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ABSTRACT

Future surveys of the Universe face the dual challenge of data size and data statistics. The

non-Gaussianity induced by gravity presents severe difficulties to robust data analysis, as the

sampling distributions are unknown. In this landscape, machine learning and extreme data

compression will play an essential role in being able to handle the data size and complexity, in

order to reach the scientific goals such as finding the driver of the accelerated expansion of the

Universe and resolving the tensions between early- and late-Universe observations.

This thesis consists of three main parts. As a first application, we show that we can recover

robust parameter constraints by combining emulation and compression for a challenging data-

set such as KiDS-450, which consists of only 24 band powers. In particular, we build a Gaussian

Process (GP) emulator for two different test cases, the first one being at the level of the band

powers and the second one for the coefficients of the summary data massively compressed

with the MOPED algorithm. In the former, cosmological parameter inference is accelerated

by a factor of ∼ 10− 30 compared to the Boltzmann solver, CLASS, and this factor depends

on whether we want to include the GP uncertainty in the inference mechanism. Importantly,

with future surveys, the gain can be up to ∼ 103 when the Limber approximation is used. The

GP formalism, along with the MOPED compression algorithm, provides us with the option of

dropping the Limber approximation, without which each forward simulation is inconveniently

very slow. By comparing the Kullback-Leibler divergence between the emulator likelihood and

the CLASS likelihood, along with the uncertainty analysis on the inferred parameters, includ-

ing the GP uncertainty does not justify the additional computational cost. In fact, the mean pre-

dictor from the GP is faster and requires a smaller memory footprint. Importantly, the number

of summary statistics will be large (∼ 104) and the speed of the emulated MOPED coefficients

depend on the number of parameters and not on the number of summary. Hence the gain in

speed is very large. In the non-Limber case, this speed-up factor can be ∼ 105.

While the above pipeline elegantly provides a solution for speeding up computing via the

MOPED algorithm, an important ingredient which we would like to propagate in the analysis

is the n(z) uncertainty. Starting with the n(z) distributions and the 3D matter power spectrum,



Pδ(k, z), to the calculation of the weak lensing and intrinsic alignment power spectra, followed

by the calculation of the band powers (and perhaps the MOPED coefficients if we want to),

the most expensive part is the calculation of Pδ(k, z). The latter can be computed either using

a Boltzmann solver such as CLASS or using large-scale N-body simulations. Hence, in the

second part of this thesis, we develop, document and share an emulator for Pδ(k, z) using a

semi-parametric Gaussian Process. Our code enables the calculation of the following quant-

ities: the non-linear matter power spectrum with/without baryon feedback, the linear matter

power spectrum at a fixed redshift, the weak lensing intrinsic alignment power spectra. In

addition, the first and second derivatives of the 3D matter power spectrum with respect to

the input parameters can also be calculated. The emulator is accurate when tested on an inde-

pendent set of parameters, drawn from the prior. The fractional uncertainty, ∆Pδ/Pδ is centered

on zero. The emulator is also ∼ 300 times faster compared to CLASS, hence opening up the

possibility of sampling cosmological and nuisance parameters in a Monte Carlo routine. The

software (emuPK) is distributed with a set of pre-trained Gaussian Process (GP) models, based

on 1000 Latin Hypercube (LH) samples, which are roughly distributed according to priors used

in current weak lensing analysis.

In the third part, we use the KiDS+VIKING-450 dataset to test our emulator, emuPK. We

also introduce two new components in the weak lensing likelihood analysis, namely a double

sum approach (essentially re-casting the standard approach of numerically performing integ-

ration as a double sum) to calculate the weak lensing and intrinsic alignment power spectra.

Moreover, we also include a novel Bayesian Hierarchical method for estimating the n(z) dis-

tributions. Early results using the novel n(z) distribution along with the emulator indicate

promising avenue.
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Chapter 1
WEAK LENSING COSMOLOGY

Measure what can be measured, and make measurable what cannot be measured.

Galileo Galilei

Gravitational lensing, the bending of light from a source to an observer, is an effect which arises

due to the intervening matter, for example, clusters of galaxies. It is a consequence of general

relativity and the amount of bending depends on the gravitational force caused by the massive

object. There are three types of lensing phenomena (Dodelson, 2017). In particular,

1. strong lensing is a phenomenon which occurs in the case where the deflection caused by

the foreground galaxies or cluster galaxies is large enough that multiple images (arcs or

Einstein rings) or at least major distortions of images will be produced (Treu, 2010). It is

an interesting proxy for studying galaxies and black holes, determining the content of the

universe and understanding the spatial distribution of mass (Nightingale et al., 2019).

2. microlensing is similar to strong and weak lensing except that the mass of the lens mass is

quite small, for example, mass of a planet or star. The shape changes are not visible and

are typically unresolved. Moreover, the magnifications (and hence the brightness) change

with time since the relative position of the lens and source changes with time (Dodelson,

2017). This technique is often used to detect very small and faint objects.

3. weak lensing is a powerful technique for probing cosmological models. It essentially maps

the original galaxies to new positions on the sky. In general, the lensing effect for an

individual galaxy is barely detectable, hence weak gravitational lensing (Kilbinger, 2015).

Lensing by Large Scale Structures (LSS) results in very small distortion of images and is

dubbed as cosmic shear. The latter is a promising research area for LSS.

In this work, we shall focus on the last. In §1.1, we touch upon the basics of cosmology be-

1



CHAPTER 1. WEAK LENSING COSMOLOGY 1.1. Cosmology Background

fore elaborating on the weak lensing formalism in §1.2. Since this thesis takes a fully Bayesian

approach to understanding weak lensing, it is important to understand the main observables

of weak lensing, which we discuss in §1.3. Concomitantly, we then briefly cover the theoretical

model(s) in §1.3 which play an important role in constraining cosmological and nuisance para-

meters. In §1.4, we elaborate on various challenges in a typical weak lensing routine, starting

from images to deriving constraints on cosmological parameters. In §1.5, we discuss briefly

past, current and future surveys and future data analysis, including Machine Learning (ML)

topics which provide an alternative approach to performing data analysis in Cosmology. Fi-

nally, in §1.7, we recapitulate on the important topics covered in this chapter.

1.1 Cosmology Background

In this section, we will briefly cover basics of the cosmology, focusing mainly on distances

in cosmology in §1.1.2, the Friedmann equation in §1.1.1 and structure formation in §1.1.3. We

refer the reader to Cosmology textbooks (Liddle, 1998; Dodelson, 2003; Mukhanov, 2005) which

cover these topics in further details.

1.1.1 Friedmann Equation

Before going through the Friedmann equations, it is worth highlighting the cosmological prin-

ciple which is based on isotropy and homogeneity, that is, over a sufficiently large scale, all

observable properties are expected to be isotropic since there exists an average motion of radi-

ation and matter in the Universe. Moreover, all observers experience the same mean motion

and history of the Universe, under the assumption that they suitably set their clocks.

On a sufficiently large scale, the Friedmann-Lemaître-Robertson-Walker (FLRW) metric is

an appropriate space-time metric to describe the line element ds of a homogeneous and iso-

tropic 3D space. Such a metric in spherical coordinate system, with radial coordinate r and two

angles (θ, ϕ) is

ds2 = −c2dt2 + a2(t)[dr2 + S2
k(r)(dθ2 + sin2θdϕ2)] (1.1.1)

where a(t) is the scale factor which has dimensions of length and a radial light propagates

according to |c dt| = a dr. Sk depends on the geometry of the Universe and constitutes of

various possibilities such as

2
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Sk(r) =





sinh r if k < 0

r if k = 0

sin r if k > 0

and k = −1, 0, 1 corresponds to open, flat and closed Universe respectively. At this stage, the

evolution of the FLRW Universe can be derived from Einstein equation,

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν (1.1.2)

where Tµν is the stress-energy tensor of the matter, which describes the energy density and

pressure. Λ is a cosmological constant, Rµν is the Ricci curvature tensor and gµν describes the

structure of space-time. The field equations result in two independent equations:

(
ȧ
a

)2

=
8πG
3c2 ∑

α

ρα −
c2K
a2 +

c2Λ
3

(1.1.3)

and

ä
a
= −4πG

3c2 ∑
α

(ρα + 3pα) +
c2Λ

3
(1.1.4)

where a dot refers to derivative with respect to time t and α refers to each fluid component.

These two equations are referred to as the Friedmann equations. Equation 1.1.4 can be re-written

in terms of the effective energy density and pressure, which are defined as

ρ′ ≡ ρ +
Λc2

8πG
,

p′ ≡ p− Λc2

8πG

and

w =
p′

ρ′
(1.1.5)

For a single fluid, the acceleration equation, in term of w, is

ä
a
= −4πG

3c2 (1 + 3w)ρ′ (1.1.6)

3
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and for non-relativistic matter, w = 0 and in an expanding universe, the total energy corres-

ponding to non-relativistic matter is conserved. In a radiation dominated universe, w = 1/3.

In general, the expansion of the universe is accelerating when w < −1/3. This can be seen by

setting Equation 1.1.6 greater than zero. The equation of state for the cosmological constant is

w = −1 and this value was indeed inferred from observations. Some important definitions and

parameters in a typical cosmological analysis include:

Hubble parameter

H =
ȧ
a

(1.1.7)

Its value at present time is denoted by H(t = t0) = H0 and is referred to as the Hubble constant.

It is customary to also write it as H0 = 100h km s−1 Mpc−1 and its value is not fully known. In

fact, it is currently a topic of extended debate the cosmology community. Planck estimates the

value at H0 = 67.4± 0.5 km s−1 Mpc−1 (Planck Collaboration et al., 2020) while using distance

ladder method, Riess et al. (2019) determined the value of H0 = 74.03± 1.42 km s−1 Mpc−1,

hence a 9.4% difference between these two values, leading to a tension of 4.4σ. On the other

hand, Freedman et al. (2020) reported a value of H0 = 69.6± 0.8 km s−1 Mpc−1 based on the

Tip of the Red Giant (TRGB) method.

Critical Density of the Universe

ρc =
3H2

8πG
(1.1.8)

and in terms h, the critical density of the Universe is, ρc ≈ 1.88× 10−29 h2 g cm−3.

Density Parameter

Ωα =
ρα

ρc
(1.1.9)

that is, the density parameter is a dimensionless quantity defined in terms of the critical density

of the Universe. This also implies that the Friedmann equation satisfies

∑
α

Ωα = 1. (1.1.10)

For a Universe with radiation density, Ωr, matter density, Ωm, curvature density parameter,

Ωk := − c2k2

a2 H2 and cosmological constant, ΩΛ, the Friedmann equation in terms of the current

values of the density of the Universe can be written as

4
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H2(t) = H2
0 [Ωra−4(t) + Ωma−3(t) + ΩKa−2(t) + ΩΛa−3(1+w)] (1.1.11)

and for the cosmological constant, we have w = −1. Note that, density parameters refer to

the values at present time, that is, the subscript 0 is omitted here. Hence, an FLRW model

of the Universe can be characterised by 4 parameters, namely, the Hubble constant, H0, and

the present density parameters for radiation, matter and the cosmological constant. Note that,

under closure, we have ΩK = 1−Ωr −Ωm −ΩΛ. Ωr � Ωm at high redshift, hence we often

write, ΩK = 1−Ωm −ΩΛ. The matter density parameter can further be expressed in terms of

cold dark matter (CDM), baryonic matter and heavy neutrinos, that is, Ωm = Ωc + Ωb + Ων.

1.1.2 Distances

In this section, we will cover the different types of distances we often encounter in cosmo-

logical data analysis. Unlike typical Euclidean space, the notion of distance does not hold

the same entity in a curved space-time. Different prescriptions will result in various distance

measures. Here, we cover proper distance, comoving distance, angular diameter distance and lumin-

osity distance. We will denote an emission and an observation event to occur at times t2 and

t1 corresponding to redshifts z2 and z1 respectively. We will also denote the scale factors by

a2 = a(t = t2) and a1 = a(t = t1).

Proper Distance

The proper distance is defined as the distance covered by a light ray as it propagates from

position z2 to position z1 where the observer is. It is defined as dDp = −c dt. Hence, in terms

of the Hubble constant, the density parameters and scale factor, the proper distance is

Dp =
c

H0

ˆ a1

a2

da [Ωma−1 + ΩK + ΩΛa2]−1/2. (1.1.12)

Comoving Distance

The comoving distance is a constant distance between two points on the spatial hyper-surface,

comoving with the cosmic flow. It is strictly the coordinate distance between the two events at

t2 and t1. Hence, the comoving distance is simply, dDc = dr = −ca−1 dt and is also related to

the proper distance via the scale factor a by Dc = aDp. The comoving distance is

Dc =
c

H0

ˆ a1

a2

da [Ωma + ΩKa2 + ΩΛa4]−1/2. (1.1.13)
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Angular Diameter Distance

The angular diameter distance is the distance subtended by the physical cross section of an

object, δA at z2 to the solid angle δω at z1. Hence,

D2
a =

δA
δω

=
4π2a2(z2)S2

k [r(z1, z2)]

4π

= a2(z2)S2
k [r(z1, z2)]

Hence,

Da = a(z2)Sk[r(z1, z2)] (1.1.14)

Luminosity Distance

Suppose the luminosity, defined as the energy emitted per unit time, of an object at a distance,

D, is L and we measure the flux, F on Earth, then the relationship between the luminosity and

flux is simply, F = L
4πD2 . The luminosity distance, DL in a curved and expanding spacetime

can be defined as F = L
4πD2

L
. Due to the expansion of the Universe and the redshift, the photons

emitted from an object are doppler shifted and the number of photons is reduced, each effect

contributing to a decrease of a0/ae = 1 + ze. a0 is the present day scale factor, ae and ze are the

scale factor and redshift of the object respectively. The relation between the observed flux and

the luminosity in terms of the luminosity distance is then:

F =
L

4πa2
0S2

k(1 + z)2
(1.1.15)

and DL = a0Sk(1 + z). The luminosity distance, DL of an object at z2, with reference to the

flux as received by an observer at z1 satisfies the following relations in terms of the angular

diameter distance, Da

DL =

(
a1

a2

)2

Da

=
a2

1
a2

Sk[r(z1, z2)].

(1.1.16)

1.1.3 Structure Formation

In the previous section, we looked into the Friedmann equations under the assumption that

our Universe follows the cosmological principle, that is, that of homogeneity and isotropy.
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However, one can argue that this assumption is only valid at large scales.

Note 1.1: Important Concepts for Linear Perturbation Theory

Continuity Equation

∂ρ

∂t
+∇ · (ρv) = 0

The continuity equation expresses the fact that matter is conserved.

Euler Equation

∂v
∂t

+ (v · ∇)v = −∇P
ρ
−∇Φ

The Euler equation describes the conservation of momentum and the influence of force

on a fluid.

Poisson Equation

∇2Φ = 4πGρ

The Poisson equation gives the relationship between the gravitational potential and the

matter density.

The Universe is rather inhomogeneous at small scales, which is justified by the formation

of stars and galaxies. In addition to this argument, the question of whether the Universe is ho-

mogeneous at large scales is also another subject of debate, the reason being that surveys’ maps

show that while there are regions of over-densities, there are also empty regions which are re-

ferred to as voids. This then raises the question of whether we have a proper scale definition to

treat the Universe as being homogeneous.

In order to explain a few quantities in this section, we introduce a few terms, which will

enable us to derive other important quantities such as the power spectrum. For an in-depth

discussion on structure formation, we refer the reader to the excellent textbook by Schneider

(2006). We first define the relative density contrast or fractional density perturbation as

δ(r, t) ≡ δρ(r, t)
ρ

=
ρ(r, t)− ρ̄(t)

ρ̄(t)
(1.1.17)

where ρ̄(t) refers to the mean density at time t. At z = 1000, the amplitude of the density

fluctuations was very small,∼ 10−5 compared to the amplitude of the density inhomogeneities

7



CHAPTER 1. WEAK LENSING COSMOLOGY 1.1. Cosmology Background

today. Following Equation 1.1.17, it is also important to realise that δ(r, t) ≥ −1. In general,

density fluctuations increase as a function of time. Regions of low density will decrease they

density contrast while over-dense regions will increase their density contrast. This evolution

of structure can be explained by a model of gravitational instability.

When the density fluctuations are small enough (at very early times), linear perturbation

theory can be used to understand the evolution of structures. Once these fluctuations are large

enough, we have to consider the non-linear evolution of structures, hence requiring higher-

order perturbation theory or numerical simulation. Here, we summarise the results from linear

perturbation theory. We consider pressure-free matter, that is, dust particles only which can be

treated using fluid approximation. The velocity field of this fluid is v(r, t).

The three equations provided in Note 1.1 cannot be solved analytically, unless some approx-

imations are considered. Approximate solutions can be derived for |δ| � 1 by linearisation. It

turns out that the evolution of the density contrast can be described by a second order differ-

ential equation of the form

∂2δ

∂t2 +
ȧ
a

∂δ

∂t
= 4πGρ̄δ (1.1.18)

and crucially, we do not have derivatives with respect to the spatial part but rather only the

derivatives with respect to time only. The above differential equation has solutions of the form

δ(r, t) = D(t)δ̃(r). The solution to the differential equation, for the density contrast, can be

expressed as

δ(r, t) = D+(t)δ0(r) (1.1.19)

where D+(t) is referred to as the growth factor. An important observation from linear perturba-

tion theory is that the spatial shape of the density fluctuations is fixed and that their amplitude

increases as a result of an increase in the growth factor. The latter as a function of the scale

factor, a reads

D+(a) ∝
H(a)
H0

ˆ a

0
da′ [Ωma′−1 + ΩΛa′2 + ΩK]

−3/2

Note that there are multiple limitations in this formalism but the linear perturbation theory

here is used as an illustration to the evolution of structures in the Universe. Importantly, for

δ > 1, it becomes more challenging to solve the equations analytically and we can no longer

integrate various assumptions as in the linear perturbation theory.
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1.2 Weak Lensing Formalism

Weak lensing is a very promising probe for improving our understanding of Physics of the

Universe and importantly, it sensitive of the mass of the foreground, due to the alignment of

background around the lensing mass. As a result, weak lensing is strictly a statistical measure-

ment and is a proxy to measure masses of astronomical objects. It is the central focus of this

thesis and we will show how we can apply techniques such as data compression and Machine

Learning in the analysis of weak lensing cosmological data.

Weak lensing is the prime technique to understand the mass distribution of individual ob-

jects such as galaxy clusters. The distortion of background images are generally very small in

the context of weak lensing, and this in itself poses a challenge to the weak lensing. The latter

is usually analysed in a statistical way.

Central to weak lensing is the change in shape of images of distant objects in the Universe.

The intermediate clumpy matter distribution changes the trajectories of photon paths, from the

source to the observer. This results in distorting the images we observe. These changes are

manifested in terms of the size and magnitude, as well as, the change in shape of the source. In

general, both can be used as a proxy for the study of cosmological weak lensing but the change

in shape is typically better since the signal to noise ratio is superior. The change in shape will

be referred to as shear and the effect due to change in size and magnitude is often referred to as

magnification and amplification.

Figure 1.1 – Light (photon) trajectories from distant objects, such as galaxies, being deflected as a result of
intermediate foreground matter between the sources and the observer. Usually, the changes in shapes of the
distorted objects are very tiny, hence weak lensing. Image credit: Wikipedia.

The observed shapes of distant objects which are close to each other are generally correlated

and this correlation drops with separation on the sky (Mandelbaum, 2018).
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1.2.1 The Lensing Potential

In this section*, we will derive the relationship between the cosmological potential and the lens-

ing potential. We will assume a flat universe but an extension to non-flat universe is straight-

forward and strictly, the distortion of a photon has to be treated using General Relativity (GR)

but one could also adopt a simpler approach such as Newtonian Physics.

Before sketching the derivations, it is useful to define a few symbols. x is the comoving

coordinate and η is the conformal time, defined as dη = c/a(t)dt, where a(t) is the scale factor of

the Universe. The equation of motion of a photon is

d2xi

dη2 = − 1
c2

∂(Φ + Ψ)

∂xi
i = 1, 2 (1.2.1)

where Φ and Ψ are the two scalar (cosmological or Bardeen) potentials. For small scalar per-

turbations, the interval in a Friedmann-Robertson-Walker (FRW) metric may be written as

ds2 =

(
1 +

2Φ
c2

)
c2dt2 −

(
1− 2Ψ

c2

)
a2(t)

[
dr2 + S2

k(r)(dθ2 + sin2θdϕ)
]

(1.2.2)

where r ≡ (r, θ, ϕ) is the comoving spherical coordinate system. Using the conformal time and

assuming a flat Universe, Equation 1.2.2 simplifies to

ds2 = a2(t)
[(

1 +
2Φ
c2

)
dη2 −

(
1− 2Ψ

c2

)
(dr2 + r2dθ2 + r2sin2θdϕ2)

]
. (1.2.3)

The unperturbed radial path is ds2 = 0, that is, dη2 − dr2 = 0. Thus, for a radial incoming ray,

dr
dη

= −1. (1.2.4)

The equation of motion can then be derived using variational principle. The Euler-Lagrangian

equation is

∂L2

∂xµ
− d

dp

(
∂L2

∂ẋµ

)
= 0, (1.2.5)

where p is a parameter which increases monotonically along the world line and L = c dτ
dp and τ

is just an element of the proper time elapsed between two space-time points A and B. In terms

of the comoving radial coordinates, x = (rθcosϕ, rθsinϕ) and after some algebra, the equation

of motion is

*based on the notes from Prof. Alan Heavens
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d2x
dη2 = − 1

c2∇x(Φ + Ψ). (1.2.6)

In GR, Φ = Ψ and hence,

d2x
dη2 = − 2

c2∇xΦ(r) (1.2.7)

The gravitational potential Φ(r) is related to the matter over-density δ(r) ≡ δρ(r)
ρ̄ , that is,

∇2
r Φ(r) =

3ΩmH2
0

2a(t)
δ(r) (1.2.8)

where H0 is the present Hubble constant in km s−1 Mpc−1 and Ωm is the present day total

matter density. The solution to Equation 1.2.7 can be found by integrating (and reversing the

order of integration) it twice with respect to r (recall dη = −dr), resulting in

xi = rθi −
2
c2

ˆ r

0
(r− r′)

∂Φ
∂x′i

dr′ (1.2.9)

By performing a Taylor expansion of ∂Φ
∂x′i

, the separation between two light light rays is

∆xi = r∆θi −
2
c2 ∆θj

ˆ r

0
r′(r− r′)

∂2Φ
∂xi∂xj

dr′ (1.2.10)

which can be re-written as

∆xi = r∆θj(δij − φij) (1.2.11)

where δij is the Kronecker delta and φij is given by

φij ≡
2
c2

ˆ r

0

r− r′

rr′
∂2Φ

∂θi∂θj
dr′. (1.2.12)

There are two important takeaways from this derivation. First, the mapping between the

source plane and the image plane is

∆ϑi = ∆θj(δij − φij). (1.2.13)

We will delve into more details on this relationship in the next section, where we discuss con-

vergence and shear. In the second place, since we have an expression of φij ≡ ∂2φ
∂θi∂θj

, we can also

11



CHAPTER 1. WEAK LENSING COSMOLOGY 1.2. Weak Lensing Formalism

write the cosmological lensing potential as

φ(r) ≡ 2
c2

ˆ r

0

r− r′

rr′
Φ(r′)dr′ (1.2.14)

Throughout this work, we have assumed a flat Universe. In the case of non-flat Universe, the

lensing potential can be written in terms of Sk(r), where r → Sk(r). Moreover, the integration

is performed in the radial direction, but in reality, the path of the photon is not quite radial.

The assumption here is that the path is unperturbed by the lens. This approximation is referred

to as the Born approximation. One can also summarise Equation 1.2.14 as the lensing potential

being a 2D projection of the 3D gravitational potential Φ(r). Strictly, the lensing potential is a

3D quantity. One typically average over the redshift distribution, n(z) of the source galaxies.

In particular,

φ(r) =
2
c2

ˆ r

0

g(r)Φ(r′)
r′

dr′ (1.2.15)

where

g(r) ≡
ˆ ∞

r
n(r′)

r′ − r
r′

dr′. (1.2.16)

Estimating the redshift distribution is another topic on its own, which we discuss in §1.4.1.3.

Existing techniques involve estimating the distances to the source galaxies using photometric

redshifts. The expression for the lensing potential will be useful when we derive the weak

lensing statistics in §1.3.

1.2.2 Convergence and Shear

The distortion of an image can be described as a linear transformation between the unlensed

(source) plane, ϑ and the lensed (image) plane, θ, that is,

ϑ = Aθ. (1.2.17)

The amplification matrix, also referred to as the distortion matrix, Aij = δij − φij can be paramet-

rised by an isotropic expansion term, the convergence field and a shear field. This matrix is

given by:
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A =




1− κ 0

0 1− κ


+



−γ1 −γ2

−γ2 γ1


 . (1.2.18)

κ > 0 γ1 > 0 γ2 > 0

κ < 0 γ1 < 0 γ2 < 0

Figure 1.2 – Figure showing the various possibilities for convergence, κ and shear, γ. In particular, an increase
and decrease in κ results in an isotropic expansion and contraction respectively. On the other hand, a positive
change in γ1 results in elongation along the x-axis but contraction along the y-axis, whereas a positive change
in γ2 leads to contraction along the line y = −x but elongation along the line y = x. A similar explanation
applies for the second row in the figure, with the different options for κ, γ1 and γ2.

A contains meaningful information for a weak lensing analysis. κ is referred to as the con-

vergence field while γ = γ1 + iγ2 is the complex shear field. The values of these quantities have

an overall effect on the final shape of a source, as shown in Figure 1.2. For example, a positive

change in γ1 leads to an elongation along the x-axis but a contraction along the y-axis while a

positive change in γ2 results in an elongation along the line y = x, but a contraction along the

line y = −x.

These quantities, κ, γ1 and γ2 can be decomposed in terms of the lensing potential, φ, such that

κ =
1
2
(φ11 + φ22) ,

γ1 =
1
2
(φ11 − φ22) ,

γ2 = φ12

(1.2.19)

In addition to the above, the magnification factor, µ is defined as the inverse of the determinant
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of the magnification matrix, A, that is, µ = |A|−1 = [(1− κ)2 − |γ|2]−1. For weak lensing, both

|κ| and |γ| are� 1 and hence, µ ≈ 1 + 2κ. The magnification matrix can also be written as

A = (1− κ)




1− g1 −g2

−g2 1 + g1


 (1.2.20)

where gi ≡ γi/1−κ is referred to as the reduced shear. Recall that |κ| � 1 and the fact that

surface brightness is preserved under lensing, an actual measurement of the shear does not

correspond to the shear itself but in fact to the reduced shear. We have elaborated on the shear,

convergence, reduced shear and magnification factor, we will now cover briefly the approach

taken to infer the shear.

1.2.3 Shear Measurements

The major contributing effect that lensing has on the observed galaxies is a change in their

shapes. This then begs the question of how we can use the distorted shapes as a proxy to

determine an estimator for the shear field. One approach as developed by Kaiser et al. (1995)

is to derive their ellipticity statistics, ε, also sometimes referred to as polarisation, from the

quadrupole moments of their images. In particular, in the absence of lensing, this statistics

vanishes since it averages to zero because the objects are statistically isotropic, that is, they are

randomly oriented. However, in the weak lensing regime, this statistics depends mildly on the

gravitational shear.

These ellipticity statistics, ε are generated using the moments of the surface brightness dis-

tribution of the source, that is,

Qij ≡
´

d2Θ θiθj I(Θ)W(Θ)´
d2Θ I(Θ)W(Θ)

(1.2.21)

where I is the surface brightness profile of the the galaxy on the sky and W is a weighting

function. Note that we have assumed that the source is centred at the origin, but this can dealt

with by replacing θi → θi − θ̄i. The complex ellipticity, ε = ε1 + iε2 can then be defined as

ε1 =
Q11 −Q22

Q11 +Q22
ε2 =

2Q12

Q11 +Q22
(1.2.22)

and sometimes another definition of the ellipticity can be derived by replacing the denominator

by Q11 +Q22 + 2
√
|Q|, where |Q| = Q11Q22 −Q2

12 is the determinant of the matrix Q. These

methods for deriving ellipticities via moments can also take into account the effect of the point
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spread function (PSF) due to the telescope and the atmosphere (Mandelbaum, 2018). We will

briefly discuss PSF in §1.4.1.2.

Defining r as the ratio of the minor axis, b to the major axis, a, for an image with elliptical

isophotes, the complex ellipticity can be written as

ε =
1− r2

1 + r2 exp(2iϑ) (1.2.23)

where r ≤ 1. Importantly, the factor 2 in the exponential term enforces that the complex ellipt-

icity remains unchanged if the image is rotated by a factor of 180◦.

Moreover, the moments of the source is related to the observed (image) moments via the

magnification matrix, A by

Qs = AQA (1.2.24)

From Equation 1.2.24, Schneider & Seitz (1995) derived the transformation between the source

ellipticity, εs and the observed ellipticity ε in terms of the convergence, κ and shear γ as

εs =
(1− κ)2ε− 2(1− κ)γ + γ2ε∗

(1− κ)2 + |γ|2 − 2(1− κ)<(γε∗)
(1.2.25)

where γ = γ1 + iγ2 and ∗ implies the complex conjugate. Dividing the numerator and the

denominator by (1− κ)2, the above equation can be re-written in terms of the reduced shear, g

such that

εs =
ε− 2g + g2ε∗

1 + |g|2 − 2<(gε∗)
. (1.2.26)

Moreover, the inverse transformation can be obtained by either replacing g by −g or one can

also start from Equation 1.2.24, that is, Q = A−1QsA
−1 and

ε =
εs + 2g + g2ε∗s

1 + |g|2 + 2<(gε∗s )
. (1.2.27)

Seitz & Schneider (1997) extended the above derivations by considering cases where |g| ≤ 1

and |g| ≥ 1 and hence the transformation between the observed and the source image in terms

of the ellipticity, ε is:
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εs =





ε− g
1− g∗ε
1− gε∗

ε∗ − g∗

for |g| ≤ 1

for |g| ≥ 1
(1.2.28)

If we want the inverse transformation, that is, the relation between the observed ellipticity and

the source ellipticity, then g → −g. For weak lensing, since κ � 1, |γ| � 1 and |g| � 1,

ε ≈ εs + γ.

Under the assumption that source ellipticities have no preferred orientation, 〈εs〉 = 0 and

the observed ellipticity turns out to be an unbiased estimator of the (reduced) shear, that is,

〈ε〉 = g. However, in the presence of intrinsic alignment, which is discussed in §1.4.2.1, the

relation between the observed ellipticity and the reduced shear does not hold.

In a weak lensing analysis, recall that the shear is very small and noisy. The intrinsic el-

lipticity dispersion, σε is about 0.3. Therefore measurement from a single galaxy is not entirely

reliable. Instead, one would need to average it over many galaxies, N, which leads to a better

signal-to-noise ratio, S/N = γ
√

N/σε, equivalently to a reduced error on the average ellipticity.

1.2.4 Convergence and Shear as Spin Weight Objects

The complex shear, γ is an example of a spin-weight field. Under an anticlockwise rotation in

a fixed coordinate system, the shear transforms as γ → γe−isψ, where s = 2 is the spin weight

and ψ is the angle of rotation. There are two main key takeaways from this notation, the first

is that the shear field is invariant over a rotation over π radians and the second is that under

a rotation of ψ = π/4 radians, one component transforms into another, that is, γ̃1 = −γ2 and

γ̃2 = γ1.

The shear field can be described using a geometrical differential operator called edth and is

denoted by ð (Newman & Penrose, 1966; Goldberg et al., 1967; Castro et al., 2005). In general,

any spin-weight function can be decomposed in a scalar part part, referred to as the electric or

even or ‘E-component’ and a scalar curl, referred to as the magnetic or odd or ‘B-component’.

The shear can be written as a second edth-derivative of lensing potential

γ(r) =
1
2
ððφ(r) (1.2.29)

If we introduce two components, φE and φB corresponding to the even and odd parts of the

lensing potential, the shear field can be written as
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γ(r) ≡ γ1(r) + iγ2(r) =
1
2
ðð [φE(r) + iφB(r)] (1.2.30)

Note that in weak lensing, it is expected that φE(r) = φ(r) and φB = 0. Therefore, the odd

part, that is, the B-component can be used as a test for systematics in a weak lensing analysis.

Examples of E and B patterns are shown in Figure 1.3. On the other hand, the convergence

field, κ is a spin-weight 0 object and can be written in terms of the ð operators as

κ(r) =
1
4
[
ðð̄+ ð̄ð

]
φ(r) (1.2.31)

Figure 1.3 – E and B modes scenarios in weak lensing (Figure from Van Waerbeke & Mellier (2003)). In weak
lensing, E-mode is the most dominant effect but the presence of B-modes is manifested as systematics in the
analysis.

A detailed analysis of spin-weight objects in the weak lensing context has been performed by

Heavens (2003) and extended by Castro et al. (2005). These works elegantly present a detailed

and well-crafted set of information on weak lensing in 3 dimensions.

1.3 Weak Lensing Statistics

Following §1.2.1, the lensing potential, φ(r) is related to the gravitational potential, Φ(r) via

a lensing kernel and involves an integral with respect to the radial distance. As a result, the

statistics of the lensing potential will be very important in order to investigate the evolution

and growth of structure in the Universe. Strictly, we are interested in constraining cosmological

parameters given a model of the Universe.

In particular, the average shear is zero and the most common statistics in cosmology is the
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two-point statistics, although higher order statistics can also be used but is quite cumbersome.

In this section, we will focus only on two-point statistics. One has to choose an appropriate

basis when dealing with quadratic measures, for example, if we choose to work in the pixel

space, then two-point statistics of the lensing field is the real-space correlation function while

the two-point function is the power spectrum if we choose the harmonic space. The following

content has been adapted from Castro et al. (2005) and we refer the reader to this paper for a

detailed overview.

1.3.1 Spherical Coordinates and Spherical Bessel Functions

Since we are interested in computing lensing power spectra, this will require spectral expan-

sion of the lensing field. A natural choice is the spherical coordinate system for various reasons,

despite the fact that sky coverage is small. Recall that the lensing potential is a radial integral

and distance measurements via photometric redshifts are also radial errors. In general, if we are

working with Fourier transforms in Cartesian coordinates, the eigenfunctions are the exponen-

tial functions. However, in spherical coordinates, the product of the spherical harmonics and

the spherical Bessel functions, Y`m(θ, ϕ)j`(kr), turns out to be the eigenfunctions of the Lapla-

cian operator. Consider a scalar field f (r) with a flat background geometry. The 3D spherical

harmonic transform is defined as

f`m(k) ≡
√

2
π

ˆ
d3r f (r)kj`(kr)Y∗`m(θ, ϕ) (1.3.1)

and its inverse transform is

f (r) =

√
2
π

ˆ
kdk

∞

∑
`=0

`

∑
m=−`

f`m(k)j`(kr)Y`m(θ, ϕ) (1.3.2)

where j`(kr) is the spherical Bessel function, Y is a spherical harmonic and k is a wavenumber.

Using Equation 1.2.14 and Equation 1.3.1 the relation between the lensing and gravitational

potential coefficients is

φ`m(k) =
4k

πc2

ˆ ∞

0
dk′ k′

ˆ ∞

0
dr rj`(kr)

ˆ r

0
dr′

(
r− r′

r′

)
j`(k′r′)Φ`m(k′; r′). (1.3.3)

On the other hand, one can straightforwardly express the coefficients of the gravitational po-

tential and the over-density, which are related via the Poisson’s equation - see Equation 1.2.8,

that is,
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Φ`m(k; r) = −3ΩmH2
0

2k2a(r)
δ`m(k, r). (1.3.4)

Note 1.2: Spin-Weight Spherical Harmonics

A spin-weight s function, s f (x) can be expressed in terms of the its spin spherical har-

monics as

s f (x) =
ˆ ∞

0
dk

∞

∑
`=0

`

∑
m=−`

[as,`m(k)] sZklm(x, θ, ϕ) (A1)

and its inverse transform is

as,`m(k) =
ˆ

d3x [s f (x)] sZ∗klm(x, θ, ϕ) (A2)

where

sZklm(x, θ, ϕ) =

√
2
π

kj`(kx)sY`m(θ, ϕ) (A3)

and sY`m(θ, ϕ) corresponds to the spin-weight spherical harmonics. The latter also satisfy

the orthogonality relation

ˆ 2π

0
dϕ

ˆ 1

−1
dcosθ s′Y∗`′m′(θ, ϕ) sY`m(θ, ϕ) = δ``′δmm′δss′ ,

whereas the basis functions sZk`m(x, θ, ϕ) are orthonormal, that is,

ˆ
d3x sZk`m(x, θ, ϕ) s′Z∗k′`′m′(x, θ, ϕ) = δD(k− k′)δ``′δmm′δss′ .

Note that

ˆ
x2dx

[√
2
π

kj`(kx)

] [√
2
π

k′ j`(k′x)

]
= δD(k− k′)

In the same spirit, the expansion of other field can be performed in a similar fashion, that

is, we can establish relations between φ, Φ and δ interchangeably in terms of the harmonic

coefficients. Note that, unlike Φ and δ, φ is not a homogeneous and isotropic field in 3D, that is,

we will strictly focus on writing the coefficients as a function of the radial distance, for example,

Φ`m(k, r) and δ`m(k, r). In the next section, we will look into spin-weight spherical harmonics
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because the observable shear field is not a scalar field but rather a spin-weight 2 field.

1.3.2 Spin-Weight Spherical Harmonics

Before delving into the statistics of the shear field, following Equation 1.2.29, the complex con-

jugate of the shear field is

γ∗(r) =
1
2
ð̄ð̄φ(r) (1.3.5)

and each orthogonal component, γ1(r) and γ2(r) can be expressed in a similar way in terms of

the ð operators, that is,

γ1(r) =
1
4
(ðð+ ð̄ð̄)φ(r),

γ2(r) =
i
4
(ðð− ð̄ð̄)φ(r).

(1.3.6)

The shear field can be decomposed into two orthogonal components as γ(r) = γ1(r) +

iγ2(r). As a result, we can also introduce two scalar fields, φE(r) for the even part and φB(r)

for the odd part, that is, we will re-write the lensing potential as φ(r) = φE(r) + iφB(r). In the

context of weak lensing, there should be no B-component and this serves as a systematic test

when constraining cosmological parameters. In short, we have the following:

γ(r) =
1
2
ðð[φE(r) + iφB(r)] γ∗(r) =

1
2
ð̄ð̄[φE(r)− iφB(r)]. (1.3.7)

Note 1.3: Properties of Spin Weight Spherical Harmonics

Some important properties of spin-weight spherical harmonics are summarised below:

ð sY`m = [(`− s)(`+ s + 1)]1/2
s+1Y`m

ð̄ sY`m = −[(`+ s)(`− s + 1)]1/2
s−1Y`m

ð̄ð sY`m = −(`− s)(`+ s + 1) sY`m

ðð̄ sY`m = −(`+ s)(`− s + 1) sY`m

and

ððY`m =

√
(`+ 2)!
(`− 2)! 2Y`m

ð̄ð̄Y`m =

√
(`+ 2)!
(`− 2)! −2Y`m

(B1)
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Using Note 1.2 and Note 1.3, we can express ððφE(r) as

ððφE(r) =
ˆ ∞

0
dk

∞

∑
`=2

`

∑
m=−`

√
(`+ 2)!
(`− 2)!

φE,`m(k)

√
2
π

kj`(kr)2Y`m

=

ˆ ∞

0
dk

∞

∑
`=2

`

∑
m=−`

√
(`+ 2)!
(`− 2)!

φE,`m(k) 2Zk`m(r, θ, ϕ)

(1.3.8)

In a similar way, other expressions for ððφB(r), ð̄ð̄φE(r) and ð̄ð̄φB(r). In summary, the shear

field and its complex conjugate, in terms of the spin-2 spherical harmonics are:

γ(r) =
ˆ ∞

0
dk

∞

∑
`=2

`

∑
m=−`

2γ`m(k) 2Zk`m(r, θ, ϕ)

γ∗(r) =
ˆ ∞

0
dk

∞

∑
`=2

`

∑
m=−`

−2γ`m(k) −2Zk`m(r, θ, ϕ)

(1.3.9)

Multiple results follow from the derivations above. In the case of weak lensing, the B-component

is 0 and hence,

±2γ`m(k) =
1
2

√
(`+ 2)!
(`− 2)!

φ`m(k) (1.3.10)

and the orthogonal components, γ1 and γ2, of the shear field in terms of the coefficients of the

lensing potential are:

γ1,`m(k) =
1
2

√
(`+ 2)!
(`− 2)!

φ`m(k)

iγ2,`m(k) =
1
2

√
(`+ 2)!
(`− 2)!

φ`m(k)

(1.3.11)

Note that, new bases are defined to obtain the latter, that is,

X1,k`m =
1
2
(2Zk`m + −2Zk`m) X2,k`m =

1
2
(2Zk`m − −2Zk`m)

Furthermore, we can repeat this process to find the expansion coefficients of the conver-

gence field. Recall that the convergence field is a spin-0 object. From Note 1.3, we have

ð̄ðY`m + ðð̄Y`m = −2`(` + 1)Y`m and from Equation 1.2.31, the expansion coefficients of κ

are

κ`m(k) = −
1
2
`(`+ 1)φ`m(k) (1.3.12)
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Now that we have obtained the coefficients of the shear and convergence field in terms of

the coefficients of the lensing potential, one could also derive other expressions in terms of

the expansion coefficients of the gravitational potential, Φ and eventually in terms of the over-

density field via the Poisson’s equation. Along these lines, the observable shear field and the

over-density field, which is a function of cosmological parameters enable us to constrain these

parameters, for example, using a Bayesian formalism. Next, we look into computing weak

lensing power spectra.

1.3.3 Weak Lensing Power Spectra

In this section, we use the coefficients derived in the previous section to obtain expressions

for the weak lensing power spectrum. In particular, we are interested in relating the 3D shear

and convergence power spectra with the 3D gravitational potential power spectra CΦΦ
` . For a

statistically homogeneous and isotropic field f (r; r) at radial distance r (note that r and time

t can be used interchangeably since they are physically equivalent) with coefficients f`m(k; r),

we have

〈 f`m(k; r) f ∗`′m′(k
′; r)〉 = C`(k; r)δD(k− k′)δ``′δmm′ (1.3.13)

where δαβ is the Kronecker delta function and δD(x) is a 1D Dirac delta function. In the same

spirit, for the lensing power spectrum, we have

〈φ`m(k)φ∗`′m′(k
′〉 = Cφφ

` δ``′δmm′ . (1.3.14)

where Cφφ
` is the 3D lensing potential power spectrum. However, recall that the lensing poten-

tial φ is not homogeneous and isotropic in 3D. The same property holds for the shear, conver-

gence and lensing potential as they share the same statistical property. Following the deriva-

tions in §1.3.2, the following expressions for power spectra can be obtained straightforwardly:

Cγγ
` (k1, k2) =

1
4
(`+ 2)!
(`− 2)!

Cφφ
` (k1, k2) (1.3.15)

Cγ1γ1
` (k1, k2) =

1
4
(`+ 2)!
(`− 2)!

Cφφ
` (k1, k2) (1.3.16)

Cγ2γ2
` (k1, k2) =

1
4
(`+ 2)!
(`− 2)!

Cφφ
` (k1, k2) (1.3.17)
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Cκκ
` (k1, k2) =

1
4
`2(`+ 1)2Cφφ

` (k1, k2) (1.3.18)

While the above expressions relate the weak lensing power spectra in terms of the lensing

potential power spectrum, a final step is to express the lensing potential spectrum itself in terms

of the gravitational lensing potential power spectrum, CΦΦ
` . Using Equation 1.3.3, we have

Cφφ
` (k1, k2) =

16
π2c4

ˆ ∞

0
k2dk I`(k1, k)I`(k2, k) (1.3.19)

where

I`(ki, k) ≡ ki

ˆ ∞

0
dr rj`(kir)

ˆ r

0
dr′
(

r− r′

r′

)
j`(kr′)

√
PΦ(k; r′)

Note that we have introduced the usual 3D power spectrum of the gravitational potential, that

is, CΦΦ
` (k; r, r′) = PΦ(k; r, r′) and we have also assumed that PΦ(k; r, r′) '

√
PΦ(k; r) PΦ(k; r′).

1.3.4 Approximations

The weak lensing power spectra can further be simplified using various approximations. The

main reasons for further simplifications include numerical stability, computational time an

various others. In this section, we will cover three different approximations, namely flat-sky

approximation, tomographic approximation and Limber approximation. Some of these can

also be used concurrently.

Flat Sky Approximation

In the flat sky approximation limit, instead of the combination (spin-weight) spherical harmon-

ics and Bessel functions, one can use a combination of Fourier modes and Bessel functions to

perform the forward and inverse transformation of a 3D field f , that is,

f (r,~θ) =

√
2
π

ˆ ∞

0
k dk
ˆ ∞

0

d2~̀

(2π)2 f (k,~̀ )j`(kr)ei~̀ ·~θ (1.3.20)

f (k,~̀ ) =

√
2
π

ˆ ∞

0
r2 dr

ˆ ∞

0
d2θ f (r,~θ)kj`(kr)e−i~̀ ·~θ (1.3.21)

where ~̀ = (` cosϕ`, ` sinϕ`) is a 2D angular wavenumber and ~θ = (θ cosϕ, θ sinϕ). See Ap-

pendix C from Hu (2000) or Appendix A2 from Santos et al. (2003) for further details. Follow-

ing Castro et al. (2005) and Heavens et al. (2013), the spherical harmonic expansion of the shear

and convergence in terms of the coefficients of the lensing potential can be approximated as:
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κ`m ≈ −
1
2
`2φ`m, (1.3.22)

γ1,`m ≈
1
2
`2φ`m, (1.3.23)

iγ2,`m ≈
1
2
`2φ`m. (1.3.24)

As a result, the flat-sky approximated shear and convergence power spectra are:

Ĉγγ
` =

1
4
`4Cφφ

` , (1.3.25)

Ĉκκ
` =

1
4
`4Cφφ

` . (1.3.26)

Once these expressions are derived, various work-streams have used them for forecasting

cosmological parameter constraints, see for example Heavens et al. (2006). If surveys have large

opening angles on the sky, the combination of spherical Bessel functions and (spin-weight)

spherical harmonics remains the obvious choice. However, for small angle surveys, most of

the information lies in the signal with the high-` mode. ` & 100 is a good criterion where

most of the cosmological information is. Computing spherical harmonics at large ` can pose

computational challenges. Instead, a flat-sky expansion as explained in this section can be very

useful.

