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Abstract

The study of far-from-equilibrium quantum systems is a rapidly growing field of condensed
matter physics, combining fundamental questions of statistical mechanics with ground-
breaking experimental techniques that provide a hitherto unseen degree of control over
quantum systems of many particles. Entanglement and other notions of quantum informa-
tion theory have emerged as important tools in this context, central to understanding the
quantum thermalization process. In this thesis, we study the dynamics of such quantities,
and uncover many of their interesting universal features. We achieve this by combining
the study of simple minimal models, known as random unitary circuits, with extensive nu-
merical simulations. The former, in particular, are crucial in revealing universal behavior,
giving rise to a ‘hydrodynamics of quantum information’ at long length- and time scales.

We focus on the spreading of local operators and the growth of entanglement as two main
aspects of how quantum information becomes scrambled on the way to thermalization. We
develop a simple theory for the former, in terms of a biased diffusion equation, and show
that it applies in generic one-dimensional many-body systems. We then extend this theory
to include the effect of local conserved quantities, which lead to novel universal features,
such as slow ‘hydrodynamic tails’. We find that the same conservation laws also have a
profound effect on the dynamics of entanglement. Most strikingly, they turn the growth
of certain measures (so-called higher Rényi entropies) from ballistic to sub-ballistic, which
we explain in terms of ‘rare events’ in the quantum evolution.

Understanding these generic aspects of quantum many-body dynamics also paves the
way for constructing better tools to study them in the future. We illustrate this by
developing a new numerical technique for quantum dynamics, which uses our newfound
understanding of operator spreading to circumvent the limitations of previous methods.
We show that our algorithm, which we name ‘dissipation-assisted operator evolution’
(DAOE), can capture transport coefficients of strongly interacting quantum chains with
very high precision.



Kurzfassung

Die Untersuchung von Quantensystemen fernab des thermodynamischen Gleichgewichts
stellt ein rapide wachsendes Forschungsfeld im Bereich der Physik der kondensierten
Materie dar und kombiniert fundamentale Fragen der Statistischen Mechanik mit bahn-
brechenden experimentellen Methoden die eine bislang unerreichte Kontrolle iiber Quan-
tenvielteilchensysteme ermoglichen. In diesem Kontext haben sich Verschrankung und
weitere Konzepte der Quanteninformationstheorie als zentrale Werkzeuge zum Verstandnis
des Quanten-Thermalisierungsprozesses etabliert. In dieser Arbeit untersuchen wir die Dy-
namik solcher physikalischer Grofen und erarbeiten eine Vielzahl der damit in Verbindung
stehenden universellen Eigenschaften. Zu diesem Zweck kombinieren wir die Untersuchung
simpler minimaler Modelle, bekannt als randomisierte unitare Quantenschaltkreise, mit ex-
tensiven numerischen Simulationen. Insbesondere Erstere erweisen sich als essentiell zur
Studie universeller Eigenschaften, giiltig auf groflen Langen- und Zeitskalen, und fithren
damit zu einer ‘Hydrodynamik der Quanteninformation’.

Wir befassen uns mit der Ausbreitung lokaler Operatoren und dem Anwachsen von Ver-
schrankung als den beiden Hauptaspekten der Durchmischung von Quanteninformation
auf dem Weg ins thermische Gleichgewicht. Insbesondere entwickeln wir eine theoretis-
che Beschreibung fiir ersteren Aspekt durch eine asymmetrische Diffusionsgleichung und
demonstrieren deren Anwendbarkeit fiir generische, eindimensionale Vielteilchensysteme.
Anschlielend erweitern wir diese Theorie um die Beschreibung lokaler Erhaltungsgrofien,
die zu neuartigen universellen Eigenschaften wie langsamen ‘hydrodynamischen Moden’
fiihren. Wir finden weiter, dass die Existenz selbiger Erhaltungsgréfien einen tiefgreifenden
Einfluss auf die Dynamik von Verschrankung hat. Als markantestes Beispiel demonstrieren
wir die Modifikation des zeitlichen Verlaufs bestimmter MessgroBen (sogenannter hoherer
Rényi Verschréankungen) von ballistischem zu sub-ballistischem Wachstum, und erkliren
diesen Effekt durch die Prisenz ‘seltener Ereignisse’ in der Quanten-Zeitentwicklung.

Das Verstéandnis dieser allgemeinen Aspekte der Dynamik von Quantenvielteilchensys-
temen bereitet dariiber hinaus den Weg fiir die Konstruktion verbesserter Werkzeuge
die zu kiinftigen Untersuchungen selbiger Systeme dienen. Dies illustrieren wir durch
die Entwicklung einer neuen numerischen Methode zur Simulation von Quantendynamik,
welche, basierend auf unserem neugewonnenen Verstindnis der Ausbreitung von Opera-
toren, die Limitierungen fritherer Methoden erfolgreich umgeht. Wir zeigen, dass unser
Algorithmus, den wir ‘Dissipations-assistierte Operator-Entwicklung’ (DAOE) nennen, die
Transportkoeffizienten stark wechselwirkender eindimensionaler Quantensysteme mit sehr
hoher Prézision erfasst.
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1. Introduction

While the foundations of quantum mechanics have been laid out almost a century ago, the
extremely rich tapestry of physical phenomena that stem from these principles are still
actively explored to this day. On the one hand, this includes ongoing research in the field
of quantum foundations, where increasingly counter-intuitive features of the quantum
world are uncovered every year [12-17]. Closely related to this, quantum information
theory [18-21] has emerged as an exciting field on its own right, providing a rigorous
mathematical understanding of the types of correlations that are absent in the classical
world, increasingly with an eye towards practical applications in the form of quantum
computing [18, 22, 23]. On another frontier, quantum many-body systems [24-28], where
a macroscopic number of constituents interact with each other in a quantum coherent
way, have provided an inexhaustible source of surprises both for theoretical physicists and
experimentalists, leading to the discovery of various quantum phases of matter, such as
superfluids [29, 30], superconductors [30-32], fractional quantum Hall phases [33-36] and
topological insulators [37-40].

A common thread throughout all of these fields is the necessity for an ever increasing
amount of experimental control over quantum systems. While Einstein, Schrédinger or Bell
only considered their thought experiments as theoretical tools, not realizable in practice,
advances in the last four decades have allowed experimenters to prove them wrong, creating
well-isolated quantum systems and probing their properties with incredible accuracy [41—
45]. This effort has culminated in a series of increasingly intricate experiments that confirm
Bell’s predictions about the non-classical nature of quantum correlations [13, 14, 46-51].
The same experimental advances have also opened the way for new questions in quantum
many-body physics. An early success in this direction has been the realization of Bose-
FEinstein condensates in dilute gases [52-55], a state of matter predicted by Einstein some
70 years prior [56]. Subsequent breakthroughs have lead to a proliferation of research on
‘artificial quantum systems’, where properties of quantum coherently interacting particles
can be controlled and measured with a precision much higher than in those occurring in
nature. These quantum simulators [57-61] can even be used to shed light on features of
the standard model and other problems in high energy particle physics [62-70]! In recent
years, this field of research has become closely tied the effort to build a reliable quantum
computer [18, 71-74], which has reached an important milestone last year when the group
led by John Martinis at Google announced the achievement of ‘quantum supremacy’ (the
execution of a computation beyond the reach of any existing classical supercomputer) [75].

The ability to create and measure quantum systems of many particles, well separated
from their environment, has lead to an important paradigm-shift in condensed matter
physics, prompting physicists to ask questions that were beyond their reach previously.
Part of this development was the realization that concepts borrowed from quantum in-
formation theory, entanglement in particular, can be extremely useful in characterizing
quantum states of matter in equilibrium. This includes the discovery of universal prop-
erties of entanglement that characterize various topological phases of matter at zero tem-
perature [76-81], and also a breadth of novel numerical methods for studying quantum
systems, often formulated in the language of tensor networks, initiated by the celebrated
Density Matrix Renormalization Group (DMRG) algorithm [82-85]. Many of these re-
sults have been collected in a recent book [28], whose last chapter summarizes the end
goal of this research direction: A wunification of (quantum) information and matter. It is
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worth noting that simultaneously with these developments, notions of entanglement and
quantum information have also gained traction in the field of quantum gravity, primarily
due to ongoing efforts to solve the infamous black hole information paradox [86-91].

More recently, experiments on artificial quantum systems have given birth to new sub-
field of many-body physics: the study of closed quantum systems far from equilibrium [92—
96]. Due to the aforementioned experimental advances in preparing and manipulating
quantum systems of many particles, well separated from their environments, physicists
turned their attention towards questions of how such systems evolve under their own
dynamics, as they follow Schrédinger’s equation. This is closely related to the foundations
of (quantum) statistical physics: under what conditions does a system reach an eventual
equilibrium state that is described by the usual assumptions of thermal ensembles? This
led physicists to develop a theory of the properties that many-body systems need to
possess in order for such thermalizing behavior, and explore the conditions under which
thermalization can fail to occur [93-102]. From the theory side, these developments relied
largely on advances in numerical simulations, both in the form of better hardware, and by
developing novel algorithms to tackle many-body dynamics [99, 103—-105].

The work presented in this thesis exists at the interface of the two trends described
in the previous paragraphs: the increasing importance of quantum information theory to
describe many-body systems, and the investigation of far-from-equilibrium unitary dy-
namics in these systems. It has been realized early on, that quantum information provides
an extremely useful perspective into thermalization, which can be understood largely as
a ‘scrambling’ of information between the many degrees of freedom. Entanglement, in
particular, has been identified as playing a central role in this process, leading to the
emergence of thermal entropy at long times [106]. More recently, the spreading of ini-
tially local operators has come to the scientific forefront, as an extremely useful tool in
characterizing scrambling [107]. These developments naturally lead to a variety of im-
portant questions. Are there universal features in the dynamics of quantum information
that emerge at long times? What are the possible universality classes? How are they
affected by symmetries, and how does quantum information couple to the dynamics of
conserved quantities? What are the relevant time scales for thermalization, and how do
they manifest in quantities like entanglement?

In this thesis, we develop a comprehensive understanding of many of these questions.
To do so, requires a new set of theoretical tools, as the only existing techniques for treating
generic systems out of equilibrium are numerical, and are typically restricted to short time
scales, which makes it difficult to discern universal features. We circumvent this problem
by constructing solvable minimal models, so-called random circuits, that are designed to
capture precisely these universal properties. These also allow us to incorporate interesting
physical features, such as symmetries, ‘step-by-step’, while stripping away all unnecessary
details.

Let us summarize here some of the main achievements of the random circuit approach
presented in the thesis:

e We derive an exact description of operator spreading, given in terms of a biased
diffusion equation, and provide evidence that it constitutes generic behavior in one-
dimensional systems.

e We use this biased diffusion picture to shed light on entanglement growth; in par-
ticular, we argue that the diffusion of the front is necessary to understand why the
speed of entanglement growth is slower than one would naively expect.

e We show how this separation of time scales can be observed in the entanglement
spectrum of a finite subsystem.



o We extend our theory to include the effect of conserved quantities and their diffusive
transport. We find that these give rise to slow hydrodynamic tails in operator
spreading.

e We develop a new numerical technique that builds on our operator spreading results
to provide a way of precisely calculating transport properties in strongly interacting
quantum systems.

o We investigate the effect of diffusive transport on entanglement, and find that it
leads to qualitatively new behavior in higher Rényi entropies, which are directly
relevant to experiments [108-110], making their growth sub-ballistic.

e We develop a description of entanglement growth in situations where conserved
quantities have large-scale inhomogeneities.

To test the generality of our results outside the realm of solvable models, we perform
extensive numerical computations. In particular, we apply both an exact numerical evolu-
tion of small systems [111-113], as well as tensor network methods [84, 85, 105]. Moreover,
as stated above, we provide our own contribution to the development of new numerical
tools, relying on the insight gained by studying random circuits.

Structure and contents of the thesis

This thesis starts with a concise summary of much of the necessary background that
we will rely on in what follows, presented in Chapter 2. We describe the key notions
lying behind quantum thermalization, such as the Eigenstate Thermalization Hypothesis
(ETH), scrambling of quantum information and the emergence of hydrodynamic theories;
we also give a review of some of the most important techniques, both experimental and
numerical, that are used to study these questions.

The main part of the thesis is split into two parts. Part I concerns the dynamics
in systems with no conserved quantities. In Chapter 3 we construct a random circuit
model that captures universal features of this class of systems. We then use this model
to study operator spreading and entanglement growth, in Chapters 4 and 5, respectively,
extracting universal features and contrasting them with numerical results on other models.
In Chapter 6 we consider some intricate features of the evolving entanglement spectrum
and connect them to operator spreading.

Part II deals with systems that have diffusively transported conserved quantities. Chap-
ter 7 introduces minimal models for this case, by endowing the previous random circuit
with a U(1) symmetry. In Chapter 8, we use these models to study the relationship be-
tween transport and operator spreading in detail. As a by-product, we devise a numerical
method, aimed at calculating transport coefficients, and test it in various strongly inter-
acting quantum systems, which we detail in Chapter 9. The final two chapters are devoted
to entanglement growth in diffusive systems. In Chapter 10 we uncover a surprising re-
lationship between transport and the dynamics of higher Rényi entropies, which makes
the latter grow sub-ballistically in time. Lastly, in Chapter 11 we consider the fate of
inhomogenous initial states, and show how these inhomogeneities leave their mark on the
entanglement structure as they smooth out diffusively.



2. Preliminaries: Dynamics in Closed
Quantum Systems

Throughout this thesis, we will be concerned with the dynamics of states in closed quantum
systems, comprised of a macroscopic number of interacting degrees of freedom. Moreover,
we will focus on models, relevant for many condensed matter and cold atomic systems,
where the degrees of freedom live on a lattice, rather than in a continuum, although most
of the features we discuss are expected to carry over to the latter case. For simplicity, we
will often refer to the local degrees of freedom as ‘spins’, although they need not correspond
to physical spins, and can in fact be fermions or bosons as well. A key aspect of these
systems is that the dimension of the Hilbert space grows exponentially with the number
of spins (bosons/fermions), making their study challenging, but also very interesting.

We consider a situation where an initial many-body wavefunction, |¥g), is evolved
in time as |¥(t)) = U(t)|¥o). Here U(t) is a unitary time evolution operator, which
we assume to be local in space. The simplest case is the evolution with a static local
Hamiltonian, U(t) = e, or with a time-dependent one, U(t) = Te */dH®  (where
T stands for time ordering). Then the locality [114] of the Hamiltonian! ensures that
dynamics under U(t) has an emergent light cone (characterized by the so-called Lieb-
Robinson wvelocity), vpr, such that operators outside each others light cone commute, up
to corrections that decay exponentially with their distance [115, 127-129]. We will also
consider cases where U (t) is defined in terms of a circuit of local gates (unitary operations
acting on a finite region), rather than by reference to a Hamiltonian; these models also
share the same notion of a linear light cone.

We will also require that the initial states |Ug) is short-range correlated, which is the
case for physically relevant states, realizable in experiments. The simplest such case is
a simple product state, where the local degrees of freedom on the lattice are completely
uncorrelated, i.e. product states on the different lattice sites. More generally, one can
consider taking a system with a particular initial Hamiltonian Hy and cooling it down to
its ground state. Then one can induce dynamics by suddenly changing the parameters of
the system to generate evolution by a modified Hamiltonian H; this is usually referred to
as a quantum quench [106, 130, 131]. Since the initial state in this case the ground state of
Hy, it has correlations that decay exponentially in space [115] and satisfies an area law for
entanglement [132], provided that the spectrum of Hy is gapped. As a general conditions,
we shall assume that the initial state |¥) has exponentially decaying correlations. We are
therefore interested in the evolution of initially short-range correlated states under local
unitary dynamics.

The above discussion is in terms of the Schrodinger picture, where the quantum state
of the system, |¥(t)), is evolving in time. As we know from our undergraduate studies of
quantum mechanics, it is often useful to utilize the Heisenberg picture instead, where it is
the observables that evolve in time as U (t)fOU (). While the two pictures are equivalent as

'Here, by local, we mean a Hamiltonian that is a sum of geometrically local terms, i.e., the size of each
term in the Hamiltonian decays at least exponentially with the size of the region that it acts on — although
a sufficiently fast power law decay is also sufficient to produce a linear light cone [115-123]. In practice,
we mostly consider cases where the terms act strictly within a finite region. Contrast this with the case
of k-local Hamiltonians, such as the Sachdev-Ye Kitaev model [124-126], where the terms only act on at
most k spins, but there is no restriction on spatial locality.



2.1. Thermalization in closed quantum systems

far as expectation values are concerned, there are various quantities (such as entanglement)
that only make sense in one or the other. In particular, as we shall see, observables admit
a notion of spatial locality that proves very useful when one tries to discern how quantum
information gets redistributed between different parts of the system during dynamics. In
what follows, we will consider the evolution process in both pictures and observe how they
complement each other.

2.1. Thermalization in closed quantum systems

Most of the results below will concern dynamics at intermediate time scales, i.e., time that
are long enough such that we can observe universal features that are independent of the
microscopic details of U(t) and of the initial state/operator, but short enough that the
system is still far from equilibrium. However, before moving on to the discussion of these
features, it is useful to discuss the fate of system at very late times, and the equilibrium
state that it eventually approaches. The issue of quantum thermalization (and lack thereof)
has been the object of intense study, with many open question still being investigated to
this day, and we an only offer a brief overview here. Detailed reviews are provided by
Refs. [94, 95, 100, 101] (see also Refs. [93, 96, 102, 133]).

2.1.1. The Eigenstate Thermalization Hypothesis

Consider now the evolution with a fixed Hamiltonian H, with eigenvalues F,, and eigen-
states H|n) = E,|n). In this basis, the entirety of the quantum dynamics reduces to

each state oscillating with the appropriate phase e *#7t. The evolution of an arbitrary
obrervable O can be written as
(O)(t) = (T O[T () =Y e FnEmlic,cx (m|Oln), (2.1)

m,n

where ¢, = (n|¥() are the coefficients of the initial state in the energy eigenbasis. In the
absence of fine-tuning, we can assume that the spectrum of H is non-degenerate®. In that
case, taking the time-average to extract the long-time value we get

T
Jim 3 | AO)0) = X en{niOf) = (o), (22)
where the last equality defines the diagonal ensemble, ppg = 3., |cn|?|n)(n|. Clearly, if
the time-dependent expectation value (O)(t) relaxes to an equilibrium value at long times,
it has to coincide with the diagonal ensemble prediction; in this sense, the equilibration
process consists of nothing else, but the dephasing between different eigenmodes. However,
this prediction looks very different from what the axioms of statistical physics would sug-
gest: the diagonal ensemble depends on exponentially many parameters of the initial state,
given in terms of the coefficients ¢,,, while a system in thermal equilibrium should admit
a description with only a handful of parameters (in the absence of additional symmetries,
only one parameter: the total energy or the temperature, depending on our choice of mi-
crocanonical vs. canonical ensemble). Therefore, to argue that the system in fact reaches
thermal equilibrium, and does not violate the assumptions of statistical physics, two things
remain to be done: (1) understanding under what conditions can the diagonal ensemble be
replaced by the microcanonical one, and (2) showing that this relaxation indeed happens,
i.e. that any potential oscillations around the time-average die out at long times. Both of
these are achieved by the Eigenstate Thermalization Hypothesis [94, 95, 97-99, 101].

2Symmetries can impose degeneracies. In this case, one should consider each symmetry sector sepa-
rately.
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The Eigenstate Thermalization Hypothesis (ETH) is an ansatz for the matrix elements
of local observables O in the eigenstate basis of the many-body Hamiltonian. It can be
stated as

(m|O|n) = O(E)dnm + e B2 fo (B, w) Rym, (2.3)

where F = % is the average energy of the two states, w = E,, — E,, is their difference,
S(F) is the thermodynamic entropy (the logarithm of the density of states) at energy E,
R, are independent random variables with zero mean and unit variance and O(F) and
fo(E,w) are some unspecified smooth functions. The two crucial elements of this ansatz
are the following: (1) the diagonal matrix elements are the same for all eigenstates within
a small energy window, up to exponentially small corrections, and (2) all the off-diagonal
matrix elements are exponentially suppressed as well. These two properties solve the issues
(1) and (2) outlined in the previous paragraph, respectively.

To see how issue (1), namely the discrepancy between the diagonal and microcanonical
ensembles, is resolved, note that the types of initial states we consider, namely ones with
short-range correlations, are sharply peaked in energy for local Hamiltonians. In particular,
if the Hamiltonian is a sum of local terms, H = ) g hj, then we have for the variance of
the energy

Shr = (Hwo — (H)yy = Y [(hihi)wy — (hj)wy (hyr)w, ] - (2.4)
3.4

Assuming, as we did, no long-range correlations in Wy, the only significant contribution
to this sum comes from j = j' (i.e., cases when the distance between j and j' does not
scale with system size). This gives Z%{ ~ V., where V is the total volume. Given that the
total energy itself is extensive, the relative fluctuations are suppressed as %H) ~VTU20A
similar clustering holds for other extensive conserved quantities, assuming no long-range
correlations. Consequently, in the diagonal ensemble expectation value in Eq. (2.2), all
the states that have a significant weight are within the same small energy window, and, by
virtue of ETH, have the same expectation values. These expectation values can therefore
be taken out of the sum, which thus gives tr(pppO) = O(E) = tr(pmicrocan,O), wWhere
E = (Vy|H|Vy) is the only remaining parameter that characterizes the final equilibrium
state. One can then apply standard arguments from statistical physics to argue that
the microcanonical ensemble can be replaced by the canonical one, with the appropriate

temperature % = g—g
The resolution of issue (2), on the other hand, is related to the suppression of off-
diagonal matrix elements. In particular, the time average of temporal fluctuations on top

of the average is given by (see Ref. [94] for details)

) 1 [T =12 2 2 2
i 7 [t [(0)0) = O] = 3 feu e FllmiOl) (25)

T—o00 0

n#m

which is suppressed by a factor of e %(¥)/2 by virtue of Eq. (2.3). The smallness of
off-diagonal matrix elements is also important in explaining the observation that local
operators typically equilibrate on short (often O(1)) time scales. Naively, one might think
that the time it takes to reach the diagonal ensemble is the time it takes for neighboring
energy levels to loose phase coherence; since the energy level spacing is exponentially
small in system size, this would imply that equilibration takes exponentially long times.
However, the ETH ansatz ensures that the time-dependent parts of the expectation value,
which are related to off-diagonal matrix elements, are suppressed, leading to much faster
relaxation in most cases.

It is important to note that Eq. (2.3) can not be true for arbitrary observables. This
is because, if one has access to all expectation values, one can always reconstruct the full
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quantum state, and therefore distinguish the eigenstates at the same energy from each
other and from the thermal (mixed) state. What precisely is the subset of observables
for which the ETH ansatz is valid is not know generically [134, 135]; however, in the
thermodynamic limit it is expected to hold for any local observable, i.e. ones that act on
only a finite region in space. Similarly, therefore, the long-time state |¥ (¢ — oo)) will be
indistinguishable from a thermal ensemble if one only has access to local measurements.
In this sense ETH provides a sufficient condition for a system to thermalize for any initial
state that satisfies the above clustering condition on its conserved quantities®. Although,
as the name suggests, ETH is only a conjecture, there is a large body of evidence, both
numerical [94, 99, 138-148] and analytical [97, 100, 149-153], suggesting that it is indeed
the correct mechanism by which generic closed quantum systems thermalize.

2.1.2. Random matrix theory and quantum chaos

Much of the motivation behind the ETH ansatz comes from the field of random matrix
theory (RMT) [154, 155]. It was realized a long time ago, originally by Wigner in the
context of nuclear physics [156-160], that Hamiltonians of sufficiently many, strongly in-
teracting particles tend to exhibit features similar to Hermitian matrices with random
entries, particularly regarding the statistics of their eigenvalues and certain properties of
their eigenvectors. Later on, it was discovered that the same properties can be used to
distinguish (few-body) quantum systems whose classical limits are chaotic from those that
are integrable: the chaotic ones correspond to Hamiltonians that have the same spectral
properties as random matrices [161-166]. This pseudo-randomness is characteristic of
chaotic behavior, and can be thought of as analogous to the pseudo-randomness inherent
in classical chaos. Indeed, random matrix-like spectral statistics is now usually taken as
the definition of what it means for a quantum system to be chaotic [94, 165, 166]. Sim-
ilarly, the ETH ansatz can be understood as saying that eigenstates of the Hamiltonian
effectively look like random states (albeit only within a reduced Hilbert space, whose size
is measured by the entropy S(F)), a statement that was previously known in the context
of chaotic semiclassical systems as Berry’s conjecture* [161].

As a consequence of the close relationship between ETH and random matrix theory,
many-body systems that obey the former tend to have spectral properties that conform
to the predictions of RMT, and vice versa. Indeed, in this context, the words chaotic
(which is defined in terms of RMT spectral statistics), and ergodic, (usually taken to be
equivalent to ‘ETH-obeying’), are often used interchangeably [94]. This is important for
several reasons; one is that the spectral statistics is easier to check in practice, since it
only requires knowledge of the eigenvalues, not the eigenvectors. One then studies the
correlations between different energy levels, which can be used to distinguish systems
that thermalize from ones that do not (see below for examples of the latter). Of course,
the level statistics of a local, deterministic system are not exactly the same as that of a
matrix whose elements are chosen independently (apart from the restriction of hermiticity),
which has no notion of locality. Nevertheless, for generic systems, RMT statistics applies
for energy levels that are sufficiently close to one another, below an energy scale known
as the Thouless energy [94]. While this statement can be argued for rather rigorously
in the semiclassical regime [161, 171-174], the first analytical studies in fully quantum
many-body systems have only become possible recently, in the kind of random circuit
models that are also the focus of this thesis [175-178], as well as in certain deterministic
unitary circuits [179, 180]. These studies confirmed earlier intuition, that in systems with

3There are arguments to the effect that ETH is also a necessary condition [136, 137].

4Random matrix theory has also found important applications in many other areas of physics, for exam-
ple in the study of transport in disordered mesoscopic conductors [167-169], and the related classification
of noninteracting topological phases [170].
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diffusive transport (see Section 2.3), the Thouless energy scales with the linear size of the
system L as Ety, ~ 1/L?, making it exponentially larger than the average spacing between
energy levels® Within this Thouless window, Eq. (2.3) reduces to the RMT prediction that
eigenvectors of the Hamiltonian are essentially uncorrelated random vectors; however,
ETH is in fact more general than RMT, and applies also outside on energy scales beyond
Ery, where the functions O(E) and fo(F,w) start to play a role.

One particularly important characteristic of quantum chaotic systems that merits a brief
discussion here is level repulsionS. According to this, the probability of two energy levels
being very close to each other is strongly suppressed. In particular, the probability of two
subsequent eigenvalues having a distance F, — E,,_1 = w in a random Hermitian matrix
with no additional symmetries is given by the Wigner-Dyson distribution [94, 154, 155],
which is well approximated by P(w) = Aw?e=Bw? (A and B are constants that can be fixed
by normalizing P and fixing units such that the average level spacing is 1). Importantly,
this function goes to zero in the limit w — 0. One should contrast this with the naive
expectation that one would get by assuming that the eigenvalues are all independently
chosen random numbers, in which case they have Poisson level statistics, P(w) = e™%,
which goes to a finite value as w — 0. We will later on study level repulsion in a different
context, for the entanglement spectrum of a time-evolving state, in Chapter 6.

Importantly, not all physical systems satisfy ETH, or have RMT statistics. Quantum
integrable models, which possess an extensive number of conserved densities, and conse-
quently have non-diffractive scattering of infinitely long-lived quasiparticles, provide an
example of systems that fail to reach thermal equilibrium (instead, in most cases they
equilibrate to a so-called Generalized Gibbs Ensemble) [94, 99, 103, 181, 182]. Such
models, however, are fine-tuned: a generic local perturbation will break integrability
and lead to thermalization at sufficiently long times. A more robust counter-example
to the ETH is provided by many-body localization (MBL) due to strong spatial disor-
der [93, 96, 102, 133, 183-186], an extension of Anderson localization [187, 188] to the in-
teracting regime. In one dimension, MBL has been shown to form a stable non-equilibrium
phase of matter, robust against arbitrary local perturbations [189-194]; whether the same
is true in higher dimensions is currently debated [195-200]. Since they evade the rules of
statistical mechanics, many-body localized systems can exhibit interesting physical phe-
nomena prohibited in equilibrium, such as otherwise forbidden ordering at finite energy
densities (e.g., symmetry breaking or symmetry protected topological order in one dimen-
sion) [96, 201-204], or entirely new phases of matter particular to periodically driven (also
known as Floquet) systems [205-211], which would otherwise thermalize to a featureless,
entropy-maximizing (‘infinite temperature’) state [212-215]. Time crystals provide a par-
ticularly striking example of such a genuinely out-of-equilibrium phase of matter [216-221].

