupling was neglected. The sta-
tistical accuracy of the dynamical fermion data considered here is not sufficient
to observe any noticeable effects arising from the very small improvement in the
bare coupling. The values for all the improvement coefficients used in this thesis

are specified in the following chapters as required.

1.11 Chiral limit

In section 1.8, it was noted that chiral symmetry is explicitly broken by the
Wilson fermion action when a # 0, even in the limit of vanishing quark mass.

In addition to the O(a) correction terms appearing in the PCAC relation for the
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unimproved action, as discussed in section 1.10, this means that the fermion
mass, 1, is additively (as well as multiplicatively) renormalised. The bare quark
mass is then defined by

Mg =M — M, (1.71)

where m. is a constant which must be determined from the simulation. In terms

of the hopping parameter, defined in equation 1.53, the bare quark mass is defined

1/71 1
S 1.72
M 2 (K' Kcrit) ( )

where K¢, the critical value of the hopping parameter, depends on the lattice

as

spacing. The value of k¢ for each lattice simulation was determined in two ways
by extrapolating two different quantities, the pseudoscalar meson mass and the
PCAC mass, measured at several unphysical values of the quark mass. In each
case an extrapolation to the chiral limit at zero quark mass was performed. The

form of the extrapolations are given later in section 3.9.

The critical value of the hopping parameter is measured through a statistical
average over an ensemble of configurations. This means that the value of K¢
for individual configurations will be distributed about the mean value. As a con-
sequence, it 1s possible that x ~ k. for some configurations in the ensemble,
particularly if small quark masses are considered. These configurations, where
the fermion matrix has a zero mode, are referred to as exceptional configurations.
(Other factors which contribute to the incidence of exceptional configurations are
discussed later in section 3.1). In dynamical fermion simulations the occurrence of
exceptional configurations in the configuration generation procedure is suppressed
by the factor det M. However, this is not the case in the quenched approxima-
tion. Exceptional configurations in the quenched simulations considered here are

discussed further in section 3.1.

Once the bare quark mass has been defined in terms of k., the quark masses
measured at the physical masses of the light mesons can be determined, as dis-
- cussed later in section 3.10, and the physical masses of the lightest hadrons in

lattice units can be calculated. The final stage in the lattice calculation is then
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to determine the hadron masses in physical units by taking the continuum limat.

1.12 Continuum limit

In section 1.4.3, the addition of higher order terms in the lattice spacing to the
action was permitted provided the continuum action was reached in the limit
a — 0, known as the classical continuum limit. This section contains a brief
discussion of the main conditions required in order that the lattice theory can be
used to extract continuum physics at finite values of the lattice spacing. Further

details can be found in [6].

Observables measured on the lattice (such as the hadron masses) are expressed
in terms of the lattice spacing. Since the only free parameters in the theory
are the strong coupling and the quark masses, the lattice spacing is not known
a priori. This means that physical predictions from the lattice are made by
considering dimensionless ratios of observables. For the correct continuum limit
to be reached these dimensionless ratios of observables should be independent of
the lattice spacing and, in particular, the lattice masses should vanish in such a
way that the corresponding mass in physical units remains finite as the lattice
spacing is taken to zero. This occurs for simulations near criticality, where the
lattice correlation length, ¢ (which is inversely related to the mass of a typical

“hadron in the simulation), diverges. At this point, where ¢ >> a, the theory no
longer “sees” the underlying structure of the lattice as required in the continuum
limit. In the case of massless quarks, the critical point is reached by tuning the
strong coupling, go (or equivalently 3), to the critical value, ¢g5"*, defined at the
point where the correlation length diverges. This means that the coupling can
be expressed as a function of the lattice spacing. (When massive quarks are

considered there is an additional dependence upon the & values).

In the case of massless quarks, a generic hadron mass in lattice units, my, at
the physical quark masses measured on a particular lattice simulation, depends

on f and hence go. The physical value of the hadron mass, My, obtained by
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setting the lattice scale, is defined by

M (go, a) = mu(go)/a (1.73)

where M depends on both the coupling and the lattice spacing. The physical

mass in the continuum limit, Mﬁhys, can be reached in the limit @ — 0
lim M (go, @) = M (1.74)

provided go(a) is a well defined function of a which tends to the critical value of

crit

the coupling, gg™* in the limit. For QCD the critical value of the coupling occurs
at g&""* = 0 due to asymptotic freedom, or in terms of the lattice parameters, as
B — oo. From the discussion above, the functional dependence of the coupling
on the lattice spacing depends on the choice of observable. However, if the lattice
spacing 1s sufficiently small a region of parameter space exists where a universal
function can be defined for go(a). This region of parameter space is known as the

scaling region.

Lattice simulations are said to be in the scaling region, &, if dimensionless
mass ratios measured on lattices with different lattice spacings give the same

result
mi(go) _ mi(gp)

ma2(go) a ma(go)

where go and ¢; label two simulations in the scaling region. In practice, residual

= constant, go, go € S (1.75)

lattice artifacts will result in scaling violations. The improvement programme,
discussed in section 1.6, aims to reduce the scaling violations in order that sim-
ulations from a wider range of [ values can be considered to lie in the scaling
region. In the scaling region, lattice hadron masses can be parametrised in terms
of a dimensionless constant ¢ and their functional dependence on the strong cou-
pling. If the functional dependence on the coupling, f(go), is the same for two

different lattice masses, denoted by m, and m,

mi(go) = ¢if(g0) = cibrasa,  i=1,2 (1.76)
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then the simulation is said to be in the scaling region of parameter space. As a
consequence of requiring that the observables are independent of the lattice cutoff,
7/a, a mass scale, Apa, is introduced through a process known as dimensional

transmutation.

The introduction of a mass scale is not unique to the lattice formulation,
but parametrises the asymptotic freedom property of QCD. In order that the
QCD Lagrangian simultaneously explains the high energy and the low energy
behaviour, the functional dependence on the coupling in the lattice theory is

defined from the renormalisation group equation

) N a
Go = ﬁLat(QO)gég - ’YLat(gmmq)égq O(a, go, mq) = 0 (1.77)
where O(a, go,mq) is an observable measured in physical units. Note that the
dependence on the bare mass of one flavour of quark has now been included. The

lattice -function and v-function are defined by,

9
Bualgn) = —azt = —fogs = frgl + ... (1.78)
)
Yat(go) = —a g;q = —doggmq + - .. (1.79)

where the coefficients of the -function and y-function have been determined in
perturbation theory [33, 34, 35, 36, 37]. In the quenched approximation, where
the number of dynamical quark flavours is assumed to be zero (N; = 0), they are
given by

Bo =11/167%, = By = 102/(1672)?, do = 8/16m* (1.80)

The (-function in equation 1.78 can be integrated to yield the following expression

for Arae which parametrises the dependence of the coupling on the lattice spacing

1 1 o
M = roxp (=202 ) (Boad) /OB 0GR (L)

where Apae arises as an integration constant. Lattice simulations where Ap,, is

given by equation 1.81 are said to be in the asymptotic scaling region. This is
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the region in parameter space where lattice simulations should ideally be per-
formed. Equation 1.81 is related to the phenomenon of asymptotic freedom and
describes how the coupling runs as the energy scale (defined by the lattice spac-
ing) is varied. Note that the strong coupling is usually expressed in terms of as,
where a5 = ¢g2/4w. In theory, Ap.;, can be measured on the lattice and compared
with the perturbative expression in equation 1.81 in order to assess the scaling
violations and ensure that a reliable extrapolation to the continuum limit can
be performed. In practice, several lattice simulations are performed for differ-
ent lattice spacings in the scaling region and dimensionless mass ratios are then
extrapolated to the limit @ — 0 where the scale is set by comparing one of the
hadron masses with its experimentally measured value. The details of the con-
tinuum extrapolations performed with the data from the quenched simulations

are discussed in section 3.12.

The v-function defined in equation 1.79 can be integrated to yield the renor-

malisation group invariant quark mass, M
M = mq(2B0g5) ™"/ P21 + O(g3)] (1.82)

which describes how the current quark masses run with the coupling. This ex-
pression is used in section 3.10.1 where the determination of the renormalised

current quark masses from the quenched simulations is discussed.
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1.13 Overview of thesis

In chapter 2, the construction of hadron correlators on the lattice is discussed,
and the fit procedures used in this thesis to determine the light hadron masses
from the hadron correlators are described. Chapter 3 presents the results of
the light hadron spectrum determined from simulations employing the quenched
approximation. The physical masses of the pseudoscalar and vector mesons, and
the octet and decuplet baryons, are determined in the continuum limit from data
sets at three values of the lattice spacing. The effect of the O(a) improvement of
the fermion action on the scaling behaviour of ratios of lattice masses at different
lattice spacings is invesfigated. A comparison of the scaling behaviour was made
between simulations using the two improvement schemes described in sections 1.9
and 1.10. The error due to finite size effects is examined for one value of 3. Results
for the ratio of the strange and “normal” current quark masses are presented,
where the normal quark mass is defined as the average of the up and down quark

masses.

Chapter 4 presents the first resu‘lts for the light hadron spectrum obtained
from a matched ensemble of data sets with Ny = 2 dynamical fermions. The
results are compared with a data set in the quenched approximation at the same
lattice spacing. Comparisons were made with a simulation with a lighter dynam-
ical fermion mass at a slightly smaller lattice spacing. The evidence for quark
loops effects in the light hadron spectrum is examined. Evidence of dynamical ef-
fects observed in other quantities measured on the matched ensemble, such as the
static quark potential, is reviewed. The final chapter summarises the conclusions

obtained from the results presented in the previous chapters.



Chapter 2

Hadron masses from correlation functions

This chapter discusses the methods used in this thesis to extract the lattice values
of the hadron masses from Euclidean correlation functions. First, the construc-
tion of the correlators from interpolating quantum field operators is described,
and the generation of the correlators on the lattice is discussed. The smearingand
fuzzing techniques, used to improve the overlap with the ground state with re-
spect to the excited states, are introduced. The relationship between the hadron
masses and the behaviour of the correlators at large times is presented. The
types of fit investigated are then described and finally the general fit procedure

and selection criteria for the best fit are outlined.

2.1 Correlation functions

Euclidean correlation functions, or correlators, are defined in terms of vacuum
expectation values of time ordered products of quantum field operators. Hadron
masses are determined from examining the large time behaviour at zero three-
momentum of the particular type of correlators known as two-point functions. A
two-point function (which shall be considered to be the correlator which is referred
to throughout this thesis), C(x,t), is defined to be the vacuum expectation value

of the time ordered product of the interpolating quantum field operators
C(=,t) = (0| T {O(2)O'(0)} |0) (2.1)

The interpolating operators represent the hadron under study, created at the
origin by the source operator, O1(0), and annihilated at some other point in

spacetime by the sink operator, O(z). Each operator is chosen to have the same

32
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colour, spin, valence quark content and parity as the hadron it represents. The
source operator acting on the vacuum creates a state which is a linear combina-
tion of all the eigenstates of the Hamiltonian with the same quantum numbers,
including excited states of the hadron state in question. Many such operators can
be formed and the local operators used in this thesis are detailed in section 2.2
(operators which include a dependence on the spatial distribution of the hadron
wavefunction are considered later in section 2.4). The main selection criterion
for the interpolating operators is that they should have a non-zero overlap with

the hadron state
(0] O(z) |n,p) # 0 (2.2)

while minimising the overlap with the excited states.

2.2 Interpolating operators for mesons and baryons

Interpolating operators must possess the same quantum numbers as the hadron
under study. Meson operators with the correct colour, spin and parity can be

written generically in a form bilinear in the quark field operators [38]

Om(z) = o (2)Teha(z) - (2.3)

where I' represents one of the 16 possible Dirac gamma matrix combinations
which lead to a operator invariant under the residual hypercubic symmetry of the
lattice and @ labels the colour index. The Dirac spinor and flavour indices have
been suppressed for clarity. Table 2.1 shows the local operators corresponding to
the pseudoscalar and vector mesons used in this thesis. (The axial pseudoscalar
operator is required for later use in the determination of the partially conserved
axial current mass). Considering only the lightest flavours of quark, up, down
and strange (u, d and s), correlators constructed from these operators can be used
to determine the masses of the pseudoscalar mesons (7 and K) and the vector

mesons (p, K* and ¢). Note that electromagnetic effects are neglected. Baryon
P g g
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Lightest meson JF® Operator Channel
7°(135) 0t  P(z)= 1;2(16)’)’5¢a(.’13) Pseudoscalar
Ay(z) = Yo (2)Vay5%a(T) Axial pseudoscalar
p(770) 1=~ Vi(z) = Yo(z)vitha(z) Vector
Lightest baryon I(J¥) Operator Channel
N(940) 17) (Wi(@)Csthu(z))e
z

T)Eube Nucleon
o
[+

(
i (¢2(x)074751/)b( ))"b (m)aabc
A(1232) 2G7T) (@) Cyus(2) ¥l (2)ewpe  Delta

Table 2.1: Interpolating operators used in this thesis and the corresponding light-
est hadron state. The spin, parity and charge conjugation properties of the op-
erator are shown. The index : runs from 1 to 3 and u from 1 to 4. Note that
charge conjugation is only defined for neutral mesons.

operators are formed from three quark fields and take the general form
() = ($7(2)CTHs(@))2 (2)eane (2.4)

where a, b, ¢ are colour indices, « is the free spinor index and the flavour indices
have been suppressed. Note that e, is the totally anti-symmetric colour tensor.
The charge conjugation matrix, C' = 447,, transforms a quark field to an anti-
quark field while retaining the same spin orientation. This baryon operator does
not have a well defined parity and in fact couples to both parity states. The
operator can be modified by multiplication with the Dirac projection operator,
2(1+4), which projects out the positive parity state studied here. The negative
parity state is similarly obtained by multiplication with the operator, (1 — v4).
In practice the positive parity correlator (denoted by Cf) is obtained from the
baryon correlator by averaging over the (11) and (22) free spinor indices. Similarly
the correlator corresponding to the negative parity state, Cg, can be obtained by

averaging the (33) and (44) indices.

Table 2.1 shows the baryon operators examined in this thesis. The delta
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baryon operator contains both a spin-% and a spin-% state [38]. In order for this
operator to represent the spin—g’- decuplet baryons, the spin—% component is pro-
jected out by noting that the delta correlator created by the operator with v, = 4
i1s a pure spin—% state. The spin—% part of the delta correlator is then obtained
by averaging over the correlators constructed from the three spatial gamma ma-
trices, v, and subtracting the delta spin-% correlator. This is performed after
the projection onto definite parity states described above. Note that the delta
operator is flavour symmetric under the interchange of any two quarks. If non-

degenerate combinations of quark flavours are considered, this operator can be

used to study the A, ¥*, =* and ) decuplet baryons.

The nucleon baryon operators in Table 2.1 are used to construct correlators
corresponding to the spin-% octet baryons. The octet correlators are harder to
construct due to flavour symmetry considerations in the first two quarks, the
full details of which can be found in [39, 40, 41]. Basically, the octet baryon
operators are composed from a linear combination of the general operator, chosen
to have the appropriate flavours of quarks which make the flavour symmetry of
the baryon explicit. Examples of the octet baryon operators, taken from [40], are

shown below

O%(a) = VI{(d(2)Crpsus(2))d2 ()

20(@) = —{(s7(2)Csu(@))d2 () + (5T(2)Cryode (2))u2 () bowre  (2.6)
A @O (2)52 () + (u1(e)Crss (2))d2(e)

— (@) Cssil))us(e) - (1) Crmun(2))s2 () b ewre (27)

+ (dg(2)Csdy(2))ud () Yeare (2.5)
)+ (
o

These symmetrised forms have been used in order to project against the flavour
singlet state and the relative normalisation is governed by the SU(3) flavour sym-
metry. Note that the sign of each term flips under the interchange of the quark
fields in parentheses. The spin—% octet correlators are split into two main types,
“sigma-like” (used to study the N, ¥ and = baryons) and “lambda-like” (used
to study the A baryon), referred to by the labels sigma and lambda respec-

tively. The operators used to construct the sigma/lambda correlators are flavour
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symmetric/anti-symmetric under the interchange of the first two quarks. Al-
though created from linear combinations of the same basic operator, the symme-
try conditions enforce different contractions between the quark fields which result
in the appropriate correlator. This can be seen more clearly in the next section

which describes the construction of correlators from hadron operators.

2.3 Hadron correlators from quark propagators

Once a choice of hadron operator has been made, the corresponding correlator
can then be constructed. This section describes how this is achieved, by using the
generic meson operator as an example. The correlator is obtained by substituting

the meson operator defined in equation 2.3 into equation 2.1

Cr(z, 1) = (01 T {5 (2) D8 ()9 (0) (vl Ty4)47 (0) } J0) (2.8)

where the spinor (Greek) and colour (Latin) indices have been shown. Integrating

out the fermions gives the following trace over the spin and colour indices
Ou(, ) = <—Trsc {Gg;'(o, 2 U)T*P GB35 (2 0, U)(74P774)‘”} >U (2.9)

where the minus sign arises from the anti-commuting nature of the fermion fields
and ()., denotes the average over the gauge field configurations. Here G:f(:t, 0;U)
is the quark propagator evaluated on each gauge configuration. If the quark fields
in equation 2.8 all have the same flavour an additional contraction of the fermion

fields is possible
(Tre {GE2 (2 U)T* ) T { G (0,0 U)(74FT74)5“’}>U (2.10)

For the flavour non-singlet mesons considered here (e.g. 7° = @4y — dd) these
disconnected terms will largely cancel, assuming the approximate flavour sym-
metry of the vacuum [16]. (Indeed, these terms exactly cancel in this example
since my = 1mq in the lattice simulation). For this reason, terms of this type have

been neglected. Expression 2.9 can then be simplified by using the Hermiticity
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relation for quark propagators
G (0,23 U) = 3Gt (2, 0, Uy (2.11)

where the adjoint (1) is defined with respect to the spinor and colour indices, to

yield the final expression for the meson correlator
Cm(z,t) = <—Trsc {’75GT($,0; U)vsI'G(z,0; U)(74F774)}>U (2.12)

The indices have now been suppressed for clarity. The correlator is then evaluated
by performing the trace over the quark propagators and appropriate I" matrices.
A schematic diagram of the trace is shown in the meson contraction diagram in

Figure 2.1.

Baryon correlators are similarly constructed from quark propagators, summed
with the relevant spin and colour contractions. As an example, consider the

nucleon correlator
Cn(z,t) = <TrS [f(Gd, Gy, nysGd(C%)T)] + .. .>U (2.13)

where only the contribution from the first term in the operator defined in equa-
tion 2.5 has been written explicitly. The function, F, is defined following the
notation of [42, 43] by

F(Gp,GpyGr) = EabeEarvre {G‘}f’(x, 0; U)Tr, [G*;,g’(x, 0; U)G " (x,0; U)]
+ G (@, 00)GE (2,0, 0)G (w,0;0) | (2.14)

where the colour quantum numbers are labelled by the Latin indices and f;, 1 =
1,2, 3 labels the flavour of the quark propagator. Diagrams a) and b) in Figure 2.1
show schematic depictions of each term in equation 2.14. Note that the trace over

the spin and colour indices, as defined in 2.13, has still to be taken in order to
 obtain the baryon correlator. This would correspond to contracting the filled

circles in the diagram together at both the source and the sink in order to form
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a two-point function. The other baryons are constructed similarly.

r a) r b) r
®
T
Gfl Gf1 A Gfl Gfa sz
r r r
Meson Contraction Baryon contractions

Figure 2.1: Schematic diagrams of meson and baryon contractions formed by
taking the trace over the spin and colour indices. Each line represents a quark
propagator, G(z,0;U), where the flavour is labelled by f;. The I'’s denote the
insertion points for the Dirac v matrices. Note that figures a) and b) correspond
to each term in the intermediate stage, defined in equation 2.14, of the contraction
to form the baryon correlator. The trace over the spin and colour indices must
be performed in order to obtain the baryon correlator defined in equation 2.13.

On the lattice, the correlator (as defined in equation 2.12 for a meson) is mea-
sured on each gauge configuration in the statistical ensemble, where the quark
propagators are computed by inverting the fermion matrix. In order to obtain
a Monte Carlo estimate, defined in equation 1.36, of the true hadron correlator,
correlators evaluated on each gauge configuration are averaged. In practice, the
discrete momentum space Fourier transform of the correlator on each gauge con-
figuration is taken (known as time slicing) and then the correlators are averaged

over all configurations.

2.4 Smearing

The previous section has shown how local hadron operators can be used to create
correlators composed from quark propagators. However, in section 2.1 it was
suggested that hadron operators should ideally be selected in order to maximise

the overlap with the hadron state under examination. This can be achieved
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by modifying some or all of the fermion fields in the operator by making the

appropriate replacements
Y@ t) = Y S (@ y)b(y, 1),  Px,t) > Y p(y,1)S(y, =) (2.15)

where the smearing functions, S or S’ model the spatial distribution of the hadron
wavefunction. Note that S and S’ can be different. The smeared fermion fields
result in a modification of the quark propagator in the background gauge field,
G(z,0;U). In order to show the explicit time dependence of the propagator,
the notation Gy(z,t;0) = G(z,0;U) in used in this section, where the subscript
U indicates that the propagator is evaluated on each gauge configuration. The

smeared propagator is then

G35 (x,1;0) = / DEDYS (, y)ib(y, )h(z,0)5(z,0)e=FFHU (2.16)

where Z is given by the integral in equation 1.30. The label S'S denotes that both
the source and the sink of the propagator are smeared. Note that the dependence
of the smearing functions on the gauge configurations is implicit. Equation 2.16

can be written as

Gy (,4;0) = > S'(2, )Gl (y,1;0) (2.17)

where the source smeared propagator, G (y, t;0), is expressed in terms of the
propag U ) ?

local propagator, Gu(y,t; z,0), by
GiF(y,t;0) = ZGU y,t,2,0)5(2,0) (2.18)

Since the local propagator is derived from the inverse of the fermion matrix, the

source smeared correlator on each configuration is then obtained by solving the
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matrix equation

> My(z,t5y,t)GE(y, 4;0) = S(2,0)5 0 (2.19)
Yy

where M(z,y; U) is the fermion matrix defined in equation 1.60. (Note that this
equation is used to obtain the local propagator if the smearing function, 5, is re-
placed by 4,0). Correlators constructed from propagators which are smeared are
found to be statistically noisier than local correlators, thus propagators smeared
at only the source or only the sink have been included in the analysis. All that
is needed now is an appropriate smearing function. One choice of function can

be obtained via the Jacobi smearing procedure.

2.5 Jacobi smearing

Jacobi smearing [44] is used to obtain a smearing function which approximates
the spherically symmetric ground state wavefunction of the hadron. The proce-
dure is a variant of the Wuppertal iterative scheme applied to Wuppertal scalar
propagator smearing [45]. One advantage of this smearing method is that it cre-
ates a gauge invariant smearing function and hence there is no need to fix the
gauge. In the Wuppertal scalar propagator scheme, the quark propagators are
smeared by choosing S in equation 2.19 to be the three dimensional scalar prop-
agator. For free scalar field theory in the continuum, the scalar propagator takes

the form of an exponential

1
(0| ®(2)®(0) |0) me—mlwl (2.20)
where m is the mass of the scalar field. Since this form is spherically symmetric
and vanishes as |#| — oo, it is then expected that the lattice scalar propagator

can be used to approximate the ground state wavefunction. On the lattice the

scalar propagator, 5, is determined by solving the matrix equation

> K(z,y)S(y,0) = a0 (2.21)
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where K is the three dimensional lattice Klein-Gordon operator

1{(337 y) = 51,1/ - KSJ(":) y) (222)
where .
I(@,9) =Y |Sye-aUl(@ = ) + yasalu(®)] (2.23)
p=1

and the scalar hopping parameter, kg, is directly related to the mass and hence
the radius of the wavefunction. The lattice spacing has been set equal to unity.
A similar matrix equation can be solved for every time slice in order to obtain
the sink smearing function. However this introduces a significant computational
overhead. In order to reduce the computational effort, an alternative smearing
function can be obtained by iteratively solving equation 2.21 as a power series in

ks. In this case, Jacobi iteration 7] given by

S(@,0) = b0 + 55y J(2,y)S" V(y,0),  S2,0)=6,0  (2.24)

Yy

and applied N, times, was used to obtain the source smearing function. The
sink smearing function can be obtained in a similar manner. Note that if kg is less
than some critical value then the power series converges to the scalar propagator.
However, larger values of ks which result in a divergent series still provide a valid
smearing function. The two parameters in the smearing procedure, Nj,. and kg

were tuned to find the optimum radius of the wavefunction, where the radius is

defined by
P =) l2|*|S(=,0)]*/ Y _|S(=,0)? (2.25)

The number of iterations, Nj,., was selected to be the minimum number required
to obtain a value of the radius which maximises the overlap with the ground state
while keeping the statistical noise in the signal to a minimum. An investigation
to determine the optimum smearing parameters used in this thesis was carried
out in [39]. For the quenched simulations using the Jacobi smearing procedure,
which are indicated by the label jac in Table 3.1, the values Nj,. = 16,30 were
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used for the data sets at § = 5.7,6.0 respectively. A value of kg = 0.25 was used
throughout.

Although there is no direct physical motivation for modelling the smearing
function by the scalar propagator, the Jacobi smearing technique does indeed
increase the overlap with the ground state, as can be seen later in chapter 3. An
alternative prescription used to obtain a smearing function is fuzzing. Fuzzing
alms to reduce the contamination of the ground state due to excited state contri-
butions, and has the benefit that it is computationally less intensive than Jacobi

smearing.

2.6 Fuzzing

Mesons composed from heavy quarks (for example c¢ and bb) are approximately
non-relativistic. Assuming that the characteristic time scale associated with the
movement of the heavy quarks is significantly larger than that of the gluons
and light quark loops in the vacuum, the adiabatic approximation can be made.
This approximation means that the effect of the gluons and quark loops can
be modelled by an interaction potential between the heavy quarks. From these
assumptions it is then expected that the spectra of these states can be approx-
imately described by heavy point particles bound by a non-relativistic central
potential, V(r). The potential V(r) can be characterised by the energy of static
colour sources separated by a distance r, where the static colour sources are
connected by a colour flux tube or string. Although there is no corresponding
physical interpretation for light quark hadrons, the fuzzing prescription described
in [46] can be used to construct hadron operators which create such a colour flux
tube connecting the quark fields. The implementation of the fuzzing procedure in

this context was motivated by the consideration of the smeared meson operator

defined by
Om(z) =Y 4(y,1)S(y, 2)T¢(=, 1) (2.26)

where the smeared anti-quark field defined in 2.15 has been substituted into equa-

tion 2.3. The smearing function can be defined to be the path ordered product of
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the spatial gauge links along the shortest path between the quark and anti-quark.
In order to maintain the correct J¥C, the resulting operator is symmetrised by
averaging over the six spatial directions. This operator is interpreted as a gluon
flux tube between the fermion fields and has the advantage that this choice of
operator leads to a gauge invariant correlator. However the operator has a poor
overlap with the hadron state due to the fact that the probability that the gluon
field is so localised is small [47]. The overlap can be improved by considering the
contribution from non-local gluon fields. This is achieved through fuzzing the

gauge links.

Fuzzed gauge links were formed by iteratively updating each of the gauge field
links in the spatial directions, U,(z), p =1,...,3, by adding a weighted sum of

the four spatial staples associated with each link

3
UM (2) = Psy) | U (2)+ ) Uﬁﬂ-l)(z)Uﬁn-l)(x+a)Uj<”-1>(x+a)] (2.27)

+v=1
vFEL

where ¢ is the link-staple mixing ratio and Psu(s) denotes that the updated link
must be projected back onto the SU(3) group manifold, since the SU(3) group
1s not closed under addition. This process was iterated Np,, times to obtain the
fuzzed gauge link, UE(&:), used to create the smearing function. The smearing

function is then given by

S(y,x) =Y {ca,,m_m [TUM @ —if) + 6yasra [T UL (= + (i - 1);2)}

u=1 =1 =1

(2.28)
where the fuzzing radius, R, indicates the spatial extent of the function in lattice
units. This smearing function can then be used to generate source and/or sink

fuzzed propagators as described in section 2.4.

For the quenched simulations where fuzzed correlators were generated, de-
noted by the label fuzz in Table 3.1, an investigation into the optimum fuzzing

radius was performed in [39]. The fuzzing radius R was tuned to minimise the
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overlap with the first excited state by examining the relative amplitudes of the
ground and first excited states obtained through the fit procedure as described
in [39]. This study indicated that the optimum radius was R = 6(8) for the
B = 6.0(6.2) data sets respectively. In both cases the fuzzing parameters Npy,, = 5
and ¢ = 2 were used. For all simulations examined in chapter 4 the values
Ntuzz = 5, ¢ = 2.5 and R = 2 were used. A larger link-staple mixing ratio and a
reduced fuzzing radius were selected based on a study of the quenched data at
B = 5.7 and the fact that in this case the lattice spacing was coarser than for the

quenched simulations in chapter 3.

2.7 Notation conventions for correlators

This section sets out the correlator notation used throughout this thesis. As de-
scribed in section 2.3, hadron correlators are constructed from tying together the
appropriate number of quark propagators. Each quark propagator in a correlator
can either be Jacobi smeared, fuzzed or local at the source and/or sink. Although
in principle any combination can be formed, the Jacobi smeared hadron correla-
tors analysed in this thesis were created from quark propagators which all had the
same smearing at the source and/or sink. It was observed [46] that correlators
composed entirely from fuzzed propagators with the same fuzzing radius lead to
a partial cancellation of the fuzzed gauge links between them, creating a com-
ponent which is essentially unfuzzed. Thus the fuzzed correlators were created
by combining either one or two fuzzed quark propagators with a local propaga-
tor to form meson and baryon correlators reépectively. For baryons where two
fuzzed propagators were combined with a local propagator the source and/or sink
fuzzing were the same. Taking this into consideration means that the smearing
status of a correlator can be labelled by just two letters, one for the source and
one for the sink. The types of smearing are denoted by; L for local or point
operators, S for Jacobi smearing and F for fuzzed. For example, the label FL

denotes a correlator which has been fuzzed at the source but not at the sink.

Once the hadron correlators have been generated on the lattice, the next

stage is to determine the ground state mass of the hadron in question. The next
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section shows how the mass is obtained from the exponential decay of Euclidean

correlation functions at large times.

2.8 Hadron masses from correlation functions

The functional dependence of the hadron correlator, defined in equation 2.1, on
the mass can be seen by taking the discrete Fourier transform, a process referred

to as time slicing

C(p,t) =) C(z,t)e™ "™ (2.29)

where the lattice spacing has been set equal to unity. The values of the momenta
in each spatial direction are restricted to the values p; = 27wn,;/L, 1 = 1,...,3,
wheren; = 0,..., L—1 is an integer and L is the spatial extent of the lattice. Sub-
stituting equation 2.1 into equation 2.29 and inserting a complete set of discrete

states defined by

1 1
1=— —_— 2.30
L3 o 2En(q) [naq> <’I’L,q| ( )
gives the momentum space correlator
Cp.1) = 15 Y 55 010(@) ) (n, @l ') [0y (231)
7 L3 2En(q) ? ?

w)“?q

where F,(q) is the energy of the state with momentum q. The operators are
assumed to be time ordered. Using the Euclidean translational invariance relation

for operators
O(z) = th_iQ'zC’)(O)e—Ht‘HQ'm (2.32)

(where H and Q are the Hamiltonian and three momentum operators respec-

tively), and the lattice delta function defined as

) 1 i(q—p)-x
Sup = 73 > el (2.33)
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equation 2.31 can be written as

C,0) = 3 g5sl(010(0) In, p) e (2:34)

n

The masses of each state can be obtained by considering equation 2.34 at zero

three momentum, p = 0. This results in the general form for the correlator
C(0,0) =) Ape™m™ (2.35)

where the amplitude is defined as A, = |(0] O(0) |n, 0)|*/2m,. The behaviour of
this equation at large times is dominated by the ground state mass

lim C(0,t) — Age™°? (2.36)

t—00

This relation shows that the ground state masses of the hadrons can be extracted

from the exponential decay of time sliced correlators at large Euclidean times.

2.9 The effect of periodic boundary conditions

The discussion on obtaining masses from correlators in the previous section as-
sumed an infinite time direction. However for a lattice simulation on a finite
lattice of spatial length L and temporal extent 7', it is necessary to introduce
boundary conditions. The choice of boundary conditions made for the simulations
studied here imposed anti-periodic boundary conditions on quark propagators in
the time direction (and periodic in the spatial directions). The anti-periodicity in
the time direction allows the hadron to propagate both forwards and backwards
in time. This means that the behaviour of the backward propagating hadron
must be taken into account. The general form that the correlators can be fitted

to is then

C(0,8) =Y Ape™™* + Bpe™ ™10 (2.37)

where the second term corresponds to the backward propagating hadron. The

parameter 1 can be either £1 depending upon how the hadron operators trans-
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form under the time reversal operator defined by T = Y47Ys. For mesons, the
backward propagating state has the same mass as the forward propagating state
(rm, = m}) and in the limit of infinite statistics the correlator is symmetric (or
anti-symmetric depending on the sign of 7) about the mid time slice, T'/2. As-
suming sufficient statistics so that this is nearly the case, the meson correlator
is folded about the midpoint and averaged in order to increase the amount of
information used in the fits. The ground state mass of the mesons can then be

fitted to a cosh function

Cm(0,8) = Ag(e™" 4 e7mo(T-1)
mo T T
= 2Ape” 2 cosh [mo (5 — t>] (2.38)

For baryon correlators the backward propagating state corresponds to the parity
partner of the baryon, which has a different mass in general. In this case, the
positive parity correlator, CF, from the first half of the lattice is averaged with

negative parity correlator, Cf, from the second half of the lattice
Co(0,) = [CH(0,8) + C5 (0, — 1)]/2 (2.39)

The ground state of the baryon is then extracted by fitting the averaged baryon

correlator to the form

Cp(0,t) = Age™™" (2.40)

Fits to extract the ground state mass can then be performed following the
general procedure outlined later in section 2.12. However, fits to the ground
state mass have to be carried out at sufficiently large times to ensure that the
contamination from the excited states has died away. This means that the fits
are performed over a small set of the available data points and, in particular, in
a region where the statistical errors in the signal are becoming larger. In order
to determine the ground state more accurately it is better to have an estimate of
the first excited state. Fitting to both the ground and first excited states enables

earlier time slices to be included in the fit. In practice, performing fits to both
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the ground state and one (or more) excited states using a single correlator type
are usually unstable. To achieve a more stable fitting procedure a variational
basis of correlators with different smearing combinations can be used, provided
that each correlator type has different overlaps with the ground and first excited

states. This type of fit is referred to as simultaneous fitting.

2.10 Simultaneous fitting

The simultaneous fitting procedure described in this section is based on the tech-
nique detailed in [48]. The idea is that each correlator used in the simultaneous
fit should have a significant overlap with one of the energy states to be deter-
mined. The simplest case is to consider a simultaneous fit to a pair of correlators
to extract the ground and first excited states. The pairs of correlators used in
this thesis consist of one local correlator, LL, and one correlator which has been
either Jacobi smeared or fuzzed at the source and/or sink. In this case the Jacobi
smeared correlator was selected because it has a large overlap with the ground
state. Similarly fuzzed correlators have a good overlap with the ground state
as the fuzzing procedure minimises the contamination from excited states. The
local correlator included in the fit has a significant overlap with the first excited
state and was used to provide an estimate of the excited state mass. Fits to more
than one excited state were not considered further, as no correlators with a good

overlap with the second excited state were generated.