Limber Approximation

For angular modes, ` & 100, one can use the Limber approximation (Limber, 1953; Loverde &

Afshordi, 2008; Lemos et al., 2017) to approximate the integration over the spherical Bessel

functions when computing power spectra. In general, the exact computation of the power

spectrum, including the integration over the spherical Bessel functions is very time consuming

as a result of the high oscillation of the Bessel functions at large multipoles. Instead, the Limber

approximation implies,

j`(kr)→
√

π

2ν
δD(ν− kr) (1.3.27)

that is, the spherical Bessel function is replaced by a delta function. ν = `+ 1/2 and the radial

distance and the wavenumber k are related by ν = kr. Therefore,
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ˆ
dr f (r)j`(kr)→

√
π

2ν
f
(ν

k

)
(1.3.28)

and this approximation means that the following integration can effectively be replaced by the

expression on the right. In Chapter 5, we will look into how we can use Gaussian Process as a

technique to accelerate inference of cosmological parameters. This method can also be applied

to the case where we would like to accelerate power spectra computation whilst retaining full

formalism without the Limber approximation.

Tomographic Weak Lensing Power Spectra

Lensing is strictly a 3D effect but performing a full statistical analysis in 3D can pose significant

challenges. Recall that it can also be mathematically summarised as an integrated (radial) effect

along the line of sight. Instead, we can opt to perform an analysis by congregating observed

galaxies into redshift slices, α (hence the notion of tomography), with minimal loss of inform-

ation compared to the full 3D statistical analysis. Each group of galaxies follows a specific

redshift distribution where

nα(z)dz = nα(r)dr (1.3.29)

and
´

nα(r)dr = 1. As a result, the lensing field, φ(r) averaged over the redshift distribution

nα(r) can be written as

φα(θ, ϕ) =

ˆ ∞

0
φ(r)nα(r)dr. (1.3.30)

Before expanding on the details of weak lensing tomography, it is easier to use the conver-

gence as an example to illustrate the concept behind. The convergence in terms of the matter

over-density field, δ(r) via the Poisson equation is

κ(r) =
3H2

0 Ωm

2c2

ˆ r

0
dr′

r′(r− r′)
r

δ(r′)
a(r′)

(1.3.31)

The above equation tells us that the convergence is effectively an integrated effect of the matter

over-density weighted by the comoving angular diameter distance and the scale factor. How-

ever, while this is for a single, fixed source, the (mean) convergence for a multiple sources can

be calculated by averaging over the normalised source distribution, n(r), that is,

κ̄(r) =
ˆ ∞

0
dr n(r)κ(r) (1.3.32)
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We can further simplify the expression for the convergence and introduce the weighting func-

tion, g(r) (given by Equation 1.2.16), that is,

κ̄(r) =
3H2

0 Ωm

2c2

ˆ ∞

0
dr

rg(r)
a(r)

δ(r). (1.3.33)

The convergence power spectrum, in terms of the three-dimensional matter power spectrum

reads

Cκκ
` =

(
3H2

0 Ωm

2c2

)2 ˆ ∞

0
dr
[

g(r)
a(r)

]2

Pδ

(
k =

`+ 1/2

r
; r
)

(1.3.34)

Note that the Limber approximation is assumed in this procedure. If we have photometric red-

shift information of source galaxies, we can introduce the notion of tomography where galaxies

are subdivided into redshift bins, such that the number of density of galaxies in redshift bin α

is defined to be between ri and ri+1, that is,

nα =

ˆ ri+1

ri

dr n(r)

As a result, the auto- and cross- convergence power spectrum between bins α and β is

Cκκ
`,αβ =

(
3H2

0 Ωm

2c2

)2 ˆ ∞

0
dr

gα(r)gβ(r)
a2(r)

Pδ

(
k =

`+ 0.5
r

; r
)

. (1.3.35)

For N redshift bins, we have 1
2 N(N + 1) auto- and cross- power spectra to compute. Current

weak lensing surveys employ 3 to 5 redshift bins but it is anticipated that this number will

increase to 10 in future surveys. In most weak lensing analysis, we rather work with summary

statistics, which essentially involve compression of the 2-point statistics. In Chapter 9, we will

cover correlation functions, as well as, summary statistics such as band powers and COSEBIs.

1.4 Challenges

Performing a weak lensing analysis is not a straightforward process. From the observation of

million of galaxies to constraining cosmological parameters, including testing different cosmo-

logical models, we also have to account for various systematics and challenges in the pipeline.

In this section, we cover some of these scientific and observational challenges, which include

modelling the point spread function, intrinsic alignment, baryon feedback and many others.

For a thorough understanding of this topic, we refer the reader to well-crafted reviews by Kil-

binger (2015) and Mandelbaum (2018).
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1.4.1 Observational Challenges

In this section, we will cover some of the observational challenges faced from the stage of

observing a source to the stage where we have a compressed format of the data (usually the

ellipticities) which can be used to perform inference.

1.4.1.1 Shape Measurements

In §1.2.2, we discussed how the ellipticities of observed galaxies are crucial to estimate the

shear, which is eventually used in a cosmological data analysis pipeline. In particular, the

very first step of accurately measuring the shape of galaxies poses a challenge and an attempt

to improve over existing techniques has been investigated in various papers, see for example

early work by Kaiser et al. (1995).

A common approach is via forward modelling technique, that is, the procedure involves

fitting a model consisting of the ellipticity parameters and surface brightness to the observed

image. In particular, the effect of the PSF can be accounted for by first convolving the model

with the PSF before fitting it to the data. However, the main challenge is that images are usually

from multiple exposures. One workaround, as developed in lensfit (Miller et al., 2007; Kitching

et al., 2008; Miller et al., 2013), is to employ a fully Bayesian framework to find the posterior

distribution of the ellipticities of galaxies, with minimal loss of information. However, one

challenge resides in determining the number of free parameters in a model. A model with only

a few parameters can lead to model bias, under-fitting while a model with too many parameters

tend to fit the noise and may result in over-fitting.

1.4.1.2 Point Spread Function

The correction for the PSF is a main challenge in inferring galaxy shapes. The PSF impact the

shear estimate, resulting in a multiplicative bias and also contributes to an additive bias in

the galaxy ellipticity values. If ground-based telescopes are used for observing, the observed

images are further deteriorated due to atmospheric PSF. Accurate determination of the PSF is a

critical challenge for a weak lensing analysis. PSF model misspecification can trivially lead to

multiplicative and additive biases.

Typical technique for modelling PSF includes two steps. In the fist instance, a bright star is

used a reference to model the PSF and the second is to interpolate to other positions in order

to measure galaxy photometry and shapes. In the past, it has been found that the choice of
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the interpolation scheme may affect the measured cosmic signal (Hoekstra, 2004). As a result,

different interpolating schemes have been investigated with a view to improve PSF modelling.

1.4.1.3 Redshift Distribution

As described in §1.3.4, the convergence (or shear) power spectrum is an integral weighted by

the source galaxy distribution, n(z) via the weighting function g(r). Hence, for robust cosmo-

logical parameter inference, not only the redshift of the source galaxies have to be determined

accurately but also the full n(z) distribution. For a tomographic weak lensing analysis, Huterer

et al. (2006) estimated that the centroids of each bin have to be calculated to better than a per

cent to improve the accuracy of a dark energy model by almost 50%.

In a typical weak lensing survey, millions of galaxies are observed and it is an arduous task,

both in terms of cost and time, to determine the redshift of these galaxies via spectroscopic

method. As a consequence, photometric redshifts are estimated from broad-band photometry.

There are various techniques for estimating photometric redshifts. Template-based method is a

common approach where templates of Spectral Energy Distribution (SED) are used to perform

a χ2 fit to the flux in the observed bands. However, as anticipated by the reader, there will

be a fixed set of models and it is important to design robust algorithms to prevent model-

misspecification. One possibility is to adopt a Bayesian approach. Indeed, Bayesian Photometric

Redshift Estimation (BPZ) is a common tool for estimating the mean redshift, along with finding

the full posterior distribution function of the redshift (Benítez, 2000).

Moreover, ML-based approaches have also been used to improve upon existing methods.

The idea behind ML is to learn a non-linear function which maps the fluxes to redshifts by

using a set of spectroscopic redshifts. Once the function is learnt, one could use it to predict

the redshift at any test fluxes. For example, Collister & Lahav (2004) developed a neural net-

work method, ANNz which is deemed to be competitive compared to template-based method.

Recently, Jones & Heavens (2019a,b) improved upon the existing BPZ method to estimate pho-

tometric of blended sources, where the latter itself is another challenge for weak lensing. On

the other hand, Leistedt et al. (2016) developed a Hierarchical Bayesian Inference routine to

infer the redshift distribution of galaxies using photometric redshifts and is actually what we

need in a weak lensing analysis.
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1.4.2 Scientific Challenges

Once we have a compressed dataset, the standard approach is to fit a model to the data. How-

ever, this is not a trivial process in a weak lensing analysis since we have to account for various

systematics effects. In other words, we have to marginalise over the nuisance parameters.

1.4.2.1 Intrinsic Alignment

Intrinsic alignment is a major theoretical concern for weak lensing. In short, the intrinsic align-

ment of galaxies refers to preferential and coherent orientation of galaxy shapes as a result of

physical effects apart from lensing alone. In general, one would assume that the shape align-

ments are due to lensing only, but such an assumption can weaken a weak lensing analysis.

For example, Singh & Mandelbaum (2016) found that intrinsic alignment is a major bottleneck

that future surveys such as the Vera C. Rubin Observatory (previously referred to as the Large

Synoptic Survey Telescope, LSST) must mitigate.

There are two main mechanisms which are believed to contribute to intrinsic alignment.

The observed ellipticity of a galaxy can be summarised as

εi = γG
i + γI

i + εR
i (1.4.1)

for a photo-z bin i. G, I and R refers to gravitational shear, intrinsic shear and random unlensed

ellipticity respectively. The observed ellipticity is modelled as a combination of a gravitational

shear component, γG, an intrinsic component, γI as a result of alignment of a galaxy in its

local environment and an uncorrelated component, εR for the random intrinsic orientations. In

terms of power spectra, the tomographic two point observables can be summarised by

CEE
`,ij = CGG

`,ij + CGI
`,ij + CII

`,ij (1.4.2)

Note that the CIG term is negligible since the background (G) and foreground (I) do not

correlate. In real data analysis, this term will not be zero due to photometric redshift contamin-

ation but this is negligible in the different analyses we perform in this thesis. The shear signal

(GG) is the main and clean proxy for constraining cosmological parameters. The additional

components GI and II may also contribute to the final signal but is poorly understood. The

first tern, GI, arises as a result of cross-correlation between intrinsic ellipticity and gravitational

shear. The second term, II, arises due to correlation of ellipticities of nearby galaxies since the

shapes and orientations are affected by the local tidal gravitational field, thus giving rise to a
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preferential orientation. The first term (GI) subtracts from the measured signal while the second

term (II) adds positively to it (Hirata & Seljak, 2004; Joachimi & Bridle, 2010). These effects can

be modelled when constraining cosmological parameter in a likelihood analysis - see Chapters

4, 5 and 7 where we incorporated intrinsic alignment effects in our likelihood analysis. We will

discuss the models for intrinsic alignments in the these chapters later. See §4.2.1 for further

details.

1.4.2.2 Baryon Feedback

Baryon feedback is of the various astrophysics systematics that needs to be accounted for when

constraining cosmological parameters from shear power spectra measurement. This process is

poorly understood and depends on high-resolution N-body simulation.

Active galactic nuclei (AGN) feedback changes the matter distribution at small scales, lead-

ing to a modification of the dark matter power spectrum at large scales. Indeed, Semboloni

et al. (2011) argued that strong feedback is required at scales relevant for weak lensing ana-

lysis. In fact, they argue that baryon feedback may lead to significant biases in the inferred

cosmological parameters. Moreover, van Daalen et al. (2011) found that one should not ignore

baryon processes, particularly AGN feedback in the calculation of theoretical power spectra for

k & 0.3 h Mpc−1. The effect of baryons is typically quantified via a bias function

b2(k, z) ≡ Pmod
δ (k, z)
Pref

δ (k, z)
(1.4.3)

where Pmod
δ (k, z) and Pref

δ (k, z) refer to the power spectra with and without baryon feedback

respectively. Baryon feedback leads to a significant of power at large multipoles. For weak

lensing surveys, in order to mitigate the bias on inferred cosmological parameters, a recom-

mended approach is to marginalise over the feedback parameters which is linked to the effects

of baryonic processes. See Chapter 4 where we implemented a fitting formula for baryon feed-

back to model the power spectrum in our likelihood analysis.

1.5 Surveys

In this era of big data, current and future-planned cosmological surveys are becoming more and

more data-intensive, with the view to understanding better the Universe. Data from existing

surveys have been used to constrain cosmological parameters and they are also being used as

a proxy to improve our understanding of the various theoretical and observational challenges
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explained in the previous section. In this section, we highlight briefly some surveys (past,

current and future). We focus on the most popular surveys and the surveys elaborated below

is not an exhaustive list of all surveys.

1.5.1 CFHTLenS

The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) determines the weak grav-

itational lensing signal from data obtained from the CFHT Legacy Survey (CFHTLS). It is a 154

deg2 survey using five optical bands, namely, ugriz. The data extend across four different fields

denoted by W1 (∼ 63.8 deg2), W2 (∼ 22.6 deg2), W3 (∼ 44.2 deg2) and W4 (∼ 23.3 deg2).

Following the redshift distribution estimation, the galaxy sample has a median redshift of 0.70

and a mean redshift of 0.75 (Erben et al., 2013).

The tomographic weak lensing analysis as performed by Heymans et al. (2013) for a flat

ΛCDM cosmology, inferred the normalisation of the matter power spectrum, σ8 = 0.799 ±
0.015 and the matter density parameter, Ωm = 0.271± 0.010. Note that the final cosmology

data product consisted of 21 sets of shear correlation functions as a result of 6 redshift bins,

for an angular range of 1.5 < θ < 35 arcmin. Moreover, for a wCDM cosmology, the dark

energy equation of state parameter for this particular dataset is inferred to be , w = −1.02±
0.09. In addition to the results obtained from this analysis, the main takeaways are to develop

new statistical techniques which are less sensitive to intrinsic alignment, and to explore the

possibility of including more reliable and robust photometric redshifts and complementary

spectroscopic data.

1.5.2 KiDS

The Kilo Degree Survey (KiDS) is a 1500 deg2 optical survey in four bands ugri (de Jong et al.,

2013). It is expected that KiDS will detect around 108 galaxies and 2× 104 clusters. The KiDS

catalogue will consist of around 105 sources per deg2. The main scientific goals of this sur-

veys is to elucidate the nature of dark energy by mapping the distribution of matter through

techniques such as gravitational weak lensing.

Here, we focus on the tomographic weak lensing analysis performed by Köhlinger et al.

(2017). At this stage, only 450 deg2 of imaging data from KiDS was used in this process, hence

referred to as KiDS-450. This final cosmological data product consists of 6 sets of band powers,

corresponding to 3 redshift bins. The analysis is restricted to a multipole range of 76 ≤ ` ≤ 1310

and the analysis is performed in a fully Bayesian framework with a ΛCDM model with a flat
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geometry.

The main cosmological result is expressed in terms of the parameter combination, S8 defined

as S8 ≡ σ8
√

Ωm/0.3 and is determined to be S8 = 0.759+0.024
−0.021. This value is at 3σ tension with

the constraints derived by Planck for the CMB (Asgari et al., 2021). The KiDS-450 data set is at

the centre of this thesis and we will elaborate more on it in Chapters 4, 5 and 7.

1.5.3 DES

The Dark Energy Survey (DES) is a near-infrared and visible survey (central wavelengths of

roughly 472 nm to 1 µm) with the aim of understanding the Physics behind the large scale

structure of the Universe. It is a 5000 deg2 survey in the southern sky in five photometric

bands grizY. DES has observed the sky for 6 years and consisted of 758 observing nights. In

particular, the first data release consists of more than 400 million objects, many of them believed

to be galaxies. This gigantic survey has 4 scientific probes, namely, weak gravitational lensing,

Type 1a supernovae, number of galaxy clusters and the baryon acoustic oscillation (BAO).

Here, we focus on the early results on weak lensing. Abbott et al. (2016) used the 139 deg2

Science Verification (SV) data, which is just less than 3% of the full DES data and derived con-

straint on the S8 parameter as S8 ≡ σ8
√

Ωm/0.3 = 0.81± 0.06. They performed a 3 redshift

bins tomographic analysis using the shear two-point correlation functions, marginalising over

7 systematic parameters. In this study, they also concluded that their constraints were in agree-

ment with the Planck and CFHTLenS results. However, note that this was just a preliminary

data analysis based on the SV data.

On the other hand, the DES Year 1 results, based on a combined analysis of galaxy clustering

and weak lensing with 1321 deg2 of imaging data, inferred the parameters S8 ≡ σ8(Ωm/0.3)0.5 =

0.773+0.026
−0.020 and Ωm = 0.267+0.030

−0.017 for the ΛCDM model. For a wCDM model, Abbott et al. (2018)

reports S8 = 0.782+0.036
−0.024, Ωm = 0.284+0.033

−0.030 and w = −0.82+0.21
−0.20, all values quoted at 68% cred-

ible interval. Recently, Amon et al. (2021) performed an analysis on the DES Year 3 data, span-

ning 4143 deg2 with four tomographic redshift bins. Using the ΛCDM model, they constrain

S8 = 0.759+0.025
−0.023 and for a ΛCDM-optimised analysis, which includes smaller scale informa-

tion, S8 = 0.772+0.018
−0.017. These latest results are lower by 2.3σ and 2.1σ respectively compared to

the Planck CMB result.
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1.5.4 Euclid

Euclid will be a visible to near infra-red space telescope (from 550 nm to 2µm), to be launched in

2022 (Laureijs et al., 2011). The main scientific goals of this instrument is to understand better

the expansion of the Universe and determine the source of acceleration of this phenomenon

which is referred to as dark energy. Euclid is expected to generate insightful information up

to redshift z & 2, which corresponds roughly to the evolution of the Universe during the past

10 billion years. The survey will generate petabytes of data and it is estimated that more than

10 billion sources will be observed by Euclid and 1 billion will be used in the context of weak

lensing. Euclid is a larger survey survey compared to the two previous telescopes described

above. It will observe 15 000 deg2 on the sky. Moreover, a resolution of 0.2′′ makes it especially

good for weak lensing.

1.5.5 Vera C. Rubin Observatory

The Vera C. Rubin Observatory, previously known as the Legacy Survey of Space and Time

(LSST), is an optical and near-infrared telescope. The camera will have six filters, ugrizY, from

330 nm to 1.1 µm. It is expected that it will start observing in the year 2021 and will cover 18 000

deg2 of the sky. In particular, it is also expected to yield around 37 billion sky objects on a yearly

basis. Moreover, this ambitious project will require roughly 250 teraflops of computational

power and 100 petabytes of storage.

Some of the scientific goals of LSST include those already covered by DES. In particular,

we still have to understand better the Physics of the Universe and hence, some of the scientific

probes include Type 1a supernovae, BAO and weak gravitational lensing. In addition, other

scientific aims include but are not limited to mapping the Milky Way, generating catalogues of

objects in our Solar System and detecting transients.

1.5.6 Subaru Hyper Suprime-Cam

The Hyper Suprime-Cam (HSC) is a wide-field imaging telescope in Mauna Kea in Hawaii

which will cover 1400deg2 in five bands, grizy (Aihara et al., 2018). One of its fundamental

scientific goals is use weak lensing measurements to elucidate the distribution of dark matter

in the universe. Tanaka et al. (2018) recently performed an analysis to compute the photometric

redshifts and the tomographic redshift distributions, n(z). On the other hand, Hikage et al.

(2019) determined the value of S8 = 0.780+0.030
−0.033 using weak lensing shear power spectra, with
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multipoles 300 ≤ ` ≤ 1900, with HSC data. The photometric redshift range adopted in the

analysis was 0.3 ≤ z ≤ 1.5, with four tomographic redshift distributions.

1.5.7 Nancy Grace Roman Space Telescope

The Nancy Grace Roman Space Telescope, previously known as the Wide-Field Infrared Sur-

vey Telescope (WFIRST), is an infrared space telescope which is expected to be launched in

May 2027. It will cover a survey area of 2000 deg2 (Eifler et al., 2021). The scientific goals of this

experiment is to measure different cosmological probes such as weak lensing, galaxy cluster-

ing, redshift space distortion and baryon acoustic oscillations. These will enable us to answer

questions about the nature of dark energy, which is complementary to the scientific goals of the

Euclid mission too. Other scientific missions will be to find exoplanet systems to understand

more about the potential for life in the universe.

1.6 Type Ia Supernovae

Another cosmological probe to understand the universe is the Type Ia supernovae (SNe Ia).

The latter has been instrumental in the discovery of the accelerating expansion of the universe

(Riess et al., 1998; Perlmutter et al., 1999). Type Ia supernovae remains a strong candidate to

elucidate the nature of dark energy. In brief, Type Ia supernova occur as a result of the thermo-

nuclear explosion of a white dwarf in a binary system, exceeding the Chandrasekhar limit of

1.44 M�. Hence, they can be used as distance indicators after correcting for the systematics in

the lightcurve shape and colour.

A recent analysis was done by Abbott et al. (2019) using the DES data, where 327 SNe Ia

were employed. For a flat ΛCDM model, Ωm = 0.331 ± 0.038 and for a flat wCDM model

combined with the CMB, w = −0.978± 0.059 and Ωm = 0.321± 0.018. In Chapter 5, we will

use the SNe Ia JLA data (Betoule et al., 2014) to test the idea behind compression and emulation,

which are central to the different weak lensing analysis performed in this thesis.

1.7 Summary

In this chapter, we have provided an in-depth review on weak lensing cosmology and these

concepts will be very important in the forthcoming chapters. In particular, we have discussed

briefly the basics of cosmology, which can be found in most cosmology textbooks. This is

followed by a detailed description of weak lensing essentials before elaborating on the weak
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lensing statistics, for example, power spectrum and correlation functions. A weak lensing ana-

lysis is also susceptible to multiple observational and scientific challenges and we highlight

them in this chapter. Moreover, we briefly cover Type Ia supernovae, which is another probe

to elucidate the nature of dark energy. Finally, we discuss some of the past, ongoing and future

weak lensing surveys.
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Chapter 2
BAYESIAN STATISTICS

Remember that using Bayes’ Theorem does not make you a Bayesian. Quantifying

uncertainty with probability makes you a Bayesian.

Michael Betancourt

In this chapter, we will provide an overview of Bayesian Statistics, which is becoming in-

creasingly relevant in many ML applications. One of the main motivations for taking a probab-

ilistic modelling approach is for uncertainty quantification. Probabilistic ML also provides an

elegant framework for designing machines, capable of learning from data through experience

(Ghahramani, 2015).

With the rise of computational power, adopting a Bayesian approach is now central in sci-

entific data analysis, ML and automation. It leads to a broad spectrum of new topics such as

data compression, Bayesian optimisation, probabilistic programming, approximate inference

and so forth. The development of techniques such as automatic differentiation (Baydin et al.,

2017) has further bolster the field of probabilistic ML.

We will also often encounter problems where a full analytical treatment is not possible at

all. In these situations, techniques such as Monte Carlo (MC) methods and Variational Infer-

ence (VI), where both fall under the category of approximate inference, are often adopted. We

will cover some of these approximation techniques in this chapter. In particular, in §2.1 we

discuss the concepts behind probability and in §2.2, we cover briefly the normal distribution

which is commonly used in Cosmology. In §2.3, we explicitly look into Bayes’s theorem which

is now ubiquitous for almost any cosmological data analysis. In §2.4, we discuss different types

of priors, to motivate the application of certain prior in a specific problem and and in §2.5, we

briefly cover directed acyclic graphs (DAG), which is a common technique to show relation-

ships among random variables. We touch briefly about Bayesian model comparison in §2.6
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and in §2.7, we highlight a few sampling algorithms commonly used to infer the distribution

of parameters which are of key interest to us.

2.1 Probability

We first start with the definition of probability, which in itself is a topic of heated debate. For

example, De Finetti made a provocative statement, probability does not exist, strictly referring

to probability in the objective sense. This brings us to two types of probability, often referred

to objective probability and subjective probability (Nau, 2001). In other aspects, they may also be

referred to as the classical versus the modern views of statistics. In particular, the most common

comparison is between the frequentist and Bayesian statistics, where adopting a Bayesian ap-

proach to a particular problem implies a modern and subjective probabilistic methodology. We

briefly cover these two types of probability in this section and we refer the reader to the review

by Trotta (2008) for an in-depth overview on this topic.

Figure 2.1 – The human being is considered as a Bayesian thinker. Generally, we obtain information from the
environment and based on the prior information, we update the information via the sensory processing unit
(likelihood) to the posterior. The final step is to take a decision and act upon the environment. An analogous
comparison can be made with the Bayesian Optimisation algorithm (see Chapter 3 for a brief overview on this
topic).

The frequentist (classical/objective) view of probability relies on the notion of randomness.

Moreover, this probability is based on an existing set of recorded information or a long history
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of collected information. This clearly raises some profound question such as, ‘what if we only

have the resources to perform a single experiment?’. This is very common in the Cosmology

community where, perhaps in a single decade, we will have only one CMB experiment.

Frequentist Probability

Probability is defined as the ratio of the number of successes to the number of trials, in

the limit of an infinite number of trials, that is,

p = lim
n→∞

s
n

where n is the number of trials and s is the number of successes.

As argued by Trotta (2008), this definition of probability is circular, that is, each experiment

performed assumes a fixed probability of success while it is the very same quantity that we

want to estimate. Moreover, this treatment of probability cannot deal with unrepeatable exper-

iments since the definition itself is based on the number of trials. In the same spirit, even if we

were able to perform repeatable experiments, this raises the question of number of trials that

one should perform to obtain a sound estimate of p. In the following discussion, we will see

that this is easily dealt with the Bayesian framework through the concept of marginalisation.

On the other hand, the Bayesian (modern/subjective) approach deals with probability dis-

tribution to quantify the uncertainty of an event happening. In particular, we can now allude

to the possibility of learning the probability distribution of a parameter. This concept is very

important in inverse problems, where we want to learn the distribution of a set of parameters

which explain the data we have.

Bayesian Probability

Probability in the Bayesian context is interpreted as a measure of the degree of belief

about a hypothesis. Unlike the frequentist approach, we now have a prior, p(θ), which

encodes our knowledge about a specific parameter and this prior gets updated to the

posterior distribution, p(θ|x) via a likelihood function, p(x|θ). x refers to a set of (ob-

served) data points. In addition, we instead refer to credible intervals, rather than con-

fidence intervals. The former gives a more robust interpretation of probability. For ex-

ample, q % credible interval implies that there is q % probability of finding that specific

parameter, θ, within that range.
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The Bayesian approach is a neat and elegant way to interpret probability. Most importantly, it

has the advantage of incorporating a prior on the parameters and this is crucial in almost any

inference engine in Cosmology. For example, 0 < Ωcdm < 1, and this information can trivially

be included in a sampling scheme. Moreover, one can easily deal with nuisance parameters

in a Bayesian framework by marginalising over them. See next section for further details on

marginalisation. It is customary to ignore or perhaps fix nuisance parameters to certain values,

but this can erroneously lead to model misspecification, that is, this procedure can result in

overestimating or underestimating the uncertainty quantification of the parameters of interest.

In Note 2.2, we provide the basic ingredients when working with probability.
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Figure 2.2 – Figure showing a 2D Gaussian distribution in the lower left panel, with the blue, green and
red contours showing the 1σ, 2σ and 3σ countours respectively. The marginal distributions, p(x1) and p(x2)
are shown in the upper left and lower right panel respectively. Moreover, an example of the conditional
distribution, p(x1|x2) at x2 = 2 is shown in orange in the upper left panel.

2.2 Normal Distribution

Before delving into the detail of inference mechanisms, it is important to discuss the properties

of the normal distribution, which arises in many applications in Cosmology. It will also be used
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extensively in Chapter 3 in the context of Gaussian Processes. A one dimensional Gaussian

distribution, also known as the normal distribution, can be written as

p(x|µ, σ) =
1√

2πσ2
exp

[
−1

2
(x− µ)2

σ2

]
(2.2.1)

and a multivariate Gaussian distribution is

p(x|µ, Σ) =
1

|2πΣ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(2.2.2)

where µ is a d dimensional vector and Σ is a d × d covariance matrix. An important prop-

erty of a multivariate Gaussian distribution is that both the conditional distribution and the

marginal distribution are Gaussian distributions. To understand this better, let us consider a

2-dimensional multivariate normal distribution with mean and covariance

µ =




2

1


 Σ =




0.1 0.2

0.2 0.5




Note 2.1: Conditional and Marginal distributions of a Gaussian

x =




x1

x2




with mean and covariance given by

µ =




µ1

µ2







Σ11 Σ12

Σ21 Σ22




The conditional distribution, p(x1|x2) is another Gaussian distribution with mean and

covariance

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2)

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21

(2.2.3)

The marginal distribution of x1 is simply another Gaussian distribution with mean and

covariance, µ1 and Σ11 respectively.
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Following Note 2.1, the marginal distributions, p(x1) and p(x2) are 1D Gaussian distributions,

that is, x1 ∼ N (2, 0.1) and x2 ∼ N (1, 0.5). Note that the formula also apply to the multivariate

case. Moreover, the conditional distribution p(x1|x2) at x2 = 2 is a Gaussian distribution,

x1|x2 = 2 ∼ N (2.4, 0.02). Note that the notation x ∼ N (µ, σ2) implies a normal distribution

with mean µ and variance σ2. In Figure 2.2, we show the 2D multivariate normal, conditional

and marginal distributions for this particular case.

2.3 Bayes’ Theorem

Bayes’ theorem is fundamental to deal with inverse problems in Cosmology. Strictly, the

Bayesian viewpoint asserts that if two persons are given the same data and they make exactly

similar assumptions, they will draw similar conclusions. Making assumptions in a Bayesian

analysis should not be deemed as being too subjective or a weakness of the procedure. Instead,

advocates of the Bayesian methodology suggest that one cannot do inference without making as-

sumptions (MacKay, 2003). In general, as shown in Figure 2.1, we, humans are considered as

Bayesian thinkers, since we constantly update the information we receive from the environ-

ment to turn it into meaningful action onto the environment.

In the following, we will stick to the following notations: θ refers to a vector of parameters

which are of key interest to us, for example, it might refer to the cosmological parameters.

β is a vector of nuisance (systematic) parameters. The variable z refers to the set of latent

(hidden/unobserved) variables (θ, β). x refers to the observed data vector. Note that, we

are assuming a single model, often denoted byM. This is implicitly assumed throughout all

equations below.

In the very first instance, we have to define a distribution of the data, that is, normally

one defines the conditional distribution, p(x|z) which is referred to as the likelihood function.

Importantly, it should be called the likelihood of the parameters, z and it is not a (normalised)

probability distribution. Once we have the observed data x and assuming a modelM, which

is a function of z, the obvious question to ask is, ‘what are the likely values of z?’ This is very

common in many applications, where we want to learn z, hence an inverse problem. We will

also assume some prior distributions, p(z) for the latent variables. Note that in practice, the

choice of the likelihood depends on the assumption of the data and the choice of the prior may

depend on the results from past experiments.

Following the rules of probability, in particular, the product rule, along with the symmetric

property, p(x, y) = p(y, x), we have the following relationship between the two conditional
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probabilities, p(x|z) and p(z|x):

p(z|x) = p(x|z) p(z)
p(x)

(2.3.1)

which is in fact Bayes’ theorem. p(z|x) is the posterior distribution or posterior belief of z and the

denominator, p(x) is referred to as the evidence or marginal likelihood. The important aspect of

Bayes’ theorem is that it separates inference from modelling. At the heart of an exact Bayesian

analysis lies integration.

Note 2.2: Rules of Probability

Consider two continuous random variables X and Y. We can write the following rules

(and properties) of probability (MacKay, 2003).

Marginal Probability

p(x) =
ˆ

p(x, y)dy

Sum rule

Involves re-writing the marginal probability definition in another way.

p(x) =
ˆ

p(x, y)dy

=

ˆ
p(x|y) p(y)dy

Product rule

p(x, y) = p(x|y)p(x)

This is also known as the chain rule.

Independence

The two random variables X and Y are said to be independent (also written as X⊥Y) if

p(x, y) = p(x) p(y)

Marginal Likelihood

Since we are dealing with continuous variables z, the marginal likelihood is

p(x) =
ˆ

dz p(x, z) =
ˆ

dz p(x|z)p(z). (2.3.2)
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Marginalisation

The latent variables consist of both the parameters which are of interest to us, θ and the nuis-

ance parameters, β. If we want to learn the distribution of the θ, we have to integrate out

(marginalise over) the nuisance parameters, that is,

p(θ|x) ∝
ˆ

dβ p(x|θ, β)p(θ, β) (2.3.3)

and we have to include a normalisation factor, so the posterior distribution of θ is properly

normalised.

Posterior Predictive Distribution

Suppose we already have the full posterior distributions of the latent variables z. We might also

be interested in making predictions, x∗ of the data at test points. Hence, we need to evaluate

the predictive distribution

p(x∗|x) =
ˆ

dz p(x∗, z|x)

=

ˆ
dz p(x∗|z)p(z|x)

(2.3.4)

where the first term on the right is simply the likelihood of the parameters z in light of the new

data and the second term is simply the posterior distribution of z.

Summary Statistics

The latent variables z are typically high-dimensional vectors and we cannot visualise high

dimensional posterior distributions. We are rather interested in the statistics of the posterior,

for example, the expected mean, µ and variance, Σ respectively are:

µ =

ˆ
dz zp(z|x) (2.3.5)

Σ =

ˆ
dz (z− µ)(z− µ)T p(z|x) (2.3.6)

All the important quantities which we want to evaluate involve, in some way, the integral

of a function f (z) multiplied by some probability distribution p(z|·), where the · represents

a particular set of variable depending on the operation being performed. However, it is very

unlikely that we will be able to perform these integrations analytically for various reasons.

Doing high-dimensional integration is very challenging and in most cases, we are dealing with

non-linear models. Moreover, inference also depends on the choice of the prior. Even if we
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had a linear model, if the functional form of the prior is very different, for example, in the

case of non-conjugate priors, an analytical approach to deriving the posterior distribution is

not possible. See next section for a discussion on priors.

Case Study: Coin Toss

We are given a coin (and we do not know if it is a fair or biased coin) and we are asked to find

the value of θ, that is, the probability of getting heads on any flip. The coin is tossed 20 times

and we obtain 15 heads. What would be our conclusion based on this observation?

Let us first take a Bayesian approach to this problem. The quantity we are interested in is

p(θ|x), that is, the posterior distribution of θ given the data. Using Bayes’ theorem,

p(θ|x) = p(x|θ)p(θ)
p(x)

(2.3.7)

0.0 0.2 0.4 0.6 0.8 1.0
θ

0

1
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p(
θ|

x)

Posterior Distribution

Median Value

68% Credible Interval

Figure 2.3 – The full posterior distribution of the parameter θ. Unlike the frequentist probability, a Bayesian
approach allows us to quantify the uncertainty associated with the estimate of θ in a principled way. If we
had coin which is biased towards heads, this information can further be incorporated via, for example, a
β−distribution.

Note that the denominator does not depend on θ, so we can safely ignore it. Hence, p(θ|x) ∝

p(x|θ)p(θ). For the likelihood, p(x|θ), we can assume a Binomial distribution and we will

assume a non-informative prior on θ. Here, we assume a uniform prior, that is, p(θ) = U [0, 1].

It is also safe to assume that the full probability density lies within this interval. The likelihood

function is
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p(x|θ) =




n

x


 θx(1− θ)n−x

where n = 20 and r = 15. For this particular case, p(θ|x) ∝ p(x|θ) since we are assuming a

uniform prior on θ. In Figure 2.3, we show the normalised posterior distribution of θ and the

median value of θ is 0.74 and at 68% credible interval, θ = 0.74+0.08
−0.10.

In the frequentist approach, we will typically assume θ = 0.75, although this is not quite

true, and in this case, an error estimate is can be found by approximation. For large n, a bi-

nomial distribution can be approximated as a normal distribution with mean θ/n and vari-

ance θ(1− θ)/n. In short, θ = 0.75± 0.10, where the estimator for the confidence interval is

z
√

θ(1−θ)/n and for a 1σ−confidence interval, z = 1. Note that, this is an ad hoc procedure

and the approximation of a Binomial distribution is valid when n is very large. Moreover, as

discussed previously, the frequentist approach does not allow one to encode prior information

and it does not yield a full probability distribution for the parameter θ.

Case Study: COVID Test

In this case study, we will calculate the probability of someone being infected by COVID-19

given that the test is positive. In general, medical tests are accurate enough that the tests can be

deemed to be above 90% correct. In Figure 2.4, we show all the possibilities with the associated

probabilities, (c1, p1, p2). C denotes that someone has the virus (probability c in Figure 2.4) and

P denotes that the test is positive. We introduce two terms, namely the sensitivity, which is the

probability of someone being tested positive given they have the virus, that is, p(P|C) (p1 in

Figure 2.4). On the other hand, specificity is the probability some being tested negative given

she does not have the virus, that is, p(P̄|C̄) (p2 in Figure 2.4).

C

P

p1

P̄

1 − p1

c

C̄

P

1 − p2

P̄

p2

1 − c

Figure 2.4 – Probability tree diagram for a patient being tested positive or negative if she is infected by the
COVID virus. It also shows all the possibilities for the test results. We can expect, false positives (FP), that is,
a patient who does not have the virus, yet tested positive.
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Our goal is to find, p(C|P). Using the product rule, we have

p(C|P) = p(C, P)
p(P)

(2.3.8)

Using Bayes’ theorem, this equation can further be written as

p(C|P) = p(P|C)p(C)

p(P|C)p(C) + p(P|C̄)p(C̄)
(2.3.9)

and in terms of the sensitivity, p1 and specificity, p2 and noting p(C) = c,

p(C|P) = p1c
p1c + (1− p2)(1− c)

. (2.3.10)

Plugging in some numbers, for example, p1 = 0.95, p2 = 0.90 and c = 0.01, p(C|P) = 0.088.

This is quite unintuitive. Conditional probabilities are generally counter-intuitive. If a test is

positive, this would immediately lead us to the conclusion that the person is infected by the

virus. However, the probability of this happening is quite small, as per our example. Hence, it

is a good idea to perhaps have a second test carried out to draw an accurate conclusion.

0.0 0.2 0.4 0.6 0.8 1.0
c

0.0
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C
|P

)

Figure 2.5 – The probability of having the virus given the test outcome is positive as a function of c, the
probability of someone having the virus. As more and more people get infected, it makes sense that p(C|P)
should increase.

In Figure 2.5, we fix the sensitivity and the specificity at the values used in the previous ex-

ample, but we now vary c, that is, p(C). It is expected that p(C|P) should increase as c in-
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creases. Intuitively, if the whole population is infected by COVID, then p(C|P) → 1, which is

effectively shown in Figure 2.5.

2.4 Priors

In this section, we cover briefly the different types of priors which are used in this thesis and

the motivation for using them. The cornerstone of a Bayesian analysis is not only the prior but

also the notion of averaging over many different possibilities. In the limit of sufficient data, the

likelihood function is the most dominant term, relative to the prior and hence similar posterior

distributions are obtained irrespective of the choice of the prior. In most common cases, there

are generally two schools of thoughts when it comes to the choice of priors: objective versus

subjective priors, which we discuss next.

2.4.1 Objective Priors

In the absence of prior knowledge about the parameters of interest, the choice is to adopt non-

informative priors that encode ignorance and share frequentist properties as well.

An example of a non-informative prior is the reference prior. The idea is to measure the in-

formation gain from the data by a divergence measure between the prior and the posterior dis-

tributions. A significant information gain corresponds to a large divergence measure between

the prior and the posterior. Under a given model, the information gain can be written as

I(p(θ)) =
ˆ

DKL [p(θ‖p(θ|x) )] p(x|θ) p(θ)dθ (2.4.1)

where in this case, the divergence measure is the Kullback-Leibler divergence, DKL and

DKL [p(θ‖p(θ|x) )] =
ˆ

p(θ) log
p(θ)

p(θ|x) dθ.

A reference prior, pr(θ) then corresponds to finding the prior that maximises the information

gain, that is,

pr(θ) = arg max
p(θ)

I(p(θ)) (2.4.2)

However, it is hard to compute the reference prior since it involves high-dimensional integra-

tion schemes. In the same spirit, another example of an objective prior is the Jeffreys’ prior. It

is motivated by the invariance principle, that is, re-parametrisation of the prior does not matter:
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p(φ) = p(θ)
∣∣∣∣

dθ

dφ

∣∣∣∣ . (2.4.3)

Jeffreys (1946) proposed the following form of prior

pJ(θ) = c
∣∣∣IF(θ)

∣∣∣
1/2

(2.4.4)

where | · | denotes the determinant, c is a constant factor and IF refers to the Fisher information

and is defined as

IF(θ) := −E[x|θ]
∂2

∂θ2 log p(x|θ)

= −
ˆ

p(x|θ) ∂2

∂θ2 log p(x|θ)dx
(2.4.5)

It is worth noting that the Jeffreys’ prior is invariant under re-parametrisation. While objective

priors are certainly commonly adopted in a Bayesian analysis, they are not without criticisms.

For example, for an unbounded uniform prior, p(θ) = constant or even the Jeffrey prior, the

problem lies in finding an appropriate normalisation factor. These are also often referred to as

improper priors and they are used as long as the posterior distribution, p(θ|x) ∝ p(x|θ) p(θ)

is proper.

2.4.2 Subjective Priors

Another school of thought argues that a Bayesian analysis should capture our beliefs as much

as possible. This subjective view of priors stems from the fact that knowledge is objective while

belief is subjective. In practice, there is no universal rule for choosing a prior. Generally, the

subjective belief of θ will differ from one expert to another and this is totally acceptable as

long as we can convince others that our belief is meaningful based on the current (and past)

knowledge.

However, our beliefs of the prior are governed by problem definition. Moreover, it is only

possible to do an analysis and not the analysis. As discussed previously, we cannot perform

inference without making assumptions about the data. If the answer to a problem changes as

a result of a change in, for example, the prior, it is crucial to acknowledge this change.
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2.4.3 Hierarchical Priors

Hierarchical priors are viewed as priors on priors and are also referred to as hyper-priors. In

essence, these hyper-priors are only applied to a handful number of parameters. For example,

if we are specifying a Gaussian prior on θ, we can have two hyper-priors on the mean, µ and

standard deviation σ of the distribution. Hence, we can write

p(θ) =
ˆ

p(θ|α) p(α)dα (2.4.6)

and if α relies on another parameter, β, then

p(θ) =
ˆ

p(θ|α) p(α|β) p(β)dαdβ (2.4.7)

resulting in a hierarchy of distributions. An easy way to visualise this is via directed acyclic

graphs which we discuss in §2.5.

2.4.4 Empirical Priors

Another type of prior is the empirical prior and refers to the case where one learns some of the

parameters of the prior using the data. This procedure is also referred to as Empirical Bayes. Let

us consider a hierarchical model, where the prior distribution of θ relies on some parameter α.

Since we are using the data to estimate the hyper-parameter, we can write

p(x|α) =
ˆ

p(x|θ) p(θ|α)dθ (2.4.8)

and the hyper-parameter α can be estimated from the data by maximising p(x|α), that is,

α̂ = arg max
α

p(x|α). (2.4.9)

While on one hand this technique attempts to overcome misspecification of the prior by finding

a suitable set of hyper-parameters, it can also lead to over-fitting. Moreover, in this procedure,

the data is being used twice, that is, first for setting α and second, for finding the posterior

distribution of θ. Using the data more than once in a Bayesian analysis is not deemed as an

elegant approach of inference.
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2.4.5 Conjugate Priors

The idea behind adopting a conjugate prior is to obtain a posterior distribution which is in the

same family as the prior. For example, for a Gaussian Linear Model (GLM), y = Φθ, if we use

a Gaussian prior for the parameters, θ, the posterior distribution for θ will also be Gaussian.

Depending on the problem, the motivation for using a conjugate prior is to obtain the pos-

terior update (see Equation 2.3.1) in a closed form. See §2.7 for a discussion on approximating

the posterior via sampling techniques in the case where prior-to-posterior update cannot be

obtained in a closed form.

In many Bayesian analyses, an exponential family of distributions are used for the likeli-

hood and the prior, the motivation being that that these exponentials are easily integrated and

hence, computationally more convenient. p(x|θ) is in the exponential family if it can be written

as

p(x|θ) = f (x)g(θ) exp[ΦT(θ)s(x)] (2.4.10)

where Φ(θ) is a vector, which is a function of the parameters, s(x) is a vector of summary

statistics, often referred to as the data vector in Cosmology, f and g are positive functions of x

and θ respectively. To understand this better, let us consider a Gaussian likelihood with a data

vector x, forward model, φ (which is a function of the parameters θ) and a covariance matrix,

Σ. The likelihood can be written as

p(x|θ) = 1√
|2πΣ|

exp
[
−1

2
(x−φ)TΣ−1(x−φ)

]
(2.4.11)

and the exponential term can further be simplified as

p(x|θ) = c f (x) g(θ) exp
[
−φT x̃

]

where f (x) = exp[− 1
2 xTΣ−1x], g(θ) = exp[− 1

2 φTΣ−1φ], x̃ = Σ−1x and c is just a constant.

Note the similarity between the Gaussian likelihood and the standard form for a distribution

from an exponential family. A conjugate prior in this case is of the form

p(θ) = q g(θ) exp[Φ(θ)] (2.4.12)

and q is just a normalisation constant. Despite the nice property of a conjugate prior, from an

objective perspective, it might not be an optimal approach since the goal of an objective prior
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is such that the posterior distribution contains maximum information from the data. From a

subjective approach, a conjugate prior may have more influence on the posterior and this can

be a favourable view in a Bayesian analysis.

2.5 Directed Acyclic Graphs

A crucial probabilistic concept when dealing with multiple variables is conditional independence.

It is best understood via Directed Acyclic Graphs (DAGs), which we will cover briefly in this

section. For an in-depth review on this topic, we refer the reader to the textbook by Bishop

(2006). Throughout this section, we will use three variables a, b and c to illustrate the different

test cases.

c

ab

(a) Tail-Tail Node

a c b

(b) Head-Tail Node

c

a b

(c) Head-Head Node

Figure 2.6 – Example of different DAG graphs for different conditional independence cases. In particular, the
left, middle and right panels show the graphs for the tail-tail, head-tail and head-head test cases. Each of these
graphs can be used to derive the conditional probability of the parameters of interest when doing parameter
inference in Cosmology.

If a does not depend on b, the conditional probability

p(a|b, c) = p(a|c) (2.5.1)

and the joint probability of a and b can be written as

p(a, b|c) = p(a|b, c) p(b|c)

= p(a|c)p(b|c)
(2.5.2)

factors into the product of two probability distributions, hence, the two variables a and b are

statistically independent given the variable c. This can be written in shorthand format as

a ⊥⊥ b|c (2.5.3)

Importantly, once we have a graphical model, the conditional independence can be inferred

directly from the graph, without the need for additional analytical manipulation. We will con-
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sider a few examples below.