In this thesis, we will be concerned with systems that do thermalize, and ask ques-
tions about the properties of the thermalization process, identifying a variety of relevant
time scales and universal exponents that characterize the approach to equilibrium. Dy-
namics in the MBL phase has also been studied extensively, and has its own universal
features [222-224], however these call for a different set of tools and are in some ways
simpler than thermalizing ones. Yet another physically interesting regime is the case of
moderate disorder, close to, but outside of the MBL phase. While these systems thermal-
ize, the dynamics at earlier times can be dominated by rare localized regions and can look
qualitatively different from those of translationally invariant or weakly disordered sys-
tems [225-232]. While these are more amenable to the methods we use in this thesis [233],

5In systems without conserved quantities (which we study in Part I of this thesis), the Thouless energy
can be even larger, decaying only logarithmically with L [176, 179].

6 Another one is level stiffness (also known as spectral rigidity), which says that the variance of the
number of energy levels within an interval of size AE grows only as ~ log AE, much more slowly than the
~ AFE that one would expect for e.g. independent random numbers.
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we will also refrain from discussing them here.

2.2. Quantities of interest

In our discussion of thermalization above, we focused on the evolution of expectation val-
ues of (local) observables, (O)(t). These are the simplest to interpret physically, and also
the easiest to access in experiments (see below). One could extend this to other one-time
observables, such as equal time correlations of the form (¥ (¢)|0,O,|¥(t)), where O, , are
observables localized around positions x,y (while such a 2-point correlator is no longer
local in space, it is still ‘few-body’, and thus expected to satisfy ETH). Another set of
observables, that appear naturally, for example in description of transport properties (see
Section 2.3), are two-time correlations of the form (O, (t1)Oy(to))s, where /3 is used to de-
note that these correlations are usually evaluated in some thermal ensemble, characterized
by its inverse temperature 5. It turns out, however, that these time-ordered observables do
not tell the whole story: to describe quantum thermalization, it is often useful to consider
more intricate objects, which characterize the evolution of quantum information.

2.2.1. Qut-of-time-ordered correlators

Common to all time-ordered observables above is that they are ‘second order’ in the
time evolution operator U(t), in the sense that they involve a single forward and a single
backward time evolution” (consider O(t) = U(t)TOU (t) as the simplest example). Another
way of expressing this is that all these quantities can be evaluated by considering the object
U* ® U, which acts as an evolution operator on a doubled Hilbert space (i.e., the space of
operators). However, there are quantities of interest which are higher order function of U.
As a particular example, consider the so-called out-of-time-order correlator (OTOC) [234—
240] between operators O, and Oy:

Re(0x()0y(0)0, ()0 (0)) =1 — %([Ox(t)a Oy (0)]1[0:(1), O (0)]), (2.6)
where Re stands for the real part. Such OTOCs were originally introduced due to their
connection to classical chaos [241]. In a classical limit (e.g. h — 0, or a large-S limit in
a spin model), the commutators in Eq. (4.15) are replaced by Poisson brackets, and the
resulting quantity measures the divergence of nearby classical trajectories, which can then
be used to define Lyapunov exponents [241-243]. While it was proposed that one can define
‘quantum Lyapunov exponents’ analogously, using the OTOC in (4.15) [125, 238, 244—
248], it appears that this only leads to positive exponents in systems that are close to
some classical or mean-field limit [1, 231, 243, 249-253]. Nevertheless, the OTOC is a
useful quantity even away from the semiclassical limit, as it can be used to characterize
the spreading of information from simple to complicated degrees of freedom during the
evolution. In particular, while equal-time correlations of the form (O.(t1)O,(to)) are
useful in characterizing the light cone spreading of correlations in integrable systems [130,
254, 255], in generic systems at finite temperatures such correlators decay to zero after
the quasiparticle lifetime; OTOCs, on the other hand, can be used to define a propagating
wavefront of quantum information for these systems, even at infinite temperature [249].
The speed of this front is known as the butterfly velocity, vg, named in reference to its
relationship with classical chaos [234, 237, 256]. At infinite temperature, it is a close
relative of the aforementioned Lieb-Robinson velocity®, but it also allows to probe behavior

"In a Keldysh path-integral formalism this means that one generically needs two time contours to
evaluate these quantities.

8Their difference consists in a different choice of norm for the commutator: operator norm or Frobenius
norm.
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at finite temperatures.

A peculiarity of the OTOC is that, due to the lack of time ordering, it is a higher order
function of U(t). On can think of Eq. (4.15) as a function of two copies of the time-
evolved operator, O,(t) ® O(t), which corresponds to a four-layer evolution operator
Ur@U ®U*®U. One could extend this to higher order correlations involving n distinct,
un-ordered points in time [257-260], which would evolve according to a 2n-layer evolution,
involving n copies of U and n copies of U*. These ‘higher order’ observables can therefore
probe structures in U(¢) that are not simply accessible from time-ordered measurements®.

2.2.2. Entanglement and Rényi entropies

Another set of interesting quantities that similarly involve higher moments of U are the
Rényi entropies [261] of reduced density matrices of various subsystems. Given the re-
duced density matrix, pa(t) = tr1(|¥(¢))(¥(t)|) (A being the complement of A), they are
calculated as

Sa(t) = log tr(p%), (2.7)

1l -«
for a € [0, 00]. This definition includes as a special case the von Neumann entropy [262,
263], recovered in the limit & — 1. In a pure state, where the entropy of the whole system
vanishes, these entropies can be used to characterize the amount and structure of entan-
glement between degrees of freedom inside and outside of A. They also play a crucial role
in our understanding of quantum thermalization. In particular, for subsystems that are
much smaller than the whole system, ETH ensures that at long times pa(t — oo) will be
indistinguishable from a Gibbs state [135]; consequently, the thermal entropy that char-
acterizes the equilibrium state is the von Neumann entropy of p4 in this limit. Therefore
the thermal entropy is equal to the entanglement accumulated during time evolution. One
sometimes formulates this by saying that ‘a thermalizing quantum system acts as its own
bath’ [106, 264, 265].

Thermal entropy is extensive, so a thermalizing system must have lim;_,o S1(t) ~ |A]
(in fact, the same holds for other values of the Rényi index a, due to the Gibbs form of p4).
The initial state, |¥(tp)) = |¥o), on the other hand, by our assumptions satisfies an area
law, Si(tg) ~ |0A| (where A denotes the boundary of subsystem A). Therefore, in order
to approach thermal equilibrium, large amounts of entanglement need to be generated
between A and A. A crucial part of understanding the detailed mechanisms of thermal-
ization is understanding how this entanglement generation occurs. While an appealing
theoretical picture was developed early on for integrable systems [106, 131, 264, 266—-268],
it relies crucially on the notion of long-lived quasiparticles that can act as carriers of
entanglement, and it therefore does not generalize to chaotic dynamics. In fact, the phys-
ical mechanisms for entanglement growth are qualitatively different in the two cases. In
the integrable case, essentially all the entanglement is ‘created’ at time tg, in the form
of short-distance Bell pairs. The only role of the subsequent dynamics is to move the
particles that make up the Bell pair apart from each other (via the ballistic propagation
of quasiparticles); the entropy of A grows as more and more particles enter it (with their
Bell partners lying in A). In the chaotic case, on the other hand, entanglement is being
continually generated by interactions between particles, which is the main source of entan-
glement growth, rather than their free propagation. This is exemplified by the fact that

90ne could of course always reconstruct the full evolution if one has access to all time-ordered cor-
relations. However, information that is readily available in the OTOC might be hidden in the detailed
correlations between a very large number of different such measurements. The difference becomes even
clearer when we consider ensembles of random evolutions, as we shall do later on; in that case the behavior
of higher moments of U, such as U* @ U @ U* ® U, contains information not accessible by considering lower
moments, e.g. U* ® U. See also the notion of unitary k-designs [259].

10
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the same interactions generically render transport diffusive (rather than ballistic), while
the growth of the von Neumann entropy remains linear [269]. Another, more direct, way
to detect this crucial difference is by considering measures of multi-party entanglement,
which are small in the integrable case, but large for chaotic systems, signaling the ‘all-to-
all’ nature of entanglement in the latter case, as opposed to the simple Bell-pair picture
of integrable dynamics [240, 270-272]. These considerations show that one needs a new
theoretical framework for understanding entanglement dynamics in generic systems. As
we shall see below, random circuits provide a crucial tool for developing such a framework
(see Chapter 5 in particular).

The linear growth of S7 defines another scale in the system, known as the entanglement
velocity, vy [256, 273-276]. It is defined such that % = |0A|SequE, Where seq is the
entropy density of the equilibrium state that the system approaches. It can be argued on
general grounds that vg < vg, with equality occurring only in specific, highly fine-tuned
cases [256, 277]. vp and vg therefore define two distinct time scales for the scrambling of
quantum information. We will discuss an alternative way of addressing these time scales
in Chapter 6. Moreover, one could define a separate entanglement velocity for each Rényi
entropy S,, which can give even more insight into the dynamics of thermalization [278].
However, in Chapter 10 we will argue that in a wide class of systems (those with diffusive
transport), the velocities associated to entropies with index o > 1 are in fact zero, and
these Rényi entropies instead grow sub-ballistically.

2.3. Slow variables and hydrodynamic equations

At first glance, saying anything meaningful about even the simplest of such dynamical
quantities, such as time-dependent expectation values (O)(t), appears to be an insur-
mountable task. In an initial state with a high energy density, there is an exponentially
large number of processes available for the system to relax towards equilibrium; one would
in principle need to keep track of all of these. Indeed, at short times, one can say very
little generically, and has to treat systems on a case-by-case basis'’. Luckily, this is the
regime where numerical methods are most reliable.

There is, however, an intermediate time regime, still much before full equilibration,
where the dynamics simplifies and universal features can emerge. This has to do with
the fact that, precisely because of the huge number of possible processes, most degrees
of freedom relax after some quick local thermalization time. The important exception is
provided by conserved quantities, more precisely their local densities. An excess of such
a conserved quantity cannot relax back to equilibrium locally: it has to be transported
across the system [279-282]. This is especially important when the density varies slowly
in space (compared to microscopic length scales), in which case it is locally close to being
in equilibrium and will be almost stationary. In particular, one could consider a plane-
wave like sinusoidal modulation of the density, parametrized by its wavenumber k. The
conservation law implies that the relaxation time for this mode has to diverge in the limit
k — 0. In this sense, the conserved densities define slow modes for the dynamics.

2.3.1. Diffusive hydrodynamics of conserved densities

This discussions suggests a two-step picture of equilibration. After the local thermalization
time, the system reaches a state of local equilibrium. At this point, local ‘fluid cells’ (parts
of the system that are large compared to microscopic scales, but much smaller than the

10At exceedingly small times, where ¢ is much below the inverse of the typical interaction strength
(equivalently, when virt < 1), one can use perturbation theory to follow the dynamics of local quantities.
These are times where communication between sites beyond nearest neighbors is negligible; as such, they
are not very interesting from the perspective of many-body physics.
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Chapter 2. Preliminaries: Dynamics in Closed Quantum Systems

whole) are well approximated by a thermal states!!. As such, they are parametrized

only by the total amount of each conserved quantity they contain, or, equivalently, the
corresponding intensive variables (temperature, chemical potential, etc.). The second part
of the thermalization process involves the smoothing of these space-time dependent density
profiles, until they become homogenous. Note, however, that while this description (which
is essentially unchanged in the case of a classical many-body system) adequately describes
the evolution of local observables and their correlations, it misses the non-trivial dynamics
of various measures of quantum information, which we discussed above, and which we
will be concerned throughout much of this thesis. Nevertheless, we will find it useful to
understand the dynamics that emerges from this local equilibrium approximation, for two
reasons. First, it provides a blueprint for the appearance of universal features, for which
we shall find analogies in other quantities later on. Second, when the aforementioned
slow modes are present, they play an important role in determining the dynamics of more
involved quantities (OTOCs, Rényi entropies), as we will discuss in Part II.

Consider a system with a single conserved ‘charge’, Q = dx §(x)'2. As a physical
example, one could think of ¢ as the energy density. The equilibration of the local density
G(z) is governed by the continuity equation,

ath(‘T’t) = 76{1)5(](1"0’ (28)

which defines the associated current 3q. While this is an exact operator equation, it is in
itself not very useful. However, one can simplify it by taking its expectation value and
making use of the assumption of local equilibrium. In this case, the state of the system
should be characterized by the density profile (G(x,t)), and thus the current should also
be a function of this profile. The relation between the two can still in principle be very
complicated; however, one can often make a linear approximation, which can be written
(assuming space-time translation invariance) as

<jq(x,t)> = —/da:’D(:c — 20 (g2, ). (2.9)

The last step is to assume that the density profile is smoothly varying. In this long-
wavelength limit, one can perform a gradient expansion of the current (or, equivalently,
expand the Fourier transform of D(x) in the wavenumber k) to find

(Gq(z, 1)) = =D, (G(z, ) + cOX(G(z,t) + .... (2.10)
The leading order dynamics of the density is then given by the diffusion equation

It is characterized by a single transport coefficient, the diffusion constant D.

Part of the assumptions that went into the above hydrodynamic approximation is lo-
cality in time: the current follows changes in the density profile instantaneously. A more
general version, that takes into account a potential time-delay would read®?

<§'q(a:,t)> = /dt'/dx’D(a: — a2’ t =)0 (G2, 1)). (2.12)

11n a dilute gas, one can use the Boltzmann equation to motivate the emergence of such local equilibrium
states and the subsequent hydrodynamic description [283, 284]. However, we are concerned with the
strongly interacting regime where such semi-classical descriptions are of limited use.

12Tn this section we use a continuum notation. On a lattice, integrals and derivatives should be replaced
by their discrete counterparts; alternatively one can use sufficiently coarse-grained variables such that the
underlying lattice structure becomes unimportant. We also use notation that suggests a one-dimensional
system, since these will be at the focus later on, but all the discussions of this section generalize naturally
to arbitrary dimensions.

13Gee also our discussion of memory matrices in Section 9.1
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2.3. Slow variables and hydrodynamic equations

The function D(z,t) now incorporates memory effects. These can arise through processes
that propagate through the subspace of fast variables. Assuming we have identified the
slow subspace appropriately, these processes should have a short relaxation time, making
the memory kernel quickly decay in time. On time scales much larger than this microscopic
‘memory time’, which is the regime typically relevant for hydrodynamic transport, these
effects are therefore often negligible, such that to a leading order one canmake a Markov
approximation, D(x,t) = D(x)d(t), recovering Eq. (2.9). However, these neglected micro-
scopic processes do factor into the value of the diffusion constant (and the coefficients of
the subleading terms in the gradient expansion).

From a physical perspective, it is natural to assume that the same transport equa-
tion that governs the relaxation of an inhomogenous density profile, shows up also in its
spontaneous thermal fluctuations, as measured by the equilibrium correlation functions
Cy(z,t) = (¢(x,1)q(0,0))eq (if (q)eq is different from zero, one should of course consider
the connected correlation instead). Indeed, this intuition is made rigorous in the linear
response regime [279, 285, 286]. We can imagine that the inhomogenous initial profile at
time 0 in the non-equilibrium case is prepared by adiabatically applying an appropriate
external field which is then switched off. For small fields, linear response theory then tells
us that the evolution of the density is, to leading order, governed by the response function,
which is indeed the unequal time correlation of the density in equilibrium®®. Therefore,
the universal low-frequency, long-wavelength behavior of the correlation is also governed
by the diffusion equation. At high temperatures, where the equal-time correlations decay
rapidly, and we can approximate the initial condition at ¢ = 0 by a Dirac delta, this

suggest a Gaussian shape:

22

e 2Dt

VorDt

The correlations therefore spread out within a diffusive cone, of size v/t, much smaller than
the ballistic Lieb-Robinson cone dictated by locality alone. Relatedly, the correlations at a
fixed position decay slowly, as a power law ~ t~1/2. Indeed, the relationship between such
equilibrium correlations and transport gives rise to the usual Kubo formula for calculating
the diffusion coefficients:

Cy(t,x) =

(2.13)

1 & A a
D= fr /0 AT ()T )eq, (2.14)

where J = i dqu(:v) is the total current, x is the static susceptibility!® and L% is the
volume of the system. We mention here that there is yet another different, but related
context, where dynamics is governed by the same diffusive transport equation. This is
the relaxation of equal time 2-point correlations of the density, (¥ (¢)|q(x)d(0)|¥(¢)) —
(4(2)4(0))eq, after a quantum quench from a homogenous initial state |¥o). These show
the same diffusive, Gaussian space-time profile [287].

The above treatment easily generalizes to the case of several conserved densities, {g;}
(for example energy and particle number/electric charge). In this case, the diffusion
constant acquires a matrix structure, D;;, which relate currents of the charge (g;) to the
gradient 0,(¢;). The off-diagonal components measure thermopower-type effects, where
e.g. a temperature gradient generates an electric current or, vice versa, a gradient in the
electric potential generates a heat current. D;; and Dj; are related to each other via the
Onsager relations'® [281, 288].

14¥While the response function is not exactly the same as Cy, the two are related to each other via the
fluctuation-dissipation relation.

5y is defined by the response of the conserved quantity to a change in the associated intensive variable,
e.g. a chemical potential: y = %g)’“:o. It can be shown to be equivalent to the spatially averaged
correlator, x = kT [ dzCq(0,z) [279)

16To write these in the simplest form, one usually replaces gradients of ¢; with gradients of the corre-
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Chapter 2. Preliminaries: Dynamics in Closed Quantum Systems

2.3.2. Going beyond diffusion

Our discussion relied on the notion of local equilibrium. This is expected to be quickly
established at finite energy (or particle) densities, by the frequent collisions between par-
ticles. The situation is quite different at low densities: Near the ground state, close to
zero temperature, most quantum systems exhibit long-lived stable quasiparticles!”. These
quasiparticles, which are effectively non-interacting, propagate ballistically, rather than
diffusively'®. At low but finite temperatures (or particle densities) this results in a cross-
over: at short times, before collisions can take place, the ballistic behavior dominates,
but it crosses over to diffusive transport at the local thermalization time, which diverges
as one approaches zero temperature. This is again a manifestation of dephasing, which
we discussed already in the context of thermalization and the ETH above: the ballistic
transport of free quantum particles is a consequence of phase coherence; when coherence
is destroyed by the interactions, the motion of particles becomes that of a a classical
stochastic random walk. Since the diffusion sets in due to the interactions, whose effective
strength depends on the density of the conserved quantities themselves, this also suggests
that the transport coefficients themselves should also in general depend on the background
value of these charges (or equivalently, their intensive counterparts, such as temperature
and chemical potential). This introduces a form of non-linearity to the hydrodynamic
description that we ignored in our simplistic derivation.

One can apply renormalization group (RG) methods to argue that the simple diffu-
sive description nevertheless gives the leading order universal behavior, and the neglected
contributions (higher derivative terms, nonlinearities and memory effects) are irrelevant
perturbations. Nevertheless, they do give rise to interesting physical effects. One of these
is that the higher order corrections to the diffusion equation give rise to subleading power
laws in the relaxation of correlation functions. For example, the autocorrelations of a
single conserved quantity would then decay as

Cy(t,0) = (2rDt) ™2 + ayt™™ + agt ™2 + ...,
where «; > d/2; these various power laws often go under the name of hydrodynamic long-
time tails'® [287, 293-295]. The simplest of these originates from the next order in the
gradient expansion, 8;1(1, and gives a1 = d/2 + 1. Another contribution comes from from
nonlinearities of the form 0, (gd.¢)?°, which lead to an exponent as = d, which becomes
the leading correction in d = 1 and is of the same order as the higher derivative correction
ind=2.

Another important effect is that the interaction between slow and fast variables can be
taken into account as a randomly fluctuating force exerted on the former by the latter [279,
293]. This would show up as an additional term on the RHS of Eq. (2.9) (or in Eq. (2.12), if
we take into account that the noise has a finite autocorrelation time; see also Section 9.1),
which turns the equations of motion for the conserved densities into stochastic equations.

sponding intensive variable, the ‘chemical potential’ u;, in the driving force. Then the constitutive relation
reads jq; = LijOzp5, where the Onsager matrix now has to be symmetric, L;; = Lj;, for systems that are
invariant under time reversal.

Y There are exceptions to this in the case of certain gapless systems in d > 2 dimensions. These are
usually referred to as strange metals.

8This is the case in a clean system without disorder. In a real sample, impurities are bound to be
present. Taking into account the scattering of charge carriers off of these impurities leads to the well known
Drude-Sommerfeld theory, which again predicts diffusive transport of charge. This description, however,
breaks down in dimensions d < 3, where non-interacting electrons tend to become Anderson localized in
the presence of arbitrarily weak disorder [188, 289].

9A closely related phenomenon is the appearance of power-law tails in other correlations functions,
most notably in the current-current (or velocity-velocity) autocorrelations [290-292].

2ONote that this term has to vanish whenever the system has a symmetry ¢ — —¢q. This occurs for
example at infinite temperature / zero chemical potential.
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2.3. Slow variables and hydrodynamic equations

On a formal level, this is completely analogous to the derivation of the Langevin equation
for Brownian motion for a heavy particle immersed in a fluid of lighter ones (with the role
of the ratio of the two masses played by the momentum k) [279]. The resulting theory is
referred to as nonlinear fluctuating hydrodynamics [296-299]. A fully systematic effective
field theory approach that takes all these various effects into account has been developed
only recently, see Refs. [281, 295, 297] for details.

We note, in passing, that a richer form of hydrodynamics emerges in systems which have
microscopic translation invariance. In this case, one has to include also the momentum
density among the slow variables, which is differentiated from the ones discussed above
by the fact that it is asymmetric with respect to time-reversal (and spatial parity). Using
approximation similar to the ones above, one ends up with a hydrodynamic description,
which in this case takes the form of the Navier-Stokes equation. This includes new trans-
port coefficients, the (shear and bulk) viscosities, which relate the momentum current
density to gradients of the momentum density (the local fluid velocity). This leads to
a more complicated structure for correlations functions in a fluid, one that also involves
ballistically propagating (sound) modes, which are damped by viscosity.

It is also interesting to note, that this picture is modified quantitatively in one spatial
dimension. In this case, leading order nonlinearities become relevant perturbations, and,
together with the aforementioned noise terms, give rise to a new universality class, charac-
terized by what is known as the stochastic Burgers equation [291, 298-302] for the (mass)
density of the fluid. After a change of variables (from the density p to its derivative, d,p),
this is found to be equivalent to the celebrated Kardar-Parisi-Zhang (KPZ) equation [303]
(which we will encounter later on in some very different contexts). This leads, for ex-
ample, to a ~ t2/3 relaxation for certain modes, as opposed to the ~ ¢~1/2 predicted
by diffusive hydrodynamics. Nevertheless, in the strongly interacting lattice systems we
will be concerned in this thesis, Umklapp scattering processes provide an efficient way for
momentum relaxation, and therefore the simpler, diffusive hydrodynamics outlined above
will be sufficient for our purposes when we consider the role of conservation laws in Part II.

The considerations presented here should make it clear that a central ingredient in ar-
riving at the hydrodynamic description is that the system (locally) thermalizes; this is
why it is sufficient to keep track of only the conserved quantities at late times?! It is
therefore natural to expect that our approximations should break down in systems that
do not thermalize. Indeed, in integrable models, the existence of infinitely long-lived
quasiparticle excitations usually leads to ballistic transport of at least some of the con-
served quantities [286, 304, 305]. An example studied very extensively in recent years is
the spin-1/2 XXZ chain, where energy transport is ballistic, while spin transport can be
diffusive, ballistic, or even super-diffusive (between diffusive and ballistic)?2, depending on
the anisotropy and filling fraction [286, 312-319]. Many of the non-equilibrium properties
of integrable systems can nevertheless be captured in the spirit of hydrodynamics, pro-
vided that one takes into account the infinite set of extensive quantities, that is, relying
on local equilibration to a Generalized Gibbs Ensemble and using Bethe Ansatz technol-
ogy [320-323] to evaluate the current densities. The resulting coarse-grained description
was named Generalized Hydrodynamics and has been the object of extensive study in
recent years [282, 307, 324-329]. Many-body localization, on the other hand, leads to

21Let us mention here that slow modes can arise also for reasons other than an explicit conservation
law. The most prominent example is the case of a spontaneously broken continuous symmetry, which gives
rise to new slow degrees of freedom, closely related to the Goldstone modes [279].

22This latter case is realized in the isotropic—SU(2)-invariant—point, and there are results suggesting
that it is also described by the KPZ universality class, leading to a ~ /3 spreading of correlations [306—
310]. Another recent paper [311] argues that non-Abelian rotation symmetry can also lead to a weak
breaking of diffusive scaling, with logarithmic corrections of the form ~ ¢'/2logt, even in non-integrable
systems.
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a complete suppression of transport and a state that is insulating at arbitrary tempera-
tures [96]. Are there any systems that do thermalize, but do not show diffusive transport,
even at high temperatures? It has been suggested that non-Abelian symmetries can lead
to logarithmic corrections [311] (see previous footnote??), which can make spin transport
faster than diffusive. On the other side, there is evidence showing that disordered systems
can have a regime of intermediate disorder strength, where the they are not yet MBL,
but their dynamics is dominated by rare localized regions, leading tot sub-diffusive trans-
port, with a power-law exponent that continuously interpolates between 1/2 (diffusion) at
weak disorder and 0 at the MBL transition [225-233]. Recently, it was demonstrated that
sub-diffusive transport can arise also from the conservation of various higher moments
of the conserved quantity (e.g. the total dipole moment) [330-333]. We will not discuss
these cases further, and will instead focus in the following on systems that either have no
conserved quantities or show simple diffusive transport?3.

In the approach we outlined here, the hydrodynamic equations (in the simplest case
discussed above, the diffusion equation) follow from general considerations. Connecting
them to the microscopic dynamics, on the other hand, is a highly non-trivial matter.
One for example would like to confirm the diffusive nature of transport, calculate its
subleading corrections, as well as compute the various coeflicients associated to these,
starting from a particular microscopic model for the evolution, e.g. a particular many-
body Hamiltonian. A useful general approach was developed by Zwanzing and Mori, which
goes under the name of memory matriz formalism [279, 335-339]. In this approach, one
takes seriously the splitting of degrees of freedom into slow and fast subspaces, and tries
to systematically compute the contributions to the equilibrium dynamical correlations of
slow operators from processes that travel through fast modes. Assuming the splitting was
done correctly, these corrections should be negligible beyond some short ‘memory time’.
This leads to physically transparent formulae for various transport properties®*. However,
evaluating the predictions of the memory matrix method in practice is itself no easy task,
and is mostly restricted to perturbations around some fine-tuned point [340, 341]. We will
return to these issues in Chapter 9.

What the discussion of this section shows is that, focusing on the correct (‘slow’) vari-
ables, one can find relatively simple universal descriptions of various dynamical quantities.
Much of what we will be concerned with below is developing similar effective descriptions
for the more complicated quantities introduced in Section 2.2 to characterize the scram-
bling of quantum information. In these cases, identifying the appropriate slow variables
and their effective dynamics is less intuitive. For this reason, we will take a different
approach. Rather than trying to motivate a description on general grounds, we consider
concrete minimal models, which are designed to capture the universal features of the dy-
namics. One can think of these as effectively projecting out the fast variables (making
their relaxation time zero), so that one is left with only the dynamics of the slow modes.
We can then use these to extract the universal features that generalize to broader classes
of physical systems. Moreover, these minimal models also provide quantitative results
which are of interest on their own right.