For a general simultaneous fit, several meson correlators, denoted by C};*(0, ¢)
where s. and sy label the type of smearing (L, S or F) used at the source and

sink respectively, are simultaneously fitted to the equation

NEX
Cec(0,t) = Y Ak (¢7mat 4 g=mn(T-1) 2.41
M

n=0

where Ngy is equal to the number of excited states included in the fit. In or-
der to increase the stability of the fit, the number of fit parameters is reduced
by constraining the masses extracted from each correlator type to be the same,

R -

mye** = my. Baryon correlators are fitted in a similar manner to just the first
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exponential in equation 2.41. In all the simultaneous fits considered here, two
correlators were fitted simultaneously to the ground and first excited states, re-
sulting in a six parameter fit. For simulations containing a limited number of
statistics (such as the dynamical simulations considered in this thesis), a further

type of fit known as a factorising fit was considered.

2.11 Factorising fits

Factorising fits [48] are a generalisation of the simultaneous fits considered above
which impose further constraints on the fit parameters. This is achieved by

factorising the amplitudes of each state
Asese = B B (2.42)

where the matrix elements given by
By = (01 0,,(0) [n,0) //2mq, Bt = (n,0] 0] (0)[0) /v2m,  (2.43)

are in general complex. The form of the factorising fit to the meson correlators

1s written as

Nex
Cri™(0,8) = Y BBy (e7™" + &7 (170) (2.44)
n=0

This equation is fitted simultaneously to several different correlator types. The
factorised amplitudes, B¢ and B¥, can be defined to be real since the hadron
operators under consideration obey charge conjugation symmetry in the case
of equal mass quarks [48]. Baryon correlators are fitted similarly to the first
exponential term in equation 2.44. In practice, the factorising fits to the ground
and first excited states performed with the data sets discussed in chapter 4 used

three correlator types, LL, FL and FF, resulting in a six parameter fit.

2.12 General fit procedure to extract lattice masses

In this section the fit procedure used to determine the lattice values of the light

hadron masses is described. The same general method was used for both the
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quenched data and the dynamical data. A discussion of the x? fitting procedure
is outlined, first defining the x? merit function and then the method used to find
the minimum value of the x? and hence obtain the best fit parameters. There
follows a brief discussion of the smoothing technique implemented to improve the
general stability of the fit and the method used to obtain an estimate of the errors
on the fitted masses. Finally the selection criteria used to determine the best fit

interval are set out.
2.12.1 Effective mass plots

In the initial stages of the analysis it is often useful to consider effective mass
plots. In order to extract the ground state mass the correlator data must be fitted
over a time interval where the minimum time slice, ¢y,n, i1s large enough that the
excited states excluded in the fit can be considered to have decayed. One way to

decide when this occurs is to examine the effective mass plot.

On the lattice the correlators are measured on a data set of N gauge config-

urations. The average time sliced correlator over these configurations is defined

by

C(t) = % Z Ci(0, 1) (2.45)

The effective masses for mesons and baryons are then defined in terms of the

averaged time sliced correlator by

mmesen(t) = cosh™

Ct-=1)+C(t+1) aryon/,\ Ct+1)
200 ] mPaYON () = In [—C-(-t—)—] (2.46)

As time increases, the value of the effective mass will level off (i.e. begin to
plateau), which indicates that all the excited states have decayed. The height of
the plateau can be used to provide an estimate of the ground state mass. The
time slice which marks the onset of the plateau can be used as a rough guide to
select the appropriate fit interval over which to extract the ground state mass
(a longer fit range can be selected when the first excited state is included in the

fit). The final values for the lattice masses are then fitted over this interval by
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minimising the x? merit function.
2.12.2 x? fitting

Minimising the x? merit function is a standard procedure for fitting data to
a model function [49]. The description below uses notation specific to fitting
the correlator data considered here. The averaged correlator, C(t), defined in
equation 2.45, is fitted to the model function, f(a,t), where @ = (a4,...,an)
represents the fit parameters to be determined. For example, in the case of a
meson correlator the simplest f(a,t) is the function defined in equation 2.38.

The data is fitted to the model function by minimising the y? statistic

X' =Y [f(a,ti) = C(:))Cov (ts, ) [f (a, &) — C(%)] (2.47)

ti,t5

This form for the x? takes into account the correlations in the data between
different time slices via the covariance matrix. The covariance matrix, Cov (¢, t;),

is computed using

N
Cov(ti, ) = Z (t)Ck(ty) — C(t)] (2.48)
k:l
where Ci(t) is the k’th time sliced correlator in the ensemble and C() has been
defined in equation 2.45. When the data to be fitted to the model function is
some function of several correlator types, i.e. C(¢) in equation 2.47 is replaced
by D(t) = f(C4(t),CB(t),...), the covariance matrix is instead computed using
the Jackknife sampling technique

Cov(t, 1) = Z[Dk )][Dk( ;) = D(%)] (2.49)

where Dj(t) is the time sliced data function determined on the k’th jackknife
sample obtained by removing the k’th configuration from the ensemble. In other
words, Di(t), is evaluated in terms of the appropriate averaged time sliced cor-

relators, defined by equation 2.45, where the correlators determined on the 7 = k
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configuration have been removed from the average. The jackknife sampling tech-
nique repeats this for each configuration in the data set. The average data func-
tion Dy (t) is compared with D(t), the average of Dy(t) over all the jackknife
samples, for each jackknife sample. In both cases the diagonal entries are just
the variance of the data points. It is easier to see the correlations in the data by
looking at the correlation matrix defined by

Cov(t;,t;)

) Lo 2.50
orr( j) \/COV(ti, ti)COV(tj; tj) ( )

The entries of the correlation matrix are in the range [—1, 1], where 1 means the
data are strongly correlated and -1 means that the data points are anti-correlated.
Once the x? has been defined, the next stage is to determine the fit parameters,

at which the minimum value of the y? occurs.
2.12.3 Minimising the x?

The x? is minimised using the Marquardt-Levenberg method [49] which combines
the method of steepest descent with the inverse Hessian technique. The Hessian
matrix or curvature matrix « is constructed from the second derivatives of the x?
with respect to the fit parameters. It is inverted using the SVD, singular value
decomposition algorithm, to obtain the next guess for the fit parameters. The
x? is then re-evaluated using the new fit parameters. The algorithm is repeated
until the minimum of the x? is found and the best fit parameters are obtained at

this point.
2.12.4 Eigenvalue smoothing

When performing simultaneous fits, the minimisation algorithm was found to be
sensitive to the initial guesses for the excited state fit parameters. Varying the
initial guesses for these parameters, even slightly, affected the ability of the algo-
rithm to converge to the minimum of the x? as a result of the curvature matrix,
«, becoming close to singular. This indicates that it is difficult to fit the ex-

cited state. The method used to stabilise the fit was derived from the eigenvalue
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smoothing technique for the correlation matrix described in reference [50]. In
this thesis, the smoothing technique is applied to the eigenvalues calculated in
the SVD process used to invert the & matrix. The three lowest eigenvalues, cor-
responding to the parameters associated with the excited state, were smoothed.
This was achieved by comparing these eigenvalues with the average of the three
eigenvalues. If a given eigenvalue was lower than the average then the eigenvalue
was replaced by the average value. This procedure does not effect the position of
the minimum of the x? only the route taken through parameter space to reach
it. It was found that with this technique the fitted parameter values were inde-
pendent of the initial guess and resulted in a more stable fitting procedure. This

technique was implemented for both the simultaneous and factorising fits.
2.12.5 Bootstrap re-sampling

In order to obtain an estimate of the error on the fitted parameters the technique
of bootstrap re-sampling [51] was used. A bootstrap sample is created by selecting
N correlators from the data set at random and with replacement. The x? fit
procedure described above is then repeated. This is repeated 1000 times for the
quenched data sets and 500 times for the data sets in chapter 4, due to the fact
that there are less statistics available for the dynamical data sets. The error
is then calculated by taking the 68% confidence limits. This occurs when 68%
of the results obtained from the bootstrap analysis are within o of the average
value. Asymmetric errors are calculated by determining the difference between
the parameter values obtained from the best fit (determined from the original

ordering of the data set) and the upper and lower confidence limits.
2.12.6 Goodness of fit

One indication of the goodness of the fit can be obtained by considering the
minimum value of the x2. An acceptable x? value should be close to the number
of degrees of freedom (d.o.f) in the fit. The d.o.f in this case is equal to the
number of time slices in the fit interval minus the number of fit parameters,

d.o.f =t — m = v. In addition to the x?, the quality of the fit can be assessed by
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computing the incomplete gamma function

2 [o'e)
v X 1 ~ty(5-1)
Q (—, ) = — / e~ "2 ¢t 2.51
2 2 F(‘z‘) X2/2 ( )

The @) value is the probability that the x? (assuming that the errors on the data

are normally distributed) should exceed the particular value of the x? obtained,
by chance. A value for ) < 0.001 means that either the model function does
not describe the data or the size of the errors are too small or are not normally
distributed. Values for @) close to 1 indicate too good a fit and usually means
that the errors on the data points have been overestimated. Ideally the @ value

should be around 0.5.
2.12.7 Sliding window analysis

To determine the optimum fit range over which the lattice masses are extracted,
a sliding window analysis was performed. This was achieved by first selecting
the maximum time slice, {max, included in the fit and gradually pushing the
minimum time slice, ¢,,in, closer towards the origin. Fits were then performed for
each interval and compared. Unless otherwise stated in the text, the maximum
time slice was selected to be half the temporal extent of the lattice, provided an
acceptable x?/d.o.f. was obtained from the fit. Where this was not the case, tmax
was reduced. The final fit range was determined by considering the following

criteria,

e The value of the fitted mass should be consistent within errors when ¢, is

changed by one time slice.
e The fit should have y*/d.o.f. of around 1.

e The ) value should ideally be approximately 0.5.

A further consideration is that the fit interval should be as long as possible while

satisfying the points above. This includes as much of the available information
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in the fit in order to reduce the bias of the fit due to the correlated fluctuations

present in the data.

2.13 Application of the fitting procedure

The determination of the best fits for the ground state masses for all the mesons
and baryons considered in this thesis implemented the general fit procedure out-
lined above. The selection of the type of fit (ground state only, simultaneous or
factorising) is discussed for each simulation in the following chapters. Fits to sec-
ondary quantities determined from the masses were also determined using the x?
minimisation technique. The next two chapters present the results obtained for
the light hadron spectrum in the quenched approximation and for the dynamical

simulations respectively.
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Quenched spectrum results

In this chapter the results obtained from the analysis of the data sets generated
in the quenched approximation are presented. The results for the lattice values of
the hadron masses obtained by implementing the general fit procedure described
in section 2.12 in the previous chapter are discussed in detail for each data set.
All the final values for the lattice masses can be found in appendix A. In addition,
the Partially Conserved Axial Current (PCAC) mass is determined for each data
set. Then results which can be obtained without requiring any extrapolations,
such as the hyperfine mass splitting and the J parameter are discussed. Chiral
extrapolations are then performed followed by continuum extrapolations which
are compared with experiment. Some of the quenched data has been analysed
independently by other members of the UKQCD Collaboration. Results obtained
from the tadpole improved data sets have been published in [52, 53, 54, 55]
and results for both the tadpole and non-perturbatively improved data sets were
presented in [39]. The results presented here represent the final results for the

quenched light hadron mass spectrum to be published in [56].

3.1 Simulation parameters

This section outlines the simulation parameters used in the quenched light hadron
spectrum analysis. Data sets at three values of the lattice parameter § were gener-
ated in order to explore the continuum limit. The hybrid over-relaxed algorithm
described in [57] was employed in the production of the gauge configurations,
which use the standard Wilson plaquette action. The quark propagators were

generated using O(a) improved Wilson fermions.

56
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Tadpole improved data sets

[¢] Cow L*-T L[fm)] K # conf. smearing
5.7 1.5678 16°-32 2.7 0.13843, 0.14077 147 jac
6.0 1.4785 16°-48 1.5 0.13856, 0.13810, 0.13700 499 fuzz
6.2 1.4424 24%.48 1.6  0.13745, 0.13710, 0.13640 218 fuzz

Non-perturbatively improved data sets

[¢] Cow L*-T L[fm)] K # conf. smearing
6.0 1.7692 16°-48 1.5 0.13455, 0.13417, 0.13344  496(3) fuzz
6.0 1.7692 32°-64 3.0 0.13455,0.13417, 0.13344  70(2) jac
6.2 1.6138 24°-48 1.6  0.13530, 0.13510, 0.13460 216 fuzz

Table 3.1: Simulation parameters for the quenched data sets. The parenthe-
ses show the number of exceptional configurations removed from the ensemble.
The lattice size in physical units has been estimated using ro (defined later in
section 3.7) to set the scale.

Table 3.1 summarises the simulation parameters for the quenched data sets.
The & values have been chosen to lie in the region of the strange quark mass in
order to study the strange sector of the spectrum. Meson and baryon correlators
have been computed using non-degenerate combinations of quark masses for all
data sets except for the § = 5.7 data set where non-degenerate baryons were not
generated. Some quark mass combinations of baryon correlators from the g = 6.2
tadpole improved data set were generated on only 200 configurations. For the
non-perturbatively improved data sets the number of exceptional configurations
which have been removed from the ensemble are noted in the parentheses. The
exceptional configurations present in the original ensemble were identified by the
inability of the numerical inversion of the fermion matrix to converge for some
components of the quark propagator. This is due to the occurrence of near zero
eigenvalues of the fermion matrix, known as zero modes, the presence of which
has been verified for the exceptional configurations encountered here [58, 59].
Note that in simulations with dynamical fermions the incidence of exceptional

configurations is suppressed due to the inclusion of the fermion determinant in
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the gauge generation procedure, where the presence of zero modes means that
det M[U] is very small.

The fraction of exceptional configurations within a particular ensemble is
expected to increase for smaller quark masses and/or larger values of g2, ¢, and
L/a [30]. This was investigated in [56] by comparing the LL correlator at T'/2 for
the smallest quark mass from both the tadpole and non-perturbatively improved
data sets at § = 6.0. The width of each distribution of the correlator data was
defined by

Azy/Tm, Azy =2y — T, (3.1)

where z,, is the median and z, is the upper value of the 68% confidence limit.
In both cases the width was approximately the same, Az,/z, ~ 0.65 and the
distribution was found to extend smoothly out to z,,+9Az,. The main difference
occurred in the number of points lying far beyond this region. In the tadpole data
set only one such point at approximately 37Az, above the median was encoun-
tered as opposed to three points at 44Az,, 65Az, and 360Az, above the median
for the non-perturbatively improved data set. This indicates that although the
level of statistical fluctuations is approximately the same, the incidence of ex-
ceptional configurations is indeed observed to be higher for larger values of the
clover coefficient. A third exceptional configuration was found in the process
of fuzzing the propagators in the non-perturbative data set. Attempts to treat
the exceptional configurations using techniques such as the Modified Quenched
Approximation described in [60, 61, 62] have not been implemented here. In the
case of the small volume at # = 6.0, these exceptional configurations account for
less than 1% (3% for the large volume) of the total number of configurations.

Thus their removal should not seriously distort the results.

3.2 Fitting the lattice hadron masses

The detailed mass results obtained from the fitting procedure are explained in
the following sections for all the quenched data sets. The analysis of the data

sets with fuzzed correlators proceeded in a similar manner and are thus discussed



Chapter 3. Quenched spectrum results 59

together. The § = 5.7 and large volume § = 6.0 data sets, which implement the

Jacobi smearing technique described in section 2.5, are discussed separately.
3.2.1 Fits to the fuzzed data sets

Fuzzed correlators have been generated for both the tadpole and non-perturbatively
improved data sets at § = 6.0 and § = 6.2. The details of the fuzzing technique
and the particular parameters used for each data set were described in section 2.6.
Correlators with the fuzzing combinations LL, FL, LF and FF, have been con-

structed where the notation used has been defined in section 2.7.

Meson correlators were fitted by simultaneously fitting a pair of correlators

to the ground and first excited states using the function
Cm(0,t) = Ag (e + e (T=0) 4 4, (7™t 4 =™ (T-1) (3.2)

as described in section 2.10. Both the correlator combinations LL,FL and LL,FF,
were considered for the fits to the pseudoscalar and vector channels. Combina-
tions involving the sink fuzzed correlator LF were not considered because this
correlator behaves in a similar manner to the source fuzzed correlator FL but
has a lower signal to noise ratio. The degenerate nucleon and delta baryons were

analysed in the same way, to a double exponential form
OB(O, t) = Aoe_m"t + Ale_mlt (33)

For the delta, sigma and lambda non-degenerate baryons it was only possible
to consider simultaneous fits to the LL,FL combination of correlators, as these
were the only correlators generated due to limits imposed upon the computing

resources.

The optimum fit range for each correlator combination considered was selected
by performing a sliding window analysis as described in section 2.12.7. As an
illustration of the information obtained from this type of analysis, the § = 6.0

non-perturbatively improved data set has been chosen as an example. Figure 3.1
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shows the values obtained from the sliding window fits to the correlators with
the heaviest quark mass, k = 0.13344, for the pseudoscalar and vector mesons. -
The top row of plots show the fitted value of the mass obtained as t,,;, is varied.
The maximum time slice was held fixed at ¢{nax = 23. The plots directly below
show the y?/d.o.f. and the @ values for each fit. Using the criteria that the fit
range should be as long as possible while observing an acceptable x?/d.o.f. and @
value, the fit range was selected to be [6-23]. The final ¢, selected is indicated
on the plots by the arrow. In general fits to the pseudoscalar were found to be
very stable under small variations of the fitting range. For the vector channel,
systematic effects in the value of the fitted mass were observed by varying the fit
interval. The variation was around one o for the worst case. The sliding window
plots for the vector show an example of an unstable fit for the fit range [7-23]. For
this point the fitting routine failed to find the minimum of the y? as occasionally
happens for the vector channel. The fit range of [6-23] has been chosen for the
best fit as the effect of decreasing t,,n by two time slices gives a result for the

mass which is consistent within errors.

Figure 3.2 shows an example of the sliding window plots obtained for the
degenerate nucleon and delta for the heaviest quark mass correlator. The final
fit range selected was [9-23] as this gives the longest possible fit range with an
acceptable x?/d.o.f. and @ value. Plots for correlators with lighter quark masses
show the same general trend but the errors are larger due to increased noise in the
signal. For the other data sets considered here, a similar sliding window analysis

for all the baryon data was performed.

Figures 3.3 to 3.6 show example effective mass plots, as described in sec-
tion 2.12.1, for all four data sets for the pseudoscalar, vector, nucleon and delta
channels for the heaviest quark mass. Plots for correlators composed from lighter
quark masses show a similar picture but with noisier signals. Effective mass plots
for the non-degenerate baryons show the same qualitative features as the degener-
ate delta and nucleon and hence have not been shown. The data points show the
effective mass determined from each of the correlators used in the final fit. The

effective masses obtained from the fuzzed correlators for the non-perturbative
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Figure 3.1: Sliding window plots from the 8 = 6.0 non-perturbatively improved
data set for the degenerate pseudoscalar and vector at x = 0.13344. The top plots
show the values obtained for the fitted mass when ¢, = 23 and ¢, has been
varied. The plots beneath show the resulting x*/d.o.f. and @ for each fit. An
arrow marks the value of ¢, selected for the final fit. In this case a correlated
double cosh form has been fitted simultaneously to the LL,FF combination of
correlators.
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Figure 3.2: As for figure 3.1 for the nucleon and delta. In this case a correlated
double exponential form has been fitted simultaneously to the LL,FF combination
of correlators. '



Chapter 3. Quenched spectrum results 63

data sets are in general noisier than the tadpole improved data, however this
difference did not have a significant effect on the relative ease of fitting the data.
Superimposed on the graphs is the actual fitted value obtained for the mass, the
horizontal length of which corresponds to the fit range. This straight line is not
a fit to the data points shown on the graph. The x?/d.o.f. indicated on each
graph was obtained in the best fit for the mass. The graphs show that the fuzzed
correlator isolates the ground state before the local correlator, but the signal is
noisier. Where the source fuzzed correlator has been used to fit the vector for the
0 = 6.2 data sets, the plots show that the effective mass approaches the plateau
from below. This is because the matrix element is not constrained to be positive

definite.

Data set Pseudoscalar Vector Nucleon Delta

B = 6.0 TAD LLFF  LL,FF LLFL LLFL
B = 6.2 TAD LL,FF LLFL. LLFF LLFF
B = 6.0 N-P LLFF  LL,FF LLFF LLFF
B = 6.2 N-P LL,FF LLFL LLFF LLFF

Table 3.2: Correlator combinations selected for the final fit for the 8 = 6.0,6.2
data sets. Note that TAD indicates tadpole improvement and N-P indicates
non-perturbative improvement. All fits are simultaneous fits to the ground and
first excited states.

The results for all the hadron masses obtained from simultaneous fits to both
correlator combinations were found to be in agreement with each other within
errors and with fits performed to the ground state of a single correlator type.
The correlator combination chosen for the final fit was selected on the basis that
the best fit gave a lower x?/d.o.f. and better overall stability of the fitted mass
as tmin was varied. Table 3.2 shows the correlator combinations selected for the
final fit for the mesons and degenerate baryons. For the non-degenerate baryons,

double exponential fits to the LL,FL correlator combination were chosen.
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Figure 3.3: Effective mass plots from the § = 6.0 tadpole improved data set for
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the correlator combinations used in the final fit for k = 0.13700. Superimposed
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from a fit to the ground and first excited states.
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Figure 3.4: As for Figure 3.3 for the # = 6.2 tadpole improved data set for
x = 0.13640.
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3.2.2 Fitting the 8 = 5.7 tadpole improved data set

The correlators from the § = 5.7 tadpole improved data set were generated using
the Jacobi smearing technique detailed in section 2.5. Both local correlators,
LL, and source smeared correlators, SL, were used in the analysis. Simultaneous
fits were performed using the double cosh form of equation 3.2 to the LL,SL
pair of correlators. Figure 3.7 shows the effective mass plots for the LL and SL
correlators for the heaviest quark mass. The final mass values are superimposed
on the graph, showing the fit ranges selected. Following a sliding window analysis
and a consistency check with the results obtained from a single cosh fit to the SL
correlator, a fit range of [6-15] or [5-15] was selected for the pseudoscalar as this
gave the best x?/d.o.f. The vector was fitted similarly in the range [7-15]. For this
data set only degenerate correlators were generated for the baryons. Fits were
performed using a double exponential fit to the LL,SL combination of correlators.

A fit range of either [6-15] or [7-15] was selected for the delta and nucleon.
3.2.3 Fitting the 8 = 6.0 large volume data set

The large volume non-perturbatively improved correlators at § = 6.0 were gen-
erated using Jacobi smearing. Correlator combinations smeared at the source,
SL, or at the source and sink, SS, were simulated. For this data set purely local
correlators were not created. This means that it was no longer possible to per-
form simultaneous fits to pairs of correlators to extract the ground and excited
state. The final fits for the mesons were selected from a single cosh fit to the SL
correlator. The SS correlator was examined using a similar fit but the signal was
much noisier and a better x%/d.o.f. was not obtained. It was possible to fit the
pseudoscalar all the way out to ¢, = 31, since the signal to noise ratio does not
increase with time for the pseudoscalar meson. This can be seen by examining

the variance of a general hadron correlator

o = {({0u()P{OL0)1?) — (Ou(z)0}(0))” (3.4)
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The error in the signal is dominated by the exponential decay of the lightest state
which is created by the first term in this equation [63]. Through the squaring of
the hadron operators, the first term has positive charge conjugation and parity
quantum numbers which means that the lightest state is given by 2 n’s for mesons

and 3 7’s for baryons. Thus the variance is approximately
o? o ePma=2ma)t - — 93 (3.5)

where n = 2 for meson correlators and n = 3 for baryons. This shows that
the error in the mass grows exponentially with time except for the pseudoscalar

2

correlator where o* o constant, since my = m, and n = 2 in this case.

For the vector channel, ¢,.x was reduced to 20. After this point the signal
became too noisy and the fits were unstable. Figure 3.8 shows the effective mass
plots for the SL correlator for the heaviest quark mass, for the pseudoscalar, vec-
tor, nucleon and delta. The final fitted results for the masses, and the x*/d.o.f.,
are superimposed on the plots. For the baryons it was possible to perform a
double exponential fit to both the ground state and first excited state using the
SL correlator. At large times the signal becomes noisy and ¢,,.x was reduced to
18 for the nucleon and 16 for the delta. The minimum time slice selected was
tmin = 2 OT tmin = 3, where {,;, was able to be reduced much further due to the

fact that the first excited state was included in the fit.

3.3 Computation of the PCAC mass

This section discusses the determination of the partially conserved axial current
(PCAC) mass for all the quenched data sets. The method described below can be
used to directly extract lattice estimates of the bare unrenormalised quark mass

from the correlator data.

In the continuum, using Euclidean spacetimé co-ordinates, the isovector axial

current, A,(z), satisfies the PCAC relation (previously defined in equation 1.66)

aﬂAu(aZ) = QmPCAcP({I)) (36)
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k = 0.13344. Superimposed on the graphs is the fit range selected and the value
of the fitted mass obtained from a fit to the ground state for the mesons and to
the ground and first excited state for the baryons.
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where P(z) is the pseudoscalar density and mpcac is the current quark mass.
The isospin indices have been suppressed for clarity. On the lattice this relation

can be expressed as [25)]
8, (A, (2)ON(0)) = 2mpcac (P(z)OT(0)) + O(a) (3.7)

where 9, denotes the average of the forward, 8,, and backwards, J;, lattice
derivatives and O is any operator. This holds everywhere except when z = 0.
In the scheme of O(a) improvement, the axial vector operator is replaced by the

improved operator

Au(z) = Au(z) + acad, P(z) (3.8)

where the improvement coefficient, ¢y has been determined in one-loop pertur-

bation theory using the bare coupling [29]
ca = —0.00756 g2 + O(gp) (3.9)

and more recently non-perturbatively [30]

1—0.748 g2

4 = —0.00756 g2 x ———22
A G X T 0977 62

+0(g), 0<gp<1 (3.10)
Choosing the operator O to be the pseudoscalar operator defined in Table 2.1,
the O(a) improved identity is

9, (Au(z) P1(0)) + acad,d; {P(2)P'(0)) = 2mpcac {P(z)P(0)) + O(a?) (3.11)

Note that trace over the isospin indices in the operators as defined in equation 1.67
has been taken, where the normalisation condition for the Pauli matrices results
in an overall constant which can be divided out. Taking the Fourier transform
and writing equation 3.11 in terms of momentum space correlation functions with

zero three-momentum, the PCAC mass can be determined from

54CA4P1 (0, t) + acA8284C’ppf(O, t)
2Cpp1(0,1)

MpcAC =

(3.12)
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where 0y is the temporal lattice derivative and the lower indices on each correlator
indicate the operators (defined in Table 2.1) from which they are composed. A
fit to this ratio of correlators was performed using a correlated least-x? fit to
a plateau function to determine the PCAC mass. For the tadpole data sets the
one-loop value for ¢y was used. The non-perturbative value was used for the
other data sets. Local sink and source fuzzed or smeared correlators were used
in the analysis. Figure 3.9 shows an example effective mass plot and sliding
window analysis plots for the § = 6.0 non-perturbatively improved data set for
k = 0.13344. The effective mass was evaluated by performing the ratio of the
relevant time sliced correlators. The graphs show that the plateau is very stable
over a large range of time slices and that the mass determined from a sliding
window analysis has very small errors. The fit range selected was [12-22]. Note
that the errors on the PCAC mass are in general very small. Heavier quark
masses show a similar picture, but with a slightly noisier signal. The final results

for mpcac can be found in appendix A.

3.4 Finite volume effects

The finite size of the lattice simulation is a potential source of large errors in
the spectrum calculation if the lattice dimensions are too small. Finite volume
effects can originate from several sources. The volume can be too small to contain
the wavefunction of the bound state as discussed in [64, 65], or errors can arise
from the squeezing of the cloud of virtual particles which surround point-like
hadrons [66]. Both of these effects occur as a result of virtual particle propagation
across the lattice boundary due to the imposition of periodic boundary conditions.
In a hadron state consisting of loosely bound constituents, the particle which
propagates across the boundary can be one of the constituents. Multiple copies
of the hadron can also interact directly across the boundary [67]. Finite size effects
can be reduced by simulating at large enough lattice volumes. To compensate for
the finite size of the lattice, simulations should ideally be performed at several
different volumes to enable an extrapolation to the infinite volume limit. However,

in this case, an estimate of the finite volume effects present in the quenched
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Figure 3.9: The left-hand plot shows the effective mass for the PCAC mass for
the non-perturbatively improved 8 = 6.0 data set at k = 0.13344. Superimposed
on the graph is the final value and fit ranged selected from the sliding window
analysis shown in the right-hand plots. The arrow indicates the minimum time
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calculation was investigated for two different volumes (1.5 and 3.0 fm) at 8 = 6.0

for the non-perturbatively improved fermion action.

For the pseudoscalar, the percentage difference for the masses determined on
the two different volumes was approximately 0.6% for the heaviest quark mass,
rising to 1.5% for the lightest. In all cases the difference was a 20 effect. The
pseudoscalar masses, shown in Table A.2, are smaller for the larger volume and
the difference between the two results tends to increase with decreasing quark
mass. This is in line with expectations that lighter hadrons, having a greater
Compton wavelength and thus a greater extent on the lattice, are more susceptible
to finite volume effects. In the case of the vector meson a comparison of the results
in Table A.4 indicated that statistically significant finite volume effects were not
observed. At the lightest quark mass, the difference was just 0.70. In contrast to

the pseudoscalar, the vector masses for the larger volume were slightly larger.

In order to investigate whether this mass difference in the pseudoscalar could
be attributed to the fact that no mass estimate for the excited state was available
for the large volume, single cosh fits were performed on the smaller lattice. These
results were entirely consistent with those obtained from the double cosh fits.
However, it was possible to choose small fitting intervals close to tyax for the
single cosh fits which yielded mass results compatible with those obtained on the
larger volume, albeit with larger errors. The conclusion is then that no finite size
effects are observed for the vector, and small yet statistically significant effects
appear to be present in the pseudoscalar mass. However, it cannot be ruled
out that the finite size effects in the pseudoscalar mass have a statistical origin

without further investigation.

Finite size effects are expected to be more pronounced in the baryons, due
to the greater extent of the bound state wavefunction. Examining the masses
obtained for both volumes for the octet baryons in Tables A.8, A.12 and A.15,
the percentage difference in the masses ranges from 1.2% for the heaviest quark
masses to 3.6% for the lightest. The deviation is around one o, where the

masses on the larger volume are smaller. For the decuplet baryons in Tables A.6
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and A.10, a greater finite volume effect was observed. The mass difference ranges
from 2.3% to 5.3% at the lightest quark mass. Here the deviation is around 2o
and again the masses are in general lighter for the larger volume. The effect in
the octet baryons, although twice as large as the effect in the pseudoscalar, is not
significant given the level of statistical accuracy of the data. However the finite
size effects in the decuplet baryons have a more significant impact on the final

results.

3.5 The Edinburgh plot

The Edinburgh plot [68] is a useful way of comparing results for different actions
and lattice spacings without the need for any extrapolations of the data. The
mass ratio of the nucleon and vector meson is plotted against the mass ratio of
the pseudoscalar to vector meson for the degenerate data. Figure 3.10 shows the
Edinburgh plots for the tadpole and non-perturbatively improved data sets. If
the data sets exhibit scaling as described in section 1.12, then the data points
should lie on the same universal curve. Shown on the graphs are the experimental
ratios and the values obtained in the static quark limit, where the hadron mass
is equal to the sum of the valence quark masses. The data is compared with the
curve obtained from the phenomenological model for the hadron masses described

in [69]. The model predicts the hadron masses from the following equations

3
S;°8;
Mbaryon = M, + E m; + gb Z : J (313)
i=1 isg
— § : ‘ 8q " 54
Mmeson = Mm + m; + é'm Z anr_nq (314)

=4,
where the constants are taken to have the values, M}, = 0.077 GeV, M,, = —0.057
GeV, & = 0.02205 GeV? and &, = 0.0715 GeV®. These formulae depend on the
masses, m;, and the spin, s;, of the constituent quarks of the hadron in question.
The curve is shown as a guide for the eye. The data points show good agreement
with the model curve, but it is hard to draw conclusive evidence of the effect of

improvement between the tadpole and the non-perturbatively improved results.
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Figure 3.10: Edinburgh plots for the degenerate hadrons for the tadpole and
non-perturbatively improved data sets. The phenomenological curve is shown as
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To investigate the effect of improvement, the large volume data can be com-
pared with recent results reported in [70] for 8 = 6.0, shown in Figure 3.11. At
lighter quark masses the results are all in agreement within errors, with the unim-
proved results increasing more rapidly as the quark mass is increased. The data
from [70] have been compared with the large volume data set rather than the
small volume data. The reason for this was because of the finite volume effects
present in the nucleon for the smaller volume which has the effect of increasing
the nucleon mass as can be seen from Figure 3.10. To observe any deviation of
the quenched spectrum results from experiment it is better to study quantities

which are defined purely in terms of the meson masses, such as the J parameter.

3.6 The J parameter

The J parameter [71] is defined as

d My
J=my-r Y ( s ) (3.15)
deS mpes MK phys

where J is evaluated at the experimental mass ratio of the K and K* mesons.
(Throughout this thesis, lower case letters denote lattice masses while capitals
denote their physical values). It enables a comparison of the meson sector of
the spectrum with experiment without the need for a chiral extrapolation. As
an alternative, the J parameter can instead be evaluated at the mass ratio,
My/M,, = 1.49, where this value has been obtained by assuming the valence
quark content of the the 7, pseudoscalar meson is purely strange, (strictly speak-
ing the 1, meson is not detected experimentally). The J parameter is determined

by performing a correlated fit to the linear relation
my = A+ Bmlg (3.16)

to calculate the slope, B, which is then multiplied by the K* mass in lattice
units, where the mass of the K* is determined from the intercept of equation 3.16
with the experimental ratio, Mk« /M. Figure 3.12 shows the results of a fit to
equation 3.16 for the # = 6.0 non-perturbatively improved data set. The lattice
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values for the meson masses at the mass ratios, Mk./Mg and My/M,, have been
included in the plot. The plot shows that the data is well represented by a linear
fit.

0.5 — S —
(M¢/M17.)phys 7]

amy

(MK'/MK)phys 7]
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Figure 3.12: The vector meson mass plotted against the squared pseudoscalar
mass for the § = 6.0 non-perturbatively improved data set. A correlated linear
fit was performed to the data. The lattice masses at the Mk»/Mg mass ratio and
the ratio My/M,, have been shown by the crosses on the plot.

Using experimental values as input, the phenomenological value for J =
0.48(2). Figure 3.13 shows the values obtained for the J parameter for all the
quenched data sets, plotted against the value of the lattice spacing in units of the
Sommer scale, g, defined later in section 3.7. The plots show that while the re-
sults for each data set are consistent with each other, showing little a dependence,
they fail to reproduce the experimental value. Evaluating J at the ¢ meson mass
ratio, gives an increased value, but which is still inconsistent with experiment.
Since J is consistently low, this suggests that the discrepancy in the J parameter
has little to do with lattice artifacts and instead appears to be an intrinsic feature
of the quenched approximation. In the left-hand plot in Figure 3.13 the result
for J determined by D. Becirevic et al. [72] for their § = 6.2 non-perturbatively
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the right-hand plot. Results are compared with the 8 = 6.2 non-perturbatively

improved data set (O) from [72].
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improved data set is shown. Their result is consistent with the findings reported

here.

Related to the J parameter, the vector-pseudoscalar hyperfine splitting is an-
other quantity which can be compared with experimental results without requir-
ing an extrapolation to the physical quark masses. In order to compare the results

from data sets with different §’s first the lattice scale must be set.