Tail-Tail Node

Let us consider the first example, a tail-tail node as shown in panel (a) in Figure 2.6. The joint

distribution, p(a, b, c) can be written as

p(a, b, c) = p(a|c) p(b|c) p(c) (2.5.4)

and if we choose to condition on c, the joint distribution, p(a, b|c) can be written as

p(a, b, c) = p(a, b|c) p(c) (2.5.5)

and hence using Equation 2.5.4, the joint distribution, p(a, b|c) is:

p(a, b|c) = p(a|c) p(b|c) (2.5.6)

which implies, that in a tail-tail scenario, conditioning on c yields conditional independence,

that is, a ⊥⊥ b|c.

Head-Tail Node

Next, we consider a head-to-tail scenario as shown in the middle panel of Figure 2.6. The joint

distribution, p(a, b, c) can be written as

p(a, b, c) = p(a) p(c|a) p(b|c) (2.5.7)

and conditioning on c, we have

p(a, b|c) = p(a, b, c)
p(c)

=
p(a) p(c|a) p(b|c)

p(c)

= p(a|c) p(b|c)

(2.5.8)

where the last line is obtained using Bayes’ theorem, that is, p(a|c) = p(c|a) p(a)
p(c)

. Hence, in this

case, as in the previous case, we obtain the conditional independence property in a head-to-tail

scenario, that is, a ⊥⊥ b|c.

Head-Head Node

Finally, we consider a head-head scenario as shown in the right panel of Figure 2.6. In this case,

the joint distribution, p(a, b, c) is:
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p(a, b, c) = p(a) p(b) p(c|a, b) (2.5.9)

and conditioning on c, we can write

p(a, b|c) = p(a, b, c)
p(c)

=
p(a) p(b) p(c|a, b)

p(c)

(2.5.10)

and this cannot be simplified further as in the product of p(a|c) p(b|c). Hence, in this scenario,

conditioning on c in a head-head case leads to conditional dependence, that is, a 6⊥⊥ b|c. These

probabilistic techniques have paved their way in several cosmological data analysis problems,

for example, in cosmic shear power spectrum inference (Alsing et al., 2016). We will look into

two cases below, first a standard map making processing, involving Wiener filter equations and

one which includes a novel technique, referred to as messenger field (Elsner & Wandelt, 2013;

Jasche & Lavaux, 2015).

d

s

C

d

t

s

C

Figure 2.7 – Two different inference mechanisms for inferring the signal, s. On the left, we have the standard
approach of learning the full posterior distribution of the different quantities, C and s given the fixed data, d.
However, this is generally a challenging task and the introduction of the messenger field, t, in the right panel,
simplifies the task, at the cost of inferring the t field in an iterative scheme.

We will first look into the DAG on the left of Figure 2.7. Let us assume a fixed noise covariance

matrix, N. The joint density p(d, s,C|N) can be written as:
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p(d, s,C|N) = p(d|s,N) p(s|C) p(C) (2.5.11)

and the distributions for the data and signal are given by:

p(d|s,N) =
1√
|2πN|

exp
[
−1

2
(d− s)TN−1(d− s)

]
(2.5.12)

and

p(s|C) = 1√
|2πC|

exp
[
−1

2
sTC−1s

]
. (2.5.13)

A Jeffreys prior is normally assumed for the covariance C. Note that C is (block-) diagonal in

harmonic space but is a very dense matrix is real space. Hence, in this map-power spectrum

inference process, it is customary to switch between two bases (harmonic/Fourier and real

space) to infer the signal. We are interested in finding the posterior distribution of the signal, s,

conditioned on all other variables, that is, using Bayes’ theorem, we can write

p(s|d,C,N) =
p(d|s,N) p(s|C)

p(d|N)
(2.5.14)

and this can further be simplified as

p(s|d,C,N) ∝ p(d|s,N) p(s|C) (2.5.15)

since the denominator is just a constant term, independent of the signal, s. The maximum a

posteriori probability (MAP) estimate of the above is a multivariate normal distribution:

p(s|d,C,N) =
1√
|2πS|

exp
[
−1

2
(s− ŝ)TS−1(s− ŝ)

]
(2.5.16)

with mean and covariance given by: ŝ = (C−1 +N−1)−1N−1d and S = (C−1 +N−1)−1. The

mean signal obtained from this approach is referred to as the Wiener filter of the data (Alsing

et al., 2016).

While the above formalism nicely describes the inference technique for estimating the sig-

nal, a major challenge is that the noise matrix is generally not sparse in the real space, because

the pixel noise is not homogeneous and isotropic. Had it been the case, the noise matrix would

simply be a diagonal matrix. Hence, the noise matrix can easily be inverted in pixel space

and the signal covariance matrix, C can be inverted in harmonic space (recall it is sparse in
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this basis). To alleviate this issue, an auxiliary field, referred to as the messenger field, t is

introduced, as shown in the right panel of Figure 2.7.

The main idea is to split the noise covariance matrix, N into two parts, an isotropic part:

M = τI, where τ ≤ min[diag(N)] and an anisotropic part: N̄ = N−M. The joint distribution

can be written as:

p(s, d, t,C) = p(d|t, N̄) p(t|s,M) p(s|C) p(C) (2.5.17)

The different probability distributions on the right of the above equation are given by:

p(d|t, N̄) =
1√
|2πN̄|

exp
[
−1

2
(d− t)TN̄

−1
(d− t)

]
, (2.5.18)

p(t|s,M) =
1√
|2πM|

exp
[
−1

2
(t− s)TM−1(t− s)

]
(2.5.19)

and

p(s|C) = 1√
|2πC|

exp
[
−1

2
sTC−1s

]
. (2.5.20)

We are interested in finding the posterior of t and the signal s. In the first case, we can write

the posterior distribution of t using Bayes’ theorem or repeated application of the product rule,

that is,

p(t|d, s,C,M, N̄) ∝ p(d|t, N̄) p(t|s,M) (2.5.21)

and the posterior distribution of t is a Gaussian distribution with mean t̂ and covariance T,

p(t|d, s,C,M, N̄) =
1√
|2πT|

exp
[
−1

2
(t− t̂)TT−1(t− t̂)

]
(2.5.22)

where t̂ = (N̄
−1

+M−1)−1(N̄
−1d +M−1s) and T = (N̄

−1
+M−1)−1. In a similar way, the

posterior distribution of the signal s is:

p(s|d, t,C,M) ∝ p(t|s,M) p(s|C) (2.5.23)

and the resulting distribution is another multivariate normal distribution with mean ŝ and S,
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p(s|d, t,C,M) =
1√
|2πS|

exp
[
−1

2
(s− ŝ)TS−1(s− ŝ)

]
(2.5.24)

where ŝ = (M−1 + C−1)−1M−1t and S = (M−1 + C−1)−1. Note that finding the posterior of C

involves another step, which deals with the inverse-Wishart distribution. We refer the reader

to Alsing et al. (2016) for further technical details.

2.6 Bayesian Model Comparison

In Cosmology, we often have to deal with competing models. For example, a naive question

might be, does introducing an extra parameter in my model makes it better or worse? In an-

other word, is an extra parameter warranted by the data? A conventional (and frequentist) ap-

proach of just finding the minimum χ2 does not help us answer this question. Instead, adding

additional parameters lead to over-fitting and χ2 values may be misleading.

Using the same notations as in §2.3, where x is the data vector, z = {θ, β} is the set of latent

variables (θ is a vector of parameters of interest and β is a vector of nuisance parameters), recall

that the first level of inference (parameter inference) is:

p(z|x) = p(x|z) p(z)
p(x)

(2.6.1)

where the denominator is ignored since it is independent from the model’s parameters. p(x)

is the marginal likelihood or model evidence and is obtained by marginalising over all latent

variables, that is,

p(x) =
ˆ

dz p(x|z) p(z) (2.6.2)

Suppose we have two competing models,M1 andM2, the posterior probability of model i

is:

p(Mi|x) ∝ p(x|Mi) p(Mi). (2.6.3)

The prior on each model, p(Mi) enables us to weigh the relative preference for a particular

model. In the case where we assume all the models being considered are equally likely, then

the posterior model probability is just equal to the model evidence. One can therefore calculate

the ratio of the two model probabilities as:
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Table 2.6.1 – The Jeffrey’s scale for assessing the strength of a model. The middle column gives the relative
odds of M1 against M2 and the last column provides a qualitative description for assessing the strength of
a model over the other. Note also, that the two models, M1 andM2 form part of an exhaustive set, that is,
p(M1) + p(M2) = 1.

|ln B12| Odds Strength of evidence

< 1.0 > 3 : 1 Inconclusive

1.0 ∼ 3 : 1 Weak evidence

2.5 ∼ 12 : 1 Moderate evidence

5.0 ∼ 150 : 1 Strong evidence

B12 =
p(M1|x)
p(M2|x)

=
p(x|M1)

p(x|M2)

p(M1)

p(M2)

(2.6.4)

and this ratio is referred to as the Bayes factor. If the two prior model probabilities are the same,

then this ratio is just equal to the ratio of the marginal likelihood of the data under the two

different models. A value of B12 > 1 implies support forM1 compared toM2. The preference

of one particular model over another is usually assessed using the Jeffrey’s scale, which is an

empirical scale.

A common scenario which arises often in Cosmology is when we have nested models. For

simplicity, let us consider two models for fitting a straight line to a data. If m and c are the slope

and the y−intercept of straight line, we have underM1, y = mx + c and underM2, y = mx.

Then, M2 is nested in M1 at c = 0. In this particular case, we do not need to evaluate the

marginal likelihood for both models to do model comparison. Instead, we can use the more

complex model (M1 in this case) to find the posterior distribution of c and the Bayes factor is

readily given by

B21 =
p(c|x,M1)

p(c|M1)

∣∣∣∣
c=0

. (2.6.5)

This is know as the Savage-Dickey Density Ratio (SDDR) and it is useful to compare models

with an additional parameter at a time (Dickey, 1971). Interestingly, the posterior distribution

of the additional parameter is just a 1-dimensional quantity and this makes it easy to find an

estimate for the Bayes factor. There exist various other techniques for estimating the marginal

likelihood and we refer the reader to Trotta (2008) for an overview on these techniques.
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Note 2.3: Learning Graphs

Let us consider two set of parameters, z = {θ, β}, where θ and β correspond to the

parameters of interest and a set of nuisance parameters respectively. These parameters

are referred to as latent (hidden) variables and are typically inferred from the observed

data, x (hence shaded in the graph below). A common graphical representation is as

follows:

x

θ β

Figure 2.8 – An example of a graph structure for inferring θ, the set of parameters which is of interest
to us. x is the observed data and β is a set of nuisance parameters.

As discussed in this section, the marginal likelihood is computed by marginalising over

all latent variables, that is,

p(x) =
ˆ

p(x, θ, β)dθ dβ.

Often, the goal is not to just learn the posterior distributions of θ and β but to also learn

the graph structure from the data. As a result, there is a large of possible structures and

we need a measure to score each structure. If p(M) is the prior on each possible graph

structure, then, the posterior distribution of a graph is:

p(M|x) ∝ p(x|M) p(M) (2.6.6)

where p(x|M) is the marginal likelihood under graph structureM. Learning the score

for each graph is a daunting task for two reasons. First, it is not trivial to do high di-

mensional integration and second, the number of different graph structures grows ex-

ponentially with the number of nodes. Note that in Figure 2.8, we have used a vector

notation for θ ∈ Rm and β ∈ Rn, which means that there is a large possible number of

combinations for z.

Tensions in Cosmology

Different thought-provoking questions on tensions have been raised in the last decade in Cos-
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mology. The highly debated ones include the H0 tension between the distance ladder approach

and Planck and the S8 parameter between a weak lensing analysis and Planck (see Chapter 1 for

a brief discussion).

As in any Bayesian analysis (or in fact, any Scientific process), the two main ingredients are

the model (hypothesis) and the data. In an attempt to explain the source of the tensions, most

of the debates are centred around the fact that the systematics are not being modelled properly

and this can arise in any experiment. Another school of thought argues that perhaps, we do

not fully understand the underlying Physics model.

As explained in this section, the marginal likelihood (and hence the Bayes factor between

two competing models) is a proxy for assessing if a particular model is a good fit to the data.

Recently, Joachimi et al. (2021a) argued that tension might just be a fluctuation, because a differ-

ent data realisation can lead to a sampling distribution of the marginal likelihood. To elaborate

on the exact meaning the marginal likelihood, we discuss how the latter is computed from a

graphical perspective in Note 2.3.

2.7 Sampling Techniques

In this section, we will cover briefly different sampling algorithms which are used to perform

Bayesian parameter inference in Cosmology. During the past 15 years or so, there has been

a significant development of tools for performing sampling. The most common ones include

Metropolis-Hastings, Gibbs and Hamiltonian Monte Carlo sampling schemes. Codes which are

based on these techniques include emcee (Foreman-Mackey et al., 2013), pyro (Bingham et al.,

2019), pystan (Riddell et al., 2021) and pymc (Salvatier et al., 2016). Since the development of

sampling algorithm such as nested sampling, which also outputs an estimate for the marginal

likelihood, there have been other variants such as polychord (Handley et al., 2015a,b) and

dynesty (Higson et al., 2019). Multinest is another sampler, which not only provides samples

for the posterior distributions but also an estimate of the Bayesian evidence (Feroz et al., 2009).

2.7.1 Metropolis-Hastings Sampling

The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is probably

one of the most common Markov Chain Monte Carlo sampling algorithms used in different

branches of Science. The aim is to obtain random samples from a distribution from which it

is difficult to sample directly. Sampling techniques such as MH are generally used for mul-

tivariate analysis, where the dimensionality of the problem is high. Conventional grid-based
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approach can be inefficient since it will require a large number of forward evaluations to accur-

ately model the distribution.

A pseudo-algorithm for MH is given in Algorithm 2.1. It can be summarised as follows.

Suppose we want to sample the full posterior distribution, p(θ|x). A starting point, θ and a

proposal distribution, also known as the candidate generating density or jump distribution,

q(θ) are first specified. An arbitrary step u is then taken and this step is accepted based on the

following probability:

min
{

1,
p(u|x)q(θ|u)
p(θ|x)q(u|θ)

}
(2.7.1)

Algorithm 2.1 Random Walk Metropolis-Hastings

Initiate θ
for i = 1, 2, . . . , Nsteps do

Sample ∆θ from a proposal distribution q(∆θ|θ).
u = θ+ ∆θ
Draw α ∼ U [0, 1]

if α < min
{

1,
p(u|x) q(θ|u)
p(θ|x) q(u|θ)

}
then

θ(i + 1) = u
else

θ(i + 1) = θ(i)
end if

end for

The proposal distribution plays an important role in the sampling process. If a large pro-

posal distribution is specified, most of the steps will be rejected and most of the distribution

remains unexplored. On the other hand, if a small proposal distribution is used, the algorithm

will take long to converge to a stationary distribution. A common practice is to approximate

and update the proposal distribution based on the covariance matrix of the random samples.

Fortunately, advanced samplers such as emcee allows for multiple walkers and the chains can

be run in parallel and we do not have to specify for a proposal distribution.

2.7.2 Gibbs Sampling

Another technique for sampling is the Gibbs method (Geman & Geman, 1984). The advantage

here is that the specification of a proposal distribution is not required. However, it requires

analytic expression for the conditional distributions of each random variable. Depending on

the problem, it is also possible to have another sampler in the Gibbs sampling scheme, for

example, using an HMC to sample one of the conditional distributions.
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For example, if we have two random variables, {θ1, θ2} and our goal is to find the joint pos-

terior of p(θ1, θ2|x), we would require the following conditional distributions: p(θ1|x, θ2) and

p(θ2|x, θ1). The sampling then procedes in block, that is, we sample θ1 whilst conditioning on

θ2 and we sample θ2 whilst conditioning on θ1. This repetitive procedure allows for sampling

the full joint posterior distribution. A pseudo-algorithm for the Gibbs sampling procedure is

shown in Algorithm 2.2.

Algorithm 2.2 The Gibbs Sampler

Initialise x(0)

for iteration i = 1 to Nsamples do

x(i)1 ∼ p(X1 = x1|X2 = x(i−1)
2 , X3 = x(i−1)

3 , . . . , XD = x(i−1)
D )

x(i)2 ∼ p(X2 = x2|X1 = x(i)1 , X3 = x(i−1)
3 , . . . , XD = x(i−1)

D )
...
x(i)D ∼ p(XD = xD|X1 = x(i)1 , X2 = x(i)3 , . . . , XD−1 = x(i)D−1)

end for

2.7.3 Hamiltonian Monte Carlo Sampling

Hamiltonian Monte Carlo, also referred to as Hybrid Monte Carlo (HMC) is an advanced

sampling algorithm which is based on Hamiltonian dynamics (Duane et al., 1987; Neal, 2011;

Betancourt, 2017). Coupled with the position variables in MH algorithms, HMC consists of an-

other set of variables, called the momentum variables. These generally are independent normal

distributions and the HMC alternates between the position and momentum variables. Unlike

the simple MH formalism, because of the Hamiltonian dynamics, the HMC overcomes the slow

exploration of the distribution we want to sample from and thus leads to a high acceptance ra-

tio, that is, the number of accepted steps to the pre-defined number of steps.

Before delving into the details of HMC, it is important to understand the basics of Hamilto-

nian dynamics. We denote the position as θ and the momentum as p. The Hamiltonian of a

system is given by the sum of kinetic energy, K(p) and potential energy U(θ), that is,

H(θ, p) = U(θ) + K(p). (2.7.2)

The negative log-posterior is chosen as the potential energy in the sampling procedure, that is,

U(θ) = −ln[p(x|θ) p(θ)] (2.7.3)

and the kinetic energy is given in terms of the momentum, that is,
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K(p) =
1
2

pTM−1 p (2.7.4)

Algorithm 2.3 Hamiltonian Monte Carlo. See Hajian (2007) for further details.

Initialise θ0
for i = 1 to Nsamples do

p ∼ N (0, M)
(θ∗(0), p∗(0)) = (θ(i−1), p)
for j = 1 to L do

Make a leapfrog move: (θ∗(j−1), p∗(j−1))→ (θ∗(j), p∗(j))

end for
(θ∗, p∗) = (θ(L), p(L))
Draw α ∼ U [0, 1]
if α < min{1, e−[H(θ∗, p∗)−H(θ, p]} then

θ(i) = θ∗

else
θ(i) = θ(i−1)

end if
end for

M is the mass matrix and is generally chosen to be diagonal. The pdf for the kinetic energy

correspond to a d dimensional multivariate normal distribution centred on zero and covariance

M. The choice of the mass matrix is important to ensure good performance of the sampling

procedure. The partial derivatives of the Hamiltonian with respect to time are given by the

Hamilton’s equations:

dθi

dt
=

∂H
∂pi

dpi

dt
= −∂H

∂θi

(2.7.5)

where the index i corresponds to the ith dimension. An important property of the dynamics is

that the total energy is conserved, that is, the Hamiltonian of the system is invariant. The two

equations above form a set of differential equations, which need to be solved to obtain approx-

imate solution for θ and p. This can be achieved numerically by discretising time. While Euler’s

method is best known for solving differential equations numerically, an alternative approach is

the Leapfrog method:

pi(t + ε/2) = pi(t)−
ε

2

(
∂U
∂θi

)∣∣∣∣
t

θi(t + ε) = θi(t) + ε
pi(t + ε/2)

mi

pi(t + ε) = pi(t + ε/2)− ε

2

(
∂U
∂θi

)∣∣∣∣
t+ε

(2.7.6)
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The HMC algorithm can be understood as follows. It has two main steps, where in the first,

only the momentum changes while in the second both the momentum and the position are

evolved. The momentum is typically randomly drawn from a multivariate normal distribution,

the mass matrix for this step. In the second stage, a step analogous to the Metropolis update

is performed and the Hamiltonian dynamics is also simulated by defining the stepsize, ε and

the number of steps, L for the Leapfrog method. Once the step for the Leapfrog integrator is

completed, the proposed state is accepted with probability

min [1, exp(−H(θ∗, p∗) +H(θ, p))] (2.7.7)

With a good specification of the stepsize, ε, the number of Leapfrog moves, L and the mass

matrix, M, the HMC can depict significant performance over other sampling algorithms. For

example, HMC typically generates chains with fewer correlated steps and results in better

acceptance rate and convergence. However, the derivatives of the potential energy (the log-

posterior) can be an expensive quantity to compute. Strictly, HMC allows solving for problems

that cannot be solved otherwise, using other samplers.

2.7.4 Nested Sampling

Another sampler which is commonly used in cosmology is multinest (the Python wrapper

being PyMultinest), the algorithm behind being the nested sampling originally developed by

Skilling (2004, 2006). As discussed in §2.6, an important quantity in a Bayesian analysis is the

Bayesian evidence, which is a difficult quantity to compute since it involves an integration over

the whole set of parameters.

Algorithm 2.4 Nested sampling algorithm (from Wikipedia).

N points are drawn from the prior volume.
for i = 1 to Niter do

Li := min(current likelihoods of the points)
Xi := exp(−i/N)
wi := Xi−1 − Xi
Z := Z + Li · wi
The point with the least likelihood is saved as a sample point, the weight wi.
The point with least likelihood is updated via MCMC step.
Steps which are above Li are kept.

end for
return Z

Nested sampling not only outputs an estimate for the Bayesian evidence but also returns

posterior samples. The choice of nested sampling is motivated in cases where the posterior
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distribution is believed to have several peaks, with separated modes and also in examples

where the joint posterior has peculiar shapes such as bananas. The algorithm is summarised

in Algorithm 2.4. Among the first nested sampling algorithms is multinest (Feroz et al., 2009).

Other variants based on the idea of nested sampling are polychord (Handley et al., 2015a,b)

and dynesty (Higson et al., 2019). UltraNest is another sampler based on nested sampling

(Buchner, 2014, 2019).

2.8 Summary

Bayesian Statistics is the cornerstone to almost any scientific data analysis. In this chapter, we

start with the very basics of probability, followed by describing the normal distribution which

is central in this thesis. Next, we dive deep into Bayes’ theorem and we provide two examples,

illustrating the application of Bayes’ theorem in two different simple contexts. The choice of

priors is a topic of hot debate when adopting a Bayesian approach in any data analysis problem.

We therefore discuss the different types of priors and the motivation for choosing one type of

prior distribution over another. Strictly, it depends very much on the problem we want to solve.

In many cases, the problem also compels us to think of it as a series of computations, occurring

in a hierarchical fashion. Bayesian hierarchical methods naturally allow one to learn about

the latent variables by specifying hierarchical building blocks. We also cover Bayesian model

comparison which deals with quantifying whether a particular model is a better fit compared

to another. We finally discuss some of the sampling methods which can be used to sample the

joint posterior distribution of cosmological and nuisance parameters.
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Causal interpretation of the results of regression analysis of observational data is a

risky business. The responsibility rests entirely on the shoulders of the researcher,

because the shoulders of the statistical technique cannot carry such strong infer-

ences.

Jan de Leeuw

As discussed in Chapter 2, (probabilistic) modelling is central in any field of Science and En-

gineering. The Bayesian modelling approach uses the rules of probability to learn parameters

of a model (Bayesian parameter inference), compare models (Bayesian model comparison) and

make predictions (Bayesian posterior predictive distribution). This framework becomes more

powerful when combined with flexible approach such as Bayesian non-parametric methods

(Ghahramani, 2013).

A model can be thought of as a representation of the data that one can observe. Often, we

are interested in making predictions or forecasts at points where no data has been observed. In

some applications, deterministic forecasts can easily be falsified, for example, a statement such

as, ‘the temperature will be 15 oC’ is too fragile to be accepted. Hence, uncertainty quantification

plays a major role in Bayesian non-parametric.

In practice, we also want to design learning algorithms which are adaptive to new data, that

is, we would expect the predictive probability to improve in the regime of an increased amount

of new data, although in some cases, this might not hold. Bayesian modelling is not a trivial

task. It can be quite challenging to deal with data corrupted by noise. While uncertainty quan-

tification remains an important ingredient in this framework, there can be various sources of

uncertainty which are complicated to be accounted for in the modelling process. For example,

we might not fully understand the noise properties in the measurement process. Fortunately,

the Bayesian framework provides an elegant, natural and coherent approach to represent all
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forms of uncertainty in the model. Essentially, starting from the data to making predictions, all

uncertainties can be encapsulated in the Bayesian modelling framework.

In this chapter, we will specifically look into Bayesian non-parametric, involving kernel

methods. In particular, we will cover the concepts behind Gaussian Processes (GP) which are

crucial to the applications in Chapters 4, 5 and 7. In §3.1, we highlight the importance of kernel

methods and in §3.2, we elaborate on the theory behind GPs. Finally, in §3.3, we provide a brief

summary of this chapter.

3.1 Kernels

In this section, we will elaborate on how kernels can be used in various Machine Learning al-

gorithms. In short, kernels allow one to construct models of the data by encoding structure

such as additivity, interaction between variables and periodicity. Importantly, the fact that ker-

nels can be added and multiplied allows us to build better and more representative models

of the data. We will often treat kernel from a GP perspective but note that kernels are extens-

ively used in different Machine Learning algorithms such as Support Vector Machines (SVM),

Principle Component Analysis (PCA) and many more.

3.1.1 Definition and Examples

A kernel, also referred to as the kernel function or covariance function, is simply a positive-

definite function between two points (vectors), θ and θ′ in Euclidean space. It is generally

deemed as a measure of similarity between any two vectors. For example, in Gaussian process

models (see §3.2), a kernel is used to define the prior covariance between any two function

values, f and f ′, that is, cov[ f (θ), f ′(θ′)] = k(θ, θ′). A common assumption is that points

which are close to θ are likely to have similar values of the target and hence in a GP model,

training points which are close to the test point are informative about the prediction at that test

point.

From a different perspective, we can also think of kernel as a scalar product of feature

transformations, θ→ φ(θ) , that is

〈θ, θ′〉 → 〈φ(θ), φ(θ′)〉 = k(θ, θ′). (3.1.1)

For example, if we consider a polynomial kernel, of order 2, where the inputs are of dimension

2, we have
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k(θ, z) = (θTz)2

= (x1z1 + x2z2)
2

= x2
1z2

1 + x2
2z2

2 + 2x1z1x2z2

= φT(θ)φ(z)

(3.1.2)

where φ(θ) = (x2
1, x2

2,
√

2x1x2). For example, if we consider the XOR classification problem,

we cannot find a separable plane which separates the X and the O. This is evident when we

look at the left panel in Figure 3.1.

Figure 3.1 – The left figures shows the standard XOR classification problem, where the goal is to find a separa-
tion line which will separate (A,C) with (B,D). Unfortunately, in the original space, it is impossible to find such
a line, but as shown in the figure on the right hand side, after applying the (polynomial) kernel trick, one can
define a separation plane which separates (A,C) with (B,D).

In Table 3.1.1, we give the positions of the points A, B, C and D and their respective labels,

denoted by y. For example, we can interpret 0 as being ‘O’ while 1 being ‘X’. If we use the

polynomial kernel of order 2 where φ(θ) = (x2
1, x2

2,
√

2x1x2), the different positions in this new

frame are shown in Table 3.1.2.

Table 3.1.1 – XOR classification example

Points x1 x2 y

A 0 0 0

B 1 0 1

C 1 1 0

D 0 1 1

In the original frame, we cannot determine a separation line to successfully perform the

classification problem. However, when we focus on the right panel of Figure 3.1, we can cer-
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tainly find a separation plane which separates ‘O’ from ‘X’. In fact, there is exists a large number

of possible solutions in this case.

Table 3.1.2 – XOR example using polynomial kernel

Points φ1 = x2
1 φ2 = x2

2 φ3 =
√

2x1x2 y

A 0 0 0 0

B 1 0 0 1

C’ 1 1
√

2 0

D 0 1 0 1

This simple classification example motivates the adoption of kernel methods in many Ma-

chine Learning algorithm today. In fact, in some cases, kernel methods can outperform tech-

niques such as deep learning. One of the problems which kernel method faces is scalability

since it is based on the dimensions of data space, which can be very large. However, significant

progress has been made in this field of research. Before elaborating on Gaussian Process, which

is based on a kernel, we will first provide a formal definition of a kernel below.

Mercer’s Theorem

A function k(θ, θ′) is a kernel if it is symmetric, that is, k(θ, θ′) = k(θ′, θ) and is positive-

definite, that is, for every function g : θ → R,

ˆ ˆ
k(θ, θ′) g(θ) g(θ′)dθdθ′ ≥ 0

and similarly, for the positive-definite property, given a finite set (θ1, θ2, . . . θN), the Gram

matrix

{K(θi, θj)}N
i,j=1 < 0. (3.1.3)

A kernel normally has a set of parameters, also referred to as hyper-parameters, which define its

overall shape. For example, for a Gaussian kernel, also referred to as the Squared-Exponential

(SE) kernel,

k(θ, θ′) = A exp
[
−1

2
(θ − θ′)2

λ2

]

the set of hyper-parameters is {A, λ}. λ defines the width of the kernel and controls the
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smoothness property of the function being modelled while A is the amplitude of the kernel.

To understand this better, let us look into one example of the Gaussian kernel. In Figure 3.2, we

fix A = 1 and λ = 1 and the functions drawn from the prior, are shown in the solid line. We

also show a second set of samples (the dotted curves) in Figure 3.2 where the hyper-parameters,

A = 1 and λ = 0.1.

Kernels can be classified into two main groups, namely stationary and non-stationary kernels.

A stationary kernel is one whose value depends only on the difference between the two points,

that is, θ− θ′. Changing the values of the θ and θ′ by the same amount will not affect the value

of the kernel function. Hence, it is invariant to translations. If the kernel function is a function

of the magnitude of the difference, |θ− θ′|, then it isotropic. Moreover, if k is a function of only

|θ− θ′|, then it is referred to as a radial basis function (RBF).

0 1 2 3 4 5
θ

−2

−1

0

1

2

f

Figure 3.2 – In this figure, we show two sets (solid and dotted curves) of 5 samples of function drawn from
a multivariate normal prior, N (0,K). For the solid curves, the hyper-parameters for the Gaussian function
are A = 1 and λ = 1 while for the dotted curves, A = 1 and λ = 0.1. Hence, the parameter λ controls the
smoothness of the function.

In contrast, a non-stationary kernel is one which will cause the prediction, for example

in a GP model, to change if the position of the points are moved whilst keeping the kernel

parameters fixed.

3.1.2 Constructing Kernels

An important property of kernels is that they can be combined or modified to generate new

kernels from old ones. For example, if we have a function f (θ) = f1(θ) + f2(θ), where f1(θ)

and f2(θ) are independent, then k(θ, θ′) = k1(θ, θ′) + k2(θ, θ′). In short, kernels can be added.
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In the same spirit, if we have a function f (θ) = f1(θ) f2(θ), then k(θ, θ′) = k1(θ, θ′) k2(θ, θ′),

that is, a kernel can be constructed by multiplying two different kernels.

Crucially, the addition and/or multiplication of two positive-definite kernels lead to an-

other positive-definite kernel. Below, we provide a list of how kernels can be constructed. If

k1(θ, θ′) and k2(θ, θ′) are two arbitrary kernels, h(θ) and ϕ(θ) are arbitrary functions, then

1. k(θ, θ′) = ck1(θ, θ′)

2. k(θ, θ′) = k1(θ, θ′)k2(θ, θ′)

3. k(θ, θ′) = k1(θ, θ′) + k2(θ, θ′)

4. k(θ, θ′) = k1 (ϕ(θ), ϕ(θ′))

5. k(θ, θ′) = h(θ)k1(θ, θ′)h(θ′)

6. k(θ, θ′) = ek1(θ, θ′)

where c > 0.

Kernels are also used to build multi-dimensional models, that is, functions with more than

1 input. For example, if we consider the squared-exponential kernel with different dimensions,

we can define a characteristic length-scale, λd for each dimension and the resulting kernel is

often referred to as the SE-ARD kernel, where ARD refers to automatic relevance determination.

Hence, using the multiplication property of kernels, we have

k(θ, θ′) =
D

∏
d=1

Ad exp

[
−1

2
(θd − θ′d)

2

λ2
d

]

= A exp

[
−1

2

D

∑
d=1

(θd − θ′d)
2

λ2
d

] (3.1.4)

and the fact that we have a length-scale for each dimension, implies that the magnitude of λd

will determine the relevance for a particular dimension. In other words, if the length-scale, λi is

large, the overall contribution of dimension i is small to the overall kernel function evaluation.

The SE-ARD remains the popular choice for high-dimensional modelling for various reasons.

It is interpretable and consists of very few kernel hyper-parameters. Moreover, it can model

any continuous function given sufficient amount of data. However, since we are effectively

computing pairwise distance, this means that as the dimensionality of the problem increases,

|θ− θ′| → 0 and the kernel fails to capture the behaviour of the function. In short, the kernel

can be slow to learn due to the curse of dimensionality.
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3.2 Gaussian Processes

Before elaborating on the technical details of GPs, it is worth reminding ourselves what para-

metric Bayesian modelling is. In Chapter 2, we have seen that a parametric model is governed

by a finite set of parameters, θ and often the goal is to infer the posterior distribution of these

parameters, that is, we want p(θ|x). Once the posterior distributions are learned, they capture

all the information we have to know about the data, and hence the data becomes irrelevant

when making predictions, that is, if we want the learn p(x∗|θ) where x∗ is a point we want to

predict, then,

p(x∗|θ) =
ˆ

p(x∗|θ) p(θ|x)dθ. (3.2.1)

On the other hand, a Bayesian non-parametric approach assumes that we cannot model the

data using a finite set of parameters, θ. Non-parametric models are defined with an infinite

dimensional θ and the latter is represented by a function. Unlike parametric methods where

most of the information is retained by a small set of parameters, θ, non-parametric methods

are generally memory-based, that is, all information about the training data must be stored in

order to make predictions.

GPs are deemed as simple probabilistic models of functions. In particular, a GP is a distri-

bution over the functions such that any finite set of functions have a joint multivariate Gaussian

distribution. In the absence of observed data, a GP is fully specified by its mean function

E[ f ] = µ (3.2.2)

and covariance

cov[ f (θ), f (θ′)] = k(θ, θ′) (3.2.3)

via the kernel function, k. Hence, the GP prior (before seeing any data), can be written as,

f ∼ N (µ,K), where the kernel matrix K is constructed by evaluating the kernel function for

every pair of inputs, θ. It is customary to assume a zero mean GP in most applications. In this

work, we will adopt a zero mean GP in Chapters 4 and 5 but we will relax this assumption in

Chapter 7 where we will assume an explicit mean function, which depends on the inputs to the

model.

GPs are widely used in the field of spatial statistics, where one wants to model, for example,
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the temperature as a function of spatial location. In the field of Machine Learning (ML), they

have been used extensively to do regression and classification. Related research topics which

apply GPs include bandit optimisation, Bayesian optimisation and emulation (Desautels et al.,

2012; Slivkins, 2019; Mootoovaloo et al., 2020). We focus entirely on regression because this is

central to the research carried out in this work.

3.2.1 Regression - Weight Space

Let us consider a simple non-linear regression of the form

yi = f (θi) + εi (3.2.4)

where we have n observed data points, that is, {(θ1, y1), (θ2, y2) . . . , (θn, yn)}. Let us also as-

sume that the noise covariance matrix is Σ. If we choose to model this data by a polynomial

function, using vector and matrix notations, we can re-write Equation 3.2.4 as

y = Φβ + ε (3.2.5)

where Φ ∈ Rn×d is a design matrix whose columns contain the different basis functions, then

we can analytically derive an expression for the posterior distributions of the regression coef-

ficients, β if we assume a Gaussian prior of mean zero and covariance C. This modelling ap-

proach is referred to as a Gaussian Linear Model, since the model is linear in the regression

coefficients β and their posterior distributions turn out to be Gaussian. Following Note 3.1, the

posterior distribution of β is given by:

p(β|y) = N (β|ΩΦTΣ−1y, Ω) (3.2.6)

where Ω = (C−1 +ΦTΣ−1Φ)−1. Suppose, we want to predict the function at θ∗, this is straight-

forwardly given by:

y∗ = Φ∗βmap

= Φ∗ΩΦTΣ−1y
(3.2.7)

where βmap is the mean of the posterior distribution of the β and Φ∗ is the design matrix

computed at the test point. Instead of working in the β space, we will now work in the data
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space. Defining K = ΦCΦT and kT
∗ = Φ∗CΦT and using the Woodbury identity*, we have

y∗ = kT
∗(K+ Σ)−1y. (3.2.8)

Note 3.1: Marginal and Conditional Gaussian distributions

Following Bishop (2006), if we have a distribution (prior) for θ and a conditional distri-

bution (likelihood) for y given x,

p(θ) = N (θ|µ, Λ−1)

p(y|θ) = N (y|Aθ+ b,L−1)

the conditional distribution (posterior distribution), p(θ|y) and the marginal distribution

(evidence), p(y) are respectively given by:

p(θ|y) = N (θ|Σ[ATL(y− b) + Λµ], Σ)

p(y) = N (y|Aµ + b, L−1 +AΛ−1AT)

where Σ = (Λ +ATLA)−1.

Importantly, this equation is in fact the mean of the predictive distribution if we were to use

a GP model with prior mean zero. The matrix, ΦCΦT is referred to as a Gram matrix and is a

valid kernel (see §3.1 for further details).

3.2.2 Regression - Function Space

Instead of working in the weight space (β), we will now model directly using a set of functions,

f . As in parametric methods, we can write the posterior distribution of f as:

p (f |y, θ) =
p (y |f, θ) p (f |θ)

p (y |θ)

In Figure 3.3, we show the graphical model for such a regression task. If we assume a zero mean

*(A+CBCT)−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1
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GP prior, then, the joint distribution of the training points (the outputs) and the prediction, f∗

is:




y

f∗


 ∼ N


0,




K+ Σ k∗

kT
∗ k∗∗





 (3.2.9)

where k∗ ∈ Rn is a vector of the kernel values computed between the test point and each of

the training point. Similarly, k∗∗ is just the kernel value at the test point. Using the properties

of the conditional distribution from Note 2.1, the conditional (predictive) distribution of f∗ is

another normal distribution with mean and variance

E[ f∗] = kT
∗(K+ Σ)−1y

var[ f∗] = k∗∗ − kT
∗(K+ Σ)−1k∗

(3.2.10)

y1 y2 y∗ yi yn

f1 f2 f∗ fi fn

θ1 θ2 θ∗ θi θnInputs

Gaussian Field

Observations

Figure 3.3 – Graphical model using Gaussian Process for a regression problem. The shaded nodes represent
the observed variables, y, the middle row represent the Gaussian field, that is, the latent variables, f and in the
top row, we have the inputs, θ. Importantly, the addition of other observables, y, inputs, θ and latent function,
f does not change the distribution of the existing variables because of the marginalisation property of GPs.

We can draw various conclusions from Equations 3.2.10. For example, if we were dealing

with noise-free regression, then, Σ → 0. However, a jitter term is often added for solving a

linear system of equations, Aθ = b, that is, the kernel K → K+ σ2I, where σ2 is set to a very

small value, usually ∼ 10−10. Moreover, once α = (K+ Σ)−1y is computed and stored, the

mean prediction can be calculated very quickly (since there is no further matrix inversion). In

other words, the mean prediction is a linear predictor since it is a linear combination of the

observations, y. On the other hand, an important observation is that the variance calculation

always involve anO(n2/2) operation, assuming the Cholesky factor, L is computed and stored.

While the predictive distribution is important for making predictions, as well as, quantify-

ing the uncertainty at test points, the marginal likelihood p(y|θ) is crucial for model selection.
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In general, the kernel function, k(θi, θj) is also a function of other hyper-parameters, η. For

example, let us consider the Squared-Exponential kernel,

k(θi, θj) = A exp
[
−1

2
(θi − θj)

TΛ−1(θi − θj)

]
(3.2.11)

where Λ = diag(λ2
1, λ2

2, . . . λ2
d). Hence, η = {A, Λ} is a vector of the hyper-parameters A

and λi where i refers to each dimension. Once observations are made, these kernel hyper-

parameters are optimised by maximising the marginal likelihood which is given by:

log p(y|θ) = −1
2

yT(K+ Σ)−1y− 1
2

log |K+ Σ|+ constant. (3.2.12)

The above expression for the marginal likelihood has two terms, which take into account the

model fit and the model complexity. The first term encourages the fit to the data and depends

on the data while the second term, involves a complexity penalty, log |K+ Σ| and is referred

to as the Occam factor. An important observation from Equation 3.2.12 is that the fact that the

matrix, Ky = K + Σ is of size n × n, where n is the number of training points, implies that

training a GP model involves an O(n3) operation at each step of the optimisation procedure,

when we are learning the kernel hyper-parameters, η.

For numerical stability, we first compute the Cholesky factor, L, of Ky ≡ LLT, solve for u in

the linear system Lu = y followed by solving for α in LTα = u. The marginal likelihood is then

given by

log p (y | θ) = −1
2

yTα−∑
i

logLii + constant. (3.2.13)

Moreover, the partial derivatives of equation (3.2.12) with respect to the kernel hyper-

parameters, η = {A, λ} can be computed in closed form

∂

∂ηi
log p (y | θ) =

1
2

tr
[(

ααT −K−1
) ∂K

∂ηi

]
(3.2.14)

and α = K−1
y y. The gradients are useful when maximising the marginal likelihood when using

gradient-based optimisation.

One can in fact adopt a fully Bayesian approach and marginalise over the kernel hyper-

parameters, η, that is, we can write the posterior distribution of η as

p(η|θ, y) ∝ p(y|θ, η) p(η) (3.2.15)
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where p(y|θ, η) is given by Equation 3.2.12 and the kernel hyper-parameters are marginalised

over in this procedure. While this would be a preferred approach to learn the kernel hyper-

parameters, theO(n3) computational cost compels us to stick with the optimisation procedure,

especially when we have multiple functions to learn as in this work. See Chapters 4, 5 and 7.

Moreover, a completely different branch of research in the GP community involves devis-

ing techniques to deal with the most expensive part of the procedure, that is, training the GP

model, which involves an O(n3) cost and predicting the uncertainty, which involves an O(n2)

cost. However, these are usually approximate techniques because not all the training points

are used at once. For example, sparse GP methods use inducing variables, that is, a subset of

the training points to improve the time complexity in training from O(n3) to O(nm2), where

m is the number of inducing variables (Hensman et al., 2013). In Chapter 4, we will look into a

different approach of partitioning the training set before learning the kernel hyper-parameters.

3.2.3 Useful Properties and Limitations

There are multiple reasons why one prefers to use a GP to model the data, for example, in a

regression analysis. Importantly, it lends itself nicely to analytic inference, where the predictive

distribution and the marginal likelihood can be computed exactly in closed form. In a Bayesian

analysis, this is generally rare (except if we are working with conjugate priors and Gaussian

Linear Models, for example). The freedom for choosing a kernel function enables us to im-

prove expressivity of the function being learnt. In fact, we have seen that kernels can be added

and/or multiplied together and the resulting kernel function is still a valid kernel. Unlike ad-

hoc methods for choosing a model, the marginal likelihood of a GP gives us a principled way

to choose a model by marginalising over all the latent variables. In particular, unlike neural

network techniques which require optimising for millions of parameters, a GP has just a few

hyper-parameters to be estimated, hence not requiring advanced optimisation schemes.

However, one of the main challenges is the slow inference (training) of GP because of the

O(n3) cost at each step in the optimisation procedure. This therefore limits the application of

GP to a few thousands training points, if we choose not to use approximate techniques such

as sparse GP explained in the previous section. Furthermore, GP has analytic forms of the

predictive distribution and the marginal likelihood, in the case of a Gaussian likelihood. If

we have non-Gaussian likelihood, this can be more complicated and might have to resort to

numerical methods. While learning the kernel hyper-parameters can be set by maximising the

marginal likelihood, another challenge is the need to choose a kernel function, for which there
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are many possibilities.

3.3 Summary

In this chapter, we have looked at kernel methods and explained why it is an important branch

in Machine Learning. Both regression and classification can be tackled using kernels and in this

thesis, since our main focus is on regression, we then elaborate on Gaussian Processes. We first

discuss how we would do parametric Bayesian linear regression before motivating the use of

Gaussian Process, where we work in function/data space. We also discuss the advantages and

disadvantages of using kernel methods. We cover briefly the recent development in this area of

research, in particular, scaling Gaussian Process to millions (and possibly billions) of training

points.
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Chapter 4
SCALABLE EMULATING METHODS FOR KIDS-450

I have a simple algorithm, which is, wherever you see paid researchers instead of

grad students, that’s not where you want to be doing research.

Larry Page

Emulation is increasingly becoming an important tool used as part of parameter inference

in cosmology. In the mid 2000s, Fendt & Wandelt (2007b) used polynomial regression tech-

niques to interpolate CMB power spectra and ever since, we have seen more advanced tech-

niques such as neural network techniques and Gaussian Processes emerging in the cosmology

literature. We will cover these techniques in further details in this chapter. Recently, more com-

plicated emulation techniques, based on Generative Adversarial Networks (GAN) (Goodfel-

low et al., 2014) have been devised for accelerating cosmological simulations (Rodríguez et al.,

2018; Mustafa et al., 2019). All these techniques contribute to the application of approximate

inference, the main reason being that the likelihood is never exact since the model/theory eval-

uation itself is not accurate. However, this should not be criticised since there are compelling

reasons for using approximate inference in cosmology:

1. the model is very expensive,

2. the model is not totally understood and/or is quite complicated.

The conventional approach is to sample the full posterior distribution of cosmological and

nuisance parameters using MCMC-based techniques (as discussed in §2.7) and this requires an

accurate evaluation of the model/likelihood which is often an expensive process. In general,

a large number of MCMC samples is required to ensure convergence. If the model evaluation

itself is costly, then this results in a major computational bottleneck for the overall sampling

scheme.
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Hence, it is common practice to try various models (and algorithms) and find the one which

works best for that very specific problem. Indeed, data analysis in cosmology requires careful

selection of models (see Trotta (2008) for further details) and also the choice of the sampling

algorithm when dealing with parameter inference. It strictly depends on various trade-off such

as speed, complexity and accuracy.

In cosmology and indeed in any other branch of science, it is customary to design accurate

forward model (simulators) to interpret the data. This often requires painstaking effort to en-

code all our knowledge about the cosmological model, as well as models for the systematics

(which we might not have full control of). The natural question to ask in this scenario is: ’what

if we had an approximate model of the world, which is less expensive to compute, to explain the data?’.

Monte Carlo is one of the approximate techniques used in cosmology. It is argued to be exact

in the limit of an infinite number of samples. However, this cannot happen in practice and there

Monte Carlo methods are deemed as approximate methods. Moreover, with the goal of limit-

ing the number of forward simulations, expansion methods, which depends on techniques such

as Taylor expansion, have also been developed. These are generally local procedures, meaning

the expansion is performed at a given point in parameter space. Another option to accelerate

parameter inference is via variational inference. In this case, an optimisation approach is ad-

opted, with the goal being to minimise a distance metric (in particular, the Kullback-Leibler

divergence) between the prior and the posterior. Another emerging technique in the Cosmo-

logy literature is likelihood-free inference, which attempts to minimise the number of forward

simulations and to also mitigate the need to define an explicit likelihood function.