Finally, before concluding this section, we summarize some of the most relevant time
scales for dynamics in generic thermalizing quantum systems with local interactions and

23@Given that diffusion is quite generic in thermalizing systems, and that long-time dynamics in these
system is dictated by the ETH, one might naturally wonder if there is a relationship between the two. In
fact, diffusion shows up as a subleading correction in the off-diagonal part of ETH [94], making the variance
of a conserved density, (n|G|m), scale, in the regime |E,, — E,,| < 1/L?, as ~ e ®) L. Note that S(E) o L,
so that the L constitutes a logarithmically small correction [94]. In Ref [334], the authors generalize this

-
relation to disordered systems with sub-diffusive transport, where the subleading L is replaced by L’L’i"vw7
with v < 1/2 being the power-law exponent that characterizes the decay of autocorrelations of §.

24See Section 9.1 for a short introduction.
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Figure 2.1.: Summary of time scales in generic clean local quantum systems. J is the
local interaction strength. ¢, is the local equilibration time, after which
hydrodynamic approximations become valid. vg and vg are the butterfly and
entanglement velocities, introduced in Section 2.2. D is the diffusion constant
(assuming a single conserved density).

no (or weak) disorder, in Fig. 2.1. There is some initial local dynamics at times t < 1/.J,
where J is some typical local interaction strength. Time-dependent perturbation theory
breaks down at times Jt &~ 1. At a later time, t},c, the system develops local equilibrium
in each ‘fluid cell’; at this point universal features can emerge, captured by hydrodynamic
theories. For a finite system, or subsystem, of linear size L, the dynamics eventually leads
to thermalization. At times vpt &~ L, operators have spread across the (sub)system, and
information is largely scrambled on this scale. At a later time, vgt ~ 1, the von Neumann
entropy of the subsystem (or half of the chain, if we consider the entire system) saturates
to the thermal entropy. Finally, on much longer scales, Dt ~ L?, the diffusive spreading
of correlations also reaches the boundaries. If there are multiple diffusively transported
quantities, then each defines a separate time scale, set by the associated diffusion constant
(i.e., the eigenvalues of the diffusion matrix).

2.4. Overview of numerical methods used in this thesis

Despite their limitations mentioned in the introduction, numerical studies have played a
central role in understanding quantum non-equilibrium phenomena. Here, we review the
two approaches most relevant for our purposes:: exact diagonalization, and its cousins,
and tensor network-based methods. Other numerical techniques include variations of
quantum Monte Carlo [342-346], dynamical mean-field theory [347-350], Keldysh dia-
grammatic techniques [351-354] and recently neural network quantum states [355-358].
The development of new methods is ongoing [359-363], and we will describe a contribution
of our own in Chapter 9.

2.4.1. Exact dynamics and quantum typicality

The simplest method is also one of the most widely used. For a sufficiently small lattice
system, one can store both quantum states and Hamiltonians exactly on a computer. One
can then study their behavior and compare different system sizes in an attempt to extract
results about the thermodynamic limit [111, 112]. This approach is almost the only one
available? if one want to study the highly excited eigenstates directly, for example to
verify the ETH ansatz [94, 99, 138-148]. In this case, one constructs a matrix of the
Hamiltonian and diagonalizes it numerically, hence the name ezact diagonalization (ED).
The diagonalization is numerically expensive, limiting its applicability to L ~ 15 qubits
in the general case, which can be improved by exploiting symmetries, such as spin- or
momentum conservation [112]. This method has also been used extensively to study the
MBL phase and its associated phase transition [184, 365-368]. However, addressing the

25See Ref. [364] for an exception.
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effects of finite size in these studies is often difficult. For example, there are various works
suggesting that ED studies might significantly underestimate the critical disorder strength
of the MBL transition [369-374].

A closely related method, also sometimes referred to as ‘ED’, despite the fact that it
does not actually involve diagonalizing anything, is to perform the time evolution from
a given initial state in a numerically exact fashion. In this case, the finite system size
leads to, via the Lieb-Robinson velocity, a finite time scale, at which point results become
dominated by finite-size effects. Since these time evolution studies do not require one
to diagonalize the Hamiltonian, they are numerically more efficient, and can usually be
done for significantly larger systems, up to L ~ 25 even in the absence of symmetries.
The key feature that allows this is that local Hamiltonians are sparse matrices, with the
number of non-zero matrix elements scaling only linearly, rather than quadratically, with
the Hilbert space dimension [111, 112]. This means that matrix-vector multiplications can
be performerd efficiently. One can then construct the time-evolved state from repeated
matrix-vector multiplications?® [229, 231, 375-377] (the simplest version of this is just a
Taylor expansion of e~ but more efficient numerical schemes exist).

A helpful trick, often used in conjunction with these exact methods, is the one pro-
vided by quantum typicality [378-383]. This allows one to exchange the calculation of
thermal correlations with studying ensembles of pure quantum states, which often turns
out to be numerically less costly, especially at high temperatures. The basic idea can be
explained by considering the infinite temperature case, 8 = 0. The key point is that the
infinite temperature ensemble can be replaced by a pure quantum state, drawn randomly
from the entire Hilbert space (using the unique probability measure specified by invari-
ance under arbitrary basis changes, known ar the Haar measure [384]). Indeed, one can
show by explicit calculation (see App. A.1l), that such a random state |Uy,,,) satisfies
(U Haar| A|WHaar) = (A)g—0, where (...) denotes averaging over random states and A is
an arbitrary observable. Importantly, one can also show that the fluctuations between
different choices of random states are suppressed by a factor of N~1/2, where A is the
Hilbert space dimension, so in practice a single randomly chosen state will give a very
good approximation of the thermal value. Note that this is very much similar in spirit to
our discussion of quantum thermalization: a pure state can effectively mimic a thermal
ensemble. Let us then consider a dynamical correlation function of the form (A(t)B)s—o.
By the above argument, this can also be evaluated by taking a random pure state and
then computing the overlap between U(t) B|Wiaar) and AU (t)Wiaar. This only requires
evolving pure states, rather than operators; the latter is much more expensive numerically.
This method has been applied succesfully to a variety of problems [113, 385-390], includ-
ing the calculation of OTOCs [3, 231]; it can also be extended to finite temperatures,
by appropriately sampling the states from the Hilbert space, for example by replacing
|V aar) With efﬁH/2|\IlHaar>. This works well for high temperature, with the statistical
errors increasing with 8 [113, 391, 392] (see also Ref. [393]).

2.4.2. Tensor network methods

While exact diagonalization-type studies have played a huge role in uncovering features
of quantum dynamics, their fundamental limitation to small systems raises the need for
alternative methods. Among the most successful of these are the ones formulated in the
language of tensor networks. While we certainly cannot do full justice to tensor networks
(see Refs. [85, 394-396] for some reviews), we give a brief overview of the most relevant
aspects as they pertain to studying dynamics, especially in one spatial dimension. The

260ne can similarly exploit the sparseness of the Hamiltonian if one only wants to compute a few
(usually low-energy) eigenstates, rather than perform a full diagonalization. This is the essence of the
so-called Lénczos method [112].
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key idea behind tensor networks is to utilize locality, and in particular, the local structure
of entanglement, to provide a more efficient representation of quantum states. For this
reason, they work especially well in capturing states that satisfy an area law [394, 397, 398],
meaning that the von Neumann entropy S; of a subsystem A is proportional to the surface
area of A, rather than its volume. Tensor network states are therefore often used as a
variational ansatz, which work particularly well for capturing area law states. This includes
the ground states of all one-dimensional gapped local Hamiltonians [132, 399-404].

To illustrate these ideas, let us consider the most frequently used type of tensor network,
called a matriz product state (MPS) [84, 85, 405-410]. Consider a one-dimensional chain
of qubits, with sites labeled by » = 1,2,...L. On each site, we can choose a basis
|n, = 0,1). The full many-body state can then be parametrized by a tensor with L indices
of the form W, ,, n,, which contains all the 2L complex coefficients that characterize
the state in this basis. The key idea is to rewrite this big tensor as a product of smaller
tensors, one for each site. This local tensors, Ay, have three indices?” (also called
‘legs’): one ‘physical’ index, n,, which coincides with the appropriate index of ¥, and
two ‘virtual’ indices, which are contracted with one of the indices of the neighboring sites.
One can think of these as separate matrices for each value of n, (hence the name). These
matrices are then multiplied together, such that the entire state is written as Wy, p,..n;, =
Uag Anb oy Aoy - - - Aok, Var, Where u,v contain some appropriately chosen boundary
conditions?®. This is illustrated in Fig. 2.2(a). The index a,. goes from 1 to some integer
X, which is called the bond dimension;, making A™ a matrix of size xr_1 X xr. The bond
dimensions specify how big a chunk of the Hilbert space we can capture with the MPS
ansatz; x, limits the amount of entanglement between sites [1,r] and sites [r + 1, L] to be
at most log x,. If x,, = 1 for all r then we are therefore simply describing product states.
On the other hand, if y, = omin(r.L—7) " then we can describe an arbitrary state — this,
however, requires an exponentially large bond dimension, y = 2/2, in the middle of the
chain. For area law states, however, one can approximate the state to arbitrary precision
while keeping max{x,} independent of system size?. Part of the usefulness of MPS lies
in the fact that many features of the state, such as local expectation values, two-point
correlations or overlaps between states, can be computed very efficiently, by contracting
the appropriate tensors®® [85, 396]. Importantly, if the state is invariant under translations,
one can also write down an MPS directly in the thermodynamic limit [85, 407-409, 413],
parametrized by a single three-leg tensor Agﬁ.

Matrix product states are, for the reasons outlined above, a central tool in studying the
ground states of one-dimensional quantum systems, where one can variationally optimize
the MPS to minimize its energy, using the celebrated density matrix renormalization
group [82, 83, 85, 414-416]. However, they also found application in studying dynamics [85,
104, 105, 359, 360, 413, 417-423]. In this case, the entanglement of the state grows with
time, approaching a thermal volume law, as discussed above. This implies that for a fixed
maximal y, one is limited to sufficiently early times before the MPS approximation breaks
down. Generically, as we shall see, the von Neumann entropy tends to grow linearly in
time [269], making the times attainable grow only logarithmically with xmax. Nevertheless,

27In principle, these tensors can be different for each site and should have an additional label (not a
tensor index!) that labels which site they belong to. Here, we suppress this to keep the notation cleaner.

28We are imagining an open chain here. For a closed chain, one can simply take the trace by making
ar = «ap. However, in practice, the open chain case is easier to deal with.

Technically, the relevant property is area law for Rényi entropies S, with index o < 1 [132, 400, 411].
However, in most physical situations, area law of Sy is sufficient.

30 A key point, that we cannot do full justice here, is the gauge redundancy of the MPS description [85,
409, 412]. The matrices A™ and M"Y A™ M" describe the same quantum state, for arbitrary matrices
{M"}. This can be used to transform any MPS into a canonical form; in the canonical form, a local
expectation value on site r can be calculated using the matrices A" alone, without having to contract the
full network.
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Figure 2.2.: Matrix product states. (a) MPS ansatz for a many-body quantum state. Each
site corresponds to a three-leg tensor A (with site label suppressed). (b) Main
steps of the TEBD algorithm for time evolving an MPS for a nearest neighbor
Hamiltonian. In the 1st step, a pair of neighboring MPS tensors (denoted by
A and B) are updated, by evolving them with a local 2-site term h of the
Hamiltonian, for a small time step 0t. In the 2nd step, the resulting four-leg
tensor is re-interpreted as a matrix, by grouping two pairs of legs together. In
the 3rd step, an SVD is performed on this matrix, to split it up into single-site
tensors again. The singular values are contained in the matrix A, which can
be truncated if necessary to keep the maximal bond dimension fixed.

the fact that the MPS methods allow one to study dynamics of large systems, or even
directly in the thermodynamic limit, make them a useful tool, complementing the ED
studies discussed above.

The simplest method to time-evolve an MPS, which we will utilize in this thesis, is called
time-evolving block decimation (TEBD) [104, 417]. It relies on breaking up the evolution
into an application of 2-site unitary operations, via a Trotter-Suzuki decomposition [104,
421, 424, 425], which works particularly well for Hamiltonians with only nearest-neighbor
interactions. Then one can update the MPS tensors for a pair of neighboring sites at a
time, by applying the 2-site unitary and then performing a singular value decomposition
to turn the result back into MPS form (see Fig. 2.2(b)). The singular values that appear
are nothing else but the Schmidt values corresponding to the entanglement between the
two halves of the chain, separated by the bond that is being updated. Consequently, the
new tensors will tend to have an increased bond dimension to reflect the new entanglement
generated by the unitary; this would lead to the bond dimensions growing exponentially in
time. In practice, one has to cut this off by fixing a maximal x in the simulation; the MPS
tensors are then truncated, by throwing away the smallest singular values to compress the
bond dimension back to x. The error of this approximation is characterized by the sum of
squares of the discarded singular values, the truncation error. As long as it is sufficiently
small, which is the case at early enough times, the MPS gives a good approximation of
the true time-evolved state.

There exist a variety of other methods for evolving an MPS in time, some of which
also apply easily to longer-range interactions [359, 360, 423]. There are also plenty of
numerical approaches that rely on slightly different tensor networks. For example, one
can represent operators, rather than states, in a very similar form, the only difference
being that the local tensors in this case have four indices, AZ:T';%, corresponding to the
in- and out indices of the operator. One can then use these to represent observables

(density matrices), and perform Heisenberg (von Neumann) evolution, for example by
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an simple modification of the TEBD algorithm®!' [361, 427, 428]. One important aspect,
that several recent papers have focused on, is trying to develop tensor network methods
that appropriately capture the hydrodynamic behavior discussed in Section 2.3 [361, 429
431]. This would bridge the gap between the microscopic, early-time behavior, and the
late-time universal physics, while allowing to calculate the transport coefficients directly
from the underlying Hamiltonian. The issue here is that the truncation of Schmidt values
in the TEBD scheme leads to a violation of conservation laws, making it ill-suited for
capturing transport appropriately. Other methods get around this limitation, either by
modifying the truncation scheme appropriately [361], or by replacing it with a projection
instead [359, 360, 429]. In these cases, conservation laws are exact, leading to some form
of transport. However, it is at present unclear, whether these methods actually capture
the correct transport coefficients, and there is in fact evidence that they do not, at least
in certain cases [430]. We will propose an alternative, more well-controlled method below
in Chapter 9. For a recent, comprehensive review of time-evolution using tensor networks,

see Ref. [105].

2.5. Experimental platforms

As mentioned already in the introduction, much of the progress in the field of quantum
dynamics has to do with the important experimental advances that made it possible to
realize quantum many-body systems that are isolated from the environment (at least to
a sufficient degree such that any coupling to the outside world is negligible on the time
scales on which they are observed) and to probe their various properties, including those
discussed in Section 2.2. A variety of different platforms have emerged over the years
which allow for such experiments to be performed, each with its own advantages and
disadvantages. In particular, different setups offer various degrees of control over initial
states, microscopic interactions, dimensionality and number of degrees of freedom, the
type of quantities that can be accessed by measurements and the coherence times until
which the experiment can be run without encountering the effects of the environment.
Here we review the most relevant of these, along with a few key experiments, while an
overview of the whole field is of course outside the scope of this thesis.

2.5.1. Ultracold atoms and trapped ions

The two experimental platform most relevant for our purposes are (neutral) wultracold
atoms [60, 432, 433] and trapped ions [43, 61, 434]. Both provide a very high degree of
control and tunability, regarding both the interactions between the constituents and the
precision with which they can realize particular quantum states. In the case of neutral
atoms, the controlling of interactions is achieved by the Feshach resonance effect, which
allows changing both the magnitude and sign of contact interactions between atoms, by
tuning an external magnetic field. External trapping potentials allow experimenters to
change the dimensionality of the system, i.e. confining the atoms to lines or planes. In the
case of ions, one has access to an array of manipulation techniques that are not available
for neutral atoms, making it possible to address individual ions with an extremely high
precision. Internal (usually hyperfine) states of the ions can serve as effective spin degrees
of freedom and their states can be manipulated with near perfect precision via lasers. A
downside is that the charged ions exhibit long-ranged interactions as a consequence of
the Coulomb repulsion (unlike their neutral counterparts, which dominantly have contact
interactions), which makes it harder to simulate local quantum dynamics, and in general

31This also provides a natural way of incorporating dissipation effects to perform a non-unitary evolution
in case of an open quantum system [420, 426].

21
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makes the finite size effects more significant. Moreover, the sizes attainable in these
experiments are generically smaller than those in the neutral atom case.

Many early experiments in the context of quantum dynamics focused on time-of-flight
measurements in cold atomic gases [432, 435, 436]. One of the early successes in study-
ing quantum thermalization came from comparing the relaxation of a three dimensional
gas of strongly interacting atoms with its one-dimensional counterpart. While the former
showed a quick relaxation to thermal equilibrium, the latter exhibited long-lived coherent
oscillations (prompting the authors to name the experiment a ‘quantum Newton’s cra-
dle’) [182]. This was explained as a consequence of the near-integrability of the latter
setup, and stimulated a great deal of interest in the conditions of thermalization and the
unique dynamics of quantum integrable models. The same Newton’s cradle setup was
revisited recently [437], while other experiments have focused on the emergence of the
generalized Gibbs ensemble [438-440].

The cold atom setups can be further pushed in the direction of mimicking condensed
matter systems by the introduction of optical lattices, which provide periodic potentials,
much like the ones experienced by electrons in a crystalline material [441, 442]. These
lattices are engineered via the interference pattern created by overlapping laser beams.
As the atoms interact with the electric field through a dipole force, they experience the
varying intensities of the pattern as a periodic potential. The tunnel coupling, or hopping
amplitude, can be tuned by varying the depth of the potential. Thus, one can realize in
these systems models of quantum magnetism, such as the Ising model [443-445]. Recently,
the invention of quantum gas microscopy [446-449] has opened up the possibility of in-
situ, site-resolved measurements, and even taking complete snapshots of the many-body
quantum state (amounting to a projective measurement in the local occupation basis), for
example via high-resolution fluorescence imaging. The same techniques can also be used to
coherently flip the spin of each atom individually, allowing to create various initial states,
and to assemble lattices atom-by-atom [450, 451]. Similar level of control is possible in
trapped ion experiments [61].

Such methods have enabled the measurement of the spreading of correlations after a
quantum quench in various setups [452-455]. This also includes probing transport prop-
erties and thus the emergence of hydrodynamics [330, 453, 456-459]. Similar methods
were used to establish experimentally the transition from thermalizing to localized be-
havior due to disordered [200, 460] or quasi-periodic [186, 461] potentials, and to observe
time-crystalline behavior in a trapped ion system [220].

Importantly for our present purposes, the high degree of control available in these ex-
perimental setups also opens up the possibility of probing the complicated correlations
hidden in some of the ‘higher order’ observables we defined above in Section 2.2 [462]. In
particular, following theoretical proposals [463, 464], a series of ground-breaking experi-
ments has demonstrated the possibility of accessing the second Rényi entropy as a means of
probing thermalization [108, 109]. These experiments used the so-called ‘replica trick’ (see
Section 5.2), wherein €2 is re-interpreted as an expectation value in a doubled Hilbert
space, corresponding to two identical copies of the same quantum system. In the exper-
iments, two copies were indeed prepared and evolved in time in parallel; interfering the
two copies can then be used to reveal the Rényi entropy. Two other measures of entangle-
ment, termed the configurational entropy and the number entropy (see also in Section 10.3)
were measured in Ref. [465] to obtain a logarithmic growth, characteristic of many-body
localized systems [222, 223]. There exist also both theoretical proposals [249, 466] and
experimental results [467, 468] measuring OTOCs. These typically rely on reversing the
arrow of time, in a manner similar to spin echo-type experiments. A recent set of ex-
periments [110, 469-471] has demonstrated the possibility of measuring both OTOCs and
Rényi entropies in a single copy of the system, without the need for time-reversal, by

22



2.5. Experimental platforms

performing local measurements in a randomly chosen basis, and evaluating correlations of
the outcomes.

A variation of the neutral atom setups is offered by systems of Rydberg atoms [63, 472].
There, one of the electrons of the atom is excited to a high-lying orbital, which leads to an
increased sensitivity towards electric and magnetic fields. It also results in strong van der
Waals interactions, that decay rapidly with distance (as ~ 1/7%), and are therefore often
well approximated by local models. They can again be trapped by e.g. optical tweezers,
and their interactions controlled by varying the distance between atoms, or by coupling
them to a different Rydberg state, while fluorescence imaging can be used to detect their
distribution. Recently, a chain of 51 Rydberg atoms was used as a programmable quantum
simulator and used to study dynamics from various initial states [473], leading to the
discovery of so-called many-body quantum scars [474, 475].

While we focused on cold atoms and trapped ions, let us emphasize that there also
exist setups in more conventional condensed matter systems, in particular those where
the microscopic degrees of freedom are nuclear spins of some material. In this case,
NMR techniques are used to prepare and measure the quantum states [476, 477]. While
not as well controlled as ultracold atoms or ions, they have the advantage of having
truly macroscopic number of interacting degrees of freedom, avoiding the finite-size effects
that can plague other methods. These were also used to demonstrate localization due
to disorder [478] and time crystal-like behavior [479, 480], and to measure OTOCs using
spin-echo techniques [478, 481]. Another condensed-matter based platform is provided by
nuclear vacancy (NV) centers embedded in diamond, which can be manipulated by using
microwave radiation [482-484]. These were used to study thermalization dynamics [485,
486], and were among the first to be shown to exhibit the period doubling (and later,
tripling) associated with time crystals [219].

2.5.2. Quantum computers

While the above examples all roughly fall under the idea of (analog) quantum simula-
tors [57-59], similar techniques have been central to recent efforts towards realizing a uni-
versal (digital) quantum computer [18, 71, 72, 74]. In particular, the trapped ion setup,
due to its aforementioned controllability, has been used extensively to develop quantum
computing hardware [487-491]. The necessary ingredients needed to build a universal
quantum computer have been demonstrated with high precision in this setup [492-497].
Moreover, the hyperfine ion qubit states can have very long coherence times, as large as
600s in certain cases [491, 498]. However, scaling up to larger systems remains a challenge,
with the currently existing ones limited to &~ 20 qubits.

Recently, significant progress was achieved in superconducting circuits, build out of non-
linear superconducting resonators based on the Josephson effect [499-512]. Last year,
these efforts culminated in an experiment that claimed to have finally achieved quan-
tum supremacy [75]: the accomplishment of a computational task unattainable by even
the largest classical supercomputers [22, 513-515]. This was done by sampling from the
output distribution of a random circuit of unitary gates applied on a 53-qubit quantum
computer??. Other promising architectures for quantum computing include electronic
semiconductors [519, 520], impurity spins [521] (such as NV center [522]) and linear op-
tics [523, 524], among others [525].

The efforts to build a quantum computer relate to the topic of the present thesis on
several levels. On the one hand, one of the most promising application of the type of noisy
intermediate scale quantum (NISQ) [23] computers that are likely to be available in the

32Gimilar setups on a smaller scale have also been used to simulate quantum dynamics [516], for example
to demonstrate localization [517, 518].
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near-term, is to perform quantum simulation of interesting many-body systems, includ-
ing their dynamics [57, 63, 434, 526, 527]. In this sense, the digital quantum computers
would provide a complementary experimental platform to those outlined above, with po-
tentially much greater control over all the details of the dynamics and the measurement
of the final state. These could be used to test theoretical predictions and uncover new
features of the time evolution. From a different point of view, the quantum computing
hardware are themselves particular quantum many-body systems. Thus, understanding
general features of quantum dynamics could be highly useful in improving their design
and to understand the types of errors they experience and how to counter them. Dynam-
ics of entanglement plays a particularly important role in this respect, as entanglement
provides a crucial resource that leads to a computational advantage compared to classical
computers [19, 528]. Moreover, execution of random unitary circuits, similar to the ones
we study in this thesis, has emerged as a useful way to test the capabilities of quantum
computers [514, 515, 529, 530] (including the aforementioned quantum supremacy exper-
iment [75]). Understanding the features of their dynamics is therefore an important topic
on its own right.
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Part |I.

Quantum Information Dynamics
without Conservation Laws
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Overview of Part |

As discussed in the Introduction, Part I of this thesis concerns the dynamics of quantum
information in closed quantum systems with no additional conserved quantities — this
includes energy conservation, which means that we will be focusing on cases that lack
(continuous) time-translation invariance.

Chapter 3: Systems without local conservation laws

In Chapter 3 we first give a brief discussion on systems without conservation laws. The
simplest such cases are periodically driven systems, which break energy conservation by
absorbing energy from a drive. These have been a subject of intense study in recent
years [531-534]. Another type of system that belongs to this category are those with
explicit noise in their dynamics, for example due to some randomly fluctuating external
fields. In Section 3.1 we construct a model of the latter kind, a circuit of randomly chosen
local unitary gates, which will serve as the basis of our subsequent studies in this part of
the thesis. Such random circuit models have received a great deal of attention in recent
years, and we will describe our own contributions, while also summarizing some others,
when we deem it necessary.

Chapter 4: Operator Spreading

Chapter 4 contains our study of operator spreading in systems with no symmetries. For
the most part, we focus on the aforementioned circuit model in one dimension, where
one can carry out an exact calculation of many relevant quantities. In Section 4.2 we
discuss this calculation in detail, and show that the dynamics of an evolving operator
has a simple description in terms of a biased random walk. This is characterized by two
relevant parameters, related to two main features of the evolution: a ballistic spreading
of the operator wavefront, with the butterfly velocity vg, and a diffusive broadening of the
wavefront, with a diffusion constant D. We also discuss how the same features manifest in
out-of-time-order correlators. In Section 4.3 we argue that the biased diffusion description
should apply more generally, also to deterministic systems, and support this claim with
numerical results on a driven spin chain. Section 4.4 provides a brief description of the
higher dimensional case, based on Ref. [253]. In this case, biased diffusion is replaced
by the Kardar-Parisi-Zhang (PKZ) equation, leading to a different exponent for front
broadening.

Chapter 5: Entanglement Growth

In Chapter 5 we switch our focus to entanglement. In Section 5.1 we show how our
results on operator spreading in the random circuit can be turned into a calculation of
the annealed average of the second Rényi entropy. We find a linear growth in time,
with a entanglement velocity vg that is strictly smaller than vg, and discuss the eventual
saturation for finite subsystems. An alternative calculation, that does not rely on operator
spreading, is presented in Section 5.2. In this description, calculating averages over the
random circuit is turned into a problem similar to evaluating a classical partition function
in one higher dimension. This method, adapted from Ref. [278], has the advantage of
being more generalizable, and we will rely heavily on similar calculations in Part II. In
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the case of entanglement entropies, it gives rise to a simple physical picture, wherein
entanglement growth is associated with the free energy of a polymer (or membrane, in
higher dimensions) in spacetime. In Section 5.3 this picture is used to explain the effects
of noise on entanglement dynamics, leading to another appearance for the KPZ equation.

Chapter 6: Entanglement spectroscopy after a quench

The last chapter of this part of the thesis offers an alternative view on the scrambling of
quantum information, by looking at the fine structure that appears in the statistics of the
entanglement spectrum, i.e. the eigenvalues of a reduced density matrix of some finite
subsystem (or, more precisely, their logarithms). We find that the spectrum is sensitive to
correlations that develop between the two edges of the subsystem. Since these correlations
are initially very small (carried only by rare ‘tail events’ of operators spreading faster than
the Lieb-Robinson speed), they show up first at the smallest eigenvalues, where they lead
to level repulsion. This shows up as an ‘edge’ in the spectrum, separating small and large
eigenvalues which have different statistics. This edge gradually moves in time, until the
entire spectrum develops level repulsion. We provide an analytical argument, which shows
that the time scale for this to happen is dictated by the Lieb-Robinson velocity. We support
this with numerical results on a variety of systems, which confirm that the appearance of
level repulsion corresponds to a separate time scale, smaller than the thermalization time
of the subsystem.
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3. Systems without local conservation laws

As mentioned above, the physically most natural representation of unitary dynamics is
when the system evolves under a particular, time-independent Hamiltonian H. Such
systems by definition exhibit energy conservation (the Hamiltonian commutes with itself).
Moreover, many systems relevant in experiments also possess other extensive conserved
quantities, such as particle number of total magnetization. As we discussed in Section 2.3,
such extensive conserved quantities play a crucial role in the many-body dynamics: they
give rise to slow, hydrodynamic modes that are the only relevant local degrees of freedom
at long times.