3.7 Setting the scale

The lattice spacing, a, is set by comparing a physically measured quantity with
its value in lattice units. One quantity which can be used to set the scale is the

Sommer scale ry 73], given by
F(ro/a)(ro/a)? = 1.65, ro = 0.5fm (3.17)

where F(ro/a) is the force between a static quark anti-quark pair separated by
a distance ro/a. The value of 1.65 has been chosen such that ro = 0.5fm in
physical units when compared with phenomenological effective potential models.
This characteristic length scale, g, has been chosen to be in the region where the
potential is well defined. However since the pure gauge theory is unphysical, 7o
cannot be determined directly by experiment. Choosing 7o to set the lattice scale
has the advantage that it can be calculated with good statistical precision and is
defined in the same way for both quenched and dynamical gauge configurations,
which means it can be used to compare results in both regimes. In contrast,

selecting the string tension, K, to set the scale
K = lim F(r/a) (3.18)
rfa—oc0
requires that the limit of infinite distance be taken for the potential, which be-
comes more difficult as the errors in the potential measurement increase with the

separation. Additionally, the string is expected to break in dynamical simulations

where pair production is expected to occur as the separation increases.
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The ALPHA Collaboration [74] have performed an interpolation of their results

for rg to yield the formula
In(a/ro) = —1.6805 — 1.7139(8 — 6) + 0.8155(8 — 6)* — 0.6667(3 — 6)° (3.19)

from which ro/a can be determined for  values in the range 6.57 > 8 > 5.7. All
the values for the Sommer scale for the quenched data sets have been computed
from equation 3.19, where the relative error has been evaluated using the linear

relation, described in [74]

erel = 10/29 x B — 1.67 (3.20)

The scale can be set using the lattice values of various hadron masses. The
method used to determine the K* mass was described in section 3.6. The p meson
mass can be determined in the same way by instead considering the physical
ratio, M,/M,. Although the p meson is stable in the quenched approximation,
it is expected to couple to two 7’s in dynamical fermion simulations. For this

reason the p was only used to set the scale in order to compare the final results.

3.8 Hyperfine splitting

Experimentally the vector-pseudoscalar hyperfine mass splitting has a roughly
constant value of mv? — mps? =~ 0.55GeV? for a wide range of quark masses.
Heavy quark symmetry [75] predicts that this should indeed be the case for
heavy-light mesons. For mesons composed from one light quark, (u,d, s) and one
heavy quark, (¢, b), only the quantum numbers associated with the light degrees
of freedom (the light quark and the gluons) dictate the properties of the bound
state. This means that the hyperfine splitting for heavy-light mesons should be
independent of the mass and spin of the heavy quark up to correction terms
proportional to the inverse of the square of the heavy quark mass. This thesis

only examines mesons composed from light quarks, but by studying the results

as the quark mass is increased, the probable results for the splitting in the heavy-
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light sector can be inferred. A detailed study of heavy-light meson spectroscopy
in the quenched approximation can be found in [76], which finds that the physical
mass splittings are significantly greater than the values obtained from the lattice

simulation.

‘The hyperfine splitting has been plotted against the pseudoscalar mass squared
in Figure 3.14 where the scale has been set by both ro and the K* mass. The
data sets which use tadpole and non-perturbative improvement have been shown
in separate plots in order to study the effect of improvement. The results are
compared with the experimental results obtained from [14]. The physical mass
values used for the m and K* have been computed by taking the average mass
of the charged states with the neutral particle. The n; has been assumed to be
composed purely of strange valence quarks. Comparing the tadpole and non-
perturbatively improved plots, the a dependence appears reduced for the fully
O(a) improved case, particularly when the scale is set by ro. (This could be
confirmed by comparing the results obtained on different lattices extrapolated to

the same values of the meson masses).

Setting the scale with rg, the results obtained overshoot the experimental
points for the lighter quark masses. However if the scale is set from the K* mass
the splittings underestimate the experimental results, as has been observed in a
previous analysis of the quenched results [77]. This is because the results are
very sensitive to the lattice scale. Choosing different quantities to set the scale
results in slight differences which are magnified in the hyperfine splitting. In
all cases there is a small but significant negative slope in the data as the quark
mass is increased. This slope is shallower than results from the unimproved case
reported in [57]. However this suggests that the results obtained from the lattice
simulation fail to reproduce the observed very weak dependence of the hyperfine
splitting on the quark mass. The implication is that for heavy-light mesons the

hyperfine splitting will not be consistent with the experimental results.

Figure 3.15 compares the non-perturbatively improved data at g = 6.0 for
the hyperfine splitting with the results reported in [70]. The results obtained
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Figure 3.14: Vector-pseudoscalar hyperfine splitting for the tadpole improved
and non-perturbative improved data sets. The scale has been set by the Sommer
scale, rg, and by the K* meson mass.
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Figure 3.15: Vector-pseudoscalar hyperfine splitting at § = 6.0. Results for the
non-perturbatively improved data sets are compared with results from [70] for
data sets using both non-perturbatively improvement (¢) and no improvement

(D).

for the non-perturbatively improved data sets are in agreement with the results
from [70] within errors, with closer agreement occurring with the large volume
data set. The unimproved Wilson data is much lower, showing that the effect of

improvement is to increase the hyperfine splitting.

3.9 Chiral extrapolations

The hadron masses determined so far have been obtained at unphysical values of
the quark masses. To determine the physical masses of the hadrons, they must
first be extrapolated to the chiral limit, where the bare quark mass vanishes.
This section discusses two ways of calculating the critical value of the hopping

parameter, ke, Which determines the vanishing quark mass in the chiral limit.
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3.9.1 Determination of k¢ from the pseudoscalar mass

The Wilson fermion action explicitly breaks chiral symmetry and results in the

additive renormalisation of the bare quark mass. The bare quark mass is defined

1/1 1
== == 3.21
M 2 (K/ K:crit> ( )

The value of kg i1s determined in the chiral limit when the quark mass is zero.

as

From the partially conserved axial current (PCAC) relation this occurs when the

squared mass of the pseudoscalar meson vanishes, mag = 0.

At lowest order in the chiral expansion of mps, this relationship can be ex-

pressed as
mpg = B(fiq, + a,) (3.22)

This is the simplest form consistent with O(a) improvement for non-degenerate

combinations of quarks, where the improved quark mass [25] is defined by
mq.‘ = m'qi(l + bmrnq.‘)a 1 =1,2 (3.23)

The improvement coefficient, b,, has been determined in one-loop perturbation
theory [78] as
b = —1 — 0.096295 + O(gg) (3.24)

Recently a non-perturbative determination of b,, was performed at § = 6.2 as
detailed in [79].

If the quark masses are very light, equation 3.22 will have additional terms
from quenched chiral perturbation theory [80, 81]. The identification of the n/
meson as a pseudo-Goldstone boson in the quenched theory results in the addition
of terms proportional to the log of the quark mass. These terms will only have
an appreciable effect on the fit for small values of the quark mass. For the
range of quark masses considered here the quark masses are sufficiently large
that these correction terms are not representative of the data and hence they

have not been taken into account. Significant contributions from quenched chiral
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logs have only been observed for quark masses smaller than the lightest mass
used in these quenched simulations [4]. At the other end of the scale, possible
contributions from higher order terms in the quark mass have to be considered.
These higher order terms can occur from two possible sources. One possibility is a

phenomenological effect, motivated by the Gell-Mann-Oakes-Renner formula {82]
2 4,7 2
Mps =~ (Py) mq +O(m7) (3.25)

where f; is the m decay constant and <1ﬁ¢> 1s the chiral condensate. The other
is due to lattice artifacts, which can be eliminated to O(a) by using the im-
proved quark mass. The latter is investigated using the following fit ansatz [83],
constructed by inserting the improved mass into equation 3.22 and writing the
resulting expression in terms of the hopping parameters
1 1 1 1
2
= —+ — — + — 3.26

s a+ﬂ(“1+fiz>+7<"&?+"&§> ( )

where the coefficients «, § and v are related to B, b, and kit in the following

way

a= B <—1+ b"‘), ﬁ:§<l—bm>, yzg—bﬂ (3.27)

Kerit 2K’crit 2 Kerit

The fits were performed using an uncorrelated least-x? fit to equation 3.26 for the
parameters, B and k¢y. The value of by, was used as input to the fit in order to
constrain the fit and was thus not determined. Correlated fits were investigated,
but resulted in large values for the x?/d.o.f. of up to 17 in the worst case. This
may be due to the fact that the errors on the pseudoscalar mass squared are very
small and thus the fit is tightly constrained. Large x?/d.o.f.’s have been observed
by other collaborations [72, 84] for linear fits. Uncorrelated fits were therefore

selected for the final choice of fits.

The effect on the fitted value of k¢, resulting from varying the definitions of

b used in the fit, was investigated. The tree-level (TL) value, corresponding to
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bm(TL) = —0.5 was compared with b, as determined from equation 3.24 using
both the bare coupling, g2 = 6/, and the “boosted” coupling, g2 = ¢Z/ul. Fits
for the unimproved case, b, = 0, were investigated for completeness. The non-
perturbative result for b,, at 8 = 6.2, where b,(NP) = —0.62(3), has also been
included in the fits for the non-perturbative data set at § = 6.2. Table 3.3 shows

the results for x4 obtained for each data set.

The results show that k.4 1s not very sensitive to the choice made for b,,.
The greatest deviations occur for the # = 5.7 data set which could be due to the
fact that only three points were used in the extrapolation. For the = 6.2 non-
perturbatively improved data set, the result obtained using the non-perturbative
estimate for b,, is entirely consistent with the results obtained from the one-
loop values. In order to be consistent for all the data sets, the boosted one-loop
estimate for b,, was selected for the best fit. The final results are highlighted in
bold in Table 3.3.

Comparing these results with the unimproved case yields results for k¢ which
are significantly higher. The x?/d.o.f. obtained in the fits for the unimproved case
is slightly lower, suggesting that this is a better fit to the data. Other collabora-
tions [72] have concluded that this suggests that there is an additional factor of
O(fﬁf‘) that must be included in the fit which is attributed to a real physical effect
as in equation 3.25. However this may be due to the fact that they include heav-
ier quark masses in the extrapolation. Another possibility is that the fit ansatz is
too simple and a more complicated fit as described in [79] should be considered.
This type of fit includes higher order terms in the improved quark mass fitted to
a wide range of non-degenerate and degenerate combinations of quark masses, in
order to distinguish between contributions from terms depending upon b, and
terms depending on the difference of further improvement coefficients (chosen to
reduce the O(amy) errors) of the axial-vector and pseudoscalar operators, by —bp.
To examine these issues, the pseudoscalar mass squared was plotted against the
averaged quark mass, (g, + q,)/2 in lattice units. Figure 3.16 shows the fit
to equation 3.22 for the # = 6.0 non-perturbative data set. The averaged quark

mass has been determined using the value of ki selected as the best fit. Note
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Tadpole improved data sets

89

B L*-T Value of by, Kerit x?/d.o.f.
57 16%-32 by =0 0.143408 *22 008 /1
bm(TL) = —0.5 0.143240 *25  0.08 /1
bm(g2) = —0.6013 0.143206 125 0.08 /1
bm(g?) = —0.6844 0.143178 25 0.08 / 1
6.0 16°-48 by, =0 0.139240 *% 1.33 /4
bm(TL) = —0.5 0.139216 *'2 243 /4
bm(g2) = —0.5962 0.139212 '3 2.74 / 4
bm(9?) = —0.6620 0.139209 ™5 2.98 / 4
6.2 24°-48 by, =0 0.137912 *13 1.48 /4
b(TL) = =0.5 0.137900 i3 1.93/4
bm(g2) = —0.5931 0.137898 *15 2.03 /4
bm(g?) = —0.6517 0.137897 *15 2.10 / 4
Non-perturbatively improved data sets
B L*-T Value of by, Kerit x*/d.o.f.
6.0 16°-48 by =0 0.135280 *'7  0.14 / 4
bm(TL) = —0.5 0.135259 15 0.42 /4
bm(g2) = —0.5962 0.135255 *'5 051 / 4
b(g?) = —0.6620 0.135252 ™% 0.58 / 4
6.0 32° 64 by =0 0.135260 *7 0.19 / 4
bm(TL) = —0.5 0.135241 .5 034 /4
bm(g?) = —0.5962 0.135237 *5 041 /4
bm(g?) = —0.6620 0.135235 .0 0.47 / 4
6.2 24°-48 by =0 0.135828 *17 034 /4
b(TL) = —0.5 0.135818 *17  0.40 / 4
bm(gd) = —0.5931 0.135816 17 0.42 /4
bm(NP) = —0.62 0.135816 17 0.42 /4
bm(¢?) = —06517 0.135815 *17 0.43 / 4

Table 3.3: Results for k. obtained from an uncorrelated fit to equation 3.26

using different values for by,.

Definitions of b, used were: no improvement,

tree-level and one-loop perturbation theory using both the bare and “boosted”
coupling. For the non-perturbative § = 6.2 data set, the non-perturbative value
for b,, has been included. The final results used in the rest of this thesis are

highlighted in bold.
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that in all the plots in this thesis the quark mass is always the improved quark

mass.
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Figure 3.16: The pseudoscalar mass squared as a function of the average improved
quark mass for the § = 6.0 non-perturbative data set. The data has been fitted
to equation 3.22 using an uncorrelated fit.

Figure 3.17 shows fits to equation 3.22 for all data sets in units of rg in order
to compare the tadpole improved and non-perturbatively improved data sets.
The fit in units of rq has been performed using an uncorrelated fit using linear
regression [49] to minimise the x2. Only the best fit has been shown. There is
no evidence from the plots to suggest any deviation from the linear ansatz for
the range of quark masses studied. Further analysis of the chiral behaviour of
the pseudoscalar in [85] showed that the contributions of terms proportional to
(g, — g, )? constitute less than 1% of the overall error. The plots show improved
scaling behaviour for the pseudoscalar meson for the non-perturbatively improved

data sets relative to the tadpole data sets.
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Figure 3.17: The pseudoscalar mass squared for the tadpole and

non-perturbatively improved data sets plotted against the averaged improved
quark mass, (Mg, + Mq,)/2 in units of 79. The improved quark mass has been
determined using the boosted one-loop perturbative value of by,.

3.9.2 Alternative determination of K.y

The critical value of the hopping parameter can alternatively be defined at the

point where the unrenormalised PCAC mass vanishes [30]
mpcac = B(fig, + ig,) (3.28)

The same fit ansatz in equation 3.26, used to extract k. from the pseudoscalar
mass squared, was used where m3g was replaced by mpcac. Following the same
general fit procedure, the results for k. are listed in Table 3.4. The results
obtained for different definitions of b, are again stable for § > 6.0, with the
largest difference arising when using the unimproved value for b,,. Correlated fits
were considered, but the resulting x?/d.o.f. was very large due to the fact that
the errors on the PCAC mass are so small, thus tightly constraining the fit. The

final values reported in Table 3.4 have been obtained from uncorrelated fits.
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The results obtained for ke¢ from this method differ by terms of O(a?) from
kerit determined from the pseudoscalar mass. Comparing the results for et
from both methods shows that values determined from mpcac are in general
lower with much smaller errors. At the smallest § the difference in the results
for both methods is of O(107*). For the chiral extrapolations of all the other
hadrons, the improved quark mass was determined using the one-loop boosted
perturbation theory value for b, and k¢ from the pseudoscalar extrapolation,
in preference to Ko, determined from the PCAC mass. This was because the

functional dependence of the baryons on the PCAC mass is more complicated.
3.9.3 Vector chiral extrapolation

Motivated by the results obtained for the quark mass dependence for the pseu-
doscalar meson, the lowest order chiral expansion for the vector meson was se-
lected as the fit ansatz. Ignoring terms arising from quenched chiral perturbation

theory, the fit ansatz was
my = A+ C(mng, + mq,)/2 (3.29)

In principle higher order terms in the improved quark mass can be included in the
fit. Previous experience [39, 53, 86] has shown that for the range of quark masses
considered here, the data shows no conclusive evidence of any deviation from the
linear relation. An uncorrelated least-x? fit was performed for all data sets, in
order to maintain consistency with the pseudoscalar extrapolations, the results
of which are displayed in Table 3.5. Figure 3.18 shows a fit to equation 3.29 for
the 8 = 6.0 non-perturbative data set. This plot shows that the data is well
described by the linear ansatz. Figure 3.19 shows the chiral extrapolations for
the vector meson mass for all the quenched data sets where the scale was set
by rg. A reduced dependence on the lattice spacing for the non-perturbatively

improved data sets is observed in the plots.



Chapter 3. Quenched spectrum results

Tadpole improved data sets

B L3-T Value of b, Kerit x?/d.o.f.
5.7 16%-32 by =0 0.143149 15 449 /1
bm(TL) = —0.5 0.143005 T13 449 /1
bn(92) = —0.6013 0.142976 1% 4.49 /1
bm(g?) = —0.6844 0.142953 *15 449 /1
6.0 16°-48 by =0 0.139170 * 7 5.08 / 4
bm(TL) = —0.5 0.139148 * % 3.59 /4
b(9?) = —0.5962 0.139143 * 2 3.69 /4
bm(9?) = —0.6620 0.139140 * 5 3.83 /4
6.2 24°-48 by, =0 0.137911 * 3 296 /4
bm(TL) = —0.5 0.137899 =35 1.67 /4
bm(g2) = —0.5931 0.137897 +3 1.83 /4
bm(g?) = —0.6517 0.137896 =3 1.99 /4
Non-perturbatively improved data sets
J6} L?-T Value of b, . Kerit x?/d.o.f.
6.0 16%-48 by, =0 0.135209 * ¢ 3.36 / 4
bm(TL) = —0.5 0.135190 =& 1.22/4
bn(g2) = —0.5962 0.135186 T ¢ 0.99 /4
bm(g?) = —0.6620 0.135184 * ¢ 086 /4
6.0 32° 64 by =0 0.135222 + 5 1.82/4
bm(TL) = —0.5 0.135202 £ 3 063 /4
bm(g2) = —0.5962 0.135199 ¥ & 054 /4
bm(g?) = —0.6620 0.135196 =S 051 /4
6.2 24%-48 by, =0 0.135819 *3 0.86 /4
bm(TL) = —0.5 0.135809 *3 032/4
bm(92) = —0.5931 0.135807 * 5 0.30 /4
bm(NP) = —0.62  0.135807 *35 0.30/4
bm(g?) = —0.6517 0.135806 ¥ 0.30 /4

Table 3.4: As for Figure 3.3 with k¢ determined from the PCAC mass.
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B cew L*-T A C x*/d.of.
57 156 16°-32 0.669 115 240 *'7 0.09 /1
6.0 1.76 16°-48 0.404 11 279 *20 008 /4
6.0 1.76 32°-64 0.414 *11 2.61 *10 0.04 /4
6.0 1.47 16%-48 0391 © 5 265 *17 0.25/4
6.2 1.61 24°-48 0.304 *1° 2.61 T30 0.08/4
6.2 1.44 24°-48 0.298 T 5 264 *2 0.09/4

94

Table 3.5: Fit parameters obtained for the vector from uncorrelated fits to equa-
tion 3.29 for all data sets.

amy

0.6

0.00

x*/dof=0.08/4

L !

0.02
a(mg, + mg)/2

0.04

Figure 3.18: The vector mass as a function of the improved quark mass for the
B = 6.0 non-perturbative data set. The data has been fitted to equation 3.29

using an uncorrelated fit.
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Figure 3.19: The vector mass for the tadpole and non-perturbatively improved
data sets plotted against the averaged improved quark mass, (g, + Mg, )/2 In
units of 9. The improved quark mass has been determined using the boosted
one-loop perturbative value of by,.

3.9.4 Baryon chiral extrapolations

Chiral extrapolations for the baryons have been performed using the simple fit
ansatz

mp = A+ C(Mmq, + Mg, + Mg, )/3 (3.30)

Terms arising from quenched chiral perturbation theory have been neglected since
the simulated quark masses are too heavy to produce an observable effect. Higher
order terms in the quark mass have been omitted from the fit as previous expe-
rience [39] indicates that the quality of the data is not sufficient to include them.

For the spin-1 baryons the following fit ansatz has been motivated in [40]
mp = A+ B'mg, +C'(Thg, + mq,)/2 (3.31)

where the last term is composed from the quark masses which are symmetric/anti-

symmetric under interchange of the quark flavours. In reference [39], the fit pa-
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rameters obtained from fits to the degenerate spin—% baryons using equation 3.30
can be compared to those obtained from fits to equation 3.31 to all the quark
mass combinations. The results show that C' &~ B’ + C’ within errors. This sug-
gests that the simple fit ansatz in equation 3.30 is sufficient to model the chiral

behaviour at the current level of accuracy of the baryon data.

Uncorrelated fits were performed using equation 3.30 to the degenerate delta
and nucleon baryons for all data sets (3 point fit). The g = 5.7 data set con-
sists of only two degenerate combinations for the baryons and thus the chiral
extrapolations are not well controlled. For the other data sets, a 7 point fit to
the non-degenerate delta data and a 15 point fit to the non-degenerate sigma
and lambda baryons were examined. Finally fits were performed to both the
degenerate and non-degenerate baryon data: a 10 point fit for the delta and an
18 point fit for the sigma and lambda. The degenerate nucleon data points were
included in these fits to the sigma and lambda. Table 3.6 shows the fit param-
eters obtained from these three different fits for the delta for the § = 6.0 and
B = 6.2 non-perturbatively improved data sets. For the § = 6.2 data set the

Baryon  Data set  # points A C x*/d.of.
Delta (3 =6.2 N-P 3 . 0540 T2 4.03 T3 0.001 /1
7 0.540 122 4.11 T35 0034 /5

10 0.542 122 400 T2 0.144 /8

B =6.0N-P 3 0.728 S 3.86 55 0.893 /1

0.775 15 2.87 * 3 0359 /5

10 0.762 *3 3.7 T2 2120/ 8

Table 3.6: Fit parameters obtained for the delta baryons from fits to equation 3.30
for the 8 = 6.0 and # = 6.2 non-perturbatively improved data sets. The fits
corresponding to the number of points has been described in the text.

fit parameters do not depend on the choice of fit. There is a bigger variation in
the B = 6.0 fit parameters, however the results are still compatible within errors.

Figure 3.20 shows the fits to all the delta combinations for these two data sets.
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The 8 = 6.0 plot shows that the point corresponding to the lightest quark mass
is off the best fit, explaining why, for this data set, there is a greater deviation of
the fit parameters when the degenerate points are included. This problem only
occurs in this data set as can be seen by examining Figure 3.21, which shows
the delta extrapolations for the other data sets plotted in units of ro. The large
volume data set has been excluded from the plots for clarity. The plots show that
the data is consistent with a linear fit. For the delta baryons the final fit selected

was an uncorrelated linear fit to all the quark mass combinations.
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Figure 3.20: The delta mass as a function of the average improved quark mass
for the 8 = 6.0 and 8 = 6.2 non-perturbative data sets. The data has been fitted
to equation 3.30 using an uncorrelated fit.

Figure 3.22 shows the chiral extrapolations for the lambda and sigma baryons
for the 8 = 6.0 non-perturbatively improved data set. These plots show that
the linear ansatz is a good fit to the data and that the lambda and sigma are
almost degenerate in mass. The chiral extrapolations for the spin—% baryons in
units of 7o are shown in Figure 3.23. The figure shows the improved scaling
behaviour for the non-perturbatively improved data sets. The 8 = 5.7 data set

does not include non-degenerate baryons and thus does not differentiate between
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Figure 3.21: The delta mass for the tadpole and non-perturbatively improved
data sets plotted against the averaged improved quark mass, (Mg, +mMq, +Mq, )/3
in units of rg. The large volume data set has been omitted for clarity.

the sigma and lambda states. For clarity, the # = 5.7 nucleon extrapolation has
only been included in the plot of the lambda extrapolation. Table 3.7 gives the fit
parameters obtained from linear chiral extrapolations for the # = 6.0 and § = 6.2
non-perturbatively improved data sets. The degenerate fits to the nucleon can be
compared with the non-degenerate fits to the sigma and lambda baryons. From
the table, the fit parameters are consistent within errors for each of the different
fits. The 18 point fit was selected as the final fit for all the data sets, except at
g =5.7.

3.10 Determination of m, and mq

The next stage is to determine the physical quark masses in lattice units in order
to extract the physical hadron masses. On the lattice the up and down quarks
are degenerate in mass. The normal quark mass, m,, is defined to be the average
of the light quark masses, m, = %(mu + mq). The value of m, is determined
at the physical value of the 7 mass. This is achieved by choosing an observable
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Baryon Data set  # points A C x?/d.of.
Nucleon g = 6.2 N-P 3 0.409 *,5 544 * 030/ 1
B = 6.0 N-P 3 0.567 *31 495 *¥ 002/ 1

Sigma  §=6.2N-P 15 0.409 t.3 499 *7 756 /13
18 0.406 .5 522 *52 11.77 /16

g = 6.0 N-P 15 0.567 123 496 %2 370 /13

| 18 0.568 t2¢ 495 *3 373/16
Lambda f =6.2 N-P 15 0.410 *,2 489 ™7 420/ 13
18 0.404 *,5 523 *7% 9.88/16

g = 6.0 N-P 15 0.560 122 518 *% 243 /13

18 0.563 122 5.08 T3 258/ 16

Table 3.7: Fit parameters obtained for the spin—% baryons from fits to equa-
tion 3.30 for the § = 6.0 and § = 6.2 non-perturbatively improved data sets.
The fits corresponding to the number of points included in the fit is described in

the text.
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Figure 3.22: The lambda and sigma masses for the § = 6.0 non-perturbative data
set plotted against the averaged improved quark mass, (7nq, + Mg, + Mq,)/3. The
data has been fitted to equation 3.30 using an uncorrelated fit.
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N—P Improved

Tadpole Improved N-P Improved

Tplhy

0.0 0.1 0.2 0.3 . 0.0 0.1 0.2 0.3

ro(mg, + my, + mqs)/3 ro(mq‘ + mg, + mqa)/S

Figure 3.23: The lambda and sigma mass for the tadpole and non-perturbatively
improved data sets plotted against the averaged improved quark mass,
(Mg, + Mq, + q,)/3 in units of ro. The large volume data set has been omitted
for clarity.
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quantity, () to set the lattice scale. Rearranging equation 3.22, the improved

normal quark mass is determined by

~ Q2 (MW/Q)?)hys
Mo = 2B

(3.32)

where (M,r/Q)ihys is the physical ratio of the # mass over @).- In the quenched
approximation the lattice scale, a, depends on the choice of ). This scale ambi-
guity arises because the neglected fermion loops affect each observable differently.
Different choices for () were used to set the scale: the p mass, the K* mass, the nu- |
cleon mass and the Sommer scale 75!, This was done to estimate the systematic

error resulting from different determinations of the lattice spacing.

Tadpole improved data sets

1/a [GeV]
B L*T Q@=m, Q=mg- Q=mn Q=ry'
5.7 16%-32 1.140 *2% 1.185 t22 0.998 120 1.156 T |

6.0 16%-48 1.935 3 2005 T2 1715 *3 2119 * g
6.2 24°.48 2556 *3° 2653 35 2392 O 2905 113

Non-perturbatively improved data sets

1/a [GeV]
6 LT Q=m, Q=mx- Q=mn Q=ry'
6.0 16%-48 1.890 *27 1.947 *27 1622 71 2119 * 3
6.0 32°-64 1.851 *55 1.918 *32 1.667 f52 2.119 t 3

6.2 24%.48 2544 T8 9631 12 29266 H99 2905 T3

Table 3.8: Inverse lattice spacing 1/a measured in GeV from four different quan-
tities.

Table 3.8 shows the values obtained for the inverse lattice spacing in GeV
when different quantities set the scale. The smallest spacing in fm occurs when

ro sets the scale and the largest when the nucleon sets the scale. The percent-
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age difference between the lowest and highest values is up to 30%. The method
for determining the lattice value for () has been described in section 3.7 for the
Sommer scale and the mesons. The lattice value for the nucleon mass at the
physical value is determined by combining the chiral extrapolations for the pseu-
doscalar mesons (equation 3.22) and the sigma baryons (equation 3.30). Making
the assumption that the average quark mass for the pseudoscalar is equal to the

average quark mass for the nucleon
(Maq; + Mqy) /2 = (Mg, + Mg, + g,)/3 (3.33)

which is valid since linearity is observed in the chiral extrapolations, the nucleon

mass can be constructed from the relationship

C M. -
= A+ —m} = il .34
mn + 2Bmps> mps = My <MN>phys (3.34)

Inserting the physical ratio of the 7 to the nucleon mass determines the lattice

nucleon mass.

Setting the scale with these four different quantities, the normal quark mass is
determined from equation 3.32. The normal quark mass is then used to determine

the corresponding value of the hopping parameter, x,,

~ 1 /1 1

mn = ma(l + bmmy), ma = 5 <;; - f’u.:ﬁt) (3.35)
the results of which are presented in Table B.1 in appendix B. The errors from
the lattice determination of 7y used to set the scale have not been taken into
account at this stage. The results for the normal quark mass obtained using
different quantities to set the scale, were found to be consistent within errors at
O(1073). The largest error (discounting the uncertainty arising from quenching)

in the normal quark mass arises from setting the scale from the nucleon mass.

The strange quark mass can be determined by considering the physical ratio
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of the K meson mass with )

2 (M 2
e = Q°( ’ZQ)P*‘” — fiin (3.36)

subtracting the normal quark mass calculated previously. This method to de-
termine the unrenormalised strange quark mass is referred to as “K - input”.
Alternatively the strange quark mass can be determined by considering the vec-
tor masses. Rearranging the chiral extrapolation for the vector meson mass in

equation 3.29, the strange quark mass can be determined from

L Q(My[Q)y— A
mg =, C,

(3.37)

using the ¢ meson as input (“¢ - input”). The normal quark mass can also in
principle be determined from the vector masses, using the physical p mass as
input. In practice the larger statistical errors in the vector data meant that a
precise determination of the normal quark mass was not possible. The results for
the strange quark mass and corresponding xs value obtained from both methods
are listed in Table B.2 in appendix B. Comparing results when the scale is set
by the same quantity, the “¢ - input” strange quark masses are significantly
different from the “K - input” masses. This effect has also been observed in [40]
and has been attributed to quenching errors. The statistical errors resulting from
the “¢ - input” method are much larger in comparison, due to the difficulty in
fitting the vector meson masses. In addition, the physical ¢ meson is a mixed
singlet and octet state unlike the pure octet K meson. On the lattice the ¢ meson
can be assumed to be predominately ss. In practice, this assumption does not
matter, but is a potential source of error. Results from “¢ - input” were thus not
considered further. Comparing the results from “K - input” when the scale was
set by different physical quantities ), shows that the effect of small differences in

the lattice spacing results in quark masses consistent within the statistical errors.
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3.10.1 Renormalised quark masses

Quark masses in the continuum depend on the running of the strong coupling.
Their values are thus dependent on the energy scale, y. In addition the masses
are dependent on the renormalisation scheme used. One choice is to renormalise

the quark masses, mq, in the modified minimal subtraction scheme, (MS),
l\—/l_ MS

where ZT is the renormalisation constant. The renormalisation constant, Z,,
relating current quark masses to the renormalisation group invariant quark mass
has recently been determined non-perturbatively in the region 6.0 > 8 > 6.5 in
the Schrodinger functional scheme, as described in [87]. This determination of
Zm can then be converted into the MS scheme. However, in order to treat all the
quenched data sets on an equal footing, the perturbative definition for ZMS [70]
‘to one-loop in perturbation theory was used. Choosing the scale, u = 1/a, in
order to avoid problems arising from terms logarithmic in p, the perturbative
expression 18
MS ay—s(l)

Z3>(1) = 1— I ( —4.11 — 10.317cewud + 1.84(cswug)?) | /uo (3.39)
where this equation has been tadpole improved. The values for the strong cou-
pling, aM5(1/a), for each § value were taken from [26]. They are: oMS(1/a) =
0.2579, 0.1981, 0.1774 at § = 5.7, 6.0, 6.2 respectively.

The renormalised masses, m}°(1/a), for the normal and strange quark masses
. have been converted into MeV using the value of the lattice spacing obtained
from the quantity that was used to set the scale. The results can be found in ap-
pendix B in Tables B.1 and B.3. It is usual to quote the final quark masses at the
energy scale p’ = 2 GeV. The transformation of the masses to any other energy

scale is achieved by application of the renormalisation group formula (defined in
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equation 1.82) at lowest order

= do /280
N e () WS
my (1) = ?) my (1) (3.40)
where
Bo = 11/1672, do = 8/167> (3.41)

The strong coupling at ' = 2 GeV was evaluated from the lowest order expression

for the running coupling

VS 1

(1) = —g- ALY (3.42)
after first using the value of aM3(1/a) to set Ags. A continuum extrapolation
as described in detail later on in section 3.12 of the quark masses at p' = 2
GeV was performed for all the different quantities, (), chosen to set the scale.
Table 3.9 shows the continuum values for the normal and strange quark mass in
the MS scheme at ' = 2 GeV in MeV. There is a marked variation in the quark
masses resulting from the choice of scale of approximately 20. The mass ratio
mgﬁ/mnM_s is consistent for each choice, which should be expected as the mass

ratio is independent of the lattice spacing. The result can be compared with the

Q m}TS MeV] mg/[_s [MeV] mMS/mMS
m,  4.28 T3 107 +3 25
mge 414 1% 103 + ¢ 25
my  4.50 119 13 *3 25
rgt 371 T 93 * 3 25

I+ 1+ 14+ 1+
e Q0 = R N W

Table 3.9: Continuum extrapolated values for the normal and strange quark
masses in the MS scheme at y/ = 2 GeV in MeV. The lattice spacing has been
set by the quantity ) in each case. The dimensionless ratio of the quark masses
has been quoted for comparison.

theoretical prediction made in quenched chiral perturbation theory [88], which
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finds the mass ratio to be, My/M, = 24.3 £ 1.0. A similar analysis carried out
in [70] found a mass ratio of Ms/M, = 22 £ 3.

3.11 Physical hadron masses in lattice units

Interpolating the chiral extrapolations for the hadron masses to the values ob-
tained for the unrenormalised improved normal and strange quark masses, the
physical hadron masses in lattice units can be determined. Table 3.10 shows the
results obtained for the meson masses at the physical quark masses for all the
data sets when the K* meson sets the scale. In this case only the p and ¢ mesons
can be determined from the simulation, the other mesons have been used to set
the quark masses and the lattice spacing. The meson masses obtained for each

quantity which sets the scale are listed in Table B.4 in appendix B.

0 Cew LT m, Mg MK+
57 1.56 16%-32 0.676 F12 0.833
6.0 1.76 16%-48 0.408 F}; 0.511
6.0 1.76 323.64 0.419 *'J 0518
6.0 1.47 16°-48 0.396 * 5 0.493
6.2 1.61 24°-48 0.307 =7 0.378
6.2 1.44 24%-.48 0.301 * ) 0.373

1+
—
e
=
~J
Ot
=
I+
— -
oW

I+

T AN N© o
o
=
~
[@2]

-8
+ 8
- 6
0.340 * 3
0.337 * %

L4+ 1+ + 1+

Table 3.10: Lattice values of the meson masses at the physical quark masses
obtained using K* to set the scale. The results for mg« are at the physical value
of the K* meson in lattice units.

The baryon masses for the quenched data sets are reported in appendix B in
Tables B.5 and B.6 for all the different quantities used to set the scale. Table 3.11
shows the baryon results when the K* sets the scale. The results for all the
octet baryons are obtained from the sigma chiral extrapolation, except for the
A. Results for the § = 5.7 data set are taken from the degenerate delta and
nucleon extrapolations and interpolated assuming linearity to the non-degenerate

baryons. Mass results in this case for the ¥ and A are assumed to be degenerate.
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This assumption was made in order to perform continuum extrapolations for

these baryons.