In this chapter, we will explore another branch of approximate inference, which deals with

scalable emulating methods. All techniques have their own pros and cons and also depend

on specific application. We will discuss some of these pros and cons of emulation. In §4.1

we explain the KiDS-450 data. We then cover three algorithms in §4.3.1, the PICO algorithm

based on polynomial regression, §4.5, Bayesian Committee Machine based on Gaussian Pro-

cesses and neural networks in §4.4 respectively. In §4.6, we discuss the results obtained using

these three algorithms. In §4.7 we discuss how the algorithms described can be improved and

accommodate for scalable inference in future surveys. Finally, in §4.8, we provide a short sum-

mary of the different algorithms we have developed in this chapter. This chapter makes use of

the KiDS-450 likelihood code*.

*https://bitbucket.org/fkoehlin/kids450_qe_likelihood_public/
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4.1 Data

In this section, we briefly cover the data and the model we will use for parameter inference.

The detailed explanation for the data reduction process is found in Köhlinger et al. (2017). The

final KiDS (Kilo Degree Survey) will cover 1350 deg2 in four different bands, namely u, g, r

and i. For this particular application, the KiDS-450 data consists of around 450 individual tiles

each of ∼ 1 deg2. In particular, the positions of the galaxies are given in the usual spherical

astronomical coordinate system, right ascension, α and declination, δ. In the data reduction

process, instead of using the spherical coordinates, a tangential plane projection, also referred

to as gnomonic projection is applied.
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Figure 4.1 – The E-mode band powers (data) used in our inference scheme, similar to the KiDS-450 analysis
(Köhlinger et al., 2017). The `−ranges are as follows: 76 ≤ ` < 220, 221 ≤ ` < 420, 421 ≤ ` < 670 and
671 ≤ ` < 1310. In particular, the auto-correlation band powers are along the main diagonal (z1× z1, z2× z2
and z3× z3) for the 3 redshift bins 0.10 < z1 ≤ 0.30, 0.30 < z2 ≤ 0.60 and 0.60 < z3 ≤ 0.90. The off-diagonal
blocks show the unique cross-correlation band powers. The blue shaded regions indicate the 1σ level errors
from the covariance matrix.
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Once each sub-patch is pixelized into shear pixels using the plane projection, the shear

components per pixel are estimated as

ga(xc, yc) =
∑ wiea,i

∑i wi
, (4.1.1)

where the label c refers to the centre of each pixel, the index a correspond the shear and ellipti-

city components, i refers to the ith object in that pixel and the weights, w and ellipticities, e are

obtained from the ellipticity measurement using lensfit (Miller et al., 2007; Kitching et al., 2008;

Miller et al., 2013). Moreover, the distances rij = |ni − nj| and the angles ϕ = arctan(∆y/∆x) for

each pair of pixels i and j are used in a quadratic estimator algorithm (Hu & White, 2001) to

optimise for the band powers, B. The angular position of a pixel is given by n.

From Chapter 1, the shear field is a spin-weight 2 quantity with components γ(n, zµ) =

γ1(n, zµ) + iγ2(n, zµ) corresponding to photometric redshift bin, zµ. In the flat-sky limit, the

Fourier transform of this shear field can be written as

γ1(n, zµ)± iγ2(n, zµ) =

ˆ
d2`

(2π)2 Wpix(`) [κ
E(`, zµ)± iκB(`, zµ)] exp(±2iϕ`) exp(i` · n), (4.1.2)

where ϕ` is the angle between the x−axis and the two-dimensional vector `. In the above equa-

tion, the shear field is explicitly written in two components, namely the curl-free (E) and the

divergence-free (B) components. In the absence of any systematics, most of the cosmological

information is contained in the convergence field, κE. Moreover, the Fourier transform of the

pixel window function, Wpix, can be written as

Wpix(`) = j0

(
`σpix

2
cosϕ`

)
j0

(
`σpix

2
sinϕ`

)
, (4.1.3)

where σpix is the side length in radian of a square pixel and j0 = sin x/x is the 0th−order spherical

Bessel function. Given the above formalism, the shear correlation matrix between pixels ni an

nj and tomographic bins µ and ν can be written as:

Csignal = 〈γa(ni, zµ)γb(nj, zν)〉. (4.1.4)

Under the assumption that the shear field is Gaussian, the log-likelihood can be written as

logL = −1
2

dT[C(B)]−1d− 1
2
|C(B)|+ constant, (4.1.5)
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where the data vector contains elements with daiµ = γa(ni, zµ). The covariance matrix is

C = Csignal + Cnoise, where Csignal is given by Equation 4.1.4. This quantity depends on the

shear power spectra which are approximated by piece-wise constant band powers, B. For a

pedagogical treatment of the noise covariance matrix, we refer the reader to Köhlinger et al.

(2017). From Equation 4.1.5, an optimisation procedure, such as Newton-Raphson method is

adopted to find the root of the equation, that is, d lnL
dB = 0 until Bi+1 = Bi + δB converges to the

maximum-likelihood solution.

This set of generated band powers and the noise covariance matrix are publicly available

and are used in this analysis. We use 3 tomographic redshift bins, namely, 0.10 < z < 0.30,

0.30 < z < 0.60 and 0.60 < z < 0.90 and the convergence power spectrum is computed in the

range 10 < ` < 4000. Moreover, we follow Köhlinger et al. (2017) and drop the first, second-to-

last and last band powers in our analysis, that is, we use only the band powers corresponding

to the following `-ranges: 76 ≤ ` < 220, 221 ≤ ` < 420, 421 ≤ ` < 670 and 671 ≤ ` < 1310.

For a 3-bin tomographic analysis, we have 6 auto- and cross- tomographic power spectra to

calculate. The data and covariance matrix for this problem are shown in Figures 4.1 and 4.2

respectively.
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Figure 4.2 – The data correlation matrix for the KiDS-450 analysis. We have ordered the covariance matrix
in order of the tomographic labelling ij. Note that we have 4 band powers per tomographic bin, hence 6× 4
blocks in the covariance matrix.

There are multiple ways to build an emulating scheme to accelerate parameter inference.

The emulator can be built at the level of the power spectra or the band powers. Here we choose

to build a GP for each band power, giving 24 GPs. Alternatively, one can emulate the likelihood
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directly using the GPs (see Leclercq (2018) and Fendt & Wandelt (2007a)). For power spectrum

reconstruction, one can use the PICO method or an alternative, but constrictive, stance is to

adopt the approach taken by Habib et al. (2007) to first learn a set of basis functions via Singular

Value Decomposition (SVD) and model the resulting weights by a Gaussian Process. However,

building an emulator for weak lensing analysis needs to account for systematic effects, but

some of these can be included analytically without emulation, resulting in an 8-dimensional

GP (6 cosmological parameters, 1 parameter due to baryon feedback, Abary and 1 parameter

due to intrinsic alignment, AIA) rather than 12 (the eight parameters plus an additional set of 4

nuisance parameters) if we were to emulate the likelihood. See Table 4.2.1 for further details. In

the following sections, we will investigate three different algorithms which are used to emulate

the band powers.

4.2 Model

The shear field can be decomposed into E and B modes corresponding to the curl-free and

divergence-free components. In particular, the convergence field, κE contains most of the cos-

mological information since κB is negligible in the absence of systematics (Castro et al., 2005).

Under this condition, the E-mode lensing power spectrum between tomographic bins i and j

is equal to the convergence power spectrum, that is, CEE
`, ij = Cκκ

`, ij and is given, in the Limber

approximation (Limber, 1953; Loverde & Afshordi, 2008) by

CEE
`, ij =

ˆ χH

0
dχ

wi(χ)wj(χ)

χ2 Pδ

(
k =

`+ 1/2

χ
; χ

)
, (4.2.1)

where χ is the comoving radial distance and χH is the comoving distance to the horizon.

Without the Limber approximation, the integrals can be slow to compute, although faster meth-

ods are being developed (Fang et al., 2020). Crucially, the tomographic convergence power

spectrum is sensitive to the background geometry and the growth of structure. It depends

on the the three-dimensional matter power spectrum, Pδ(k; χ) which is a function of redshift

(Weinberg et al., 2013). The weight function wi is

wi(χ) =
3ΩmH2

0
2c2 χ(1 + z)

ˆ χH

χ
dχ′ni(χ

′)
(

χ′ − χ

χ′

)
, (4.2.2)

which depends on the lensing kernel. Ωm is the present matter density, H0 is the Hubble con-

stant and c is the speed of light. An important quantity is the redshift distribution, ni (z) dz =

ni (χ) dχ which is normalised such that
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ˆ
ni(χ)dχ = 1. (4.2.3)

For a weak lensing survey, the data vector consists of the measured shear per pixel for each

redshift bin. At this point, in order to extract the shear power spectrum, one can either take a

quadratic estimator approach using a maximum-likelihood technique (Bond et al., 1998) or em-

ploy, for example, a pseudo-C(`) approach (Hinshaw et al., 2007). Alternatively, one can also

build a full Bayesian hierarchical model, to infer the full shear power power spectrum (Alsing

et al., 2016, 2017). Here, we focus on the tomographic band power spectra, as determined by

Köhlinger et al. (2017).

4.2.1 Astrophysical Systematics

Coupled to the E-mode power spectrum are various systematics which we should consider.

For example, baryon feedback results in altering the power at high k. Although feedback is

not fully understood, it is often parametrized through the bias function, b2(k, z), such that the

modified power spectrum is

Pmod
δ (k, z) = b2 (k, z) Pδ (k, z) . (4.2.4)

As an example, for the KiDS-450 analysis, the following fitting formula from van Daalen

et al. (2011) was used

b2 (k, z) = 1− Abary

[
Aze(Bzx−Cz)

3 − DzxeEzx
]

, (4.2.5)

where x = log10(k/1 Mpc−1) and the other parameters Az, Bz, Cz, Dz and Ez depend on the

scale factor a. Moreover, we must account for intrinsic alignment effects which give rise to a

preferred ellipticity orientation. The total lensing power spectrum between two redshift slices

is a linear combination of the gravitational lensing (EE), intrinsic alignment (II) and interfer-

ence (GI) power spectra. Specifically, the II effect is due to correlation of ellipticities in the local

environment and contributes positively towards the total lensing spectrum. The second effect,

GI, is due to correlation between tidally-stretched foreground galaxies and the shear of back-

ground galaxies. The GI term subtracts from the total lensing spectrum. We model the power

spectrum, following Köhlinger et al. (2017), as

Ctot
`, ij = CEE

`, ij + A2
IACII

`, ij − AIACGI
`, ij, (4.2.6)
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where the II power spectrum, CII
`, ij and the GI power spectrum, CGI

`, ij respectively are

CII
`, ij =

ˆ χH

0
dχ

wi(χ)wj(χ)

χ2 Pδ

(
k =

`+ 1/2

χ
; χ

)
F2 (χ) , (4.2.7)

and

CGI
`, ij =

ˆ χH

0
dχ

wi(χ)nj(χ) + wj(χ)ni(χ)

χ2 Pδ

(
k =

`+ 1/2

χ
; χ

)
F(χ) (4.2.8)

where

F(χ) = C1ρcrit
Ωm

D+(χ)
(4.2.9)

and AIA is a free parameter to be inferred during sampling. This allows for the flexibility of

rescaling the otherwise fixed normalisation value, C1 = 5× 10−14 h−2 M−1
� Mpc3. ρcrit is the

critical density of the Universe while D+(χ) refers to the linear growth factor normalized to

unity today.

4.2.2 Priors

The priors adopted for sampling the posterior is given in Table 4.2.1 and we use the limits

to define the bounds of our emulation scheme. In order to build the emulator, we focus on

the most expensive part of the likelihood evaluation. Hence, we choose to emulate the band

powers directly. To be more specific, we emulate the band powers arising due to the 3 different

types of weak lensing power, EE, GI and II as explained in §4.2.

The observed shear is generally a biased estimator of the true shear, γ and is parametrised

in terms of the multiplicative bias correction, m and the additive bias, c as

γobs = (1 + m)γ + c, (4.2.10)

and the multiplicative bias arises mainly due to the effect of the pixel noise in the measurement

of the galaxy ellipticities. In order to account to the m−correction, it is applied to both the

shear power spectrum calculation and the covariance matrix and m is marginalised over in the

likelihood analysis. c is usually very tiny and is fixed to zero. Hildebrandt et al. (2017) also

found that the multiplicative m− correction to be small and they reported

m = [−0.0131, −0.0107, −0.0087, −0.0217]± 0.01.
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Table 4.2.1 – Set of cosmological and systematic parameters which are used in the emulating scheme. The first
set will be referred to as θ and the remaining ones as β and we include Abary as part of the emulating scheme.
The prior range is also shown in the last column.

Definition Symbol Prior

CDM density Ωcdmh2 U [0.01, 0.50]

Baryon density Ωbh2 U [0.019, 0.026]

Scalar spectrum amplitude ln(1010As) U [1.70, 5.00]

Scalar spectral index ns U [0.70, 1.30]

Hubble parameter h U [0.64, 0.82]

Neutrino mass (eV) Σmν U [0.06, 10.0]

Free amplitude baryon feedback parameter Abary U [0.0, 10.0]

Intrinsic alignment parameter AIA U [−6.0, 6.0]

Free amplitude (bin 1) A1 U [−1.0, 1.0]

Free amplitude (bin 2) A2 U [−1.0, 1.0]

Free amplitude (bin 3) A3 U [−1.0, 1.0]

Multiplicative bias m U [−0.033, 0.007]

We take a similar approach as Köhlinger et al. (2017) and use a flat prior, 2σm centred on the

fiducial value mfid(z1) for the first redshift bin, where σm = 0.01. In short, −0.0131− 0.02 =

−0.033 and−0.0131+ 0.02 = 0.007 are the lower and upper limits of the prior on the parameter

m (see Table 4.2.1 for the prior range adopted).

Moreover, to account for other systematics, the following technique was adopted by Köh-

linger et al. (2017). It is argued that the quadratic estimator algorithm, covered in §4.1 requires

precise and accurate characterisation of the noise calculation in the data. To take this into con-

sideration in the likelihood analysis, the following parametric model was adopted:

pnoise(`, zi) = Ai
σ2

γ̂(zi)

neff(zi)
, (4.2.11)

where neff is the effective number of galaxies per arcmin2 and σγ̂(zi) is the dispersion of the

intrinsic ellipticity distribution. We refer the reader to Table 2 in Köhlinger et al. (2017) for

further details on these values. The amplitude, Ai determines the strength of the excess noise

in the autocorrelation power spectra and are also marginalised over in the likelihood analysis.
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4.3 Polynomial Regression

In the very simple case, one can define a set of basis functions and fit these functions to the

observed data. Suppose we have a training set {xi, yi}i=1:N where x refers to the inputs and y

refers to the response or target. We can exploit this training set to learn a fitting function which

will enable us to make prediction at a given test point, x∗. In very simple case, we can consider

polynomial curve fitting:

f (x, β) = β0 + β1x1 + β2x2 + . . . + βdxd

+ βd+1x2
d+1 + βd+2x2

d+2 + . . . + β2dx2
2d

+ . . . + βMdxM
Md,

(4.3.1)

where M is the order of the polynomial and β j refers to the regression coefficient. The above

equation can be neatly written in matrix format as:

f (x, β) = Aβ (4.3.2)

where A ∈ RN×(1+Md) is a design matrix whose columns and rows contain each basis function

evaluated at each input. For example, if we have a 1D fitting function and a single input x, then

the design matrix A is

A =




1 x1

1 x2

1 x3

...
...

1 xN




.

For simplicity, we will also assume a noise covariance matrix, Σ, and in the case of noise-

free regression, a small jitter term can be assumed, that is, Σ = σ2I such that the fitting model

can be re-written as f (x, β) = Aβ + n, where n is the noise term.

There are different methods for learning the regression coefficients, β. If we take a standard

frequentist approach (see Chapter 2 for further details), we then obtain the Maximum Likeli-

hood Estimate (MLE) as
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βMLE = (ATΣ−1A)−1ATΣ−1y

cov(βMLE) = (ATΣ−1A)−1.
(4.3.3)

On the other hand, we can also adopt a Bayesian approach and place a prior on the regres-

sion coefficients, β. In order to derive an expression for the Maximum a Posteriori (MAP), we

assume a Gaussian prior on the regression coefficients, β, that is, p(β) = N (β|µ,C). We obtain

a slightly modified expression for the MAP compared to the MLE:

βMAP = (C−1 +ATΣ−1A)−1(ATΣ−1y +C−1µ)

cov(βMAP) = (C−1 +ATΣ−1A)−1
(4.3.4)
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Figure 4.3 – Illustration of the various steps in the pre-whitening procedure. Let us assume we have a 2D input
parameter space, shown in the upper left panel. It is first centred on the mean, as shown in the upper right
panel, followed by transforming the inputs such that they are uncorrelated, shown in the lower left panel.
Finally, depending on the number of clusters specified (in this example, 2, shown by × and ?), the set of input
parameters can be partitioned into different disjoint regions.
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Placing a prior on the regression coefficients is analogous to using regularisation in machine

learning concepts. The regulariser, λ
2 ‖β‖

2, is used to control over-fitting, that is, we do not

wish to consider models with a large number of basis functions. Hence, the regulariser is used

to penalise extra terms in the model. If we consider minimising the error function only, this is

given by

J(β) =
1
2

N

∑
n=1

( f (xn, β)− yn)
2 +

λ

2
‖β‖2 (4.3.5)

In the next section, we will look into one application of the polynomial regression used as

an emulator in cosmology. It was used in the context of CMB data analysis and was among the

first techniques to introduce machine learning in the cosmology community. We first elaborate

on this technique, before using it to emulate weak lensing band powers for the KiDS-450 data.

4.3.1 The PICO algorithm

PICO (Parameters for the Impatient Cosmologist) is one amongst the early techniques to accel-

erate parameter inference in the analysis of CMB and since then, has led to the emancipation

of emulating techniques in Cosmology (Fendt & Wandelt, 2007b). PICO was initially used to

emulate the CMB power spectra and it was argued to be 3000 times faster than CAMB and

hence 2000 times faster than the WMAP 3 likelihood code.

The training set of PICO consisted of 60000 8D models from a converged MCMC run of the

WMAP first-year. The parameters included were the baryon density, Ωb, the cold dark matter

density, Ωcdm, the dark energy density, ΩΛ, the Hubble’s constant, H0, the scalar spectral index,

ns, the optical depth since reionisation, τ and the normalisation of the power spectra, As.

At the heart of the PICO algorithm is polynomial regression, that is, to learn a function that

maps the cosmological parameters, θ to their respective power spectra, y. Note that for CMB,

we have three different power spectra, namely, the scalar TT, TE and EE power spectra. The

goal is to find the regression coefficients, β which will minimise the squared error over the

training set, that is,

R2 =
N

∑
n=1

[ f (θn)− yn]
2 (4.3.6)

and writing the polynomial function in matrix format, that is, f = Aβ where A contains basis

functions of θ, the solution to the above equation is analytic and the regression coefficients

are given by βsol = (ATA)−1ATy. One can substitute the polynomial functions by other basis
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functions such as Chebyshev or Legendre polynomial functions.

While the above procedure is simple and straightforward, Fendt & Wandelt (2007b) found

that the interpolation scheme fails to model the power spectra over the whole parameter space,

the curse of dimensionality being the reason behind. Moreover, polynomial fitting procedures

are know to be be global fitting methods and are susceptible to over-fitting. To alleviate these

issues, two tricks were adopted:

1. a pre-whitening step is applied to the input cosmological parameters, θ and

2. the training set was divided into M local, disjoint clusters using a clustering algorithm

such as k−means algorithm.
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Figure 4.4 – The marginalised posterior distribution of the cosmological and nuisance parameters using the
PICO algorithm. In particular, for the PICO algorithm, we used 18000 training points, 120 clusters and a
quadratic function to interpolate each band power.

The pre-whitening step can be understood as follows. The N × d matrix of the (input)

training set are first centred on zero. The sample covariance, Cθ of this translated training set
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can be diagonalised as: Cθ = UDUT. U is a d × d orthonormal matrix and D is a diagonal

d × d matrix consisting of the (necessarily positive) eigenvalues. The transformation matrix

which whitens θ is then UD
1
2 , such that the transformed input covariates are x = UD

1
2 θ and

the covariance of x is the identity matrix.

Next, the points in the pre-whitened new basis are partitioned into different disjoint regions

using a clustering algorithm. For example, if we choose the k−means algorithm, it can be in-

tuitively understood as follows. An initial set of k mean vectors are randomly generated and

each point within the training set is associated with the nearest mean. The mean is updated

by the centroid of each of the k clusters. The former and latter are repeated until convergence

is achieved. An illustration of the pre-whitening (and the clustering) step for a 2D input para-

meter is shown in Figure 4.3.

4.3.2 Application to the KiDS-450 Data

For the KiDS-450 analysis, we generate N = 18000 training points (see Table 4.2.1) with the

following input parameters:

θ =
[
Ωcdmh2, Ωbh2, ln(1010As), ns, h, Abary, Σmν

]

and their prior range is given in Table 4.2.1. The input dimension is d = 7. In particular, we first

run a short MCMC chain consisting of 15000 MCMC samples to learn an approximate Gaussian

posterior distribution of the parameters. The training points are sampled from this Gaussian

distribution, centred on the estimated mean and the covariance is set to 4 times the approximate

covariance matrix estimated from the MCMC run. Note that this step can be substituted by an

iterative optimisation algorithm, hence the number of forward simulations would be much less

than 15000. However, we found that the fact that the KiDS-450 data is not very informative of

the parameters, the iterative algorithm we tried failed to converge to the maximum likelihood.

Moreover, the samples (training points) which lie outside the uniform prior range (see Table

4.2.1) are rejected.

Next, we run the forward model at these 18000 training points, recording the values of the

different band powers (EE, GI and II), giving us a set of 24× 3 band powers at each training

point. With a standard polynomial fitting approach, we have y = A(θ)β + ε, where y ∈ RN

represent one set of band powers, θ ∈ RN×d, ε is the noise term (in this case, we are considering

noise-free regression, therefore ε = 0) and A contains the basis functions of θ.

We now apply the PICO algorithm described previously to the band powers. In particular,
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we first pre-whiten the input parameters and we choose M = 120 clusters for the partitioning

procedure. We use a k−mean algorithm to perform the clustering. We then fit a quadratic

function, with basis functions, [1, θ, θ2] to the generated band powers. The PICO solutions,

that is, calculating the regression coefficients, β, took approximately 30 seconds. This is quick

because the inverse (ATA)−1 is done in weight space and the resulting matrix from ATA is just

of size 15.

The solutions, βsol are stored and predictions can be made for a given test point, θ∗, using

y∗ = A∗βsol, where A∗ is the new set of basis function at the test point. Hence, this module

can be connected to an MCMC sampler to make predictions for each MCMC sample. We use

EMCEE (Foreman-Mackey et al., 2013) to sample the full posterior distribution using CLASS

and the PICO algorithm. For 24 independent chains, each with 15 000 MCMC samples, the

time taken by CLASS is ∼ 44 hours while PICO took ∼ 150 minutes to generate the same

number of MCMC samples. The marginalised 1D and 2D distribution is shown in Figure 4.4.

The posterior result obtained from CLASS is shown in blue while the posterior using the PICO

algorithm is shown in green and they agree quite well with each other.

4.4 Neural Network

Another class of algorithm which is able to learn from data is neural network (NN). In this case,

the number of basis functions are fixed but they are allowed to be adaptive, that is, during the

learning procedure, the basis function evolves as the parameter values are updated during the

training phase. Neural networks have many different applications, with regression and classi-

fication being the most common ones. In the following sections, we will briefly highlight the

main concepts behind the feed-forward neural network, which we use for the emulation scheme.

4.4.1 Introduction to Neural Networks

In the previous section, we have looked at polynomial regression and it can be summarised as

f (x, w) = g

(
M

∑
j=1

wjφj(x)

)
(4.4.1)
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Figure 4.5 – Example of a feed-forward neural network architecture consisting of 3 inputs, 6 nodes in the first
layer, 9 nodes in the second layer and 2 outputs. Each intermediary node between the inputs and outputs
represent a neuron (following a brain model) and each connection (line joining any two nodes) carries a cer-
tain weight, w. These weights are learnt (optimised) depending on the loss function defined, which in itself
depends on the problem we want to solve.

where we are using w to denote the regression coefficients (instead of β) and for polynomial

regression, g(·) is just identity. The neural network methodology extends this concept and

makes the basis function more flexible since they are now dependent on parameters which

are adjusted when training the network. Each basis function is a result of the application of a

non-linear function (activation function) on a linear combination of the inputs.

Hence, a neural network can be summarised as a model with a series of non-linear trans-

formations between the inputs and the outputs. For example, in Figure 4.7, we have 2 inputs

and 2 outputs, with three layers consisting of 6 and 9 nodes respectively in between. There is an

additional input (hence a total of 3 inputs) whose value is set to x0 = 1. This then allows one to

model for a fixed offset in the data, w0, and is often referred to as the bias weights (parameters).

Before we move to the Mathematical details of the neural network, we will use the following

indices to denote important quantities throughout this short neural network explanation. n

denotes the nth training point. In total, we have N training points. For the first layer, we can

write the linear combination of the inputs to the node, aj, as

aj =
D

∑
i=0

wjixi, (4.4.2)

followed by the application of a non-linear activation function, h(·)

zj = h(aj), (4.4.3)
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For the second layer, we have a similar methodology, that is,

ak =
M

∑
j=0

wkjzj

zk = h(ak),

(4.4.4)

where J + 1 is the number of neurons in the first layer, and for the third layer, we have

a` =
Q

∑
k=0

w`kzk

z` = σ(a`),

(4.4.5)

where Q + 1 is the number of neurons in the second layer. For a regression problem, suppose

we have L outputs, each output, y` is simply given by z`, that is,

f` = z`. (4.4.6)
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Figure 4.6 – The top panel shows three different types of activation functions, with the upper left and upper
middle one showing non-linear activation functions. The bottom panel shows their corresponding gradient
function. The tanh and sigmoid are two common types of activation functions used in the hidden layers of a
neural network.

Note that we have two types of activation function used in this process. h(·) is generally

a non-linear activation function such as the logistic sigmoid or tanh while the activation func-

tion in the last layer, σ(·) is simply the identity. The latter differs in different applications,
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for example, if we are doing a binary classification, then the activation function is a logistic

sigmoid function. This ensures that the output in this case is a probability between 0 and 1.

Importantly, the different activation functions have an analytic expression for the gradient cal-

culations. There exist various other activation functions, such as ReLU, ELU, Leaky ReLU and

others which are used in building neural network architectures. See Figure 4.6 for an illustra-

tion of the different activation functions mentioned.

The feed-forward neural network described above is able to approximate functions. In

fact, they are referred to as universal approximators. For example, a two-layer neural network

is able to approximate any continuous function, given a sufficiently large number of hidden

units. Once the network architecture is setup, the next step is to learn (optimise) the parameters

(weights and biases) of the neural network. We elaborate more on this in the next section.

4.4.1.1 Training

In the case of regression, where a network is simply learning a mapping between the inputs

and the outputs, a straightforward procedure is to define a loss function, which in this case is

the error function:

J(w) =
1
2

N

∑
n=1
‖ f (xn, w)− yn‖2. (4.4.7)

As described in §4.3, we can start from defining a Gaussian likelihood and derive an expres-

sion for the log-likelihood, which will turn out to be quite similar to the error function above.

Moreover, one can also take a Bayesian approach and place a prior on w and this is analogous

to using a regulariser on the parameters of the neural network.

In general, there is no close-form solution for w and we have to use some iterative schemes

to learn w to the point where the gradient of the error function approximately vanishes, that is,

∇J(w) ≈ 0. The common approach is to initialise w to some initial values, w(0) and iteratively

update w, that is,

w(p+1) = w(p) + ∆w(p), (4.4.8)

where p is the iteration step. For now, if we assume we can compute the gradient of the loss

function with respect to w, the simplest approach to update the w iteratively is via gradient

descent, that is,
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w(p+1) = w(p) − η∇J(w(p)), (4.4.9)

where η > 0 is the learning rate. Note that in this procedure, we are using the whole training

set at once. This might not be an optimal approach and hence, online gradient descent methods

have been proposed, which have been shown to be more reliable. For example, following the

maximum likelihood approach and assuming each data point is independent from each other,

we can write the loss function as

J(w) =
N

∑
n=1

Jn(w) (4.4.10)

and the weight is updated based on each data point at a time, that is,

w(p+1) = w(p) − η∇Jn(w(p)). (4.4.11)

Note that we can also update the parameters, w, based on batches of the training set. An

important aspect of online gradient descent is that it can handle redundancy in the data more

efficiently and it can also avoid cases of local minima when training a neural network (Bishop,

2006). In the next section, we will look into an effective technique for updating the gradients of

w through each layer of a neural network.

4.4.1.2 Back-propagation

Back-propagation is a technique for calculating the gradient of the loss function, E(w) with

respect to each parameter of a neural network by alternatively sending information forwards

and backwards. This process is known as back-propagation error or simply back-prop. To illustrate

how the back-propagation algorithm works, we will consider a single training point, n, such

that the loss due to this training point can be written as:

Jn(w) =
1
2 ∑

`

( f` − y`)2. (4.4.12)
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Figure 4.7 – In this figure, we show a sequence of connections from one input,xi to one output, y`. In between
these two, we have two hidden neurons. The input to the first neuron is a linear combination of the input, xi
and the output from it is a non-linear function, zj. The same idea applies to the second hidden neuron.

Throughout this section, we will use Figure 4.7 as an example to go through the different steps

of the back-propagation procedure. We will assume the tanh activation function for the hidden

units, that is,

h(a) = tanh(a)

h′(a) = 1− h2(a),
(4.4.13)

In the general case, suppose we want to calculate the derivative of the loss with respect to a

specific parameter, wji. This can be done using chain rule to give

∂Jn

∂wji
=

∂Jn

∂aj

∂aj

∂wji
(4.4.14)

and we will introduce the following useful notation:

δj =
∂Jn

∂aj
(4.4.15)

and from the second layer onwards, we have

∂aj

∂wji
= zi. (4.4.16)

Hence Equation 4.4.14 can be written as

∂Jn

∂wji
= δjzi. (4.4.17)

We will now use the above formalism to provide an example of how the gradients are cal-

culated for the neural network shown in Figure 4.7. The inputs to each unit and the activations

are summarised in §4.4.1. Starting from the last layer, we have

97



CHAPTER 4. SCALABLE EMULATING METHODS FOR KIDS-450 4.4. Neural Network

δ` =
∂Jn

∂a`

= f` − y`

(4.4.18)

and this is because, for linear regression, we have y` = a` = z`. Next,

δk =
∂Jn

∂ak

= ∑
`

∂Jn

∂a`
∂a`
∂ak

= (1− z2
k)∑

`

w`kδ`,

(4.4.19)

and finally, we have

δj =
∂Jn

∂aj

= ∑
j

∂Jn

∂ak

∂ak

∂aj

= (1− z2
j )∑

`

wkjδk.

(4.4.20)

We can also derive the gradients of the loss function with respect to a parameter in each

layer, that is,

∂Jn

∂wji
=

∂Jn

∂aj

∂aj

∂wji

= δjxi,

(4.4.21)

∂Jn

∂wkj
=

∂Jn

∂ak

∂ak

∂wkj

= δkzj

(4.4.22)

and

∂Jn

∂w`k
=

∂Jn

∂a`
∂a`

∂w`k

= δ`zk.
(4.4.23)

For batch methods, we can re-write all equations by summing over all patterns, for example,
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∂J
∂wji

= ∑
n

∂Jn

∂wji
. (4.4.24)
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Figure 4.8 – Training and validation loss curve for the neural network employed in this work. It is expected
that both loss functions to decrease with the number of epoch. At the beginning of the optimisation procedure,
the loss function is high because the weights and biases are not optimised at all. During the optimisation
procedure, as the weights and biases are progressively updated via gradient descent, the loss also decreases.

The above formalisms can further be extended in order to obtain the first derivative of the

output with respect to the input, that is, the Jacobian matrix. Moreover, various approximating

schemes have also been developed to estimate the Hessian matrix (second derivatives) as well.

We refer the reader to Bishop (2006) for further details. Now that we have covered the theory

of neural network, in the next section, we show how we can use it to build an emulator for the

KiDS-450 data.

4.4.2 Application to KiDS-450 Data

In our application, we use 20 000 points drawn in a similar fashion as in the PICO approach

(see §4.3.1). The setup of the neural network is as follows. The number of epochs, which is

essentially the number of times that the neural network will pass through the entire dataset, is

fixed to 1000 while the fraction of the validation split is 0.1. This then ensures that the network

is trained on 18 000 training points, with the remaining set of 2000 points kept as the validation

set. The batch size is fixed at 128. The neural network architecture consists of the following

number of units [16, 32, 64, 128, 256], organised in a sequential manner. The input and output

are of sizes 7 and 72, corresponding to the dimension of the input parameters and number of

band powers respectively. We use the Adam optimiser (Kingma & Ba, 2014) with a learning
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rate of 0.001. The time taken to train this network is about 1.5 minutes and the behaviour of the

loss function is shown in Figure 4.8. The routine is built using keras and tensorflow (Abadi

et al., 2015).
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Figure 4.9 – The marginalised posterior distribution of the cosmological and nuisance parameters using neural
network as an emulator. The contours in blue and green correspond to the results obtained with CLASS and
the neural network respectively. The contours are plotted at 68% and 95% credible intervals. The two results
are in good agreement with each other.

Once the neural network is trained, it is stored and can be queried in an MCMC sampler

at any time. In this application, we connect it with the EMCEE sampler and we sample the

full posterior distribution of the cosmological and nuisance parameters. The neural network

is used to predict the band powers at every step in the MCMC routine. The marginalised

posterior distribution of all parameters is shown in Figure 4.9.

The neural network emulator is quite fast compared to the accurate solver, CLASS. It takes

around 150 minutes to sample the full posterior compared to CLASS, which takes around 44

hours. Importantly, as discussed in §4.6, the fact that the prediction of the band powers is very
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accurate, results in the likelihood values, calculated at test points to be quite accurate as well.

Despite the fact that the neural network performs so well, we can also probe various steps

involved in the process. For example, we do not know exactly what is the right architecture.

Hence, neural network strategies are often empirical.

4.5 Scalable Gaussian Process Models

If our aim is to build emulators for cosmological parameter inference, the standard Gaussian

Process described in Chapter 3 is optimal for small training sets (N ∼ 1000). The training

step involves anO(N3) operation for computing the inverse and determinant while prediction

scales as O(N) and O(N2) for computing the mean and variance respectively (assuming we

have cached K−1
y ). In particular, computing the mean prediction is not a major computational

bottleneck. Once, the model is trained, we store α = K−1
y y and E[ f (x∗)] = kT

∗α. Moreover, we

also require O(N2 + ND) for memory if we have to compute the predictive uncertainty.

If we want precise and accurate predictions, especially in high dimensions (d ≥ 3), the only

way is to add more and more training points to improve the interpolation scheme. However,

as we increase the number of training points, the Gaussian Process becomes prohibitively ex-

pensive to train and the computation of the predictive uncertainty is hindered by the O(N2)

operations. One option to deal with this major limitation is by partitioning the training set

before building the GP model.

4.5.1 Product-of-Experts Models

Product-of-Experts (PoE) is a promising candidate for dealing with a large number of train-

ing points. Parallel and distributed computations can be fully exploited during training and

making prediction.

The full data set, D = {X, y} is first partitioned into D(m) = {X(m), y(m)}. Each expert, m

is then used to make prediction, which is recombined at the parent node as shown in Figure

4.10. The fact that we have partitioned the full data set leads to the assumption that our kernel

matrix is now block diagonal and given the nice properties of the latter, training and prediction

can be improved significantly. The inverse of a block diagonal matrix is simply the inverse of

each block while the determinant is

|Ky| ≈
M

∏
m=1
|Ky(m)|
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and the determinant is approximated as the product of the determinant of each block.
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Figure 4.10 – The top panel shows the standard approach for training GPs, which usually involve an O(N3)
operation at each step in the iterative optimisation scheme. The performance can be improved if we partition
the training set, as shown in the bottom panel. If we have M partitions, then this involves only O(MP3)
computational cost, where P is the number of training point per cluster.

Therefore, the marginal likelihood of this PoE model is:

log p(y) ≈
M

∑
m=1

log p(y(m))

= −1
2

M

∑
m=1

[
yT
(m)K

−1
y(m)

y(m) + log |Ky(m)|
]
+ constant

(4.5.1)
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Figure 4.11 – In this figure, we take a noisy data set (a light-curve) with 734 points and we fit a full GP to the
data, with the mean and 3σ confidence interval shown in yellow and pale blue respectively. We also compare
it to the BCM approach, with 2 clusters and the mean and 3σ confidence interval are shown by the broken
green and black curves respectively. The two methods agree quite well, except at x = 1, where the data is
partitioned.

where Ky(m) is of size Nm × Nm and Nm << N. Training now only involves O(Nm) opera-
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tions and O(Nm + NmD) storage. In order to prevent over-fitting, the same single set of kernel

hyper-parameters, η, is used to train the Gaussian Process. In other words, we avoid setting

different sets of kernel hyper-parameters for different experts. Another important ingredient is

the gradient computation with respect to the marginal likelihood.

∂

∂ηi
log p(y) ≈ 1

2

M

∑
m=1

tr
[(

α(m)α
T
(m) −K−1

y(m)

) ∂K(m)

∂ηi

]
(4.5.2)

where α(m) = K−1
y(m)

y(m). The next step is to predict the function at a given test point, x∗ under

the new model. One can take various approaches at this level. One can vary from choosing a

single unit to including all computational units for predictions.

4.5.1.1 Single Unit Prediction

A single node, corresponding to the region of the parameter space where the test point is, can

be used to make prediction. The mean and variance is simply the predictive mean and variance

of a standard Gaussian Process, that is,

µ∗(m) = kT
∗(m)K

−1
y(m)

y(m)

σ2
∗(m) = k∗∗(m) − kT

∗(m)K
−1
y(m)

k∗(m)

(4.5.3)

Note that this applies if our training set is partitioned via clustering method, hence exploit-

ing locality. This is a quick technique to obtain the full predictive distribution at a test point.

4.5.1.2 PoE Prediction

An alternative option is to recombine the mean and variance from each node. Let us consider

two computational units to derive the predictive distribution, that is, we seek the following:

p( f∗|D(i), D(j)) ∝ p(D(i), D(j)| f∗) p( f∗)

= p(D(i)| f∗) p(D(j)| f∗) p( f∗)

=
p(D(i), f∗) p(D(j), f∗)

p( f∗)

∝
p( f∗|D(i)) p( f∗|D(j))

p( f∗)

(4.5.4)
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Figure 4.12 – The marginalised posterior distribution of all the cosmological and nuisance parameters using
the scalable GP emulator, with 18000 training points and 120 clusters. The blue, green and grey contours
correspond to experiments performed using CLASS, GP mean and GP error respectively. All the contours are
plotted at 68% and 95% credible interval respectively.

The PoE assumes a flat prior on the predictive distribution (at the parent node) and a re-

cursive application of the above formalism leads to:

p( f∗|D) =
M

∏
m=1

p( f∗|D(m)) (4.5.5)

and the mean and variance are:

µ∗ = σ2
∗

M

∑
m=1

µ∗(m)

σ2
∗(m)

σ−2
∗ =

M

∑
m=1

σ−2
∗(m)

(4.5.6)

where µ∗(m) and σ2
∗(m) are given by Equation 4.5.3, that is, they are predictions from the indi-
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vidual child node. The PoE formalism will not be used in this work and we will instead use

the technique discussed in the next section.

4.5.1.3 BCM Prediction

On the other hand, the Bayesian Committee Machine (BCM) does not ignore the prior function

and the posterior distribution of the function at a given test point is:

p( f∗|D) =
∏M

m=1 p( f∗|D(m))

pM−1( f∗)
(4.5.7)

and the predictive mean and variance due to all the computational units are:

µ∗ = σ2
∗

M

∑
m=1

µ∗(m)

σ2
∗(m)

σ−2
∗ = (1−M)σ−2

∗∗ +
M

∑
m=1

σ−2
∗(m)

,

(4.5.8)

where σ2
∗∗ is variance evaluated at the test point under the prior. the Note the extra correction

term σ−2
∗∗ in computing the variance compared to the PoE method. If partitioning is clustering-

based, one can use a few neighbouring experts to recombined the mean and variance (Vijayak-

umar et al., 2005). The contribution of units which are far from the unit which contains the test

point is negligible. An illustration of a noisy 1D regression using the BCM method is shown in

Figure 4.11. In particular, the predictive mean and variance agree well with the full Gaussian

Process regression.

4.5.2 Application to KiDS-450

The BCM model is very similar to the PICO algorithm described in §4.3.1, except that we are

using GP models instead of polynomial regression models. In particular, the first two steps are

analogous to the ones adopted when implementing the PICO algorithm, that is,

• the pre-whitening step is applied to the inputs and

• the k−means algorithm is used to partition the training set.

We use N = 18000 training points and M = 120 as in the previous section and we use Equation

4.5.1 to train each GP model. In summary, we have 72 GP models for each band power output.

Training all the GP models took approximately 75 minutes.
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Figure 4.13 – In the three panels, we are comparing the log-likelihood values, as obtained from either method
(PICO, NN and BCM) with CLASS. The Neural Network and Scalable GP methods are more robust compared
to the PICO approach. This can be explained by the fact that PICO requires specifying the fitting model in the
very first place, for which there is a large choice.

At this point, we can choose either of the methods described in §4.5.1.1, §4.5.1.2 or §4.5.1.3

to make predictions at test points in parameter space. We test two methods, namely the single

unit prediction and the BCM prediction, if we choose to use more than 1 cluster. The scalable

GP emulator is connected to the EMCEE sampler to sample the full posterior distribution of the

cosmological and nuisance parameters. If we use a single unit, this takes around 215 and 250

minutes with the GP mean and uncertainty respectively. On the other hand, if we choose the

BCM approach and choose 2 units to make predictions, this takes around 250 minutes either

with the mean or uncertainty from the GP. In Figure 4.12, we show the marginalised posterior

distribution using the single unit approach to make predictions.

4.6 Results

In this section, we highlight the main results obtained from the different emulating methods

(PICO algorithm, Neural Network and Scalable GP models) presented in this chapter. Since

we are using thousands of training points, one performance test we can do is to check how the

log-likelihood, calculated using either method, compares with the one from CLASS. In Figure

4.13, we show the one-to-one relationship between the two log-likelihood calculations at an

independent set of 5000 test points. The neural network and the scalable Gaussian Process

approach are in robust agreement with the expected log-likelihood as calculated using CLASS.

Moreover, once we sample the full posterior distribution of the cosmological and nuisance

parameters, we can check the distribution of the log-posterior values as recorded by the EM-

CEE sampler. If the function is properly reconstructed, we expect the distribution of the log-

posterior using either method (PICO, NN, BCM, CLASS) should follow each other. Indeed, in

all the 3 cases, the sampler consistently explore regions of high likelihood (posterior) as shown
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in Figure 4.14.
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Figure 4.14 – The three panels show the distribution of the log-posterior of the MCMC samples using the four
different methods - PICO, NN, BCM and CLASS. In all the panels, the pale blue histogram corresponds to
the log-posterior as obtained when running the sampler with CLASS. The 3 different emulators all perform
quite well. Importantly, the GP emulator also allows us to sample the posterior by marginalising over the GP
uncertainty (shown by the green histogram in the right panel).

The two cosmological parameters which are currently constrained by weak lensing data are

ln(1010As) and Ωcdmh2 or derived versions of them, for example, σ8 and Ωm. The quantity σ8

measures the amplitude of the linear matter power spectrum at a scale of 8 h−1 Mpc and Ωm is

the matter density of the present day Universe. It incorporates all forms of matter, including

baryonic and dark matter. Another parameter combination which is often adopted in many

weak lensing data analysis is S8 defined as:

S8 ≡ σ8

√
Ωm

0.3
, (4.6.1)

which corresponds to the well-measured direction in the Ωm − σ8 plane.
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Figure 4.15 – In this figure, we show the marginalised posterior distribution of ln(1010 As) and Ωcdmh2. In the
left panel, we compare the scalable GP approach (BCM) with CLASS while in the right panel, we compare
PICO and the neural network with CLASS.

In Figure 4.15, we show the marginalised banana-shaped posterior distribution of ln(1010As)

and Ωcdmh2. Similar shapes are expected if we plot σ8 against Ωm instead of ln(1010As) and
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Ωcdmh2. The posterior distributions as obtained by the 3 emulating methods are robust when

compared to CLASS.

In summary, the number of training points used for the three different methods are 18 000

and this took ∼ 3 hours to be generated. The different timings, pros and cons can be summar-

ised in the table below.

Table 4.6.1 – The pros and cons of the different methods investigated in this chapter

Method Pros Cons

PICO

• Analytic error estimate

• Very fast training

• Specifying the basis func-
tions

NN • Very fast training

• Choice of a model architec-
ture

• No uncertainty estimate
on predictions

BCM

• Analytic error estimate

• Possibility for calculating
analytic derivatives

• Slow training procedure.

The posterior distributions obtained using the different methods, in this exploratory ana-

lysis, are good by visual inspections. However, in Chapter 6, we will use very few training

points and we will also quantify which technique we will recommend to perform emula-

tion, that is, if when we use the GP approach, one can include or exclude the GP uncertainty.

Moreover, despite the fact that the BCM (GP) procedure are slow to train, two important out-

puts are the uncertainty estimates on the function and the analytical derivatives, which we

explore in Chapter 7. Nevertheless, the fact that we are emulating a deterministic function,

perhaps the mean function from the GP is more suitable. A summary of the pros and cons of

the different methods is presented in Table 4.6.1.

While the above results look promising, there are various issues we encountered when we

pursued this work. Some of these limitations are highlighted in the next section and we propose

multiple solutions to these limitations and these solutions significantly improve this work. The

different solutions proposed are investigated in more details in Chapter 6.
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4.7 Possible Improvements

While the above methods work well for deriving constraints on the cosmological and nuisance

parameters, they are not without limitations. In the first case, we do not have strong constraints

on the parameters for current weak lensing surveys and this is only going to be improved as

more data are observed. Therefore, the region encompassed by the parameters is quite broad

in parameter space. Running a short MCMC chain, followed by sampling points within 4

times the covariance matrix (and ensuring that the points lie within the pre-defined prior box,

for example, by adopting a rejection sampling scheme) is an ad-hoc procedure. That said, in

future surveys, one can still substitute the short MCMC run by an iterative scheme (which

should converge fast enough) and an emulator can be built based on the maximum likelihood

solution.

Next, another school of thought might argue that the partitioning step in PICO and BCM is

not an elegant approach since the continuous function which we are emulating is not continu-

ous anymore as a result of the partitioning step. The BCM approach attempts to remedy this

by calculating a weighted mean and variance using local clusters.