Precisely for this reason, it is enlightening to consider to systems that have no conserved
quantities. Conventional wisdom would indicate that these have no slow modes and show
no interesting dynamics after the very shortest timescales. On the contrary, we will find
that new types of slow, ‘hydrodynamic’ variables emerge once we shift our attention from
simple correlations to more refined quantities that capture the scrambling of quantum in-
formation (see the discussion in Sec. 2.2). In particular, we will show that the conservation
of information (i.e., unitarity) manifests itself as a new, ‘hidden’ conservation law and the
transport of this conserved quantity admits simple universal descriptions.

Physically, the simplest manifestation of systems without conservation laws is achieved
by a periodic drive, i.e. a Hamiltonian with a periodic time-dependence H(t) = H(t+T).
Such driven (also known as Floquet) systems are relevant for many experimental se-
tups [531-534]. Below we will also consider models where U (t), rather than being periodic,
changes randomly in time (while remaining unitary throughout). As we shall see, integrat-
ing over the randomness in these models can result in very simple effective descriptions.
As we will argue, many of the main conclusions drawn from studying these models apply
equally well to deterministic systems.

In the absence of conservation laws, statistical mechanics dictates that the long-time
equilibrium state should be one that maximizes entropy, i.e. the maximally mixed state
p = 1/N (also known as the ‘infinite temperature’ ensemble, since it corresponds to
a Gibbs state with 8 = 0), with A the Hilbert space dimension. Indeed, the systems
we study in this part of the thesis all approach this state locally, which also implies
that the Rényi entropies of finite subsystems tend to their maximal values (up to small
subleading corrections). In particular, as we discussed in Section 2.4, in a Haar random
pure state, the expectation value of any operator is exponentially narrowly peaked around
the infinite temperature result [535]. Therefore we expect that the evolving state |U(t))
will increasingly look like such a Haar random state!. Haar random states, being basis-
independent, have lost all notion of spatial structure; they have information distributed
equally between all possible degrees of freedom, irrespective of locality. In this sense (and
in ways which we will make clear below when considering evolution in the Heisenberg
picture), information becomes ‘scrambled’ during time evolution; our goal in this part
will be to elucidate some general features of this scrambling as they apply to many-body
systems with no constraints on their dynamics other than locality.

'In Floquet systems, which admit an eigendecomposition similar to the Hamiltonian case, this thermal-
ization process can be understood in the language of ETH: eigenstates of U(T") themselves should look like
independent Haar random states; this gives a simplified version of Eq. (2.3), where the energy-dependence
disappears and all diagonal matrix elements are given by the infinite temperature result, while off-diagonal
ones are suppressed by a factor of N/ —1/2
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3.1. Local Haar Random Circuit Model

An alternative to evolving with a time-dependent Hamiltonian, we will consider here a
different type of dynamics with no conservation laws, constructed as a circuit of local
unitary gates, illustrated in Fig. 3.1. In this setup, the initial state or operator is acted
upon by a series of unitaries, each of which is local (i.e., only acts non-trivially on a finite
region). Such circuits provide a model for quantum computations [18] and are very natural
in that context. They also show up when one discretizes continuous time evolution by e.g.
a Trotter scheme [104, 424, 425]. The main difference is that while in the latter case, the
gates that appear correspond to infinitesimal steps, and are therefore close to the identity,
this does not have to be true in a more general circuit?. Physically, the difference between
circuit models and other Floquet models is that the former have infinitely sharply defined
light cones, where perturbations vanish on the outside, while the latter generically have a
non-zero probability of spreading information arbitrarily far even at short times. However,
due to the Lieb-Robinson bounds, these probabilities are exponentially small outside of a
linear light cone and therefore negligible in most cases. In fact, one can use this fact to
approximate continuous dynamics as a unitary circuit [536]. Later, in Section 4.3, we will
meet a non-trivial Floquet model where such a representation becomes exact.

While circuit models provide a useful perspective on quantum evolution, generically
they are not any more solvable than other forms of many-body dynamics. However,
recent years saw the emergence of several different methods for constructing circuit models
that are exactly solvable, at lest for certain quantities. These provide a rare example of
many-body dynamics that is solvable without being integrable, and as such, they have
been central towards gaining a better understanding of many relevant questions. The
first of these set of models is provided by so-called dual-unitary circuits. These have the
defining property that slices of the two-dimensional circuits in the spatial direction (rather
than time-slices) also define unitary operations. This property simplifies calculations, and
has lead to a breadth of recent results for dynamical correlations, spectral form factors
and Rényi entropies, among others [179, 180, 537-540]. Other types of quantum circuits
that, while are generically not analytically tractable, allow for essentially numerically
exact simulations, are Clifford and recently introduced cellular automaton circuits. The
former act as permutations on products of Pauli operators, while inducing non-trivial,
yet efficiently simulable, dynamics on quantum states [276, 541-544]. The latter are in
some sense the opposite: they perform permutations of basis states in a particular product
basis, but can have non-trivial behavior for operators [545-548].

While these systems provide extremely useful tools for studying non-equilibrium dynam-
ics, they are all fine-tuned in various ways, and have features that make them non-generic.
An alternative approach to solvable models that can avoid this issue is given by random
circuits, which are at the focus of this thesis. In this case, the circuit elements (local
gates) are chosen from some random ensemble of unitaries. Then it is the averaging over
realizations of such a random circuit that serve to simplify the results and allow for an
analytical, or semi-analytical, treatment. In particular, as we shall see in detail below,
the averaging procedure often allows one to map the calculation of various quantities of
interest to a ‘classical’® stochastic process, or equivalently, to the evaluation of a classical
partition function. In many cases, the latter can be computed analytically, at least in
some limit, while in others it still allows for a numerical calculation that is significantly
more efficient than tackling the original quantum problem directly. Various arguments
and numerical results suggest that these random circuits exhibit universal features that

20f course one could always design a Hamiltonian that reproduces the effects of the circuit, but this
would require evolving disconnected regions for long times independently.

3The quotation marks refer to the fact that in some of the more complicated cases, the effective model
might still contain negative weights, making it not entirely classical.
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3.1. Local Haar Random Circuit Model

generalize to a large set of other models, including ones that are not random in time, and
even to generic time-independent Hamiltonians [1, 3, 252, 253, 260, 427, 429, 549].

This last point merits some further discussion. It might at first appear surprising that
the kind of noisy evolution resulting from a random circuit can capture the behavior of
non-random systems. Note, however, that such noisy models have been used for a long
time in studies of many-body dynamics [550-552]. As mentioned previously in Section 2.3,
such stochastic equations appear naturally in the context of hydrodynamic transport* [279,
281, 293, 299]. The idea behind these, is that the degrees of freedom at small scales can
effectively serve as a source of noise on the dynamics of the large-scale, ‘slow’ variables that
appear in in the hydrodynamic description, even when the dynamics at the microscopic
level is deterministic. A simple intuitive example is provided already by Brownian motion,
where the kicks provided by the fluid molecules can be incorporated into a random noise.

There is an alternative way of thinking about the emergence of ‘noisiness’, that is par-
ticular to the quantum setting and makes connection with the notion of equilibration
exposed by the eigenstate thermalization hypothesis. Recall, that in the ETH picture,
the equilibrium state is already ‘there’ in the eigenstates: the only necessary ingredient
provided by the dynamics is the dephasing between the different eigenstates, that brings
out their thermal nature. Dephasing also plays a central role in dynamics at intermediate
times. A particular example is the diffusive transport of conserved quantities, discussed
previously in Section 2.3, which is expected to be generic in many-body lattice systems
at high temperatures. Such diffusive behavior is exactly what one would find for a clas-
sical random walk, as opposed to freely propagating quantum particles. The difference
between the two is that of phase coherence: it is the constructive and destructive interfer-
ence between different paths that leads to a characteristic ballistic (rather than diffusive)
spreading in the quantum case. The prevalence of diffusive transport in closed (and even
translation invariant) many-body quantum systems [249, 269, 279, 285, 294, 553, 554]
shows that interactions between particles lead to a loss of phase coherence. Introducing
an explicit noise, can play a very similar role, destroying coherence (for instance, adding
noise to single-particle quantum dynamics also induces a cross-over towards a classical
random walk behavior). For example, while (as we discuss in Section 7.2), a random cir-
cuit can give rise to diffusive transport in an almost trivial way, due to the explicit noise,
qualitatively the same behavior arises in non-random models simply due to interaction.
A similar intuition explains the qualitatively similar behavior between random and non-
random models for the other quantities we study below (see also Ref. [260] for a different
approach towards justifying the universality of random circuit results).
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Figure 3.1.: Structure of the local unitary circuits studied in this paper. The on-site
Hilbert space dimension is q. Each two-site gate is a ¢% x ¢? unitary matrix,
randomly chosen from the Haar distribution.

4See also Section 9.1 for a more direct derivation of this fact, in the so-called memory matrix formalism.
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Chapter 3. Systems without local conservation laws

With these motivations in mind, we now introduce the random circuit model we study
in the subsequent questions. We consider a one-dimensional chain of ‘spins’, or qudits,
with local Hilbert space dimension g > 2 (we will briefly discuss higher dimensional gener-
alizations in Section 4.4). The building blocks of the model are 2-site unitary gates, chosen
from the Haar measure: this is the unique probability distribution over N x N unitary
matrices (in our case, N = ¢?) that is invariant under left- and right multiplication, that
is p(U) = p(VU) = p(UV) for any N x N unitary V. We evolve states (or operators)
by acting on them with such Haar random gates, arranged in a ‘brick-wall’ pattern: odd
numbered layers act on all the odd bonds of the chain while even numbered layers act
on even bonds®. This is shown in Fig. 3.1. This prescription defines an ensemble of local
unitary evolutions, with strict light cone speed vr,c = 1 due to the geometry. The only
parameter, characterizing this ensemble, is the local dimension gq. We are interested in
the typical behavior of such a circuit, which we will approach by considering the circuit-
averaged dynamics of various quantities. As we shall argue below, the results are indicative
of the behavior of typical individual realizations of the circuits (modulo some important
subleading effects in certain cases, which we discuss in Section 5.3), and also shed light on
the dynamics of deterministic systems. We will illustrate this latter point by performing
explicit numerical calculations on a particular periodically driven spin chain and showing
that it exhibits the same qualitative features of operator spreading that are found in the
random circuit model.

5An alternative construction, considered e.g. in Ref. [276], is to randomize also the geometry of the
circuit, for example by choosing a random bond to update in each step. On can interpolate between the two
cases, for example by replacing every gate in the brick-wall circuit with an identity with some probability
p. Generically, the universal features we discuss below are expected to remain the same throughout this
interpolation, including the two limiting cases, at least for ¢ < oco.
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4. Operator Spreading

As discussed in Section 2.2, out-of-time-order correlations can be used to study the scram-
bling of quantum information by the many-body dynamics, that is, how information that is
initially contained in simple, local observables, gets redistributed over increasingly compli-
cated operators. Here we discuss various universal features of this phenomenon, relying on
our random circuit model. We first show that the spreading of operators can be character-
ized by a ‘hidden’ conservation law that arises due to the unitarity of quantum dynamics.
In one-dimensional systems, which will be our main focus, this can be incorporated into a
local conserved density. As we show, averaging over random circuits endows this quantity
with a very simple, exactly solvable dynamics, which is that of a biased random walk. We
discuss the resulting behavior in detail and provide evidence that the description in terms
of biased diffusion is universal, applicable to chaotic many-body dynamics without con-
served quantities in one-dimension. The case of higher dimensions is briefly summarized

in Section 4.4, while the extension to systems with conservation laws is postponed until
Part II.

4.1. Quantifying operator spreading

Consider a one-dimensional chain of L sites, for which the Hilbert space of a single site is
Hsite = C2. There exist operators X, Z on the single site Hilbert space obeying

ZX =™iX 7 (4.1a)
Z9=X1=1. (4.1b)

These generate a convenient complete basis for all operators on Hsite, namely {o# =
xr zu® .y e Z3?}. Here p is shorthand for the doublet pD u® e f0,1,... . ¢g—1} =
Zg. This ba51s is orthonormal, such that tr(c*T0")/q = 6,,. The operators o/ can be
regarded as generalizations of Pauli matrices, where the usual Paulis correspond to the
g = 2 case. Generalizing this to the Hilbert space of a 1D chain, Hepain = (Cq)®L,
a complete orthonormal basis of operators is given by the ¢?* Pauli strings, defined as
ol = ®7Ij L 07", where each string is indexed by a vector fi € (Z®2)®L.

Our goal is to quantify how an initial Pauli string spreads over the space of all Pauli
strings under local unitary time evolution. At time 7 the Pauli string of becomes

of (1) = Ul (r)ofU (7 Zcﬂ : (4.2)

This defines a set of ‘operator spreading coefficients’ cl@” (1) = tr (6”1UT (7)o U(7)) /q*.
The full set of coefficients, {cg(v')}, encodes all information regarding the unitary time
evolution. However, the values of particular coefficients themselves are of limited interest
(they are rather like trying to capture the evolution of a gas by keeping track of all the
position and momenta of individual particles). It is more useful to consider ‘coarse-grained’
quantities, that one might hope show up in some effective ‘hydrodynamic’ description. We
will be particularly interested in the total weight on all operators with right endpoint s
appearing in o (1), i.e.,

7 (7)(2 S(RHS(7) = s), (4.3)

p’;(s,T) = Z

—

v

33



Chapter 4. Operator Spreading

Where RHS(#) denotes the rightmost site on which 7 is non-zero.! Note that the ‘density’
pR is conserved, i.e., >, pR( s) = 1 at all times. Motivated by this, we refer to p’]j% as the
(right) operator denszty of the time evolved Pauli string o”. This hidden conservation
law plays a crucial role in what follows. In analogy with the discussion of hydrodynamics
in Section 2.3, one expects that such conserved quantities provide the important slow
variables that characterize the dynamics of the evolving operator on sufficiently long time
scales®>. As we shall see, this statement becomes exact upon averaging in the random
circuit.

4.2. Operator spreading in the 1D Haar random circuit

In the following we will quantify how operators spread under the time evolution generated
by the random circuit defined above in Chapter 3. We focus on the average of the operator
density, defined in Eq. (4.3), for which we derive an exact equation of motion. Upon solving
this equation, we find that the operator density moves in a front with velocity vg < v,
while the width of the moving front increases in time diffusively.

4.2.1. Random walk dynamics of operator density

We start by noting that, under Haar averaging, the operator spreading coefﬁcient cH ()

vanishes for any time 7 > 1, provided that ji is non-trivial, since cg and —c~ have equal

probability. However, the average of its modulus squared, |cg(7')|2, can be non-zero. (An
explicit expression for this quantity is written down in App. A.3, using a mapping to a
classical Ising model, but we will not require it for the subsequent discussion).

Following Eq. (4.3), we define the average operator density as

(s, Z|c )2 6(RHS(7) = s). (4.4)

As we show below, this quantity satisfies an equation of motion, Eq. (4.8), which does not
depend explicitly on fi. Pre-empting this, we drop the explicit ji dependence, p% — DR,
to declutter notation. In fact, i will enter considerations only as an initial condition on

the operator density
PR(s,0) = S(RHS(f) = s), (4.5)

which is the same for all initial operators that share the same right endpoint.

To understand how pgr evolves in time, consider the effect of applying a single two-site
gate on sites s and s + 1. There are ¢* — 1 nontrivial operators acting on this two-site
Hilbert space. Of these, ¢> — 1 contribute to pr(s,7) (the ones that are trivial on site
s+1), while the other ¢?(¢? — 1) contribute to pr(s+1,7). Under a two site Haar random
unitary transformation all the possible transitions between any of these ¢* — 1 operators
have, on average, the same probability [555]. The upshot is that after the application of
the unitary gate the density pr evolves as

PR(s, 7 +1) = (1 p) [PR(s,7) + PR(s + 1,7)]: (4.68)
PR(s + 1,7+ 1) = p[pls, ™) + PR(s + 1,7)], (4.6b)
with probabilities p = ng% and 1 —p = qg—il. To apply a similar argument for two

subsequent layers of the circuit it is useful to redefine the density by grouping together

LA similar quantity was defined in Ref. [237]
20f course there is a similar left operator density, pr., defined by using the left endpoints. However,
the dynamics of the two densities decouple (as one can guess based on locality).
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4.2. Operator spreading in the 1D Haar random circuit

the pairs of sites on which the first layer of the circuit acts. We abuse notation and denote
this quantity as

pr(z,t) =pR(s =22 — 1,7 = 2t) + pr(s = 22,7 = 2t), (4.7)

where we now only consider the value of the operator density at even time steps 7 = 2t.
Applying Eq. (4.6) for two layers we arrive at the equation

pr(x, t+1) = 2p(1 — p)pr(x,t) + pP* PR(x — 1,1) + (1 — )2 PR(z + 1,1). (4.8)

Thus the right endpoints of Pauli strings perform a biased random walk on the lattice,
where in each step they move to the right with probability p?, to the left with probability
(1—p)?, and stay on the same site otherwise; this is illustrated in Fig. 4.1. A feature of the
above equation is that the time evolution of pg is independent of the internal structure
of the operator and thus the solution pgr(x,t) will be the same for all initial Pauli strings,
modulo a shift © — x — xp where xq is defined by the right endpoint of the initial string.

Figure 4.1.: Random walk of the operator’s right endpoint in the Haar-averaged random
circuit, as described by Eq. (4.8). We group pairs of sites together (red dashed
ovals) to define coarse-grained coordinates. A pair of subsequent layers induces
a biased random walk in these coordinated, with probabilities indicated in the

figure.
The result of this random walk process is a front that propagates to the right from
2
its initial position as (z) — 29 = vt with a butterfly velocity vg = p* — (1 — p)? = 32;}.

Thus the speed at which the operator weight travels is smaller than the light cone velocity:
vp < vrc = 1 (see also Ref. [556]). The width of the front increases in time as (z2) — (z)? =

2D,t, with diffusion constant D, = /1 — 1)123/4 = q%/fl. Note that in the limit ¢ — oo
the ‘particle’ described by pr(x,t) hops to the right with probability 1 in each step, and
consequently the front becomes infinitely sharp with velocity vg — vpc = 1.

The total weight of left endpoints, pr(z,t), obeys a similar equation except that it
propagates to the left with velocity —vg, while diffusing at the same rate?, as shown in
Fig. 4.2. This means that at time ¢ the vast majority of quantum information initially
stored in o with left (right) endpoint x; (z,.) is carried by operators with support [x; —
vpt, &, + vpT|, but where the precise position of either endpoint can be uncertain within
a region of width Ax ~ /D,t.

We can find the full distribution of pgr(z,t) using a standard generating functional
method. In the rest of this section we will use coordinates relative to the initial position
of the front, i.e. x — xy — x. The solution to Eq. (4.8) then reads

2(t+x) 21
— q
PR(z,t) = (1—}-(]2)2t(t+x)' (4.9)

3In principle, for systems that are not invariant under spatial reflection, one could have distinct butterfly
velocities and distinct diffusion constants for the two front propagating left and right. See also Refs.
[657, 558]
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Chapter 4. Operator Spreading

1.0

—50 | 100
Position s

Figure 4.2.: Spreading of a one-site operator averaged over random unitary circuits with
q = 2. pr(s,7) (pr(s,7)) is the total weight carried by Pauli strings with
right (left) endpoint on site s at time 7. Figure (c) shows the sum of these
two functions (multiplied by /7 to show the position of the front more clearly).
Almost all the weight is carried by operators with endpoi2nts at the two fronts

T

turn broaden diffusively in time as /7. The two other velocity scales, the

light cone velocity vr,c and the entanglement velocity vy (see Eq. (5.6)), are

also indicated, satisfying vg < vp < vpc. The values of pr and pr after 100

layers of the circuit are shown in Fig. (b). Fig. (a) shows the integrated

operator weights R(s) (L(s)), denoting the total weight left (right) of site s,

along with the OTO correlator C(s,7). The OTOC saturates to 1 inside the

front and has the value 1/2 exactly at 7 = s/vp

These fronts in

propagating out from the initial site with speed vg =

In the scaling limit, taking ¢,z — oo but keeping x/t ~ vp fixed, this becomes (using
Stirling’s approximation)

_ (x—vBt)2
e (17'UB2 )t

pR(z = vt + O(W1)) = ——e—, (4.10)
(1 —v3)t

so that the traveling front has the shape of a Gaussian, as one would expect from the
solution of the continuum limit of the lattice diffusion equation Eq. (4.8).

As we shall see in the next section, it is also useful to compute the total weight of all
Pauli strings contained entirely to the left of position x. This quantity, which we denote
by R(x), is given by

Rz) = Y pr(y) (411)

y<z
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4.2. Operator spreading in the 1D Haar random circuit

Around the position of the front, where x &~ vpt, we can integrate Eq. (4.10) to obtain

_ 1 —t
R(x = vpt + O(VD) ~ 5 |ext S SR (4.12)

t(1—vd)

where erf(z) is the error function.

Later on we will also need an approximation for R well away from the front. Using
the fact that in the large t limit pg(x,t) increases sharply with x for x/t < wvp, the
sum in Eq. (4.11) is dominated by its largest term (i.e. y = z). Using the fact that
R(x > wvLct) = 1 we can similarly approximate R for z/t > vg, to obtain

R(z) ~ (1 — 2pg(x))O(x — vst) + pr(x), (4.13)

where © is the Heaviside step function. This result is accurate up to multiplicative O(1)
constants when |z — vpt|/t = O(1) in the large ¢ limit. See the discussion in App. A.4.1
for a precise statement and derivation of Eq. (4.13).

Using our results for the coarse-grained density pg(x,t) we can also write a formula
for the density in terms of the site coordinate s. Note that due to Eq. (4.6), the ratio
Pr(s = 22 4+ 1)/pr(s = 2z) = ¢° is fixed at any time 7 = 2¢. Using this, the density on
site s after applying an even number of layers becomes

q2(t+zfl+n) 2% — 1
pR(s:2x+n,7‘:2t):(1+qQ)2t<t+x_1>, (4.14)

where n = 0,1. We can use Eq. (4.14) to derive the total operator weight left of site s,
ie. R(s) = )_,<,p(r), which, as we will see in the next section, is closely related to the
OTOC between sites 0 and s.

4.2.2. Behavior of out-of-time-order correlators

We can relate our results for the time evolution of operator weights to that of the out-of-
time-order correlator (OTOC), previously defined in Section 2.2. For concreteness consider
the following OTOC between two Pauli operators separated by distance s (in this section
we work in a shifted coordinate system where one of the Pauli operators resides at site 0)

C(s,7) = %([Zg (1), Zs| [Zo (1), Zs)V) =1 = Re(Zo (1) Zs Z5 " (7) 271, (4.15)
where s and 7 are the original time/lattice coordinates (as opposed to the coarse grained
coordinates t, z below Eq. (4.7)) and we have left unspecified the state (pure or mixed) in
which the OTOC is evaluated. Here Z, denotes the generalized Pauli operator introduced
back in Eq. (4.1), situated on site r. We will be mainly interested the behavior of the
OTOC C(s,7) in the limit 7 > 1, along rays with k = s/7 held fixed. As we detail
below, for s outside of the light cone (k > 1) it is zero. As s enters the light-cone (k < 1
and close to 1) it increases, but sub-exponentially. When s is near the operator front
(kapproxvg < 1) the OTOC becomes O(1). After the front has passed (k < vp), the
OTOC exponentially saturates to the value 1 with an exponent that is independent of s.
See Fig. 4.3 for a summary.

Let C denote the average of the OTOC over all unitary circuits with geometry shown in
Fig. 3.1. Note that, due to the averaging, this quantity is independent of the choice of Pauli
operator, i.e., it would be the same if we replaced either or both operators in Eq. (4.15)
with another local Pauli different from Z. We will be concerned with the second term in
Eq. (4.15) which equals
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Chapter 4. Operator Spreading

1-C(s,7) =Y ch(r)cy (1) Re(o" Zso ™ 27 =3 |ey(7)[ cos bz, (4.16)
pv n
where e?uZs is a ¢ root of unity defined by o#Z, = €¥n7s Z,ot, and ch(7) are the

operator spreading coefficients of Zy(7). Notice that Haar averaging forces u = v, which
removes all dependence on the particular state in which we choose to evaluate the OTOC?.
In particular, the average OTOC value in any state, pure or mixed, will be identical to the
average OTOC value at infinite temperature, i.e., tr(%|[Z0(T),ZS]\2)/2L. At this point,

we could use the exact expressions for the coefficients |cf (7')|2 from App. A.3 to write
an exact closed form expression for the OTOC. However, instead of doing that, we will
write a more manageable asymptotic expression for Eq. (4.16) using simpler results from
Section 4.2.1.

To perform the sum over Pauli strings in Eq. (4.16), we first need to prove the following

statement: |cg(7)]2 depends only on the position of the two endpoints of the string ji. The
proof goes as follows. First, it is easy to verify that under Haar averaging, ]cg(T)P =
|CZ(T)|2 for any v. This implies that the average probability of the one-site operator Z
evolving into a specific string [i is the same as the probability of string /i evolving into
Zy. In the random walk picture this latter process corresponds to both left and right
endpoints ending up on site 0 at time 7 during their respective random walks. As we
noted previously, these random walks are independent of the internal structure of the

initial string. Thus \cg (7)]? depends only on where the two endpoints of /i are located.
We confirm this argument more concretely with an explicit expression for such operator
spread coefficients in App. A.3.

The above statement has important consequences for the OTOC. If site s lives in the
support of fi then the contribution to Eq. (4.16) coming from the strings with the same
support as ji have an equal weight for each possible value 0, 7, € 27”{1, ...,q}, so that the
cosine term averages to zero. The remaining part is the total weight due to Pauli strings
which are supported on intervals that do not contain site s (along with some corrections
for Pauli strings which border on site s). Deferring the full justification to App. A.4.2, the
upshot is that provided x > 0, in the 7 — oo limit, the OTOC behaves as

C(s,T)~1—-R(s—1,7)+q¢ *pr(s,7), (4.17)

up to exponentially small corrections in 7. Hence the OTOC is directly related to the
operator density, and changes appreciably at the operator front s = vgt, as we show in
Fig. 4.3.

Let us now summarize the behaviour of the OTOC as a function of space and time, as
parametrized by the ratio k = s/7 and taken in the limit 7 > 1. We distinguish four
regimes of OTOC behaviour which we illustrate in Fig. 4.3.

1. Trivial OTOC at early times (1 < k): In this regime the events (7,0), (0,s) are
causally disconnected, so the commutator in Eq. (4.15) (and hence the OTOC) is
exactly zero.

2. Early OTOC growth (v < k < 1): This regime describes the behaviour after site s
has entered the light cone, but before it encounters the main operator front. Here we
approximate the OTOC using Eq. (4.13), so that C(s,7) ~ c1pgr(s —1,7) + pr(s, 7),

4To see that crc*(T) o< 6,u: If 1 # v there exists a single site Pauli ¢ such that the group commutators
[0% : o] = €"%¥ are unequal. Using the invariance of the two-site Haar measure under multiplication

by single site operators, this implies c#c¥* (1) = e On=0) cpcvs (1) from whence the result follows.
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4.2. Operator spreading in the 1D Haar random circuit

where ¢; > 1 is bounded in the s,7 — oo limit. Fortunately a simple closed form
expression already exists for pg, namely Eq. (4.14). We obtain a more convenient
expression for the initial OTOC growth by expanding Eq. (4.14) near the light cone,
in the limit §2/s — 0, where § = 7 — s is the distance between s and the light cone:

2 9\ 2
= ~ Lolog(%)—& q (1+¢>)V6
C(s,7) = ez §)785 X (q2—|—1> NI (4.18)

up to multiplicative O(1) constants, where v = e (1 — v%) /2. This formula demon-
strates that the OTOC will increase with an exponent A ~ log s for 0 < § < s. Due
to its dependence on s, and its limited range of validity, we believe that this should
not be viewed as a Lyapunov exponent as in Ref. [239]. Note that the exponential
increase occurs in a regime where the overall scale of the OTOC is still exponentially
small in s. In the regime where the OTOC increases to an O(1) value (i.e., when
the operator front hits, see next point) its behavior is not exponential. Furthermore,
we note that v ~ 1/¢? for large ¢, such that the regime in which the exponential
behavior can be observed becomes smaller in the large ¢ limit.

3. Near the front (|k—vg| = O(1/4/7)): As mentioned, the above approximation breaks
down when the main front, which we recall travels at speed vg and has width ~ /7,
arrives at site s. In this intermediate regime, we estimate the OTOC by combining
Eq. (4.17) and Eq. (4.12) into

— 1 S — URT

C(s,7) =~ §erfc (4.19)
27(1 — vd)

This formula describes the behaviour of the OTOC in the regime when it increases
from a value exponentially small in s to an O(1) number.