Decuplet baryons

B cw LT A mye M= mao

57 1.56 16%-32 1.122 32 1.207 *35 1.292 *39 1.378 28
6.0 1.76 16°-48 0.767 T32 0.806 *31 0.845 *2 0.884 13
6.0 1.76 32%-64 0.711 T35 0762 *2 0.813 ¥} 0864 T2
6.0 1.47 16%-48 0.733 *20 0.774 *1> 0.814 *12 0854 * 2
6.2 1.61 24%-48 0.547 *22 0.583 *17 0.619 *'> 0.656 *'9
6.2 1.44 24°-48 0.539 *11 0.574 *'2 0.610 T2 0.646 T 3

Octet baryons

B cw LT MmN mp my ms

57 1.56 16%-32 0935 2 1.035 *12 1.035 *]5 1.134 *}7
6.0 1.76 16%-48 0.575 *22 0.633 *13 0.636 ;3 0.696 T3
6.0 1.76 32°-64 0.560 112 0.623 t)0 0.626 *}° 0.692 *}2
6.0 1.47 16%-48 0.544 *2 0.605 *2 0.607 *2 0.669 *'7
6.2 1.61 24°.48 0412 *.5 0458 * 0459 .5 0506 *,7
6.2 1.44 24°-48 0391 *.% 0442 *5 0442 7 0494 T ]

Table 3.11: Lattice values for the octet baryons using an uncorrelated linear fit
to all the sigma baryons. The scale was set by K*.

3.12 Continuum extrapolations

To compare the light hadron spectrum results with experiment, an extrapolation
to the continuum limit is required. Ideally, simulations would be performed
at more values of the lattice spacing in order to have more control over the
extrapolation, however a continuum extrapolation can be still be performed using

all the quenched data sets except the large volume simulation.

Tadpole improvement aims to reduce the leading order corrections in the
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results for the masses, but does not completely eliminate the errors of O(a).
Terms of O(a?) are also included in the extrapolation as they form an important
contribution to the error. Taking this into account, the following fit ansatz to

the tadpole data sets was made
mitP/Q = A+ BQ + CQ? (3.43)

where () is the lattice quantity used to set the lattice spacing. In this analysis,
() was selected to be the same quantity which set the scale in the determination

of the quark masses.

The non-perturbative improvement of the fermion action reduces the leading
order lattice spacing dependence of the masses to O(a?). Thus the fit ansatz for

the non-perturbative data sets was

mi /Q = A+ DQ? (3.44)

Independent fits to the tadpole and non-perturbatively improved data sets
using these fit ansdtze are uniquely determined. In order to perform a best fit
analysis, the continuum result from each fit was constrained to have the same
value in a simultaneous fit to all the data points. Continuum extrapolations
for the p and ¢ mesons using an uncorrelated simultaneous fit are shown in
Figure 3.24. The scale has been set by the K* meson, i.e. () = mg». Only the
best fits have been displayed in the plots for clarity. The experimental values are
indicated by the burst points. The mass ratio has been plotted as a function of
Q? to show the linear dependence of the non-perturbatively improved data points

more clearly.

When the vector mesons are used to set the scale, the improved scaling be-
haviour of the tadpole data over the non-perturbative data cannot be examined
for the vector mesons. This is because the data points have been been deter-
mined from an analysis of the same correlator channel. When the ratio of vector

meson masses are formed in order to perform the continuum extrapolation, the
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Figure 3.24: Continuum extrapolations for the mesons. The scale was set by the
K* meson. The burst points indicate the experimental values.

statistical fluctuations tend to cancel out. Thus the leading order corrections in
the mass ratio could be significantly reduced. One way to examine the effect of
improvement is to set the scale with a quantity such as ro which has been de-
termined independently. Figure 3.25 shows the continuum extrapolations for the
vector mesons when the scale is set by ro. The non-perturbative points exhibit
This

becomes more apparent for the ¢ meson. Comparing the extrapolations for the

slightly less dependence on the lattice spacing than the tadpole points.

mesons, the continuum results are significantly larger when the lattice spacing
is set by the Sommer scale. Indeed this appears to be a systematic effect which

affects all the hadron masses.

The continuum extrapolations for the baryons should be approached with
caution as the § = 5.7 data set does not include non-degenerate baryons. However
assuming linearity for the chiral extrapolations, continuum extrapolations for
the baryons were investigated. For the decuplet baryons, the simultaneous fits
to the lightest, A, and heaviest, )}, baryons are shown in the left-hand plot

in Figure 3.26, where the scale has been set by the K* meson. An improved
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Figure 3.25: Continuum extrapolations for the mesons. The scale was set by 7.
The burst points indicate the experimental values.

scaling behaviour for the non-perturbatively improved data can be observed for
the decuplet baryons, although the mass results are consistent within errors. The
¥* and =* have not been shown in the plots for clarity. The extrapolations for
these baryons are very similar to the ones shown. The A extrapolation was
performed to masses with very large errors, resulting in a large uncertainty in the
continuum value. Extrapolations for the nucleon and = octet baryons are shown
in the right-hand plot. The ¥ and A extrapolations have not been shown as they
are effectively degenerate. The same conclusions concerning improved scaling can

be drawn as for the octet baryons.

Continuum extrapolations were performed using the p mass, nucleon mass
and Sommer scale to set the lattice spacing, in addition to the K* mass, in
order to quantify the dependence on the ambiguity of the lattice spacing. The
errors in ro were added in quadrature and the extrapolations were performed
using a standard linear regression technique. The final results for the spectrum
obtained through different choices to set the scale, are shown in Figure 3.27. The

results are compared with the experimental values taken from [14]. When the
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_Figure 3.26: Continuum extrapolations for the baryons. The scale was set by the
K* meson. The burst points indicate the experimental values.

scale is set using a hadron mass, the results form a consistent picture for the final
masses. Setting the scale with the nucleon results in very small errors for the octet
baryons and even for the mesons. In the octet sector, cancellation of statistical
fluctuations in the ratio of the octet baryons to the nucleon is expected as the
same chiral extrapolation was used in both cases, resulting in smaller errors. The
results for the decuplet baryons are comparable with the results determined when

the mesons set the scale.

When the scale is set using the Sommer scale, the final results are much
larger with greater errors. As stated previously, this may be an indication of
a systematic effect. Comparing the results when the scale is set by the vector
mesons, the continuum extrapolation results are in agreement within errors. The
final results were selected when the K* meson sets the scale. This gives smaller
errors and means that a chiral extrapolation in the quantity which sets the scale
was avoided. It could be argued that the scale should preferably be set by a stable
particle, such as the nucleon, instead of a resonance. Comparing the spectrum

results obtained from the nucleon and K*, the maximum difference in the results
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F]gure 3.27: Spectrum results. The results obtained using different quantities to
set the scale are compared. The horizontal lines are the experimental results [14].
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Figure 3.28: Spectrum results. In the top plot the results obtained when the K*
sets the scale are compared with results from CP-PACS [4] using “K-input”. The
bottom plot compares the results obtained when the scale is set from the p mass
with the CP-PACS data. The horizontal lines are the experimental results [14].
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is observed for the p at 10%. This is the maximum error in the spectrum results

obtained by setting the scale by hadron masses.

Hadron Experiment[GeV] Mass[GeV] Deviation

p 0.770 0.835 T % 8.4% 220
¢ 1.019 0992 * .0 -2.6% l.4c
N 0.938 1.020 T30 8.7% 0.50
A 1.116 1.155 T30 3.5% 0.30
5 1.193 1.157 *37 -3.0% 0.3
= 1.315 1293 *32 -1.7% 0.20
A 1.232 1.337 12 8.5% 0.7¢
g 1.384 1.468 1115 6.1% 0.70
=* 1.532 1.596 5 4.2% 0.7
0 1.672 1.723 181 3.1% 0.70

Table 3.12: Spectrum results. The scale has been set by the K* meson throughout.
The last column shows the deviation from experiment.

The final spectrum results are compared with the results determined by the
CP-PACS Collaboration. They have performed a quenched calculation of the light
hadron mass spectrum using a Wilson fermion action for 4 values of § in the range
5.90 < G < 6.47 on lattices with a physical extent of 3fm for five quark masses in
the range m,/m, =~ 0.75—0.4. The results quoted in [4] have been compared with
the results determined here when the K* meson sets the scale in the uppermost
plot in Figure 3.28. CP-PACS have set the scale from the p mass. The bottom plot
in Figure 3.28 shows the direct comparison with the CP-PACS data when the scale
in both cases has been set from the p mass. The statistical errors on their data
are much smaller due to the increased number of configurations included in theijr
calculation. CP-PACS find that the maximum deviation of the spectrum results
from the experimental values is 11%. Due to the fact that they have simulated
at a lighter quark mass than the data presented here, their chiral extrapolations
included terms arising from quenched chiral perturbation theory, which could

explain why they observe a greater deviation from experiment, attributed to the
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quenched approximation.

The baryon masses are larger then the CP-PACS results. This could be due to
the significant finite size effects observed in the baryon masses. However the errors
on the baryon masses are large and no firm conclusions can be drawn. Table 3.12
contains the final spectrum results used in Figure 3.28. The deviation from the
experimental values have been included. The greatest deviation (8.4%) occurs
for the p meson. Increased statistics and simulations at lighter quark masses
could be considered in order to obtain more precise statements concerning the
effect of quenching errors in the light hadron spectrum. Another way to examine
the effect of making the quenched approximation is to compare with simulations
in full QCD - dynamical fermion simulations. This is the subject of the next

chapter.



Chapter 4

Dynamical spectrum results

The results for the light hadron spectrum obtained from dynamical fermion simu-
lations are presented in this chapter. An additional quenched simulation has been
analysed and the results included in this chapter to facilitate a direct comparison
with the dynamical results. The motivation for the study of a matched ensemble
of data sets is discussed and a brief description of the method used to determine
the matched simulation parameters is outlined. Details of all the simulation pa-
rameters are then reported. Measurements of the Sommer scale, 7y, determined
by A. C. Irving [89] are included in order to set the lattice scale and estimate
the accuracy of the matching technique. For each data set, the analysis of the
correlator data is discussed in detail and the resulting hadron masses in lattice
units are collated in appendix C. Those results which do not require a chiral
extrapolation are then discussed. Chiral extrapolations in the partially quenched
approximation are investigated, and finally the evidence for dynamical effects in
the spectrum is examined. Preliminary light hadron spectrum results have been
reported in [90] and the final results quoted in this thesis will be included in [91].

4.1 Motivation for the matched ensemble

First results from the initial dynamical simulations with two degenerate flavours
of O(a) improved Wilson fermions have been presented in [92, 93]. These simula-
tions were performed at fixed # = 5.2 for various sea quark masses, referred to by
the corresponding value of the hopping parameter, k.. The hopping parameter
associated with the hadron correlators generated on the dynamical configurations

now corresponds to the valence quark mass and is referred to as k., in the follow-
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ing. Data sets for this first exploratory dynamical simulation were generated at
three different volumes, 824, 123-24 and 16*-24. A preliminary estimate for the
non-perturbatively improved value of the clover coefficient, ¢, provided by the
ALPHA Collaboration, was used to reduce but not completely eliminate errors of
O(a) present in the action. The main focus of the analysis on these initial simu-
lations was to study the effects of varying the sea quark mass and to investigate
finite size effects. The results of this analysis were used to motivate the current
choice of simulation parameters used to generate the data sets discussed in this

chapter.

T T ] l T T T I T T T T I T T T T E
- B =52 ¢, =176 -
L ¢ o:Vi2¥x 24 R
0.20 |— —
L ) i
g - 4
m;? = p
0.15 — —]
| (0] i

[6]

1 1 | 1 ] 1 1] | 1 1 1 13 I 1 1 1 1 l

0.137 0.138 0.139 0.140

Ksea

Figure 4.1: The lattice spacing determined from r¢ for the f = 5.2, ¢ow = 1.76
dynamical simulations on the 12% - 24 volume, taken from [92]

From the investigation in [92], a significant lattice spacing dependence on the
sea quark mass was observed. Figure 4.1 shows the lattice spacing as determined
from rg for the 8 = 5.2, cow = 1.76, data set on the 12%-24 volume reported in [92].
The percentage difference between the largest and smallest lattice spacings is ap-
proximately 37%. Preliminary measurements of a determined for the current dy-
namical simulation at § = 5.2, with the fully O(a) non-perturbatively improved

clover coefficient, were reported in [94]. The lattice spacings measured for simu-
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lations with different ks, albeit with limited statistics, again show a significant
dependence on the sea quark mass. A percentage difference of 24% was ob-
served [94] when comparing a for simulations at kg, = 0.1330 and K., = 0.1350.
This means that chiral extrapolations in the sea quark mass, for hadron masses
obtained from correlators with kg = Ky, are complicated by an additional

dependence on the lattice spacing.

To investigate chiral extrapolations independently from continuum extrapo-
lations, it was proposed that simulations with different sea quark masses should
be carried out at the same lattice spacing defined with respect to a given physical
quantity and hence at the same effective volume. In this way observed effects
in the spectrum can be attributed to the inclusion of sea quarks rather than po-
tentially large lattice artifacts or finite volume effects. In addition, simulating at
a fixed volume facilitates direct comparisons with the quenched approximation.
Three dynamical data sets with fixed a forming a matched ensemble were gener-
ated and compared with a quenched simulation at the same lattice spacing. The
parameter details are described in section 4.3. In order to simulate at the same
effective lattice spacing for different sea quark masses and hence form a matched

ensemble of data sets, the bare lattice parameters, # and kg, must be tuned.

4.2 Tuning the bare parameters of the action

In [95] the method used to tune the bare lattice parameters in order to achieve the
same value of the lattice spacing for different (3, £sea) combinations was outlined
and preliminary tests of the pfocedure were presented. This section discusses the
criteria used to match the current simulations and a brief description of the basic
idea. The analysis involved to determine the matched parameters was carried

out by A. C. Irving and J. C. Sexton.

One dynamical simulation (£, Ksea), is said to be matched to another simula-

tion (8',k..,), in this particular context, when the expectation value of a lattice
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observable, O, measured on each data set is equal

(O)ru, = (O g (4.1)

sea

Provided the simulations are in the scaling region this condition implies that
the lattice spacing is the same to leading order for both data sets. The initial
simulation is performed with the parameters (8, f...) and the chosen observable
i1s measured on the gauge configurations. Since the matched simulation shares
the same gauge configuration space as the original simulation the expectation
values of the observable can be related by the cumulant expansion [96] to first

order

<O>ﬁ””‘éea = <O>,6,K»sea + (éA)ﬁyﬂsea + oo (42)

where

@ = O — (O), A = Sﬁ’ — Sﬁ’,n’

sea

(4.3)

Ksea

and A is the difference between the original action and the matched action. The
action, defined in equation 1.22 can be split into a pure gauge part depending
only on # and a fermion part depending on both k., and B through the inclusion

of the clover term

Sﬁ:Ksea = SG(ﬁ) + SF(csw(ﬁ), /{sea) (44)

By requiring that the following expectation value measured on the original data

set vanishes

(OA)pppen = 0 (4.5)

the matching condition in equation 4.1 is satisfied. This relationship can then

be used to determine the parameter values (8, x.,,) of the matched simulation.

? "“sea

Assuming the matched parameters are related by a small shift in the original

parameters, 8’ = 3 + §F and k.., = Ksea + IKeea, equation 4.5 can be written as

d/B — <06—a;§i>ﬁ;ﬁsea (4 6)
disea — (O(%5 + F2Lm))g. .,

where the expression for A has been Taylor expanded and the limit §3, 6keea — 0
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taken. This means that the corresponding shift in § needed to match a small
change in kg, can be determined from computing the expectation values in equa-
tion 4.6. The methods used to evaluate these expectation values are described in
detail in {95, 96]. The main complication arises from the fact that equation 4.6
is a non-linear function of § due to the clover coefficient in the fermion part
of the action. However ¢y, is a well known function of 8 and the derivative is
easily determined. Evaluating equation 4.6 requires an initial estimate of the 8
shift, d3 in order to determine a first estimate of the matched value of 4. A
self-consistency check can be performed by measuring the actual slope between
the original and predicted parameters. In practice the expectation value of the
observable is measured on the original data set for a range of § values and inter-
polated to perform the matching. Further details of the matching technique will
be included in [91].

In general the matched parameters will depend on the choice of observable
used in the tuning procedure [95]. In this case ro was selected. The Sommer scale
has the advantage that it is independent of the valence quark mass and is defined
and measured in the same way for both dynamical and quenched simulations.
At this intermediate quark separation, phenomenological static quark potential
models are tightly constrained by the spectrum of heavy mesons, such as bb.
Confidence in rg is gained from the fact that its physical values obtained from
different models are in good agreement and that lattice calculations have a high
degree of accuracy, particularly for fine lattices [73]. For these reasons it is
expected that ro will be a good choice to highlight sea quark effects. Since
ro 1s a derived quantity, the matching is actually performed with fuzzed paths of
gauge links, defined later in section 4.4. These fuzzed paths are determined at
the estimated values of the matched lattice parameters for a range of §3 shifts
and ¢ 1s then extracted by the methods of section 4.4. A linear interpolation of

the predicted ry values was then performed to do the matching.

The matching technique is only practicable for small changes in the bare
parameters. In particular it was not suitable to directly match the dynamical

simulations with the quenched approximation. The matching of the quenched
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simulation was instead achieved by direct investigation. This is only possible be-
cause quenched configurations can be generated comparatively quickly. An initial
estimate for the matched quenched  value was obtained from the interpolating
formula for 7o as a function of the strong coupling in the quenched approxima-
tion, reported in [97]. A trial quenched run was performed at this value of 4, and
the Sommer scale was measured on the resulting configurations using the same
method as for the dynamical simulations. This allowed a correction to the initial

estimate of § to be made, which was then used for the final production run.

4.3 Simulation parameters

In addition to the three dynamical data sets forming a matched ensemble and the
corresponding quenched simulation, a further dynamical data set at a lighter sea
quark mass was simulated. To observe the greatest effects due to the inclusion
of dynamical fermions the sea quark mass should be made as light as possible,
ideally in the region of the up and down quark masses. However, simulations
at light quark masses are more computationally intensive and not feasible with
the current level of computing resources. The lightest sea quark mass simulated
here represents the smallest quark mass at which meaningful statistics could be

achieved within an acceptable time period.

Gauge configurations were generated with two degenerate flavours of O(a) im-
proved dynamical Wilson fermions using the Hybrid Monte Carlo algorithm [98]
on the Cray T3E supercomputer in Edinburgh. The implementation and verifi-
cation of the code was described in [93, 99]. A summary of the algorithm details
was reported in [92]. For all the dynamical simulations, gauge configurations
were separated by 40 trajectories. This figure was reached from a study of the
autocorrelation times measured for the plaquette on every trajectory [92, 93, 100].
The matched quenched gauge configurations were generated by the hybrid over-
relaxed algorithm with the compound sweep ratio of 7:1, over-relaxed to Cabbibo-
Marinari sweeps [57]. Gauge configurations used for measurements were sepa-

rated by 700 compound sweeps.
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15} Csw Ksea Kval # conf.
529 1.9192  0.1340  0.1335, 0.1340, 0.1345, 0.1350 101
526 1.9497  0.1345  0.1335, 0.1340, 0.1345, 0.1350 101
52 2.0171  0.1350  0.1335, 0.1340, 0.1345, 0.1350 150
593 1.82  Quenched 0.1327, 0.1332, 0.1334 160

' 0.1337, 0.1339

Lightest kgen simulation.

5.2 2.0171 0.1355 0.1340, 0.1345, 0.1350, 0.1355 102

Table 4.1: Simulation parameters for all the dynamical simulations and matched
quenched simulation.

Quark propagators were generated using O(a) improved Wilson fermions.
Correlators were constructed from fuzzed propagators for degenerate combina-
tions of ky, for the dynamical simulations. The range of valence quark masses
was chosen to be close to the sea quark mass, and in all cases correlators were
computed at Kgea = Kyal. For the quenched simulation, degenerate and non-
degenerate meson correlator combinations were generated for three values of the
hopping parameter. Following the analysis of this data, a further two xy, values
were included in the simulation in order to achieve lower mps/my mass ratios,
comparable with the lighter dynamical simulations. The non-degenerate combi-
nation of these final two quark propagators was used in the quenched analysis.

Only degenerate baryon correlators were included in the analysis.

Table 4.1 shows the simulation parameters for all the data sets. All simula-
tions were carried out on a 16* - 32 lattice. The finite volume investigation in [92]
suggested that this increase in lattice size would be necessary in order to keep
finite size effects to a minimum as the sea quark mass was reduced (and hence
the lattice spacing) for the current simulations. In particular the temporal ex-
tent of the lattice was increased to allow sufficient time for a clear plateau to be
observed when considering effective mass plots for all hadron channels. In order

to ensure a large enough spatial volume to accommodate hadrons ( > 1.5 fm ) at
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this lattice size, a coarse lattice spacing of a 2> 0.09 fm is required. This means
that simulations must be performed with a low value of 8. The dynamical 8
value was selected to be as low as possible while remaining within the parameter
range where a valid non-perturbative estimate of the clover coefficient had been

determined.

The fully non-perturbatively O(a) improved value for ¢, determined by the
ALPHA Collaboration in [101] and given by
1 —0.454¢g5 — 0.175g5 + 0.012g5 + 0.0454%

dynam — 47
Cow 1 —0.720g2 (4.7)

was used for all the dynamical simulations. This interpolation formula is valid
for B values as low as 5.2, the minimum £ value included in the simulations.
Thus residual lattice artifacts are expected to be of O(a?), which on the coarse
lattices simulated here could still be significant. The clover coefficient used in

the quenched simulation was determined by the ScRI' Collaboration [102]

javen _ 1 = 0.6084g8 — 0.201543 + 0.0307545
= 1 — 0.8743¢2 ’

B>517 (4.8)

This result extends the analysis of the ALPHA Collaboration to lower values of §.
Although the interpolating formula in equation 4.7 for ¢, is only accurate to 3
decimal places, 5 significant figures were used in the generation of configurations
for the purposes of reproducibility. For technical reasons, 3 significant figures for

csw Were used in the generation of quark propagators.

4.4 Determination of rg

To determine the lattice spacing, 7o was measured for every data set. The Sommer
scale is defined in terms of the force between a static quark anti-quark pair as in

equation 3.17, or in terms of the potential

oV (r/a)

o mm(ro/af = 1.65 (4.9)
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In this case the physical value of rq was chosen to be 0.49 fm. What follows is a
brief description of the method used to extract ro, employed by A. C. Irving [89].
Further details of the method will be included in [91], which differs in part from

the technique used for the previous dynamical simulation reported in [92].

The lattice static quark potential, V (), is determined from the exponential
decay of Wilson loops at large times. Wilson loops, W (r,t) are the product
of gauge links in a closed loop, where 7 defines the spatial orientation of the
loop and t is the temporal extent. In [92] only on-azis Wilson loops, where
r = (n,0,0), n =1,2,... were considered. Here the off-azis directions, (1,1,0),
(2,1,0), (2,2,0), (3,1,0), (3,2,0) and (3,3,0), as used in [103], were included
in the analysis in order to estimate the effects of lattice artifacts due to the
breaking of rotational symmetry. To increase the overlap of the Wilson loops
with the ground state potential the gauge links were fuzzed, as described in
section 2.6. Wilson loops were then constructed by correlations of two spatial
paths of fuzzed gauge links, fuzzed using two possible levels of iteration of the
fuzzing algorithm [104]. Using a variational technique [105], estimates for the
ground and first excited state eigenvalues from the resulting 2 x 2 matrix of
Wilson loops can be made. The ground state eigenvector can then be used to
project out a linear combination of Wilson loops with a greater overlap with the
ground state, denoted by Wic(r,t). An estimate of the ground state potential
can be determined from the long time behaviour of the effective “mass” of the

linear combination of Wilson loops [103]

Vir)= tl_lglo V(r,t) (4.10)
where Wic(r.1)
_ Le(r,
V(r,t) =In —_WLc(r,t+ D (4.11)

To extrapolate to the infinite time limit, corrections to the ground state potential
are made by subtracting the contamination due to the contribution of the first
excited state. This correction can be estimated from the ratio of the correspond-

ing eigenvalues for both states, following the methods of [106]. The final value
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for the potential was determined by computing the weighted average of V(r,¢)
in the range thin = 3 to tmax = 9, where the relative weights were given by the

inverse of the statistical errors.

Once V(7) had been determined, ro was extracted using a similar analysis to
that described in [97] and originating in [103]. The data was fitted to the ansatz
1
V(r)=Vo+or—eGL(r)+1 <G’L('r) - —) (4.12)
T
where GL(r) is the tree-level lattice expression for the exchange of one gluon

given by
Pk cos(k - r)

Gulr) = 4= /_ (2m)* 4 372, sin®(k:/2)

The string tension, o describes the potential at large distances, r = |r|, while at

(4.13)

short distances the potential is described by the lattice Coulomb term, eGyp(r).
The term proportional to [ takes into account lattice artifacts beyond tree level.
Of course, for large enough separations the string is expected to break for the
dynamical simulations. Thus the fits were performed over small fit intervals
chosen to straddle ro. Systematic errors were estimated by choosing different fit
ranges. The statistical errors were determined by the bootstrap method. The
lattice potential can be equated with the continuum equation to within O(a?)

through a subtraction of the form

Vir)=Vo+or — ; ~V(r)+(e—1) (G’L(r) - l) (4.14)

r

Differentiating the left hand expression for V(r) with respect to r and substituting

into equation 4.9, ry in lattice units is determined by

11.65 — e
=3/ — 4.1
To o ( 5)

Table 4.2 displays the results for ro and the corresponding lattice spacing for
each data set. The table shows that the = 5.2, kga = 0.1350 and S = 5.26,

Ksea = 0.1345 data sets are the most closely matched. The value of ry for the
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B Ksea ro/a a [fm)] 1/a |GeV] mps/my
5.93 Quenched 4.612(30) * } 0.1062(7) + ' 1.86(1)

5.29 0.1340 4.450(61) 27 0.1101(15) '3 1.79(2) 0.830 * ¢
5.26 0.1345 4.581(59) *,0 0.1070(14) *+3%  1.84(2) 0791 *
52  0.1350 4.576(80) T30 0.1071(19) **7  1.84(3). 0.688 *!Z
52 0.1355 4.914(82) 75 0.0997(17) T4 1.98(3) 0.584 *23

Table 4.2: ro/a and the corresponding lattice spacing. The statistical error is in
parentheses and the second error is an estimate of the systematic errors. The
mass ratio mps/my for the dynamical data sets at Kga = a1 is included in the
table.

heaviest sea quark mass data set: differs from the other matched data sets by
at most 3.5%. Of course the matching procedure is expected to be less accurate
when larger shifts in the parameters are considered. The systematic errors quoted
for 7o have not been taken into account in the subsequent analysis. The effective
lattice volume of the matched ensemble is 1.71 fm and for the lightest sea quark’
mass, slightly smaller at 1.60 fm. The mass ratio mps/my at Keea = Kyai, obtained
from the fitting procedure described in the following sections, is shown for the
dynamical data sets. This ratio gives an indication of the value of the sea quark
mass at which the simulations are performed. The lightest mass ratio is 0.584

which, at around the mass of the strange quark, is still relatively heavy.

4.5 Fitting the data

Thg following sections discuss the results of the analysis procedure to determine
the lattice masses of the hadrons for the four dynamical data sets and the matched
quenched data set. The analyses of all the simulations were carried out in the
same way, as described in chapter 2. All fits used 500 bootstrap samples to
estimate the errors. Fits were performed to the pseudoscalar, vector, nucleon
and delta for degenerate combinations of x, for the dynamical simulations. The
quenched analysis included some non-degenerate meson correlators. As in the

previous chapter, effective mass plots were studied in order to determine the
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onset of the ground-state plateau. Fits to extract the ground state mass were
then performed to the FL and FF correlators using a sliding window analysis
as described in section 2.12.7. These fits are referred to by the notation FL
and FF in the following. The correlator notation introduced in section 2.7 has
been modified in this chapter to additionally refer to the type of fits that were
performed. More complicated fits were then attempted. Simultaneous fits to
the correlator combinations, LL,FL and LL,FF to the ground and first excited
state using equation 3.2 for the mesons and equation 3.3 for the baryons were
investigated. Finally a factorising fit to the LL,FL,FF correlator combination, as
described in section 2.11, was considered. In this case the fit was performed to
the ground and first excited states. The notation for the fit types is described
in appendix C. In all the fits under consideration, a cosh was used to fit the
mesons and the baryons were fitted by an exponential, which is implicit in the fit
notation. In the sliding window analysis, the maximum time slice was able to be
pushed to the latest time slice possible, ¢max = 15, for all the fits. For each type
of fit considered the best fit range was selected based on the selection criteria in
. section 2.12.7, the results of which are tabulated in appendix C. The tables in the
appendix include the values of the masses in units of rg to facilitate comparisons
between the data sets. The systematic error associated with the choice of fit type
has not been included in results obtained from the subsequent analysis of the

fitted masses.

The fit results for each of the dynamical and matched quenched data sets are
now discussed in turn. The final choice of fit type in each case is explained and the
results obtained from the analysis for correlators where kg, = #ya is showcased
for each data- set. Plots of the fitted masses for the pseudoscalar, vector, nucleon
and delta resulting from a sliding window analysis are shown to illustrate the
choices made for the final fit intervals. Figure 4.2 shows an example of this type
of plot. The masses obtained from different fit procedures have been offset to the
right for clarity. For example, points corresponding to tmi, = 10 are displayed
in the interval [9-10] for each type of fit. Below the main plot, is a plot of the

corresponding x?/d.o.f. for each point, where the plotting symbols correspond
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to the legend in the main plot. In general the x?/d.o.f. is plotted in the range
0-3. For some of the fitted masses the corresponding value of the x?/d.o.f. is not
shown in the plot. This is because the x?/d.o.f. is greater than the range shown.
In these cases the fitted mass for the particular fit interval was not considered
further in the analysis. The final fitted mass used in the subsequent analysis is

marked by an arrow.

Effective mass plots of the three correlator types considered in the analysis
(LL, FL and FF) are shown together with the final fitted mass superimposed
on the plot as in Figure 4.4. Note that all the effective masses approach the
plateau from above, with the FF correlator making the shallowest approach. If
the effective mass plots are compared with the ones obtained in the previous
chapter for the quenched simufation, the increase in the length of the plateau for
the fuzzed correlators is less pronounced for the data sets considered here. This
is probably due to differences in the choice of fuzzing radius which has not been

optimised for the current simulations.

For the mesons, preference for the final fit selected was given to fits to both the
ground and first excited state. The selection of the best fit type was made based
on the maximal fit range possible, stability of the fitted masses with respect to
small variations in the fit interval, fits with small and more symmetric errors, and
a value of x?/d.o.f. & 1. In addition, agreement with the masses obtained from
fits to purely the ground state was considered important. Of course, sometimes
compromises had to made between these different criteria in the final analysis.
The same criteria were used to select the fits for the baryons, although in some
cases the simple fits to the ground state were chosen over more complicated fits

which were unstable.
4.5.1 Fitting the lightest k.., data set.

The data set at B = 5.2 and Ksa = 0.13550 was the lightest sea quark mass
simulated. Correlators generated with kee. = Kval, discussed as an example here,

are thus expected to have the largest signal to noise ratio. This can be seen in
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Figure 4.2: Sliding window plot for the pseudoscalar and vector masses for the
B = 5.2, kgea = 0.13550 data set at Kyy = 0.13550. The fitted masses obtained
for each type of fit have been offset for clarity. The arrow marks the final value
selected.
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Figure 4.3: As for Figure 4.2 for the nucleon and delta for the 8 = 5.2,
‘Ksea = 0.13550 data set at xya = 0.13550.
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the effective mass plots shown in Figure 4.4, particularly for the delta.

Figure 4.2 shows the fitted masses for the pseudoscalar and vector obtained
from a sliding window analysis for each type of fit attempted. For the pseu-
doscalar, the mass results from all the fits start to agree from the fit range [9-15].
The LL,FL and LL,FF fits are in close agreement from ¢, = 5 onwards. How-
ever the mass starts to rise slightly as ¢m, is pushed further out and it is only
at tmin = 9 that the mass becomes stable as t,;, is varied by one. Fits to the
heavier kv, correlators show the same general trend, the mass becoming stable
at around tmin = 9. From this point, the errors on the fitted masses from the
LL,FL fit are larger than those obtained from the LL,FF fit and thus the LL,FF
fit was selected in preference. Comparing these results with those obtained from
the single cosh fits, the results are in agreement within statistical error. The
factorising fit gave results consistent and a reasonable x?/d.o.f. for #,;, > 10 but
was not selected for the final fit as the errors tended to be less symmetric. The
percentage difference in the fitted masses rises from 0.6% to 1.4% as the valence
quark mass becomes lighter. The deviation in the mass is less than one o in all
cases. In general the choice of fit does not have a significant impact on the final

results. The effective mass plot in Figure 4.4 shows the final mass selected from

the LL,FF fit.

The sliding window plot for the vector in Figure 4.2 shows that the fitted
masses from each fit type start to agree from ¢, = 9. Simultaneous fits to
the LL,FL correlator combination resulted in larger errors than both the LL FF
and LL,FL,FF fits, either of which could have been selected for the final results.
However the factorising fits were not as stable as the LL,FF fits with respect to
small variations in %.,;,. The maximum deviation in the fitted masses from each
type of fit amounts to less than one o with the greatest percentage difference of
2.3% at the lightest valence quark mass. The effective mass plot in Figure 4.4
shows the final fitted mass selected from the LL,FF fit.

A similar sliding window analysis was performed for the degenerate nucleon

and delta baryons, shown for s = 0.13550 in Figure 4.3. For the nucleon the
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fitted masses are in agreement from t,;, = 9. The final fit selected was the
double exponential fit to the LL,FF correlators in the range [10-15] as this gave
the lowest errors for most cases, excepting the simple fits to the ground state. At
later time slices the errors on the fitted nucleon masses became increasingly large
as can be seen from Figure 4.3. This was in part due to the increased noise in
the nucleon correlator, a problem which was worse for the delta. Hence for the
delta, the effect of reducing the maximum time slice to 14 was investigated. No
significant improvement in the fits was observed and so the maximum time slice
was selected to be t,ax = 15. The LL,FF fit proved unstable at the heaviest xya
for the delta and the masses obtained from the factorising fit were very susceptible
to small changes in the fit interval. The final fit selected was a double exponential
fit to the LL,FL correlator combination, which gave consistent results with the
single cosh fit to the 'L correlator. The deviation of the masses for the baryons
was less than 1.70 between the largest and smallest mass estimate in every case.
The percentage difference in the masses increases dramatically at the lightest
valence quark mass if the extreme values taken from the FL and LL,FL,FF fits
are compared. The other three types of fit give much closer agreement. This

highlights the difficulty observed in extracting the mass for the delta.
4.5.2 Fitting the 8 = 5.2, Kqea = 0.13500 data set.

The data set at § = 5.2, kgea = 0.13500 had the largest statistics of all the dy-
namical data sets and hence the jackknife errors calculated for the time sliced
correlator data were greatly reduced. One consequence of this was that it became
harder to fit the data, particularly for the pseudoscalar which has the smallest
errors in any case. This can be seen from the sliding window plot for the pseu-
doscalar in Figure 4.5 where the x?/d.o.f. lies in the range 2-3 for the majority of
fits. One noticeable feature of this plot is the large skewed errors for the masses
obtained from fits to the LL,FL pair of correlators. In fact the masses from this
fit have not been included in the plot for #,;, > 8 as they lie below the range
of the graph. The corresponding x?%/d.o.f. for these fits have been shown and
have acceptable values. However this was because the errors on the fitted masses

were so large. The results from the LL,FL fit were thus not considered further.
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Figure 4.5: As for Figure 4.2 for the pseudoscalar and vector masses for the
B = 5.2, Ksea = 0.13500 data set at kv, = 0.13500.
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Figure 4.7: As for Figure 4.4 for the 8 = 5.2, Kkea = 0.13500 data set at
kval = 0.13500. The pseudoscalar has been fitted by a double cosh fit to the
LL,FF correlator combination, the vector similarly to the LL,FL combination.
The nucleon (delta) was fitted to a single (double) exponential to FL (LL,FL,FF)

correlator(s).
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Masses from the factorising fit were not selected for the best results as they were
slightly larger than the results from the other fits, although still consistent within
statistical errors. The x?/d.o.f. for the LL,FF fits reached acceptable values at
tmin = 11 or {min = 5 except at the heaviest k., where only the ¢, = 11 value
was acceptable. These fits were then selected for the final fits. Examining the
effective mass plot in Figure 4.7 there is a clear “wiggle” in the plateau which

. could account for some of the difficulties encountered in fitting the pseudoscalar.