We also found multiple technical issues with the priors defined in Köhlinger et al. (2017),

for example, because the parameter Abary is so broad, for some combination of parameters, the

modified 3D matter power spectrum becomes negative. In some cases, large neutrino masses

led to nan values in the power spectrum calculation. We improve upon all these issues in the

next chapter. In short, we introduce the following innovations:

• new priors are chosen such that all forward simulations do not result in nan ,

• the number of training points is reduced significantly from 18 000 to just a few thousands,

• the input training points are distributed according to the pre-defined prior range and

• instead of using log10 transformation on the band powers directly, we will use matrix

logarithm which ensures that band power matrix remains positive definite.

4.8 Summary

In this exploratory analysis, we have provided an in-depth overview of the different algorithms,

which are all scalable, to illustrate the concept behind an emulator. In fact, the three algorithms,
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namely, PICO, Bayesian Committee Machines and Neural Networks are not the only set of al-

gorithms which one can use. We first explained the data we have used to do the analysis in this

chapter followed by the description of the three different emulators. PICO is based on poly-

nomial regression whereas the Bayesian Committee Machines algorithm is based on Gaussian

Processes. The different algorithms are able to recover reliable posterior densities. However,

we identified a few limitations in both the likelihood code distributed and in our approach as

well, which we highlight in §4.7.
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Chapter 5
DATA COMPRESSION AND EMULATION

Imagination is more important than knowledge. For knowledge is limited, whereas

imagination embraces the entire world, stimulating progress, giving birth to evol-

ution.

Albert Einstein

In this chapter, we use the ideas explored in Chapter 4 to further develop the concept of

emulation. In particular, we embark on a completely new approach to perform emulation,

which combines the massive optimal compression, the MOPED algorithm developed by Heav-

ens et al. (2000). As cosmological surveys become more data intensive, one can possibly use

Machine Learning techniques in different cosmological data analyses.

Crucially, MOPED compresses N data points to just p numbers (p � N) while preserving

the constraints on the inferred parameters if we were to compare the inference when using

the uncompressed dataset. However, the theoretical prediction with MOPED can still be slow

because it still requires the evaluation of the forward model which can be very expensive. To

circumvent this issue, the obvious question to ask is: can we evaluate the MOPED coefficients

at some points in parameter space and learn the p different function with a Machine Learning

algorithm? This is central to this chapter and we test various scenarios and exploratory analysis

to illustrate the robustness of our approach.

This chapter makes use of the JLA data* (Betoule et al., 2014) to develop an inference proced-

ure to illustrate how compression and emulation can be used together. This chapter serves as a

precursor to Chapter 6 in which we do a full likelihood analysis in the weak lensing context.

This chapter is organised as follows: in §5.1, we discuss briefly the Fisher information mat-

rix for a Gaussian random field. In §5.2, we discuss briefly the MOPED data compression al-

gorithm and in §5.3, we cover briefly the JLA data, covariance and approximate models which

*http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
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we use this this chapter. In §5.4, we discuss how the one can use a simple optimisation pro-

cedure to estimate the parameters and in §5.5, we dive into the different inference procedures

depending on the test case. We finally discuss the main results of our analysis in §5.6 before

providing a brief summary of the chapter in §5.8.

5.1 Fisher Information Matrix for a Gaussian Random Field

Here, we briefly review the equations derived in Tegmark et al. (1997) to obtain analytical

expressions for the gradient and Hessian of L ≡ −ln L, where L is a Gaussian likelihood.

An analogous prescription is provided by Alsing & Wandelt (2018). Ignoring any additive

constant, the negative log-likelihood, L is given by

L =
1
2
(d− µ)C−1 (d− µ)T +

1
2

ln |C| . (5.1.1)

The data matrix is defined as

D ≡ (d− µ) (d− µ)T , (5.1.2)

such thatL can be re-written asL =
1
2

tr(lnC+C−1D) using the matrix identity ln |C| = tr lnC.

In the following, a comma denotes the partial derivative with respect to a specific parameter.

The first and second derivatives of the data matrix are given by

D,i = 2 (µ− d) µT
,i ,

D,ij = 2µ,jµ
T
,i + 2 (µ− d) µT

,ij.
(5.1.3)

Using the matrix identities (C−1),i = −C−1C,iC
−1 and (lnC),i = C−1C,i, the gradient and

Hessian of L are

L,i =
1
2

tr
[
C−1C,i −C−1C,iC

−1D+C−1D,i

]
, (5.1.4)

L,ij =
1
2

tr
[
−C−1C,iC

−1C,j +C−1C,ij

+C−1
(
C,iC

−1C,j +C,jC
−1C,i

)
C−1D

−C−1
(
C,iC

−1D,j +C,jC
−1D,i

)

−C−1C,ijC
−1D+C−1D,ij

]
.

(5.1.5)
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The two equations above give the gradient and Hessian at any point in the parameter space.

Equations 5.1.4 and 5.1.5 also take into account the fact the covariance matrix might depends

on a subset of the parameters in our model. However, at the maximum likelihood estimate

(MLE), we have L,i = 0 and the Fisher information matrix, Fij is

Fij ≡
〈
L,ij
〉
=

1
2

tr
[
C−1C,iC

−1C,j + 2C−1µ,jµ
T
,i

]
(5.1.6)

If the covariance matrix is independent of parameters, the above expression for the Fisher

information matrix simplifies to

Fij = tr
[
C−1µ,jµ

T
,i

]
. (5.1.7)

5.2 The MOPED algorithm

In this section, we briefly discuss the MOPED algorithm (Heavens et al., 2000) which reduces

the number of data points from N to just p numbers. N is the number of data points and p is

the number of parameters in our model. MOPED essentially finds some weighing vector, b,

which encapsulates as much information as possible for a specific model parameter θα. This

vector is then used to find a linear combination of the data, d such that the compressed data is

yα ≡ bT
α d. (5.2.1)

The first and subsequent MOPED vectors are given respectively by

b1 =
C−1µ,1√
µT

,1C
−1µ,1

(5.2.2)

and

bα =
C−1µ,α −∑α−1

β=1(µ
T
,αbβ)bβ√

µT
,αC
−1µ,α −∑α−1

β=1(µ
T
,αbβ)2

(α > 1), (5.2.3)

where C is the data covariance matrix and µ,α is the vector obtained by calculating the gradient

of our theoretical model at a fiducial parameter set. If B ∈ RN×p is the matrix whose columns

consist of the MOPED vectors, the compressed data vector is just

y = BTd. (5.2.4)
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By construction, the MOPED vectors bα are orthogonal to each other, that is, bT
αCbβ = δαβ.

Therefore, the covariance matrix of y, BTCB = I, the identity matrix, of size p× p. As a result

of this orthogonality condition, elements from the compressed data vector are uncorrelated.

Hence, the log-likelihood is straightforwardly

logL = −1
2

p

∑
α=1

(yα − bT
α µ)2 + constant, (5.2.5)

where bT
α µ is typically the expensive part (if µ itself is expensive to compute). The fact that the

likelihood of the compressed data involves only O(p) operation makes parameter inference

very fast since the O(N3) operation (if the covariance matrix depends on the parameters) in

the standard likelihood is completely eliminated, provided bT
α µ can be rapidly computed.

5.3 Joint Light Curve Analysis (JLA)

The Joint Lightcurve Analysis (JLA) supernova dataset is a compilation of 740 supernova cata-

logues from various surveys (for details see Betoule et al., 2014). Relevant quantities crucial for

our analysis consist of the apparent magnitudes, mB, redshifts, z and light curve parameters:

colour correction term, C and stretch, x1. In addition, a 2220 × 2220 covariance matrix as a

function of calibration parameters α and β for the stretch and colour is also provided (see §5.3.1

for a detailed explanation on how the 740× 740 covariance matrix is constructed). Figure 5.1

shows the apparent magnitudes and the data covariance matrix, which is constructed at the

optimised solution (see §5.3.1 for a detailed explanation).
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Figure 5.1 – The left panel shows the apparent magnitude, with its associated uncertainty, as a function of
redshift and the full data correlation matrix is shown on the right.
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5.3.1 Covariance Matrix

In this section, we first explain how the data covariance matrix is constructed before finding

the first and second derivatives of the covariance matrix for the JLA dataset. In particular, a

covariance matrix which depends on α and β was constructed by Betoule et al. (2014). We are

also provided with a matrix of size 2220 × 2220 and the latter can be interpreted as being 9

blocks each of size 740× 740 in the following format

R =




C00 C01 C02

C10 C11 C12

C20 C21 C22




(5.3.1)

and defining the vector ρ = (1, α, −β), the final covariance matrix is given by

C = ∑
i

∑
j

ρiρjRij +Cdiag. (5.3.2)

It consists of two parts. The first part accounts for the statistical and systematic uncertainties

due to the light curve parameters whereas Cdiag considers the errors due to other effects such

as variation of magnitudes due to gravitational lensing. We refer the reader to §5.5 in Betoule

et al. (2014) for further details on the covariance matrix. The fact that we now have a parameter

dependent covariance matrix and that the full Hessian term in Equation 5.1.5 is a function of

the partial derivatives of the covariance matrix, the first and second derivatives of the data

covariance matrix with respect to α and β are given by

C,α = C01 +C10 + 2αC11 − βC12 − βC21

C,β = −C02 − αC12 −C20 − αC21 + 2βC22

C,αα = 2C11

C,αβ = −C12 −C21

C,ββ = 2C22

(5.3.3)

These derivations are useful when finding the set of parameters which maximise the likelihood.

5.3.2 Model

For a comparative study, we assume the same cosmological model used by Alsing et al. (2018)

and Leclercq (2018). Type Ia supernova being ‘standard candles’, the expected apparent mag-
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nitude is given by

mB = 5 log10DL (z) + MB + δMs− αx1 + βC (5.3.4)

where DL is the luminosity distance which depends on the position of the source and is a

function of the cosmological parameters. M̃B = MB + δM is the absolute magnitude and the

extra term, δM is used to model the dependence of the absolute magnitude on the host galaxy

properties. In particular, it is given by

s =





1

0

if log10Mstellar > 10

otherwise,
(5.3.5)

where Mstellar is the host-galaxy mass. Through the distance-redshift relation, the cosmological

model enters in the analysis, where we assume a flat universe together with cold dark matter

and dark energy (wCDM hereafter). The luminosity distance in a wCDM universe is given by

DL =
(1 + z) c

H0

ˆ z

0

dz′√
Ωm (1 + z′)3 + (1−Ωm) (1 + z′)3(w0+1)

, (5.3.6)

where c is the speed of light, H0 is the Hubble constant and we fix to 70 km s−1 Mpc−1 and the

wCDM universe is described by the two cosmological parameters: the matter density, Ωm and

the equation-of-state, w0. Hence, our final model, accounting for the nuisance parameters as

well, has six parameters in all,

γ = (Ωm, w0, MB, δM, α, β)

.

5.3.3 Dual Compression

The final model in equation 5.3.4 can be viewed as two separate models, consisting of a cosmo-

logical model and a Gaussian linear model such that we can write

µ (θ, η) = u (θ) + v (η)

u (θ) = 5 log10DL (θ)

v (η) = MB + δMs− αx1 + βC,

(5.3.7)
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where θ = (Ωm, w0) and η = (MB, δM, α, β). In most typical cosmological applications, com-

puting the theoretical model related to the cosmology is the most computationally demanding

part of the full analysis. In the same spirit, computing u(θ) (see equations 5.3.6 and 5.3.7)

involves an integration for each supernova. As the sample size increases, it becomes prohib-

itively expensive to evaluate these integrations. It is arguable that these computations are not

as expensive as large-scale simulations but we provide only a proof-of-concept analysis in this

chapter. Note that the computing the Gaussian Linear model is quick. In large simulation set-

tings, the computational resource required is even more onerous. One would ideally want to

reduce the number of simulations to a manageable value whilst still performing a full likeli-

hood analysis, including sampling the full posterior distribution and marginalizing over the

nuisance parameters.

Therefore, we propose the following approach. Given Ntrain cosmologies, θtrain, we compute

u for each supernova and rescale the training set, U (θtrain) ∈ RN×Ntrain such that

Utrain =
U (θtrain)− ū

σ
. (5.3.8)

ū, of length N, is the mean of the number of forward simulations and σ is the standard deviation

of the whole table, U (θtrain). The above is a column-wise operation, The next step involves

finding a set of bases which will retain as much information as possible of Utrain.

5.3.4 Karhunen-Loève Compression

To this end, we resort to the Karhunen-Loève Compression to transform our training set to

a lower and new dimensional space. We first compute the covariance matrix of the scaled

training set as in equation 5.3.8, Ctrain = cov(Utrain). We then compute the eigen-decomposition

of the covariance matrix

Λtrain = ΦCtrainΦT (5.3.9)

giving a transformation matrix, Φ which contains the eigenvectors of the covariance matrix

Ctrain whereas Λtrain is a diagonal matrix containing the eigenvalues of Ctrain. A compression

matrix is then built by retaining the eigenvectors with the most significant eigenvalues. This

then forms a new set of basis Φ̃ ∈ RM×N , where M is the number of components retained

(M� N) such that
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Ũtrain = Φ̃TW, (5.3.10)

where W = Φ̃Utrain. Using the compression matrix Φ̃ gives a mapping from a very high

dimensional space, N to only M space. As we will see in the next section, this step improves

the final algorithm to a large extent since we build few emulators only.

0.2 0.4 0.6 0.8 1.0 1.2
z

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

φ

Figure 5.2 – The first five basis functions, as a function of redshift, obtained after performing Karhunen-Loève
Compression on our training set.

The weights W ∈ RM×Ntrain are now fixed and instead of mapping the cosmological para-

meters, θtrain to each of the column of Utrain, we will now learn a function which maps θtrain to

each row in W which we denote as w(m).

5.3.5 Theoretical Prediction

After this point, we now model each of the weight, w(m) by a Gaussian Process. We refer the

reader to the brief overview we provided in §3 and standard literature for further details on

Gaussian Processes. Each Gaussian Process is trained independently, that is, we have a kernel

matrix, K(m) for each w(m). The predicted mean and variance at a given test point, θ∗ for each

weight w∗(m) is given by

E
[
w∗(m)

]
= kT

∗(m)K
−1
(m)

w(m),

var
[
w∗(m)

]
= k∗∗(m) − kT

∗(m)K
−1
(m)

k∗(m).
(5.3.11)
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Given the surrogate models for the w(m), our theoretical model, calculated at a test point,

γ∗ = (θ∗, η∗) is just

µ∗ (θ∗, η∗) = σΦ̃Tw∗ + Ψη∗ + ū, (5.3.12)

where Ψ is a design matrix given by (1, s, x1, c) corresponding to the parameter vector, η

defined above. Note that the calculation of each mean weight is quick since the prediction

from a Gaussian Process is a linear predictor. In other words, K−1
(m)

w(m), of size Ntrain, is cal-

culated only once after training the Gaussian Process. Computing the uncertainty associated

with the weights can be a computational bottleneck because for each test point, θ∗, we have

to compute K−1
(m)

k∗(m). However, for a small training set (Ntrain < 1000), this is not really an

issue and in general, the cost of running the full simulator can be much more expensive than

running the emulator with its associated uncertainty. Moreover, in low dimension (d ≤ 3),

one can reconstruct the function almost perfectly with a few hundreds training points. De-

vising scalable Gaussian Processes is currently an active area of research. For example, the

Bayesian Committee Machine first partitions the data into local experts and combine the pre-

dictive mean and variance via Bayes’ theorem (Cao & Fleet, 2014; Deisenroth & Ng, 2015).

Snelson & Ghahramani (2005) developed a method, referred to as the inducing point method,

for which the mean and variance involve only O(Q) and O(Q2) computations after training.

Q there refers to the number of inducing points, which can either be optimised or specified by

the user.

5.4 Implementation

Based on the above description, we now use the JLA data, discussed in §5.3 to illustrate our

method. In particular, we will refer to the full forward model (equations 5.3.4 and 5.3.6) as the

simulator while equation 5.3.12 will henceforth be referred to as the emulator.

We use only Ntrain = 300 Latin Hypercube samples (Carnell, 2019) to compute u(θ). We

found that only 5 components (M = 5) were sufficient to accurately reconstruct our table Utrain.

This compression step circumvents the need to build 740 separate Gaussian Processes for each

supernova. Instead, we will model each of the 5 weights,w(m), by an individual Gaussian Pro-

cess. In Figure 5.2, we show the 5 basis functions† which are functions of the redshift. Once

†Strictly, there is a small additive error due to the reconstruction which can be propagated in the full statistical
framework. However, it is deemed to be very small and has negligible impact on optimization and parameter
inference (see Figure 5.4 and panel (a) in Figure 5.10)
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we have a surrogate model for each w(m), for each draw of θ and η, we can then use equation

5.3.12 to compute the predictive apparent magnitude. The latter also has an uncertainty associ-

ated with it, since the predictive weights from the Gaussian Processes are normally distributed.

Our analysis is carried out in a fully Bayesian framework, hence propagating the uncertainty

obtained from the Gaussian Processes in the likelihood (see §5.5 for a detailed explanation).

Since we are essentially reconstructing a function, which is faster than the original full for-

ward model, we will first show that, the emulator can also be used in an optimization algorithm

to give a good approximation to the optimal solution, compared to the full forward model. Of

course, the key ingredients for optimization involve the calculation to the gradient and Hessian

of the likelihood, which we now discuss.

5.4.1 Optimization

In this section, we discuss how optimization can be used to learn an estimate of the MLE via

an iterative procedure. Recall that γ = {θ, η} is the set of parameters consisting of the cosmo-

logical and nuisance parameters. The second order Taylor expansion of L about an expansion

point, γ̂, in terms of the gradient g = ∇L and the Hessian H = ∇2L, yields

L (γ̂ + δγ) ≈ L (γ̂) + δγTg (γ̂) +
1
2

δγTH (γ̂) δγ. (5.4.1)
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−
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i‖2 2
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Figure 5.3 – The L2-norm calculated between the difference vector γi+1 and γi (optimisation loss) for 10 itera-
tions. The parameters, γ̂ converges quickly to the optimal solution using either the simulator or the emulator.

The next question is: how do we choose an optimal δγ and γ̂? The latter is obtained in

terms of the H and g by computing the derivatives of the right-hand side of the above equation

and setting it to zero such that
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δγ = −H−1 (γ̂) g (γ̂) . (5.4.2)

Given an initial guess for γ̂0, an iterative scheme can be used to find the minimum of L

γ̂n+1 = γ̂n −H−1 (γ̂n) g (γ̂n) . (5.4.3)
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Figure 5.4 – The optimised solutions obtained using the simulator and emulator. Once we obtain the it-
erative solution, γ̂ and the inverse of the Hessian matrix for the parameters, Ĉγ, we draw 100000 samples
from a multivariate normal distribution with mean and covariance, γ ∼ N (γ̂, Ĉγ). These samples are
then used to obtain the above contours (68% and 95% interval) which give a rough idea of the maximum
likelihood estimates. Note that both the simulator and the emulator converge to the following solution:
γ̂ = (0.178, −0.710, −19.039, −0.052, 0.125, 2.618).

This is the well-known Newton’s method for optimization. The gradient and Hessian are given

by Equations (5.1.4) and (5.1.5) respectively. A missing ingredient is the calculation of µ,i and

µ,ij, for which we use the following finite difference formula
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µ,ij ≈
1

2δγiδγj

[
µ
(
γi + δγi, γj + δγj

)
− µ

(
γi + δγi, γj

)

−µ
(
γi, γj + δγj

)
+ 2µ

(
γi, γj

)

−µ
(
γ− δγi, γj

)
− µ

(
γi, γj − δγj

)

+µ
(
γi − δγi, γj − δγj

) ]
.

(5.4.4)

Note that we can also get µ,i using central difference method from the above formulae. In

particular,

µ,i ≈
µ
(
γi + δγi, γj

)
− µ

(
γi − δγi, γj

)

2δγi
(5.4.5)

Also, these formula are used only at the level of the cosmological model, u(θ) since the latter

is a non-linear function of the cosmological parameters. Moreover, v(η) is a Gaussian Linear

Model and hence all derivatives can be done analytically. Some of the expressions also simplify

to a large extent depending on the parameters considered. For example, µ,αα = 0. This results

in simpler analytical expressions for the gradient and Hessian.

We apply the Cauchy convergence criterion, ‖γi+1 − γi‖2
2 < ε where ‖ · ‖2

2 denotes the L2

norm and we choose a strict value for ε = 10−16. Both the emulator and the simulator converge

to the same value after 10 iterations only (see Figure 5.3). As seen in Figure 5.4, both methods

(the simulator or the emulator) give an estimate of the uncertainty solely from the optimization

procedure depicted above.

At this point, we adopt a simple approach and fix the covariance matrix at the optimised

solution for α = 0.125 and β = 2.618 to enable us to use the MOPED algorithm to compress

the data. Parameter inference with parameter dependent covariance matrix under the MOPED

formalism has recently been explored by Heavens et al. (2017b).

5.5 Inference

From the above demonstration, we now have a robust surrogate model which we can use to

do parameter inference. The priors for the cosmological parameters are similar to Alsing et al.

(2018) who used hard-cut prior boundaries for Ωm and w0, alongside their Gaussian priors.

From the optimisation step above, the widths of the priors of the nuisance parameters essen-

tially encompass all of the likelihood. Also, in §5.5.5, we will make use of this prior information

to analytically derive the joint posterior distribution of the cosmological parameters, by mar-

ginalising over the nuisance parameters, η. In particular, we assume uniform priors on the
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cosmological parameters and the nuisance parameters, we assume Gaussian distribution with

mean, corresponding to roughly the optimal solution and unit variance, that is

Ωm ∼ U
[
10−3, 0.6

]
,

w0 ∼ U [−1.5, 0.0] ,

MB ∼ N [−19.0, 1.0] ,

δM ∼ N [0.0, 1.0] ,

α ∼ N [0.10, 1.0] ,

β ∼ N [2.50, 1.0] .

(5.5.1)
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Figure 5.5 – The forward modelling scheme can be understood as follows: we have the first set of parameters
θ which generates probabilistic weights w(m) and a separate independent draw of the nuisance parameters η.
Coupled with the MOPED vectors, the probabilistic theoretical prediction is given by: t = BTµ and y = BTd
is the fixed MOPED data vector.

Next, we define MOPED data vector as y = BTd and the probabilistic prediction t = BTµ.

The latter is a result of the probabilistic weights w(m). From the directed acyclic graph in Figure

5.5, the joint probability distribution can be written as

p (θ, η, t, y) = p (y |t ) p (t |θ, η) p (θ) p (η) . (5.5.2)

By product rule, we also have

p (θ, η, t |y ) = p (y |t ) p (t |θ, η) p (θ) p (η)
p (y)

. (5.5.3)

Therefore,
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p (θ, η |y ) = p (θ) p (η)
p (y)

ˆ
p (y |t ) p (t |θ, η) dt (5.5.4)

where the denominator, p(y), is simply a constant which does not depend on θ and η. It is

therefore irrelevant in this case. The integral above is another Gaussian distribution in y, that

is,

p (θ, η |y ) ∝ N (BTµ, I + σ2BTΦ̃TΣΦ̃B)p (θ) p (η) (5.5.5)

where Σ is a 5× 5 diagonal covariance matrix containing the uncertainties of the GP. Therefore,

following the above procedures, we can also propagate the GP uncertainty in the analysis. Note

that, equation 5.5.5 has an interpretation. If the function is perfectly reconstructed, Σ → 0 and

we recover the standard MOPED formalism, where the covariance matrix is just a diagonal

matrix in the likelihood. This joint posterior distribution can then be sampled using standard

MCMC method (see §5.6 for a detailed explanation).

5.5.1 Compression and Emulation Step

In this section, we discuss how the MOPED coefficients can be used to accelerate parameter

inference via emulation. Although the MOPED algorithm allows for quick likelihood compu-

tation, one would still need to compute the model at a given point in parameter space when

running an MCMC. As discussed in §5.3.3, in general, each model evaluation can be quite ex-

pensive. However, each MOPED output, tp is a continuous function over the input domains

(θ, η). Therefore, we propose the following emulating scheme

1. draw Ntrain parameters from some prior distribution,

2. compute the theoretical model at these points,

3. compress the data/model using the MOPED algorithm and

4. emulate each output with a GP

It is crucial to note that each output is dependent on all the input parameters, that is, tp =

f (θ, η). Also note the importance of the compression step, that is, we always have only p

Gaussian Processes for the p input parameters.

However, as in any Machine Learning algorithm, one question is the optimal location of

the training points. Indeed, since the parameter space gets larger and larger with increasing
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dimensions, building the emulator with training points generated from the prior volume is

challenging in various ways. From an algorithmic perspective, the GP becomes impractical for

large number of training points, ∼ O(1000) and might not even be faster than the full forward

simulator. However, this also depends on the context we are building the emulator. A single

forward simulation might take hours or even days to run. In addition, imagine a scenario

where we are distributing Ntrain training points generated from a unit Gaussian distribution in

the parameter space while the underlying true posterior distribution of that parameter, assum-

ing it is a Gaussian, has a width 10 times smaller. In other words, we will be placing training

points which will be sub-optimal and will lead to a poor function reconstruction with the GP.

To circumvent these potential pitfalls and to simultaneously improve the emulator, we keep

the same uniform prior for generating the training points for our cosmology while for the

nuisance parameters, we draw training points from an uncorrelated Gaussian distribution with

2 times the covariance of the MLE solution. A similar approach was adopted by Auld et al.

(2007) who developed a neural network algorithm for accelerating cosmological parameter

inference for the Cosmic Microwave Background, CMB.

In the next section, we illustrate two methods which exploit sophisticated techniques such

as experimental design to reduce the number of forward simulations to a manageable number.

5.5.2 Method 1 - LHS (2D)

For this particular problem and using the same idea developed in §5.3.3, the functional form

of our model can be written as the sum of two completely disjoint models. In other words,

equation 5.3.4 can be written as

mB = u(θ) + v(η), (5.5.6)

where u(θ) = 5log10DL(θ) and contains only the cosmology, that is, θ = (Ωm, w0) while

v(η) = MB + δMs − αx1 + βC is a function of the nuisance parameters only, that is, η =

(MB, δMB, α, β). Let us now assume that the MOPED vectors are pre-computed and the com-

pression leads to

〈y〉 = BTu(θ) +BTv(η)

= ũ(θ) + ṽ(η).
(5.5.7)

Note that ũ is a vector with p numbers but each is a function of just 2 parameters, Ωm
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and w0. The expensive part of the calculation resides in computing the cosmological model,

for example, querying CLASS (Lesgourgues, 2011) at every step in an MCMC for inferring

cosmological parameters in a weak lensing analysis.

In short, this is only a 2D problem and does not require many forward simulations. There-

fore for this part, we use only 300 Latin Hypercube samples (LHS) to model each yp by a

Gaussian Process.

5.5.3 Method 2 - LHS (6D)

In the previous method, the fact that the final model is just the sum of two functions largely

simplify our task since we are able able to focus only on the expensive part of the calculation.

However, there are cases where one would need to model the cosmological parameters and the

systematics simultaneously. An example of this is the computation of the weak lensing power

spectrum where one has an additional nuisance parameter due to baryon feedback (Köhlinger

et al., 2017).

Therefore, in this section, we will directly emulate each yp, as a function of both the cosmo-

logical (θ) and nuisance (η) parameters, using Gaussian Processes. However, the fact that we

now have extra dimensions in our emulator compared to the method presented in §5.5.2, there

is the need for additional forward simulations to adequately improve the performance of the

emulator. In this case, we use a total of 700 forwards simulations to model each yp and example

of the GP emulator for each MOPED coefficient across a slice in parameter space is shown in

Figure 5.6.

0.1 0.2 0.3 0.4 0.5
Ωm

−1160

−1155

−1150

y 1

0.1 0.2 0.3 0.4 0.5
Ωm

−543.0

−542.8

−542.6

y 2

0.1 0.2 0.3 0.4 0.5
Ωm

699.50

699.51

699.52

699.53

y 3

0.1 0.2 0.3 0.4 0.5
Ωm

0.3260

0.3265

0.3270

0.3275

0.3280

0.3285

0.3290

y 4

0.1 0.2 0.3 0.4 0.5
Ωm

14.329

14.330

14.331

14.332

14.333

y 5

0.1 0.2 0.3 0.4 0.5
Ωm

33.269

33.270

33.271

33.272

y 6

Figure 5.6 – Plot showing the prediction, using the method presented in §5.5.3 from each emulated MOPED
output as a function of Ωm across a slice in parameter space. The orange curves refer to the emulator while the
black curves correspond to the output from the full simulator. The green shading represents the 3σ uncertainty
from the Gaussian Process.
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Figure 5.7 – Plot of the likelihood function evaluated across a slice in parameter space for the three different
methods presented in §5.3.3, §5.5.2 and §5.5.3. The black curve shows the likelihood calculated using the
full simulator while the red, blue and green curves are the likelihoods calculated using the dual compression
approach in §5.3.3, the LHS 2D method (§5.5.2) and LHS 6D method (§5.5.3).

5.5.4 Likelihood Regressor Approach

An enticing and emerging technique in cosmology is likelihood-free inference. In this sec-

tion, we briefly cover this topic and we use the emulator to to instead approximate the log-

likelihood, that is, essentially constructing a likelihood regressor. In many Bayesian Inference

problems, the full likelihood function might be poorly understood. Approximate Bayesian

Computation (ABC), also often referred to as a rejection sampling technique, provides a satis-

factory approach to alleviate the issue of intractable likelihood.

In a nutshell, the idea behind most ABC algorithm is to get a representation of the ap-

proximate posterior distribution of the parameters by choosing the parameters that produce

simulated data to be close enough to the observed data. More explicitly, a sample is drawn

from the prior followed by a draw of the simulated data, ds from the likelihood and the sample

is accepted if ρ(ds, do) < ε. do is the observed data in this case (Alsing et al., 2018).
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Figure 5.8 – Similar to Figure 5.7, for the same slice in parameter space, we use our emulator for the likelihood
regressor approach to compute the likelihood. The true likelihood and emulator likelihood are shown in black
and yellow respectively.
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As discussed by Leclercq (2018), ABC has various limitations. For example, how do we

define the distance metric, ρ between the simulated data and the simulated data, how small

should ε be? If the latter is too small, many samples are rejected and this is not what we

would ideally want because a single realisation of the simulated data might be computationally

expensive. In addition to this, ABC does not use prior information about samples which are

already accepted according to the distance metric.

While Figure 5.7 compares the likelihood, as calculated across a slice through the Ωm para-

meter, between the emulator and the simulator, Figure 5.8 shows the likelihood of the emulator

(likelihood regressor) when compared to the exact likelihood using the MOPED compression

scheme.

5.5.5 Analytical Marginalisation

If we are solely interested in the cosmological parameters, we can analytically marginalise over

the nuisance parameters, η. In this particular, we exclude the MOPED compression step and

the joint posterior of Ωm and w0 is given by:

p (θ |d ) ∝ exp
[
−1

2
( f − µ f )

TG( f − µ f )

]
p (θ) (5.5.8)

where

G = (C+ ΨΨT)−1

µ f = G−1C−1Ψ(ΨTC−1Ψ + I)−1η̄

η̄ is the mean of the Gaussian prior for the nuisance parameters and f (θ) = d − u(θ). At

this point, we can either use the simulator or the emulator to model u(θ). Recall that for the

simulator u(θ) = 5 log10DL(θ) whereas for the emulator, u(θ) = σΦ̃Tw(θ) + ū.

If we use the compressed version of the data, this results in a slightly different formula for

the joint posterior. Defining the matrix A = I + σ2BTΦ̃TΣΦ̃B:

p (θ |y ) ∼ exp
[
−1

2
(h− µh)

T F (h− µh)

]
p (θ) (5.5.9)

where

F = (A+BTΨΨTB)−1

µh = F−1A−1BTΨ(I + ΨTBA−1BTΨ)−1η̄
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and h(θ) = y − BTu(θ) and if we exclude the Gaussian Process uncertainty or if we use the

simulator directly, then,

F = (I +BTΨΨTB)−1

µh = F−1BTΨ(ΨTBBTΨ + I)−1η̄

Equations 5.5.8 and 5.5.9 have the same analytic form but the MOPED formalism really

shines if we were to use Equation 5.5.9. G is of size N×N whereas F is just of size p× p. Recall

that in our case, N = 740 and p = 6. While we have provided a full analytical marginalisa-

tion for the nuisance parameters here, in the next section we will highlight the main results

obtained when doing the marginalisation numerically, via Monte Carlo sampling and we will

also discuss the performance of the emulator.

5.6 Results and Performance

We further perform a series of diagnostics in order to understand the performance of various

emulators in this study. For the dual compression approach, before sampling the joint posterior

distribution, we use the surrogate model to substitute the full simulator in the optimisation

procedure.
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Figure 5.9 – For an independent set of 12000 test points, we also compute the likelihood using the three dif-
ferent methods in §5.3.3, §5.5.2 and §5.5.3 respectively. The fact that the emulator using either method is well
reconstructed leads to an almost perfect likelihood as shown in this figure.

We can also test the likelihood values at an independent set of test points. This so-called

hold-out test is useful to assess the performance of our emulator models. Hence, we plot the

true likelihood against the predicted likelihood using the Gaussian Process emulator in Figure

5.9 for 3 different methods (§5.3.3, §5.5.2 and §5.5.3) we considered.

There are two main computationally expensive components in most inference machinery.

The first part is the theory evaluation itself and the second part being the likelihood calculation.
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For the particular problem considered in this work, we have introduced a latent probabilistic

representation of the function which is quick to compute. Coupled to it, is MOPED which

essentially provides a work-around theO(N3) cost in the likelihood evaluation. The two pieces

combined, makes parameter inference∼ 23− 26 times faster depending on whether we use the

mean only or both the mean and variance from the GP emulator.
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(c) GP-LHS (6D)
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Figure 5.10 – The panel in (a) corresponds to the marginalised posterior distributions using the method dis-
cussed in §5.3.3 and panel (b) refers to the posterior distribution with the method presented in §5.5.2. Similar
plots are shown in panels (c) and (d), corresponding to methods discussed in §5.5.3 and §5.5.4 respectively.
In particular, for (a), (b) and (c), it is possible to propagate the Gaussian Process uncertainty in the inference,
hence we show two contours, where the solid one refers to the case where the Gaussian Process uncertainty is
used and the broken one where only the mean of the Gaussian Process is used. We also compare the posterior
obtained with the full simulator and as shown here, the posterior distributions using either emulator are barely
discernible relative to the true posterior. The inner and outer contours correspond to the 68% and 95% credible
interval respectively.

If one uses prior information, such as the Hessian matrix obtained from a gradient descent

130



CHAPTER 5. DATA COMPRESSION AND EMULATION 5.6. Results and Performance

algorithm or previous experiments to place the training points, the number of training points

for the emulator can be reduced significantly, hence alleviating the O(N3) cost when training

the Gaussian Processes. Recall that in our case the training points are distributed across the

whole pre-defined prior range for our cosmology.

Table 5.6.1 – Performance of the emulators relative to the simulator

Method Ntrain Training (s) Memory (MB) Inference (s) log(Z) |log(B01)|

Simulator (with MOPED) - - - 3900 -19.225 -

Dual Compression (2D): Mean 300 3 0.6 85 -19.240 0.029

Dual Compression (2D): Error - - - 136 -19.216 0.005

GP-LHS (2D): Mean 300 2 0.7 90 -19.236 0.011

GP-LHS (2D): Error - - - 130 -19.255 0.030

GP-LHS (6D): Mean 700 120 24 100 -19.223 0.002

GP-LHS (6D): Error - - - 424 -19.259 0.034

GP (6D): Likelihood Regressor 700 28 4 60 -19.246 0.015

Note: The number of training points/forward simulations is shown in the second column. The third column
provides the time taken to train the Gaussian Processes while the fourth column shows the memory con-
sumption for the different types of emulators. In the fifth column, we have the time taken to obtain 120 000
MCMC. Once we have the samples from each method, we use MCEvidence (Heavens et al., 2017a) to com-
pute the log-evidence, shown in the sixth column and we then compute the log-Bayes-Factor relative to the
full simulator.

Figure 5.10 shows the marginalised posterior distribution for all the different cases investig-

ated in this chapter. In particular, the top left and right panels show the results obtained using

dual compression approach and the case where we emulate only p MOPED coefficients due

to the two cosmological parameters, Ωm and w0. The bottom left and right panels show the

marginalised posterior distribution when we emulate the MOPED coefficients directly (a 6D

problem) and the case where we build a likelihood regressor.

However, one should not erroneously be led to the conclusion that this can easily be exten-

ded to higher dimensions. In the latter, one could presumably use intelligent designs such as

the Latin Hypercube sampling, as we do in this work, to generate a few hundreds of training

points and build surrogate models with Gaussian Processes but the predictive uncertainty for

a test point located far from the training set will in general be large. This arises due to the fact

that the distribution of the training points become sparser as the dimensionality of the problem

increases. In other words, perfect reconstruction (precise and accurate) of the original function

is not a trivial task in higher dimensions because of the curse of dimensionality. One way to

avoid this is to add more and more training points, but unfortunately, the complexity in terms
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of training and storage of the Gaussian Processes increases. Nonetheless, this curse is not solely

inherent to Gaussian Processes but to many Machine Learning algorithms.
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Figure 5.11 – The top panel shows the performance of each method during the training phase. In particular, the
partitioning method is the most expensive part, not only in terms of time but also memory. The bottom panel
shows the time in seconds to generate 120 000 MCMC samples. The fact that including the GP uncertainty
in the inference step is not surprising because of an extra O(N3) operation at each step for calculating the
predictive variance.

Figure 5.11 shows the different performance of the different emulators. The top panel gives

an indication of the time it takes to train the emulators and also the memory footprint. The

lower panel indicates the time taken to sample the full posterior distribution when using the

different emulators. It is expected that including the GP uncertainty, especially, when we have

p separate Gaussian Processes will be expensive. However, using the mean of the emulator

leads to very quick results, that is, it takes around 90 seconds to generate 120 000 MCMC

samples compared to the full simulator which takes around one hour, if we were to use the

uncompressed dataset.

5.7 Related Work and Discussion

In the same spirit of likelihood regressor inference, Alsing et al. (2018) introduced a novel

method for performing parameter inference using Density-Estimation likelihood free Inference

(DELFI) and has shown to outperform existing method such as Population Monte Carlo Ap-

proximate Bayesian Computation (PMC-ABC) when comparing the number of forward simu-

lations required in each case. Moreover, the authors extended their work in Alsing & Wandelt

(2019) by explicitly marginalising over the nuisance parameters and in Alsing et al. (2019), the

posterior distribution of cosmological parameters were inferred in an active learning scenario

using neural networks. These techniques are generally quite robust and require of theO(1000)
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forward simulations only for a typical ∼ 10 dimensional problem.

On the other hand, Leclercq (2018) proposed Bayesian Optimisation for likelihood regressor

Inference (BOLFI) to infer cosmological parameters using the JLA data. The technique presen-

ted in that work seeks to learn a smooth function for the likelihood in an active learning scen-

ario using Bayesian Optimisation. 6000 forward simulations were used to infer the 2 cosmolo-

gical parameters, with partial marginalisation of the nuisance parameters which yield smaller

contours. Bayesian Optimisation technique also relies on using Gaussian Process to build a

surrogate model of the likelihood and one can expect that the active learning procedure be-

comes increasingly and inherently more expensive as training points are added to improve the

latent function. This is because, the posterior distribution of the Gaussian Process needs to be

updated and this requires re-training, which involves an O(N3) each time the training set is

augmented. In other words, the kernel hyperparameters need to be updated for every update

in the training set.

Similar to the idea presented in §5.5.3, instead of emulating each MOPED output with a

Gaussian Process, one could also emulate the likelihood directly. In this case, we simply use

the expected MOPED numbers, 〈y〉 in §5.5.3, evaluated at the 700 LH samples to compute

the log-likelihood. The latter, together with the 700 LH samples, are then used to construct a

surrogate model for the log-likelihood using Gaussian Processes.

This technique has various advantages and disadvantages. Emulating the likelihood dir-

ectly, sidesteps the impediment of training many Gaussian Processes. This implies that we

have to query a single surrogate model at each step in an MCMC and hence makes parameter

inference significantly fast. The trained model also has less storage requirement compared to

emulating many functions. Moreover, since Gaussian Process has this nice feature of being in-

finitely differentiable also suggests that the likelihood regressor could potentially be used as a

proxy for doing optimisation. In the same spectrum, an important quantity for gradient-based

Monte Carlo sampler, such as Hamiltonian Monte Carlo (HMC) is the gradient of the potential

energy, the negative log-likelihood. One could therefore use Gaussian Process as a proxy to

obtain an analytical expression for the gradient.

While the likelihood regressor method works well, it is not without problem. In particular,

the uncertainty from the likelihood regressor will not be useful, unless one considers a scenario

where training points are actively added (Leclercq, 2018). On the other hand, the likelihood is

a function of all the parameters in the model. This results in a high dimensional space problem

which is more likely to hinder the performance of not only the Gaussian Process, but many
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other Machine Learning algorithms in general.

5.8 Summary

We briefly summarize our analysis in this section. We have shown how we can use a dual com-

pression approach to infer the cosmological and nuisance parameters for the JLA dataset. We

have also shown that by using the MOPED formalism, at the level of the most expensive part

of the calculation, we can significantly accelerate the computation. If one chooses to emulate

the function as a whole, this results in a 6-dimensional problem and requires more training

point. Alternatively, instead of building multiple emulators, one can simply emulate the log-

likelihood. In all scenarios, we are able to generate robust posterior distributions, reducing the

computational time from roughly an hour to just a few minutes. Moreover, to quantify the dis-

crepancy between two joint posterior distribution of parameters, we use MCEvidence and we

see from Table 5.6.1 that the values of the evidence do not significantly differ from each other

(at one decimal place), hence quantifying that the different emulators are robust.
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Chapter 6
PARAMETER INFERENCE FOR WEAK LENSING

USING GAUSSIAN PROCESSES AND MOPED

Technology is just a tool. In terms of getting the kids working together and motiv-

ating them, the teacher is the most important

Bill Gates

This chapter has been published as a work in Monthly Notices of the Royal Astronomical

Society (MNRAS) peer-review journal and was also presented as a short work in the Interna-

tional Conference on Learning Representations (ICLR) conference. The work, code and video

for the two works can be accessed through the following:

1. Parameter Inference for Weak Lensing using Gaussian Processes and MOPED (, �)

A. Mootoovaloo, A. Heavens, A. Jaffe and F. Leclercq, MNRAS, 497, 2213-2226, 2020

2. Gaussian Processes and MOPED Compression for Weak Lensing (, 5, �)

A. Mootoovaloo, A. Heavens, A. Jaffe and F. Leclercq, ICLR Conference

The following content corresponds to a large extract from the MNRAS work. A. Mootoova-

loo led the project and code development. A. Heavens, A. Jaffe and F. Leclercq constantly

provided feedbacks, guides and ideas to ensure successful completion of the project. This

chapter makes use of the KiDS-450 likelihood code*.

6.1 Overview

In this work, we propose a Gaussian Process (GP) emulator for the calculation both of tomo-

graphic weak lensing band-powers, and of coefficients of summary data massively compressed

*https://bitbucket.org/fkoehlin/kids450_qe_likelihood_public/
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with the MOPED algorithm. In the former case cosmological parameter inference is accelerated

by a factor of∼ 10-30 compared with Boltzmann solver CLASS applied to KiDS-450 weak lens-

ing data. Much larger gains of order 103 will come with future data, and MOPED with GPs

will be fast enough to permit the Limber approximation to be dropped, with acceleration in

this case of ∼ 105. A potential advantage of GPs is that an error on the emulated function can

be computed and this uncertainty incorporated into the likelihood. However, it is known that

the GP error can be unreliable when applied to deterministic functions, and we find, using the

Kullback-Leibler divergence between the emulator and CLASS likelihoods, and from the un-

certainties on the parameters, that agreement is better when the GP uncertainty is not used. In

future, weak lensing surveys such as Euclid, and the Legacy Survey of Space and Time (LSST),

will have up to ∼ 104 summary statistics, and inference will be correspondingly more challen-

ging. However, since the speed of MOPED is determined not the number of summary data,

but by the number of parameters, MOPED analysis scales almost perfectly, provided that a fast

way to compute the theoretical MOPED coefficients is available. The GP provides such a fast

mechanism. The data (band powers and covariance matrix) used in this work is described in

much details in §4.1 in Chapter 4. Moreover, the Gaussian Process approach adopted in this

Chapter is dicussed in Chapter 3.

6.2 Emulator

In this section, we use the formalism presented above to build the emulator. In brief, the latter

involves 4 main stages, 1) generating a set of design points, 2) running the full forward simu-

lator at these points, 3) training the emulator and 4) making predictions at test locations in the

parameter space. Once this is done, the emulator is connected to an MCMC sampler to obtain

the marginalised posterior distributions of the parameters in our model. A simple flow of the

core idea is shown in Fig. 6.1. In the following, we touch briefly on the data we have used for

our analysis before systematically going through the steps we have taken to build the emulator.

Gaussian'
Processes

LikelihoodCovariance Data Systematics

Figure 6.1 – A diagrammatic form of the core principle in this work. We substitute the most expensive part of
the pipeline by surrogate models (Gaussian Processes) built at the level of the band powers. The other blocks in
the inference procedure, for example, for the computations related to the nuisance parameters, are unaltered.
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6.2.1 Data

We use the publicly-available weak lensing data from Köhlinger et al. (2017) to test the per-

formance of our emulator. We use 3 tomographic redshift bins, namely, 0.10 < z < 0.30,

0.30 < z < 0.60 and 0.60 < z < 0.90 and the convergence power spectrum is computed in the

range 10 < ` < 4000. Moreover, we follow Köhlinger et al. (2017) and drop the first, second-to-

last and last band powers in our analysis, that is, we use only the band powers corresponding

to the following `-ranges:76 ≤ ` < 220, 221 ≤ ` < 420, 421 ≤ ` < 670 and 671 ≤ ` < 1310. For

a 3-bin tomographic analysis, we have 6 auto- and cross- tomographic power spectra to calcu-

late. The data and covariance matrix for this problem are shown in Fig. 4.1 and 4.2 respectively.
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Figure 6.2 – Five Latin Hypercube samples (using the maximin method) projected in 2D. In particular, we
generate five Latin Hypercube samples in 8D and we scale them according to our pre-defined priors. In the
figure, we show the projection in 2D for 3 parameters and as expected, each point occupies it corresponding
row and column.

The emulator can be built at the level of the power spectra or the band powers. Here we

choose to build a GP for each band power, giving 24 GPs. Alternatively, for likelihood-free

inference methods, one can also emulate the likelihood directly using the GPs (see Leclercq

(2018) and Fendt & Wandelt (2007a)). For power spectrum reconstruction, one can use the PICO

method or an alternative, but constrictive, stance is to adopt the approach taken by Habib et al.