4. Late times (0 < k < wvp): After the main front has passed the OTOC relaxes
exponentially to 1. Expanding Eq. (4.13) for fixed s —vr,c7 and large 7 we find that
the OTOC in this late time regime is

= (14q2)g* < 2q )T
1—C(s,7) ~ 4.20
(5,7) 8T 1+ ¢? ( )

Thus the OTOC decays to its equilibrium value with an exponent log (%).

Probably the most important feature of this result is the lack of a well-defined Lyapunov
exponent that would give an exponential growth of the OTOC near (but outside of) the
butterfly front. This distinguishes the random circuit model from other exactly solvable
non-integrable many-body systems, most notably the large-N limit of the SYK model
and its generalizations [125, 559-561]. Indeed, one can devise a modified random circuit
model, in continuous time, which mimicks a chain of coupled SYK models, each consisting
of N qubits, with the addition that the couplings fluctuate in time, which makes it more
tractable for finite N (and more similar to our random circuit) [252]. In that setting,
one can show that while the Lyapunov exponent is well defined in the N — oo limit,
it disappears when one includes finite N corrections. As shown in Ref. [252], this is in
fact closely related to the appearance of diffusive front broadening (which is suppressed
at large N): this broadening is responsible for ‘washing out’ the Lyapunov exponent near
the front. Indeed, one can argue more generically, that, assuming that the scaling of
the OTOC along the ray x = vg + 07 matches smoothing its scaling form in the front
regime (x = vgt + O(\/1)), then its growth should be slower than exponential [251]. This
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Figure 4.3.: Time dependence of the average OTOC in the random circuit model. (a)
Different time regimes for fixed separation s = 100. The exact result for
the OTOC follows Eq. (4.18) after the light cone hits site s. The behavior
then goes over to regime described by Eq (4.19) after the front with speed vp
arrives. The inset shows the exponential decay of the OTOC to its final value
1, as described by Eq. (4.20), for different separations. (b): scaling collapse
of the OTOC at the front.

indicates that the Lyapunov exponents observed in various models [125, 246, 559, 562] are
all consequences of some semiclassical or large-N limit, and are not present for systems in
the fully quantum regime, with O(1) local Hilbert spaces and local interactions® [250].

4.2.3. Fluctuations between circuit realizations

The results discussed above concern quantities averaged over many different random cir-
cuits with the same geometry but different choices of two-site gates. The question remains
regarding whether these average quantities are also ‘typical’, i.e. how large are the fluctu-
ations between different realizations of the random circuit. In this section we investigate
this problem numerically. Our numerical method relies on representing the operator Zy(t)
as a matrix product operator (MPO), the operator version of the matrix product state.
Both are characterized by their bond dimension (often denoted ), which in the case of
states is closely related to the maximal amount of entanglement between two halves of
the one-dimensional chain (see Section 2.4 for a brief introduction to 1D tensor networks).
The time evolution is performed by the Time Evolving Block Decimation (TEBD) algo-
rithm [84, 85, 104, 105, 417], which applies two-site unitary gates to the MPO and the
recompresses the result to the original MPO form with an increased bond dimension. Two
layers of the random circuit can be applied by just a single step of the TEBD algorithm,
which allows us to go up to bond dimension y = 10000. Both the infinite temperature
OTOC and the total operator weight contained in an arbitrary subregion can be extracted
straightforwardly from the MPO representation (both calculations are similar to comput-
ing the overlap of two matrix product states, but in the computation of R(s) only the legs
corresponding to sites < s are contracted).

To quantify the fluctuations we look at an ensemble of 100 random circuit realizations
(which is enough to reliably reproduce the exact average quantities, see Fig. 4.4) with on-
site Hilbert space dimension ¢ = 2 and compute a) the OTOC C(s, 7) defined in Eq. (4.15)
and b) the total operator weight R(s,T) of Zy(7) contained in the region left of site s.
Both R(s,7) and C(s, 7) are functions of the distance s and the number of layers 7. We

SExponential growth is possible, and has been observed, however, in systems with sufficiently long-
ranged interactions [107, 118, 125, 252, 563, 564].
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Figure 4.4.: Average values and fluctuations of the (a) OTOC and (b) the total weight
left of site s for the time evolved operator Zy(7) after 7 = 12 layers of the
random circuit. Blue dots correspond to average values of 100 different random
circuits while the error bars signify one standard deviation. Figure (c) shows
the standard deviations of R(s) for different times. The largest fluctuations
decrease in time approximately as oc 7~/2, as shown by the inset.

find that for both quantities, the circuit-to-circuit fluctuations are largest at the traveling
wavefront and become smaller deep behind it. This is shown in Fig. 4.4. This also shows
that there is a well defined front for the information propagation in each individual circuit.

We also find that the fluctuations decrease in time. Fig. 4.4 (c) shows the standard
deviation of the weight R(s) for different times. We find that the maximum of this standard
deviation over all values of s decreases in time, approximately as oc 7—? with an exponent
0.4 < B <0.5.

In Ref. [253], the authors provide an analytical estimate for the size of fluctuations
between different circuit realizations, that supports the claim that the results for operator
spreading become self-averaging at long times. To arrive at this result, they consider
adding noise to the biased diffusion equation (in a continuum formulation), that describes
the dynamics of pr(x,t). They only consider noise in the drift term, as this is more
relevant (in the RG sense) than noise in the diffusion constant. The resulting equation
reads

Dipr(a.t) = D (vp + (e, 1))pr(e,t) + Dydpr(z,b), (4.21)

where 7 is uncorrelated white noise. They then argue that this noise in the drift (i.e.,
butterfly) velocity introduces fluctuations in the position of the front which are of the
order ~ t%/4, and are therefore negligible compared to the ~ t'/2 width of the front that
results from diffusion. The t}/4 scaling can be intuitively understood from the fact that
the ‘wavepacket’ describing the front visits a space-time volume V' (t) ~ [ LAt VI ~ 32
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Chapter 4. Operator Spreading

up to time ¢; the noise is averaged out on this scale, resulting in an average contribution
to the speed vy, ~ fv(t) n(z,t) ~ V(t)*l/2 ~ t73/% which corresponds to a displacement

Az ~ vgyt ~ t1/%. This result supports the statement that the effect of circuit-to-circuit
fluctuations becomes negligible at long times, and applies to particular realizations as well.
An important takeaway from this is that the ‘noise’ inherent in the diffusion equation does
not originate from the randomness of the dynamics, but from quantum fluctuations which
gives rise to a distribution over different operators (see also Ref. [252]). Consequently,
we conjecture that the biased diffusion equation described the long-time, long-wavelength
behavior of operator spreading even in deterministic, translation-invariant systems. We
list evidence for this statement in the next section.

4.3. Operator diffusion in deterministic models

A natural question that emerges in relation to the results stated above, is to what extent
are they representative of other, more generic thermalizing quantum many-body systems®.
To address this question we investigate a system with a periodically driven nearest neighbor
Hamiltonian. Our model has the same geometry as the random circuit, shown in Fig. 3.1
and it similarly does not conserve energy. However, unlike random circuits, it is periodic
in time and its two-site (and one-site) gates take a specific form, rather than randomly
chosen. Despite these two significant differences, we find that several details of the operator
spreading described in Section 4.2 remain approximately valid. Most importantly, we find
evidence of diffusive broadening of the operator wavefront with time. This feature has
also appeared in more recent numerical studies of ergodic Hamiltonian spin chains [427,
429, 567].

For concreteness, we consider a model with on-site Hilbert space dimension ¢ = 2 that
consists of switching back and forth between two Hamiltonians, such that one period of
the time evolution (with period time T') is given by

0 = i3I8, X5 T2 Zun 402 (4.22)

This system —which we refer to as the ‘kicked Ising model’ —is known to be ergodic,
provided that both g and h are sufficiently large. Since at any given time the terms in
the Hamiltonian all commute with each other, the time evolution can be represented as
a circuit of two-site unitaries (with the one-site rotations included in the two-site gates)
with the same geometry as in Fig. 3.1. As such, it is in fact contained among the ensemble
of random circuits considered before. The question is to what extent do the properties of
this specific circuit coincide with the average quantities discussed above.

At first, operator spreading in the Floquet system seems very different from the case
of the random circuit. There is no inherent randomness and the evolution is completely
determined by the internal structure of the initial operator o*, while for the random circuit
the average behavior was independent of the internal structure. However, it is well known
that ergodic systems can behave as baths for themselves [97, 98] and in effect generate
their own noise. If the same reasoning can be applied to the question of operator spreading
in ergodic systems, then it is plausible that the noise averaged equation Eq. (4.8) holds
in deterministic ergodic systems, and as a result the diffusively broadening ballistic front
picture continues to apply.

Another way to motivate the same coarse-grained description can be given in a spirit
similar to the discussion of Section 2.3. Using the locality of the dynamics, pr not only

SLater on, in Refs. [565, 566], the same scaling of the operator front was shown to hold in a Heisenberg
spin chain subject to a randomly fluctuating magnetic field. However, here we are interested in under-
standing whether our results are relevant also to systems where the dynamics is completely deterministic.
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4.3. Operator diffusion in deterministic models

obeys global conservation law (where we revert to a continuum notation for ease of pre-
sentation) [dxpr(x,t) = const., it should also obey a local conservation law

Opr(x,t) + OpJr(x,t) =0 (4.23)

for some local current density Jgr(z,t). This conservation law puts severe restrictions on
the equation of motion of pr. One then assumes, similarly to the usual derivation of
hydrodynamics, that at sufficiently long time scales, the evolving operator relaxes to some
form of ‘local equilibrium’, where it can be described entirely in terms of the conserved
density, at least locally. In this case, relying on a long wavelength (gradient) expansion,
one can write down the constitutive equation Jg ~ vpr + D,0,pr + .. .; this constitutive
relation is exactly the continuum version of the random walk equation we derived for the
circuit-averaged pr in Eq. (4.8). This hydrodynamic reasoning also makes it clear that
in generic cases, the biased diffusion would only capture the leading order behavior, and
a more complete treatment would supplement it with various correction terms, akin to
the subleading power laws that appear in usual hydrodynamics. A rigorous treatment of
these, in the spirit of Ref. [295], is a very interesting open problem.

Therefore it seems plausible that in a sufficiently coarse grained picture, the dynamics
might be well approximated by a biased diffusion similar to the one described in Section 4.2
for the Floquet circuit, with the butterfly velocity and diffusion constant depending on the
microscopic couplings. Here we present numerical evidence in support of this conjecture.
Our results can be summarized in three points:

e The butterfly velocity vg depends strongly on the coupling g and can be tuned to
be much smaller than the light cone velocity vr,c.

e When tuning the couplings to decrease vg from its maximal value vg ~ vr,c, the front
also becomes wider, as expected for a random walk when increasing the probability
of hopping to the left at the expense of the probability of hopping right.

e The operator wavefront gets wider during time evolution, with the width increasing
in time as ~ t%*, with an exponent 0.5 < o < 0.6

We investigate numerically the dynamics of the time evolved operator Zy(t), using the
same MPO-TEBD method as described at the beginning of Section 4.2.3. We find a
linearly propagating wavefront, which shows up in both the OTOC and the weight R(s),
with the former saturating to 0, and the latter to 1 behind the front. While for the
random circuit the speed of the front was set by the on-site Hilbert space dimension ¢,
for the kicked Ising model we find that this speed can be tuned continuously by changing
the value of the transverse field” g, as shown in Fig. 4.5. Note that changing ¢ does not
affect the light cone velocity, which is vpc = 1 due to the geometry of the circuit that
represents the Floquet time evolution. For g = 0, an initial operator Zy remains localized
on the same site. As we make g larger, the butterfly velocity gradually increases and it
reaches vg =~ vr,c for g =~ 0.9 with period time 7" = 1.6%. Looking at Fig. 4.5 we notice
that decreasing vg from its maximum corresponds to an increased front width at any given
time. This is consistent with a coarse-grained random walk description, wherein increasing
the probability of hopping to the right results in both a larger butterfly velocity and a
suppression of the diffusion constant.

"We have found that the butterfly velocity does not depend significantly on the value of h, provided
that it is not too small

8We note that this set of parameters, for which vg is near maximal, is close to the parameter choice
found in Ref. [568] to exhibit very fast thermalization. Moreover, there exist a nearby self-dual line,
T =7/2, g =1 and h arbitrary, where vg = vr,c = 1 exactly and therefore diffusive front broadening is
completely suppressed [537].
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Figure 4.5.: OTOC (left) and operator weight R(s) (right) for different distances s after
t/T = 12 driving cycles of the kicked Ising model with the strength of the
transverse field ¢ = 0.2,0.3,...,0.9 as indicated in the right figure. The
longitudinal field is fixed at h = 0.809 while the period time is 7' = 1.6. The
butterfly velocity shows a strong dependence on the coupling g, with the front
width increasing as one moves away from the limit of maximal velocity.

The most important evidence in support of a hydrodynamic description comes from
examining the front width as a function of time. Similarly to the random circuit model,
we find the wavefront of the operator spreading broadens as we go to longer times. To
quantify the width, we look at the standard deviation of pr(s) = R(s) — R(s — 1), i.e.

2
o(t) = z:pR(s)s2 - [Z pR(S)S] (4.24)

As shown in Fig. 4.6, at long times the width grows algebraically in time as o(t) o t“
with an exponent 0.5 < a < 0.6. This is consistent with the random walk description of
operator spreading put forward in Section 4.2, and supports our conjecture that the biased
diffusion equation captures the universal features of operator spreading in one dimensional
systems.

Our hydrodynamic equation for pg relied on having a single conserved density (there
is of course also pr, the left endpoint density, but that decouples from pr due to lo-
cality). This is true in the systems we studied in this chapter, with no local conserved
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Figure 4.6.: Broadening of the operator wavefront with time in the kicked Ising model for
parameters h = 0.809 and 7" = 1.6. Left: the weight p(s) for transverse field
g = 0.7 at times t/T = 4,6,...,14. Right: the width of the front as defined
by Eq. (4.24) as a function of time for different g, showing a roughly diffusive
broadening of the wavefront.
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4.4. Operator spreading in higher dimensions

quantities in the traditional sense (energy, particle number, etc.). In systems that do
have such conserved quantities, one would have to include these in the hydrodynamic
description. This will be the topic of Chapter 8. As we will show there, the coupling to
particle/energy density gives rise to various interesting novel features in operator spread-
ing, that do not appear in the models we studied in this chapter. However, the general
picture of a diffusively broadening butterfly front remains unchanged (at least in the high
temperature / low chemical potential regime). This is also corroborated by various numer-
ical studies, which have shown evidence of a diffusively growing front in energy conserving
ergodic spin-chains [427, 429, 567]. Ref. [546] has also found clear evidence of a diffusive
broadening operator front in a model based on a classical cellular automaton, despite this
particular model being integrable. Indeed, it was subsequently argued, that interacting
integrable systems generically also have a diffusive front broadening, which can be ex-
plained in the language of generalized hydrodynamics, considering phase shifts in particle
trajectories [569].

4.4. Operator spreading in higher dimensions

Before concluding our discussion of operator spreading in the absence of conservation laws,
let us give a brief overview of how our results are expected to change in higher spatial
dimensions, based on Ref [253]. The crucial difference is that, for d > 2, the operator
wave front can no longer be characterized in terms of its ‘endpoint’; instead, one has to
deal with a d — 1 dimensional object, which describes the position of the front, spreading
outwards from an initial seed that corresponds to the support of the operator at t = 0.
As a consequence, OTOCs do not obey a local differential equation. Instead, one can
use the same circuit-averaging formulae as before to map operator spreading in a higher
dimensional Haar random circuit to a classical surface growth problem.

In this effective description, each site of the lattice can be empty (= identity operator)
or occupied (= a non-trivial Pauli) and whenever a local gate (which are now arranged
in a higher dimensional circuit) is applied to a pair of sites which are not both empty,
the probabilities of being occupied evolve according to a simple counting of the number
of non-trivial one- and two-site operators (for example, the probability of both sites being
occupied after the application of the gate is ((1;%11)2 = q;ﬁ) The resulting stochastic
evolution for the occupations is similar to other well-studied growth models, such as the
Eden model [303, 570-573]. The upshot is that, much like in the one-dimensional case,
the growing cluster clearly separates into an ‘inside’ region, where the average occupation
(which is proportional to the circuit-averaged OTOC) is n ~ 1, and an ‘outside’ region,
where n &~ 0, with the size of the former growing ballistically in time. The evolution
then reduces to the stochastic dynamics of the d — 1 dimensional surface between the two
regions. The authors of Ref. [253] argue that, in analogy to e.g. the Eden model, the
universal features of this effective dynamics for the ‘height field’ i (i.e., the distance of the
interface from the original seed) is given by the Kardar-Parisi-Zhang (KPZ) equation:

Ouh(,t) = v + vO2h(z,1) + g(&xh(x, D)+ Cla 1), (4.25)

where x is the coordinate perpendicular to the surface and ¢ is uncorrelated white noise.
vp gives the average speed of the ballistic front spreading. Importantly, the coefficient A,
which captures the fact that the local growth rate depends on the slope of the surface,
makes the problem non-linear. This leads, under coarse-graining, to a non-trivial fixed
point, with its own universal exponents. The most important of these for the operator
spreading problem is that the fluctuations in the position of the front, i.e. the size of the
front region, grows in time as ~ ¢ with an exponent 3 that depends on the dimensionality.
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Chapter 4. Operator Spreading

In particular, 5 =1/3ind =2 and  ~ 0.24 in d = 3, as opposed to the diffusive 5 = 1/2
broadening we obtained for the one-dimensional problem. Moreover, in d > 2 there is
also a subleading correction to the position of the front, which grows with the same
~ t8 scaling. In Ref. [253], the authors perform extensive numerical simulations of the
classical surface growth dynamics that result from circuit-averaging, which confirm this
t'/3 scaling in the two-dimensional case. The same universal scaling was also confirmed
in a continuous-time spin model subject to a strongly fluctuating magnetic field [565].
Arguments similar to the ones above suggest that these results should be applicable also
to deterministic evolutions (note that the space-time volume covered by the front also
grows with d, further suppressing the effects of noise).
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5. Entanglement Growth

As discussed in Chapter 2, the growth of entanglement is a central feature of many-body
quantum dynamics, closely connected to the approach towards thermal equilibrium. In this
chapter we show that, similar to the case of operator spreading, the random circuit model
can be used to calculate exactly certain measures of entanglement, and the results can be
used to motivate a more general long-wavelength ‘hydrodynamic’ theory of entanglement
growth, which captures universal features also in more generic models. We will mostly
focus on higher Rényi entropies, S, with a = 2, 3,. .., as these are the ones where an exact
solution (in a sense clarified below) is feasible. However, there is evidence, both numerical
and analytical, that the general picture generalizes also to the case of the von Neumann
entropy.

5.1. From operator spreading to entanglement growth

In this section we use our results for operator spreading to compute the time evolution of
the second Rényi entropy S2 between two sides of a spatial entanglement cut and extract
the entanglement velocity from it. More precisely, we will calculate the annealed average

Séa) = —loge 2, i.e., taking the logarithm after the circuit-averaging. This is a simpler
quantity than the quenched average, S3. We will comment on the differences later in
Section 5.2. We find that the annealed average grows linearly, Séa) = log qugt, with an
entanglement velocity vy that is smaller than the butterfly velocity for any finite ¢ and
approaches the light cone velocity logarithmically slowly, so that vp,c — vg o 1/logq for
large g. This (due to the concavity of the logarithm) provides a lower bound for the
entanglement velocity of the quenched average, and consequently of the von Neumann
entropy: Séa) < S5 < Si. At long times, Séa) saturates to its maximal value with the
saturation becoming increasingly sharp as ¢ is increased.

Consider an initial ferromagnetic product state of the 1D chain where the state on site
s is an eigenstate of the local Pauli operator Z; with eigenvalue +1 (Note that, for the
average behavior of the random circuit, the choice of initial product state is unimportant).
The density matrix @ corresponding to this state is then a sum over all possible Z-strings,
i.e. Pauli strings that only contain powers of the operator Z on each site:

) 1 L q—1 i 1 17
w:qLE[l Nzi == > o (5.1)

k=0 1 V€Z-strings

The density matrix at time ¢ is obtained by replacing each Pauli string ¢ in Eq. (5.1)
with its time evolved counterpart o”(t).

Let us now divide the system into two regions, A and B, the first of which corresponds
to sites 1,..., La. Generalizing the formula of Refs. [256, 574], the second Rényi entropy
Sy = —logtr(@3%) of the reduced density matrix W = trg(®) is related to the operator
spreading coefficients by

6—52 _ qlllA Z Z Cgcg* ~ qlllA Z Z |CZ"2 (52)

7 BCA v jicA
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Chapter 5. Entanglement Growth

where the strings v and v/ are both Z-strings and p has support entirely in subsystem
A. In the last equality of Eq. (5.2) we assumed that the off-diagonal contributions are
negligible, which becomes ezactly true in the random circuit model once we average over
different realizations.

Let us assume that La is even. Reverting back to the coarse-grained position z (see
Eq. (4.7)) we recognize Eq. (5.2) as the total operator weight in region A, R(x = La/2,1),
as defined in Eq. (4.11), summed over all initial Z-strings. As we noted previously, this
quantity is on average the same for all initial strings with the same endpoints xy. The
number of different Z-strings with right endpoint zo is ¢2®0~D(¢? — 1). After averaging
over random circuits, and assuming an even number of layers, Eq. (5.2) thus becomes

L/2 —

“ 5.1 1 q2*1 R(LA/Q*l‘o,t:T/Q)

e 52( ) = 7qLA + q2 E qLA*ZIO ? (53)
zro=1

where we have used that pg(z) (and consequently R(z)) only depends on the position x
relative to the initial endpoint zp. The first term in Eq. (5.3) is the contribution coming
from the identity operator, which is responsible for the saturation of the entanglement at
long times.

Using the exact solution Eq. (4.9) one can perform the sum over initial positions to find

- Laj2—1
—S5(1) — ,—La _ 4~ La T
R Y (gﬂ). (5.4)

The sum over binomial coefficients can be expressed in terms of a hypergeometric function.
Eq. (5.4) describes an entanglement that initially increases linearly with time and sat-
urates to the maximum value L4 logq at long times. For 7 < L we find

e—SQ(T)%( 2q ) , (5,5)

1+ ¢?

from which we can identify the entanglement velocity!

_ 1 asi?(r) _logH— log(1—v})
T logg dr  logq 1Og<1—vB)'

UE (5.6)

1+vp

This is a separate velocity scale, distinct from, and smaller than the front speed vg < vp.
This difference comes from the diffusive broadening of the operator wavefront. First, it
is straightforward to verify that if the wavefront is sharp, i.e., R(z,t) = ©(z — vgt), then
Eq. (5.3) gives vg = vp. Second, we have checked that Eq. (5.3) gives vg = vp even if the
wavefront has a width which is finite but independent of time?. Hence, we attribute the
difference between vg and vg to the fact that the operator front broadens with time.

In the right panel of Fig. 5.1 we compare the exact formula Eq. (5.4) to the second Rényi
entropy as computed numerically (using a matrix product state representation), averaging
over 100 realizations of the circuit and find extremely good agreement. Moreover, the

numerical calculation allows us to compare Séa) and the quenched average Rényi entropy

Séq) = S5. We find no significant difference between the two values, showing that there
are no strong circuit-to-circuit fluctuations in the entropy on the time scales accessible in
the numerics. As we discuss later in Section 5.3, the fluctuations do lead to important

ntuitively vg can be thought of as the rate at which a maximally entangled region would need to

grow in order to have entropy S(7). See also Ref. [256] for a discussion of vg.

—(z—vt)?/o? 7\zf'ut\/o'.

#We checked this for front profiles arising from pgr(x,t) e and pr(z,t) xe
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5.2. Alternative calculation and the entanglement membrane

subleading effects at longer times that are not visible in Séa). Nevertheless, our numerics
suggest that the analytical solution does capture the leading linear growth correctly, and

)

the entanglement velocity of Séq
above for Séa). On the other hand, we found numerically that replacing the Rényi entropy
with the von Neumann entropy does lead to a slightly larger entanglement velocity.

The entanglement saturates when the contribution of the identity becomes significant
(i.e. when all other operators have essentially left the subsystem). Note that the saturation
softens, compared to the prediction of the simple operator spreading model of Ref. [574],
which is another consequence of the diffusive broadening of the front. This intermediate
saturation regime becomes smaller with increasing ¢, as shown in the left panel of Fig. 5.1.

is not significantly different from the one we derived
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Figure 5.1.: Entanglement growth in the random circuit model. Left: comparing the exact
formula, Eq. (5.4), to matrix product state numerics shows that it captures

both Séa) = —loge="2, and the average Sy of the second Rényi entropy, on
the short time scales available to us in the numerics. The main figure shows
the time dependence for La = 50 sites, while the inset is for Ly = 2. Right:
The entanglement velocity increases with ¢ according to Eq. (5.6) while the
saturation regime becomes smaller.

5.2. Alternative calculation and the entanglement membrane
One can also calculate the growth of Séa) directly, without using the operator spreading
results. This alternative derivation is helpful in formulating a universal, long-wavelength
description that can be generalized to other models. In particular, it will prove very useful
in extending our calculations to a modified circuit model with conserved quantities in
Part II, so we summarize it briefly here, following the discussions of Refs. [253, 260, 278].
The starting point is the so-called ‘swap trick’, wherein one rewrites the purity (the
exponentiated 2nd Rényi entropy) as an expectation value in an enlarged Hilbert space as

tr(ph) = tr(Falp ® p)) = (Fa)pep- (5.7)

Here p® p is two identical copies of the same quantum state and F4 is the ‘swap’ operator,
which acts on this doubled Hilbert space, and swaps the two copies inside subsystem A,
while acting as the identity on the outside. Te be more precise, consider the two-copy
Hilbert space of a single site, spanned by state of the form |a) ® |b). Then an on-site
swap operator acts as F(|a) ®|b)) = |b) ® |a), and F4 =[], 4 Fs- For an illustration, see
Fig. 10.3(a,b) below.

One can also think of Eq. (5.7) as an ‘overlap’ between a pair of two-copy operators, F4
and p ® p. To get the purity of the time evolved state one can then evolve either of these
objects and then take its overlap with the other. Since these are operators on the doubled
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Chapter 5. Entanglement Growth

Hilbert space, they evolve in time according to four copies of the unitary U. Schematically,
we can write the result as (FalU @ U* @ U @ U*|py ® po), where pg = |¥o)(Up| is the
initial state. When U is given by a circuit of local gates, one can take four copies of each
gate; the purity then looks like a two-dimensional tensor network, where the tensors in
the bulk are four-copy versions of the original local gates and they are contracted with
tensors on the upper and lower boundaries that encode the two operators pg ® pg and Fa,
respectively®. Formally, this tensor network has the structure of a partition function for a
two-dimensional classical spin model, although it might have weights that are negative or
complex. However, averaging over the Haar randomness of each gate simplifies the local
tensors immensely, leading to a simple classical model with only two possible states per
site.

To see this, it is useful to write the fourth moment of an N x N Haar-random unitary

U as
N21_ 1 Z [‘Iff)(l. ’ - 7‘ ><I—O'|:| (58)

o=+

UU*UU* =

where |Z1) are states in the four-copy Hilbert space defined as

N N
|Zy) = Z |aabb) |Z_) = Z |abba). (5.9)

a,b=1 a,b=1

In our case, U is a two-site unitary, and a,b=1,2,...,¢? go over basis states of the two-
site Hilbert space. One can then split these into products of one-site states, |Zy)s 511 =
|o)s|o)s+1, where

+)= Y |eapp) =)= > |aBBa) (5.10)
a,pf=1 a,f=1

are now states from four copies of a single-site Hilbert space. Note that (+|+) = (—|—) =
¢* and (+|-) =¢.