The mass results for the vector for different fit types were in close agreement
for fit ranges with ¢, > 10. The LL,FF fits were not as stable with respect
to small variations in the fit range as the LL,FL fits, which were selected in
preference for the final results. Factorising fits gave slightly larger errors than
those obtained from the single cosh fits and were not used for the best results.
Similar variations in the mass results for the mesons obtained from different fits

were observed as for the § = 5.2, ko = 0.13550 data set.

For the nucleon and delta both simultaneous fits (LL,FF and LL,FL) proved
highly unstable, in particular for the LL,FL correlator combination. The LL,FF
fits gave mass results with values of x?/d.o.f. < 4 for the nucleon and x?/d.o.f. <
5 for the delta, with skewed error bars in both cases. Simultaneous fits using
both correlator combinations were only possible for the nucleon at the lightest
Kval as can be seen from Figure 4.6. This could be due to the fact that this
correlator has the noisiest signal, reducing the constraints imposed upon the fit.
The factorising fits for the nucleon gave similarly high values for the x?/d.o.f.
and hence the single exponential fits were considered for the final results. From
the effective mass plot of the nucleon in Figure 4.7, the onset of the gréund state
plateau occurs very early around ¢ = 8. This meant that single exponential fits
were stable for a wide range of fit intervals, the FL fits more stable than the FF
fits. A long fit interval of [8-15] was selected for the final fit for the nucleon. For
the delta a clear signal of the plateau was not observed in the effective mass plot.
In this case the factorising fits, despite larger errors and x?/d.o.f. were the most

stable as the minimum time slice was varied and thus were selected for the final

fits.
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4.5.3 Fitting the 8 = 5.26, Kgea = 0.13450 data set.

The sliding window plots for the pseudoscalar and vector for Kse. = Kva) are shown
in Figure 4.8. Figure 4.10 shows the corresponding effective mass plots. The final
fit for the pseudoscalar was selected to be in the range [9-15] for the LL,FF fit, in
preference to the LL,FL fits which gave slightly larger errors. The.factorising fit
gave consistent results but with a higher x?/d.o.f. than the LL,FF fits. The mass
difference for the different fit types was less than 0.5%, 0.8¢ for the pseudoscalar,
indicating that mass is independent of the choice of fit. For the vector the LL,FL
fit in the range [9-15] was selected as the final fit. Both the factorising fit and the
LL,FF fit, resulted in slightly higher mass values with a correspondingly larger
x?/d.o.f. and hence were not selected. The early plateau of the ground state at
¢t = 8 allowed long fit ranges to be considered even for the single cosh fits. The
systematic error in the mass arising from the choice of fit was around 1% for the

vector in all cases.

All types of fit were possible for the nucleon. The LL FF fit was selected
as the best fit as this was the most stable fit with low values of the x?/d.o.f.
in the sliding window analysis. This can be seen in Figure 4.9. Fitted nucleon
masses deviate at most by 1.70 when different fit types are compared. Fitting
the delta using the LL,FF type of fit proved difficult, with unacceptable fits over
any fit interval for the correlators with s, = 0.13450. Factorising fits gave
results consistent within statistical errors, however the errors were larger than
those obtained from single exponential fits. In addition, the single exponential
fits showed the greatest stability as the fit interval was changed slightly. The FF
fit was thus selected to be the final fit. As an indication of the uncertainty in
the delta mass, the deviation between different mass estimates determined from

different fit procedures was at most 20.
4.5.4 Fitting the 8 = 5.29, Kgea = 0.13400 data set.

The f = 5.29, £5ea = 0.13400 data set was the heaviest sea quark mass consid-

ered in the matched ensemble. As can be seen from the sliding window plot for
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Figure 4.8: As for Figure 4.2 for the pseudoscalar and vector masses for the
B = 5.20, Keea = 0.13450 data set at x, = 0.13450.
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Figure 4.9: As for Figure 4.2 for the nucleon and delta for the 8 = 5.26,
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Figure 4.11: As for Figure 4.2 for the pseudoscalar and vector
B = 5.29, Kkeen = 0.13400 data set at ., = 0.13400.

masses for the



Chapter 4. Dynamical spectrum results 143

1.2 T T T T T T T T

eff

N

l T
Fo———
[

| |
o b @@M}lﬁlﬁ i

B ¢ : LL,FF

# : LL,FL /I\

T
I

3 C T | T T I T T 7]
< F E
s E o, ]
N 1 - 0 o 7
s 1 : o) o on o ]
= a
oL 1 ' I t . oB OD I Q oa on
0 5 10 15
t‘min
14 T T T T I T T T T ’ T T T T
1.3 |— ]
= L o:.FF :% %
g l -
- ¢ ¢ LLFF @1 ﬁ i
| ¢ LLFL i
1.1 }— % : LL,FL,FF —
C 1 | 1 1 l 1 1 N
4’5 T T I T X }lc * >lc T E
w 3 —
<2E ° o % . 0° =
~N Ok o™ o 3
o E E
=1 o o —
0 E ] I |O Iﬁ O 10y 1 E
0 ) 10 15
tmin

Figure 4.12: As for Figure 4.2 for the nucleon and delta for the g = 5.29,
Ksea = 0.13400 data set at ky = 0.13400.
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Figure 4.13: As for Figure 4.4 for the 8 = 5.29, e = 0.13400 data set at
Kval = 0.13400. The pseudoscalar (vector) have been fitted by a double cosh fit
to the LL,FF (LL,FL,FF) correlator combinations. The nucleon and delta were
fitted by a single exponential to the FL and FF correlator respectively.
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the pseudoscalar in Figure 4.11, the fitted masses are in close agreement for fit
intervals with ¢,i, > 9 for all the fits that were possible. Factorising fits were at-
tempted, however these proved extremely unstable, with values of x2/d.o.f. > 6.
The factorising fits were then repeated using an uncorrelated fit. This was stable
with low x?/d.o.f. values and mass results compatible with those obtained from
the other types of fit. This indicates that correlations in the data contributed to
the instability of the fits. The results from the uncorrelated fits were not con-
sidered further as it was clear that the data is correlated. The LL,FF fit was
selected as the final fit in-preference to the LL,FL fit which had much larger
errors. Although the final ¢, selected in Figure 4.11 for the pseudoscalar may
seem a little high, Table C.14 in appendix C shows that the mass results were in

extremely good agreement for all fit types.

Figure 4.13 shows that there was not a clear signal of the ground state plateau
for the vector. The vector mass was subsequently hard to extract, with the LL,FL
fits only possible for two of the ka1 values considered. Single cosh fits to the FL
correlator gave large x?/d.o.f. values which could be the cause of the instability
in the LL,FL fits, as can be seen from Figure 4.11. Indeed the range of x?/d.o.f.
displayed in this plot has been doubled compared with the other plots and all
the values lie within the range 2-6. The factorising fit was chosen in preference
to the LL,FF fit as this resulted in a more consistent (although high) x?/d.o.f.

across the full range of valence quark masses.

The simultaneous fits (LL,FF and LL,FL) for the nucleon gave mass results
with véry skewed error bars, as can be seen from Figure 4.12. In addition, fac-
torising fits were highly unstable and hence no results are reported. The final
fits were taken from the single exponential fit to the FL correlator as this fit
was the most stable under small variations in the minimum time slice. For the
delta all the types of fits considered were possible. Fits to the ground and first
excited states were ruled out by the instability of the fitted mass as t,,;, was
varied slightly. The final fit was selected to be a single exponential fit to the FF
correlator. As can be seen from the graph in Figure 4.13 the effective mass for

the delta continues to drop until ¢ = 13.
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4.5.5 Fitting the matched quenched data set

The analysis of the matched quenched data set at 8 = 5.93 is now discussed. A
sliding window analysis was undertaken for the pseudoscalar, vector, nucleon and
delta. The results of all the fits investigated for the pseudoscalar and vector are
displayed in Figure 4.14 for the lightest valence quark mass at kv = 0.13390.
The LL,FF fit was selected for the final fit for the pseudoscalar in the range [9-
15] as this was the most stable fit with the smallest statistical errors. Final mass
results differ by less than 1% between the largest and smallest values. Figure 4.16
shows that the effective mass plots appear very similar to those obtained from
the dynamical simulations. For the vector, the best fit was chosen to be the
factorising fit. This gave the most stable results with respect to small variations

in the fit interval and mass estimates compatible with the single exponential fits.

The onset of the ground state plateau for the nucleon occurs relatively early
around ¢ = 8. This meant that all the fits had acceptable x%/d.o.f. values for
long fit intervals. The LL,FF fits to the heaviest valence quark mass proved very
unstable and no mass result is quoted for this fit. The final fit was selected to
be the LL,FL fit as this gave reasonablely small eérrors and low x?/d.o.f. values.
All other fits gave consistent results as can be seen in Figure 4.15. For the delta
all fit types were possible. However the factorising fit and the LL,FF fit were the
least stable. For this reason the LL,FL fit was chosen as the best fit. This gave
the lowest x?/d.o.f. and consistent results with the single exponential fits. The
deviation between the largest and smallest delta masses estimates was around

one o.

4.6 Summary of fit results

In general the choice of fit procedure to extract the lattice masses did not make
a significant impact on the final results for all the data sets considered. Different
fit types were selected according to greater stability in the fitted masses and
smaller statistical errors. Table C.1 in appendix C contains a summary of the

final fit types selected for each data set. The data set with the greatest statistics
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kval = 0.13390. The pseudoscalar (vector) has been fitted by a double cosh fit
to the LL,FF (LL,FL,FF) correlator combination. The nucleon and delta were
fitted by a double exponential to the LL,FL correlator combination.
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(B = 5.2, Ksea = 0.13500) proved more difficult to fit due to a reduction in
the jackknife errors on the time sliced correlator data and fluctuations in the
ground state plateau. Stability of the fits also proved a problem for the data set
with the largest 8 = 5.29 with difficulties arising from identifying the onset of the
plateau. Extracting the masses from correlators generated at the heaviest valence
quark mass was usually easier due to a higher signal to noise ratio. Comparing
the analysis of the matched quenched data set with the dynamical simulations
resulted in no noticeable differences in the relative ease of extracting the mass

information.

4.7 The PcAC mass

The partially conserved axial current (PCAC) mass was determined for all the
data sets considered in this chapter. The definition of mpcac and the method of
determination has previously been described in section 3.3. For N; = 2 simula-
tions the axial vector improvement coefficient, ¢y has not yet been determined
non-perturbatively. Thus in the analysis of the dynamical data sets the one-loop
result for ¢y from perturbation theory, defined in equation 3.9, was used. The
one-loop value of ¢y was also used for the quenched matched simulation for con-
sistency. In both cases the bare coupling was used to determine cs. Fits were
performed to the FL correlator using equation 3.12. The sliding window analysis
was very stable with respect to variations in the fit range as was observed in the
quenched analysis. Values for the x?/d.o.f. were in general around 1, rising to 2
for the lightest sea quark mass simulation. Figure 4.17 shows example effective
mass plots obtained for mpcac for the dynamical data sets at Ken = Kyal. The

results for mpcac from all the data sets are collected in appendix C.

4.8 Comparing the lattice results

One way to compare the mass results obtained in the meson sector for each data
set is to plot the vector mass against the pseudoscalar mass squared. Figure 4.18
displays this type of plot where the masses are in units of r,. The experimental

points corresponding to the K and K*, and the ¢ and 7, mesons are shown for
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Figure 4.17: The PCAC mass for all the dynamical data sets at Ksea = Kva). The
final masses have been superimposed on the effective mass plot.

comparison. (Note that the s is not a physical meson). Comparing the dynamical
simulation at the lightest sea quark mass with the quenched results, the dynamical
data show an improved trend towards the experimental points as can be seen from
the upper plot. It is encouraging that the data at the lightest sea quark mass
tends to decrease towards the experimental points as the valence quark mass is
reduced. Simulations at lighter quark masses are of course needed in order to
confirm this behaviour. Indeed the dynamical simulations all show a similar trend
towards the experimental values. Within the three matched dynamical data sets
themselves however, this trend appears in the opposite direction to what might
be expected, the heavier sea quark mass data lying below the lighter quark mass
data. This behaviour was also observed for the previous dynamical simulation
reported in [92], as can be seen when the results from this paper for the 4 = 5.2,
csw = 1.76 data set on the 12° - 24 volume are compared with the dynamical
matched ensemble data in the lower.plot of Figure 4.18. This trend need not be a
cause for concern as the effect on the spectrum resulting from changing the lattice

spacing towards the continuum limit is as yet unknown. Examining Figure 4.18
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Figure 4.18: Vector mass plotted against the pseudoscalar mass squared in units
of rq. The top plot shows the results for all the data sets. The lower plot com-
pares the matched dynamical ensemble with the previous dynamical simulation
reported in [92]. The experimental values are indicated by the burst points.
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further, the current dynamical data tend to lie above the data obtained from the
previous simulations. This however could be a consequence of small yet significant
differences in the determination of the Sommer scale arising from residual lattice

artifacts due to the different fit procedures employed for both data sets.

4.9 Hypertfine splitting

In section 3.8, the quenched spectrum failed to reproduce the experimentally
observed approximately constant dependence of the hyperfine mass splitting on
the quark mass. Setting the scale with ro, the upper plot in Figure 4.19 shows
the vector pseudoscalar hyperfine splitting for all the data sets. Since this plot
comprises of the same data illustrated in Figure 4.18 plotted in a different way,
the discussion and conclusions of the previous section apply here. The matched
quenched data over shoots the experimental results, as expected from the results
of the analysis discussed in section 3.8. The dynamical data is lower and although
there is still a small slope in the data for the lightest sea quark mass, the matched
dynamical data appears much flatter than the quenched data. The lower plot
in Figure 4.19 again compares the dynamical matched ensemble data with the
previous dynamical simulation data reported in [92]. The recent data at lighter

sea quark masses show an improved trend towards the experimental values.

4.10 The J parameter

In the quenched analysis the J parameter, defined in equation 3.15, was found
to be more than 17% lower than the experimental value for all quenched data
sets under consideration. The reason for this discrepancy has been attributed to
errors assoclated with the quenched approximation. Thus it is expected that the

situation will improve with the inclusion of dynamical fermions in the simulations.

Evaluating J in the quenched approximation does not require an extrapolation
to the chiral limit. As pointed out in [107], for N; = 2 dynamical fermion
simulations this is not necessarily the case. In this type of simulation, the sea

quark mass can be identified with the light quarks and the valence quarks are
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Figure 4.19: Vector-pseudoscalar hyperfine splitting in units of 7.

The top plot

shows the results for all data sets. The lower plot compares the matched dy-
namical ensemble with the previous dynamical simulation reported in [92]. The
experimental hyperfine splittings are indicated by the burst points.
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then associated with the strange quark. In this scenario the strange quark is
still treated within the quenched approximation. Since the light and strange
quark masses are treated differently, this means for example, that the vector
mass depends not only upon the valence quark mass but also upon the sea quark
mass. Thus it may be necessary to perform a chiral extrapolation in the sea
quark mass in order to observe an improvement towards the experimental result
for J. From the observation that the J parameter determined at fixed Kge, for
each data set shows no significant difference from the quenched data result, as can
be seen from the left hand plot in Figure 4.20, it appears that an extrapolation
may indeed be required to reproduce the experimental value. Note that the J
parameter determined from the matched ensemble at ke, = Kya yields a result

of J =10.352 J:;: which is consistent with the other determinations of J.
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Figure 4.20: The J parameter determined with K* input. The left hand plot
shows the results obtained for all the data sets considered in this chapter plotted
against the lattice spacing in units of ry. The points have been offset horizontally
for clarity. The right hand plot compares these results with the previous dynam-
ical simulation results at § = 5.2, ¢ = 1.76, V = 12% - 24 taken from [92]. The
results have been plotted against the mass ratio mps/mv|,. _. . The dashed:
lines represent the limits of the quenched results as determined in section 3.6.
Results from the SESAM Collaboration are shown for comparison [107].
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Figure 4.20 shows the results for J when the K and K* mesons have been used
as input. Using the purely strange mesons as input (¢ and 7s) gives similar results
but slightly larger values, as was observed in the quenched case. The statistical
errors on the results are such that there are no significant differences between
the quenched and dynamical results. Within the data for the dynamical matched
ensemble a slight increase in J is observed as the sea quark mass becomes lighter.
However, this trend is not continued by the simulation at the lightest sea quark.
Again this need not be too concerning as the situation could well change for

simulations at finer lattice spacings.

The right hand plot in Figure 4.20 compares the current results for J with
the results obtained for the previous dynamical simulation reported in [92]. The
values shown were obtained from the 12° - 24 volume at # = 5.2, cow = 1.76,
for different sea quark masses. To compare all the results on the same plot,
the J parameter has been plotted against the mass ratio mps/my, evaluated
at Ksea = Kval. For the matched quenched simulation the mass ratio at the
lightest valence quark was used. The dashed lines on the graph represent the
maximum range of J as determined in the previous chapter for the quenched
data sets. This plot shows that the dynamical results discussed here are in
agreement with those from the previous simulation. There is some evidence
that the recent data are slightly closer to the experimental values, although not
significantly. Results from the SESAM Collaboration [107] using data at fixed sea
quark mass are included on the plot for comparison. Their results for Wilson
fermions are similar to the results reported here with improved Wilson fermions.
(For comparison, the parameter values of the SESAM data are: 16°-32, 4 =
5.6, four values of kg, in the range 0.1560 - 0.1575, corresponding to 1.44 <
a™'[GeV]< 1.88 and 0.69 < m,/m, < 0.83). In addition to the linear fit used
to determine the slope, SESAM investigated using more complicated fit ansitze
including terms with higher powers in the valence quark mass. They find that the
J parameter is further reduced in this case. The cP-PAcS Collaboration find that
the J parameter for relatively large sea quark masses is roughly consistent with

their quenched value of J = 0.346(22) [108]. Only at lighter sea quark masses
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(mps/my = 0.5) do they find that J shows an increase (J < 0.41) towards the
experimental point J = 0.48(2). (For comparison, the parameter values of the
CP-PACS data are: 12°-24, 16%- 32, and 24% - 48 at § = 1.8, 1.95, 2.1, 2.2 for
four values of k.., at each § value, corresponding to 1.93 < a7![GeV]< 2.58 and
0.5 < my/m, < 0.8 using the improved gauge action defined in equation 1.41

and mean field improved Wilson fermions.)

4.11 The Edinburgh plot

Figure 4.21 shows the Edinburgh plot, described in section 3.5, for all the data
sets. Data for all the degenerate combinations of k., for each data set have been
included in the plot. At the heaviest valence quark masses the dynamical data
lie close to the phenomenological curve. However, as the mps/my mass ratio
decreases the dynamical data points lie significantly higher than the matched
quenched data, which are in close agreement with the curve, bearing in mind that
the curve only serves as a guide. One explanation of this observation could be
the presence of significant finite size effects in the dynamical data, in particular
for the nucleon. Finite volume effects are expected to be larger in full QCD
simulations [109] than in the quenched approximation. In both quenched and
dynamical simulations, one of the constituent valence quarks of a correlator can
propagate across the spatial boundary, resulting in possible finite volume effects.
However in the quenched approximation, the expectation value of these correlator
loops is zero due to the centre Z(3) global symmetry of the pure gauge action.
The existence of this exact symmetry means that there is no preferred direction
in the complex plane for these loops. In contrast, the inclusion of the mass term
in the action in the dynamical simulation breaks the Z(3) symmetry giving rise
to a non-zero expectation value for the correlator loops. This enhances the finite

size effects in the dynamical case.

The analysis of the previous dynamical fermion simulations reported in [92],
included a study of finite volume effects. From these simulations using the pre-
liminary estimate of the clover coefficient, it was concluded that finite sizes ef-

fects were practically absent for lattices with a spatial extent of L > 1.6 fm
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Figure 4.21: The Edinburgh plot for all the data sets. All degenerate kya cor-
relators have been included. The phenomenological curve derived from [69] has
been shown to guide the eye.

and for sea quark masses corresponding to mps/my 2 0.67. This is the case
for the matched ensemble where the spatial extent is greater than 1.71 fm and
mps/my > 0.69. However at the lightest sea quark mass simulation, L = 1.60
fm and mpg/my = 0.58, below this approximate bound. This suggests that finite
size effects may well be significant for this data set. Additional simulations at
different lattice volumes would be needed in order to fully investigate finite size

effects.

4.12 Chiral extrapolations

In the quenched approximation, chiral extrapolations of the unphysically heavy
lattice hadron masses were performed to make contact with physically observed
hadrons composed from light quarks. Traditionally this is achieved by extrapo-
lating the hadron masses in terms of the valence quark mass to the normal quark
mass, m, defined in section 3.10. With dynamical fermion simulations extrapola-

tions can now be performed in the sea quark mass. By associating the sea quark
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" mass with the light quarks, extrapolations were performed using hadron masses
determined from correlators with Ksea = kyai. This means that light hadrons can
be studied in a background sea of light quarks. Hadrons composed from strange
quarks must still be considered within the quenched approximation. In order to
perform extrapolations at ks, = Kval an extrapolation of the pseudoscalar mass
squared to find K4 is required to determine the sea quark mass. The previ-
ous dynamical fermion simulations at fixed § in [92] determined ¢ from the
lightest three pseudoscalar masses, although five data points were available. As
noted earlier, the reason for this was the strong dependence of the lattice spac-
ing on the sea quark mass, particularly at the heavier quark masses. The current
matched set of dynamical simulations were generated in order to investigate chiral

extrapolations at a fixed value of the lattice spacing.
4.12.1 Pseudoscalar extrapolation at K, = Kval

For the matched ensemble of dynamical data sets, chiral extrapolations of the
pseudoscalar mass were investigated using the masses determined at Kgep, = Kyal.
The critical value of the hopping parameter associated with the sea quark mass,
Koy can be defined to be the point where the pseudoscalar mass is zero, assuming
the PCAC relationship holds. Of course since § varies throughout the extrapola-
tion this is only one possible definition of ;. From this, an uncorrelated linear

fit in the improved sea quark mass of the form

2 Y
Mps = ot <6 + n) (4.16)
where the coefficients are given by
B b B b Bb,,
_ _1 =2 (1= - Dm 4.17
i &2&%( +2ni§i>’ g 2( fciifz)’ L (417

was examined. This expression is just the simplified form of equation 3.26 for
degenerate values of the hopping parameter. Naturally there is no question of
using a correlated fit as each data point is taken from an independently gen-

erated simulation. The improvement coefficient b, used as input, has not yet
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been determined non-perturbatively and the one-loop perturbative expression in
equation 3.24 was thus used as a preliminary estimate. Note that b, depends on
B and so was different for each point in the matched extrapolation. This fit was
investigated primarily as the simplest choice available which allowed a degree of

freedom in the fit and was consistent with O(a) improvement. From this fit
crit =

ki = 0.135988 * (4.18)

Figure 4.22 shows the pseudoscalar mass squared plotted against the improved

sea quark mass defined by

-~ sea sea sea sca 1 1
g = my* (1 + bmi™), megt = = (lisea - "Giiiat) (4.19)

both in lattice units and in units of r9. The resulting x?/d.o.f. = 5.55/1 shows
that the linear ansatz clearly does not represent the current data, even in the
case where the masses have been scaled by r,. Additional matched data points
would be required to refute this. (A similar extrapolation performed with mpcac
gave a value of x5 = 0.135892 fij with x?/d.o.f. = 59.18/1. The x?/d.o.f. was
large due to the very small statistical errors in mpcac and again a linear ansatz
was not suitable.) For completeness, fitting the unimproved sea quark mass by

setting by, = 0 gave a slightly higher x?/d.o.f. value. However, assuming that the

sea
crit

for the other hadrons.

value obtained for &35 is reliable, chiral extrapolations can then be investigated

4.12.2 Hadron extrapolations at Keea = Kyal

sca

oo, uncorrelated linear extrapolations in

Taking the result in equation 4.18 for »
the improved sea quark mass were investigated for the vector, nucleon and delta
using fits of the form

my = A+ B (4.20)

where my represents the appropriate hadron mass. This is the simplest fit con-
sistent with O(a) improvement which can be considered with the current number

of data points. Additional terms in the baryon extrapolations arising from chi-
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Figure 4.22: Chiral extrapolation of the pseudoscalar for the dynamical matched
ensemble at. Ksea = Kyal plotted against the improved sea quark mass. The fit is
an uncorrelated linear fit to equation 4.16. The masses are in lattice units in the
left hand plot and in units of ry in the right hand plot.

ral perturbation theory have been investigated by [110] using baryon data taken
from UKQCD’s previous dynamical fermion simulation, reported in [92]. They
find that no firm conclusions can be drawn regarding significant improvements
obtained from using this type of fit until the systematic errors are reduced be-
low 10% and data points at lower quark masses are included in the simulation.
With only three points at relatively heavy quark masses, the linear fit ansatz was
adopted throughout this analysis. Figure‘4.23 shows the corresponding extrap-
olations both in lattice units and in units of ry. All the fits gave a reasonable
x%/d.o.f. for the linear fit ansatz. However since only three points are included
in the extrapolations and the errors on the data points are quite large, particu-
larly for the baryons, more data points would be required to investigate possible

curvature in the data.

To arrive at lattice values of the masses for the hadrons composed of light

quarks, the improved normal quark mass must first be determined. Following



Chapter 4. Dynamical spectrum results - 162

0 : x¥?/dof=1.25/1

v
o : x%/dof=1.32/1

T R S | I T W l Lob1 ) I NN

N

=
o
o
—
©
I
o
©

sea
rofg

Figure 4.23: Chiral extrapolations of the vector, nucleon and delta for the dy-
namical matched ensemble at xgea = Kyal plotted against the improved sea quark
mass. The fit is an uncorrelated linear fit to equation 4.20. The masses are in
lattice units in the left hand plot and in units of r¢ in the right hand plot.

the procedure outlined in section 3.10 the improved normal quark mass was de-
termined from the pseudoscalar extrapolation using equation 3.32. The improve-
ment coefficient by, varies in an undefined way along the course of the extrapola-
tion. Thus it was not possible to determine the unimproved normal quark mass
and the corresponding value of k,. Since the sea quarks are degenerate with the
valence quarks in this case, the p mass was used to set the scale as opposed to the
K* mass. Of course the p mass extracted this far from the region of the dynam-
ical data should be viewed with caution. The p mass in lattice units was fixed
from a linear extrapolation of the vector with the pseudoscalar mass squared to
the physical M,/M, ratio. Figure 4.24 shows this extrapolation including the
points corresponding to the physical meson ratios. The Mk /Mg« mass ratio is
shown although these mesons are composed from both strange and light valence
quarks. The left hand plot in lattice units shows an extremely good fit with a
very low x?/d.o.f. When plotted in units of ¢ in the right hand plot, the residual

discrepancies in the determination of r¢ are exposed resulting in a higher but still
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0~8 T | T T T T I T T T T I T T T T T T L 35 T T T T T T T T ¥ T T T ¥ T
: Matched extrapolation : - J
0.7 — —
- 1 L
0.6 — — £
- - 1S
y (M,;,/M,),)phyg R
05— ]
L P (MK'/MK)phys .

[T M/ M) e X2/dof=0.0001/1 ] - X?/dof=0.42/1 -
04 _l | i i ! 1 i Il 1 1 1 | 1 1 1 ! I 1 1 1 1 i 20 1 1 1 il J 1 1 1 1 l 1 L 1 ; ’ Il 1
0.0 0.1 0.2 0.3 0.4 0.0 0.5 1.0 1.5

(amps)? (romps)®

Figure 4.24: The vector mass against the pseudoscalar mass squared fitted by an
uncorrelated linear fit. The left hand plot is in lattice units and the right hand
plot is in units of ro. Extrapolated lattice masses determined at the physical
meson ratios have been included in the left hand plot.

The improved normal quark mass was then substituted into the baryon ex-
trapolations defined in equation 4.20 to determine the nucleon and A masses.
Table 4.3 shows the masses of the lighﬁ hadrons in lattice units together with the
improved normal quark mass. The 7 and p meson are fixed to be at the physical
mass ratio and hence have only been quoted in lattice units. The nucleon and

A mass have been converted into physical units using the lattice spacing deter-
64
59

spacing in fm than determined from ro,. The difference is consistent with the

mined from p meson, 1/a, = 1.612 “_L GeV. This corresponds to a larger lattice
variation in a observed in the quenched analysis. This simple analysis results in
physical values which are significantly higher than experiment. Data at different
values of the lattice spacing would be required in order to perform an extrapo-
lation to the continuum limit to make a more realistic comparison. The SESAM

Collaboration [107] have performed chiral extrapolations of hadron masses with
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Particle Value in lattice units Value in GeV
n  0.00114 *5
m,.  0.085 *3

m,  0.478 13
my 0722 139 1.165 *&7
ma 0814 2 1.313 129

Table 4.3: Lattice masses at the normal quark mass. Where physical units have
been quoted the scale has been set by the p meson.

Ksea = Kval against the sea quark mass at fixed § for four sea quark masses. Since
they use unimproved Wilson fermions they do not improve the quark mass. They
find that their meson data are well described by both linear and quadratic fits.
Comparing the lattice spacing from the p mass obtained from both types of fit
they see a change of 10% consistent with the difficulties obtained in performing
the chiral extrapolation. Their results for the nucleon and A failed to reproduce

the experimentally observed N — A mass splitting.

With only three matched data sets with which to perform chiral extrapolations
at a constant @, an investigation in the partially quenched approximation was
carried out on all data sets. The main aim was to compare results with the
quenched simulation and with the lightest sea quark mass data set at the smaller

lattice spacing.

4.13 Partially quenched analysis

Unlike previous dynamical simulations at fixed 8 [92, 107, 108, 111] the chiral
extrapolations at Ksea = Kyal just described depend on both the sea quark mass
and (. In this case, it is not clear that the linear behaviour of the pseudoscalar
mass squared in equation 4.16 should be expected. Indeed from Figure 4.22, it is
possible that a more complicated functional form may be required to extrapolate

the data. This highlights the difficulty in defining 52 for the matched ensemble.

crit



Chapter 4. Dynamical spectrum results 165

For this reason, it was decided to concentrate on results which can be reached
through an analysis of the data in the partially quenched approximation. The
partially quenched approximation means that extrapolations are performed at
fixed #sea. In effect, the sea quark mass is held fixed in or above the region of the
strange quark mass, rather than extrapolated to the light quark masses. This
results in an approximation which is somewhere between the quenched approx-
imation and full QCD. To proceed within the partially quenched scheme, &y,

must first be extrapolated to the chiral limit for each data set.
4.13.1 Partially quenched chiral extrapolations

Chiral extrapolations to determine the critical value of the valence hopping pa-
rameter, K¢ were carried out in the same way as described in section 3.9, but
this time in the partially quenched approximation. Extrapolations were made
using both the pseudoscalar mass squared and the PCAC mass at fixed kge, for
each data set. An investigation into the dependence of kg on the quark mass

improvement coefficient b,, was performed. The results for all data sets were then

PC
q

e (Lo L) )

2 Kyal Kerit

compared. The partially quenched bare quark mass, m_“, is defined as

in analogy with equation 3.21. Assuming this definition of the bare quark mass,
the rest of the equations in section 3.9 follow. The critical value of the hopping
parameter occurs when the bare quark mass vanishes. The PCAC relation states
that the quark mass vanishes when the pseudoscalar mass squared is zero. To

lowest order in chiral perturbation theory this is expressed by the functional form
mie = B(r’ﬁslc + ffzf;c) (4.22)

PC

g are defined as in section 3.9. For each

where the improved quark masses, m

data set, k.4 was determined from an uncorrelated fit to

mis = a+ 2 (ﬁ-I— 7 ) (4.23)

val Kval
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where the coefficients «, § and + are as defined for equation 3.26. In the partially
quenched approximation there are expected to be additional terms to be included
in the general fit function from chiral logarithms [112, 113] as the valence quark
mass becomes small. As with the quenched analysis in the previous chapter, the
masses studied here are too heavy for the effect of these terms to be felt and so
have not been included in the fits. For extrapolations of the PCAC mass, mq
was replaced by mpcac in equation 4.23. Variations in the extracted value of
Kerie Were investigated using different values for b,,: no improvement, tree-level
improvement and the one-loop value, as defined in equation 3.24. The bare strong
coupling constant, gg was used throughout. The results for .. are presented in

Table 4.4 for the pseudoscalar extrapolation, and in Table 4.5 for the PCAC mass.

In addition to the fit results included here, correlated fits were performed
for all the data sets. The resulting x?/d.o.f. was less than 0.5 in all cases for
the pseudoscalar extrapolation. Since the k¢ values were in agreement within
the statistical errors, the uncorrelated fits were selected in preference in order
to be consistent with the procedure adopted for the quenched simulations. For
correlated PCAC mass extrapolations, the very small errors on the masses resulted
in unacceptably large x?/d.o.f. values, and uncorrelated fits were again selected.
From Tables 4.4 and 4.5, the results obtained using different values of b,, decrease
slightly as b, becomes more negative. However, for all values of b,, the results
were consistent. The one-loop value for b, was selected for both methods of
Kerie determination, as this is the current best determination of the quark mass
improvement coefficient. Comparing kqi¢ determined from both methods, the
results agree within statistical errors. At this level of accuracy it is hard to
quantify the errors of O(a?) arising between the two methods. Figure 4.25 shows
the chiral extrapolations for the lightest sea quark mass simulation. The left
hand plot shows an uncorrelated linear fit to equation 4.23 using the one-loop
value for b,,. The right hand plot shows the same type of fit to the PCAC mass.
Clearly the data satisfy the linear ansatz and thus higher order terms were not

considered in the analysis.
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] Ksea Value of b, Kerit x%/d.o.f.
52  0.13550 by, =0 0.136363 *51 0.12 /2
bm(TL) = —0.5 0.136334 52  0.23 /2
bm(g2) = —0.611 0.136327 5% 0.26 / 2
52 0.13500 by =0 0.136652 153 0.15 /2
bu(TL) = —0.5 0.136575 25 0.37 /2
bm(g?) = —0.611 0.136558 123 0.43 / 2
0 55
5.26  0.13450 by =0 0.137100 *72  0.03 / 2
bw(TL) = —0.5 0.136989 *57  0.01 /2
bm(g?) = —0.6097 0.136965 ™22 0.02 / 2
529  0.13400 by, =0 0.137267 *22  0.08 /2
b(TL) = —0.5 0.137139 *35  0.26 / 2
bm(g2) = —0.6091 0.137112 3} 0.32 / 2
5.93 Quenched b, =0 0.135193 *3°  0.24 /7
bm(TL) = —0.5 0.135145 *32 054 /7
bm(g?) = —0.5973 0.135136 32 0.61 /7

Table 4.4: Results for ¢ obtained from an uncorrelated fit to equation 4.23
using different values for b,,. The tree-level (TL) and one-loop value of b,, from
perturbation theory are compared with the unimproved case for all the data sets.
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I¢} Ksea Value of b,, Kerit x?/d.o.f.
52 0.13550 by, =0 0.136311 T3, 0.26 /2
bw(TL) = —0.5 0.136280 5 0.87 /2
bm(95) = —0.611 0.136273 *50 1.06 /2
52  0.13500 by, =0 0.136644 12 0.05 /2
bm(TL) = —0.5 0.136568 *15 0.95/ 2
bm(g3) = —0.611 0.136552 15 134 /2
526  0.13450 by, =0 0.137090 *° 0.34 /2
bm(TL) = —0.5 0.136982 *1° 1.35/2
bm(g3) = —0.6097 0.136959 !4 1.69 /2
529 0.13400 by, =0 0.137313 *17 0.17 /2
bm(TL) = —0.5 0.137188 *1° 0.87 /2
bm(gs) = —0.6091 0.137161 *1¢ 1.12/2
5.93 Quenched b, =0 0.135147 *1° 0.07 / 7
bm(TL) = —0.5 0.135101 *'5 0.25 /7
bm(gd) = —0.5973 0.135092 *'5 0.39 /7

Table 4.5: Results for 4 obtained from an uncorrelated fit to the PCAC mass
using equation 4.23, with the pseudoscalar mass replaced by the PCAC mass, using
different values for b,,. The same values for b,, are compared as in Table 4.4.