137



CHAPTER 6. PARAMETER INFERENCE FOR WEAK LENSING USING GAUSSIAN PROCESSES AND MOPED 6.2. Emulator

(2007) to first learn a set of basis functions via Singular Value Decomposition (SVD) and model

the resulting weights by a Gaussian Process. However, building an emulator for weak lensing

analysis needs to account for systematic effects, but some of these can be included analytically

without emulation, resulting in an 8-dimensional GP, rather than 12 (6 cosmological and 6

systematic parameters) if we were to emulate the likelihood.

6.2.2 Training Points

The generation of the training points is a key ingredient for the emulator to perform well.

Accurate high-dimensional regression is not easy, mainly due to the curse of dimensionality.

With the formalism presented in this work and depending on the complexity of the function,

one can reconstruct the function precisely and accurately in low dimensions, hence leading

to an accurate likelihood as would be the case if we were to use the full simulator, CLASS

(Lesgourgues, 2011) in this case. As the dimensionality of the problem increases, we need an

exponentially increasing number of training points to emulate the true function accurately.

In PICO, the training points were generated uniformly from a box whose sides were centred

on the mean of a converged MCMC chain (consisting of ∼ 60000 cosmological models) and

width 3σ along each direction. In the second release of PICO, they selected training points

which lie within 25 log-likelihoods of the WMAP peak (Fendt & Wandelt, 2007a). On the other

hand, Auld et al. (2007) first drew 2000 training points from the same box defined in PICO

and also added an extra 5000 training points drawn from a Gaussian distribution, whose cov-

ariance was twice the expected covariance matrix, centred on the maximum likelihood. These

techniques perform quite well for two reasons: 1) by restricting the prior volume of the training

points to the high likelihood regions allows the sampler explicitly to explore this specific region

in parameter space, 2) creating a data set with thousands of training points will also improve

any regression method. A shortcoming of using these approaches is that the algorithm will not

perform well in regions where there is no training point nearby (see Appendix A in Habib et al.

(2007) for a comparison of their method with PICO). This is a typical manifestation of almost

any Machine Learning algorithm. They are good at making reliable predictions within a pre-

defined prior, provided they are trained with enough data points. Building Machine Learning

algorithms in the small data regime is still in its infancy, hence an active area of research (Barz

& Denzler, 2019).

Moreover, if the training points are naively generated randomly from our pre-defined pri-

ors, we might not obtain a suitable coverage of the parameter space. A possible solution to this,
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is to use a grid but then the number of training points grows exponentially as the dimensional-

ity of the problem increases. As an example, say, we have a 7D problem and we choose to have

10 points per parameter, then our training set will have 10 million points.
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Figure 6.3 – The figure shows the marginal likelihood of the Gaussian Process (with 3000 training points) for
the fourth band power matrix and i = j = 2. Note the local minimum for the 3rd run of the optimiser. The
other bars have almost the same value, hence showing that Nrestart = 5 is a good choice for training the GP.

Alternatively, we can use Latin Hypercube (LH) sampling (McKay et al., 1979) which is a

method for generating random samples from a multidimensional dimensional distribution in a

controlled (quasi-random) way. A point is assigned such that it uniquely occupies its row and

column respectively. This procedure generalises to higher dimensional designs. In Fig. 6.2, we

show the projection of 5 LH samples, which have been generated from a box in 8D and scaled

by the pre-defined priors in §6.2.3, in 2D. In particular, we show the projection for 3 parameters

only but the same applies for the other parameters, where each point uniquely occupies its

corresponding row and its column. The LH method is now a ubiquitous tool for performing

emulation in large simulation scenarios (Habib et al., 2007; Schneider et al., 2011; Schmit &

Pritchard, 2018) and is seen to be quite efficient, not only in producing a fair interpolation, but

also provides reasonable posterior densities.

In this work, we adopt the LH approach to generate our training set. The LH samples

are generated using the maximinLHS function from the lhs R package (Carnell, 2012). This

particular design relies on distance criterion (Johnson et al., 1990) and the final design is a

result of maximising the minimum distance between points.

6.2.3 Priors

In our baseline emulator, we generate 1000 Latin Hypercube samples from a box, between 0

and 1. We first linearly transform these samples to the range of the pre-defined prior box for
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the 6 cosmological and 2 systematics parameters,

Ωcdmh2 ∼ U [0.01, 0.40]

Ωbh2 ∼ U [0.019, 0.026]

ln(1010As) ∼ U [1.70, 5.00]

ns ∼ U [0.70, 1.30]

h ∼ U [0.64, 0.82]

Abary ∼ U [0.0, 2.0]

AIA ∼ U [−6.0, 6.0]

Σmν ∼ U [0.06, 1.0]

followed by running the full simulator at these points to obtain the total band powers. U [a, b]

denotes a uniform distribution with lower and upper limits a and b respectively. We apply a

more restrictive prior than the original KiDS-450 prior [0.01,0.99] for Ωcdmh2 since otherwise

a large fraction of the LH samples we generate lie outside the region of parameter space con-

strained by the current weak lensing analysis. Moreover, having a smaller volume of parameter

space also improves the performance of the emulator. The prior for the Abary is set to an upper

limit of 2 (instead of 10 in Köhlinger et al. (2017)) because we found that, values of Abary & 3

lead to negative b2, which implies an unphysical negative power spectrum. In the same spirit,

large values of Abary lead to negative auto-correlated band powers and in some cases, the band

power matrix (equation (6.2.1)) was not positive definite. We also found that large values of

neutrino masses, Σmν & 1eV result in almost half of the CLASS band powers in our training

set to be nan. We therefore set an upper limit for Σmν to 1 eV.

6.2.4 Transformations

Training the Gaussian Processes with the LH samples from above might be suboptimal, the

reason being that the volume occupied by a hypercube grows exponentially with increasing

dimensions. On the other hand, a sphered training set (hypersphere) has a smaller volume

compared to its corresponding hypercube but with the same scaling with dimension. This

transformation step is analogous to the one used by Fendt & Wandelt (2007b). Schneider et al.

(2011) assessed in detail the effect of various transformations prior to building an emulator for

the CMB power spectrum. They found that de-correlating the input space leads to significant

improvements compared to working with the original form of the input parameters. The inter-

140



CHAPTER 6. PARAMETER INFERENCE FOR WEAK LENSING USING GAUSSIAN PROCESSES AND MOPED 6.2. Emulator

polation can further be improved if one uses a known Fisher information matrix specific to the

problem.
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Figure 6.4 – The left plot shows the predicted band power across a slice in parameter space. In other words,
we choose a point within the prior box and compute the GP mean, variance and the actual band power for
Ωcdmh2 ∈ [0.05, 0.40]. The same procedure is repeated in the right plot, but we instead choose a point from
a training set, to illustrate the fact that the predicted GP uncertainty tends to zero near the training point and
the predictive variance increases towards the edge of the prior box.

The transformation matrix can be calculated as follows: we first compute the sample covari-

ance, Cθ of the 1000 input parameters, θ to the emulator (see Table 4.2.1), which we diagonalise,

Cθ = UDUT. U is a d× d orthonormal matrix and D is a diagonal d× d matrix consisting of the

(necessarily positive) eigenvalues. The transformation matrix which whitens θ is then UD
1
2 ,

such that the transformed input covariates are X = UD
1
2 θ, and the covariance of X is the iden-

tity matrix. Also, having a pre-whitened basis also justifies the use of a diagonal kernel matrix

such as the ARD kernel in equation (3.2.11), for which it is often blindly assumed (without

transforming the inputs) that the correlation among the input parameters vanishes.

Next, we consider the transformation of the band powers. The distribution of the original

band powers in our training set is left-skewed. For a fixed ` in our 3-bin tomographic analysis,

the resulting 3× 3 matrix,

B` =




B`, 00 B`, 01 B`, 02

B`, 10 B`, 11 B`, 12

B`, 20 B`, 21 B`, 22




(6.2.1)

must be positive-definite and emulating the matrix elements individually will not guarantee

this. To ensure that the 3× 3 band power matrix remains positive-definite during the prediction

phase when using the emulator, we instead build the latter on each element of the logarithm

B` (lower or upper triangular part, essentially all the unique elements),
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V` = RΛ̃RT = log (B`) , (6.2.2)

where B` = RΛRT, Λ̃νν = log(Λνν) and Λ and Λ̃ are diagonal. Moreover, since we normally

assume a Gaussian Process with mean zero and kernel, K, we do an additional linear scaling

such that the mean of the band powers in our training set is zero and has a standard deviation

of one, for example, for the ith transformed band power,

v′i →
vi − v̄i

σi
(6.2.3)

and the predictive mean and variance are

E[vi(∗)] = σi E[v′i(∗)] + v̄i

var[vi(∗)] = σ2
i var[v′i(∗)].

(6.2.4)

6.2.5 Training the Emulator

We now have our training set {X,V`,ij}. Therefore we have a set of 24 Gaussian Processes due

to each element of the transformed band powers. Prior to building the emulator, a crucial step

is to choose a kernel function for the Gaussian Process. Here we use the ARD kernel, defined

in equation (3.2.11).

To ensure a good performance, we have to find the set of hyper-parameters which maxim-

ises the marginal likelihood, as discussed in §3.2.1 in Chapter 3. An important ingredient is the

analytical gradient of the marginal likelihood with respect to the kernel hyper-parameters to

guarantee convergence to the global minimum. The gradients are

∂kpq

∂A
=

2
A

kARD
pq

∂kpq

∂`i
= kARD

pq
(θp(i) − θq(i))

2

`3
i

,
(6.2.5)

where i indicates the ith dimension of the problem. We use the Limited memory Broyden-

Fletcher-Goldfarb-Shanno, L-BFGS-B algorithm (Zhu et al., 1997; Press et al., 2007) along with

the gradients defined above to optimise for these hyper-parameters by minimising the negative

log-marginal likelihood, in equation (3.2.12), via gradient descent. However, it is a known fact

that training a Gaussian Process is not an easy task because the marginal likelihood has various

local maxima (Rasmussen & Williams, 2006). We adopt the standard approach of restarting

our optimiser at different positions and we find that Nrestart = 5 was sufficient in practice to
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ensure that we find the set of hyper-parameters corresponding to the global optimum (see Fig.

6.3). Although this is not guaranteed, we also want to emphasise that the use of the gradients

was required to find the global optimum. Once the Gaussian Process is trained, the kernel

parameters are fixed at the optimised values of the hyper-parameters and then use equations

(3.2.10) to make predictions.

6.2.6 The GP Uncertainty

v

θ

d

β

Figure 6.5 – The full forward model can be understood as follows: at each step in the inference procedure, a
random set of samples of the cosmological, θ and nuisance, β is drawn from the prior, followed by a random
realisation of the probabilistic band powers, centred on its mean and variance before computing the likelihood.
Note that the kernel hyper-parameters are fixed to their optimised values.

In this section, we look into propagating the GP uncertainty through the full forward model

when we use the emulator. To be more specific, we seek the posterior distributions of the

cosmological parameters and the two nuisance parameters (AIA, Abary), that is,

θ =
[
Ωcdmh2, Ωbh2, ln(1010As), ns, h, Abary, AIA, Σmν

]

and the other 4 nuisance parameters,

β = [A1, A2, A3, m]

marginalised over the probabilistic band powers. A1, A2, A3 correspond to free parameters

which determine excess noise in the autocorrelation power spectrum, while m is the shear

multiplicative bias parameter (Köhlinger et al., 2017). Using equation (4.2.6) and defining v as

the total band powers, we can write the joint posterior, p(θ, β |d ) as
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p (θ, β |d ) =
ˆ

p (θ, β, v |d ) dv

=

ˆ
p (d |v, β ) p (v |θ) dv p (θ) p (β) .

(6.2.6)
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Figure 6.6 – The full 1D and 2D marginalised posterior distributions obtained using three different methods
- The one in tan colour corresponds to posterior distributions with the full simulator (CLASS) while the solid
brown one corresponds to the Gaussian Process emulator when random functions of the band powers are
drawn, hence marginalising over the Gaussian Process uncertainty. The posterior in blue shows the distribu-
tions obtained when only the mean of the Gaussian Process was used in the inference routine. The contours
denote the 68 % and 95 % credible interval respectively. Note that some parameters are dominated by their
respective priors and are not constrained at all. A similar conclusion was drawn by (Köhlinger et al., 2017).
However, the important point here is that the posterior from the GP is close to that obtained with CLASS.

If p(ν|θ) were a Gaussian distribution of the band power from the Gaussian Process, the

above integration would be a convolution of two Gaussian distributions and the likelihood

part would be Gaussian.

However, in our analysis, the predictive distribution is Gaussian in each element of the

logarithm of the band power matrix. For example, in Fig. 6.4, we show the GP mean and
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variance for two elements across a slice in parameter space. As previously discussed, if the

GP predictions were Gaussian in the band powers, we could marginalise analytically over the

theoretical uncertainty. Since they are Gaussian in each element of V`,ij, we marginalise by

drawing samples of the cosmological and nuisance parameters (see Fig. 6.5) and perform a

Monte Carlo integration, which is relatively fast and approximating the joint posterior as

p(θ, β |d ) ∝
p(θ)p(β)

Ns

Ns

∑
i=1

p
(
d
∣∣V`,ij

)
. (6.2.7)

Ns is the number of random band powers drawn after computing the predictive mean and

variance. We use Ns = 20 at every step in the MCMC to take into account the uncertainty from

the Gaussian Process. Recall that each band power is being modelled independently by a GP

and hence the Monte Carlo integral in equation (6.2.7) requires few draws of the probabilistic

band powers.

6.3 Data Compression

The next era of weak lensing surveys such as Euclid and LSST will have ∼ 10 tomographic

bins, and with multiple band powers or correlation functions per bin, the number of summary

statistics will be large,∼ 103− 104. As an example, Euclid Collaboration et al. (2019) considered

100 band powers per bin, and 10 tomographic bins, which gives a minimum of 1000 summaries,

and 5500 if cross-band powers are included. The setup, in the previous section, is not a scalable

approach for these future surveys. In particular, emulating each band power is not an entirely

feasible approach because one will have to train and store thousands of separate Gaussian

Processes and this process in itself can be quite expensive.

Hence, we use the MOPED data compression algorithm to compress all the band powers to

a smaller set of MOPED coefficients. In the previous applications of the MOPED algorithm, it

was assumed that the covariance matrix is fixed. In our case, Köhlinger et al. (2017) constructed

a covariance matrix which depends on the m parameter, the multiplicative bias. In this work,

we fix C at the average fiducial value provided† in the data. Data compression with parameter-

dependent covariance matrix has been explored by Heavens et al. (2017b). For current weak

lensing analysis, the gain is not significant (since we are working with only 24 band powers) but

the method proposed in this work is expected to yield fast parameter inference in the regime

of a large number of band powers, N ∼ 104, with only p ∼ 10 parameters of interest.

†Cosmological parameter inference depends mildly on the parameter m.
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Figure 6.7 – Samples of the log-posterior obtained with the 3 methods investigated - In panel (a), the pale blue
histogram refers to the log-posterior samples from CLASS while the red and green step histogram correspond
to the mean and error of the GP respectively. A similar plot is shown in panel (b) but after applying the MOPED
compression step.

By emulating the MOPED coefficients directly with separate Gaussian Processes, we have

a very powerful tool. The GPs are still functions of just 8 parameters (6 cosmological and 2

systematics) and we now have only 11 separate GPs. Crucially, this setup is interesting because

increasing the number of band powers (for example, in forthcoming lensing surveys) will not

affect the MOPED timings at all.
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Figure 6.8 – S8 versus Ωm plane for our analysis. The left panel shows that the Gaussian Process emulator,
which is a function of our cosmological parameters, for computing σ8 is accurate and precise enough com-
pared to CLASS. The middle panel shows the constraints without MOPED compression while the right panel
includes MOPED compression. The inner and outer contours correspond the 68% and 95% credible interval
respectively.

6.4 Results

Fig. 6.4 shows 2 band powers, evaluated across the Ωcdmh2 slice in parameter space. In par-

ticular, the function in black corresponds to the accurate solver, CLASS while the broken red

function corresponds to the GP mean, with the tan shading giving the 3σ credible interval of

the GP. Note also that the right panel shows the GP prediction through a given training point
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and as expected, the GP uncertainty tends to zero. As seen in Fig. 6.4, the GP is able to predict

the band powers quite well.

Since the predictive function is a Gaussian distribution, we can build a simple emulator

by just using the mean, or propagate the uncertainty from the Gaussian Process through the

model. Either method gives reasonable posterior densities as shown in Fig. 6.6. On a high end

desktop computer, the evaluation is quite fast. Computing one likelihood with the mean of

the Gaussian Process takes 0.03 seconds compared to 0.09 seconds if we include the Gaussian

Process uncertainty with 20 Monte Carlo samples to marginalise over the GP uncertainty. On

the other hand, CLASS takes 0.65 seconds for a likelihood evaluation. If we use 1000 train-

ing points, this yields an overall speed-up by a factor of ∼ 12− 30 depending on whether we

use the mean or the GP variance. In our case, we generate 360000 MCMC samples using EM-

CEE (Goodman & Weare, 2010; Foreman-Mackey et al., 2013) for which the full simulator takes

about 44 hours while the Gaussian Process emulator, using the mean, takes about ∼ 1.5 hours.

On the other hand, when we emulate the MOPED coefficients using 1000 training points, each

likelihood computation takes ∼ 0.03 seconds with either the mean or the variance of the GPs.

As an example, with the MOPED compression, CLASS takes ∼ 44 hours to generate 330000

MCMC samples (note that there is no significant improvement in speed-up because we have

just 24 band powers and each likelihood computation with or without the MOPED compres-

sion is almost the same). However, with the emulator, we obtain the same number of MCMC

samples in ∼ 1.5 hours with either the mean or variance of the GPs. All experiments with

EMCEE were run on a single core. An interesting additional feature for the emulation scheme

would be to exploit parallelization to speed-up inference further.

The distribution of the log-posterior (up to a normalisation constant) of the MCMC samples

obtained by using CLASS (in pale blue) is shown in Fig. 6.7. In the same plot, the red and green

histograms show the distribution of the log-posterior when using the mean and error from the

GP respectively. In the same figure in panel (b), we show the log-posterior of the samples

obtained after compressing the data using the MOPED formalism. Note that, the distribution

of the log-posterior of the different MCMC samples gives an indication of how faithful the

function reconstruction with the GP is. With a small number of training points, there is a

small shift of the log-posterior distribution of the GP emulator (either with the mean or the

uncertainty) relative to the CLASS distribution.

To compare the two distributions, we compute the Kullback-Leibler (KL) divergence between

the CLASS distribution and the GP distribution, that is,
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Table 6.4.1 – Computational cost comparison between CLASS and the GP emulator

Ntrain Training MCMC (Mean) MCMC (Error) DKL (Mean) DKL (Error)

1000 20 84 216 0.84 1.00

1500 48 85 290 0.63 0.89

2000 92 86 396 0.60 0.81

2500 139 88 524 0.47 0.68

3000 209 90 692 0.09 0.65

Note: The training and sampling time (columns 2,3,4) are given in minutes and the KL divergence is
computed in units of nats (scaled by a constant); the largest DKL is with the 1000 training points when
we include the GP uncertainty, in which case, DKL = 2.03× 10−12.

DKL (p ‖q ) = ∑ p (θ, β |d ) log
[

p (θ, β |d )
q (θ, β |d )

]
(6.4.1)

where p (θ, β |d ) and q (θ, β |d ) are the posterior probabilities computed using CLASS and the

GP at the same points in parameter space. Since the posterior probability is cheap to compute

with the GP, we use all the MCMC samples obtained using CLASS to compute q(θ, β). The

KL-divergence in nats, as a function of the number of training points, is shown in Table 6.4.1.

In general, the reconstruction of the band powers is almost perfect as the number of training

points increases. This can also be deduced from the 5th column in Table 6.4.1 where the KL di-

vergence decreases with increasing training points. If one could afford additional simulations,

one option would be to just use the mean of the GP to sample the posterior distribution since it

is not only faster compared to the case where the GP uncertainty is included, but is also closer

to the actual true posterior distribution.

To assess the convergence of our MCMC chains, we also compute the Gelman-Rubin stat-

istics (Gelman & Rubin, 1992) for different scenarios. The latter is simply defined as R̂ = V/W,

where V is the between-chain variance and W is the within chain variance. R̂ is calculated for

different cases, for example, for a fixed number of training points, we use the MCMC samples

using the GP (mean) and the MCMC samples obtained using CLASS. This is repeated with the

MCMC samples where the GP uncertainty is included. In all cases, we apply a threshold of

1.05 to ensure that the chains satisfy the ergodicity condition.

We are also interested in the S8 = σ8
√

Ωm/0.3 cosmological parameter constraint. Recall

that the GPs for sampling the posterior are built using the 8 parameters (6 cosmological and 2

systematics) and they do not allow us to predict σ8 directly. However, the latter is a function of
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just the 6 cosmological parameters, since it involves an integration over the power spectrum.

Therefore, as we compute the band powers with the 1000 training points, we also record the σ8

values, as generated by CLASS. We then construct a training set with inputs

[
Ωcdmh2, Ωbh2, ln(1010As), ns, h, Σmν

]

which is then used to build an additional GP for σ8. This then allows us to predict σ8 at any

point in the parameter space within the prior box. We find that it takes only 1 minute to predict

σ8 for 360 000 MCMC samples.
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Figure 6.9 – Illustrating the performance of the emulator as a function of the number of training points. The
expensive computations reside in training and predicting the GP uncertainty. Sampling the posterior with the
GP mean is quick, even with the 3000 training points. The graphs do not perfectly follow the expected scaling
with N because of various overheads.

In Fig. 6.8, we show the 2D marginalised posterior distribution of the derived parameters

S8 and Ωm using three different methods is shown. In particular, we compare the distribution

obtained from CLASS with the mean and uncertainty of the GP and we conclude that we are

able to recover comparable posterior densities for these two quantities, S8 and Ωm.

In high dimensions, the GP uncertainty inflates between any two points. It is expected that

adding more training points will improve the performance of the emulator (either with the

mean or GP uncertainty) since the reconstruction of the emulated function will converge to the

original function. In general, with increasing number of training points, the GP uncertainty

will also decrease. The effect of the number of training points is indicated by the values of the

KL-divergence in the last two columns of Table 6.4.1. However, we empirically found that the

KL-divergence when we use the mean of the emulator, is always better compared to the GP

uncertainty.
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One might expect the inclusion of the GP uncertainty to broaden the likelihoods, so the KL

divergence would not be an appropriate measure of success. However, this does not appear to

be the case: marginal errors are not noticeably increased. Our conclusion is that inclusion of

the GP uncertainty does not improve results, but this might vary with application. The reason

is probably that we are emulating a precise function, where the training points have zero error,

and in this circumstance, the GP (which makes some assumptions that do not hold in detail)

provides an error that is only approximately correct (Karvonen et al., 2020; Wang, 2020).

6.5 Conclusions

We have designed a principled and detailed Gaussian Process emulator for constraining not

only weak lensing cosmological parameters but also the nuisance parameters. In summary,

for this problem, 1) the (expensive) solver is queried a few thousand times only, to generate a

training set (compared to a conventional MCMC routine where the solver is queried at every

likelihood computation, 2) the emulator is ∼ 20 times faster compared to the full solver and

this makes inference very quick and 3) by emulating the MOPED coefficients, the number of

separate Gaussian Processes is equal to the number of parameters in the model and inference,

irrespective of the number of data points, and is a very powerful technique for analysing large

datasets. Moreover, the posterior distributions obtained from the emulator are quite robust

compared to the full run of the simulator, with and without MOPED.

We have also demonstrated that the emulator can be used to emulate the MOPED coef-

ficients directly. Both combined are expected to accelerate cosmological parameter inference.

Emulating the MOPED compressed data has two major advantages. The first is a feature of

MOPED itself, that the compressed data set does not grow at all as the original dataset in-

creases in size, so scales exceptionally well to Euclid and LSST. The second is that MOPED is

only fast if the theoretical values of the MOPED coefficients can be computed very quickly. The

GP provides this functionality. This is the most important conclusion of this work.

In addition, we have used the KL-divergence as a metric to assess the performance of the

emulator in obtaining reliable high dimensional posterior distributions. As evident from Table

6.4.1, the larger the number of training points, the better the reconstruction of the emulated

function and hence the lower the KL-divergence between the accurate CLASS posterior distri-

bution and the emulator posterior distribution.

We also recommend using the mean of the emulator for this application. In Table 6.4.1, the

KL-divergence between the emulator posterior and the CLASS posterior shows that the mean
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is always better than the emulator with the GP uncertainty. From a computational perspect-

ive, this has various other advantages, for example, inference is very fast since the GP mean

prediction requiresO(N) operations (recall that the GP mean is a linear predictor) and storage.

An exciting application of this emulator can be in the case where one requires non-Limber

computation of the power spectra. This certainly applies to galaxy clustering statistics (Fang

et al., 2020) and the weak lensing bi-spectrum (Deshpande & Kitching, 2020), even if for the

weak lensing power spectrum it is a good approximation (Kitching & Heavens, 2017; Kilbinger

et al., 2017). In general, the latter is computationally expensive to be calculated accurately, espe-

cially at large ` because of the rapid oscillations of the spherical Bessel functions (Lemos et al.,

2017). For example, if the CLASS run were to be repeated without the Limber approximation,

the emulator would have been ∼ 103 times even faster. In future surveys, because the num-

ber of tomographic bins will be large, one would require more power spectra computations.

For example, 10 tomographic bins lead to 55 auto- and cross- power spectra and the emulator

would be ∼ 103 and ∼ 105 faster with and without the Limber approximation respectively.

Emulation has various other key advantages, apart from speeding up inference. As an

example, one has to choose a good proposal distribution, which often requires tuning, to run

an MCMC chain with the full simulator. The emulator can be used to explore the parameter

space quickly and learn a suboptimal proposal distribution which can then be used with the

full simulator.

The accuracy of the reconstructed function can be improved by adding more training points

as we have demonstrated. However, scaling Gaussian Processes to large number of training

points results in a major computational bottleneck, mainly due toO(N3) operations in training

and O(N2) in predicting the uncertainty (see Fig. 6.9). Fortunately, here a few hundred train-

ing points suffices to give cosmological results with only a few percent degeneracy in error

bars. Moreover, in this work, the training points have been placed according to the prior range

itself. However, the interpolation scheme can be improved if we have more constrained para-

meters where we can use better prior information such as a Fisher matrix to intelligently place

the training points. Alternatively, one can also do a quick optimisation to find the maximum

likelihood estimator and the Hessian matrix, both of which can be used to construct an optimal

design for the training points.

An alternative option to accelerate the computation of GP uncertainty is to intelligently

partition the training set by using a clustering algorithm, for example, k−means clustering

(Hastie et al., 2001). During the prediction step, one can then use a local expert, which has a
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smaller kernel size, to compute the GP uncertainty swiftly.

A quantity which is often required in optimisation or Monte Carlo methods such as Hamilto-

nian Monte Carlo (HMC) is the gradient with respect to the negative log-likelihood (cost func-

tion). Conveniently, the gradient with respect to the mean of the Gaussian Process surrogate

model is analytic and this opens a new avenue towards accelerating gradient computation as

well.

Gaussian Processes should not only be interpreted as a method for just accelerating com-

putations. Instead, it effectively allows us to compute the posterior distribution of a function

by placing a prior over it. In this work, the EE band powers and MOPED coefficients are mod-

elled independently as Gaussian Processes and we have shown that we can recover robust

cosmological parameters, whilst still marginalising over the nuisance parameters.

6.6 Summary

In this chapter, we have improved upon the exploratory analysis we did in Chapter 4. In

particular, we have shown that using the LH samples, along with the two transformations,

namely the pre-whitening step at the input level and the matrix logarithm transformation for

the band powers, only a few thousands of forward simulations are sufficient. Moreover, by

emulating the MOPED coefficients directly, we show that we only have p regressors and this

number does not grow as the size of the data set increases. The techniques developed in this

chapter will significantly improve inference speed in future surveys.
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Chapter 7
SEMI-PARAMETRIC GAUSSIAN PROCESSES

You cannot hope to build a better world without improving the individuals. To that

end, each of us must work for his own improvement and, at the same time, share

a general responsibility for all humanity, our particular duty being to aid those to

whom we think we can be most useful.

Marie Curie

In this chapter, we propose a technique which takes into account the option of including

prior information in the modelling a function. Generally, in most application a zero mean

Gaussian Process is often assumed. Instead, one can also add an explicit mean function and

marginalise over the residuals. If the mean function is not deterministic, we also have to mar-

ginalise over the regression coefficients. A full sketch of the technique is provided in §7.1.2

Specifying a mean function has multiple advantages. First, it allows us to model the func-

tion as much as we can by specifying a set of basis functions. Second, irrespective of the number

of training points, the inferred function is expected to be better than a zero mean Gaussian Pro-

cess. In the latter, the mean prior becomes irrelevant if there is a sufficient number of training

points, but this is rarely the case.

Following our work in Chapter 6, in this chapter, we choose to emulate the MOPED coeffi-

cients and we take a slightly different approach where we focus only on the cosmological part

of the analysis, whilst still marginalising over all the nuisance parameters. This work uses the

publicly available likelihood code* for the KiDS-450 and extends it to incorporate our method,

that is, the compression and emulation of the MOPED coefficients via the semi-parametric

Gaussian Process. The code and analysis for this chapter is shared on Github and is available

at:

https://github.com/Harry45/semi_gp

*https://bitbucket.org/fkoehlin/kids450_qe_likelihood_public/
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CHAPTER 7. SEMI-PARAMETRIC GAUSSIAN PROCESSES 7.1. The Emulating Scheme

This chapter is also a precursor to Chapter 8 where we will explore the semi-parametric

Gaussian Process approach to build an emulator for the most expensive part of a weak lensing

analysis pipeline, that is, the 3D matter power spectrum, Pδ(k, z).

7.1 The Emulating Scheme

In this section, we walk through the steps to build a model for the MOPED coefficients. We

assume we have run the simulator (computing the forward model and compressing the data/-

theory) at N design points, θ, such that we have a training set, {θ, gi}. The index i corresponds

to the ith compressed data. Note that in our application, the fact that the compressed data are

uncorrelated, allows us to model each MOPED coefficient independently.

g

f

θ

y

β

ξ

Figure 7.1 – Directed Acyclic Graph (DAG) with the different latent parameters. θ is the vector of cosmological
parameters and β is the set of regression coefficients in the model. f refers to the vector of residuals, modelled
by a zero mean GP and y is the compressed MOPED data vector. ξ is a set of nuisance parameters which are
also marginalised over in the inference mechanism.

Once we have our training set, our goal is to learn the functional relationship between the

MOPED coefficients, g (we have dropped the index i but the same steps apply to all MOPED

coefficients) and the inputs θ. In other words, we model the data, g, as

g = h(θ) + ε (7.1.1)

where h is underlying assumed model. For example, in the cosmological context, we often fit

a ΛCDM model to the observed data.
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7.1.1 Polynomial Regression

However, in our application, h might be a deterministic function but is completely unknown

to us. A straightforward approach is to assume a polynomial approximation to the data, that

is,

g = Φβ + ε, (7.1.2)

where Φ is a design matrix, whose columns contain the basis functions [1, θ1, . . . θn
p] and n is

the order of the polynomial. β is a vector of regression coefficients (also referred to as weights)

and ε is the noise vector and cov(ε) = Σ. Using Bayes’ theorem, the full posterior distribution

of the weights is

p(β |g ) = p(g |β )p(β)

p(g)
. (7.1.3)

p(β |g ) is the posterior distribution of β, p(g |β ) is the likelihood of the data, p(β) is the prior

for β and p(g) is the marginal likelihood (Bayesian evidence) which does not depend on β. In

what follows, the notationN (x | µ,C) denotes a multivariate normal distribution with mean µ

and covariance C.

Assuming a Gaussian likelihood for the data, N (g | Φβ, Σ) and a Gaussian prior for the

weights,N (β | µ,C), the posterior distribution of β is another Gaussian distribution,N (β | β̄, Λ)

with mean and covariance given respectively by

β̄ = Λ(ΦTΣ−1g +C−1µ)

Λ = (C−1 + ΦTΣ−1Φ)−1.
(7.1.4)

In general, we are also interested in learning the (posterior) predictive distribution at a

given test point θ∗, that is, p(g∗ | g, θ∗) and this is another Gaussian distribution,

p(g∗ | g, θ∗) = N (g∗ | Φ∗ β̄, σ2 + Φ∗ΛΦT
∗). (7.1.5)

For noise-free regression, the noise variance, σ2 ≈ 0 (although a tiny jitter term is often used for

numerical stability) and the predictive uncertainty is dominated by the term Φ∗ΛΦT
∗ . Moreover,

in practice, the noise term at the test point is barely known and is hence approximated by

Φ∗ΛΦT
∗ .

On the other hand, we are also interested in understanding the model, that is, the number of
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basis functions we would need to fit the data. An important quantity is the marginal likelihood

which penalises model complexity (Trotta, 2008). In this case, this quantity can be analytically

derived and is given by

p(g) = N (g | Φµ, Σ + ΦCΦT). (7.1.6)

Note that this quantity is independent of β and is an integral of the numerator with respect to

all the latent variables (in our case β), that is,

p(g) =
ˆ

p(g |β )p(β) dβ. (7.1.7)

To this end, one can compute the Bayesian evidence for a series of (polynomial) models and

choose the model which yields the maximum Bayesian evidence (Kunz et al., 2006).

7.1.2 Modelling the residuals

The above formalism works well in various cases but (1) polynomial model fitting is gener-

ally a global fitting approach, (2) there exists a large number of choice for the number of basis

functions and (3) the functional relationship between the data and the model might be a very

complicated function. In this section, we therefore propose a Bayesian technique which models

the residuals, that is, the difference between our proposed polynomial approximation and the

underlying model. We will re-write equation (7.1.2) as

g = Φβ + f + ε, (7.1.8)

where f = h − Φβ is the deterministic error component of the model (Blight & Ott, 1975;

Rasmussen & Williams, 2006). Under the assumption that we have modelled g as much as we

can with the polynomial model, it is fair to make an a priori assumption for the distribution

of f , that is f ∼ N (0, A2), where A is a constant. Moreover, in function space, points which

are close to each other will depict similar values for f and as we move further away from a

given design point, it is expected that the degree of similarity will decrease. In other words, the

correlation between f (θi) and f (θj) decreases monotonically as the distance between θi and θj

increases. This prior knowledge can be encapsulated by using a covariance (kernel) function

such as the Gaussian distribution, that is,
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cov( fi, f j) = A2exp
[
−1

2
(θi − θj)

TΩ−1(θi − θj)

]
, (7.1.9)

where Ω = diag(ω2
1 . . . ω2

d) and ω2
i is the characteristic length-scale for each dimension. ν =

{A, ω1, . . . ωd} is the set of hyper-parameters for this kernel. In the same spirit, the full prior

distribution for f is a multivariate normal distribution, that is,

p( f ) = N ( f | 0,K) (7.1.10)

where the kernel matrix has elements kij ≡ cov( fi, f j). At this point, we will assume that the

hyper-parameters are fixed but we will later consider learning them via optimisation.

7.1.2.1 Inference

Now that we have a model for the data (MOPED coefficients), we seek the full posterior dis-

tribution of the latent variables β and f . We assume a Gaussian prior for β, that is, p(β) =

N (β | µ,C). Using Bayes’ theorem, the posterior distribution of β and f is

p(β, f | g) =
p(g | β, f )p(β, f )

p(g)
(7.1.11)

To simplify the derivation, we will rewrite equation (7.1.8) as

g = Dα + ε, (7.1.12)

where D = [Φ, I] is an augmented, new (block) design matrix, consisting of the existing design

matrix Φ ∈ RN×m and the identity matrix, I of size N×N. α = [β, f ]T is now a vector of length

N + m, consisting of both β and f . The sampling distribution of g is a Gaussian distribution,

N (g | Dα, Σ). On the other hand, we can re-write the full prior distribution of both set of

parameters, β and f as N (α | γ,R), where

γ =




µ

0


 and R =




C 0

0 K




Using a similar approach as in the previous section, the posterior of α is another Gaussian

distribution, that is,

p(α | g) = N (α | A−1b,A−1), (7.1.13)

where A = DTΣ−1D+ R−1 and b = DTΣ−1g + R−1γ. Simplifying further and using the block
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matrix inversion lemma, we can also derive the covariance for each block in the following:

A−1 =




Vβ Vβ f

V f β V f


 .

Noting that V f β = VT
β f , the expression for each block is:

V f =
[
K−1 + (Σ + ΦCΦT)−1

]−1
(7.1.14)

Vβ =
[
ΦT (K+ Σ)−1

Φ +C−1
]−1

(7.1.15)

Vβ f = −VβΦTΣ−1(Σ−1 +K−1)−1 (7.1.16)

In the same spirit, the posterior mean for β and f can be derived and are given respectively by

β̂ = Vβ

[
ΦT (K+ Σ)−1 g +C−1µ

]
(7.1.17)

and

f̂ = V f Σ−1 [g −Φβ̄
]

(7.1.18)

Recall that β̄ is the expression for the posterior distribution of β when we use the polynomial

model only. There are also some useful remarks and sanity checks which we can make from

Equations 7.1.14, 7.1.17 and 7.1.18. In Equation 7.1.14, for the covariance of β, if we had ignored

the other latent variables f , in other words, in the absence of the kernel matrix, K, we recover

the posterior covariance for β when we use a polynomial model only. A similar argument

applies for Equation 7.1.17 in which case we also recover the posterior distribution of β in the

polynomial model. Equation 7.1.18 has a nice interpretation. The posterior mean of f is a

weighted sum of the residuals, g −Φβ̄.

7.1.2.2 Prediction

Now that we have the full posterior distribution of the latent variables, another key ingredient

is learning the predictive distribution at a given test point, θ∗. The joint distribution of the data

and the function at the test point can be written as

158



CHAPTER 7. SEMI-PARAMETRIC GAUSSIAN PROCESSES 7.1. The Emulating Scheme




g

g∗


 ∼ N







Φβ

Φ∗β


 ,




K+ Σ k∗

kT
∗ k∗∗ + σ2

∗





 (7.1.19)

and the conditional distribution of g∗ is a Gaussian distribution

p(g∗ | g, θ∗) = N (g∗ | ḡ∗, var(g∗)) (7.1.20)

where ḡ∗ and var(g∗) are the mean and variance given respectively by

ḡ∗ = X∗ β̂ + f∗

var(g∗) = X∗VβX
T
∗ + k∗∗ + σ2

∗ − kT
∗K
−1
g k∗

(7.1.21)

and we have defined Kg = K+ Σ, X∗ = Φ∗ − kT
∗K
−1
g Φ and f∗ = kT

∗K
−1
g g. This is another inter-

esting result because if we did not have the parametric polynomial model, then the prediction

corresponds to that of a zero mean Gaussian Process (GP) (Rasmussen & Williams, 2006). Un-

til now, we have assumed a fixed set of kernel hyper-parameters. In the next section, we will

explain how we can learn them via optimisation.

Table 7.1.1 – Symbols and notations with corresponding meanings

Symbol Meaning
N Number of training points
m Number of basis functions
g Response of size N
θ Inputs to the emulator
ξ Additional nuisance parameters
y MOPED compressed data
β Regression coefficients of size m
f Deterministic error component of size N of the model

Φ Design matrix of size N ×m
K Kernel matrix of size N × N
C Prior covariance matrix of β of size m×m
µ Prior mean of β of size m
D D = [Φ, I] is a new design matrix of size N × (m + N)

α α = [β, f ]T is a vector of size m + N
R Prior covariance matrix of size (m + N)× (m + N)

γ γ = [µ, 0]T prior mean of size m + N
Σ Noise covariance matrix of size N × N
d Dimension of the problem
ν Kernel hyper-parameters
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7.1.2.3 Kernel Hyper-parameters

An important quantity in learning the kernel hyper-parameters is the marginal likelihood

(Bayesian evidence), which is obtained by marginalising over all the latent variables α and

is given by

p(g) =
ˆ

p(g | α)p(α)dα. (7.1.22)

Fortunately, the above integration is a convolution of two multivariate normal distributions,

N (g |Dα, Σ ) and N (α |γ, R ) and hence can be calculated analytically, that is,

p(g) = N (g | Φµ, Kg + ΦCΦT) (7.1.23)

and the log-marginal likelihood is

log p(g) = −1
2
(g −Φµ)T(Kg + ΦCΦT)−1(g −Φµ)− 1

2
log
∣∣∣Kg + ΦCΦT

∣∣∣+ constant. (7.1.24)

The first term in equation (7.1.24) encourages the fit to the data while the second term (the

determinant term) controls the model complexity. Recall that the kernel matrix, K is a function

of the hyper-parameters ν = {A, ω1, . . . ωd}. We want to maximise the marginal likelihood

with respect to the kernel hyper-parameters and this step is equivalent to minimising the cost,

that is, the negative log-marginal likelihood. In other words,

νopt = arg min
ν

J(ν) (7.1.25)

where we have defined J(ν) ≡ −2log p(g). An important ingredient for the optimisation to

perform well is the gradient of the cost with respect to the kernel hyper-parameters, which is

given by

∂J(ν)
∂νi

= tr
[(

(Kg + ΦCΦT)−1 − ηηT
) ∂K

∂νi

]
, (7.1.26)

where η = (Kg +ΦCΦT)−1g. There are a few computational aspects which we should consider

when implementing this method. In particular, for a single predictive variance calculation

(see equation (7.1.21)) an O(N2) operation is required whereas training (that is, learning the

kernel hyper-parameters) requires an O(N3) operation. On the other hand, the mean is quick

to compute.
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7.1.2.4 Derivatives

An important by-product from the trained model is the gradient of the emulated function with

respect to the input parameters. This can be of paramount importance if we are using a more

sophisticated Monte Carlo sampling scheme such as Hamiltonian Monte Carlo, HMC. In es-

sence, the gradient of the MOPED log-likelihood is simply the sum of gradients of individual,

independent emulated function. In this section, we provide the derived analytical gradients of

the mean function with respect to the inputs. In particular,

∂ḡ∗
∂θ∗

=
∂Φ∗
∂θ∗

β̂ +
[
k∗ � Z∗Ω−1

]T
K−1

g (g −Φβ̂) (7.1.27)

where � refers to element-wise multiplication. Z∗ ∈ RN×d and is defined as:

Z∗ = [θ1 − θ∗, θ2 − θ∗ . . . θN − θ∗]
T

.
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Figure 7.2 – Example of a GP regression in 1D - We have have five ‘observed’ data points and we use a GP
with an ARD kernel to fit the data. The true function is y = xsin x. The left panel shows the predicted mean
and credible interval of the emulator while in the right panel, the first and second derivatives are shown. Note
that f ′(x) = cos x and f ′′(x) = −sin x

.

Importantly, as seen from equation 7.1.27, the gradient is the sum of the gradients correspond-

ing to the parametric part and the residual, which is modelled by a kernel. Moreover, higher

order derivatives can also be calculated analytically. For example, the second order auto- and

cross- derivatives are

∂2 ḡ∗
∂θ2∗

=
∂2Φ∗
∂θ2∗

β̂ +

[
Ω−1 ∂k∗

∂θ∗
Z∗ −Ω−1 � k∗

]
K−1

g (g −Φβ̂). (7.1.28)

As a result of this procedure, one can analytically calculate the first and second derivatives of
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an emulated function using kernel methods. While the first derivatives are particularly useful

in HMC sampling method, the second derivatives are more relevant in the calculation of, for

example, the Fisher information matrix.

7.2 Emulating MOPED Coefficients

In this section, we briefly touch upon the data we use in this work before going through the

steps we take towards building the emulator. We then elaborate on the theoretical cosmological

model, followed by a discussion on the joint compression and emulating scheme.

7.2.1 Data

We use the publicly available band powers KiDS-450 data† (Köhlinger et al., 2017) which is

a product after applying a quadratic estimator algorithm (Bond et al., 1998) to extract (tomo-

graphic) band powers for 76 ≤ ` ≤ 1310. Further details on the algorithm is detailed in

Köhlinger et al. (2017). A different approach is to perform a shear correlation function analysis

and this technique, applied to the KiDS-450 data is presented by (Hildebrandt et al., 2017). In

this work, we resort to a tomographic band powers analysis.

Alternatively, one could also use a Bayesian Hierarchical Model, BHM, as presented by

Alsing et al. (2016) to sample the shear field as well as the tomographic shear power spec-

tra via Gibbs sampling. This technique has further been applied to the CFHTLens data not

only for generating shear power spectra but also shear maps and cosmological parameter con-

straints (Alsing et al., 2017; Porqueres et al., 2021). Another emerging technique for generating

summary statistics from lensing data is the Complete Orthogonal Sets of E/B-mode Integrals,

COSEBIs statistics (Schneider et al., 2010; Asgari et al., 2019). The latter has been used for de-

riving cosmological constraints from the KiDS-450 and the DES-Y1 via a joint shear analysis

(Asgari et al., 2020).

7.2.2 Cosmological Model

We follow the same theoretical model as explained in §4.2.1. The total lensing power spectrum

is a weighted sum of the weak lensing power spectrum and the two intrinsic alignment power

spectra, GI and II as follows:

Ctot
`, ij = CEE

`, ij + A2
IACII

`, ij − AIACGI
`, ij (7.2.1)

†http://kids.strw.leidenuniv.nl/sciencedata

162

http://kids.strw.leidenuniv.nl/sciencedata.php


CHAPTER 7. SEMI-PARAMETRIC GAUSSIAN PROCESSES 7.2. Emulating MOPED Coefficients

and there is also a contribution due to noise in the data (see Equation 4.2.11 for further refer-

ence). Therefore, if we apply a two-step compression, that is, from power spectrum to band

powers and band powers to MOPED coefficients, we have

gtot = gEE + A2
IAgII − AIAgGI. (7.2.2)

Note that we use the letter ‘g’ to denote this compression and the total MOPED coefficient is

denoted by the letter ‘y’ (see Figure 7.1). Therefore, in this work we emulate gEE, gII and gGI

and these are functions of the six cosmological parameters:

[
Ωcdmh2, Ωbh2, ln(1010As), ns, h, Σmν

]

and one nuisance parameter, Abary to account for baryon feedback (see §4.2.1 for further de-

tails).

7.2.3 Training Points
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Figure 7.3 – Here we show three different options for generating the input training points. In the left, middle
and right panel, we have optimumLHS, maximinLHS and randomLHS respectively. The optimumLHS attempts to
separate the training points as far from each other, but is very expensive to compute due to the challenging
optimisation procedure.