Combining these formulae, each Haar-averaged two-site gate gives rise to a four-leg
tensor, which can be written in the form

1 Z Woso's! ‘O' >|‘7 )o|(o

O'O'O'U

U®U*®U®U*—

NNo)ol(el,

(5.11)
where in the last step we used that the only non-vanishing elements are those where the
two input and the two output indices coincide. The coefficients w,,s (which equal 1 if
o = o' and —1/¢? otherwise), together with the overlaps (o|o’), can be thought of as
local interaction terms of a classical spin model, with spins ¢ living on sites of a two-
dimensional lattice. Contracting all the tensors together defines a partition function for
these spins, with boundary conditions fixed by the quantity one wishes to compute. In
particular, when calculating the purity, the swap operator F4 defines a boundary condition

[Tscal=)sIIs¢a [+)s. The condition on the other boundary depends on the chosen initial

|[F)s+|—)s

state |Wo). For a product initial state, it reads [[ 2+

equal weight sum over all spin configurations.

Consider now calculating the entanglement between two halves of the chain, where the
subsystem A consists of sites s < L4. In this case the swap operator corresponds to
a domain wall boundary condition Fu = F(La) = |[—)1...|=)i.l+H)is41---|+). In
this case, the ‘interactions’, defined by the (Haar-averaged) local unitaries, result in a

,, which corresponds to an

3Note that one could write down a very similar tensor network representation also for the quantities
considered in Chapter 4, with the difference appearing only in the boundary conditions.
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5.2. Alternative calculation and the entanglement membrane

particularly simple behavior. If a gate acts somewhere away from the position of the
domain wall, it has no effect: |+)|+) — |+)|+) and |=)|—) — |—)|—). If the gate crosses
the domain wall, it induces a random walk, moving it either to the left or the right by one
site, while also picking up a constant prefactor: |—)|4+) — q;gr - |*>|*)J2r\+>\+>. Therefore, at
time 7, the domain wall evolves to (ignoring finite-size effects, i.e. taking L4 > 7)

.
P = (52) TG LaniFe) (5.12)
S

where K(s — L, 7) is a random walk kernel describing the probability of a domain wall
traveling from initial position L 4 to final position s under 7 steps of the (unbiased) random
walk process induced by the two-site gates. |F(s)) is now a swap acting on sites [1, s], i.e.,
it is a domain wall of the same form as the initial condition, located at a different position.
As stated above, for a product initial state, the purity is given by the sum of the weights
of all the different configurations. Since we normalized the kernel to ) K(s,7) = 1, this
result. One could easily extend this calculation to take into account finite-size effects and
reproduce the eventual saturation of the entropy.

A Dbig advantage of this alternative formulation is that it easily generalizes to quantities
other than the average purity. As a first step, one could consider similar ‘annealed’ averages
of higher Rényi entropies, related to partition functions of the form Z, = e~ (@~ DS« for
a = 3,4,.... After averaging over circuits, these would also lead to similar, albeit more
complicated, spin partition functions.. In this case, one has to consider a copies of the
density matrix and an appropriately generalized swap operator that performs a cyclic
permutation of these copies; this can again be thought of as a domain wall between
two different ways of pairing up the different copies. The local interactions are defined
by the 2a-th moment of the Haar random unitaries, which results in more complicated
Haar-average formulae (see Ref. [278] for details). For example, the resulting statistical
models will now possess a! different kinds of domain walls, corresponding to the different
possible permutations of the copies. Moreover, one can extend these mappings to calculate
directly the quenched averages of various Rényi entropies. This can be done using the so-
called replica trick (widely used in treating the statistical physics of systems with static
disorder [188, 575-577]). One then writes the average Rényi entropy as

leaves us with only the prefactor, e=52(7) =

-
> , which coincides with our earlier

1 ozk

“ T 1—a Ok '
k=0

(5.13)

As a result, one needs to evaluate Z* for various k, which is a partition function of a
similar form as Z, itself, now corresponding to ak copies of the system.

In practice, the classical partition functions one needs to evaluate become rather com-
plicated, and an exact analytical solution is no longer possible. However, certain general
features can be efficiently extracted from this representation, and controlled calculations
are possible near the ¢ = oo limit. Expanding around this limit, one finds [278] that the
leading scaling of S5 in time is a linear growth, with an entanglement speed that coin-
cides with Eq. (5.6) up to corrections of order O(1/¢%log q). Apart from being suppressed
at large ¢, the leading correction also comes with a numerically small prefactor (1/384),
which explains why the two speeds observed at short times in Fig. 5.1 appear to be in-
distinguishably close. A similar calculation shows that S3 also grows linearly, but with
a speed that is smaller than that of Sy at finite ¢. However, while the leading order be-
havior is well-described by the annealed average result we calculated, there are important
subleading effects, stemming from the fluctuations that are suppressed when we take the
average before the logarithm. We will return to these below in Section 5.3.
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Chapter 5. Entanglement Growth

There are some important conclusions to be drawn from these calculations, which gen-
eralize beyond the realm of random circuit models. We reduced the calculation of the
purity to following the stochastic dynamics of an ‘entanglement domain wall’. In this
calculation, the initial quantum state only appears in the very last step, in the form of the
boundary condition that weights the different spin configurations. Therefore, the domain
wall picture allows us to consider the entanglement dynamics of any initial state simulta-
neously. This leads to a very appealing description of entanglement growth, in terms of
the ‘energy’ of a minimal membrane (or polymer, in one dimension).

To construct this description, consider a partition function with a modified boundary
condition: instead of summing over all configurations at the final time, we fix a boundary
where there is a domain wall at position = on the boundary*. We denote this modified
partition function as Z(z,t) (where we changed notation and put the domain wall on the
first boundary at position 0; otherwise one would need to replace x — x — L4): this gives
the probability of transitioning from an initial domain wall to another domain wall that

t
has moved x sites. In the above random circuit case this is simply (q224qu> K(z,t), but we
could define the same quantity for any other evolution. We are interested in the scaling

limit, where x/t = v is fixed. The random circuit calculation suggests that in this case
Z(x,t) = e~ seaf ) (5.14)

where s¢q is the equilibrium entropy density (in our case here, s¢q = loggq). The function
E(v) determines the scaling of the ‘free energy’, log Z(x,t) with the total time. If one
imagines the trajectory of the domain wall, x(¢), as a polymer in two dimensions, one
can think of £(v) as its line tension, proportional to its free energy per unit length. The
total free energy associated to a given trajectory is then fg dt’E(x(t")). In principle, to
calculate the entropy, we have to perform a path integral over all the possible trajectories.
However, in a sufficiently coarse-grained limit (at long times and large distances), one
might naturally expect that this path integral is dominated by its saddle point, i.e., by
the path that minimizes the free energy. Under this assumption, one finds a remarkably
simple formula for the half-chain entanglement for a bi-partition at position x at time :

t
Sa(x,t) = myin (seq/ dt'E(@(t)) + Sa(y, O)) . (5.15)
0
In this picture, computing the entanglement accumulated over time reduces to the problem
of finding a polymer with minimal free energy. This is especially simple in the case of space-
time translation invariant dynamics, in which case the minimal curves are straight lines
parametrized by a single parameter v. All the details of the microscopic dynamics have
been repackaged into line tension function £(v). One can naturally extend this picture
to higher dimensions, where the one-dimensional polymer is replaced by a d dimensional
membrane embedded in the d + 1 dimensional spacetime and characterized by a surface
tension £(v). Note, moreover, that we could rerun the same argument for other Rényi
entropies, writing the partition function as Z,(z,t) = e seafa (V) where the line/surface
tension &, (a) now also depends on the Rényi index. One could then extend this minimal
cut picture to of the von Neumann entropy, by taking the limit o — 1.
There is an alternative line of reasoning that leads to the same formula for entanglement
growth. Imagine trying to write down an equation of motion for the entropy: 0,5(x,t) =
One can use a hydrodynamic approximation, analogous to the ones discussed in
Section 2.3, to argue that in an appropriately coarse-grained, long-wavelength limit, the

“In the rest of this section, we use x and y, rather than s or 7, to denote lattice positions. Since this is
a quite general discussion, the distinction between original and coarse-grained coordinates is not important
here.
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5.2. Alternative calculation and the entanglement membrane

RHS of the equation can be approximated by some function of the spatial entropy-gradient,
0:S(x,t), only. Even though the entropy itself is not a conserved quantity, it makes
sense to treat it as a ‘slow variable’, in the hydrodynamic sense. For example, above we
saw that the dynamics of Rényi entropies is closely tied to the motion of a domain-wall
object (the half-chain swap operator), whose behavior can be treated similarly to that of
a conserved density (see also Ref. [260]). The hydrodynamic equation of motion, in the
long-wavelength limit, neglecting higher derivative corrections, then reads

S = 5eqT(0:5). (5.16)

Here, the dynamics is characterized by the entropy production rate I'. This depends on the
details of the dynamics, but it has to satisfy certain general constraints. In particular, it
should vanish in equilibrium, when 0,5 = seq, and it should be positive when [9,5| < Seq.
By definition, I'(0) is the entanglement velocity vg. One can now define the line tension
as the Legendre transform of I":

£(v) = max <I‘(s) + “) I(s) = min <€(v) - ) . (5.17)

Seq

This definition of £(v) is equivalent to the previous one, which can be seen by differenti-
ating Eq. (5.15) with respect to ¢.

From this definition, one can see that £(0) = vg. However, the minimal cut picture
contains far more information than just the entanglement speed; among other things
one can also use it to extract the butterfly velocity as the point which satisfies £(vp) =
vg® [277]. The minimal cut picture also provides a simple interpretation of the saturation
of entanglement for finite systems: while initially the minimal cut goes through space-time
vertically (in the time direction), at late times it becomes increasingly favorable to move
horizontally and end up at the closest spatial boundary.

Note that in this latter derivation of the minimal cut picture did not rely on starting
from a partition function for the purity, and makes no reference to which particular Rényi
entropy we consider. As a matter of fact one could run the same heuristic argument
directly for the von Neumann entropy; in fact this is how the membrane picture was
originally introduced in Ref. [277]. There, numerical evidence was provided that this
‘hydrodynamic’ picture for entanglement growth indeed holds, and £(v) was computed
numerically for a particular time-independent chaotic Hamiltonian. This is in complete
agreement with an earlier influential study, Ref. [269], which found that S; grows linearly
in a chaotic Hamiltonian, despite transport being diffusive due to the lack of well-defined
quasiparticles. Later, Ref. [578] noted that the same membrane picture can be derived
from holographic calculations of entanglement, based on the Ryu-Takayanagi formula [579—
581]; this derivation applies specifically for S;. One would then in principle have a distinct
line tension &, (v) for each Rényi index «, corresponding for example to the fact that these
all have separate entanglement velocities as mentioned before. We indeed expect this to be
the case in the random circuit model, or in other systems that have no extensive conserved
quantities. However, as we shall show in Part II, this picture is modified drastically in
the presence of conserved quantities, such as energy of particle number. For the von
Neumann entropy, the above picture still holds for a homogenous initial state, while one

5One way to motivate this relation is by noting that the partition function Z(z,t) for £ > 0 is closely
related to the right operator weight R(z,t) encountered in Chapter 4. Both correspond to propagation of
a domain wall-like object. The difference lies in the fact that in the definition of R(z,t), the two domains
are defined asymmetrically, which corresponds to replacing |—) with ¢|—) in the formulae. This gives
pr(x,t) ~ ¢°Z(z,t) = e%a=EWt (compare Eq. (4.14) with Eq. (5.12)). The two terms in the exponent
are balanced when &£(v) = v, which corresponds to the position of the front; for all other v, we have
E(v) > v.
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Chapter 5. Entanglement Growth

has to consider a generalization of it when encountering inhomogenous initial conditions;
in this latter case the line tension will depend on the local, space-time dependent entropy
density, and therefore couples to the transport of conserved quantities in a non-trivial way
as we detail in Chapter 11. Even more strikingly, for Rényi indices o > 1, the minimal
cut picture breaks down in the presence of conservation laws, even for homogenous initial
states. This will be the topic of Chapter 10.

5.3. Effect of noise on entanglement dynamics

As we saw above, the annealed average Rényi entropy shows a perfect linear growth, which
is reproduced by the leading behavior of the quenched average (with speeds that remain
close to each other even at ¢ = 2). However, for any particular realization of the random
circuit, there will be a noise term appearing in the dynamics of the bi-partite entropy,
resulting in a profile for S(z,t) that depends on space as well as time, even away from the
boundaries. The effects of this noise in fact show up in the form of universal sub-leading
correction in entanglement growth, and are also present in the spatio-temporal correlations
of the evolving entanglement profile.

A simple way to motivate this result is in the entanglement membrane picture developed
in the previous section. Taking the noise into account, the entanglement corresponds to
the free energy of a polymer in a random environment. This is a problem that has been
studied extensively [303, 573, 582, 583] and is well known to be described by the same
KPZ equation that we encountered previously in a different context in Section 4.4. This
suggests that in an appropriately coarse-grained limit, the equation of motion of S(x,t)
becomes

OS(x,t) = vg + vd2S(x,t) + %(axS(l', )2+ C(x,t). (5.18)

As noted before in Section 4.4, there are various universal exponents that characterize the
KPZ universality class. In particular, the surface ‘height’ grows as S(z,t) ~ vgt + Bt?
with exponent 5 = 1/3, and the fluctuations in the height of the circuit similarly scale as
S(x,t)2 ~ 2% (one can either think of this as the variance taken over realizations of the
noisy dynamics at a fixed cut z, or, alternatively, as the variance taken over different cuts
in the same realization). Moreover, there is another, distinct exponent, which describes
the size of the transverse fluctuations in the size of the polymer, given by Ax(t) ~ /%
with z = 3/2 (compare this with the case of a random walk, wherein z = 2). This defines
a correlation length for the entanglement profile, which therefore obeys a scaling form

[S(z,t) — 5(0,8))* = r*g(x/t?). (5.19)

Here, « is a third exponent (not to be confused with the Rényi index), related to the
other two as a = z3 = 1/2. The 1/2 exponent is consistent with the fact that on scales
x < t*, the surface resembles the trace of a simple random walk, while its KPZ nature
becomes apparent on scales x & t*. There are various ways of showing that the problem
of entanglement growth in the random circuit is in the KPZ universality class, which we
briefly review below. The KPZ scaling has also been observed numerically in a continuous-
time noisy Heisenberg chain [566].

The mapping of the entanglement growth problem to the KPZ equation can be per-
formed in various ways. One is to do the replica calculation for Sy outlined in the previous
section. In this case the noise has been integrated out and is no longer explicitly present,
but it appears in the form of interactions between different replicas (in the absence of such

interactions, one would get 7k = (Z)k) This results in a problem of k£ domain walls with
attractive interactions. In the large ¢ limit, one can then show that the resulting stochastic
process, after taking a continuum limit, is the same as the one found when performing
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5.3. Effect of noise on entanglement dynamics

a similar replica calculation for the free energy of a polymer in a random background
potential [278, 584]; the latter is which is known to be in the KPZ universality class. One
can in principle extend this calculation to Rényi indices o # 2.

A more direct way to do the mapping is to write down the partition function Z(z,t)
explicitly, without the use of replicas, for a single realization of the circuit, as described
in Ref. [260]. As outlined in the previous section, in principle one can write down the
purity as (F4|U @ U* @ U ® U*|pp ® pg) for a particular circuit instance U. While, in
the absence of the simplifications that come from averaging, this is a very complicated
object, one can expand it systematically around the circuit-averaged result. To do this,
one has to note that the Haar-average for a single gate is a projector on the four-copy
Hilbert space (which follows directly from the defining property of the Haar measure).
Denoting this projector as P, and its orthogonal complement by Py, one can insert an
identity of the form P + P, in front of every gate in the circuit. The result is a sum has
exponential many terms (in the number of gates), which can be organized according to
the number of P, insertions. The zeroth order term is exactly the Haar-average result we
computed above, while there are terms with N, = 1,2,3,... insertions. This rewriting
is useful when the size of these corrections decays rapidly with N, which can be shown
to hold in the large ¢ limit. One can also show, by direct calculation, that the insertion
of a singe P, gives rise to a process wherein a domain wall stays at the same position
(instead of always moving left or right, as in the Haar-averaged case), with a weight that
depends on the local gate at that particular space-time position. One can interpret this
as a randomly fluctuating potential for the domain wall, which directly corresponds to
a lattice regularized version of a directed polymer in a random medium. We note here,
that the same approach of expanding the partition function in orders of N can be used
to treat deterministic circuit models, and argue that their behavior can also be described
by the entanglement membrane picture, with a line tension £ that is renormalized by the
N, > 1 terms; see Ref. [260] for details.

To further develop some intuition on the KPZ dynamics of entanglement, it is useful
to consider a modified circuit model that gives rise to a simple, exact random surface
growth evolution for S(x,t). Consider first the ¢ — oo limit of a 2-site gate, acting on
sites x, z + 1. In this case, the concentration of measure property of the Haar distribution
ensures that random fluctuations disappear and the entanglement across the bond evolves
as [276]

S(xz,t+1) =min(S(z — 1,t), S(x + 1.t)) + 1 (5.20)

(in units of logg). In the ¢ — oo limit this update rule is valid fo all Rényi entropies.
Note, that the same rule is true, with probability 1, for Sy (the so-called Hartley entropy)
at any ¢ > 1 [276].

For our brick-wall random circuit, this means that the randomness disappears when
the ¢ — oo limit is taken and the dynamics becomes trivial, as we have already observed
when considering the operator spreading problem in Section 4.2. This corresponds to a
pathological limit, where £(v) becomes completely flat and the entropy production rate I'
develops non-analicities. However, one can fix these issues, while maintaining ¢ = oo, by
modifying the structure of the circuit. A simple way to do this is to replace the regular
brick-wall geometry of the circuit with a random geometry, for example by choosing a
random bond with uniform probability in each step on which to apply a 2-site gate (for
an illustration, see Fig. 7.1(b) below). This defines a random surface growth model for
the entanglement, wherein the update rule Eq. (5.20) is applied on these randomly chosen
bonds. This model is very similar to other random surface growth models, which are
known to be in the KPZ universality class [573], and the expected scaling exponents can
be easily confirmed by direct numerical simulation in this case. The line tension £ also
acquires an intuitive meaning in this model: it simply counts the number of bonds cut
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Chapter 5. Entanglement Growth

(per unit time) in a diagram of the circuit with random geometry. The entanglement is
simply the minimal number of bonds cut by a curve with a fixed upper endpoint. We will
consider a similar model when we discuss the coupling to diffusive transport in Chapter 11.

It is important to emphasize that while the same 1+ 1 dimensional KPZ equation (and
its associated universality class) appeared here and in Section 4.4, these two cases are
physically unrelated. Ome describes entanglement growth in one dimension, while the
other describes operator spreading in two dimensions. Moreover, while in the present
case, the noise inherent in the KPZ description originates from the explicit randomness
of the dynamics and is absent in deterministic systems, the noise that appeared in the
operator spreading problem stems from quantum fluctuations and is expected to generalize
to systems that are invariant under space-time translations.
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6. Entanglement spectroscopy after a
quench

As we saw above, there are at least two distinct velocity scales (and their associated time
scales) that characterize the thermalization process from the standpoint of the scrambling
of quantum information: the butterfly velocity vp and the entanglement velocity vy (which
we now take to be the — appropriately normalized — growth rate of the von Neumann en-
tropy). In this chapter we take a different perspective, and consider the fine structure of
the entanglement for a finite subsystems in a one-dimensional chain. In particular, we
argue that one can access the ‘scrambling time’ (defined as the time needed for the but-
terfly front to cross the subsystem) by considering the detailed statistics of entanglement
eigenvalues. We connect these to Lieb-Robinson light cones, and arrive at an appealing
analytical picture, wherein ‘chaos’ moves up throughout the entanglement spectrum, from
small to large eigenvalues of the reduced density matrix. We corroborate this picture by
numerical simulations, finding excellent agreement.

The focus of our study will be the full spectrum of the reduced density matrix (RDM)
pa of a subsystem A of size [ > 1 in the middle of a chain of size L > [, concentrating
on the intermediate-time regime leading up to thermalization. We will argue that the
spectral correlations of p 4 identify the timescales involved in thermalization. We quantify
these correlations via the entanglement spectrum, i.e. the eigenvalues of the so-called
entanglement Hamiltonian, Hepy = —1Inps. The entanglement spectrum was originally
introduced in Ref. [78] as a powerful tool for characterizing ground states; more recently,
it has been used in non-equilibrium settings [537, 585-592]. We continue in this vein
and explore its post-quench dynamics. Assuming, as we do, that the system thermalizes,
Hgt at long times should become approximately equivalent to the physical Hamiltonian
restricted to the subsystem A, which characterizes the thermal Gibbs state. Since this
is the Hamiltonian of thermalizing many-body system, and following the discussion in
Section 2.1, it is expected to have level statistics described by random matrix theory
(RMT), and in particular, level repulsion. In the following, we explore how this level
repulsion develops over time.

After a quench, degrees of freedom near either end of A quickly become entangled with
the outside world, but take longer to become entangled with those at the other end of A.
We find that this is reflected in the spectrum of py4: its large eigenvalues (i.e., the low-
energy part of the entanglement spectrum) correspond to eigenstates that are localized on
either end of the system, leading to Poissonian level statistics on short timescales, whereas
small eigenvalues of p4 (i.e., high-energy part of the entanglement spectrum) couple and
become essentially random on much shorter times. We examine the crossover between
these two sectors of the entanglement spectrum with time, and link it to the spread of
operators and entanglement across the subsystem.

6.1. Analytical argument

We begin by giving an analytical argument, describing how level repulsion develops in
the entanglement spectrum during time evolution. We first focus on a simple system
which has an ezact light cone, and argue that this leads to a lack of level repulsion
at short times at all entanglement energies. We then generalize this to arbitrary locally
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Figure 6.1.: (a) Representation of the reduced density matrix pz after a few steps of time
evolution under a local unitary circuit. Tracing over subsystem A causes uni-
taries to cancel inside the red shaded region. Consequently, p 4 factors as a
tensor product, and the entanglement spectrum (ES) decouples into left /right
contributions. (b) ES dynamics for a random unitary circuit, showing the
linear subsystem-size-dependent crossover from Poisson to RMT level statis-
tics of the ES (solid) and mutual information between spins on either side
of subsystem A (dashed); (c) shows similar data for Hamiltonian dynamics
of the nonintegrable Ising model (6.7). In both cases the level statistics are
computed for entanglement energies £ < 10.

interacting chains, using a combination of Lieb-Robinson bounds and perturbation theory,
and argue that level repulsion initially develops at high energies and moves down towards
low energies, linearly in time. Eventually, the entire spectrum develops level repulsion,
on a time scale set by the Lieb-Robinson speed, which we expect to be equivalent to the
infinite temperature butterfly velocity!.

IThe only distinction between the two speeds is in the definition of norm used in evaluating the ‘size’
of the commutator of two space-time separated operators. The Lieb-Robinson theorem uses the operator
norm, i.e. the largest eigenvalue of the modulus of the commutator. The infinite-temperature butterfly
velocity, on the other hand, is defined in terms of the Frobenius norm. It is natural to expect that the two
should be governed by the same velocity, although we are not aware of a systematic investigation of this
question. Note also that recent results have shown that in long-range interacting systems, there can exist
regimes where the butterfly velocity is well defined, while the Lieb-Robinson velocity is not [122].
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6.1. Analytical argument

6.1.1. Strict light cone

For clarity, let us first focus on the random unitary circuit (RUC) model introduced earlier.
We begin with a pure product state at ¢t = 0 and evolve it to time ¢ by applying a depth-t
RUC. The RDM p4 of subsystem A is obtained by constructing the density matrix of
the whole system, p = |¢(¢))(¢(t)], and then tracing over degrees of freedom outside A.
However, since the spectrum of p4 is identical (up to zero modes) to that of the RDM of
the complement of A (denoted pj), we may instead perform the trace over the degrees
of freedom within A, corresponding to the circuit on the LHS of Fig. 6.1(a) (where the
purple dots denote the degrees of freedom in A). At early times, after canceling conjugate
pairs of gates U and UT, this circuit separates into a tensor product: p i = pL ® pr, where
L/R denote regions to the left and right of A respectively. Therefore the eigenvalues of
pi, and hence those of p4, take the form )\é’)\R, and the entanglement spectrum is the
sum of the spectra of independent random matrices, leading to Poisson level statistics.
After an initial non-universal transient (from the singular entanglement spectrum of each
edge in the initial state) this behavior is maintained up to time [/2vpc. Note that this
discussion only uses the fact that the system has a strict light cone, with correlations
exactly vanishing on the outside; none of it actually relies on the choice of gates in the
circuit and it would directly carry over for example to the kicked Ising chain (4.22).

Consider now times shortly after ¢ = [/2upc: canceling pairs of conjugate unitaries
no longer partitions the circuit into disjoint pieces, so the RDM no longer factorizes.
However, the left and right blocks are initially only weakly entangled, since any entan-
glement between them is produced only by the few gates between the corners of the
light-cone region and the bottom/top of the circuit. This idea can be formalized by con-
sidering the mutual information between the regions L and R that are left and right of A:
I(L,R) = Sp, + Sg — Sj. At short times, when the RDM of A factorizes, I(L, R) = 0. At
times only shortly after [/2vpc, the mutual information I(L, R) becomes finite, but it is
still much below its upper bound, 2vr,ct — I. This is due to the fact that in our two-level
circuits, the “butterfly velocity” vp that characterizes the spread of operators, is much
slower than vr,c, so on times comparable to vy,c, only rare low-amplitude operators entan-
gle the two halves of the subsystem, which is thus almost separable. As a consequence of
this, level repulsion initially only appears at high energies in the spectrum of Hepnt, as we
discuss in the following subsection.

6.1.2. General case

We now generalize the above argument to the case of arbitrary short-range interacting
chains, including Hamiltonian evolution (either time-independent or periodically driven).
While generically there is no strict light cone, and therefore the RDM does not factorize
into left and right parts, such a factorization still applies approximately at short enough
times, as can be established using Lieb-Robinson bounds. We then argue that this approx-
imate factorization implies a lack of level repulsion at low entanglement energies, but not
at high energies. The edge separating the two regimes in the spectrum moves downwards
in time, until the entire spectrum becomes RMT-like. This happens at times when the
von Neumann entropy of the subsystem (i.e., the typical entanglement energy) is still far
from its equilibrium value.

The starting point of our argument is to approximate the time evolution operator U (t),
using the results of Ref. [536], as

U="U + U, (6.1)

where U is a unitary circuit made up by two layers of unitaries, each acting on vt contiguous
spins for some constant v (i.e. each block has size linear in t) and the error term has a small
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Chapter 6. Entanglement spectroscopy after a quench

operator norm ||dU|| = e. Eq. (6.1) illustrated in Fig. 6.2. Note that this approximation is
done in the spirit of Lieb-Robinson bounds: there is a smallest possible velocity (which we
will identify with the Lieb-Robinson velocity) such that the approximation holds, but one
can always increase the accuracy by making v larger and thus decreasing the error €. For
systems with a strict light cone speed, like the RUC discussed in the previous subsection,
this approximation becomes exact (e = 0) for v > vy .

~ vt

—

Figure 6.2.: Approximating the time evolution generated by a local Hamiltonian with a
two-layer circuit of local unitaries, as described in Ref. [536].

Making use of the above approximation we can write the time evolved state after a
quench as

%)) = U(t)[tbo) = |9) + el@), (6.2)

where all the states are normalized to 1 (in principle |¢) = 6U|¢p)/e can have some
norm < 1 which we could pull out as a prefactor, but for simplicity we set it to 1). The
corresponding reduced density matrix of a block A of size [ is then

pa=pa+epi+opx  pi=trg |[$)(g] + h-C-} P dpp=trglo)(el].

At times at which the light-cone for the approximate unitary U has not yet penetrated
to the middle of the subsystem A, the arguments made in the previous subsection apply,
showing that the leading term factorizes as p4 = pr, ® pr- The first-order correction, dp1,
involves the overlap of two essentially independent vectors on a subsystem of L —1 sites; we
expect its matrix elements to be of size O(Q(L*l)/ 2), going to zero in the thermodynamic
limit. It is therefore safe to neglect this term in the following and focus on the effect of
dp2 on the spectrum of p4.

Since j4 factorizes, its eigenvalues are of the form A, = A:XE. Ref. [591] showed that
the density of states for Ay, is given by N(Ar) ~ 1/Ar, and likewise for Ag. Combining

these, we get
~ ~ 1 1 1
NA)=NOML)NA/AL) ~ | dd==— ~ =. 6.3
(8) = NOONGR/A) ~ [ drg o 1 (63)

To leading order, the normalization of N (A) is set by the number of nonzero eigenvalues
of the RDM, so the density of states at A is

N(A) = 2% /A + 5(A)(2! — 22, (6.4)

up to terms polynomial in ¢ that we neglect [591].