Ié Ksea B x*/d.o.f.
5.93 Quenched 3.721 37 061 /7
529 0.13400  4.172 15 032/ 2
5.26 0.13450  4.078 *% 0.02 /2
52 0.13500  4.017 *72 043 /2
52 0.13550  3.635 *52 0.26 / 2

Table 4.6: Fit results for the pseudoscalar mass squared against the improved
quark mass using equation 4.22 in lattice units.
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Figure 4.25: Chiral extrapolations in the valence hopping parameter for the pseu-
doscalar mass and the PCAC mass. Fits are an uncorrelated linear fit to equa-
tion 4.23 with the appropriate L.H.S using the one-loop value of b,, = —0.611
for the 8 = 5.2, Kgea = 0.13550 dynamical data set.

Using the final selection of k¢ as highlighted in bold in Table 4.4, the chiral
extrapolations of the pseudoscalar mass in the improved partially quenched quark
mass can be compared for all the data sets. The results are first compared in
lattice units in Figure 4.26. The fits to equation 4.22 have not been shown on

the graph for clarity, instead the fit parameters are presented in Table 4.6.

The slopes of the matched dynamical extrapolations are in much closer agree-
ment with each other than the matched quenched or the lightest sea quark mass
data sets. The fits are uniformly good indicating that the data is well described
by the linear fit ansatz. The unmatched dynamical data set clearly has a shal-
lower slope than the matched data which could be due to the difference in the
lattice spacing. To eliminate any residual ¢ dependence the fits were repeated
after scaling the masses by ro. The resulting fits are shown in Figure 4.27 for
all the data sets. This time the quenched data has the shallowest slope and

the lightest sea quark mass data are much closer to the matched dynamical data.
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Figure 4.26: Plot of the pseudoscalar mass squared against the average improved
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Figure 4.27: As for Figure 4.26 plotted in units of 7.
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The difference between the slopes of the matched dynamical data sets and the
quenched slope is a one o effect, which could be interpreted as a small dynamical

effect.
4.13.2 Partially quenched vector extrapolation

Chiral extrapolations in the partially quenched approximation were carried out
for the vector. Table 4.7 shows the fit results of an uncorrelated linear fit to the
form

my = A+ B(ﬁzslc + 771520)/2 (4.24)

I¢] Ksea A B x*/d.o.f.|1/a, [GeV]
593 Quenched 0.501 *}7 235 ™25 0.25/7 | 1.519 +32
529 0.13400  0.462 '8 290 * 2 003 /2| 1.650 *3

—14 —-61

526 0.13450  0.461 *'% 288 F° 0.01/2 | 1.652 *28

—-51

52  0.13500  0.461 *}3 3.02 F12 0.05/2 | 1.648 *4°

~49

52 0.13550  0.429 15 2.69 3 004/2 | 1.771 2

Table 4.7: Fit results for the vector mass against the improved partially quenched
quark mass using equation 4.24. The lattice spacing quoted in GeV was deter-
mined from the p mass as extracted from an uncorrelated linear fit of the vector
mass with the pseudoscalar mass squared in the partially quenched approxima-
tion.

As can be seen from Table 4.7 and Figure 4.28 the intercepts of the dynamical
matched data sets are in close agreement and the slopes are compatible within the
statistical errors. This indicates that matching ry results in very similar vector
masses for the matched ensemble. Table 4.7 includes the lattice spacing as set by
the p mass from a linear extrapolation of the vector mass with the pseudoscalar
mass squared. The lattice spacings of the matched dynamical ensemble are in
close agreement which confirms that the vector mass is well matched. These
results are 10% larger than the lattice spacings set by rg, similar to the results
observed in the quenched simulations. The quenched data set, although close to

the matched data, clearly has a different slope and a different lattice spacing as
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determined from the p. The lightest sea quark data set shows the largest effect,
lying lower than the matched data. This difference in the intercept was due to
the smaller lattice spacing for the lightest sea quark data set. Figure 4.29 shows
the fits repeated when the masses are scaled by ry in order to compare all the

data on the same footing. From Figure 4.29 the lightest s, data set is brought

08 T T T T T T T T I T T T 7T l T T T T ' T T T
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Figure 4.28: Plot of the vector mass against the average improved partially
quenched quark mass for all data sets in lattice units.

closer into line with the matched data sets. All the dynamical data sets result
in a consistent intercept in the chiral limit. The quenched data was in general
higher than the dynamical data and the intercept was over 1.60 higher than the
dynamical results. This can be seen as a small but significant effect resulting from
the inclusion of dynamical fermions in the simulation. For all of the data sets the

linear fit was a good description of the data at the current level of accuracy.
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Figure 4.29: Vector mass against the average improved partially quenched quark
mass plotted in units of rq.

4.13.3 Partially quenched baryon chiral extrapolations

Extrapolations of the degenerate nucleon and delta masses were performed using

an uncorrelated linear fit of the form
mp = A+ B(mbC + mEC + mkC)/3 (4.25)

In this case all three constituent quark masses were degenerate. Due to the level
of statistical accuracy of the baryon data, particularly for the delta which was
significantly more difficult to fit, small dynamical effects were hard to distinguish
from the statistical errors. Table 4.8 shows the results of the fit to equation 4.25
for the nucleon and delta. The corresponding data points are plotted in Fig-
ure 4.30.

For the nucleon the matched dynamical data points lie close together with
the quenched data lying just below. As in the case of the vector, the lightest sea
quark mass data set gave the lowest mass results. For the delta this was also the

case. In the plot for the delta the matched dynamical points lie slightly below the
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Baryon [ Kosea A B x?*/d.of.
Nucleon 5.93 Quenched 0.692 5. 4.46 T3 0721 /3
5.29 0.13400  0.704 *33 4.67 T2 0.015/ 2
5.26 0.13450  0.721 *27 4.40 *2 0.012 /2
52 013500  0.689 *Z 504 T2 0.005 /2
52 0.13550  0.638 T2 4.64 TS 0.007 /2
Delta 593 Quenched 0816 T2 411 *22 0.004 /3
529 0.13400  0.792 *37 423 25 0.0004 /2
5.26 0.13450  0.754 31 458 T2 0.005 / 2
52 0.13500  0.799 *35 4.15 T3} 0.089 / 2
52 0.13550  0.712 T3 4.72 120 0.265 / 2

Table 4.8: Fit results for the baryon masses fitted in terms of the improved
partically quenched quark mass using equation 4.25.

quenched data, however it is hard to say that there is any significant difference
between the dynamical and quenched data. This is in part due to the difliculties
involved in obtaining reliable estimates for the delta masses. Figure 4.31 shows

the linear extrapolations of the baryons in units of ro.

In the chiral limit the intercepts agree within the statistical errors for all the
data sets for both the nucleon and the delta. At the current level of statistics it
is impossible to identify effects due to the inclusion of dynamical fermions. More

data points and configurations would be needed in the analysis.
4.13.4 Summary of partially quenched analysis

Due to the difficulties in defining a physical interpretation of the mass results
for the hadrons in a background sea of strange quarks, the main focus of the
chiral extrapolations performed above was to compare the matched dynamical
simulations at different sea quark masses with the quenched approximation. It
was found that the matched dynamical data were very well matched and produced

similar results. No significant differences were observed as the sea quark mass was
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Figure 4.30: Nucleon and delta masses plotted against the average improved
partially quenched quark mass.

changed for the matched ensemble. However, comparing the dynamical data with
the case of infinitely heavy dynamical quarks in the quenched approximation,
small but significant departures from the matched data were observed in the
meson sector. The main conclusion is that lighter sea quarks will be needed to

observe greater effects of unquenching.

4.14 The continuum limit

The matched ensemble have, by construction, approximately the same fixed value
of the lattice spacing, a ~ 0.11 fm as defined by r9. This means that extrapola-
tions to the continuum limit can not be undertaken with the current dynamical
data sets. Including the unmatched data set at the lightest sea quark mass, the
lattice spacing measured on this data set, a = 0.10 fm is not sufficiently different
to provide a reliable continuum extrapolation. Future simulations at different

lattice spacings are required to explore this issue.
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4.15 Other evidence for dynamical effects?

The dynamical configurations have been analysed by other members of the UKQcD
Collaboration in order to investigate the evidence for dynamical effects in other
measurable quantities. The static quark potential was measured by A. C. Irving
using the method described in section 4.4, the preliminary results of which were
presented in [90]. Full results will appear in [91]. The continuum form for the

potential

V(r)=Vo+or— ha (4.26)

r

has been rescaled in terms of ry as
. r To
V(r) — V(ro)|ro = (1.65 — e)(;g -1) - 6(7 ~1) (4.27)

in order to compare data from different simulations. This rescaled potential
was plotted against the separation scaled by r¢ for all the dynamical data sets
in Iigure 4.32. The data is compared with the universal string model of the
potential, in which the coefficient of the Coulomb term e in equation 4.26 is set to
the Lischer value of m/12 [114]. Good agreement of the data with the string model
is observed. At large separations the string is expected to break, which would be
indicted by a flattening of the potential. From the figure there is no sign that this
is happening for distances of r/ry < 2. Other collaborations [18, 115, 116] also
see no indication of string breaking as yet. Reasons for this might be that the sea
quark masses are still too heavy to show a significant departure from the string
mode] or that the current maximum separation is not large enough for the creation
of a quark anti-quark pair to be energetically favourable. Another explanation
may be that the Wilson loop operators used to determine the potential do not

have a good overlap with the broken string state [116].

At short distances there is evidence for discretisation errors in the potential.
This can be clearly seen by examining the deviation of the potential results from
the string model in the lower plot of Figure 4.32. These errors are still present

even after lattice artifacts have been taken into account in the fitting procedure,
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Figure 4.32: Static quark potential measurements for the dynamical data sets.

The upper plot shows the data points compared with the universal string model.
The lower plot highlights the deviation between the dynamical results and the
string model.



Chapter 4. Dynamical spectrum results 179

as explained in 4.4. In addition, there is some evidence that the lighter sea quark
data lie somewhat below the heavier quark data at short distances, indicating the
presence of small dynamical fermion effects. This difference at small separations
is indicative of a higher value of the Coulomb coefficient e than in the string
model. Fits to the data to extract a value for e reveal an increase of 15% + 4%
over previous quenched fits. Figure 4.33 shows the increase in the fitted value of
e for the dynamical data sets compared with a previous quenched result. This is
consistent with the predicted increase in e from perturbation theory of 14% [117].
The SESAM Collaboration [115] have observed a similar increase of 11% in the

value of ¢ when comparing Ny = 2 simulations with the quenched approximation.

0-34 [ T T T T l T T T T I T T T T T I—
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0.30 - —
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Figure 4.33: Fitted values for the Coulomb coefficient, e, for all the dynamical
data sets taken from [90]. The solid line is the Liischer value, e = 7/12.

Investigations of the topological susceptibility, x, using the cooling method
have been carried out by A. Hart and M. Teper in [118]. The topological suscep-
tibility was fitted to

X = f2m2/2N; + O(m?) (4.28)

where the number of quark flavours is Ny = 2 and f, is the m decay constant.

Equation 4.28 indicates that the topological susceptibility is expected to decrease
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with the sea quark mass. Preliminary studies [118] on the matched dynamical
ensemble show that the measured value for x is indeed lower for the two lightest
sea quark mass data sets, providing evidence of dynamical effects. The data for
the heaviest sea quark data set is statistically consistent with the quenched result.

A more sophisticated analysis of the data is currently ongoing.

Finally, preliminary measurements of the n mass on the = 5.2, ¢sw = 1.76
data sets (where the notation 7’ is reserved for the Ny = 3 case) have been
carried out by C. Michael and collaborators in [119]. The n meson is expected
to obtain a large contribution to its mass from quark loop effects, as discussed in
section 1.5.1. This investigation reported a mass of approximately 800 MeV for
in the chiral limit with an uncontrolled systematic error, which can be compared
with the experimental result for ' of 958 MeV [14]. Of course, a quantitative

analysis of the systematic errors would be required to corroborate this result.



Chapter 5

Conclusions

This thesis has presented results obtained for the light hadron spectrum from
the numerical simulation of lattice QCD. In this chapter, the main conclusions
reached in this thesis are summarised and possible extensions of the analysis
indicated. First the main results obtained from the quenched simulations are

summarised.

5.1 Summary of the quenched analysis

In chapter 3, the results for the light hadron spectrum determined from simu-
lations within the quenched approximation were presented. Data sets at three
values of the lattice spacing were analysed in order to explore the continuum
limit. A programme of improvement was investigated in order to reduce the
discretisation errors which are inherent in any lattice simulation. Three of the
quenched data sets implemented the tadpole improvement scheme with the aim
of reducing the O(agf) errors. A further two data sets were simulated using full
O(a) non-perturbative improvement in order to examine any improvement in the
scaling behaviour over the tadpole improved data sets. At one value of £ a com-
parison of the lattice masses obtained from two data sets with different physical
volumes was carried out in order to investigate the error in the analysis due to

finite volume effects.

The comparison of the lattice mass results obtained in the finite volume anal-
ysis at # = 6.0 demonstrated that although there were no finite size effects in the
lattice values for the vector mass prior to extrapolation a small, yet statistically

significant, effect of around 20 was observed for the pseudoscalar. However, with-
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out further investigation it could not be ruled out that this effect has a statistical
origin. In the baryon sector, finite size effects were more pronounced, particularly
for the decuplet baryons where a 20 effect was observed. The 1o effect in the
octet baryons was not considered particularly significant given the level of sta-
tistical accuracy of the data. There was a noticeable improvement in the scaling
behaviour of the non-perturbatively improved data sets over the tadpole data,
particularly in the continuum extrapolations where ry was chosen to set the scale.
Improved scaling was clearly observed in the chiral extrapolations, particularly
for the mesons. The value of the J parameter was found to be significantly be-
low the experimental value even in the continuum limit, suggesting that the low
value obtained for J is an intrinsic feature of the quenched approximation. The
vector-pseudoscalar hyperfine splitting showed a noticeable variation when the
scale was set by either the K* mass or ry, slightly undershooting or overshooting
the experimental values respectively. In both cases there was a small negative
slope in the data as the quark mass was increased which suggested that the ex-
perimentally observed values for the hyperfine splitting in the heavy-light sector

would be underestimated.

An investigation of the ratio of the strange quark mass to the normal quark
mass at 2 GeV in the modified minimal subtraction (MS) renormalisation scheme,
yielded a result of mi\/l_s/mnM_S ~ 25 £ 3. The renormalised quark masses used to
determine this ratio were calculated using renormalisation constants from pertur-
bation theory. The results for the quark mass ratio were found to be compatible
with the theoretical prediction made in quenched chiral perturbation theory [88],

where M /M, = 24.3 +1.0.

The continuum values of the non-singlet quenched light hadron spectrum ob-
tained by extrapolating the lattice data in terms of the four different quantities
chosen to set the lattice scale, resulted in a 10% uncertainty in the final spec-
trum results. Assuming that this difference was not due to finite size effects,
this uncertainty can then be attributed to the scale ambiguity in the quenched
approximation. The results of the continuum extrapolation of the light hadron

masses confirmed the evidence previously presented by CP-PACS [4], which showed:
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that the light hadron spectrum in the quenched approximation agrees with ex-
periment to within 10%. The statistical precision of the CP-PACS results is in
general better than the results presented here. However the implementation of
the improvefnent programme has shown that extrapolations to the continuum
show a milder a dependence. In order to improve the precision of the contin-
uum extrapolations, additional points at different lattice spacings are required.
Of course the usual caveats of larger physical volumes, smaller lattice spacings,
more statistics and lighter quark masses also apply. The quenched approximation,
however, represents an uncontrolled error in the simulation, the effects of which
can only be assessed in “full” QCD simulations. The results of chapter 4, which
investigated the evidence for the effects of dynamical fermions in the spectrum,

are summarised in the next section.

5.2 Summary of the dynamical analysis

In chapter 4, dynamical simulations with two degenerate flavours of O(a) im-
proved Wilson fermions were analysed with the main aim of investigating the
effects in the light hadron spectrum arising from the inclusion of fermion loops in
the QCD vacuum. Three dynamical simulations with different sea quark masses,
forming a matched ensemble, were analysed. The aim of the matching proce-
dure, where each simulation was selected to have approximately the same lattice
spacing as defined with respect to the physical value of the Sommer scale, was
to facilitate a direct comparison with a quenched simulation at the same lattice
spacing. Additionally, choosing the lattice volume to be fixed for each data set
meant that chiral extrapolations could be considered separately from continuum
extrapolations. The results showed that the matched ensemble displayed a re-
duced residual dependence upon lattice artifacts, indicated by the similar slopes
and intercepts observed in the partially quenched chiral extrapolations. A further
simulation with a lighter sea quark mass at a smaller lattice spacing was analysed
with the hope of observing a larger effect due to dynamical fermions. Within the
dynamical data, no significant effects arising from the small changes in the sea

quark mass were observed. Instead the main evidence for sea quark effects came
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from comparisons with the quenched data. Below is a list describing the evidence

for dynamical quark effects in the main observables investigated in chapter 4:

e The hyperfine splitting showed an improved trend towards the experimental
values for the dynamical data sets. A flattening of the data as the valence
quark mass was increased was observed for the matched dynamical ensem-
ble. However this effect was not mirrored by the lightest sea quark mass

data.

e There was no significant improvement in the J parameter towards the ex-
perimental value, particularly at the lightest sea quark mass. This is in
line with the results reported by SESAM [107]. However there was some
evidence for a slight increase in J as the quark mass was reduced within

the matched dynamical ensemble.

e The Edinburgh plot showed that the dynamical data was significantly higher
than the quenched data, which was‘ in good agreement with the phenomeno-
logical curve. This suggested the possibility of larger finite size effects in
the dynamical simulations, particularly for the baryons, which should be

investigated further.

e Some evidence for dynamical effects was observed in the partially quenched
chiral extrapolations of the mesons where the scale was set by ro. The slope
of the quenched pseudoscalar extrapolation differed by approximately lo
from the slopes obtained by extrapolating the dynamical data. A similar
effect was observed for the vector, where the intercept of the quenched data
was noticeably higher than in the dynamical case. In the baryon sector,
dynamical effects were hard to quantify given the statistical accuracy of
the data.

e The static inter-quark potential showed good agreement with the universal
string model with no firm evidence of string breaking. At smaller distances
discretisation errors were observed and there was evidence that the lighter

sea quark mass data lie below the heavier sea quark data indicating charge
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screening. Indeed, fits to the Coulomb term of the potential model indicated
a 15%=+4% rise in the value of e from the value of the Liischer coefficient, e =
7/12. This is consistent with the predicted increase in e from perturbation
theory of 14% for Nt = 2 simulations [117].

e The topological susceptibility was observed to decrease as the dynamical sea
quark mass became smaller, as anticipated for dynamical fermion simula-

tions.

e Preliminary evidence indicates that the mass of the singlet n meson lies

somewhere between the experimental masses of the n and 7’.

There are a number of directions which could be taken in the analysis of
further dynamical fermion simulations. A few of the possible directions are men-
tioned below. Hadron masses determined from.correlators with non-degenerate
valence quarks and from additional data sets at different values of the sea quark
mass included within the matched ensemble would enable other more complicated
fits to be investigated for the chiral extrapolations at Ksea = Kyal. The effect of
increasing the fuzzing radius, such that a longer plateau for the ground state
mass is achieved (at the cost of increased statistical noise), on the extraction of
the hadron masses is currently under investigation by other members of UKQCD.
Dynamical simulations (perhaps a further matched ensemble) at different lattice
spacings should be performed in order to extrapolate to the continuum limit to
compare the light hadron spectrum with experiment. Lighter dynamical quark
masses could be included in the simulations in an attempt to observe an increased
difference from the quenched approximation, and of course, increased statistics,
larger volumes and smaller values of the coupling are needed in order to improve

the precision of the analysis.



Appendix A

Fitted lattice masses for the quenched

simulations

The following tables contain the final results for the fitted hadron masses in lat-
tice units for the quenched simulations considered in chapter 3. The tables are
arranged in the following order: pseudoscalar, vector, degenerate delta, nucleon,
non-degenerate delta, sigma and lambda, where the data sets have been grouped
in terms of their improvement scheme: tadpole or non-perturbative. The un-
renormalised PCAC mass results are included at the end of the appendix. A full
description of the final fit procedure used to obtain these results can be found
in chapter 3. For the octet baryons, ko and x3 label the pair of quarks which
are flavour symmetric/anti-symmetric under interchange for the sigma/lambda

baryons and k; labels the third quark.
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| 6 L3-T K1 Ko amps Fit x?/ d.o.f. |
5.7 16%-32 0.13843 0.13843 0.7350 *'i [6-15] 23.99 / 14
0.14077 0.13843 0.6404 11 [5-15] 16.89 / 16
0.14077 0.14077 0.5307 112 [5-15] 16.00 / 16
6.0 16%-48 0.13700 0.13700 0.4131 +'2 [6-23] 22.57 / 30
0.13810 0.13700 0.3572 *'¢ [6-23] 21.97 / 30
0.13856 0.13700 0.3320 %, [6-23] 27.82/ 30
0.13810 0.13810 0.2927 2, [6-23] 26.93 / 30
0.13856 0.13810 0.2621 *22 [6-23] 29.93 / 30
0.13856 0.13856 0.2268 *25 [6-23] 30.40 / 30
6.2 24°-48 0.13640 0.13640 0.3033 12 [8-23] 30.03 / 26
0.13710 0.13640 0.2643 *1° [8-23] 29.29 / 26
0.13745 0.13640 0.2436 *15 [8-23] 29.02 / 26
0.13710 0.13710 0.2206 15 [8-23] 31.97 /26
0.13745 0.13710 0.1959 T3, [8-23] 30.92 / 26
0.13745 0.13745 0.1680 *27 [8-23] 31.13 /26
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Table A.1l: Pseudoscalar meson masses for the tadpole improved data sets.
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| B LT K1 Ko amps Fit x?/d.o.f. |
6.0 16°-48 0.13344 0.13344 0.3977 t'2 [6-23] 23.82 /30
0.13417 0.13344 0.3553 *'° [6-23] 24.18 / 30
0.13455 0.13344 0.3319 +'7 [6-23] 26.70 / 30
0.13417 0.13417 0.3077 *'S [6-23] 26.14 / 30
0.13455 0.13417 0.2805 *19 [6-23] 27.37 / 30
0.13455 0.13455 0.2493 1?2 [6-23) 30.84 / 30
6.0 32%-64 0.13344 0.13344 0.3952 'S [15-31] 14.49 / 15
0.13417 0.13344 0.3524 *10 [15-31] 14.86 / 15
0.13455 0.13344 0.3284 *1° [15-31] 13.56 / 15
0.13417 0.13417 0.3048 *1° [15-31] 13.64 / 15
0.13455 0.13417 0.2769 *13 [15-31] 1222/ 15
0.13455 0.13455 0.2457 *15 [15-31] 13.04 / 15
6.2 24°-48 0.13460 0.13460 0.2803 *1> [8-23] 30.99 / 26
0.13510 0.13460 0.2492 *17 [8-23] 29.08 / 26
0.13530 0.13460 0.2361 *15 [8-23] 28.42 /26
0.13510 0.13510 0.2149 *1° [8-23] 31.54 /.26
0.13530 0.13510 0.1998 *12 [8-23] 31.18 /26
0.13530 0.13530 0.1836 23 [8-23] 32.04 /26

—18

Table A.2: Pseudoscalar meson masses for the non-perturbatively improved data
sets.
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i 8 LT K1 Ko amy Fit x?/d.of. I
57 16%-32 0.13843 0.13843 0.9332 *3> [7-15] 12.80 / 12
0.14077 0.13843 0.8688 *52 [7-15] 11.96 / 12
0.14077 0.14077 0.8090 %31 [7-15] 10.76 / 12
6.0 16%-48 0.13700 0.13700 0.5386 52 [7-23] 23.82 /28
0.13810 0.13700 0.5030 39 [6-23] 27.20 / 30

[

[

[

[

0.13856 0.13700 0.4889 *i°> [6-23] 27.83 /30
0.13810 0.13810 0.4652 *32 [6-23] 26.92 / 30
0.13856 0.13810 0.4501 o5 [6-23] 29.23 / 30
0.13856 0.13856 0.4353 T332 [6-23] 25.43 /30
6.2 24%-48 0.13640 0.13640 0.4005 *22 [8-23] 32.65 /26
0.13710 0.13640 0.3761 T35 [8-23] 28.79 / 26
0.13745 0.13640 0.3648 T35 [8-23] 2539 / 26
0.13710 0.13710 0.3522 *37 [8-23] 26.83 / 26
0.13745 0.13710 0.3412 *8% [8-23] 24.85 /26
0.13745 0.13745 0.3306 *50 [8-23] 28.83 /26

Table A.3: Vector meson masses for the tadpole improved data sets.
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|6 L*T K1 Ko amy Fit x?/d.o.f.
6.0 16%-48 0.13344 0.13344 0.5397 *32 [6-23] 24.02 / 30
0.13417 0.13344 0.5124 %2 [6-23] 27.16 / 30
0.13455 0.13344 0.4997 *20 [6-23] 29.71 / 30
0.13417 0.13417 0.4852 133 [6-23] 27.92 / 30
0.13455 0.13417 0.4713 % [6-23] 31.96 / 30
0.13455 0.13455 0.4577 135 [6-23] 30.16 / 30
6.0 32%-64 0.13344 0.13344 0.5400 *37 [10-20] 13.68 /9
0.13417 0.13344 0.5143 33 [10-20] 14.44 /9
0.13455 0.13344 0.5019 %% [10-20] 13.75 /9
0.13417 0.13417 0.4887 *S [10-20] 13.30 / 9
0.13455 0.13417 0.4762 *7% [10-20] 10.31 /9
0.13455 0.13455 0.4636 55 [10-20] 6.69 / 9
6.2 24%-48 0.13460 0.13460 0.3887 32 [8-23] 33.55/ 26
0.13510 0.13460 0.3708 *32 [8-23] 28.99 / 26
0.13530 0.13460 0.3645 *3> [8-23] 26.51 / 26
0.13510 0.13510 0.3531 *2° .[8-23] 29.56 / 26
0.13530 0.13510 0.3471 *°2 [8-23] 27.91 /26
0.13530 0.13530 0.3414 172 [8-23] 30.98 / 26
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Table A.4: Vector meson masses for the non-perturbatively improved data sets.



Appendix A. Fitted lattice masses for the quenched simulations 191

I B LT K1 Ko K3 amp Fit x?/d.of. |
5.7 16°-32 0.13843 0.13843 0.13843 1.539 *?. [7-15] 23.62 / 12
0.14077 0.14077 0.14077 1.334 25 [7-15] 10.59 / 12
6.0 16%-48 0.13700 0.13700 0.13700 0.909 * [ [10-23] 23.49 / 22
0.13810 0.13810 0.13810 0.810 *)5 [8-23] 23.95 /26
0.13856 0.13856 0.13856 0.774 T2 [8-23] 41.53 / 26
6.2 16%-48 0.13640 0.13640 0.13640 0.691 * 7 [11-23] 19.42 / 20
0.13710 0.13710 0.13710 0.620 1! [11-23] 23.87 /20
0.13745 0.13745 0.13745 0.577 *15 [11-23] 20.60 / 20

Table A.5: Degenerate delta masses for the tadpole improved data sets.

| 6 LT K1 Ko Ks ama Fit x?/d.o.f. |
6.0 16°-48 0.13344 0.13344 0.13344 0913 T,0 [9-23] 21.84 / 24
0.13417 0.13417 0.13417 0.852- %33 [9-23] 31.33 / 24
0.13455 0.13455 0.13455 0.768 52 [10-23] 40.37 / 22
6.0 32°-64 0.13344 0.13344 0.13344 0.899 T12 [2-16] 17.56 / 11
0.13417 0.13417 0.13417 0.818 *]5 [2-16] 20.09 / 11
0.13455 0.13455 0.13455 0.781 F}5 [2-16] 21.66 / 11
6.2 24°-48 0.13460 0.13460 0.13460 0.671 * 3 [11-23] 20.35 / 20
0.13510 0.13510 0.13510 0.618 *13 [11-23] 21.54 /20
0.13530 0.13530 0.13530 0.596 *13 [11-23] 20.31 /20

Table A.6: Degenerate delta masses for the non-perturbatively improved data
sets.
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[ B LT K1 Ko K amy Fit x?/d.of. j
5.7 16°-32 0.13843 0.13843 0.13843 1.423 *'2 [7-15] 7.37 /12
0.14077 0.14077 0.14077 1.183 *}1 [6-15] 15.96 / 14
6.0 16%-48 0.13700 0.13700 0.13700 0.817 9 [10-23] 21.26 / 22
0.13810 0.13810 0.13810 0.678 *'7 [10-23) 27.46 / 22
0.13856 0.13856 0.13856 0.616 *25 [10-23] 26.95 / 22
6.2 24%-48 0.13640 0.13640 0.13640 0.608 * 5 [11-23] 34.87 /20
0.13710 0.13710 0.13710 0.509 *'2 [11-23] 38.62 / 20
0.13745 0.13745 0.13745 0.467 T)2 [11-23] 22.68 / 20
Table A.7: Degenerate nucleon masses for the tadpole improved data sets.
[ Jé} L*-T K1 Ko K3 amy Fit x?/d.o.f. J
6.0 16%-48 0.13344 0.13344 0.13344 0.808 1'0 [9-23] 25.42 /24
0.13417 0.13417 0.13417 0.711 *i$ [9-23] 25.74 / 24
0.13455 0.13455 0.13455 0.665 28 [9-23] 26.98 / 24
6.0 32°-64 0.13344 0.13344 0.13344 0.799 110 [3-18] 16.82 /12
0.13417 0.13417 0.13417 0.700 *1l [3-18] 15.99 /12
0.13455 0.13455 0.13455 0.641 T35 [3-18] 14.63 / 12
6.2 24%-48 0.13460 0.13460 0.13460 0.586 © 5 [10-23] 42.46 / 22
0.13510 0.13510 0.13510 0.509 *1o [10-23] 41.09 / 22
0.13530 0.13530 0.13530 0.487 *.° [10-23] 30.35 / 22

Table A.8: Degenerate nucleon masses for the non-perturbatively improved data

sets.
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l Jé} LT K1 Ko K3 ama Fit x?/d.o.f. |
6.0 16°-48 0.13700 0.13700 0.13810 0.873 + 5 [8-23] 24.87 /26
0.13700 0.13700 0.13856 0.882 *.° [8-23] 33.70 / 26
0.13700 0.13810 0.13810 0.853 3 [8-23] 29.14 / 26
0.13700 0.13810 0.13856 0.845 * 2 [8-23] 34.77 / 26
0.13700 0.13856 0.13856 0.832 F12 [8-23] 32.84 /26
0.13810 0.13810 0.13856 0.810 32 [8-23] 36.09 / 26
0.13810 0.13856 0.13856 0.787 15 [8-23] 33.95 / 26

6.2 16%-48 0.13640 0.13640 0.13710 0.656 © " [11-23] 13.69 / 20
0.13640 0.13640 0.13745 0.652 * 3 [10-23] 31.97 / 22
0.13640 0.13710 0.13710 0.642 * 2 [10-23] 26.04 / 22
0.13640 0.13710 0.13745 0.627 *'0 [10-23] 29.50 / 22

0.13640 0.13745 0.13745 0.619 '} [10-23] 29.43 / 22
0.13710 0.13710 0.13745 0.602 T [10-23] 27.46 / 22
0.13710 0.13745 0.13745 0.593 *% [10-23] 29.06 / 22

Table A.9: Non-degenerate delta masses for the tadpole improved data sets.
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I B LT K1 Ko K3 ama Fit x?/d.o.f. ]
6.0 16%-48 0.13344 0.13344 0.13417 0.894 1) [9-23] 28.91 /24
0.13344 0.13344 0.13455 0.890 *13 [9-23] 32.61 /24
0.13344 0.13417 0.13417 0.872 T}2 [9-23] 2597 / 24
0.13344 0.13417 0.13455 0.871 ;2 [9-23] 31.06 / 24
0.13344 0.13455 0.13455 0.860 13 [9-23] 27.57 /24
0.13417 0.13417 0.13455 0.845 T2 [9-23] 29.17 / 24
0.13417 0.13455 0.13455 0.837 *2> [9-23] 27.81 /24
6.0 32%-64 0.13344 0.13344 0.13417 0.873 11} [2-16] 18.33 /11
0.13344 0.13344 0.13455 0.859 15 [2-16] 18.62 /11
0.13344 0.13417 0.13417 0.845 *13 [2-16] 19.13 / 11
0.13344 0.13417 0.13455 0.832 *15 [2-16] 19.32 /11
0.13344 0.13455 0.13455 0.820 17 [2-16] 19.42 /11
0.13417 0.13417 0.13455 0.805 *1I [2-16] 20.43 /11

0.13417 0.13455 0.13455 0.793 *15 [2-16] 20.93 / 11
6.2 24%.48 0.13460 0.13460 0.13510 0.656 * ; [10-23] 32.08 / 22
0.13460 0.13460 0.13530 0.648 * 5 ([10-23] 34.17 /22
0.13460 0.13510 0.13510 0.638 * 3 [10-23] 29.22 / 22
0.13460 0.13510 0.13530 0.630 *'J [10-23) 30.35 / 22

0.13460 0.13530 0.13530 0.623 *'! [10-23] 29.17 / 22
0.13510 0.13510 0.13530 0.611 ;2 [10-23] 28.84 / 22
0.13510 0.13530 0.13530 0.606 13 [10-23] 29.74 / 22

Table A.10: Non-degenerate delta masses for the non-perturbatively improved
data sets.
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r[i *-T K1 Ko K3 _amy Fit x?/d.of. J
6.0 16%-48 0.13700 0.13700 0.13810 0.777 *'I [10-23) 33.07 / 22
0.13700 0.13700 0.13856 0.761 *'2 [10-23] 35.36 / 22
0.13700 0.13810 0.13810 0.722 *'? [10-23] 34.31 / 22
0.13700 0.13810 0.13856 0.713 *'5 [10-23] 28.68 / 22
0.13700 0.13856 0.13856 0.678 *iJ [10-23] 30.82 /22
0.13810 0.13700 0.13700 0.766 *'. [10-23] 24.29 / 22
0.13810 0.13700 0.13810 0.733 *'? [10-23] 24.95 / 22
0.13810 0.13700 0.13856 0.706 *'7 [10-20] 30.48 / 16
0.13810 0.13810 0.13856 0.659 *15 [10-23] 32.66 / 22
0.13810 0.13856 0.13856 0.634 22 [10-23] 27.15 / 22
0.13856 0.13700 0.13700 0.741 *'3 [10-23] 26.87 / 22
0.13856 0.13700 0.13810 0.698 *'I [10-23] 27.18 / 22
0.13856 0.13700 0.13856 0.697 *'5 [10-23] 28.44 / 22
0.13856 0.13810 0.13810 0.654 +2' [10-23] 25.59 / 22
0.13856 0.13810 0.13856 0.642 T2 [10-23] 27.54 / 22
6.2 24%-48 0.13640 0.13640 0.13710 0.576 + 3 [11-23] 34.85 / 20

- 8
0.13640 0.13640 0.13745 0.554 * 5 [12-23] 28.30 / 18
0.13640 0.13710 0.13710 0.539 * 2 [13-23] 32.50 / 16
0.13640 0.13710 0.13745 0.526 * 2 [13-23] 29.71 / 16
0.13640 0.13745 0.13745 0.504 T, ([13-23] 34.91 / 16
0.13710 0.13640 0.13640 0.563 © ¢ [12-23] 30.13 / 18
0.13710 0.13640 0.13710 0.539 7 [12-23] 41.45 /18
0.13710 0.13640 0.13745 0.515 *'9 [13-23] 31.06 / 18