The training points (inputs to the emulator) are generated using Latin Hypercube (LH) Sampling

(McKay et al., 1979). This is crucial since it has a better space filling property compared to

standard sampling techniques. We use the publicly available R routine lhs to generate the LH

samples. We have various options, for example, maximinLHS, optimumLHS and randomLHS to do

so. In particular, from the 3 LH sampling technique, we have found that the maximinLHS pro-

cedure gives the best performance (see §7.2.5 for further details). Hence, throughout this paper,

we use the maximinLHS procedure. Once the LH samples are generated, we compute and store

the MOPED coefficients at these points in parameter space.
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7.2.4 Inference Mechanism

The inference engine is built in two steps. The first step involves learning the kernel hyper-

parameters while the second stage involves learning the posterior distribution of the cosmolo-

gical and nuisance parameters.
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Figure 7.4 – In this figure, the y−axis corresponds to the predicted emulated function (here, the second MOPED
coefficients) at 500 test points. These points do not form part of the training set. The x−axis shows the accurate
MOPED coefficients as evaluated using CLASS. We do expect a one-to-one relationship between the predicted
emulated function and the accurate gi. The bottom panel shows the residuals, that is, ∆g2 = g̃2 − g2, where g̃2
is the predicted function with the GP.

An important step prior to inferring the kernel hyper-parameters is to first pre-whiten the

inputs such that the sample covariance matrix of the training set is just the identity matrix.

We model each MOPED coefficient independently with a parametric function with a set of

basis functions, [1, θ, θ2] and model the residual with a zero mean Gaussian Process model

(see Equation 7.1.8). The marginal likelihood is then maximised with respect to the kernel

hyper-parameters via optimisation.

Once the GP models are trained, they are stored. They can further be connected to an

MCMC sampler to infer the full posterior distribution of the cosmological and nuisance para-

meters. Note that the process of calculating the different power spectra, band power and

MOPED coefficients via the full solver is completely substituted with the GP models. Infer-

ence with the latter is not only around 30 times faster compared to the full solver but also

faithfully generates robust credible intervals for the inferred parameters - see Figure 7.7.

164



CHAPTER 7. SEMI-PARAMETRIC GAUSSIAN PROCESSES 7.2. Emulating MOPED Coefficients

7.2.5 Diagnostics for the Emulator

Various techniques have been proposed by Bastos & O’Hagan (2009) to assess the performance

of an emulator. These diagnostics are generally based on the comparisons between the emu-

lator and simulator runs for new test points in input parameter space. These test points should

cover the input parameter space over which the training points were previously generated.

In our approach, we randomly choose 500 independent test points from the prior range and

evaluate the simulator and the emulator at these points.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
z

0.00

0.05
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0.15

0.20

0.25

Figure 7.5 – In this figure, a histogram of the standardised residuals, z = g̃2−g2/σ̃2 is shown for the second
MOPED coefficients. g̃2 and σ̃2 are the mean and standard deviations of the predicted MOPED coefficients
with the GP model.

Despite a very simple diagnostic, one can adopt a graphical approach to inspect for any odd

behaviour. For example, one can just plot the predictions from the emulator against the out-

puts from the simulator. It is expected that the points lie close to the 45o line through the origin.

Moreover, the residual errors (see bottom panel of Figure 7.4 for an example) fluctuate around

0 and with no specific trends. Any odd behaviours in either plot (upper and lower panel of

Figure 7.4) suggest different possible issues, for example, local fitting problem, non-stationary

behaviour of the function or lack of training points in the parameter space. Sometimes, these

issues are difficult to diagnose, especially in high dimensions or when we have multiple emu-

lated functions as we do in our case.

A second diagnostic is the calculation of the standardised prediction error

z =
g̃i − gi

σ̃i
(7.2.3)
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respectively.

where g̃ and σ̃ denotes the mean prediction and standard deviation of the ith emulator. An

emulator is deemed to faithfully represent the simulator if the standardised prediction error, z

follow a Student-t distribution (Bastos & O’Hagan, 2009). Note that the shape of a Student-t

distribution is analogous to a normal distribution. In the example shown in Figure 7.5, the

mean and standard deviation are estimated to be 0.03 and 1.60 respectively and a normal dis-

tribution based on these two summary statistics is shown in black in Figure 7.5. If the number

of training points is large enough, the distribution can be assumed to be standard normally

distributed. Any large deviation from the bell-shaped distribution indicates some systematic

problem, for example, misspecification of a prior mean function.
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7.3 Results and Discussions

In the section, we describe the different results obtained as part of this exploratory analysis

using semi-parametric Gaussian Process. Since we emulate gEE, gGI and gII and we have 11

parameters (6 cosmological and 5 nuisance), we have 3 × 11 = 33 MOPED coefficients (GP

emulators). The systematic part is quick to compute and can just be added to the total MOPED

coefficients, in other words, we have

y = gtot + gsys. (7.3.1)
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accurate solver CLASS and the kernel approach. The tan shading shows the posterior with CLASS while the
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All the emulators show good performance, in terms of the prediction at test points. For

example, in Figure 7.5, the standardised prediction error, that is, the difference between the

167



CHAPTER 7. SEMI-PARAMETRIC GAUSSIAN PROCESSES 7.4. Summary

solver (CLASS) and the emulator, normalised by the GP uncertainty, is centred on zero and

follows roughly a normal distribution. Moreover, if we look at the residuals in the lower panel

in Figure 7.4, they are centred on the zero line.

Importantly, the semi-parametric approach allows one to recover a full posterior for the

regression coefficients, β and the residuals, f . In Figure 7.6, we show the full 1D and 2D pos-

terior for the first five regressions coefficients (β0, β1, β2, β3, β4) and for the first five residuals

as well, that is, ( f1, f2, f3, f4, f5). Note that the residuals has the same shape as the number of

training points. The plot also shows the full covariance between the regression coefficients and

the residuals.

Once we have our emulator, we can sample the full posterior of the cosmological and nuis-

ance parameters and the 1D and 2D projection of the inferred parameters are shown in Figure

7.7. Note that we plot a slightly different set of parameters to show the derived parameters, Ωm

and σ8. We obtain remarkable posterior with the emulator compared to the full solver, CLASS

with just 1000 training points.

7.4 Summary

In this chapter, we have investigated the semi-parametric Gaussian Process approach and we

have shown that the method reproduces robust posterior densities for both cosmological and

nuisance parameters. It is not only ∼ 30 times faster than the full solver, but also allows us to

embed an approximate function, by defining a set of basis functions, to emulate the different

MOPED coefficients.

Now that we have a working methodology for performing emulation, an important in-

gredient of a weak lensing analysis is the 3D matter power spectrum, and it is in fact the most

expensive part of a likelihood calculation. If we can have an emulator for Pδ(k, z), this will

give us the flexibility of calculating all weak lensing and intrinsic alignment power spectra,

since they all involve Pδ(k, z) in the integrations, which can be calculated swiftly with numer-

ical techniques. Moreover, we can also specify our own inferred n(z) distributions from galaxy

surveys. Hence, in the next chapter, we will look into building an emulator for the 3D matter

power spectrum.
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Chapter 8
KERNEL-BASED EMULATOR FOR THE 3D MATTER

POWER SPECTRUM FROM CLASS

Creativity is just connecting things. When you ask creative people how they did

something, they feel a little guilty because they didn’t really do it, they just saw

something. It seemed obvious to them after a while. That’s because they were able

to connect experiences they’ve had and synthesize new things.

Steve Jobs

This chapter has been accepted for publication in Astronomy & Computing journal. The

paper, code and documentation can be accessed through the following:

Kernel-Based Emulator for the 3D Matter Power Spectrum from CLASS (, �, �)

A. Mootoovaloo, A. Jaffe, A. Heavens and F. Leclercq, arXiv:2105.02256, 2021

The content as put forward here is a large extract from the paper. A. Mootoovaloo led

the project and code development. A. Heavens, A. Jaffe and F. Leclercq constantly provided

feedbacks, guides and ideas to ensure successful completion of the project. From the cosmology

perspective, A. Jaffe proposed the main idea of splitting the 3D matter power spectrum into

three separate components.

8.1 Overview

The 3D matter power spectrum, Pδ(k, z) is a fundamental quantity in the analysis of cosmolo-

gical data such as large-scale structure, 21cm observations, and weak lensing. Existing com-

puter models (Boltzmann codes) such as CLASS can provide it at the expense of immoderate
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computational cost. In this work, we propose a fast Bayesian method to generate the 3D matter

power spectrum, for a given set of wavenumbers, k and redshifts, z. Our code allows one to

calculate the following quantities: the linear matter power spectrum at a given redshift (the

default is set to 0); the non-linear 3D matter power spectrum with/without baryon feedback;

the weak lensing power spectrum. The gradient of the 3D matter power spectrum with respect

to the input cosmological parameters is also returned and this is useful for Hamiltonian Monte

Carlo samplers. The derivatives are also useful for Fisher matrix calculations. In our applica-

tion, the emulator is accurate when evaluated at a set of cosmological parameters, drawn from

the prior, with the fractional uncertainty, ∆Pδ/Pδ centred on 0. It is also∼ 300 times faster com-

pared to CLASS, hence making the emulator amenable to sampling cosmological and nuisance

parameters in a Monte Carlo routine. In addition, once the 3D matter power spectrum is calcu-

lated, it can be used with a specific redshift distribution, n(z) to calculate the weak lensing and

intrinsic alignment power spectra, which can then be used to derive constraints on cosmolo-

gical parameters in a weak lensing data analysis problem. The software (emuPK) can be trained

with any set of points and is distributed on Github, and comes with with a pre-trained set of

Gaussian Process (GP) models, based on 1000 Latin Hypercube (LH) samples, which follow

roughly the current priors for current weak lensing analyses.

8.2 Introduction

The 3D matter power spectrum, Pδ(k, z) is a key quantity which underpins most cosmolo-

gical data analysis, such as galaxy clustering, weak lensing, 21 cm cosmology and various

others. Crucially, the calculation of other (derived) power spectra can be fast if Pδ(k, z) is pre-

computed. In practice, the latter is the most expensive component and can be calculated either

using Boltzmann solvers such as CLASS or CAMB, or via simulations, which can be computa-

tionally expensive depending on the resolution of the experiments.

For the past 30 decades or so, with the advent of better computational facilities, various

techniques have been progressively devised and applied to deal with inference in cosmology.

In brief, some of these techniques include Monte Carlo (MC) sampling, variational inference,

Laplace approximation and recently we are witnessing other new approaches such as dens-

ity estimation (Alsing et al., 2018, 2019; Alsing & Wandelt, 2019) which makes use of tools

like Expectation-Maximisation (EM) algorithm and neural networks (NN). Recently, Charnock

et al. (2018) designed the information maximizing neural networks (IMNNs) to learn non-linear

functional of data that maximize Fisher information. In this work, we explore another branch
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Figure 8.1 – The left panel shows the 3D matter power spectrum at a fixed input cosmology to CLASS for
k ∈ [5× 10−4, 50] and z ∈ [0.0, 4.66]. The grid shows the region where we choose to model the function, that
is, 40 wavenumbers, equally spaced in logarithm scale and 20 redshifts, equally spaced in linear scale.

of Machine Learning (ML) which deals with kernel techniques.

The ML techniques discussed previously will slowly pave their way in various weak lens-

ing (WL) analysis. Indeed, in the analysis of the cosmic microwave background (CMB), Fendt

& Wandelt (2007b) designed the Parameters for the Impatient Cosmologist (PICO) algorithm

for interpolating CMB power spectra at test points in the parameter space. In the same spirit,

Auld et al. (2007) built a neural network algorithm, which they refer to as CosmoNet, for inter-

polating CMB power spectra. Neural networks have been used in other applications as well,

for example, in simulations. Agarwal et al. (2012, 2014) used neural networks for interpolat-

ing non-linear matter power spectrum based on 6 cosmological parameters while Schmit &

Pritchard (2018) used neural networks for emulating the 21cm power spectrum in the context

of epoch of reionisation. In the context of weak lensing analysis, Manrique-Yus & Sellentin

(2020) used neural networks for accelerating cosmological parameter inference by combining

cosmic shear, galaxy clustering, and tangential shear. While we were finishing this work, the

work of Aricò et al. (2021) and Ho et al. (2021), both related to emulating the matter power

spectrum, appeared on arXiv. In particular, Ho et al. (2021) used GPs to build an emulator for

the matter power spectrum at fixed redshifts using N-body simulations while Aricò et al. (2021)

used neural networks and a combination of LH points (an 8D input parameter space with 156

000 training points), which they refer to as the standard and cosmological space to emulate the

linear matter power spectrum as well as other cross-spectra of linear fields. Spurio Mancini

et al. (2021) also used neural networks to emulate the 3D non-linear matter power spectrum,
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with at least 105 training points depending on their applications and the redshift is also treated

as an input to the neural network.

On the other end, Gaussian Processes have been used in the Coyote Universe collaboration

(Habib et al., 2007; Heitmann et al., 2009, 2010, 2014; Lawrence et al., 2010) for emulating the

matter power spectrum for large-scale simulations. Recently, Leclercq (2018) used Gaussian

Processes in the context of likelihood-free inference, where the data (training points) is aug-

mented in an iterative fashion via Bayesian Optimisation, hence the procedure being referred to

as Bayesian Optimisation for Likelihood-Free Inference, BOLFI (Gutmann & Corander, 2016).

Each emulating scheme has its own pros and cons (we defer to §8.7 for a short discussion on

the advantages and possible limitations of Gaussian Processes).

Different emulating schemes have been designed for the matter power spectrum and most

of them are based on combining Singular Value Decomposition (SVD) and Gaussian Processes.

The emulator from Habib et al. (2007) is among the first in the context of large simulations.

Emulating Pδ(k, z) is not a trivial task because it is strictly a function of 3 inputs, k, the wavenum-

ber, z, the redshift and θ, the cosmological parameters. Neural networks seem to be the obvious

choice because they can deal with multiple outputs but they generally require a large number

of training points.

Our contributions in this work are three fold. First, it addresses the point that we do not al-

ways need to assume a zero mean Gaussian Process model for performing emulation, in other

words, one can also include some additional basis functions prior to defining the kernel matrix.

This can be useful if we already have an approximate model of our function. Moreover, if we

know how a particular function behaves, one can adopt a stringent prior on the regression coef-

ficients for the parametric model, hence allowing us to encode our degree of belief about that

specific parametric model. Second, since we are using a Radial Basis Function (RBF) kernel and

the fact that it is infinitely differentiable enables us to estimate the first and second derivatives

of the 3D matter power spectrum. The derived expressions for the derivatives also indicate

that there is only element-wise matrix multiplication and no matrix inverse to compute. This

makes the gradient calculations very fast. Finally, with the approach that we adopt, we show

that the emulator can output various key power spectra, namely, the linear matter power spec-

trum at a reference redshift z0 and the non-linear 3D matter power spectrum with/without an

analytic baryon feedback model. Moreover, using the emulated 3D power spectrum and the

tomographic redshift distributions, we also show that the weak lensing power spectrum and

the intrinsic alignment (II and GI) can be generated in a very fast way using existing numerical
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Figure 8.2 – The left panel shows the growth factor, as function of redshift. In this case, to generate the training
set, the growth factor is calculated at 20 redshifts, equally spaced in linear scale (shown by the red scatter
points) and the linear matter power spectrum, Plin(k, z0) is calculated at 40 different wavenumbers, k, equally
spaced in logarithm space (red scatter points). We also show the non-linear matter power spectrum in (b).
These functions are evaluated at different cosmological parameters to build a training set.

techniques.

In Mootoovaloo et al. (2020), we found that using the mean of the GP and ignoring the

error always results in better posterior densities. This is a known feature when GPs emulate a

deterministic function (Bastos & O’Hagan, 2009). As a result, in this work, we work only with

the mean of the GP in all experiments. Importantly, we use 1000 training points and once the

emulator is trained and stored, it takes about 0.1 seconds to generate the non-linear 3D matter

power spectrum, compared to CLASS which takes about 30 seconds to generate an accurate

and smooth power spectrum. Hence, the method presented in this work also opens a new

avenue towards building emulators for large-scale simulations where a single high-resolution

forward simulation might take minutes to compute.

The chapter is organised as follows: in §8.3, we describe the 3D power spectrum, which

can be decomposed in different components, and the analytic baryon feedback model, which

can be used in conjunction with Pδ(k, z). In §8.4 and §8.5, we highlight briefly the steps behind

building the emulator. In §8.6, using a pair of toy n(z) tomographic redshift distributions, we

show how the emulator can be used to generate different weak lensing power spectra and in

§8.7, we describe briefly the different functionalities that the code supports and we highlight

the main results in §8.8. Finally, we conclude in §8.9.
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8.3 Model

In this section, we describe the model which we want to emulate. Central to the calculation is

the 3D matter power spectrum, Pδ(k, z; θ), where θ refers to a vector of cosmological paramet-

ers. In what follows, we will drop the θ vector notation for clarity. The matter power spectrum

is generally the most expensive part to calculate, especially if one chooses to use large-scale

simulation to generate the 3D matter power spectrum. In the simple case, one can just emulate

Pδ(k, z) but we consider a different approach, which enables us to include baryon feedback,

to calculate the linear matter power spectrum at a reference redshift and to calculate the non-

linear 3D matter power spectrum itself.

Baryon feedback is one of the astrophysical systematics which is included in a weak lens-

ing analysis. This process is not very well understood but is deemed to modify the matter

distribution at small scales, hence resulting in the suppression of the matter power spectrum at

large multipoles. In general, to model these effects, large hydrodynamical simulations provide

a proxy to model baryon feedback. In particular, it is quantified via a bias function, b2(k, z)

such that the resulting modified 3D matter power spectrum can be written as

Pbary
δ (k, z) = b2(k, z)Pδ(k, z), (8.3.1)

where Pbary
δ (k, z) and Pδ(k, z) are the 3D matter power spectra, including and excluding baryon

feedback respectively. The bias function is modelled by the fitting formula

b2(k, z) = 1− Abary

[
Aze(Bzx−Cz)3 − DzxeEzx

]
, (8.3.2)

where Abary is a flexible nuisance parameter and we allow it to vary over the range Abary ∈
[0.0, 2.0]. The quantity x = log10(k [Mpc−1]), and Az, Bz, Cz, Dz and Ez depend on the redshift

and other constants. See Harnois-Déraps et al. (2015) for details and functional forms. Note

that setting Abary = 0 implies no baryon feedback. Moreover, since we have a functional form

for the baryon feedback model, which is not expensive to compute, we will apply it as a bolt-on

function on top of the emulated non-linear 3D matter power spectrum.

Next, we consider the non-linear 3D matter power spectrum without baryon feedback. It

can be decomposed into three components as follows:

Pδ(k, z) = D(z)[1 + q(k, z)]Plin(k, z0) (8.3.3)
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where D(z) is the growth factor, q(k, z) is a 2D function (in terms of k and z) representing the

scale-dependence of the growth factor, plus the non-linear contributions and Plin(k, z0) is the

linear matter power spectrum at fixed redshift z0. See Figures 8.1 and 8.2 for an illustration of

the decomposition of the 3D matter power spectrum at fixed cosmological parameters. Emulat-

ing the three different components separately has the advantage of calculating the linear matter

power spectrum at the reference redshift for any given input cosmology.

Following current weak lensing analysis, we define some bounds on the redshifts, z and

wavenumbers, k. For example, the maximum redshift in the tomographic weak lensing ana-

lysis performed by Köhlinger et al. (2017) is ∼ 5 and the maximum wavenumber is set to 50.

With these numbers in mind, we choose z ∈ [0.0, 5] and k ∈ [5× 10−4, 50]. We will elaborate

more on these settings in the sections which follow. On the other hand, for the cosmological

parameters, we assume the following range to generate the training set:

Table 8.3.1 – Default parameter prior range inputs to the emulator

Description Range

CDM density, Ωcdmh2 [0.06, 0.40]

Baryon density, Ωbh2 [0.019, 0.026]

Scalar spectrum amplitude, ln(1010 As) [1.70, 5.0]

Scalar spectral index, ns [0.7, 1.3]

Hubble parameter, h [0.64, 0.82]

Current weak lensing analyses also assume a fixed sum of neutrino mass, Σmν. Hence, in

all experiments, Σmν = 0.06 eV. This quantity can be fixed by the user prior to running all

experiments with the pipeline we have developed. However, we can also treat it as a varying

parameter before building the emulator.

8.4 Procedures

In the existing likelihood code from Köhlinger et al. (2017), the accurate solver, CLASS, is quer-

ied at 39 wavenumbers k and 72 redshifts z, corresponding to the centres of each tophat in the

n(z) distribution and a standard spline interpolation is carried out along the k axis. Following

a similar approach, we choose to have a model of the Pδ(k, z) at 40 values of k, equally spaced

on a logarithmic grid and 20 values of redshift, equally spaced in linear scale from 0 to 4.66 (the

maximum redshift in the KiDS-450 analysis) and we can perform a standard 2D interpolation,

such as spline interpolation, along k and z. See Figures 8.1 and 8.2 for an illustration.

In this section, we will walk through the steps to build a model for the 3D matter power
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spectrum. It is organised as follows: in §8.4.1 we discuss how the input training points are

generated and this is crucial for the emulator to work with a reasonable number of training

points. We will use the concepts derived in §7.1.2 in Chapter 7 to model the different output

from CLASS.

We denote the response (or target), that is the function we want to model as y. In this par-

ticular case, we have three different components, namely the growth factor, D(z), the q(k, z)

function and the linear matter power spectrum Plin(k, z0). We assume we have run the simu-

lator, CLASS, at N design points, θ, such that we have a training set, {θ, yi}. Throughout this

work, we are using the fitting function, halofit (Takahashi et al., 2012) implemented in CLASS

to generate the training set. The index i corresponds to the ith response. Note that in our ap-

plication, we model each function independently with the emulating scheme proposed below.

8.4.1 Training Points

An important ingredient in designing a robust emulator lies in generating the input training

points. Points which are drawn randomly and uniformly from the pre-defined range (see Table

8.3.1) do not show a space-filling property. As the dimensionality of the problem increases, the

volume increases and hence there are large spatial fluctuations in the density of points. Hence,

the emulator will lack information of its neighbourhood and the prediction can be very poor

in these regions. Moreover, one would need a large number of training points to accurately

model the power spectrum. For example, a recent work by Spurio Mancini et al. (2021) shows

that one would need ∼ 105 training points to build an emulator with deep neural networks

with uniform random sampling.

0.0 0.2 0.4 0.6 0.8 1.0
θ0

0.0

0.2

0.4

0.6

0.8

1.0

θ 1

Figure 8.3 – An example of a Latin Hypercube (LH) design in two dimensions. 5 LH points are drawn ran-
domly using the maximin procedure and each point will occupy a single cell, that is, if a point occupies cell
(i, j), then there is not a point occupying cell (j, i). This procedure remains exactly the same when we generate
LH samples from a hypercube.
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Figure 8.4 – Gradients with respect to the input cosmologies. θ corresponds to the following cosmological
parameters: θ = (Ωcdmh2, Ωbh2, ln(1010 As), ns, h). Note that since we are emulating the 3D power spectrum,
the gradient is also a 3D quantity. In this figure, we are showing the predicted function with the GP model in
broken blue and the accurate gradient function calculated with CLASS in solid red, at a fixed redshift.

To circumvent these issues, the natural choice is to instead generate Latin Hypercube (LH)

samples, which demonstrate a space-filling property as shown in Figure 8.3. The idea behind

a LH design is that a point will always occupy a single cell. For example, if we consider the

design shown in Figure 8.3, each column and row contains precisely one training point (in

2D). Similarly, in a 3D case, each row, column and layer will have one training point and this

extends to higher dimensions. Intuitively, for a 2D design, this is analogous to the problem of

positioning n rooks on an n× n chessboard such that they do not attack each other. This ensures

that the LH points generated cover the parameter space as much as possible, hence enabling

the emulator to predict the targets at test points. emuPK can also be trained on a different set

of training points, for example, one which has been generated using a different LH sampling

scheme.

8.5 Gradients

An important by-product from the trained model is the gradient of the emulated function with

respect to the input parameters. This can be of paramount importance if we are using a soph-

isticated Monte Carlo sampling scheme such as Hamiltonian Monte Carlo (HMC) to infer cos-

mological parameters in a Bayesian analysis. The gradients of the log-likelihood with respect

to the cosmological parameters are important in such a sampling scheme. Hence, with some

linear algebra and using the gradient of the power spectra, generated with the emulator, the
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desired gradients can be derived. The analytical gradient of the mean function with respect to

the inputs, at a fixed redshift and wavenumber is

∂ȳ∗
∂θ∗

=
∂Φ∗
∂θ∗

β̂ +
[
k∗ � Z∗Ω−1

]T
K−1

y (y−Φβ̂) (8.5.1)

where � refers to element-wise multiplication (Hadamard product). Z∗ ∈ RN×d corresponds

to the pairwise difference between the test point, θ∗ and the training points, that is, Z∗ =

[θ1 − θ∗, θ2 − θ∗ . . . θN − θ∗]
T. Importantly, as seen from equation 8.5.1, the gradient is the sum

of the gradients corresponding to the parametric part and the residual, which is modelled by

a kernel. Moreover, higher order derivatives can also be calculated analytically. For example,

the second order auto- and cross- derivatives are

∂2ȳ∗
∂θ2∗

=
∂2Φ∗
∂θ2∗

β̂ +

[
Ω−1 ∂k∗

∂θ∗
Z∗ −Ω−1 � k∗

]
K−1

y (y−Φβ̂). (8.5.2)

As a result of this procedure, one can analytically calculate the first and second derivatives of

an emulated function using kernel methods. While the first derivatives are particularly useful

in HMC sampling method, the second derivatives are more relevant in the calculation of, for

example, the Fisher information matrix.

Once the gradients with respect to each component of the non-linear 3D matter power spec-

trum are derived, the first and second derivatives with respect to the non-linear matter spec-

trum can be derived via chain rule and are given by:

∂Pδ

∂θ
=

∂D
∂θ

(1 + q)Plin + D
∂q
∂θ

Plin + D(1 + q)
Plin

∂θ
(8.5.3)

and

∂2Pδ

∂θ2 =
∂2D
∂θ2 (1 + q)Plin + D

∂2q
∂θ2 Plin + D(1 + q)

∂2Plin

∂θ2

+ 2
∂D
∂θ

∂q
∂θ

Plin + 2
∂D
∂θ

(1 + q)
∂Plin

∂θ
+ 2D

∂q
∂θ

∂Plin

∂θ
.

(8.5.4)

Once K−1
y (y − Φβ̂) is pre-computed (after learning the kernel hyperparameters, ν) and

stored, the first and second derivatives can be computed very quickly. In the case of finite

difference methods, if a poor finite step size is specified, numerical derivatives can become

unstable. This is not the case in this framework. In Figure 8.4, we show the first derivatives

with respect to the input cosmological parameters, θ = (Ωcdmh2, Ωbh2, ln(1010As), ns, h). The

first derivatives with CLASS (in red) are calculated using finite central difference method.
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8.6 Weak Lensing Power Spectra

A crucial application of the 3D matter power spectrum is in a weak lensing analysis, where

the calculation of the different power spectra types is required. In the absence of systematics,

most of the cosmological information lies in the curl-free (E-) component of the shear field.

The Limber approximation (Limber, 1953; Loverde & Afshordi, 2008) is typically assumed and

under the assumption of no systematics, the E-mode lensing power spectrum is equal to the

convergence power spectrum and is given by:

CEE
`, ij =

ˆ χH

0
dχ

wi(χ)wj(χ)

χ2 Pbary
δ (k, χ). (8.6.1)

and

wi(χ) = Aχ(1 + z)
ˆ χH

χ
dχ′ ni(χ)

(
χ′ − χ

χ′

)
(8.6.2)

where A = 3H2
0 Ωm/(2c2). χ is the comoving radial distance, χH is the comoving distance to

the horizon, H0 is the present day Hubble constant and Ωm is the matter density parameter.

wi is the weight function which depends on the lensing kernel. The weight function is a meas-

ure of the lensing efficiency for tomographic bin i. Moreover, the redshift distribution, ni(z),

as a function of the redshift, is related to the comoving distance via a Jacobian term, that is,

n(z) dz = n(χ) dχ and it is also normalised as a probability distribution, that is,
´

n(z) dz = 1.

8.6.1 Intrinsic Alignment Power Spectra

An important theoretical astrophysical challenge for weak lensing is intrinsic alignment (IA). It

gives rise to preferential and coherent orientation of galaxy shapes, not because of lensing alone

but due to other physical effects. Although not very well understood, it is believed to arise by

two main mechanisms, namely the interference (GI) and intrinsic alignment (II) effects, such

that the total signal is in fact a biased tracer of the true underlying signal, CEE
`,ij, that is,

Ctot
`,ij = CEE

`,ij + A2
IACII

`,ij − AIACGI
`,ij (8.6.3)

where AIA is a free amplitude parameter, which allows for the flexibility of varying the strength

of the power, arising due to the intrinsic alignment effect. In particular, the II term arises as

a result of alignment of a galaxy in its local environment whereas the GI term is due to the

correlation between the ellipticities of the foreground galaxies and the shear of the background
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galaxies. Note that, the II term contributes positively towards the total lensing signal whereas

the GI subtracts from the signal. The II power spectrum is given by

CII
`,ij =

ˆ χH

0
dχ

ni(χ) nj(χ)

χ2 Pbary
δ (k, χ) F2(χ) (8.6.4)

and the GI power spectrum is

CGI
`,ij =

ˆ χH

0
dχ

wi(χ)nj(χ) + wj(χ)ni(χ)

χ2 Pbary
δ (k, χ) F(χ), (8.6.5)

where F(χ) = C1ρcritΩm/D(χ). D(χ) is the linear growth factor normalised to unity today,

C1 = 5× 10−14 h−2M−1
� Mpc3 and ρcrit is the critical density of the Universe today. As seen

from Equations 8.6.1, 8.6.4 and 8.6.5, they all involve an integration of the form

C` =

ˆ χH

0
g(χ) Pbary

δ (k, χ) dχ. (8.6.6)

Hence, an emulator for Pδ(k, z) will enable us to numerically compute all the weak lensing

power spectra in a fast way. This will be useful in future weak lensing surveys where we will

require many power spectra calculation as a result of the large number of auto- and cross-

tomographic bins. For example, in the recent KiDS-1000 analysis (Asgari et al., 2021), five

tomographic bins were employed, resulting in 15 (multiplied by 3 if we are including intrinsic

alignment power spectra) power spectra calculations. In future surveys, it is expected that

the number of redshift bins will be of the order 10, thus requiring at least 55 power spectra

calculations for each power spectrum type (EE, GI and II).

8.6.2 Redshift Distribution

An important quantity for calculating the weak lensing power spectra is the redshift distri-

bution. For an in-depth cosmological data analysis such as the Kilo Degree Survey (KiDS), it

is crucial to calibrate the photometric redshift to obtain robust model predictions. For more

advanced techniques for estimating the n(z) from photometric redshifts, we refer the reader

to techniques such as weighted direct calibration, DIR (Lima et al., 2008; Bonnett et al., 2016),

calibration with cross-correlation, CC (Newman, 2008) and recalibration of photometric P(z),

BOR by Bordoloi et al. (2010). Recently Leistedt et al. (2016) developed a hierarchical Bayesian

inference method to infer redshift distributions from photometric redshifts.

In this work, we use a toy Gaussian distribution to illustrate how we can use the 3D mat-

ter power spectrum, Pδ(k, z) in conjunction with the n(z) distribution to calculate the different
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weak lensing power spectra. Note that one can just replace this toy n(z) distribution example

by any redshift distribution as calculated by any one of the techniques mentioned above. Dif-

ferent n(z) distributions are available as part of the software. The first 2 distributions are:

n(z) = B z2exp
(
− z

z0

)
(8.6.7)

and

n(z) = B αzexp

[
−
(

z
z0

)β
]

. (8.6.8)
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Figure 8.5 – To illustrate the calculation of the weak lensing power spectra, we use two analytic redshift distri-
butions centred at redshift 0.50 and 0.75 respectively. The n(z) distribution assumed here is a normal distribu-
tion and is given by Equation 8.6.9. The standard deviations for each normal distribution are set to 0.1 and 0.2
respectively.

For a Euclid-like survey, z0 ∼ 0.7, α = 2 and β = 1.5 (Leonard et al., 2015). The third distribution

implemented is just a Gaussian distribution with mean z0 and standard deviation, σ

n(z) = B exp

[
−1

2

(
z− z0

σ

)2
]

(8.6.9)

where B is a normalisation factor such that
´

n(z) dz = 1 in all cases above. As shown in Figure

8.5, we employ two redshift distributions, where the mean and standard deviation for the first

distribution is 0.50 and 0.10 respectively and for the second distribution (in orange), the mean

and standard deviation are set to 0.75 and 0.20 respectively.
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8.7 Software

In this section, we briefly elaborate on how the code is set up and the different functionalities

one can exploit. Note that any default values mentioned below can be adjusted according to

the user’s preferences. The default values of the minimum and maximum redshifts are set to

0 and 4.66 respectively and as discussed in §7.2, we also assume 20 redshifts spaced equally

in the linear scale. For the wavenumbers in units of h Mpc−1, the minimum is set to 5× 10−4

and the maximum to 50, with 40 wavenumbers equally spaced in logarithmic scale. A fixed

neutrino mass of 0.06 eV is assumed but this can also be fixed at some other value or it can also

be included as part of the emulation strategy. The code supports either choice.

The next step involves generating the training points. We generate 1000 LH design points

using the maximinLHS function and we calculate and record the three quantities, the growth

factor, D(z), the non-linear function, q(k, z) and the linear matter power spectrum, Plin(k, z0).

At a very small value of k, which we refer to as kmin, q = 0. The non-linear matter power

spectrum is only relevant for some range of knl and knl > kmin. Hence, the growth factor is just

D(z) =
Plin(kmin, z)
Plin(kmin, z0)

(8.7.1)
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Figure 8.6 – The growth factor, D(z) as predicted by the surrogate model (in blue) at a test point in parameter
space. The accurate function is also calculated using CLASS and is shown in orange. Recall that the emulator
is constructed for z ∈ [0.0, 4.66], aligned with current weak lensing surveys.

Throughout our analysis, we use z0 = 0. In some regions of the parameter space, we also found

that the q(k, z) were noisy and this can be alleviated by increasing the parameter P_k_max_h/Mpc

when running CLASS. If a small value is assumed, the interpolation in the high-dimensional
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space will not be robust. We set this value to 5000 to ensure the q(k, z) function remains smooth

as a function of the inputs. However, this procedure leads to CLASS being slower. It takes

∼ 30 seconds on average to do 1 forward simulation. For example, in our application, it took

520 minutes to generate the targets (D, q, Plin) for 1000 input cosmologies. We have also found

that CLASS occasionally fails to compute the power spectrum and this is resolved as follows.

We allocate a time frame (60 seconds in this work) for CLASS to attempt to calculate the power

spectrum and if it fails, a small perturbation is added to the input training point parameters

and we re-run CLASS, until the power spectrum is successfully calculated. In the failing cases,

the maximum number of attempts is only 3. Moreover, the code currently supports polyno-

mial functions of order 1 and 2, that is, the set of basis functions for an order 2 polynomial is

[1, θ, θ2]. For example, Schneider et al. (2011) implemented a first and second order polyno-

mial function to design an emulator for the CMB while Fendt & Wandelt (2007b) used a fourth

order polynomial function. In this case, recall that we are also marginalising over the residuals

analytically by using the kernel function. Training the emulator, that is, learning the kernel

hyperparameters, for the different targets, took around 340 minutes. All experiments were

conducted on an Intel Core i7-9700 CPU desktop computer.
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Figure 8.7 – The linear power spectrum at a fixed redshift, z0, the 3D non-linear matter power spectrum,
Pδ(k, z) and the 3D non-linear matter power spectrum with baryon feedback, Pbary

δ (k, z) can be calculated with
our emulating scheme. The solid curves correspond to predictions from the model while the broken curves
show the accurate functions as calculated with CLASS.

Note that we do not compute the emulator uncertainty for various reasons. As argued by

Bastos & O’Hagan (2009), simulators such as CLASS are deterministic input-output models,

that is, running the simulator again at the same input values will give the same outputs and

the error returned by the GP is unreliable (Mootoovaloo et al., 2020). Moreover, the emulator

uncertainty changes as a function of the number of training points and so do the accuracy and
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precision of the predicted mean function from the emulator. However, in a small data regime,

for example, band powers for current weak lensing surveys, the emulator uncertainty might

have significant undesirable effects on the inference of the cosmological parameters. On a more

technical note, storing and calculating the emulator uncertainty is a demanding process, both

with O(N2) computational cost respectively, where N is the number of training points.

Once all these processes (generating the training points and training the emulators) are

completed, the emulator is very fast when we compute the 3D matter power spectrum. It takes

around 0.1 seconds to do so compared to the average value of 30 seconds by CLASS. Note that

the gradient calculation with the emulator is even more efficient compared to finite difference

methods, where CLASS would need to be called 10 times for a 5D problem (assuming a central

difference method). For an in-depth documentation on the code structure and technical details,

we refer the reader to the beginning of this chapter, where we provide the links to the code and

documentation.

8.8 Results

In this section, we highlight the main results, starting from the calculation of the 3D matter

power spectrum to the calculation of the different weak lensing power spectra.
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Figure 8.8 – The left, centre and right panels show the different weak lensing power spectra as calculated by
the emulator (broken curves) and the accurate model, CLASS, shown by the solid curves. The different power
spectra within each panel correspond to the auto- and cross- power spectra, due to the 2 tomographic redshift
distribution in Figure 8.5, hence leading to 00, 10, and 11 power spectra. These power spectra are then added,
via the intrinsic alignment parameter, AIA to construct a final model, Ctot

`,ij in a weak lensing analysis. See
Equation 8.6.3.

In Figure 8.4, we show the gradient along at a fixed cosmological parameter (test point) and

fixed redshift, z = 0. The red curve corresponds to the gradients as calculated by CLASS using

central difference method and the blue curves show the gradients output from the emulator. In
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particular, this gradient is strictly a 3D quantity, as a function of the wavenumber k, redshift, z

and the cosmological parameters θ. In other words, the gradient calculation from the emulator

will be a tensor of size (Nk, Nz, Np), where Nk is the number of wavenumbers for k ∈ [5×
10−4, 50], Nz is the number of redshifts for z ∈ [0.0, 4.66] and Np is the number of parameters

considered. In this case, Np = 5 and the default values for a finer grid in k and z are Nk = 1000

and Nz = 100.

In Figure 8.6, we show the growth factor, D(z) calculated using CLASS (in orange) and the

emulator (in blue), while in Figure 8.7, we show three important quantities. First, since we are

emulating the 3 different components of the non-linear matter power spectrum, we are able to

compute the linear matter power spectrum at a test point, at the reference redshift, z0 = 0. Note

that the one calculated by CLASS and the one by the emulator agree quite well. Similarly, we

can also calculate the 3D non-linear matter power spectrum and in Figure 8.7, in orange and

blue, we have the power spectrum at a fixed redshift, excluding baryon feedback, calculated

using CLASS and the emulator respectively. The same is repeated for the curves in purple and

brown, but in this case including baryon feedback. As discussed in §8.3, we can also see the

effect of baryon feedback which alters the power spectrum at large k.
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Figure 8.9 – To investigate the performance of the emulator, we draw an independent set of cosmological
parameters, randomly from the prior and we calculate the fractional error between the predicted ones with
the GP model and CLASS. The mean of ∆Pδ/Pδ is shown by the broken horizontal line and the 3σ confidence
interval, derived from the standard deviations of all experiments, is shown in pale blue. For an accurate
emulator, it is expected that the mean is centred on 0 and this demonstrates the robustness of this method.
Note that in this procedure, one can also specify the number of desired power spectra for z ∈ [0.0, 4.66]. For
example, for p cosmological parameters and n redshifts, we have np power spectra outputs. In the bottom
panel, we are showing the error in logarithmic scale.

Various techniques have been proposed by Bastos & O’Hagan (2009) to assess the perform-

ance of an emulator. These diagnostics are generally based on the comparisons between the
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emulator and simulator runs for new test points in input parameter space. These test points

should cover the input parameter space over which the training points were previously gen-

erated. In this application, we randomly choose 100 independent test points from the prior

range and evaluate the simulator and the emulator at these points. Since, we are emulating the

3D matter power spectrum, we can also generate it on a finer grid, unlike the previous setup

where we used 40 wavenumbers and 20 redshifts. Hence, we generate all the power spectra for

1000 wavenumbers, equally spaced in logarithmic scale, k ∈ [5× 10−4, 50] and 100 redshifts,

z ∈ [0.0, 4.66], equally spaced in linear scale. For the 100 test points, this gives us a set of 104

power spectra.
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Figure 8.10 – In this figure, the blue colour refers to the posterior distribution of the parameters as inferred us-
ing the solver, CLASS and the broken red contours refer to the posterior distribution when using the emulator
developed in this work. The black dots correspond to the fiducial point in parameter space where the data has
been generated.

We define the fractional uncertainty as

∆Pδ

Pδ
=

Pemu
δ − Pδ

Pδ
(8.8.1)

and given the set of power spectra we have generated, we compute the mean and variance of

∆Pδ/Pδ. For a robust emulator, the mean should be centred on zero and indeed, as seen, from
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Figure 8.9, the mean is centred on 0. The variance, depicted by the 3σ confidence interval in

pale blue, is also quite small.

In Figure 8.8, we show the different types of weak lensing power spectra calculated using

CLASS and the emulator. The left, middle and right panel show the auto- and cross- EE, II and

II power spectra due to the two tomographic bins, shown in Figure 8.5. In the three panels,

the blue, orange and green curves correspond to the auto- and cross- power spectra, C`,00, C`,10

and C`,11 as computed by CLASS. Similarly, the red, purple and brown broken curves are the

power spectra generated by the emulator. The power spectra are in agreement when comparing

CLASS and the emulator. Note that, in a typical weak lensing analysis, the three different types

of power spectra (EE, GI and II) are combined together via the intrinsic alignment parameter,

AIA (see Equation 8.6.3).

We also test the emulator on simulated weak-lensing bandpowers. We assume measure-

ments over 10 ≤ ` ≤ 1500 and 5 tomographic slices with Gaussian n(z) as in Equation 8.6.9,

centred on redshifts [0.5, 1.0, 1.5, 2.0, 2.5] and each having a standard deviation of 0.075. Ten

bandpowers, equally spaced in logarithmic scale, are used and this gives us a set of 150 data

points. Moreover, we simulate and then assume in the likelihood independent Gaussian er-

rors with, for simplicity, σ = 0.5B̂`, where B̂` is the bandpower evaluated at the fiducial set

of cosmological parameters. For this particular case, we have set AIA = 0 but one can trivi-

ally include this factor and marginalise over it in the sampling process. The fiducial point

θfid = [0.12, 0.0225, 3.45, 1.0, 0.72] is used to generate the data and is shown by the black dots in

Figure 8.10. We use a Gaussian likelihood and uniform priors on all cosmological parameters,

similar to the range of the inputs of the emulator. Figure 8.10 shows the results obtained when

sampling the cosmological parameters on this toy data set. The red contours correspond to the

result using the emulator while the pale blue colour refers to the posterior distributions using

CLASS. We run three separate MCMC chains, each with 150 000 MCMC samples, two with the

emulator and one with CLASS. On each of the three resulting pairs of runs, we compute the

Gelman-Rubin convergence parameter, R̂ (Gelman & Rubin, 1992). The worst R̂ value is 1.002,

consistent with all three chains being drawn from the same distribution, and corroborating the

agreement shown in Figure 8.10. The emulator developed in this work is thus able to robustly

recover the posterior distributions of all the cosmological parameters, compared to the accurate

solver, CLASS.
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8.9 Conclusions

In this work, we have proposed an emulator for the 3D matter power spectrum as calculated by

CLASS across a wide range of cosmological parameters (see Table 8.3.1). This detailed method-

ology presented in this work entails a multifaceted view of the 3D power spectrum, which is an

essential quantity in a weak lensing analysis. In particular, we have successfully demonstrated

that as part of this routine, we can compute the linear matter power spectrum at a reference

redshift z0, the non-linear 3D matter power spectrum with and without the baryon feedback

model described in §8.3, gradients of the 3D matter power spectrum with respect to the input

parameters and the different auto- and cross- weak lensing power spectra (EE, GI and II) de-

rived from Pbary
δ (k, z) and the given tomographic redshift distributions, ni(z). Note that the

gradients of the weak lensing power spectra are also straightforward to calculate using the

distributive property of gradients (see Equation 8.6.6 for a general form for the different weak

lensing power spectra). Note that only Pbary
δ (k, z) is a function of the cosmological parameters.

The default emulator is built using 1000 training points only and because the mean of the

surrogate model is just a linear predictor, the mean function is very quick to compute. In the

same spirit, the first and second derivatives involve only element-wise matrix multiplication,

and are therefore quick to compute. In the test cases, a full 3D matter power spectrum cal-

culation takes 0.1 seconds compared to an average value of 30 seconds when CLASS is used.

While the goal remains to have an emulating method which is faster than the computer model,

it is also worth pointing out that it also quite accurate, following the diagnostics we have per-

formed in this work, see Figure 8.9 as an example. The emulator can be made more accurate

and precise as we add more and more training points, but this comes at an expense of O(N3)

cost at each optimisation step during the training phase. Fortunately, in this work, 1000 training

points suffice to yield promising and robust power spectra.

Building an emulator for the 3D power spectrum is deemed to be a challenging task (Kobay-

ashi et al., 2020), the main difficulties arising due to the fact that GP models cannot easily handle

large datasets (∼ 104 training points) and it is not trivial to work with vector-valued functions,

for example, Pδ(k, z; θ) as in this work. Also, techniques such as multi-outputs GP result in

large matrices, hence a major computational challenge. Fortunately, the method presented in

this work, along with the projection method explained in §7.1.2, provides a simple and straight-

forward path towards building emulators.

Moreover, current weak lensing data do not constrain the cosmological parameters to a
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high precision, hence motivating us to distribute 1000 training points across a large parameter

space, according to the current prior distributions (hypercube) used in the literature. In future

weak lensing surveys, with improved precision on the parameters, one can choose to use, for

example, a multi-dimensional Gaussian prior (hypersphere) which will certainly have a much

smaller volume compared to the hypercube used in this work. If we stick with 1000 training

points, this will lead to very precise power spectra, or we can also opt to distribute fewer than

1000 training point across the parameter space. Fewer training points also imply that training

the emulator will be faster.

The different aspects of the emulation scheme proposed in this work can easily pave their

way into different cosmological data analysis problems. A nice example is an analysis com-

bining the MOPED data compression algorithm (Heavens et al., 2000), the emulated 3D matter

power spectrum and the n(z) uncertainty in a weak lensing analysis. Moreover, if we want

to use a more sophisticated sampler such as Hamiltonian Monte Carlo (HMC), one can lever-

age the gradients from the emulator to derive an expression for the gradient of the negative

log-likelihood (the potential energy function in an HMC scheme) with respect to the input cos-

mological parameters, under the assumption that such an analytic derivation is possible. Fur-

thermore, the second derivatives can be used in a Fisher Matrix analysis, or the first and second

derivatives can be be used together in an approximate inference scheme based on Taylor ex-

pansion techniques, see for example, the recent work by Leclercq et al. (2019). In addition,

similar concepts behind this work can be extended to build emulators for Pδ(k, z) from N-body

simulations.