Let us work in the eigenbasis of p and consider the matrix elements of dps in this basis.
This takes the form (a|¢)(¢|3), where |a),|B) are Schmidt states of p. We approximate
|¢) as a random state, so its overlap with any basis state is of magnitude 2712 and con-
sequently the typical matrix element of €25ps between two eigenstates of 5 has magnitude
€2/2!. To see if nearby energy levels hybridize, we compare this typical matrix element
to the energy difference between two adjacent eigenstates of the RDM at energy A. Any
zero modes in Eq. (6.4) will hybridize by this criterion. For the nonzero eigenvalues,
hybridization occurs when A < ¢222vt—1,
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6.2. Numerical Simulations

Turning now to the entanglement spectrum, we estimate that states with unperturbed
energy F = —In A will develop random-matrix statistics when

E > (I —2vt)log2 — 2loge. (6.5)

To minimize the error while maintaining the separability of p we choose 2vt = [. Then the
error of the approximation takes the form [536] € ~ e(=#0)t = ert=1l/2 for some constants
K, . Plugging in this expression, we find that

E > pul — 2xt. (6.6)

This suggests the crossover energy scale from Poisson to RMT statistics should drift lin-
early downwards in energy as a function of time, consistent with our numerical results
presented below in Fig. 6.3.

The perturbative argument breaks down whhen e becomes O(1), which is at times
t ~ l/2urR, where vrr is the Lieb-Robinson speed. This speed should be close to the
infinite temperature butterfly velocity, which characterizes operator spreading (see the
footnote! above). As we have seen, these speeds (vLgr or vg) are generically larger then
the ‘entanglement velocity’ [256, 277], relevant for the growth of von Neumann entropy of
a subsystem. Therefore there should exist an intermediate time scale where already the
entire spectrum shows level repulsion, but the von Neumann entropy (which is the size of
the typical entanglement energy) is still far below its equilibrium value. This is verified
below in Fig. 6.4.

The above discussion clarifies that the energy-dependence of the level repulsion captures
certain aspects of the shape of the wavefront of an evolving operator. For a sharp, §-
function like wavefront, i.e. vp = wvrc, all enetanglement energies would develop level
repulson simultaneously. The fact that there is instead a delay between high and low
energies corresponds to the fact that there are exponential tails outside of the wavefront. It
remains to be seen whether other details of the front shape, such as its diffusive broadening
can also be diagnosed from a more careful analysis of the entanglement spectrum.

Note that our entire discussion is independent of the initial state: it therefore provides
a lower bound on the times needed for the entanglement spectrum to become RMT-like.
We expect that this is the relevant time scale for e.g. a random product state, while the
actual time scale can be different for other initial states. We provide an example of this in
Section 11.3, where the time scales increase by a factor of 2 for certain initial states due
to a conservation law.

6.2. Numerical Simulations

We now turn to the numerical confirmation of the analytical arguments outlined above.
Our dynamical regime of interest consists of not too large subsystems at intermediate
times. Since the relevant time evolution only generates modest entanglement, it is feasi-
ble to simulate it efficiently using matrix-product state (MPS) techniques. We simulate
dynamics using the time-evolving block decimation (TEBD) algorithm [417] on systems
of size L = 60, and compute the entanglement spectra of subsystems ranging in size from
I =4tol = 14. Note that the limiting factor in going to larger [ lies in the fact that, unlike
in typical applications of MPS technology, we are interested in the entire entanglement
spectrum rather than its low-energy sector. We have verified that L is sufficiently large
that it does not produce any significant finite-size effects; all finite-size scaling is controlled
by I. For RUCs, we draw two-site unitary gates at random from the Haar measure, and
average results over 100 realizations. Here, the time ¢ counts the number of full time steps
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Figure 6.3.: Time evolution of energy-resolved ES level statistics for the non-integrable
Ising model shows successively lower-energy states crossing over from Poisson
to RMT behavior. The color of each dot corresponds to the r-ratio and the
size to the number of states in the energy window of size AF = 1. Bottom:
histograms of low /high energy parts at representative early, intermediate, and
late times.

in which each even and each odd bond is acted upon exactly once by a 2-site gate. For
the Hamiltonian case, we study the Ising model in a tilted magnetic field,

H=> JXXip1+hiZi+hiX,, (6.7)

where X, Y, Z are Pauli matrices at lattice site i. We chose J; = J = 1 to be uniform and
measure time in units of 1/J. To avoid dealing with subtleties of thermalization within
(translation) symmetry sectors, and to make the two edges of the block inequivalent, we
add weak on-site disorder, taking h*® € [h*® — %,W + %] and choose their averages
to be h* = 0.9045, h* = 0.709 and the disorder strength W = 0.05; the tilted-field Ising
chain is known to be ergodic for this choice [269]. We average the results over 50 disorder
realizations. For both models, we begin with an initial Néel state |¥(t = 0)) = | 141 .. .).

6.2.1. Development of level repulsion

Our main results are presented in Fig. 6.1(b,c) and Fig. 6.3. Figure 6.1(b) shows the time
evolution of the level statistics and the mutual information between the two edges for
RUCs, while Fig. 6.1(c) shows the same data but for Hamiltonian dynamics (Eq. (6.7));
note the broad similarities between the two sets of data, despite the absence of the strict
light cone in the latter.

To succinctly characterize the level statistics via a single parameter, we use the so called
r-ratio, defined as the average over the entanglement spectrum and disorder realizations of
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_ min(0n,0n41)
 max(dn,0n+1)
energy levels [184]. The value r is a measure of level repulsion: for Poisson statistics,

r ~ 0.39, whereas for random matrices in the Gaussian Unitary Ensemble?, r ~ 0.6. As a
proxy for the mutual information between the left and right halves of the outside world, we
take the mutual information between two sites just outside the block A on the left/right,
which we denote by I(—1/2,1/2).

The level statistics shows a regime of Poisson behavior after the initial transient, but
crosses over to RMT behavior at a time that scales linearly with the subsystem size [.
Note that for the RUC, which has a strict light cone, the mutual information between
the boundary spins remains exactly zero until this time, when it begins to grow. In both
Fig. 6.1(b) and (c), we have cut off the high-energy part of the entanglement spectrum
when computing r and include only eigenvalues £ < 10. A more fine-grained picture
of entanglement level statistics is provided by studying the time evolution of the energy-
resolved r-ratio, takings its average within some small energy window [E, E+AEFE]. For the
non-integrable Ising model (Fig. 6.3), high entanglement energies exhibit RMT behavior
at relatively short times compared to low ones, with the ‘edge’ between the two moving
roughly linearly in time. Representative line-cuts of the data at ¢ = 3.4,4.0,4.6 are shown
in the bottom panel of Fig. 6.3, indicating the cross-over from Poisson to RMT statistics
in the low-energy part. We note that the discrete time evolution of RUCs makes their
entanglement spectral crossover abrupt and challenging to capture on the relatively modest
system sizes considered here, though it is qualitatively similar.

, where 0,, = E,, — E,_1 is the spacing between consecutive entanglement

6.2.2. RMT time scale vs. entanglement saturation

In the analytical part we argued that the time needed for the entanglement spectrum
(including the lowest energies) to develop level repulsion is parametrically smaller than
the time necessary for the block to become fully entangled with the rest of the system. In
particular we argued that the first of these time scales should be controlled by the Lieb-
Robinson / butterfly velocity, vg, that gives the speed at which local operators spread,
while the time for the entanglement of the block to saturate is set by the entanglement
velocity, vg, i.e. the rate at which the two sides of a bi-partition become entangled. As
noted before, the inequality vy < vp is expected on general grounds that [256, 277], so there
should be a time window where the spectrum has already acquired RMT statistics but
the amount of entanglement between the block and its environment still keeps increasing.
Indeed, we find clear numerical evidence for this in the case of the tilted field Ising model.

We take the Hamiltonian as defined in Eq. (6.7) and simulate its dynamics at weak
disorder (W = 0.05). We compute the average r ratio of the entanglement spectrum,
taking only eigenvalues in the low energy part of the spectrum (E < 10), and compare
their behavior with the von Neumann entropy of the block S4 = —tr(palnpas). As
expected, we find that at the times when the r ratio saturates, S4 is still far from its
thermal value, as shown in Fig. 6.4. Moreover, we consider the velocity related to the
development of level repulsion (taking the arrival of the front to be the time when the
derivative of the r ratio as a function of t is the largest) and compare it to both the
butterfly velocity as measured from the endpoint density pr for an initial Z operator, and
the entanglement velocity extracted from the slope of the von Neumann entropy at short
times. We compute all three for different values of the transverse field &, in a clean version
of the model (W = 0), as shown in the right panel of Fig. 6.4. We find that while there

2This ensemble corresponds to random Hamiltonians without any additional symmetries, as opposed to
the so-called Gaussian Orthogonal Ensemble, relevant for systems with time-reversal symmetri. Although
the Hamiltonian (6.7) is real, the time-evolved state and hence its entanglement Hamiltonian are generically
complex, so the unitary ensemble is the appropriate one here.
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Figure 6.4.: Left: Average r ratio (solid lines) and von Neumann entropy (dots) for blocks
of [ sites in the tilted field Ising model with weak disorder (W = 0.05). The
dash-dotted horizontal lines denote the thermal values of the von Neumann
entropy S4 at infinite temperature, relevant for the initial Neel state we con-
sider here. At the times when (r) saturates to its random matrix value (dashed
horizontal line) the total entropy is still far from this thermal value and keeps
increasing up to a parametrically longer time scale. Right: comparison of
different velocity scales: butterfly velocity vp as extracted from i) the right
operator density pr and ii) from the r ratio of the entanglement spectrum
vs. the entanglement velocity vg, shown as a function of the transverse field
strength at zero disorder. Not only are the first too strictly larger than the
latter, they follow a different curve as a function of h,.

is a constant shift between the first two velocities that we cannot account for®, they are
both larger than vg. Moreover, while the the first two appear to follow the same curve
when plotted against h,, the entanglement velocity has a qualitatively different shape,
supporting our claim that the development of level repulsion has more to do with operator
spreading than it does with the overall entanglement growth.

6.2.3. Floquet model

To complement the data for random circuits and the tilted field Ising model, we also
present some further numerical results on the periodically driven version of the latter.
This is the same model introduces previously in Eq. (4.22), except that we now allow for
the possibility of spatial disorder in both the transverse and the longitudinal magnetic
field (we also switch the roles of X and Z; this should not lead to significant changes):

T z T T
U=e¢ z2ihiZig=3 2 XiXit1+hi X (6.8)

The dynamics generated by repeated application of this unitary can be thought of as being
half-way between the previous two models. On the one hand it is simply a (periodically)
time-dependent version of the Ising chain described in Eq. (2) of the main text, and has
no randomness in the time direction. On the other hand it has no conserved quantities
and has a strict light cone velocity of 1 site per Floquet period, which makes it similar
to the random circuit model (in fact, as noted before, it can be represented exactly as a
circuit with the same geometry). The data presented here emphasizes the universality of
our result, which apply to any spatially local time evolution in 1D.

30ne possible explanation is that there is in fact a difference between the Lieb-Robinson and the
butterfly speeds, and the r ratio measures the former.
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Figure 6.5.: Average r ratio for different block sizes [ (solid lines) and mutual information
between the two neighboring spins on the left /right side of the block (dashed
lines) for the kicked Ising chain defined in Eq. (6.8) with no disorder (W = 0,
left) and weak disorder (W = 0.05, right). The average longitudinal field is
h# = 0.7 in both cases. In calculationg the r ratio, only eigenvalues of the
rediced density matrix with magnitude larger then 107!0 are kept. At this
cutoff we observe a sharp transition to random matrix statistics when the
strict light cone reaches the middle of the block, at ¢t =1/2.

We fix T' = 1.6 and choose the on-site fields according to a box distribution of width W.
We take the average longitudinal field to be h* = 0.809 and consider different values of
the average transverse field h?. As we have seen in Section 4.3 for the clean case, changing
the transverse field can be used to tune the butterfly velocity [1], between 0 at h* = 0 and
v &~ vpc = 1 when h* = 0.9, and we expect similar dependence on the average transverse
field in the weakly disordered case as well. This allows us to explore how the time scales
relevant for the block entanglement spectrum change with the butterfly speed and confirm
that increasing the latter reduces the time needed to reach random matrix level statistics.

In Fig. 6.5 we show results both for the clean (W = 0) and weakly disordered (W = 0.05)
chains, comparing level statistics and mutual information as we did for the other two
models. By applying a weak cutoff (keeping eigenvalues of p4 with magnitude A > 10710)
we observe a sharp transition in the level statistics at times ¢ = [/2 when the sharp light
cone reaches the middle of the block, similarly to the random circuit case. Before this

h*=10.5 h*=0.6 h*=0.7
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Figure 6.6.: Average r ratio for the clean kicked Ising chain (/W = 0), keeping RDM
eigenvalues > 107°, for different transverse fields h* = 0.5,0.6,0.7 (left to
right). While the average r ratio starts growing when the strict light cone
crosses half the block, the transition is much slower for smaller values of h?,
which we attribute to the decrease in the butterfly velocity.
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Chapter 6. Entanglement spectroscopy after a quench

time the disordered model exhibits Poisson level statistics, also in agreement with our
random circuit results. In the clean case, on the other hand, the average r ratio remains
close to zero as long as the two edges are uncoupled. This is due to the fact that in this
case the entanglement spectra at the two edges of the block are identical, leading to exact
degeneracies in the block spectrum. The same behavior occurs also in the Hamiltonian
case in the clean limit at short times.

In Fig. 6.6 we show results with a stronger cutoff, keeping only RDM eigenvalues with
A > 1075, for different values of the transverse field h*. We find that, while the transition
in the average r ratio always starts at the same time, set by the light cone velocity, it
becomes less and less sharp at smaller transverse fields, and the time it takes for (r) to
reach the random matrix value increases. This can be interpreted by noting that time
needed for the spectrum to become fully random matrix-like even at low energies should
be controlled by the butterfly / Lieb-Robinson velocity, as detailed in subsection 6.1.2,
which becomes smaller when h* is decreased as observed previously in Section 4.3.
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Part Il.

Quantum Information Dynamics in
Diffusive Systems
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Overview of Part Il

In Part II of the thesis, we shift our focus to systems that possess extensive conserved
quantities. This includes Hamiltonian systems, where the energy is conserved, but also
time-dependent systems with additional symmetries leading to a conservation of some
quantity, such as particle number, or magnetization. While much of our discussion will
focus on the latter case, as this is the setup where a generalization of our random cir-
cuit model is straightforward, we expect many of our main results to hold equally well
for Hamiltonian dynamics. This expectation stems from the central role played by the
diffusion of the conserved quantity in both cases, and we shall support it with numerical
evidence below.

Chapter 7: Random circuits with diffusive transport

Chapter 7 serves as an introduction to this part of the thesis. After a brief discussion of
the role of diffusion, in Section 7.1 we introduce a modified random circuit model which
has a conserved particle number (or magnetization, depending on the interpretation),
corresponding to a U(1) symmetry. We also discuss two different ways of generalizing the
model to a larger on-site Hilbert space, both of this will play a role in subsequent chapters.
In Section 7.2 we show, via direct calculation, that these circuit models exhibit diffusive
transport properties on all time scales.

Chapter 8: Operator spreading with diffusion

Chapter 8 contains our treatment of operator spreading and OTOCs in systems with
diffusive transport. Most of our discussion relies on the aforementioned random circuit
models. For these, we develop a way of calculating average OTOCs by mapping to a two-
dimensional tensor network (which we refer to as a ‘classical partition function’ due to its
formal similarities). This is described in subsection 8.1.1. The results of this calculation,
presented in subsection 8.1.2, show that OTOCs involving the conserved density have
qualitatively new features compared to the case without symmetries that we studied pre-
viously in Section 4.2. While diffusive broadening of the operator wavefront is still present,
the shape of the OTOC behind the front changes drastically, with the appearance of an
algebraically decaying ‘hydrodynamic tail’. In subsection 8.1.3 we show numerically, that
a similar power law decay is present in a deterministic system with the same symmetries.

Having described the new phenomenology associated with conservation laws, in Sec-
tion 8.2 we set out the explain them from various perspectives. This includes considering
operator spreading in the language previously developed in Section 4.1, but also develop-
ing a new description in terms of superoperators. Our discussion culminates in subsec-
tion 8.2.3, where we use a coarse-grained version of the circuit to derive the hydrodynamic
tails, including the spatial dependence. This calculation leads to an intuitive picture,
where the part of the evolving operator that is related to conserved densities acts as a
continual source of newer and newer ballistic fronts. We sketch an alternative description
of this ‘coupler hydrodynamics’ in Section 8.2.4, based on Ref. [549].

The existence of a conserved quantity allows us to consider OTOCs at a finite chemical
potential (or temperature, in the Hamiltonian case). We do this in Section 8.3. First, we
consider their fate at the longest times, deriving formulae for their saturation values as a
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function of the chemical potential ¢ in subsection 8.3.1. We then show that while at u < 1,
the dynamics of OTOC: is largely unchanged from the p = 0 case (subsection 8.3.2), new
interesting features arise for u > 1. In particular, we argue, via a perturbative expansion,
that at early times the ballistic front of the OTOC is absent, only appearing at times long
compared to the average spacing between particles. This is done in subsection 8.3.3.

Chapter 9: Dissipation-assisted operator evolution

Chapter 9 is something of a detour from our main theme, but closely related to the
preceding chapter. Instead of considering the dynamics of quantum information, here we
take a closer look of the diffusive transport properties of these systems, and use some of
the intuition developed in Chapter 8 to devise a scheme for numerically calculating them.
In particular, we rely on the aforementioned splitting of the operator into a conserved,
diffusive part and a ballistically spreading part. We construct a non-unitary evolution,
which dissipates the latter, while aiming to keep track of processes that contribute to the
diffusion constant. This is similar in spirit to the so-called memory matrix formalism,
which we review in Section 9.1. Our main new insight is that we can turn this into
a concrete numerical scheme, constructed in the language of tensor networks, which we
describe in Section 9.2. In Section 9.3 we test this method in two different strongly
interacting systems in 1D and find that it provides a reliable way of estimating diffusion
constants.

Chapter 10: Entanglement growth for global quenches

In Chapter 10 we turn to the issue of how diffusive transport coupled to entanglement
growth. We show that its effects is particularly strong for Rényi entropies with index
a > 1, which become sub-ballistic, as we detail in Section 10.1. We show this both in
the random circuit model and, using exact numerics on small systems, for a Hamiltonian
system. We explain this finding analytically as being due to the effect of ‘rare histories’ in
the wavefunction, where the conservation law prevents the growth of entanglement. Due
to their rarity, these only show up in the few largest eigenvalues of the reduced density
matrix, and are thus invisible to the von Neumann entropy, but dominate higher Rényis
at long times. We also discuss this phenomenon from a complementary perspective, by
constructing a generalization of the minimal polymer picture of entanglement, which we
previously discussed in Section 5.2 for circuits without symmetries. We also consider
long-time algebraic tails that appear near the saturation of the second Rényi entropy in
Section 10.2, and the dynamics of the so-called charge entropy in Section 10.3.

Chapter 11: Entanglement growth for inhomogenous quenches

In Chapter 11 we consider a different type of coupling between transport and entanglement,
which becomes relevant for initial states with large-scale inhomogeneities. We argue that
the growth rate of entanglement (as measured by the von Neumann entropy in this case),
becomes space-time dependent, proportional to the local entropy density, which itself is
a function of the density of the conserved quantities in a ‘fluid cell’. In Section 11.1
we support this intuition by considering the effects of a unitary gate in a coarse-grained
version of the random circuit model. We then subsequently use it to motivate a random
surface growth model of entanglement dynamics, and study the consequences of various
initial states. The cleanest signature of diffusion arises for an initial domain wall state, in
which case the behavior of the von Neumann entropy is entirely dominated by diffusion,
limiting it to a ~ v/t growth. We further test these results by examining various spin-1/2
models in Section 11.2.
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7. Random circuits with diffusive transport

While Haar random circuits provide a variety of exact results, many of which are expected
to be generic for chaotic quantum dynamics, they also differ from Hamiltonian systems
in certain crucial ways. One important such aspect, which we emphasized throughout the
previous chapters, is the absence of any conservation laws, especially extensive ones that
originate from continuous symmetries. As we detailed in Section 2.3, conserved quantities
are expected to give rise to the slowest, ‘hydrodynamic’ modes of the system, and are
therefore of utmost importance for understanding the equilibration process. This is quite
different from the case we considered above, where the only relevant quantities were those
related to the propagation of quantum information, such as OTOCs or Rényi entropies.
This is the reason why these quantities were found to satisfy simple closed equations (in the
random circuits, or more generally in some coarse-grained limit). Generically, as we shall
argue below, one instead needs to take into account the coupling between these quantities
and the usual hydrodynamic modes; these couplings can induce qualitative differences in
their dynamics, which will be our topic in subsequent chapters.

Energy conservation itself is at odds with the idea of random circuit dynamics, which
relies on time-dependent randomness to construct solvable models'. Instead, one can
retain the random circuit setup, but constrain the circuit elements to enforce certain
symmetries, such as a conservation of total particle number — this is the approach we take
here. On the one hand, such a model is directly relevant for Floquet systems with the
same (in this case, U(1)) symmetry. On the other hand, we expect this modified circuit
to capture features of the dynamics that pertain also to Hamiltonian systems with energy
conservation even without any additional symmetries. The reason for this is that as far as
the aforementioned hydrodynamic modes are concerned, energy and particle conservation
behave almost identically: at the longest time- and distance scales, their behavior is
generically expected to be governed by a simple diffusion equation, for the reasons outlined
in Section 2.3. As we shall see below, many of the qualitative features of operator spreading
and entanglement growth can be understood directly from the existence of such a diffusive
mode, independently of whether it describes the transport of energy, particle number or
some other extensive conserved quantity. This allows us to use the particle-conserving
random circuit model to motivate conjectures about generic Hamiltonian evolution, which
can be tested numerically.

7.1. Local random circuit with charge conservation

To investigate the relationship between transport of conserved quantities and the dynamics
of quantum information, as measured by OTOCs and entanglement entropies, we turn to
a simple minimal model that possesses all the main ingredients: a time evolution which
is unitary, local in space, and has a conserved charge that obeys diffusive dynamics. This
will be a generalization of the model introduced in Chapter 3, with a similar local circuit
structure, but with a modified distribution of the two-site gates to ensure that they all
satisfy a U(1) symmetry, which we can interpret as either the total particle number, or

'One can do calculations for a Hamiltonian drawn from one of the usual ensembles [593], but these
have no notion of locality. There are also recent attempts at developing tools for computing dynamics for
random local Hamiltonians [594, 595]. However, so far these have remained largely intractable.
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Figure 7.1.: Definition of the charge-conserving random circuit model. (a) A single unitary
gate acts on two neighboring cells, each consisting of N qubits, such that
the total occupancy of the two cells is conserved. The full time evolution is
generated by applying the gates (b) in a regular ‘brick wall’ pattern or (c) at
randomly chosen bonds.

as the total magnetization component in (for example) the z direction. We begin by
describing the simplest example, with a ¢ = 2 dimensional on-site Hilbert space, and then
discuss various ways of generalizing it.

In the simplest case, which we will sometimes refer to as the spin-1/2 circuit, each site
hosts a qubit (or spin) with two ‘computational’ basis states, denoted by |0) (or | 1)) and
|1) (or | J)). We refer to these as ‘empty’ and ‘filled’ - the total number of filled sites is
going to be our conserved quantity and we will refer to it as ‘charge’. The local charge
on site r is measured by the operator Q, = (1-— ZT) /2. The qubits are arranged along a
d dimensional cubic lattice — our discussion in the following will focus almost exclusively
on the one-dimensional case, but we will mention possible generalizations of our results to
higher d as we go. We evolve the system in discrete steps, by applying local unitary gates
acting on pairs of neighboring sites. We will mostly consider the ‘brick-wall’ geometry
shown in Fig. 7.1(b), but in Section 11.1 we will also consider circuits where the location
of each gate is randomly chosen, resulting in the random geometry of Fig. 7.1(c). So
far, this is the same as before; the difference arises in the definition of the local gates
themselves. We choose these to be block-diagonal in the computational basis, with a two
1 x 1 blocks (corresponding to the states |00) and |11)) and one 2 x 2 block (acting on
the subspace spanned by |01) and |10)) (see also Fig. 10.1(b) below). Each block is an
independent Haar random unitary (in the case of the 1 x 1 blocks, just a random phase),
but the block structure ensures that the total charge, >, QT is conserved. As before, we

denote averages over the different circuit realizations by (...).

As we shall see below, the circuit we just defined is not analitically solvable for the
quantities we are interested in (OTOCs, Rényi entropies). However, it does lend itself to
efficient numerically exact solutions, and investigating the properties of these will be one of
our main goals in the following. Nevertheless, it is useful to also have an analytical handle
on the problem. As mentioned previously, such a handle is often provided by taking a limit
with a large local Hilbert space. There are a number of different ways in which the above
model could be extended to include larger on-site Hilbert spaces. One way of achieving
this is to consider coarse-grained ‘super sites’ (or ‘cells’; in analogy with the notion of a
‘fluid cell’ in hydrodynamics), each of which contains N different qubits, making its total
Hilbert space 2V dimensional. We can then define the filling of each individual qubit me,
where x = 1,..., L labels the cells in a 1D chain, while » = 1,..., N labels the qubits
within a cell. On each cell, there are 1, = (]X ) states with charge n. A two-site gate acting
on z,z + 1 would then be block diagonal with blocks labeled by Q@ = 3, Qur + Qut1.r)
with a block of size dg = (23) in the charge @ sector (indicated in Fig. 7.1(a)), each block
a different, independently chosen Haar random unitary of size dg x dg. When N =1
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7.1. Local random circuit with charge conservation

there is only a single qubit on each site and this model reduces to the one defined in the
previous paragraph.

While this model is physically motivated, in the sense that we can think of the super-
sites as simply a form of coarse-graining the system, and it has its uses as we see below, it
remains somewhat complicated even in the large N limit. The reason for this is that, while
most of the blocks of a two-site gate become very large in this limit, not all of them do: for
example a pair of completely empty cells defines a one-dimensional Hilbert space for any
N. At the other end of the spectrum, blocks corresponding to a pair of half-filled sites have
a Hilbert space whose dimension grows exponentially with N. In principle, one would need
to take into account all the blocks with these vastly different sizes. In certain cases, one
can argue that the typical, large blocks are more relevant, and we will discuss calculations
that use this intuition later in subsection 8.2.3 and Section 11.1. Nevertheless, it is useful
to define an alternative model where all blocks can be made large simultaneously. This
can be done rather easily, by introducing an auxiliary ¢-dimensional qudit on each site.
This would lead to local basis states |0,«) and |1,«a), with a = 1,...,¢, indicating a
Hilbert space C? @ C?. The key point is that the qudits are not conserved. A two-site
gate has the same block structure as in the spin-1/2 circuit, with four blocks only, labeled
by the total charge, but now the blocks with charge 0, 1,2 have sizes ¢* x ¢, 2¢*> x 2¢°
and ¢? x ¢? respectively; the spin-1/2 model is recovered at ¢ = 1. Therefore, as ¢ — oo,
all blocks become similarly large, which simplifies various Haar averaging formulae to a
large extent. We shall rely on such a limit in Section 10.1.3. However, while this model is
computationally more tractable than the coarse-grained ‘large-N’ version of the model, it
comes at the expense of introducing non-conserved degrees of freedom, which makes the
interpretation of certain results more difficult.

It is worth summarizing here the approach we take in the following chapters, and the
advantages of using random circuit models. We will be interested in calculating the same
quantities, operator weights, OTOCs and entanglement entropies, as before, for these
U(1)-symmetric circuits, to see how the symmetry, and its associated diffusive transport,
affect them. A key point is that for any of the models defined above, after circuit-averaging,
we can map the calculation of the quantities of interest to an effective model that takes the
form of a ‘classical’ partition function in one higher dimension; this mapping is done in a
way similar to the one outlined in Section 5.2 and we will describe it in detail for the spin-
1/2 charge-conserving circuit below in Section 8.1.1. The resulting effective models, unlike
the one in Section 5.2 are generically not analytically solvable; nonetheless, they can be
simulated numerically for much longer times than the original quantum problem?. These
simulations (focusing on the spin-1/2 circuit) will form the backbone of our results below.
We will complement these with analytical calculations, taken in the large local Hilbert
space limit of one of the models defined above (i.e., either large N or large ¢). These will
provide us with simplified descriptions that help explain some of the main features of our
results. Finally, we will perform direct numerical calculations in deterministic models —
both U(1)-symmetric Floquet systems and Hamiltonians with no additional symmetry —
to support the universality of the main features uncovered in our random circuit studies.