0.13710 0.13710 0.13745 0.494 *.° [13-23] 35.07 / 16
0.13710 0.13745 0.13745 0.463 T12 [14-23] 26.09 / 14
0.13745 0.13640 0.13640 0.540 ¢ [12-23] 31.09 /18
0.13745 0.13640 0.13710 0.510 *'2 [13-23] 33.24 / 16
0.13745 0.13640 0.13745 0.497 *'5 [13-23] 32.69 / 16
0.13745 0.13710 0.13710 0.470 *.5 [14-23] 36.98 / 16
0.13745 0.13710 0.13745 0.455 *,7 [14-23] 32.15 / 14

Table A.11: Non-degenerate sigma masses for the tadpole improved data sets.
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| 8 LT K1 Ko K3 ams Fit x?/d.o.f. |
6.0 16°-48 0.13344 0.13344 0.13417 0.780 *'2 [9-23] 40.18 / 24
0.13344 0.13344 0.13455 0.766 *'. [9-23] 41.16 / 24
0.13344 0.13417 0.13417 0.743 *t'2 [9-23] 41.76 / 24
0.13344 0.13417 0.13455 0.735 12 [9-23] 38.36 / 24
0.13344 0.13455 0.13455 0.708 *}7 [9-23] 40.86 / 24
0.13417 0.13344 0.13344 0.771 *'} [9-23] 31.74 / 24
0.13417 0.13344 0.13417 0.745 *'7 [9-23] 33.32 /24
0.13417 0.13344 0.13455 0.728 *]2 [9-23] 42.71 / 24
0.13417 0.13417 0.13455 0.697 15 [9-23] 40.45 /24
0.13417 0.13455 0.13455 0.677 *5 [9-23] 37.07 / 24
0.13455 0.13344 0.13344 0.750 *'2 [9-23] 33.71 / 24
0.13455 0.13344 0.13417 0.719 *1> [9-23] 35.97 / 24
0.13455 0.13344 0.13455 0.717 *}5 [9-23] 38.68 / 24
0.13455 0.13417 0.13417 0.689 *15 [9-23] 35.86 / 24
0.13455 0.13417 0.13455 0.679 *)5 [9-23] 39.77 / 24
6.0 32°-64 0.13344 0.13344 0.13417 0.769 *12 [3-18] 16.59 / 12
0.13344 0.13344 0.13455 0.755 19 [3-18] 16.76 / 12
0.13344 0.13417 0.13417 0.732 19 [3-18] 16.71 /12
0.13344 0.13417 0.13455 0.726 13 [3-18] 16.11 / 12
0.13344 0.13455 0.13455 0.695 *}2 [3-18] 17.47 /12
0.13417 0.13344 0.13344 0.764 9 [3-18] 17.12 /12
0.13417 0.13344 0.13417 0.740 T} [3-18] 16.11 / 12
0.13417 0.13344 0.13455 0.716 ©19 [3-18] 16.71 / 12
0.13417 0.13417 0.13455 0.684 *}2 [3-18] 15.62 / 12
0.13417 0.13455 0.13455 0.659 15 [3-18] 15.91 /12
0.13455 0.13344 0.13344 0.745 T15 [3-18] 18.19 /12
0.13455 0.13344 0.13417 0.712 F1} [3-18] 17.62 / 12
0.13455 0.13344 0.13455 0.711 *}2 [3-18] 16.10 / 12
0.13455 0.13417 0.13417 0.678 *}3 [3-18] 16.55 / 12
0.13455 0.13417 0.13455 0.666 *13 [3-18] 14.94 /12

Table A.12: Non-degenerate sigma masses for the non-perturbatively improvéd
data sets.
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| 8 LT K1 Ko K3 ams Fit x?/d.o.f. |
6.2 243-48 0.13460 0.13460 0.13510 0.555 * 3 [12-23] 29.96 / 18
0.13460 0.13460 0.13530 0.547 * ! [12-23] 30.38 /18
0.13460 0.13510 0.13510 0.528 *,5 [13-23] 32.65 / 16
0.13460 0.13510 0.13530 0.522 10 [13-23] 31.14 / 16
0.13460 0.13530 0.13530 0.513 *,7 [13-23] 33.49 / 16
0.13510 0.13460 0.13460 0.545 * g [13-23] 31.02 /16
0.13510 0.13460 0.13510 0.525 * 5 [13-23] 35.60 / 16
0.13510 0.13460 0.13530 0.514 5 [13-23] 32.29 / 16
0.13510 0.13510 0.13530 0.500 ©,° [13-23] 34.46 / 16
0.13510 0.13530 0.13530 0.497 * 7 [13-23) 33.27 / 16
0.13530 0.13460 0.13460 0.530 * 3 [13-23] 31.30 / 16
0.13530 0.13460 0.13510 0.509 *,7 [13-23] 34.99 / 16
0.13530 0.13460 0.13530 0.503 *,9 [13-23] 34.51 /16
0.13530 0.13510 0.13510 0.493 *,5 [13-23] 38.57 / 16
0.13530 0.13510 0.13530 0.487 *,i [13-23] 35.94 / 16

Table A.13: Non-degenerate sigma masses for the non-perturbatively improved
data sets.
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] 8 LT K1 Ko K3 amp Fit x?/d.of. |
6.0 16°-48 0.13700 0.13700 0.13810 0.771 *'l [10-23] 26.43 / 22
0.13700 0.13700 0.13856 0.749 *'S [10-23] 29.00 / 22
0.13700 0.13810 0.13810 0.732 '3 [10-23] 28.57 / 22
0.13700 0.13810 0.13856 0.703 *'S [10-23] 31.14 / 22
0.13700 0.13856 0.13856 0.697 *'5 [10-23] 30.32 / 22
0.13810 0.13700 0.13700 0.778 *'2 [10-23] 32.41 / 22
0.13810 0.13700 0.13810 0.718 '} [10-23] 36.92 / 22
0.13810 0.13700 0.13756 0.707 *'5 [10-23] 28.00 / 22
0.13810 0.13810 0.13856 0.659 29 [10-23] 27.49 / 22
0.13810 0.13856 0.13856 0.643 *20 [10-23] 27.63 / 22
0.13856 0.13700 0.13700 0.763 *'% [10-23] 35.09 / 22
0.13856 0.13700 0.13810 0.710 *' [10-23] 35.05 / 22
0.13856 0.13700 0.13856 0.672 15 [10-23] 35.56 / 22
0.13856 0.13810 0.13810 0.655 *15 [10-23] 31.43 / 22
0.13856 0.13810 0.13856 0.626 2o [10-23] 28.39 / 22
6.2 24°-48 0.13640 0.13640 0.13710 0.568 [13-23] 28.45 / 16
0.13640 0.13640 0.13745 0.545 [13-23] 30.52 / 16
0.13640 0.13710 0.13710 0.535 [13-23] 34.43 / 16
0.13640 0.13710 0.13745 0.510 [13-23] 32.27 / 16
0.13640 0.13745 0.13745 0.491 [13-23] 29.70 / 16
0.13710 0.13640 0.13640 0.571 [13-23] 25.83 / 16
0.13710 0.13640 0.13710 0.532 [13-23] 32.33 / 16
0.13710 0.13640 0.13745 0.518 [13-23] 37.35 / 16
0.13710 0.13710 0.13745 0.491 [13-23] 40.78 / 16
0.13710 0.13745 0.13745 0.457 T,5 [14-23] 31.06 / 14
0.13745 0.13640 0.13640 0.558 [13-23] 25.76 / 16
0.13745 0.13640 0.13710 0.522 [13-23) 29.20 / 16
0.13745 0.13640 0.13745 0.492 [13-23] 31.84 / 16
0.13745 0.13710 0.13710 0.492 [13-23] 32.65 / 16
0.13745 0.13710 0.13745 0.451 [14-23] 22.15 / 14

o
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Table A.14: Non-degenerate lambda masses for the tadpole improved data sets.
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l B LT K1 Ko K3 amnp Fit x?/d.of. |
6.0 16°-48 0.13344 0.13344 0.13417 0.775 t'} [9-23] 34.81 / 24
0.13344 0.13344 0.13455 0.757 *'2 [9-23] 36.88 / 24
0.13344 0.13417 0.13417 0.744 '3 [9-23] 36.25 / 24
0.13344 0.13417 0.13455 0.722 *}5 [9-23] 38.22 /24
0.13344 0.13455 0.13455 0.713 *1¢ [9-23] 36.58 / 24
0.13417 0.13344 0.13344 0.781 *'} [9-23] 38.65 / 24
0.13417 0.13344 0.13417 0.739 T'2 [9-23] 42.45 / 24
0.13417 0.13344 0.13455 0.727 '3 [9-23] 38.60 / 24
0.13417 0.13417 0.13455 0.692 F15 [9-23] 38.47 / 24
0.13417 0.13455 0.13455 0.679 *17 [9-23] 38.06 / 24
0.13455 0.13344 0.13344 0.769 1'2 [9-23] 40.67 / 24
0.13455 0.13344 0.13417 0.734 15 [9-23] 40.73 / 24
0.13455 0.13344 0.13455 0.702 *11 [9-23] 40.76 / 24
0.13455 0.13417 0.13417 0.698 *]3 [9-23] 40.07 / 24
0.13455 0.13417 0.13455 0.674 T15 [9-23] 35.69 / 24
6.0 32°-64 0.13344 0.13344 0.13417 0.765 19 [3-18] 16.96 / 12
0.13344 0.13344 0.13455 0.748 13 [3-18] 17.76 / 12
0.13344 0.13417 0.13417 0.737 *19 [3-18] 16.31 /12
0.13344 0.13417 0.13455 0.711 *1Y [3-18] 17.61 / 12
0.13344 0.13455 0.13455 0.704 *}0 [3-18] 16.35 / 12
0.13417 0.13344 0.13344 0.772 119 [3-18] 16.37 /12
0.13417 0.13344 0.13417 0.730 T} [3-18] 16.92 / 12
0.13417 0.13344 0.13455 0.719 *1. [3-18] 16.87 /12
0.13417 0.13417 0.13455 0.680 12 [3-18] 16.22 / 12
0.13417 0.13455 0.13455 0.664 T13 [3-18] 15.21 / 12
0.13455 0.13344 0.13344 0.759 *1% [3-18] 16.15 /12

{

[

[

[

0.13455 0.13344 0.13417 0.724 T10 [3-18] 15.95 /12
0.13455 0.13344 0.13455 0.691 F12 [3-18] 18.26 / 12
0.13455 0.13417 0.13417 0.684 12 [4-18] 14.59 / 11
0.13455 0.13417 0.13455 0.657 *15 [3-18] 16.34 /12

Table A.15: Non-degenerate lambda masses for the non-perturbatively improved
data sets.
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| 8 LT K1 Ko Ks amp Fit Xz/d.o.f.J
6.2 24° .43 0.13460 0.13460 0.13510 0.548 * © [13-23] 31.68 / 16
0.13460 0.13460 0.13530 0.534 * 9 [13-23] 32.28 / 16
0.13460 0.13510 0.13510 0.524 + ¢ [13-23] 34.93 / 16
0.13460 0.13510 0.13530 0.510 *,7 [13-23] 34.48 / 16
0.13460 0.13530 0.13530 0.502 *° [13-23] 33.53 / 16
0.13510 0.13460 0.13460 0.552 + 2 [13-23] 27.59 / 16
0.13510 0.13460 0.13510 0.522 *.¢ [13-23] 31.55 / 16
0.13510 0.13460 0.13530 0.516 * 7 [13-23] 37.31 /16
0.13510 0.13510 0.13530 0.497 *2 [13-23] 39.22 / 16

0.13510 0.13530 0.13530 0.474 [14-23] 34.28 / 14
0.13530 0.13460 0.13460 0.543 [13-23] 27.91 / 16
0.13530 0.13460 0.13510 0.516 *; [13-23] 30.42 / 16

[

[

[

I+ 1+
—
SESIESEN

0.13530 0.13460 0.13530 0.507 .5 [13-23] 31.56 / 16
0.13530 0.13510 0.13510 0.497 .7 [13-23] 32.42 /16
0.13530 0.13510 0.13530 0.497 *,% [13-23] 31.10 / 16

Table A.16: Non-degenerate lambda masses for the non-perturbatively improved
data sets.
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| 8 LT K1 Ko AMPCAC Fit x?/d.o.f. |
5.7 16%-32 0.13843 0.13843 0.10935 *30 [9-14] 1.93/5
0.14077 0.13843 0.08108 *23 [9-14] 1.46 /5
0.14077 0.14077 0.05430 *22 [9-14] 1.02/5
6.0 16%-48 0.13700 0.13700 0.05392 *J [13-22] 11.12/9
0.13810 0.13700 0.04007 *1V [13-22] 11.43 /9
0.13856 0.13700 0.03421 *19 [13-22] 10.35/9
0.13810 0.13810 0.02647 *}; [13-22] 10.89 /9
0.13856 0.13810 0.02070 *1% [13-22] 11.40 /9
0.13856 0.13856 0.01498 *1¢ [13-22] 1245 /9

6.2 24°-48 0.13640 0.13640 0.04176 * & [9-22] 9.67 / 13
0.13710 0.13640 0.03201 *5 [9-22] 8.57 /13
0.13745 0.13640 0.02710 * & [9-22] 7.89 /13
0.13710 0.13710 0.02234 * & [9-22] 8.05 /13
0.13745 0.13710 0.01747 =S [9-22] 7.58 / 13
0.13745 0.13745 0.01262 ¥ 7 [9-22] 7.25/ 13

Table A.17: The unrenormalised PCAC masses for the tadpole improved data
sets.
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| B LT K1 Ko ATMPCAC Fit x?/d.o.f. ]
6.0 16°-48 0.13344 0.13344 0.04801 t 5 [12-22] 15.54 / 10
0.13417 0.13344 0.03803 * 5 [12-22] 16.49 / 10
0.13455 0.13344 0.03275 119 [12-22) 16.74 / 10
0.13417 0.13417 0.02817 *1Y [12-22] 16.04 / 10
0.13455 0.13417 0.02292 *11 [12-22] 16.68 / 10
0.13455 0.13455 0.01766 *]7 [12-22] 16.06 / 10
6.0 32°-64 0.13344 0.13344 0.04828 *19 [19-30] 10.18 / 11
0.13417 0.13344 0.03832 *,7 [19-30] 11.34 /11
0.13455 0.13344 0.03304 *,7 [19-30] 13.36 / 11
0.13417 0.13417 0.02845 *,2 [19-30] 12.93 / 11
0.13455 0.13417 0.02321 12 [19-30] 14.93 / 11
0.13455 0.13455 0.01801 *i2 [19-30] 17.75/ 11
6.2 24%-48 0.13460 0.13460 0.03526 [9-22] 8.35/ 13
0.13510 0.13460 0.02798 [9-22] 7.47 /13
0.13530 0.13460 0.02505 [9-22] 7.28 /13
0.13510 0.13510 0.02075 [9-22) 7.96 /13
0.13530 0.13510 0.01783 [9-22] 8.05/ 13
0.13530 0.13530 0.01491 [9-22] 8.34 /13

|
—
3

I+ 1+ 1 +14+ 1+ 1+
N NGO RN BTG

Table A.18: The unrenormalised PCAC masses for the non-perturbatively im-
proved data sets.



Appendix B

Light hadron spectrum results for the quenched

simulations

This appendix contains the results for the normal and strange quark masses
obtained for the quenched simulations discussed in chapter 3. In addition, the
lattice values of the light hadron spectrum at the physical quark masses are
reported for each data set. The results are quoted in every case for each of the
four choices of quantity used to set the scale in the determination of the physical
values of the quark masses: the p mass, the K* mass, the nucleon mass and r;".
The uppermost table on each page refers to the tadpole improved data sets, while

the lower tables correspond to the non-perturbatively improved data sets.
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| g LT Q@ Mn Kn mMS(1/a) MeV I
57 16%-32 m, 0.00297 *12 0.14306 * 3 4.95 *2
mi.  0.00274 *.9 0.14307 t 2 4.75 18
my  0.00387 1% 0.14302 2 5.65 139
rg' 0.00288 T ) 0.14306 T2 487 T2
6.0 16°-48 m, 0.00165 * 7 0.13914 t?2 4.36 10
mg. 0.00154 * 5 0.13915 t 2 4.22 1%
my  0.00211 *29 0.13913 2 4.94 *¥
rgt 0.00138 T 1 0.13916 2 3.99 32
6.2 24%-48 m, 0.00123 * 3 0.13785 T2 4.18 2%
mg. 0.00114 *§ 013785 *?2 4.02 t%
my  0.00140 *.5 0.13784 t2 4.46 *27
rgt  0.00095 * 1 0.13786 2 3.67 T34
s 2T Q Tt Fon mMS(1/a) MeV |
6.0 16°-48 m, 0.00163 *3§ 013519 *? 4.27 +22
mi.  0.00153 * ¢ 0.13520 *? 413 I
myx  0.00221 *19 0.13517 *2 4.97 33
rg'  0.00130 ¥} 0.13520 * 2 3.97 *3
6.0 32%-64 m, 000170 *3 013517 * ] 4.37 +22
mg.  0.00159 T ¢ 0.13518 T | 4.23 17
my  0.00210 *1% 0.13516 T ] 4.89 T2
rg' 0.00130 * ] 0.13519 T | 3.82 *3
6.2 24%.48 m, 0.00121 *§ 013577 T2 4.13 *+32
mg- 0.00113 *§ 0.13577 * 2 3.99 2
my  0.00153 *.5 0.13576 2 4.66 27
rg' 0.00093 *1 013578 *? 3.63 =4

Table B.1: Lattice values for the improved normal quark mass, with the corre-
sponding &, value, for the quenched data sets. The quark mass has been evaluated
in the MS renormalisation scheme at 1/a. The scale is set by the physical quantity
@. The error in r¢ has not been taken into account.
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“K - input” “® - input”

g L*T Q s Ks s Ks

57 16°-32 m, 00741 T3 0.14004 *11 0.0938 *5 0.13916 *Z8
my~ 0.0685 T22 0.14029 *1) 0.0795 T3¥ 0.13980 F17
my  0.0966 Tii 0.13904 T22 0.1468 *3% 0.13670 *5¢
rg' 00719 T3 014013 T2 00884 *2! 0.13941 *I0

6.0 16°-48 m, 0.0413 *7 013758 * ¢ 0.0510 *3 0.13719 +1¢
mg+ 0.0385 T3 0.13769 ¥ 0.0441 2 0.13747 * 8
my  0.0526 T3 0.13712 155 0.0766 05 0.13614 22
rg' 00345 T2 013785 * | 0.0338 *15 0.13788 ]

6.2 24%-48 m, 0.0306 *'; 0.13672 T 7 0.0381 2 0.13643 * 5
mg« 0.0284 *'170.13680 * 2 0.0326 T 0.13664 T,1
mn - 0.0350 *35 0.13655 T12 0.0485 *35 0.13602 %
rg' 0.0237 5 013699 T 00200 15 0.13713 2

“K - input” “¢ - input”

g LT Q M K s K

6.0 16°-48 m, 0.0407 2} 0.13374 * 3 0.0484 *15 0.13345 17
i« 0.0383 115 0.13383 2 0.0427 *2% 0.13366 T,]
my  0.0552 *35 0.13318 112 .0.0803 *.05 0.13221 *29
rg' 0.0324 *3 013405 * ] 0.0275 *29 0.13423 9

6.0 32°-64 m, 0.0426 *3; 0.13365 ¥ 0.0521 *i7 0.13329 *I3
mg-  0.0397 19 0.13376 7 0.0448 T3 0.13357 *.2
my  0.0525 T35 0.13327 *12 0.0754 139 0.13239 i
rg' 0.0325 t2 013403 T 0.0255 T2 0.13429 !

6.2 24°-48 m, 0.0303 '3} 0.13468 T3 0.0371 *52 0.13443 *°
mg-  0.0283 *'5 0.13476 T2 0.0320 *3! 0.13462 *°
my  0.0382 F31 0.13438 *'7 0.0560 *3) 0.13370 1%
rg' 0.0233 T3 013495 * ] 0.0180 2 0.13515 9

Table B.2: Lattice values for the strange quark mass, with the corresponding &,
value, for the quenched data sets using the “K - input” and “¢ - input” methods.
The scale is set by the physical quantity @). The error in ry has not been taken
into account.
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mMS(1/a) MeV
B LT Q “K-input” “¢ - input”

57 16%-32 m, 123 +°¢ 156 *11
mie 119 * ¢ 138 1
mn 141 7 214 *13
rg! 121 * 1 149 + ¢
6.0 16%-48 m, 109 * 2 134 T}
: mKe 105 4 121 * 1
my 123 2 179 *%
ro! 100 *; 98 * 4
6.2 24%-48 m, 104 * 7 130 12
K 100 * 3 15 * 9
mN 1t 154 +32
ro! 92 +1 77t 7

mM3(1/a) MeV
g L*-T Q  “K-input” “¢ - input”

6.0 16°-48 m, 107 * 8 127 +'2
mie 103 * 3 115 * 3%
my 124 12 181 22
ry! 95 * 1 81 *¢
6.0 32°.64 m, 109 *2 134 *12
e 106 * 3 119 * 3
my 121 1% 174 *22
ry! 96 * ] 75 T8
6.2 24°-48 m, 104 * 2 127 13
T 100 * ¢ 13 1
m 116 *,7 170 22
ot 91 * ] 70 t 3

Table B.3: The strange quark mass has been evaluated in the MS renormalisation
scheme at 1/a for the quenched data sets using the “K - input” and “¢ - input”
methods. The scale is set by the physical quantity ). The error in ro has not
been taken into account.
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| B LT Q@ m, on mgs ]
57 16%-32 m, 0.676 T}z 0.849 *13 0.765 *1¢
my. 0.676 T12 0.833 +12 0.754 +13
my 0683 T2 0.902 t15 0.792 *I]
rg' 0676 T15 0842 t 5 0.759 T2
6.0 16°-48 m, 0398 *35 0501 7 0448 * 38
mg- 0396 T3 0493 T 7 0446 t3
my 0397 £ 0531 T4 0.464 2
ro' 0395 t9 0483 t 3 0439 * ¢
6.2 24%-48 m, 0301 t9 0379 *7 0340 * 3
mg= 0301 *9 0373 *% 0337 +38
my 0302 19 0390 T3 0346 f3
rg' 0300 tg 0361 3 0331 56
|8 L*T Q m, Mg e |
6.0 16°-48 m, 0.407 T'% 0518 T3 0.463 '3
mk.  0.408 1} 0511 * 8 0459 2
my  0.410 10 0.558 13 0484 * 2
rg' 0408 *10 0495 T 7 0451 t]
6.0 32°-64 m, 0416 t'3 0525 0 0472 '3
k= 0.419 *15 0518 T2 0.466 1'7
my 0420 110551 F11 0486 9
ro' 0418 T 0499 T ¢ 0458 * 38
6.2 24°-48 m, 0.303 *'7 0383 *§ 0345 3
mg. 0.307 .0 0378 7 0340 *?
my 0308 1,7 0403 3 0356 F 3
rot 0306 £,9 0364 F4 0335 f7

Table B.4: Lattice values of the mesons at the physical quark masses obtained
using () to set the scale for the quenched data sets. The # and K meson can not
be determined since they are used to set the quark masses. Note that the p and
K* mass cannot be predicted in the case where they set the scale.
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[ 8 LT Q ma Mys M=s ma I
57 16°-32 m, 1123 13 1215 3> 1.307 39 1.399 *2
mg- 1122 132 1.207 155 1.292 *30 1.378 *28
my 1126 T3, 1.247 32 1.367 39 1.487 *¥
rg' 1122 3 1212 *55 1.302 *3 1.391 t%
6.0 16°-48 m, 0.734 *30 0.777 *15 0820 *12 0.864 *°
mi- 0.733 *20 0774 135 0.814 *}2 0.854 t2
my  0.735 T2 0.790 *)° 0.845 1% 0.901 7
rg' 0.733 20 0.769 *1° 0.805 T2 0.841 *.3
6.2 24°-48 m, 0.539 F1 0578 T'2 0616 T'; 0.655 I
mgs 0539 11 0574 t'2 0.610 *') 0.646 * 2
my  0.540 T11 0.584 ' 0.628 .5 0.672 3
rg' 0.538 H11 0568 T'2 0598 t2 0.628 t ]

I 16} L*T Q ma oy Mas me ]
6.0 16%-48 m, 0.768 T35 0.809 *5: 0850 *32 0.891 *13
mg= 0.767 35 0.806 t5: 0.845 12 0.884 13
myn  0.769 T3 0.826 22 0.882 *15 0.938 *l®
rol 0.767 T28 0799 35 0.832 *25 (.865 *1
6.0 32%.-64 m, 0.711 ¥ 0.766 2} 0.821 *15 0876 *}2
mgs  0.711 728 0.762 21 0813 *18 0864 18
my  0.713 T35 0.780 22 0.848 20 0.916 2
rg' 0.709 *30 0751 220 0.793 *1 0 0.835 115
6.2 24°-48 m, 0.547 T3 0586 *I7 0.625 T2 0.664 *l
mis  0.547 22 0583 *17 0619 13 0.656 2
my 0548 T12 0597 *13 0.646 .7 0.695 T2

rg'  0.546 *22 0576 15 0.605 *13 0635 * 2

Table B.5: Lattice values of the decuplet baryons at the physical quark masses
obtained using ) to set the scale for the quenched data sets.
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[ B LT Q my ma ms ms= |
57 16%-32 m, 0936 T21 1.044 *13 1.044 13 1.152 *19
mi 0.935 T21 1.035 13 1.035 15 1.134 *7
my 0940 122 1.081 23 1.081 23 1.221 2
rg' 0935 T21 1.040 *13 1.040 F15 1.145 *I3
6.0 16%-48 m, 0.545 3% 0.610 *33 0612 *2) 0.679 *1S
mgs  0.544 T3% 0.605 73 0.607 *2, 0.669 ']
my  0.547 2% 0.631 *¥7 0632 *¥ 0718 128
rg' 0543 T1% 0597 T1, 0599 *71 0.655 Tig
6.2 24%-48 m, 0391 F5 0447 1% 0447 5 0502 * 3
mgs  0.391 5 0442 5 0442 7 0494 T ]
my 0392 T8 0456 .7 0456 *5 0519 * 2
rg' 0390 *8 0433 T3 0433 £5 0476 * 3
|8 LT Q mN ma msy mz |
6.0 16°-48 m, 0.576 t22 0.638 12 0.640 *% 0.704 *17
mi- 0575 122 0.633 115 0.636 15 0.696 *15
mn 0.578 123 0.664 T2 0.666 T2 0.754 tZ]
rg'  0.574 122 0.622 10 0.625 F1° 0.676 11°
6.0 32°-64 m, 0.560 t)2 0.629 *;5 0.631 T35 0.702 *i3
mi.  0.560 112 0.623 *1° 0.626 F1° 0.692 t.2
mn 0.563 20 0.648 12 0.650 *12 0.737 tI0
rg' 0.558 1220609 15 0.612 12 0.666 12
6.2 24%-48 m, 0412 1.5 0447 *% 0463 *5 0513 3
mi- 0412 1.5 0458 T2 0459 5 0.506 *,]
my  0.414 1.8 0476 T.0 0478 T5 0.541 *°
ro' 0411 T8 0448 T2 0450 t 2 0488 T]

Table B.6: Lattice values of the
obtained using () to set the scale for the quenched data sets.

nucleon mass cannot be predicted when Q) = my.

octet baryons at the physical quark masses

Note that the



Appendix C

Fitted lattice masses for the dynamical

simulations

This appendix contains the results for the fitted lattice masses for the dynamical
fermion simulations considered in chapter 4. The masses in lattice units and in
units of 7o have been determined by considering different types of fit as described
in section 4.5. The notation FF or FL labels a single cosh (exponential) fit to the
correspondingly fuzzed meson (baryon) correlator. The label LL,FF or LL,FL
corresponds to a simultaneous double cosh (exponential) fit to those pair of cor-
relators for the mesons (baryons). Finally the notation LL,FL,FF corresponds to
a factorising fit to the ground and excited states to the three correlator combi-
nations, LL, FLL and FF. The final fits selected for the subsequent analysis are
listed in Table C.1 and are highlighted in bold in the results tables. Mass results
obtained from the matched quenched simulation at 8 = 5.93 are included in this
appendix for comparison. Where N/A appears in the table, an acceptable fit
could not be obtained. Note that where a type of fit was unstable for all xya

values, no results are reported.

I¢] Ksea Pseudoscalar Vector Nucleon Delta
5.2 0.13550 LL,FF LL,FF LL,FF LL,FL
5.2 0.13500 LL,FF LL,FL FL LL,FL,FF
526  0.13450 LL,FF - LL,FL LL,FF FF
5.29  0.13400 LL,FF LL,FL,FF FL FF

593 Quenched  LL,FF LL,FL,FF LLFL  LLFL

Table C.1: The final fits types selected for each data set.
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] Fuzzing Kval ToMMPS amps Fit x?/d.of. |
FF 0.13400 2.307 42 0.470 [10-15] 2.54 / 4
0.13450 2.036 *3° 0.414 [10-15) 2.72 /4
0.13500 1.733 35 0.353 [10-15] 3.31 /4

0.13550 1.387 *35 0.282

FL 0.13400 2.309 *3*  0.470
0.13450 2.036 *32 0.414

0.13500 1.731 *37  0.352

0.13550 1.379 *37 0.281

LL,FF  0.13400 2.324 *3% 0.473
0.13450 2.051 *32 0.417

0.13500 1.746 *37 0.355

0.13550 1.399 *3° 0.285

LL,FL  0.13400 2.316 T2 0.471
0.13450 2.041 *3  0.415

0.13500 1.751 *22 0.356

0.13550 1.382 *32 0.281
LL,FL,FF 0.13400 2.316 53 0.471
0.13450 2.047 *3° 0.416

0.13500 1.747 132 0.356

0.13550 1.398 *33 0.285

[10-15] 4.32 /4
[10-15] 0.65 / 4
[10-15]  0.29 / 4
[10-15] 0.44 / 4
[10-15] 1.17 /4
[9-15] 11.86 /8
[9-15] 12.21 /8
[9-15] 11.60 /8
[9-15] 10.30 /8
[9-15] 6.01 /8
[9-15] 6.62 /8
[8-15] 10.21 / 10
[8-15] 5.21 /10
[10-15] 14.27 / 12
[10-15] 16.42 / 12
[10-15] 16.75 / 12
[10-15] 12.05 / 12

l+ 1+ 1+ 1+t FI+HT+1FHIT+HE+ 41+

WN WA WA R[0T WL O TN Tt Lod PN WTTWA WW A WA WA DW

—

L L4 L4 L[+ 1+ 1+ 1+

Table C.2: Pseudoscalar masses for 8 = 5.2, kgea = 0.13550.
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| Fuzzing Kval Torny amy Fit x?/d.of. |
FF 0.13400 2.908 *2° 0592 *? [10-15] 3.23/4
0.13450 2.720 *2% 0553 t 7 [10-15] 1.78 /4

0.13500 2.548 * 7% 0.519 *12 [10-15] 0.66 / 4

0.13550 2.425 *15%  0.493 2% [10-15] 0.74 / 4

FL 0.13400 2.916 * 32 0593 *? [10-15] 4.58 /4
0.13450 2.725 * 2% 0555 * ¢ [10-15] 2.29 /4

0.13500 2.545 * & 0.518 *10 [10-15] 1.00 / 4

0.13550 2.393 *1S 0.487 *?22 [10-15] 1.55 /4

LL,FF  0.13400 2.919 *2° 0.594 *3 [10-15] 7.92/6
0.13450 2.736 * 3 0.557 T % [9-15] 9.48/8

0.13500 2.579 *t27 0.525 *.0 [9-15] 7.24/8

0.13550 2.397 * 3% 0.488 11 [9-15] 4.27/8

LL,FL  0.13400 2915 *31 0593 =5 [10-15] 6.09 /6
0.13450 2.746 +80 0559 & [9-15] 15.10/8

0.13500 2.552 * 5 0.519 *.7 [9-15] 4.13/8

0.13550 2.400 3% 0.488 2 [10-15] 2.26 / 6
LL,FL,FF 0.13400 2.938 T35 0.598 ¢ [10-15] 12.89 /12
0.13450 2.744 *2° 0.558 * ¢ [10-15] 7.94 / 12

0.13500 2.558 12 0.521 t & [10-15] 5.69 /12

0.13550 2.368 *3° 0.482 *13 [10-15] 7.59 /12

Table C.3: Vector masses for f = 5.2, &sea = 0.13550.
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| Fuzzing Kval ToIMN amy Fit x?/d.of. I
FF 0.13400 4.47 *1! 0910 *1¥ [11-15) 3.02/3
0.13450 4.14 *'3 0.843 2% [11-15] 1.33/3
0.13500 3.85 *'o 0.783 *2 [9-15) 0.10/5
0.13550 3.59 *15 0.731 122 [10-15] 1.91 /4
FL 0.13400 4.44 *'1 0.903 *!* [11-15] 1.33/3
0.13450 4.16 *'5  0.847 *22 [10-15] 1.98 /4
0.13500 3.83 *17 0.779 *31 [11-15] 1.51/3
0.13550 3.55 F'° 0.723 12 [8-15] 299/ 6
LL,FF  0.13400 4.53 *}2 0.923 115 [10-15) 7.34/6
0.13450 4.24 *1° 0.862 ™22 [10-15]) 7.37/6
0.13500 3.93 *1> 0.801 27 [10-15] 7.04/6
0.13550 3.65 F15 0.743 159 [10-15] 3.96 /6
LL,FL  0.13400 4.45 *10 0.905 *17 [10-15] 4.81/6
0.13450 4.23 *15 0.862 *27 [9-15] 8.06 /8
0.13500 3.94 *1° 0802 *3% [9-15] 8.02/8
0.13550 3.65 *1% 0.743 35 [9-15] 5.76 / 8
LL,FL,FF 0.13400 4.59 *12 0935 *1% [10-15] 15.49 /12
0.13450 4.26 11 0.867 *22 [10-15) 17.39 / 12
0.13500 3.94 *1° 0.803 *27 [10-15] 13.92 /12
0.13550 3.70 12 0.754 T2l [10-15] 6.87 / 12

Table C.4: Nucleon masses for 8 = 5.2, keea = 0.13550.
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| Fuzzing Kval ToMmA ama Fit x?/d.o.f. |

FF 0.13400 4.87 *12 0.992 *1* [10-15] 5.70 /4

0.13450 4.57 T17 0.930 2 [10-15]) 525/ 4

0.13500 4.26 T} 0.866 *22 [10-15] 6.09 / 4

0.13550 4.08 *1¢ 0.831 T3 [815] 6.64/6

FL 0.13400 4.92 *13 1.001 2 [10-15] 5.06 /4

0.13450 4.62 *1% 0.939 22 [10-15] 5.34 /4

0.13500 4.40 *1> 0.895 *28 [9-15) 7.20/5

0.13550 4.37 *21 0.890 *2 [8-15] 7.96/6

LL,FF  0.13400 4.89 *18 0994 ™2 [11-15] 6.77 / 4
0.13450 N/A

0.13500 4.26 *1> 0.866 *2° [10-15] 8.39/6

0.13550 4.11 *)¢ 0.836 *32 [10-15] 8.45/6

LL,FL ~ 0.13400 4.92 *1® 1.002 *2% [10-15] 7.79 /6

0.13450 4.62 *12 0.941 29 [10-15] 8.00 /6

0.13500 4.27 *15 0.869 25 [10-15] 9.22/6

0.13550 4.09 *2! 0.832 *5° [9-15] 15.96 /8

LL,FL,FF 0.13400 4.98 *17 1.014 2% [10-15] 12.88 /12

0.13450 4.68 *15 0.952 2% [10-15] 12.00 / 12

0.13500 4.26 *17 0.867 3L [11-15] 10.53 /9

0.13550 3.95 125 0.804 *¥ [11-15] 1590 /9

Table C.5: Delta masses for 8 = 5.2, keea = 0.13550.
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| Fuzzing Koval TomMps amps Fit x?/d.o.f. |
FF 0.13350 2.588 *3¢ 0.566 [10-15] 5.04 / 4
0.13400 2.365 *i 0.517 [10-15] 5.63 / 4

0.13450 2.125 *35  0.464 [10-15] 6.11 / 4

0.13500 1.861 *3¢ 0.407 [10-15] 5.91 / 4

FL 0.13350 2.593 15 0.567 [11-15]  5.04 / 3
0.13400 2.369 *32 0.518 [11-15] 536 /3

0.13450 2.129 *35  0.465 [11-15]  5.60 /3

0.13500 1.864 *3° 0.407 [11-15] 552 /3

LL,FF  0.13350 2.591 57 0.566 [11-15]  9.86 / 4
0.13400 2.366 *3> 0.517 [ 5-15) 23.15 /16

0.13450 2.129 139 0.465 [ 5-15] 23.94 / 16

0.13500 1.867 13° 0.408 [ 5-15] 24.26 / 16

LL,FL  0.13350 2.580 *is 0.564 [6-15] 16.17 / 14
0.13400 2.357 *22 0.515 [7-15] 18.36 / 12

0.13450 2.099 *i 0.459 [6-15] 20.51 / 14

0.13500 1.855 *2° 0.405 [6-15] 22.93 /14

LL,FL,FF 0.13350 2.597 *i7 0.568 (11-15] 1717 /9
[11-15] 19.59 / 9

[11-15] 21.88/ 9

0.13400 2.377 133 0.519
[11-15] 22.01 /9

P+l + I+ | F T+ R+ T+ + 1+

WANWRNWRNROWLOA A TR A A Mw ww PR P OR[WWNWO B

[y

—

0.13450 2.140 *35 0.468
0.13500 1.878 *37 0.410

t+ i+ 1+ 10+ + 0+ 1+ 1+

Table C.6: Pseudoscalar masses for § = 5.2, Keea = 0.13500.