8.10 Summary

In this work, we have shown that we can emulate the 3D matter power spectrum, Pδ(k, z) by

first decomposing it into three different parts, that is, Pδ(k, z) = D(z)[1 + q(k, z)]Plin(k, z0).

We also use the semi-parametric Gaussian Process approach developed and tested in Chapter

7 to emulate the three different components. In doing so, we can successfully calculate the

3D non-linear matter power spectrum, as well as the linear matter power spectrum at a fixed

redshift, z0. The gradient of Pδ(k, z) can also be calculated and one can take a step further and

calculate the weak lensing and intrinsic alignment power spectra after specifying the redshift

distributions, ni(z).
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Chapter 9
MATHEMATICAL METHODS FOR WEAK LENSING

DATA ANALYSIS

We will always have STEM with us. Some things will drop out of the public eye

and go away, but there will always be science, engineering, and technology. And

there will always, always be mathematics.

Katherine Johnson

In all weak lensing cosmological data analyis, the summary statistics and the tomographic

redshift distribution play an important role to constrain cosmological and nuisance paramet-

ers. In this short chapter, a precursor for Chapter 10, in §9.1, we discuss briefly the different

summary statistics, namely band powers, binned correlation functions and the Complete Or-

thogonal Sets of E/B-Integrals COSEBIs which are currently used in weak lensing data analysis.

In addition, in §9.2, we provide an alternative method, which we will often be referred to as

the ‘double sum approach’ to computing weak lensing and intrinsic alignment power spec-

tra, when the redshift distributions are supplied as narrow-bin histograms. Finally, in §9.3, we

propose marginalising over the n(z) samples using numerical Monte Carlo methods.

9.1 Weak Lensing Statistics in Current Analyses

In this section, we will briefly cover some of these statistics, as employed for the KV-450 and

KiDS-1000 analyses. The statistics band powers, 2PCFs and COSEBIs all involve some linear

transformation of the weak lensing (shear) power spectrum, that is,

Sx =

ˆ ∞

0
`Wx

` CEE
` d` (9.1.1)
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where Sx is one of the 3 statistics and Wx
` is a weight function, which itself is function of the

Fourier scale, `. CEE
` is the E-mode angular power spectrum, usually a biased tracer of the

gravitational lensing, hence often substituted with

Ctot
` = CEE

` + CGI
` + CII

` (9.1.2)

which includes the effect of intrinsic alignment. In most cosmic shear analysis, significant B-

modes, another systematics, are not expected. In some cases, these are measured and included

in the analysis for robust analysis. The 2PCFs was the main choice of the KV-450 analysis (see

§10.1) and is strictly a linear combination of the E- and B-mode power spectra, that is,

ξ±(θ) =
ˆ ∞

0

`

2π
J0/4(`θ)[CEE

` ± CBB
` ] (9.1.3)

and in this case, the Bessel functions of the first kind, J0/4 are the weight functions. In the KiDS-

1000 analysis, the 2PCFs are binned in the angular separation, θ and referred to as the θ−bins.

The full angular range employed was θ ∈ [0′.5, 300′]. On the other hand, the expressions for

the COSEBIs statistics are

En =
1

2π

ˆ ∞

0
`CEE

` Wn
` d`

Bn =
1

2π

ˆ ∞

0
`CBB

` Wn
` d`

(9.1.4)

and the expressions for Wn
` are

Wn
` =

ˆ θmax

θmin

θT+n(θ)J0(`θ)

=

ˆ θmax

θmin

θT−n(θ)J4(`θ).
(9.1.5)

Therefore, for COSEBIs, the weight functions, Wn
` are Hankel transforms of the filter functions,

T±(θ). The latter is bounded for certain angular range, that is, θ ∈ [θmin, θmax]. Moreover, band

powers are binned angular power spectra and are given by

BEE
` =

1
2N`

ˆ ∞

0
`
[
WEE

` CEE
` + WEB

` CBB
`

]
d`,

BBB
` =

1
2N`

ˆ ∞

0
`
[
WBE

` CEE
` + WBB

` CBB
`

]
d`

(9.1.6)

where N` = ln(`up,`) − ln(`low,`) and is simply a normalisation term which traces `2C`. The
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weight functions, W` are

WEE
` = WBB

`

=

ˆ ∞

0
θT(θ)

[
J0(`θ)g`+(θ) + J4(`θ)g`−(θ)

] (9.1.7)

and

WEB
` = WBE

`

=

ˆ ∞

0
θT(θ)

[
J0(`θ)g`+(θ)− J4(`θ)g`−(θ)

]
.

(9.1.8)

In this case, T(θ) is a selection and is unrelated to the term T±n(θ) for the COSEBIs statistics

and g`±(θ) are filter functions. We refer the reader to Asgari et al. (2021) and Joachimi et al.

(2021b) for a more comprehensive explanation on the theoretical modelling of the different

statistics, which have been explicitly tested on the KiDS-1000 data. Asgari et al. (2021) argued

that out of the three statistics, COSEBIs and band powers provide a cleaner approach towards

the separation of the cosmology-driven E- and systematics-driven B-modes.

9.2 Weak Lensing Power Spectra as Double Sums

In this section, we will re-write the weak lensing and intrinsic alignment power spectra as a

double sum. The n(z) distribution can be regarded as a series of tophat functions which consti-

tute a histogram. This approach sidesteps multiple steps, for example, integrations, to approx-

imate the power spectra numerically. Existing approach in the KiDS-450, KiDS+VIKING-450

(KV-450) and KiDS-1000 likelihoods use trapezoidal rule to perform numerical integrations. In

the following, the indices i and j correspond to the auto and cross tomographic bins while the

indices α and β correspond to the auto and cross elements of the finer bins within one redshift

distribution.

EE Power Spectrum

The EE power spectrum is given by

CEE
`,ij =

ˆ χH

0
dχ

wi(χ)wj(χ)

χ2 Pδ(k; χ) (9.2.1)

where the weight function w(χ) is

192



CHAPTER 9. MATHEMATICAL METHODS FOR WEAK LENSING DATA ANALYSIS 9.2. Weak Lensing Power Spectra as Double Sums

wi(χ) = Aχ(1 + z)
ˆ χH

χ
dχ′ ni(χ)

(
χ′ − χ

χ′

)
(9.2.2)

and A = 3H2
0 Ωm/2c2. The idea behind this work is to assume that the redshift bins within one

tomographic bin are very small such that we can approximate them as a tophat (boxcar) func-

tion. If the bins are very small, then we can assume that the tomographic bin is a sum of δ

functions, which has the fundamental property that

ˆ ∞

−∞
f (x)δ(x− a)dx = f (a) (9.2.3)

and in fact,

ˆ a+ε

a−ε
f (x)δ(x− a)dx = f (a) (9.2.4)

for ε > 0. We will first define a tophat (boxcar) function as

Tα =





1/∆zα

0

zα − ∆zα/2 < z < zα + ∆zα/2

otherwise
(9.2.5)

and the tomographic redshift ni(z) can be approximated as a sum over fine bins in redshift

ni(z) ≈∑
α

hiαTα (9.2.6)

The integration term in the weight function can be re-written in terms of the newly defined

n(z) distribution, that is,

Ii = ∑
α

∆zαhiα

(
χα − χ

χα

)
(9.2.7)

and with some linear algebra, the EE power spectrum can be written as a double sum as follows

CEE
`,ij ≈∑

α
∑
β

hiαhjβ∆zα∆zβ

ˆ min(χα,χβ)

0
dχ

(
χα − χ

χα

)(
χβ − χ

χβ

)
A2(1 + z)2Pδ(k; χ). (9.2.8)

The correlations between the two fields are caused only by matter which is in the foreground

of both narrow tomographic bins. The matter in between α and β will affect the lensing of

the further bin but this additional fluctuation will not be correlated with the convergence in

the near bin, so contributes nothing to the cross-correlation. At some tiny level, fluctuations
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just beyond the nearer bin will be correlated with fluctuations just closer than the nearer bin,

but this is tiny, and is heavily suppressed since the lensing kernel for the nearer bin is almost

zero there. In the Limber approximation, it exactly vanishes. Equation 9.2.8 can further be

simplified. If we define

FEE
` (k; χ) = A2(1 + z)2Pδ(k; χ), (9.2.9)

we have

CEE
`,ij ≈∑

α
∑
β

hiαhiβ∆zα∆zβ

[
QEE,0

`,αβ −
(

χα + χβ

χαχβ

)
QEE,1

`,αβ +
1

χαχβ
QEE,2

`,αβ

]
(9.2.10)

where

QEE,r
`,αβ =

ˆ min(χα,χβ)

0
dχ χrFEE

` (k; χ), (9.2.11)

Once the three cosmology-dependent terms, QEE,r
`,αβ for r ∈ [0, 1, 2] are computed, the auto

and cross EE power spectra can be calculated in a very fast way. Moreover, from an algorithmic

perspective, we can easily input a specific set of redshift distribution for a weak lensing ana-

lysis.

Intrinsic Alignment Power Spectra

Using a similar approach as elaborated in the previous section for the EE power spectrum, the

II and GI intrinsic alignment power spectra can also be expressed as a weighted sum in terms

of the heights on the n(z) redshift distributions. The II power spectrum (Hirata & Seljak, 2004)

is modelled as

CII
`,ij =

ˆ χH

0
dχ

ni(χ) nj(χ)

χ2 Pδ(k; χ) F2(χ) (9.2.12)

where F(χ) = C1ρcritΩm/D+(χ). C1 is a constant given by 5× 10−14 h−2M−1
� Mpc3, D+(χ) is the

linear growth factor normalised to unity today and ρcrit is the critical density of the Universe

today. We will first define

FII
` (k; χ) =

Pδ(k; χ) F2(χ)

χ2 . (9.2.13)

The II power spectrum can thus be written in terms of the heights of the ni(z) and nj(z) redshift
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distribution as

CII
`,ij ≈∑

α

hiαhjα∆zαFII
` (χα) (9.2.14)

In this derivation, we have the product of two tophat functions, TαTβ and hence the contri-

bution to the total II power spectrum arises from α = β only and we have a single sum only

compared to the EE power spectrum. Similarly, we can express the GI power spectrum as a

double sum. The GI power spectrum (Hirata & Seljak, 2004) is modelled as

CGI
`,ij =

ˆ χH

0
dχ

wi(χ)nj(χ) + wj(χ)ni(χ)

χ2 Pδ(k; χ) F(k; χ) (9.2.15)

and we define

FGI
` (k; χ) =

A(1 + z)
χ

Pδ(k; χ) F(χ). (9.2.16)

The final approximate GI power spectrum is given by

CGI
`,ij ≈∑

α
∑
β<α

(
hiαhjβ + hiβhjα

)
∆zα∆zβ

(
1− χβ

χα

)
FGI
` (k; χβ) (9.2.17)

We now have a method for computing the three types of power spectra, often used in a

weak lensing analysis. The advantage of this formalism is that we no longer have to com-

pute integrations numerically using trapezoidal rule for each auto and cross power spectrum.

Only QEE,r
`,αβ term involves an integration. Instead, once all cosmology-dependent terms are pre-

computed, the final power spectra are given by a (double) sum involving the heights of any

pairs of n(z) distribution.

9.3 Marginalisation of the n(z)

An important aspect is the marginalisation of the n(z) uncertainty since the uncertainty in the

redshift distributions needs to be propagated to the final results. In the analysis by Hildebrandt

et al. (2020), at each step in the MCMC, a random sample of the n(z) is drawn and the log-

likelihood is calculated. Denoting ρ as the additional set of nuisance parameters for the n(z)

distributions, we propose marginalising over ρ as follows
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p(θ, β, ρ|d) ∝ p(d|θ, β, ρ)π(θ, β, ρ)

p(θ, β|d) =
ˆ

p(d|θ, β, ρ)π(ρ)dρ π(θ, β)

≈ 1
N

N

∑
i=1

p(d|θ, β, ρi) π(θ, β)

(9.3.1)

and we are assuming independent (separable) priors. The last step is a Monte Carlo estimate of

the likelihood marginalised over ρ. In other words, we may draw more than one sample of n(z)

distributions at a fixed set of cosmological parameters, θ and the other nuisance parameters, β

and we estimate the log-likelihood. This is valid since the sampled redshift distributions are

cosmology-independent.

9.4 Summary

In this short chapter, we have covered three topics, namely the different summary statistics

currently being employed in different weak lensing surveys, the weak lensing and intrinsic

alignment power spectra expressed as a (double) sum and finally, we discussed how we can

marginalise over the n(z) redshift distributions by drawing more than one sample of n(z) for

a fixed set of cosmological and nuisance parameters. This results in a Monte-Carlo estimate of

the likelihood. In the next chapter, we will use these three mathematical methods to perform

an analysis on the KV-450 data and the goal is also to extend the analysis and apply the tools

to the latest KiDS-1000 data.
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Chapter 10
WEAK LENSING DATA ANALYSIS OF DIFFERENT

SURVEYS

No one undertakes research in physics with the intention of winning a prize. It is

the joy of discovering something no one knew before.

Stephen Hawking

The determination of the redshift distributions, n(z) will play a crucial role in future weak

lensing data analyses since the cosmic signal is sensitive to the choice of n(z). Indeed, the for-

ward model, that is, the calculation of the different weak lensing and intrinsic alignment power

spectra, relies on the n(z) distributions. Hence, any interpretation of the result from a weak

lensing data analysis is dependent on accurate n(z) distributions. For example, Hildebrandt

et al. (2017) argued that in their analysis, a 1σ uncertainty mis-specification of one of their tomo-

graphic redshift distributions can deteriorate cosmological parameters by ∼ 25%. This clearly

demonstrates that a careful and meticulous analysis is required to deal with the systematics in

weak lensing cosmology.

Existing methods for estimating the n(z) distributions include the DIR method (Lima et al.,

2008) which is a weighted direct calibration approach, the CC method, which is an angu-

lar cross-correlation-based calibration developed by Newman (2008) and the BOR method

(Bordoloi et al., 2010), which essentially involves recalibrating the Bayesian probability estimate

of of the redshift, BPZ (Benítez, 2000) in probability space. We refer the reader to Hildebrandt

et al. (2017) who performed a detailed analysis by investigating the different redshift distribu-

tions, namely DIR, CC and BOR on the KiDS-450 dataset.

One option to estimate the photometric redshift distributions is to use the DIR method

which makes use of available spectroscopic redshift distribution for a sample of object of in-
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terest. The drawback is that in practice, the spectroscopic catalogues are never complete and

hence are representative of only a subset of the full shear catalogue. In addition to this, a fur-

ther complication is that deep spectroscopic redshift surveys cover a smaller area compared to

photometric redshifts, hence sample variance being the main issue. Lima et al. (2008) proposed

a k−nearest-neighbour (kNN) approach to estimate the volume density of objects in a multi-

dimensional magnitude space and this is performed for both catalogues, that is, spectroscopic

and photometric. This estimate is then used to up-weight and down-weight the spectroscopic

redshift objects in magnitude space where they are under-represented and overrepresented

respectively.

On the other hand, Newman (2008) used cross-correlation (CC) functions between pho-

tometric and spectroscopic objects for finding the photometric redshift distributions. In par-

ticular, the main advantage of this method is that as long as the full redshift range between

spectroscopic and photometric is the same, the method is insensitive to spectroscopic selection

function in terms of galaxy type and magnitude. However, in order to develop the method,

a good knowledge of the angular selection function, which can be estimated from masks, is

required. Hildebrandt et al. (2017) implemented variants of this algorithms in the analysis

of the KiDS-450 data, where the cosmological data analysis was performed using correlation

functions as summary statistics.

Another approach is the BOR method proposed by Bordoloi et al. (2010). This uses the

posterior probability distribution of the redshift of an object determined using BPZ. A rep-

resentative set of spectroscopic sample of objects is used to investigate the properties of the

corresponding photometric redshift likelihoods. A main limitation is that the spectroscopic

training sample should be completely representative of the photometric sample, but this is not

the case in practice. For example, in the KiDS-450 analysis, a recalibration method along with

a re-weighting procedure in magnitude space had to be employed to estimate the n(z) redshift

distributions.

Our contribution in this chapter is three-fold. First, we use the method established by Leis-

tedt et al. (2016) to develop a Bayesian Hierarchical method for inferring the n(z) redshift dis-

tributions*, with the aim of performing cosmological data analyses of recent releases of weak

lensing data sets, in particular, the KV-450 and the KiDS-1000 data. Second, the fact that the

emulator developed in Chapter 8 produce robust and reliable results, this is then used to substi-

tute CLASS to compute the 3D matter power spectrum. Third, we express all the weak lensing

*The samples of n(z) were computed by George Kyriacou.
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and intrinsic alignment power spectra as a (double) sum of the product of the some quantities,

which are pre-computed and they depend on the cosmological parameters, and the heights of

the fine bins of the n(z) distributions. This approach offers a simple and quick way to compute

power spectra.

The chapter is organised as follows. In §10.1, we elaborate briefly on the KiDS+VIKING,

henceforth KV-450, survey before explaining the data and covariance in §10.2. Next, our ap-

proach is different compared to the original analysis and hence, this results in a different set of

parameters which we discuss in §10.3. The novel method for finding the n(z) redshift distribu-

tion and this is covered briefly in §10.4 and we present the results from our analysis in §10.5.

We also touch briefly upon the latest KiDS-1000 survey, data and performed a brief analysis in

§10.6 as part of our future work.

10.1 The KV-450 Survey

The KV-450 is a weak lensing analysis which combines data from the Kilo-Degree Survey

(KiDS) and the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING), spanning a wavelength

of 320 nm . λ . 2350 nm. Interestingly, KIDS overlaps with VIKING and the latter is well-

suited for calculating more accurate photometric redshift (photo-z), an important requirement

for a cosmic shear analysis (Hildebrandt et al., 2020). The infrared data from VIKING be-

comes important in the high redshift regime where the performance of the photo-z can be

better. Hence, this factor can be exploited and this information can be added to a weak lensing

analysis. As a result, the cosmic shear results do not only improve in terms of robustness but

also in precision.

In the original KV-450 analysis, the photo-z are calibrated using spectroscopic surveys. Dif-

ferent surveys such as zCOSMOS (Lilly et al., 2009), DEEP2 Redshift Survey (Newman et al.,

2013) and among others were used for the KV-450 photo-z calibration. As in any cosmic shear

analysis, the galaxies are binned in tomographic redshift bins and for KV-450, 5 tomographic

bins were employed for the redshift range 0.1 < z < 1.2, with a bin width of ∆z = 0.2, except

for the last one, which has a bin width of ∆z = 0.3.

Moreover, the DIR method was used to find the redshift distributions. This was first de-

veloped by Lima et al. (2008) and is based on the kth nearest neighbour (kNN) algorithm. To

account for the variance on the redshift distributions, Hildebrandt et al. (2020) adopted a spa-

tial bootstrapping approach. Moreover, they also define a set of nuisance parameters, δzi for

i ∈ [1, 5] to linearly shift each tomographic bin, that is, ni(z) → ni(zi + δzi) when calculating
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the shear correlation function. This accounts for shifts in the median redshift, but is clearly

limited in applicability.

10.2 Data

The summary statistics employed in the KV-450 are the 2-point shear correlation functions,

ξ+ and ξ− (see Chapter 9 for a discussion on summary statistics). Nine logarithmically spaced

bins are defined in the interval [0′.5, 300′] and the first seven data points and the last six bins are

used for the ξ+ and ξ− respectively. In particular, these are chosen such that baryon feedback

will have less than∼ 20% effect on the overall signal. See Hildebrandt et al. (2020) for a detailed

discussion. Since five tomographic redshift distributions are used in the analysis, the data

vector of KV-450 consists of (6 + 7)× 15 = 195 elements and the plots for both ξ+ and ξ− are

shown in Figure 10.1 in the lower and upper panel respectively.
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Figure 10.1 – The upper and lower plots show the 2-point shear correlation functions, ξ− and ξ+ respectively
for the the 5 tomographic redshift bins. This results in a total of 15 auto and cross shear correlation functions.
There are 7 data points for the ξ+ and 6 for the ξ−, resulting in a data vector of length, (6 + 7)× 15 = 195. The
error bars are given by the square root of the diagonal of the covariance matrix. The green solid curves show
the theoretical model computed using the emulator and this includes all the systematics, that is, the intrinsic
alignment model, baryon feedback and the observational biases similar to Hildebrandt et al. (2020).

Moreover, the data covariance matrix, of size 195× 195 is shown in Figure 10.2. The cov-

ariance matrix is determined via an analytical recipe which is discussed in further details by
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Hildebrandt et al. (2017) when the first analysis of the KiDS-450 data was performed using

correlation functions.
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Figure 10.2 – The data covariance matrix (scaled such that the maximum is 1) for the KV-450 analysis. This
matrix is of size 195.

10.3 Parameters

In this section, we briefly elaborate on the cosmological and nuisance parameters used in the

KV-450 analysis by Hildebrandt et al. (2020). Our approach, as discussed in the next section,

will be slightly different. The shear measurements are generally biased and this bias is com-

monly parametrised in terms of the multiplicative bias term, m and the additive bias c, such

that the observed shear is

g ' (1 + m)gtrue + c. (10.3.1)

Note that g, m, c are all complex numbers. In the work by Hildebrandt et al. (2020), m is very

small and is expected to have small effect on the overall cosmological parameter constraints.

They introduce a δc parameter for the c-term offset and a Gaussian prior, c ∼ N (0, 2× 10−4)

is assumed. Moreover, an additional parameter, Ac is introduced to account for position-

dependent additive bias and a Gaussian prior is assumed, that is, Ac ∼ N (1.01, 0.13). See

Hildebrandt et al. (2020) for further details.

Unlike the analysis in Chapter 6 where a set of band powers were used to constrain cos-

mology, for KV-450, a 2-point shear correlation function analysis is performed. The correlation

function is
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ξ±,ij(θ) =
1

2π

ˆ ∞

0
`Cκκ

`,ij J0,4(`θ)dθ, (10.3.2)

where J0,4(`θ) are Bessel functions of the first kind and Cκκ
`,ij is the convergence power spectrum,

in the Born approximation, given by:

Cκκ
`,ij =

ˆ χH

0
dχ

wi(χ)wj(χ)

χ2 Pδ(k; χ). (10.3.3)

wi is the lensing efficiency and is elaborated at the beginning of this Chapter (see Equation

9.2.2). In addition, we also have to account for intrinsic alignment effects and hence the total

shear correlation function is a linear combination of the original correlation function (Equation

10.3.2) and two additional terms, GI and II,

ξtot
±,ij = ξ±,ij + ξGI

±,ij + ξII
±,ij (10.3.4)

We refer the reader to §9.2 for further details on the expressions for the intrinsic alignments.

In practice, all power spectra (convergence, GI and II) are first computed and then the final

transform, essentially, the Hankel transform in Equation 10.3.2 is applied to calculate the 2-

point shear correlation functions. An additional nuisance parameter, AIA is used to model

the amplitude of the intrinsic alignment effects and typically, AIA is marginalised over in the

sampling procedure.

Next, an important component is to model other systematics in the analysis. Hildebrandt

et al. (2020) used HMcode (Mead et al., 2015) to model baryon feedback. In HMcode, B, the

amplitude of the halo mass-concentration and η0 = 0.98− 0.12B, the halo bloating parameter

can be varied. Hildebrandt et al. (2020) applied a flat prior on B ∼ U [2.00, 3.13] and mar-

ginalised over it when sampling the posterior distribution of the cosmological and nuisance

parameters. As a result, in the Hildebrandt et al. (2020) analysis, they have 5 cosmological

parameters, which we denote by θ and 9 nuisance parameters, which we denote by β

θ =
[
Ωcdmh2, ln(1010As), Ωbh2, ns, h

]

and

β = [AIA, B, δc, Ac, δz1, δz2, δz3, δz4, δz5] .
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10.4 Bayesian Hierarchical Model for n(z) Distributions

An important ingredient in cosmic shear analysis is the inference of the redshift distribution,

ni(z) from galaxy observations. The most common choice for finding photometric redshifts is

via template-fitting method. However, in cosmic shear analysis, we are not strictly interested in

the redshift estimate but rather in the distribution of the redshifts, which is crucial for inferring

cosmological parameters from two-point statistics such as correlation functions, band powers

or COSEBIs. In general, once the photometric redshifts are estimated, these are stacked to

generate the n(z). This does not offer a clean approach since there are redshift uncertainties

are not propagated in a likelihood analysis, ad the stacked likelihood is not in general a good

estimate of n(z) (Malz, 2021).
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Figure 10.3 – The figure shows a set of redshift distributions generated using the BHM approach. We have 5
n(z) distributions in the redshift range, z ∈ [0, 3]. The distribution lies mostly in the redshift range, z ∈ [0, 2].
These can then be used to calculate the weak lensing and intrinsic alignment power spectra in a weak lensing
cosmological analysis.

Common methods for finding redshift estimates include template fitting, Machine Learn-
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ing and clustering. On the other hand, Leistedt et al. (2016) proposed a Bayesian Hierarchical

Model (BHM) to infer the redshift distributions, as well as the individual redshifts from cata-

logues. Here, we provide a short summary of the idea behind this work. Each galaxy has some

intrinsic properties such as types, t, redshifts, z and apparent magnitudes, m (or fluxes) and

these are assumed to be drawn from a joint distribution, p(t, z, m|survey, galaxy). This distri-

bution can be regarded as a combination of a series of a piecewise constant, parametrised by

{ fijk}, that is,

p(t, z, m|{ fijk}) = ∑
ijk

fijk

(zi,max − zj,min)(mk,max −mk,min)

× δt,ti Θ(z− zj,min)Θ(zj,max − z)Θ(m−mk,min)Θ(mk,max −m)

(10.4.1)

where δ is the Kronecker delta function and Θ is the step-Heaviside function. Marginalising

over the redshift and magnitude essentially gives the probability, fijk of finding an object in that

voxel ijk, that is,

fijk ≡
ˆ zj,max

zj,min

ˆ mk,max

mk,min

p(ti, z, m)dzdm. (10.4.2)

We refer the reader to Leistedt et al. (2016) for a full mathematical description of their work. The

posterior distribution of fijk turns out to be a Dirichlet distribution and a Gaussian likelihood

is assumed for the photometric fluxes of each given galaxy. Leistedt et al. (2016) then used

a two-step Gibbs sampler to sample the full posterior distribution to obtain samples of the

desired quantities. This framework has been adapted by George Kyriacou for his thesis work,

including selection effects appropriate for KV-450.

10.5 Analysis and Results

In our analysis, we follow Hildebrandt et al. (2020) and focus on the 2PCFs. We take a slightly

different approach for the n(z), which is determined using the method explained in §10.4.

Moreoer, we do not require the shifts, δzi for the n(z) distributions (see Figure 10.3) gener-

ated using the BHM approach. We also use the analytical baryon feedback model (see Chapter

4, Equation 4.2.5) to account for baryon feedback. This model has an amplitude parameter,

Abary which we marginalise over in the sampling procedure. Importantly, we can easily couple

the emulator we developed in Chapter 8 to the KV-450 likelihood code. Since both the emu-

lator and the KV-450 have the same set of input cosmological parameters, this step was quite
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straightforward. The number of nuisance parameters is reduced from 9 to 4 and β is now

β =
[
AIA, Abary, δc, Ac

]
.

Having established that the emulator for the 3D matter power spectrum, Pδ(k, z) (see for

example, Figure 8.10 in Chapter 8) and CLASS give essentially the same cosmological results,

for fixed n(z), we use the faster emulator to undertake the more expensive task of marginalising

over the n(z) uncertainty. The emulator is therefore used to calculate Pδ(k, z) at each step in the

MCMC sampling scheme.
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Figure 10.4 – The figure shows the posterior distribution of all cosmological and nuisance parameters. The
contours contain 68% and 95% of the posterior. The olive green and solid dark green colours show the posterior
obtained when sampling the posterior using the mean and a single draw of the n(z) distributions respectively.

The next step involves calculating the convergence power spectrum and the two intrinsic

alignment power spectra (GI and II). We use the double sum approach (see §9.2 in Chapter 9)

for further details) in this step. In addition, we can perform three separate analyses using the

n(z) distributions as determined using BHM approach. We can either use the
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• the mean, n̄(z),

• one random sample of n(z) for each θ or

• N samples of n(z) for each θ, the Monte-Carlo marginalisation (see §9.3 in Chapter 9).

Hildebrandt et al. (2020) used the mean of the SOM method of the n(z) distributions and in

our case, one has the option to choose either the mean or a random sample of n(z). Performing

the Monte-Carlo integration to estimate the log-likelihood, that is, drawing N samples of the

n(z) for each set of cosmological and nuisance parameters is a computationally expensive step,

which we do not apply in this data analysis problem. The reason it is expensive is because

after the computation of the weak lensing and intrinsic alignment power spectra using the

emulator, performing the Hankel transform (see §9.1 in Chapter 9) to compute the 2PCFs for

each realisation of the n(z) distribution is usually expensive. Therefore, the computation time

grows linearly depending on the choice of N.
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Figure 10.5 – The left panel shows the marginalised joint posterior distribution of σ8 and Ωm while the right
panel shows S8 and Ωm for the KV-450 data . S8 is re-parametrised in terms of σ8 and Ωm such that S8 :=
σ8
√

Ωm/0.3. The blue contours shows the joint posterior of the S8 parameter against Ωm for the latest Planck
2018 result.

Figure 10.4 shows the marginalised 1D and 2D distributions of all cosmological and nuis-

ance parameters for the KV-450 data using the mean of the n(z) distributions (in olive green)

and the results corresponding to samples of n(z) are shown in black green. The left panel of

Figure 10.5 shows the σ8 −Ωm plane while, in the right panel, we compare the constraints on

(S8, Ωm) to the Planck 2018 results (Planck Collaboration et al., 2020).

The analysis performed in this chapter is the first which applies an emulator for the 3D
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matter power spectrum and a novel calibration of the n(z) redshift distributions. It also makes

use a new technique for re-writing the weak lensing power and intrinsic alignment power

spectra as a (double) sum. Once the emulator is trained and stored, sampling the joint posterior

distribution of the cosmological and nuisance parameters took around 30 hours on a Desktop

computer using the EMCEE sampler (Foreman-Mackey et al., 2013).

Using the mean of the n(z) distributions, the parameter S8 is estimated to be S8 = 0.738+0.035
−0.036

and a similar estimate is obtained if a single sample of n(z) is used at every step in the MCMC.

These constraints are not very different when compared to the fiducial analysis of Hildebrandt

et al. (2020), where the constraint is S8 = 0.737+0.040
−0.036. We believe that the sampling the posterior

distribution will be faster with the emulator and the double sum approach combined, in the

case where band powers are used as summary statistics. The main reason is that the additional

step of computing 2PCFs using the Hankel transform is not required. See §10.6 where a future

work is to apply the tools developed in this thesis to KiDS-1000 band power data. The fact

that the emulator is also able to yield robust constraints when applied to an actual data from

the KV-450 weak lensing survey demonstrates its robustness and therefore it can be used for

future weak lensing surveys. The emulator and the Bayesian Hierarchical method developed

for inferring the n(z) can also be used in map-cosmology sampling scheme (Alsing et al., 2017)

to constrain cosmological parameters from data directly, without the need for computing two-

point summary statistics.

10.6 Future Work

Following the analysis on the KV-450 data above, we also intend to use the latest KiDS-1000

data to infer cosmological and nuisance parameter. In particular, the KiDS-1000 is a nine-band

optical and near-infrared photometry survey and contains 1006 deg2 of images. It is the fourth

data release from KiDS, the Kilo-Degree Survey. Asgari et al. (2021) performed an in-depth

cosmological analysis using the KiDS-1000 with three different sets of statistics namely, band

powers, Complete Orthogonal Sets of E/B-Integrals (COSEBIs) and shear two-point correlation

functions (2PCFs).

Cosmic shear, as elaborated in this thesis, has the capability of not only testing the cosmo-

logical model, but also constrains the amplitude of the matter density fluctuations, typically

measured using the S8 = σ8
√

Ωm/0.3 parameter. Ωm is the matter density parameter and σ8

yields the standard deviation of matter density in spheres of 8 h−1Mpc. Despite the recent rapid

development of cosmic shear analyses, not only through KiDS but also DES and HSC, they de-
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mand for critical revision and comprehensive improvements. For example, observational and

astrophysical systematics remain a major challenge and require some careful analysis. How-

ever, KiDS has some unique properties for it allows accurate measurement of the gravitational

shear, as well as the accurate determination of the n(z) redshift distributions.

An important extension of the work done for KV-450 would be to use the latest KiDS-1000

data to infer the redshift distributions† and couple the emulator with the likelihood code. In

particular, since the emulator is built at the level of the 3D matter power spectrum, this trivially

allows for the use of different summary statistics in the KiDS-1000 analysis.

10.7 Summary

In this chapter, we are adapting the KV-450 and KiDS-1000 likelihood codes so that they can

support the different tools we have developed in this thesis. In particular, we are focusing on

the weak lensing power spectra which we have re-written as a (double) sum in terms of the

heights on the n(z) distributions, the emulator which we have built in Chapter 8 and the n(z)

distributions generated using Bayesian Hierarchical Modelling (Leistedt et al., 2016).
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Figure 10.6 – The inferred values of S8 in this work, compared to other weak lensing surveys. Note the tension
with Planck’s inferred S8 value.The 68% credible interval is indicated by the horizontal bar for each experi-
ment.

Early results obtained using the KV-450 data are robust when compared to the previous

work based on cosmic shear, for example, the Dark Energy Survey (DES) (Troxel et al., 2018)

†Using the BHM developed by George Kyriacou
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and Subaru Hyper Suprime-Cam (HSC) (Hikage et al., 2019). This opens a new avenue to-

wards incorporating the emulator, the BHM method for the n(z) distribution and the math-

ematical framework for calculating the weak lensing and intrinsic alignment power spectra,

as part of a more complex, but principled Bayesian Hierarchical inference engine. The latter

can possibly relax the assumption of a Gaussian assumption for weak lensing analysis. In

other words, Bayesian Hierarchical inference of non-Gaussian shear field can be possible with

efficient samplers such as Hamiltonian Monte Carlo. This fits perfectly with the emulator de-

veloped in this thesis, since the emulator also outputs derivatives with respect to the input

cosmological parameters.

In the near future, we would like to extend the analysis in this chapter and apply the tools

developed in this thesis to the KiDS-1000 data (Asgari et al., 2021). At this stage, we have

successfully adapted the KiDS-1000 likelihood code so we can use the EMCEE sampler and

we can now trivially couple the emulator of the 3D matter power spectrum, Pδ(k, z) with the

likelihood.

Throughout this work, we have assumed a flat ΛCDM cosmological model to infer cosmo-

logical parameters. The results obtained in this work are close to other cosmic shear analysis

such as the DES and HSC results. Since the inferred value of S8 is lower compared to the latest

Planck results (see Figure 10.6 for a comparison), there can be two possible explanations. One

possibility lies in refining the cosmological model or it could also be that there are systemat-

ics in the data which are not fully accounted. The former raises various questions whether a

wCDM model would instead be preferred. Troxel et al. (2018) performed an analysis based

upon the wCDM model and reports w = −0.95+0.33
−0.39 using the Dark Energy Survey (DES) Year

1 data. By computing the log-Bayes factor between a ΛCDM and wCDM model, they did not

find significant preference for a model which allows for w 6= −1. Another source for the dis-

crepancy can be in the handling of the systematics, for example, baryon feedback, intrinsic

alignment modelling and neutrino, and the estimation of the redshift distributions. One pos-

sible test would be a combined analysis of the three surveys (KiDS, HSC and DES), including

a robust and principled method for not only finding the redshifts of sources but also the es-

timation of the n(z) distributions. A bias due to the small number and perhaps miscalculated

spectroscopic redshifts might also be a possible source of systematics. With upcoming larger

surveys, much diligent effort would be needed to determine the source of tension/discrepancy

in the inferred value of S8.
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Chapter 11
CONCLUSIONS

Research is what I’m doing when I don’t know what I’m doing.

Wernher von Braun

In this thesis, we have performed an in-depth analysis of the different emulating methods

that one can adopt, not only for future weak lensing surveys, but for any cosmological data

analysis pipeline. The principles behind remain the same, depending on the quantity (power

spectrum, band power, MOPED coefficient) we want to emulate. In what follows, we will

briefly summarise the motivation and purpose of each chapter in this thesis before elaborating

on the possible use-cases of these techniques as future applications, not only in cosmology but

also in the machine learning community. In some chapters, for example, Chapters 4, 5 and 7,

we first test our methods and perform exploratory analyses before developing robust method-

ologies for publications. Moreover, Chapter 10 is still work in progress and the expectation is

to have the three ingredients, namely the double sum approach for computing the weak lens-

ing and intrinsic alignment power spectra, the Bayesian hierarchical method for estimating the

n(z) distributions and the emulator in a weak lensing analysis.

11.1 Summary

In this section, we describe briefly what we have covered in each chapter and how the ideas

from each chapter follow from one another. This provides a summary of the wealth of topics

and information we have explored, organised and applied in different weak lensing analyses.

In Chapter 1, we systematically go through the different theoretical concepts of weak lens-

ing cosmology. This chapter serves as a cornerstone to the whole field of weak lensing and is

crucial in the development and application of theoretical model(s) in any weak lensing data

analysis problem.
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In Chapter 2, we dive deep into the Bayesian methodology and motivate its use in the cos-

mology community. Arguably, it remains the favoured method in a cosmological data analysis

problem, albeit the cost of evaluating the likelihood in a sampling procedure. Novel techniques

based on (Bayesian/Statistical) machine learning are currently being developed and can pave

their way in a likelihood analysis. One such example is a Bayesian emulator which is central in

this thesis.

In Chapter 3, we extend the parametric Bayesian approach covered in Chapter 2 to non-

parametric Bayesian techniques and one such approch is Gaussian Processes (GP). Instead of

working in weight (parameter) space, the principle is to work in data space, hence allowing

us to model any function given a sufficient number of training points. Crucially, the kernel

function is the fundamental concept behind non-parametric Bayesian analysis.

In Chapter 4, we cover different techniques, namely polynomial models, Gaussian Pro-

cesses and neural networks to illustrate scalable emulating methods, applied to the KiDS-450

band powers. In particular, we test the PICO algorithm (Fendt & Wandelt, 2007b) and de-

velop an analogous technique for Gaussian Processes, called Product-of-Experts in the machine

learning community. All three methods produce consistent results and open a new avenue to

performing scalable emulation for weak lensing.

In Chapter 5, we use the JLA supernova data as a test case to show that we can emulate

the MOPED coefficients using Gaussian Processes. Importantly, unlike the method explored

in Chapter 4 where we had to emulate many functions, the MOPED formalism allows us to

emulate only p functions and p is the number of parameters in our model. We also show that

one can focus on the most expensive part of the pipeline, which is usually a function of a small

number of parameters. Hence, the number of forward simulations can be reduced to a large

extent.

In Chapter 6, we extend the concepts developed in the previous chapter and apply them to

an actual likelihood analysis. In particular, we use the KiDS-450 likelihood code to couple an

emulator for the band powers and the MOPED coefficients. This is a challenging problem be-

cause we have only 24 band powers and the data is not very informative about the parameters.

Despite this hurdle, we are able to recover reliable posterior distributions for the cosmological

and nuisance parameters using the emulator.

In Chapter 7, we introduce for the first time, in the cosmology community, an existing

approach in the statistics community, which deals with semi-parametric Gaussian Processes.

While the zero-mean Gaussian Process applied in the various test cases work well, one can
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also embed existing prior information about the function we want to learn using the semi-

parametric Gaussian Process approach. We test this method on the MOPED coefficients and we

are able to generate robust posterior densities for all cosmological and nuisance parameters.

In Chapter 8, we use the semi-parametric Gaussian Process model developed in the previ-

ous chapter to build an emulator for the 3D matter power spectrum. The motivation behind is

to emulate the most expensive part of a weak lensing analysis pipeline. The other power spec-

trum calculations, such as the convergence power spectrum and the intrinsic alignment power

spectra can be done easily. Crucially, we show that the first and second derivatives of Pδ(k, z)

with respect to the input cosmological parameters can also be computed analytically.

In Chapter 9, we highlight briefly different types of summary statistics which are used in

current weak lensing data analyses. In addition, we derive expressions for calculating the weak

lensing and intrinsic alignment power spectra, which involves summing over the product of

the heights of the n(z) redshift distributions and other pre-computed quantities which depend

on the cosmological parameters. We also provide a simple method for marginalising over the

n(z) uncertainties.

In Chapter 10, we apply the emulator for the 3D matter power spectrum developed in the

previous chapter, along with a Bayesian hierarchical method for determining the n(z) distribu-

tion of sources, to infer cosmological parameters for the KiDS+VIKING-450 survey. In addition,

we re-write the weak lensing and intrinsic alignment power spectra as a double sum. We dis-

cuss how these techniques can be extended and applied in future weak lensing surveys.

11.2 Future Applications

In this section, we highlight briefly different and feasible projects that one can consider. In par-

ticular, we discuss them from a cosmology and machine learning perspectives separately but

these two fields are inextricably linked and the different ideas proposed can be used together

in a single project.

Cosmology

An important and ubiquitous ingredient in most Bayesian analysis is the choice of the sampler.

Unlike the traditional Metropolis-Hastings algorithm, gradient-based sampling techniques have

been shown to be superior in many ways. As shown in Chapter 8, the fact that we can derive

the gradient of the power spectrum with respect to the input cosmological parameters is a huge

advantage if we choose to use a Hamiltonian Monte Carlo sampler. For the latter, we require

the gradient of the negative log-likelihood with respect to the parameters we want to sample.
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A different application of our work in Chapter 8 is to derive cosmological parameter con-

straints (and nuisance parameters) from an approximate inference perspective. For example,

techniques such as Simulator Expansion for Likelihood-Free Inference (SELFI) (Leclercq et al.,

2019) depend on expanding a black-box function around an expansion point, θ∗ and infer para-

meters analytically, that is, the resulting expression for the posterior distribution is a multivari-

ate normal distribution. Suppose, S(θ) is the simulator. The simulator can be approximated

as

S ≈ S∗ +∇θS(θ− θ∗)

at first order and leads to analytical solutions for the posterior. However, if we choose to extend

this approach and include second order terms, then,

S ≈ S∗ +∇θS(θ− θ∗) +
1
2
(θ− θ∗)THθ(θ− θ∗)

where ∇θS(θ) is the first derivative of the simulator and H
ij
θ ≡ ∂2S

∂θi∂θj
corresponds to the Hes-

sian matrix, that is, a matrix consisting of the second-order auto- and cross- derivatives of the

simulator. Note that these are evaluated at the expansion point in the above expressions. If

we choose to use the first derivative, then one requires only p forward simulations and at least

1
2 p(p + 1) forward simulations if we choose to include the second order terms. Note that we

are assuming forward finite differencing. If the simulator is expensive, then one can use the

emulator as a proxy to obtain the first and second derivatives and the inference follows natur-

ally.

An important common tool is the Fisher information matrix calculation in cosmology. In

a Fisher Matrix analysis, we are dealing with the negative log-likelihood, L ≡ −ln p(x|θ).
The Fisher matrix, F is simply the expectation value of the inverse of the Hessian matrix, H

at θ = θ∗, that is, F = 〈H〉 and F ≡ 〈 ∂2L
∂θi∂θj
〉. The fact that we have access to the first and

second derivatives of the 3D matter power spectrum through the GP emulator will enable us

to use them in a Fisher matrix analysis, albeit the extra steps required to explicitly calculate the

derivatives of L.

Machine Learning

From a machine learning perspective, we can further improve upon the methods developed

in Chapter 6. Instead of placing initially the training points across the whole prior range, one

can instead attempt to augment the training points in an active learning scenario, see for ex-
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ample, Figure 11.1. This can be achieved using Bayesian optimisation which attempts to find

the maximum of a function by leveraging exploitation (regions of high mean) and exploration

(regions of high uncertainty). Common applications augment the training set in a serial fash-

ion, but with MOPED, one can do this in parallel, that is, we can have a GP regressor for each

MOPED coefficient. For each regressor, we can find the next best training point to be added to

the training set. Note that, the functions (emulator for the MOPED coefficients) are different

and the utility function in Bayesian optimisation generally has multiple local minima. Hence,

each emulator will likely optimise a different set of parameters at each step of the optimisation

procedure.

Figure 11.1 – An example of Bayesian optimisation where a log-likelihood function is emulated (initially with
just 4 points) using a Gaussian Process. The utility function used here is referred to as the Upper Confidence
Bound (UCB), uθ = µ + ασ and as seen in the bottom panel, different choices of α lead to different shape of the
utility function. Crucially, it also has different optima.

Another extension of the research carried out in this thesis is to adopt or perhaps devise

techniques for scalable Gaussian Process. We have presented one such method in Chapter 4

based on Product-of-Experts. Another example includes the use of inducing point method

(Quiñonero-Candela & Rasmussen, 2005). This is a promising approach since the number of

training points involved in training/prediction is reduced from N to m, m < N, hence the

computational complexity is reduced from O(N3) to O(Nm2). An application of such method

can be in the case where we want to build a regressor for the log-likelihood. For example, doing
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a full likelihood analysis for the Planck data is deemed to be very expensive. One can either

run a short MCMC or evaluate the likelihood at a large set of LH samples, build and store

an emulated model for the likelihood. Alternatively, one can use existing chains of MCMC

samples, perhaps from previous experiments, to build the training set.

An emerging trend in the machine learning community is to make use of automatic dif-

ferentiation (autodiff) for gradient computation. While we were finishing this work, a useful

Python package called KeOps (Kernel Operations on the Graphic Processing Unit, GPU, with

autodiff) was released and has the advantage of not only leveraging automatic differentiation

but also GPU computing, importantly without resulting in memory overflows. Recall that

when working with kernel methods, for example, for a Gaussian Process, we have to deal with

an N×N matrix and this can lead to memory overflow if N is too big. Developing technologies

based on the ideas developed in this thesis, along with new code development such as KeOps

will certainly bring about new statistical machine learning methods in weak lensing cosmology

in the near future.

The different aspects of the work in this thesis can be applied in future weak lensing sur-

veys, such as Euclid and the Vera Rubin Observatory. In particular, with the emergence of large

data sets, the combination of the MOPED and Gaussian Process formalism will play an im-

portant role in finding constraints on cosmological parameters in a very fast way. On the other

hand, the emulator for the 3D matter power spectrum is not only very fast to compute but also

outputs analytical derivatives with respect to input cosmological parameters. This opens a

new avenue for working with efficient samplers such as the Hamiltonian Monte Carlo method,

which requires derivatives of the log-likelihood with respect to the inputs. These techniques

are aligned with the long term scientific goals of Euclid and the Vera Rubin Observatory, for

which there is a demand to develop fast and robust tools, whilst being able to marginalise of

hundreds of nuisance parameters to deal with the systematics.
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