Appendix C. Fitted lattice masses for the dynamical simulations 216

| Fuzzing Koval TornY amy Fit x?/d.o.f. |
FF 0.13350 3.191 *% 0.697 [10-15)  3.05 / 4
0.13400 3.017 *27 0.659 [10-15] 2.93 /4

0.13450 2.839 *7  0.620 [10-15]) 2.82 /4

0.13500 2.655 *5°  0.580 [10-15) 257 / 4

FL 0.13350 3.204 *33  0.700 [10-15]  3.46 / 4
0.13400 3.029 *2% 0.662 [10-15] 2.85 / 4

0.13450 2.852 157 0.623 [10-15] 2.26 / 4

0.13500 2.670 *%2 0.584 [10-15]  1.56 / 4

LL,FF  0.13350 3.200 *22 0.699 [11-15)  7.46 / 4
0.13400 3.051 *27 0.667 [9-15] 15.04 /8

0.13450 2.880 *3¢ 0.629 [9-15] 1551 /38

0.13500 2.696 *°57  0.589 [8-15] 18.17 / 10

LL,FL  0.13350 3.209 2 0.701 [10-15] 10.37 / 6
0.13400 3.037 *3 0.664 [10-15]  8.35 /6

0.13450 2.860 *2¢ 0.625 [10-15] 7.14 /6

0.13500 2.669 12 0.583 [10-15] 5.54 / 6
LL,FL,FF 0.13350 3.218 *31 0.703 [9-15] 19.39 / 15
0.13400 3.048 1% 0.666 [9-15] 17.84 /15

0.13450 2.878 *22  0.629 [9-15] 18.97 / 15

0.13500 2.707 *%2  0.592 [9-15] 22.38 /15

_
SRS A PR PV ORI SIS Y R=IEN - G B NG S NGRS T NSRS SN XSRS = NS = N

I N I I R R I I E e AR IR R e

Table C.7: Vector masses for § = 5.2, Keea = 0.13500.
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| Fuzzing Kval ToInN amy Fit x?/d.of. |
FF 0.13350 5.01 '} 1.094 t'5 [7-15] 2248 /7
0.13400 4.73 *'1 1.033 '3 [7-15] 22.83 /7

0.13450 4.42 *'} 0966 *1o [7-15] 1985 /7

0.13500 4.08 '} 0.891 ' [7-15] 11.25 /7

FL 0.13350 4.99 *'9 1.090 *'; [815] 6.83/6
0.13400 4.70 '3 1.027 M2 [815] 7.50 /6

0.13450 4.40 *'9 0.962 '3 [8-15] 7.90 /6

0.13500 4.10 *'? 0.897 *l3 [8-15] 7.35/6

LL,FF  0.13350 5.03 *'% 1.098 *'7 [8-15] 47.41 /10
0.13400 4.80 'S 1.050 t'i [7-15] 47.21 / 12

0.13450 4.43 *12 0.969 *75 [7-15] ~ 33.24 / 12

0.13500 4.09 13 0895 *22 [7-15] 21.26 /12

LL,FL  0.13350 N/A
0.13400 N/A
0.13450 N/A

0.13500 4.11 172 0.899 *15 [7-15] 16.57 / 12
LL,FL,FF 0.13350 5.03 *;3 1.099 *%, [10-15] 61.60 / 12
0.13400 4.77 *13 1.042 *3, [10-15] 54.98 / 12
0.13450 4.47 *15 0.980 33 [10-15] 44.15 /12
0.13500 4.16 *12 0.909 *2% [10-15] 29.24 / 12

Table C.8: Nucleon masses for § = 5.2, kg = 0.13500.
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I Fuzzing Kval TormA amap Fit x?/d.o.f. ]
FF 0.13350 5.29 *13 1.156 *?. [8-15] 7.69/6
0.13400 5.04 15 1.101 *?2 [815] 761/6

0.13450 4.86 *'2  1.062 '3 [7-15) 11.71/7
0.13500 4.60 *15 1.006 F15 [7-15] 899 /7
FL 0.13350 5.34 *1> 1.167 ¥ [8-15 6.99/6
0.13400 5.09 F'2 1112 2 [8-15] 7.41/6
0.13450 4.83 '3 1.055 *22 [815] 591/6
0.13500 4.55 *'3 0.995 **L [8-15] 3.26/6

LL,FF  0.13350 5.18 *1° 1.131 %13 [11-15] 12.86 /4
0.13400 4.82 *17 1.052 *1* [11-15] 8.50 / 4

0.13450 5.13 15 1.120 2% [7-15] 6541 /12

0.13500 4.87 13 1.063 *% [7-15] 52.94 / 12

LL,FL,FF 013350 5.18 F13 1.131 *23 [11,15] 14.61 /9
0.13400 4.92 *1> 1.074 *27 [11,15] 14.95 /9

0.13450 4.67 *15 1.021 73 [11,15] 1528 /9

0.13500 4.46 113 0.975 *3. [11,15] 1530 /9

Table C.9: Delta masses for 8 = 5.2, k¢ea = 0.13500.
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l Fuzzing Koyal ToMPpS amps Fit x?/d.o.f. I
FF 0.13350 2.763 *37 0.603 [9-15] 4.09/5
0.13400 2.553 *3% 0.557 [9-15] 4.05/5
0.13450 2.331 *32 0.509 [9-15] 4.18 /5
0.13500 2.095 *3°  0.457 [9-15] 452 /5
FL 0.13350 2.764 *37  0.603 [8-15] 3.26/6
0.13400 2.553 *2° 0.557 [8-15] 240/ 6
0.13450 2.330 *3  0.509 [8-15] 1.71 /6

0.13500 2.094 *30  0.457
LL,FF  0.13350 2.765 135 0.604
0.13400 2.562 *3% 0.559
0.13450 2.344 *3° 0.512
0.13500 2.098 *3° 0.458
LL,FL  0.13350 2.761 3% 0.603
0.13400 2.549 *3%  0.556
0.13450 2.331 *3% 0.509
0.13500 2.100 *31  0.458
LL,FL,FF 0.13350 2.766 33 0.604
0.13400 2.556 *3¢ 0.558
0.13450 2.335 *3% 0.510
0.13500 2.105 *5) 0.459

[8-15] 1.33/6
[9-15]  6.69 /8
[9-15] 570 / 8
[9-15)  6.09 /8
[9-15] 7.93/8
[9-15] 5.01/8
[9-15] 3.79 /8
[9-15) 4.22/8
[9-15] 5.45/8
[9-15] 18.03 / 15
[9-15] 18.05 / 15
[9-15] 19.31 / 15
[10-15] 19.76 / 12

I+ i+ 1+ 1+ I+ 1+ 1+ 0+ 4+ 14T+ T+ F 0+ 04+ 0+
WD DWW NS WL W[ o e NN W W[ W e R o

Table C.10: Pseudoscalar masses for 8 = 5.26, keea = 0.13450.
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| Fuzzing Kval TomMY amy Fit x?/d.o.f. |
FF 0.13350 3.281 *3i7 0.716 [9-15] 4.31/5
0.13400 3.116 *37 0.680 [9-15] 3.56 /5

0.13450 2.950 *17 0.644 [9-15] 2.92/5

0.13500 2.786 13> 0.608 [9-15) 273 /5

FL 0.13350 3.274 *3° 0.715 [10-15)  2.35 / 4
0.13400 3.109 *47  0.679 [10-15) 1.72 /4

0.13450 2.945 *3° 0.643 [9-15] 1.18 /5

0.13500 2.780 *35  0.607 [9-15] 1.06 /5

LL,FF  0.13350 3.308 15 0.722 [10-15] 12.38 / 6
0.13400 3.148 *47  0.687 [10-15] 11.28 / 6

0.13450 2.988 *17 0.652 [10-15] 10.04 / 6

0.13500 2.818 137 0.615 [10-15) 7.90 / 6

LL,FL  0.13350 3.290 3 0.718 [9-15] 18.58 /8
0.13400 3.126 *47 0.682 [9-15] 15.54 /8

0.13450 2.961 *17 0.646 [9-15] 12.83 /8

0.13500 2.789 *%3 0.609 [9-15] 10.90 / 8

LL,FL,FF 0.13350 3.314 1352 0.723 [9-15] 37.02 /15
[8-15] 41.70 / 18

[8-15] 36.81 /18

0.13400 3.158 *39 0.689
[8-15] 34.08 /18

0.13450 2.990 *2 0.653
0.13500 2.819 32 0.615

I I I T e B B S S I S IS IS B [ IS IO S
m‘\lﬁﬂﬁmhmw@ﬁaﬁmﬁmﬂmmmmmmmmmwmmmamﬂﬂmmmmhm

Table C.11: Vector masses for f = 5.26, keea = 0.13450.
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I Fuzzing Kval ToMN amy Fit x?/d.of. |

FF 0.13350 5.08 5 1.108 *'s [9-15] 562/5

0.13400 4.81 * %5 1.051 *'y [9-15] 483/5

0.13450 4.55 ¥ 5 0.993 *12 [9-15] 3.87/5

0.13500 4.28 * 5 0.934 t15 [9-15] 278/5

FL 0.13350 5.05 3 1.103 '3 [10-15] 1.13/4

0.13400 4.80 * 3 1.048 13 [10-15] 0.96 / 4

0.13450 4.55 T3 0.993 *13 [10-15] 093 /4

0.13500 4.31 * 5 0.941 *15 [10-15] 1.09 /4

LL,FF  0.13350 5.10 * 3 1.114 ™2 [9-15] 896 /8

0.13400 4.85 3 1.058 2 [9-15] 8.07/8

0.13450 4.59 * 2 1.002 ™% [9-15] 7.88/8

0.13500 4.3¢ * 7 0.948 115 [9-15] 8.78/8

LL,FL 013350 5.10 * 5 1.113 *'9 [9-15] 1033 /8
0.13400 4.84 * 35 1.057 *'1 [9-15] 11.38/8

0.13450 4.60 * > 1.003 *'i [9-15] 13.06 /8

0.13500 4.37 % 0.954 *11  [8-15] 16.22 /10
LL,FL,FF 0.13350 5.14 =5 1122 *'1 [9-15] 21.19/ 15
0.13400 4.88 * 2 1.065 *'3 [9-15] 21.46 / 15

0.13450 4.62 * 2 1.008 '3 [9-15) 21.82 /15

0.13500 4.36 *'2 0951 *'7 [9-15] 21.54 /15

Table C.12: Nucleon masses for # = 5.26, keea = 0.13450.
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| Fuzzing Kval roma ama Fit Xz/d.o.f.l
FF 0.13350 5.32 5 1.162 '3 [9-15] 6.23/5
0.13400 5.07 *2 1.106 735 [9-15] 5.16/5
0.13450 4.80 *'7 1.048 *1% [9-15] 420/5
0.13500 4.53 *'3 0.989 *21 [9-15] 3.58 /5
FL 0.13350 5.28 * 5 1.152 14 [10-15] 3.19 /4
+10

0.13400 5.03 *'2 1.098 *1% [10-15] 3.97 /4
0.13450 4.78 *'1 1.044 *13 [10-15] 4.65 /4
0.13500 4.54 *13 0991 % [10-15] 5.03 /4
LL,FF  0.13350 5.44 *'J 1.188 *1¥ [9-15] 20.83 /8
0.13400 5.17 *'2 1.129 **2 [10-15] 16.32 /6
0.13450 N/A
0.13500 4.57 T3 0999 *'2 [9-15] 962 /8
LL,FL  0.13350 5.36 *'% 1.170 *1® [10-15] 19.82 /6
0.13400 5.17 *3 1.128 ™ML [11-15) 7.98 /4
0.13450 4.94 *'0 1.078 *¥ [10-15] 19.24 / 6
0.13500 4.71 *'2 1.028 *?2 [9-15] 18.43 /8
LL,FL,FF 0.13350 5.35 *'2 1.168 **5 [11-15] 18.87 /9
0.13400 5.13 *'2 1.120 *?2 [11-15] 19.46 /9
0.13450 4.93 *'2 1.075 *?2 [11-15] 20.40 /9
0.13500 4.75 112 1.037 *2 [11-15] 21.78 / 9

Table C.13: Delta masses for § = 5.26, kgeen = 0.13450.
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|Fuzzing Kval ToIMPS ameps Fit x?/d.o.f. I
FF  0.13350 2.770 *32 0.623 [8-15] 3.47/6
0.13400 2.572 *37  0.578 [8-15] 3.41/6

0.13450 2.363 135 0.531 [8-15] 3.51/6

0.13500 2.141 *3* 0.481 [8-15] 3.82/6

FL  0.13350 2.768 '3 0.622 [9-15] 3.15/5
0.13400 2.570 *37 0.578 (9-15] 3.11/5

0.13450 2.362 *3> 0.531 [9-15] 3.26 /5

0.13500 2.140 *3* 0.481 [9-15) 3.62/5

LL,FF  0.13350 2.770 *3 0.623 [9-15] 15.50 / 8
0.13400 2.571 *37 0.578 [9-15] 13.67 /8

0.13450 2.363 35 0.531 [9-15] 13.35/8

0.13500 2.139 *3° 0.481 [8-15] 12.57 / 10

LL,FL  0.13350 2.688 3 0.621 [7-15] 17.19 / 12
0.13400 2.496 *3° 0.576 [7-15] 18.70 / 12

0.13450 2.356 *3¢ 0.529 [ 8-15] 20.34 / 10

0.13500 2.136 32 0.480 [8-15] 22.62 / 10

I+ 14+ 1+ 1+ +1H T+ H T+ T+ 4+

W NA LW W e e YO DL oL oW~

T+ 1+ 1+ 1+

—

Table C.14: Pseudoscalar masses f = 5.29, #¢ea = 0.13400.
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| Fuzzing Kval rommy amy Fit XZ/d.o.f.]
FF 0.13350 3.248 42 0.730 [10-15) 9.83 /4
0.13400 3.091 *3 0.695 [10-15] 8.91 /4

0.13450 2.932 *33  0.659 [10-15) 7.11 /4

0.13500 2.771 *3. 0.623 [10-15] 4.71 / 4

FL 0.13350 3.247 *33 0.730 [11-15] 7.90 /3
0.13400 3.088 *i° 0.694 [11-15] 6.49 / 3

0.13450 2.928 T4 0658 [11-15] 4.7 /3

0.13500 2.767 *52  0.622 [11-15] 3.00 /3

LL,FF  0.13350 3.256 *3. 0.732 [11-15] 20.42 / 4
[11-15] 15.91 / 4

—48
0.13400 3.097 *3% 0.696

[11-15] 9.18 / 4
[11-15] 6.51 / 4

0.13450 2.927 *°2 0.658
0.13500 2.773 *3%  0.623

I+ 1+ 14+ 1+ t++H1i+0+H1+1+14+1+
MO N A b acfnw s wa won

LL,FL  0.13350 N/A
0.13400 N/A
0.13450 2,925 *2° 0657 ¥ I [11-15] 6.69 / 4
0.13500 2.770 *35 0.623 * 2 [11-15] 5.07 / 4
LL,FL,FF 0.13350 3.251 *3, 0.731 * 5 [11-15] 31.42/9
0.13400 3.090 *32 0.694 * 1 [11-15] 27.35/9
0.13450 2.928 *32 0.658 *§ [11-15] 22.87/9
0.13500 2.766 *5° 0.622 ') [11-15] 18.62 /9

Table C.15: Vector masses for § = 5.29, #eea = 0.13400.
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| Fuzzing Kval ToMN amy Fit Xz/d.o.f.—|
FF  0.13350 5.02 t3 1.129 ¥4 [11-15] 0.32/ 3
0.13400 4.77 *'2 1.071 17 [11-15) 029 /3

0.13450 4.56 *'0 1.025 '3 [8-15] 3.62/6

0.13500 4.25 *1% 0.955 *2¢ [12-15] 0.22 /2

FL 013350 5.06 *§ 1.137 "3 [11-15] 1.96 /3
0.13400 4.81 * 3 1.080 F1% [11-15] 1.18/ 3

0.13450 4.55 * 3 1.021 115 [11-15] 0.54 /3

0.13500 4.27 '3 0.960 117 [11-15] 0.68 /3

LL,FF  0.13350 5.08 *'2 1.141 *% [9-15] 11.98/ 8
0.13400 4.80 '3 1.079 ** [9-15] 9.25/ 8

0.13450 4.52 t'2 1.016 *?%5 [9-15] 7.73/ 8

0.13500 4.26 'S 0.956 **F [10-15] 5.92 /6

LL,FL  0.13350 5.08 *'1 1.140 *'8 [9-15] 12.75 /38
0.13400 4.82 *'2 1.082 **7 [9-15) 8.87/8

0.13450 4.54 *'2 1.020 **> [9-15] 6.08 /8

0.13500 4.27 *'2 0.959 *°0 [9-15] 4.03/ 8

Table C.16: Nucleon masses for 8 = 5.29, kg = 0.13400.
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| Fuzzing Kval ToMA ama Fit x?/d.of. I
FF 0.13350 5.27 *'% 1.184 ™5 [10-15] 1.94 /4
©0.13400 5.03 T'. 1.131 12 [10-15] 1.74 / 4
0.13450 4.80 F'2 1.079 ¥ [10-15) 1.68 /4

0.13500 4.56 't 1.024 *2% [10-15) 1.60 /4

FL 0.13350 5.30 *'9 1.191 *'S [11-15] 2.18/3
0.13400 5.07 'l 1.139 *13 [11-15] 237 /3

0.13450 4.84 *'2 1.087 *22 [11-15] 2.62/3

0.13500 4.60 *'* 1.033 *27 [11-15] 2.81/3

LL,FF  0.13350 5.29 *'L 1.189 '3 [11-15) 9.46 /4
0.13400 5.06 F'1 1.136 ' [11-15]) 9.21 /4

0.13450 4.93 *'1 1.107 *'2 [9-15] 13.49 /8

0.13500 4.70 T'L 1.056 t2! [9-15] 11.48 /8

LL,FL  0.13350 5.30 *'X 1.191 ' [11-15] 6.03 /4
0.13400 5.06 *'2 1.137 2% [11-15] 6.45 /4

0.13450 4.95 *'9 1112 *'7 [9-15] 14.84 /8

0.13500 4.63 *1> 1.041 *23 [10-15] 13.48 /6
LL,FL,FF 0.13350 5.36 *'7 1.204 *2¢ [11-15] 33.06 /9
0.13400 5.13 ' 1.152 2% [11-15) 29.71 /9

0.13450 4.89 *'S 1.097 *32 [11-15] 26.68 /9

0.13500 4.78 *'3 1.074 2% [9-15] 39.61 / 15

Table C.17: Delta masses for § = 5.29, kea = 0.13400.
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mzzing K1 Ko romMps amps Fit  x*/d.o.f. I
FF 013270 0.13270 2.275 *13 0493 *2 [9-15] 0.70 / 5
0.13320 0.13270 2.153 *15 0467 t2 [9-15] 0.68/5
0.13340 0.13270 2.102 *}2 0456 2 [9-15] 068 /5
0.13320 0.13320 2.025 *}i 0439 *2 [9-15] 072/5
0.13340 0.13320 1.972 17 0428 *35 [9-15]) 0.74 /5
0.13340 0.13340 1.919 17 0416 *3 [9-15) 0.79 /5
0.13370 0.13370 1.749 *17 0379 * 5 [9-15] 1.06 /5
0.13390 0.13370 1.690 *1® 0.366 *5 [9-15] 1.26 /5
0.13390 0.13390 1.629 *13 0353 *5 [9-15] 1.58/5

FL  0.13270 0.13270 2276 *13 0.494 *2 [9-15] 1.75/5
0.13320 0.13270 2.154 17 0467 *2 [9-15] 1.59/5
0.13340 0.13270 2.103 *17 0456 * 7 [9-15] 1.53/5
0.13320 0.13320 2.026 *}7 0439 *2 [9-15] 1.50/5
0.13340 0.13320 1.973 *17 0428 2 [9-15] 1.43/5
0.13340 0.13340 1.920 17 0416 *2 [9-15) 141/5
0.13370 0.13370 1.751 *1%¥ 0380 f3 [9-15] 1.40/5
0.13390 0.13370 1.691 1% 0367 *35 [9-15) 146 /5
0.13390 0.13390 1.631 *12 0.354 *5 [9-15] 1.57/5
'LL,FF  0.13270 0.13270 2276 T]g 0.493 * 1 [9-15] 4.99 /8
0.13320 0.13270 2.154 *1% 0.467 *3 [9-15] 535/8
0.13340 0.13270 2.103 *}7 0.456 *32 [9-15] 535/ 8
0.13320 0.13320 2.027 *}7 0.439 T2 [9-15] 4.98/8
0.13340 0.13320 1.974 *17 0.428 *2 [9-15] 5.02/38
0.13340 0.13340 1.920 *17 0.416 T3 [9-15] 4.80/8
0.13370 0.13370 1.752 12 0.380 T3 [9-15] 4.60 /8
0.13390 0.13370 1.693 *17 0.367 T3 [9-15] 4.36 /8
0.13390 0.13390 1.633 *}5 0.354 ©3 [9-15] 4.28 /8

Table C.18: Pseudoscalar masses for the § = 5.93 quenched matched data set.
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| Fuzzing K1 Ko ToMPS amps Fit X2/d.o.f.J
LL,FL  0.13270 0.13270 2.276 12! 0.494 [10-15] 571/ 6
0.13320 0.13270 2.154 23 0.467 [10-15]  6.20 / 6
0.13340 0.13270 2.104 *2> 0.456 [10-15] 6.38 /6
0.13320 0.13320 2.026 *2° 0.439 [10-15) 6.65 /6
0.13340 0.13320 1.973 39 0.428 [10-15] 570 / 6
0.13340 0.13340 1.920 *3) 0.416 [10-15]  5.96 / 6
0.13370 0.13370 1.752 *3% 0.380 [10-15] 6.39 /6
0.13390 0.13370 1.696 T3¢ 0.368 [10-15] 6.46 / 6
0.13390 0.13390 1.640 *3. 0.356 [10-15]  6.53 / 6
LL,FL,FF 0.13270 0.13270 2.276 t13 0.494 [9-15] 17.87 /15
0.13320 0.13270 2.154 1% 0.467 [9-15] 1839/ 15
0.13340 0.13270 2.103 *1% 0.456 [9-15] 18.67 / 15
0.13320 0.13320 2.026 *15 0.439 [9-15] 18.76 / 15
0.13340 0.13320 1.973 *1% 0.428 [9-15] 18.99 / 15
0.13340 0.13340 1.919 *1% 0.416 [9-15) 19.02 /15
0.13370 0.13370 1.748 12 0.379 [9-15] 19.03 / 15
0.13390 0.13370 1.688 *13 0.366 [9-15] 19.08 / 15
0.13390 0.13390 1.626 *.% 0.353 [9-15] 18.58 / 15

NANWRNWNWDRDWRDNWRNRRNNRNORIAOD NI TN DA N AW

I+t+1+1+1+1+1+1+1+H+T+F T+ 1T+ 1+ 0+ T4+ 1+ 1+

Table C.19: Pseudoscalar masses for the § = 5.93 quenched matched data set.
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lFuzzing K1 Ko TV amy Fit x?/d.of. |
FF  0.13270 0.13270 3.008 *3° 0652 * ¢ [10-15] 4.86 / 4
0.13320 0.13270 2.939 *2° 0637 * ] [10-15] 5.12/4
0.13340 0.13270 2.914 *3% 0632 ©7 [10-15 5.18/4
0.13320 0.13320 2.862 F3r 0621 35 [10-15] 4.11 /4
0.13340 0.13320 2.837 X2 0615 +5 [10-15] 4.16 / 4
0.13340 0.13340 2.807 T35 0609 * 5 [10-15] 3.77 /4
0.13370 0.13370 2.734 *2° 0.593 *1, [10-15]) 3.22 /4
0.13390 0.13370 2.721 *& 0590 *15 [10-15] 3.17 /4
0.13390 0.13390 2.697 & 0.585 *15 [10-15] 2.90 / 4

FL  0.13270 0.13270 3.017 *3 0654 * 5 [10-15] 6.57 / 4
0.13320 0.13270 2.947 *2 0639 * S [10-15] 6.77 / 4
0.13340 0.13270 2.922 *3° 0634 * 7 [10-15] 6.85/4
0.13320 0.13320 2.871 32 0622 * 7 [10-15] 5.39/4
0.13340 0.13320 2.846 *i0 0617 t3 [10-15] 5.46 /4
0.13340 0.13340 2.817 *52 0611 * 35 [10-15] 4.89 /4
0.13370 0.13370 2.744 *3. 0595 *i0 [10-15] 4.10 / 4
0.13390 0.13370 2.730 *25 0.592 *11 [10-15] 4.12 /4
0.13390 0.13390 2.707 *2% 0.587 *12 [10-15] 3.55 /4
LL,FF  0.13270 0.13270 2.990 3¢ 0.648 * 2 [9-15) 7.82/38
0.13320 0.13270 2.921 *3% 0633 =5 [9-15] 8.03/8
0.13340 0.13270 2.895 *%2 0628 T8 [9-15 9.25/38
0.13320 0.13320 2.838 *37 0615 ¥ 7 [9-15] 7.28/8
0.13340 0.13320 2.812 3} 0610 7 [9-15) 7.42/8
0.13340 0.13340 2.790 *52 0.605 3 [9-15 10.11/8
0.13370 0.13370 2.710 F55 0588 © 32 [9-15) 9.09/8
0.13390 0.13370 2.688 *3i7 0.583 *'9 [9-15] 7.87/8
0.13390 0.13390 2.665 *27 0.578 19 [9-15] 8.25/8

Table C.20: Vector masses for the § = 5.93 quenched matched data set.
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| Fuzzing Kq Ko Tormy amy Fit x?/d.o.f. ]
LL,FL  0.13270 0.13270 3.016 132 0.654 * ¢ [10-15] 7.12/6
0.13320 0.13270 2.925 *2°> 0.639 *$ [10-15) 7.73/6
0.13340 0.13270 2.920 *3% 0.633 * S [10-15] 7.97/6
0.13320 0.13320 2.867 37 0.622 T3 [10-15] 6.17/6
0.13340 0.13320 2.842 *i3 0.616 .5 [10-15] 627 /6
0.13340 0.13340 2.811 *57 0.610 5 [10-15) 5.75 /6
0.13370 0.13370 2.741 *75 0.594 *18 [9-15] 836/8
0.13390 0.13370 2.724 *22 0.591 *7 [9-15] 8.30/8
0.13390 0.13390 2.661 *% 0.577 T1° [9-15] 8.45/8

LL,FL,FF 0.13270 0.13270 3.021 *3% 0.655 * ¢ [10-15] 12.64 / 12
0.13320 0.13270 2.950 *2* 0.640 * ¢ [10-15] 13.10 / 12
0.13340 0.13270 2.923 *3° 0.634 * 7 [10-15] 13.26 / 12
0.13320 0.13320 2.870 *3% 0.622 *7 [10-15] 10.85 /12
0.13340 0.13320 2.843 12 0.616 * 3 [10-15] 10.98 /12
0.13340 0.13340 2.812 T3, 0.610 *7 [10-15] 10.45 /12
0.13370 0.13370 2.731 *33 0.592 9 [10-15] 10.26 / 12
0.13390 0.13370 2.713 *21 0.588 117 [10-15] 10.24 / 12
0.13390 0.13390 2.685 *%2 0.582 11 [10-15] 10.57 / 12

Table C.21: Vector masses the = 5.93 quenched matched data set.
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r Fuzzing Koval ToMN amy Fit x?/d.o.f. l
FF 0.13270 453 * & 0.983 1 [9-15] 1.16 /5
0.13320 4.25 *§ 0922 *17 [9-15] 1.29/5
0.13340 4.15 * 7 0.899 *1* [815 1.50/6
0.13370 397 % 0.861 f1° [815 1.86/6
0.13390 3.86 *5 0.837 *17 [815] 2.03/6
FL 0.13270 4.54 * ¢ 0.984 *'2 [9-15) 1.57/5
0.13320 425 7 0922 *18 [9-15] 1.43/5
0.13340 4.14 *5 0898 *17 [9-15] 1.35/5
0.13370 4.00 * 3 0.867 ¥} [815 1.50/6
0.13390 3.87 *5 0.838 *1I [815] 1.68/6
LL,FF  0.13270 N/A
0.13320 4.23 * 2 0918 17 [9-15] 2.89/8
0.13340 4.12 *§ 0.894 t13 [9-15] 274 /8
0.13370 3.97 *2 0.862 13 [815 3.39/10
0.13390 3.87 t'0 0.839 *¥2 [815] 4.49/10
LL,FL  0.13270 4.53 T2 0.982 ™2 [7-15] 8.24 /12
0.13320 4.24 * 2 o0.918 112 [9-15) 277 /8
0.13340 4.19 * 7 o0.908 Y5 [7-15] 5.29 /12
0.13370 3.98 & 0.864 13 [8-15] 2.70 / 10
0.13390 3.85 * 3 0.836 20 [815 3.28/10
LL,FL,FF 0.13270 4.54 © 5 0.984 '8 [10-15] 5.58 / 12
0.13320 4.25 *'2 0.921 *21 [10-15] 5.74 / 12
0.13340 4.14 'l 0.897 *2 [10-15] 6.40 / 12
0.13370 3.97 *'2 0861 2 [10-15] 8.89 /12
0.13390 3.86 'S 0.838 *27 [10-15] 11.67 /12

Table C.22: Nucleon masses for the § = 5.93 matched quenched data set.
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| Fuzzing Kval ToMA ama Fit XQ/d.o.f.§|
FF 0.13270 5.02 * 7 1.089 *1> [815 242/6
0.13320 4.79 *7 1.039 *l2 [815] 3.18/6

0.13340 4.70 5 1.019 *1% (815 3.70/6

0.13370 4.53 12 0.982 *2° [9-15] 4.44/5

0.13390 4.43 *15 0.960 *31 [9-15) 5.09/5

FL 0.13270 5.01 *7 1.087 *12 [9-15] 528/5
0.13320 4.77 % 1.033 *1¢ [9-15] 5.05/5

0.13340 4.67 T3 1.012 13 [9-15] 4.83/5

0.13370 4.53 13 0.981 *2 [10-15] 4.38 /4

0.13390 4.41 *}7 0955 *35 [10-15) 4.30 /4

LL,FF  0.13270 5.02 7 1.089 *' [9-15] 9.05/8
0.13320 4.76 & 1.032 *I7 [815 7.91/10

0.13340 4.64 *'2 1.007 2 [9-15] 6.33/8

0.13370 4.53 *i5 0982 *2 [10-15] 7.17 /6

0.13390 4.41 1% 0957 *3* [10-15]) 8.05/6

LL,FL  0.13270 5.00 *7 1.084 13 [9-15) 8.42/8

-5
0.13320 4.75 3% 1.030 15 [9-15] 6.97/38
0.13340 4.65 T35 1.009 115 [9-15) 6.75/8
0.13370 4.50 '} 0.976 22 [9-15] 6.57 /8

0.13390 4.39 '3 0.952 28 [9-15) 6.61/8
LL,FL,FF 0.13270 5.03 *'2 1.090 *29 [10-15] 21.81 /12
0.13320 4.79 '} 1.039 22 [10-15] 25.73 / 12
0.13340 4.70 *12 1.018 *2¢ [10-15] 27.06 / 12
0.13370 4.54 15 0.984 *3  [10-15] 27.97 /12
0.13390 4.56 '] 0.989 3> [9-15] 36.08 /15

Table C.23: Delta masses for the § = 5.93 matched quenched data set.
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l B Ksea Koval TOMPCAC  QIMPCAC Fit Xz/d-o‘f-]
52 0.13550 0.13400 0317 5 00645 © 3 [9-14 219/5
0.13450 0.246 * 2 0.0501 * 3 [9-14] 225/5

0.13500 0.178 * 4 0.0361 + & [9-14] 255/5

0.13550 0.110 T3 0.0225 *7 [9-14] 260/5

52 0.13500 0.13350 0.407 7 0.0890 *3 [9-14] 1286 /5
0.13400 0.341 * % 0.0745 *3 [8-14] 14.24 / 6

0.13450 0.275 * 3 0.0602 * 35 [8-14] 12.61 /6

0.13500 0.211 * 3 0.0460 * 3 [8-14] 11.37 /6

5.26 0.13450 0.13350 0.481 t ¢ 0.1050 * & [9-14] 8.07/5
0.13400 0.411 *¢ 0.0898 * 5 [9-14 813 /5

0.13450 0343 *2 0.0750 T § [9-14] 7.60/5

0.13500 0.277 3 0.0605 © 5 [9-14) 6.35/5

5.29 0.13400 0.13350 0.497 *7 01117 t 5 [9-14] 6.09/5
0.13400 0430 ¢ 0.0965 *; [9-14] 6.42/5

0.13450 0.363 % 0.0816 &5 [9-14] 6.55/5

0.13500 0.298 * 3 00670 &3 [9-14 635/5

I J§; K1 Ko TOMPCAC AMPCAC Fit Xz/d.o.f.|
5.93 0.13340 0.13340 0.248 *2 0.0538 * 3 [10-14] 5.36 / 4
0.13340 0.13320 0263 t2 0.0569 * 3 [10-14] 5.50 / 4
0.13320 0.13320 0.277 *2 0.0600 *3 [10-14] 5.36 /4
0.13340 0.13270 0.298 2 0.0647 T35 [10-14] 5.69 / 4
0.13320 0.13270 0.313 =2 0.0679 ©3 [10-14] 547 /4
0.13270 0.13270 0.349 * % 0.0757 +3 [10-14] 4.94 / 4
0.13370 0.13370 0.205 *2 0.0445 *3 [10-14] 5.05/ 4
0.13390 0.13370 0.191 *2 0.0413 *3 [10-14] 5.03/ 4
0.13390 0.13390 0.176 *2 0.0382 * 3 [10-14] 4.75/4

Table C.24: The PCAC mass for the dynamical

quenched simulation.
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