2Let us mention here, that even when there is no direct computational advantage (e.g., in calculations
of the number entropy in Section 10.3), by averaging over random time evolutions, one might be able to get
access to the relevant universal behavior more easily then in any specific microscopic model. For example,
as we will show shortly, the random circuit shows diffusion of conserved quantities at all timescales, without
the early-time transients that would typically show up in a deterministic system.
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Chapter 7. Random circuits with diffusive transport

7.2. Charge diffusion in the random circuit model

Before attacking the problem of OTOCs and entanglement, we begin our study of the
charge-conserving random circuit by showing rigorously that the density of conserved
charge diffuses in this system when averaged over different realizations of the circuit; in
this sense, our circuit model mimics the expected generic behavior in the high temperature
regime of generic quantum systems [279, 285, 553, 554], as we discussed in Section 2.3. We
show this by considering directly the time evolution of the local charge operator QT in the
Heisenberg picture, from which results on expectation values or dynamical correlations
follow immediately.

To understand the dynamics of Qv let us first understand how a single two-site gate,
acting on sites r and r + 1, evolves a generic operator O acting on the same sites. After
applying a single two-site random charge-conserving gate on these two sites the operator
becomes, on average (see also App. B.1)

- B - T 1 . .
O(A1) = 3" PyUaP 0P, Ub Py =Y 1Pt (OPQ) , (7.1)
o Q

where PQ projects onto the sector of the two site Hilbert space with Q = () and we used
the fact that U decomposes into blocks Ug, each of which is Haar random. We use At
as shorthand for time evolution with a single layer of the random circuit. The diffusion
of charge density follows from this algebraic result, but a more elementary argument goes
as follows. Note that Q(AT) = ( because the Haar ensemble commutes with the total
charge on two sites. On the other hand, the ensemble of two-sites gates is invariant under

multiplication by the operator swapping sites 7,7+ 1, 50 Q,.(AT) = Q, 1 (A7). This allows
us to write

Qr (A1) = % <Qr + Qr—i—l) . (7.2)

Let us iterate the above formula for a series of two-site gates arranged in the regular
gate geometry shown in Fig. 7.1(b). The local charge operator performs a random walk,
such that at each application of a two-site gate it ends up on either of the two sites with
equal probabilities. It is readily verified that after an even number 2¢ layers of the circuit

it becomes
2t—1

x 1 2t -1 A A
Qr(t) = ot < I > (ng_2t+2k + Q2j+1—2t+2k> ) (7.3)
k=0

where j = LT;—lJ At large times, the right hand side behaves like an unbiased diffusion
kernel. Note that summing the equation over all r gives Q(t) = Q(0), which is the global
conservation law.

An approximate continuum formulation of the above discrete operator equation is

6t5(3€, t) = DQaga(x7 t): (74)

where Dg is the charge diffusion constant, independent of ¢>. Hence, on average, the local
charge density obeys diffusive dynamics. In this sense our random circuit can be thought
of as a toy model for a many-body system in the regime of incoherent, diffusive transport.
Such behavior is expected also in clean systems at times longer than the coherence time
of charged quasi-particle excitations [285, 553, 554] (which can be very short, for example

3This is in contrast with the diffusion of the operator wavefront discussed in Section 4.2, where the
diffusion constant was found to be a decreasing function of the local Hilbert space dimension g. We
emphasize that the diffusive broadening of the operator front is physically distinct from the diffusion of
conserved charge discussed in this section.
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7.2. Charge diffusion in the random circuit model

at high temperatures [249]), or in systems that do not possess well defined quasi-particles
at all [596]. Note that in our case the diffusion of charge appears directly at the level of
operators, without having to refer to any particular state, indicating incoherent charge
transport over all time scales. This is consistent with the behavior of the single-particle
Green’s function, (6, (¢)6;"), where &;" is the operator creating a single charge on site r.
Applying formula Eq. (7.1) shows that this Green’s function vanishes on average after only
a single time step, independently of the state chosen, which is another way of saying that
there is no coherent charge transport.

This last point merits a few more words. The simple, exactly solvable evolution here
is a consequence of averaging over all random circuit realizations. In the Haar random
circuit introduced in Chapter 4, this averaging would make the time-evolved operator
completely vanish on average. This is not consistent with the conservation law, hence
the non-trivial dynamics in the present case; nonetheless, all more complicated processes,
when the operator grows to some larger, multi-site operator, average out due to random
phases, resulting in the simple random walk process for the operator. This is quite dif-
ferent from the case of deterministic evolution, or even a single realization of the circuit,
where the diffusive behavior only manifests once we consider either expectation values
or equilibrium charge-charge correlations, as discussed in Section 2.3. Physically, this
is related to the fact that the diffusion in the circuit case originates from the inherent
noise of the random unitary dynamics, rather than from interactions as in a deterministic
model. Consequently, we are able to determine the diffusion constant almost trivially, by
just looking at the ‘single-particle’ process taking place in the subspace of one-site oper-
ators. In a deterministic system, on the other hand, diffusive dissipative transport and
spreading to larger operators are inseparable phenomena, and in order to determine the
diffusion constant, one necessarily has to take into account processes where the charge
density evolves into multi-site operators. We will return to this issue in Chapter 9.
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8. Operator spreading with diffusion

In this chapter, we return to the question of operator spreading, previously considered
in Chapter 4, and discuss how it is affected by symmetries. As we shall see, the main
features uncovered above, encapsulated in the biased diffusion equation, remain valid.
However, the conservation law also leads to new universal features, most notably the slow,
‘hydrodynamic’ decay of operator weights and OTOCs. We provide an understanding of
these, starting from the diffusive nature of transport. Furthermore, we discuss the effects
of changing the chemical potential.

In our U(1)-symmetric setup, we define the out-of-time-ordered correlator between op-
erators V and W as

vV (1) = %u (pu [f/(t),Wr [V(t),WD , (8.1)

where p, = e HaQ /tr (e‘“Q) is a Gibbs state characterized by its chemical potential p

(which sets the average filling fraction). p, accounts for the fact that, unlike the Haar
random circuit of Part I, the present model can equilibrate to different states, depending on
the expectation value of the total charge in the initial state. This allows for richer physics in
the OTOC, which can now have a non-trivial dependence on p, similar to the Hamiltonian
case, where the OTOC can have interesting temperature-dependence [239, 597]. While we
focus on the ‘infinite temperature’ (u = 0) case for the most part, we will return to the
question of the dependence of C on p later in Section 8.3
By expanding the commutators we get

1

() =

((WTVT(t)V(t)W># + (VT(t)WTWV(t)>#> — —Re(VI )WV ()W),
We will refer to the last term as the out-of-time-ordered part of the OTOC and to the first
two terms as its time-ordered part. The interesting physics of the OTOC are captured by
the out-of-time-ordered part!, which we denote

F/W(t) = Re(VI)WTV ()W) . (8.2)

In the following we will mostly focus on this quantity (a notable exception in subsec-
tion 8.3.1 where we discuss the long-time limit of the full OTOC, which is mostly domi-
nated by its time-ordered part). Unless stated otherwise, we assume that V and W both
have trace zero.

It will be convenient to consider operators V, W with particular charges Ay, Ay under
the adjoint action of the symmetry, i.e., [Q, V] — \yV. For example, in the ¢ = 2 case
which we focus on, the one-site operators 67,6, Z have charges +1,—1,0, respectively
(in the following, Z, denotes the Pauli z operator on site 7, while the operators 6
crease/decrease the local charge by one). As we show below, the behavior of the OTOC
can depend strongly on the charges Ay and Ayy. It is particularly interesting to consider
operators with charge Ay = 0, which can have a non-vanishing overlap with the conserved

in-

'In fact, for ¢ = 2, even when the time-ordered part is non-trivial (i.e., time dependent), it can be
computed exactly on average using Eq. (7.3)
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8.1. Hydrodynamic tails in the OTOC

quantity, tr(QV) # 0. As we argue below, for such operators the diffusion of charge im-
plies a) slow relaxation of the OTOCs and b) non-trivial long-time saturation values at
finite 11 (see subections 8.1.2, 8.2 and 8.3.1 in particular)?.

We can reduce the number of distinct OTOCs we need to consider, by noting that there
are certain relations between them. For example, we note that

viwt _ —p(Av+A wv
‘7:# t)=e r(Av W)]:“ (t)

holds on general grounds, decreasing the number of independent OTOCs. Moreover, in
the ¢ = 2 case we discuss below, we can also make use of the relation

+ = + 4
Fi 7 () = e FFL (1) (8.3)

Therefore we will focus Solely on the OTOCs between operators ZZ Z6t and 616,
Note that we can relate Z, to the local charge density Q. as

~

Z,(t) = 1, — 2Q.(1), (8.4)

which means that any correlator of the form (8.2) has the same behavior if we replace
all occurances of Z, with QT, up to some unimportant contributions that are either time-
independent or decay diffusively, as in Eq. (7.3).

8.1. Hydrodynamic tails in the OTOC

In this section, we focus on OTOCs at zero chemical potential. We begin by showing that
computing the average value of the OTOC in our random circuit problem is equivalent
to evaluating a ‘classical’ partition function®. This allows us to compute the OTOC to
significantly longer times than those available to direct numerical calculations. We find
that at © = 0, all OTOCs spread in a ballistic wavefront, wherein the width of the
front broadens in time, similarly to the case of random circuits without symmetries. The
main new feature is that OTOCSs involving the conserved operator Z exhibit a slow decay
behind their wave front, which we confirm also for a non-random spin chain. We explain
this behavior below, in Section 8.2, by building on the results of Section 7.2 and detailing
the different ways in which the diffusion of charge effects the dynamics of OTOCs. We give
further support to our numerical results in Section 8.2.3 by considering a modified version
of the random circuit where we are able to derive analytical predictions for the dynamics of
different OTOCs. We return to the question of their behavior at finite chemical potential
in Section 8.3.

8.1.1. Mapping from random circuit to a classical partition function

We now outline how to compute OTOCs in the charge-conserving random circuit problem.
The properties of the Haar distribution allow us to evaluate the average effect of a single
2-site gate on the OTOC exactly. As we show below, applying this averaging procedure to
all the gates in the circuit transforms the problem of computing the average OTOC to the
evaluation of a particular classical partition function, similar to the calculation discussed
for random circuits without symmetries in Section 5.2. While the classical model we obtain

2We expect that more generally these conclusions hold for any traceless operator V with a finite support
that satisfies tr(Q™V) # 0 for some positive integer m.

3We put the word ‘classical’ in quotation marks, to indicate that while the effective problem we
derive has the same structure as a classical partition function, it can have negative weights for certain
configurations, as we shall see. Nevertheless, for simplicity, we will just refer to this as a classical partition
function in the following.
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Chapter 8. Operator spreading with diffusion

Figure 8.1.: Representation of the OTOC (VT(t)WTV (t)W), as a ‘path integral’ involving
four layers. Each layer corresponds to one of the unitary time evolution op-
erators (blue: U; red: U T) appearing in the correlator. These unitaries are
given by a realization of the random circuit, and averaging over them gives
rise to interactions between different layers.

has much more structure than the non-symmetric case, and does not allow for an exact
closed form solution, it serves as the basis of both numerical calculations and analytical
approximations which we present in the rest of this chapter, as well as in Chapter 10.
We begin by observing that one can rewrite the 4 = 0 OTOC in the following form (the
generalization to finite p is straightforward, and we shall discuss it later in Section 8.3)

T 2o (t) o< Up o VaigUnsWiisUps VirUsgWaa = VgV (U@ U @U* @ U) (5w (aspm Wi Wnas

(8.5)
where U is the time evolution operator generated by the circuit up to some time ¢. There-
fore, the central quantity one needs to compute in order to obtain the average OTOC is
U*®U ® U* ® U. This is an operator acting on four copies of the original Hilbert space.
We can think of this construction as a generalization of the Keldysh contour [245], involv-
ing four ‘layers’; as illustrated in Fig. 8.1. Each of the four operators appearing in the
definition of the OTOC connects two of these layers.

Since every gate in the random circuit is independently chosen, we can evaluate the
Haar-average for all of the gates (and all of their blocks) individually. For each gate, the
Haar averaging results in a four-leg tensor with two incoming and two outgoing legs, one
for both of the sites the gate acts on. One leg of this averaged tensor corresponds to four
copies of the original Hilbert space. For our ¢ = 2 case this would mean in principle 16
states per site of the form |afvd) for o, 3,7,0 = 0,1. As we argue below, only 6 of these
16 appear in the averaged circuit, and therefore the average OTOC can be calculated in
terms of an effective description involving 6 states per site.

In particular, as we show in App. B.1, the average for a single two-site gate takes the
form

UrUeU*U = Z Z ’1521@2)( 521Q2|
s= iQﬁﬁQz
S S 1 S —S
+ szz - [\IQQM ol = dQ|IQQ><IQQ@  (86)
s=%+ Q

where ‘I$1Q2> are states from four copies of the two-site Hilbert space, defined as

| Q1Q2> = Z laa3B); | Q1Q2> = Z laBBa). (8.7)
acHg, a€Hq,
BEHQ, BEHQ,
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8.1. Hydrodynamic tails in the OTOC
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Figure 8.2.: Interpretation of Eq. (8.6) in terms of local states. a) Notation of the five
different ‘particle types’ that can occur: the first four correspond to exactly
two of the four layers (shown in Fig. 8.1) being occupied by a charge, while
the last one is a bound state, either formed by the first two or the second two

particle types. The empty state is not denoted. b) Some possible one- and
two-particle processes generated by averaging over a single two-site gate.

H here is the sector of the two-site Hilbert space with total charge @, which has dimension
dg.

The states |I$1Q2> cannot be written as products of states on (four copies of) the
individual sites*. Nevertheless, as we detail in App. B.1, they can all be written in terms
of the following six states, living on four copies of a single site: |0000), |1100), |0011),
|1001), [0110), and |1111) (e.g., |Z15) = |1111)1]0110)2+]0110)1|1111)2). The first of these
is an ‘empty’ state, wherein all four layers are unoccupied at a given site. We will refer
to the states with exactly two layers occupied as having a single ‘particle’ on a given site,
which can belong to four different species, as illustrated in Fig. 8.2 a). The last state then
can be thought of as a site being occupied by two particles. In terms of these six states,
Eq. (8.6) defines a four-leg tensor that maps each of the 36 possible states on the two
sites to a linear combination of the same 36 states with some particular (real, but possibly
negative) coefficients. Some of these possible processes are shown in Fig. 8.2 b). All other
non-zero coefficients can be obtained from these by swapping the two sites (either on the
bottom or the top of the gate) or permuting the different particle types.

To compute the full time evolution we need to contract the four-leg tensors, defined
above, according to the geometry of the circuit seen in Fig. 3.1. Thus every layer of the
random circuit acts as a transfer matrix, evolving a configuration of particles (in the sense
defined above) to a linear combination of different configurations. Finally, in the first and
last layers, we need to contract the remaining legs with those of the operators V and W
appearing in the OTOC formula (8.5). We can write the result as the matrix element

FIE () o (Py[T"© U & U° & U|Dw), (538)

where |Py) and |Dy) are states in the four-copy Hilbert space, defined by (a8vd|Py) =
Vsa Vs and (afyd|Dw) = Wso W5 (we give an interpretation of these quantities in terms
of superoperators in Section 8.2.2). In this formula, U is the full unitary circuit up to time
t. Eq. (8.8), together with Eq. (8.6), can be interpreted as a classical partition function on
a two-dimensional lattice, where every site has six possible states. The gates in one layer
of the circuit form a transfer matrix of this classical spin problem while the operators 1%
and W in the definition of the OTOC appear through the boundary conditions, at times
0 and t, respectively. While we are not able to evaluate this partition function exactly
(unlike the case with no symmetries), it allows for efficient numerical computations, much

“Contrast this with the case without symmetries in Eq. (5.9), where the sums go over all states in the
two-site Hilbert space and thus factorize [253].
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Figure 8.3.: The average OTOC F, defined in Eq. (8.2), at u = 0, evaluated as a classical

partition function. All OTOCs spread in a ballistically propagating front
which itself diffusively broadens in time, and saturate to zero behind the front.
The shape of the front is shown for a) the ZZ and b) the 66+ OTOCs for
times (from left to right) ¢ = 7,10, 20, 30,40. The black stars represent data
obtained by performing the unitary time evolution with TEBD up to ¢ = 7 and
averaging over 100 realizations. The insets show the value of F for different
operators at site 0 as a function of time. For OTOCSs involving Z we find
that 1/F? grows linearly in time, indicating a saturation F oc 1/4/t at long
times, while the 6767 OTOC saturates exponentially fast. The two lower
figures show the c) position and d) width of the front as a function of time.
The front moves ballistically with the three types of OTOCs having similar
front velocities vp ~ 0.45 in units of the circuit light cone velocity, while
they all broaden diffusively. The position and the width are extracted from a
curve that smoothly interpolates between the data points: the front position
is defined by the point where the OTOC decays to half of its original value,
while the width is computed as the inverse of the maximal derivative of this
curve near the front.

beyond the time scales attainable otherwise, as well as for some analytical approximations,
which we detail below.

8.1.2. OTOCs in the random circuit model

Armed with the mapping to the classical partition function described in Section 8.1.1,
we calculate the OTOC up to time t ~ 40 (80 layers of the random circuit), which is
much beyond what is attainable in simulating the unitary circuit directly. We evaluate
the partition function by representing it as a two-dimensional tensor network, built out of
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vt — T

Figure 8.4.: Space-time structure of the wave front in Fig. 8.3 at time ¢ = 40 for OTOCs
involving the conserved density Zo. We plot 772 at p = 0 for V = Zy and
W = Z,,6; as a function of the distance from the front vgt — 7 and find
a linearly growing regime in both quantities, indicating a decay of the form

F x 1/\/vgt —r.

the four-legged tensors, defined in Eq. (8.6), that arise when averaging a single gate. We
contract these together by representing the boundary condition |Dy) at ¢t = 0 as a matrix
product state, which we then propagate forward layer-by-layer, using a method analogous
to the TEBD algorithm. The OTOC is then computed by taking the overlap of this MPS
with another one that represents the boundary condition (Py| at time .

In this section, we focus on the case where p = 0; the finite p case is treated in separately
in Section 8.3. The results, shown in Fig. 8.3, demonstrate that OTOCs exhibit the
same biased diffusion behavior that we described for random circuits without conserved
quantities in Chapter 4. In particular, there exists a velocity scale® vp such that the
OTOC ]-"Xi‘g/r (t) is of O(1) at |r| > vpt, decreases near the butterfly front’|r| ~ vpt, and
saturates to 0 for vpt > |r|, as shown in Fig. 8.3. We also observe that the regime over
which the OTOCs obtain an O(1) value (the ‘width of the front’) broadens diffusively
(~ /) in time (see in particular the last panel of Fig. 8.3), again, in complete agreement
with the predictions of the non-symmetric circuit.

Our results indicate that all OTOCs saturate to zero behind the front (this is peculiar to
the p = 0 case considered here: as we argue in subsection 8.3.1 at finite u certain OTOCs
have finite saturation values). Our main new finding is that those OTOCs, FVW(¢), for
which at least one of V,W is the conserved density Zr, decay at long times as F
1/v/t. We refer to this slow, power-law relaxation as a ‘hydrodynamic tail’, due to its
analogy with similar slow dacay of time-ordered correlation functions in classical and
quantum hydrodynamics discussed in Section 2.3. The (}J (}J OTOC, on the other hand,
decays exponentially with time (using Eq. (8.3), the same is true for the 656, OTOC).
These results are in contrast with the behavior we observed for random circuits without
symmetries, where all OTOCs showed an exponential decay. As we explain in Section 8.2
the hydrodynamic tails we observe here are a natural consequence of the diffusive charge
transport discussed in Section 7.2.

Going beyond the decay of the OTOC at a given position, we can ask the question

5Note that the velocity vg ~ 0.45 observed here numerically is smaller than the butterfly velocity of a
random circuit with the no symmetries and the same local Hilbert space dimension, which was derived to
be 0.6 in Section 4.2.
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Chapter 8. Operator spreading with diffusion

of what is the shape of the front at a fixed time. This is shown in Fig. 8.3. Again, for
OTOCSs involving the conserved density Z, we find a striking new feature: well behind the
butterfly front, we find that the position dependence of the OTOC is well described by
F x 1/y/upt —r, i.e. it exhibits power law decay as a function of the distance from the
position of the front; this is shown in Fig. 8.4. This particular tail behind the front is our
main result in this chapter. In what follows, we will argue that it is a universal feature of
OTOCs in diffusive systems and develop a ‘hydrodynamic’ explanation for it

8.1.3. OTOC tails in deterministic systems

As we argued previously, we expect random unitary circuits, like the one studied in this pa-
per, to capture universal properties of non-noisy, ergodic quantum systems in the strongly
interacting, high-temperature regime. This is true for the diffusion of conserved quantities,
discussed in Section 7.2, and numerical evidence suggests that it is also the case for the
diffusive broadening of the OTOC wavefron (see Section 4.3 and also Refs. [427, 429]).
We expect that the OTOC hydrodynamic tails that we observed above — and which, as
we argue below, are a direct consequence of charge diffusion — should therefore also be
present in non-noisy systems, provided that they exhibit diffusive transport of conserved
quantities. Such power law decay of OTOCs in a weakly disordered Hamiltonian system
has already been observed numerically in [598]. Here we show that the same phenomena
appears also in a system without any randomness. We do this by considering a periodically
driven (Floquet) spin-chain, where the total spin z component is conserved, and find that
OTOCs involving Z show similar diffusive decay to the one seen in the random circuit
model, while OTOCs between non-conserved operators decay exponentially.

We consider a one-dimensional chain of spin 1/2 degrees of freedom. A single driving
sequence consists of four parts, with the so-called Floquet unitary given by

UF — e—i'rH4e—iTH3 e—iTHze—i’THl
1 N
Hy=JMY" 2,244

Hy=J® Z ZyZyio

Hy = Hy = Jyy Z <X'I‘XT+1 + f/}ffrﬂ) ; (8.9)
T
where X, = 6t +6; and Y, = —i(6;" — ;") are Pauli spin operators on site r, and we take

periodic boundary conditions r = r + L. Every part of the drive individually conserves
the spin z component, [H,,» . ZT] =0 for a = 1,2,3,4. We take the period time to be
T = 47 = 1 and the couplings to be all order 1, namely Jz(l) = (V/3+5)/6, J,§2) = \/5/2
and Jyy = (2v/3+3)/7. We have found that this Floquet model exhibits diffusive behavior
already on the relatively short time scales that we can probe numerically®. This makes
the model a useful study ground for various phenomena related to diffusive transport, and
it has found application in subsequent work by other authors [105, 177].

We compute the OTOC (8.2) at p = 0 in this system using exact diagonalization
methods, up to system size L = 24. We do this be approximating the trace in the
infinite temperature average by an expectation value in a random state, |¥), drawn from
the Haar measure over the whole Hilbert space (see also Section 2.4). The OTOC is
then calculated as the overlap ]-'X:Vg(t) ~ Re (V1|V3) where |¥;) = WUEtVUIH\IO and
|Uy) = Uy tVU§W|\IJ) This overlap approximates the infinite temperature average up to

SIn particular, it appears to be the case that both the next nearest neighbor interactions, and the fact
that the drive consists of more than two parts, help with this.

82



8.1. Hydrodynamic tails in the OTOC

L — S .
............______".... N _1/2
EE 10—1ﬁ ;
[4\‘
8 1072 ©=—=Q ZrZr+1
g e— XX :
[ Ar—h ZrXr+1 :
-3 . A |
00 10!
Time t/T

X, X,.1 OTOC

oo
Time t/T

Figure 8.5.: OTOC for different operators on nearest neighbor sites at zero chemical po-
tential in the non-random Floquet model Eq. (8.9) which conserves 3, Z,.
Upper panel: OTOCs on nearest neighbor sites for system size L = 24 sites.
Both the ZZ and the ZX OTOC decay as a power law, approximately as
~ /12 while the XX OTOC decays faster than a power law, as shown by
the log-log plot in the upper panel. The lower two panels show a comparison
between system sizes L = 20,22,24 for the ZZ and XX OTOCs, respec-
tively. The latter is shown in a lin-log plot and is well approximated by an
exponential decay.

an error which is exponentially small in the system size [231] and we indeed find numerically
that the deviation of the OTOC between different random states is negligible at the system
sizes we consider.

In Fig. 8.5 we show the results for the ZZ, XX and ZX OTOCSs. The local operator X
has no overlap with the conserved quantity and is therefore expected to behave similarly
to 67 discussed above for the random circuit (indeed, it is a simple linear combination of
6% and 67). We take the OTOC between two operators on nearest neighbor sites such
that they all have the same initial value 1. We find numerically that while the decay
of the ZZ and ZX OTOCs is well described by the diffusive oc 1/4/¢ behavior, the XX
OTOC decays more quickly, approximately as an exponential. This is all in in agreement
with the results found for the random circuit model, and we conjecture that it is the
generic behavior for one-dimensional systems with diffusive transport properties. Indeed,
we will argue in the following section that these hydrodynamic tails, exhibited by OTOCs
involving the conserved density, are a natural consequence of diffusion.
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Chapter 8. Operator spreading with diffusion

8.2. Explaining the presence and structure of the tails

In Section 7.2 we showed that the presence of a local conservation law leads to a diffusive
relaxation of the associated charge. We now discuss how the presence of the same con-
served quantity alters the behavior of OTOCs, leading to the hydrodynamic tails observed
numerically in the previous section. Our discussion will focus on the random circuit model,
but since most of our arguments are based on the diffusion of the conserved quantity, they
should apply, with some slight changes, to other systems with diffusive transport, such as
the Floquet system introduced in Section 8.1.3 or Hamiltonian systems, such as the one
studied in Ref. [598].

First, in Section 8.2.1 and Section 8.2.2 we argue that OTOCs F¥W (t) (with traceless
local operators V/, W) decay slowly (as a diffusive power law) precisely when at least one
of V,W has nonvanishing overlap with the conserved charge, i.c., tr(QV) % 0. In the
case that neither V, W have such an overlap, the decay is expected to be exponentially
quick, identical to the behavior we observed in random circuits without symmetries. Our
arguments in Section 8.2.1 and Section 8.2.2 are not fully controlled analytically. However,
they (particularly those in Section 8.2.2) have the merit of being completely analogous to
those well established by previous work on hydrodynamical tails in regular observables,
both in quantum and classical dynamics [287, 294, 599].

In Section 8.2.3 we provide a more controlled analytical argument which yields the
detailed space-time structure of the front in those cases where it is present. For this
analysis, we use the ‘coarse grained’ large-N version of the model, which we introduced
in Chapter 7; N controls the size of the local Hilbert space, and provides large parameter
which simplifies the calculations. Our conjecture is that such a model should describe
the long-time dynamics of the N = 1 circuit as well. Indeed, we find in this coarse-
grained circuit, OTOCSs of conserved densities have the space-time profile o< 1/\/vgt — z,
in agreement with the the numerical data presented for the original circuit in Section 8.1.2.
Finally, in Section 8.2.4 we summarize an alternative derivation, focusing on operator
weights instead of OTOCsS, originally discussed in Ref. [549].

8.2.1. Operator spreading explanation for the presence of tails

=X,v,z ~B=X,y,2
1 ,o-;,-. W

Consider an OTOC between two local Pauli operators & on sites 0 and 7.

At time t, 6§ evolves into a superposition of operators
50t =Y _6"cu(t), (8.10)
1 %4

where 6% denotes a Pauli string of the form ®8L:1 o%s, with vy = 0,2,y, 2. As discussed

before, the out-of-time-ordered part of the OTOC at zero chemical potential then takes
the form

Flo =" 8w, B)len(t), (8.11)

where S(v,, ) = £1 depending on whether 6¥ commutes or anti-commutes with 6,’? .

To recapitulate, in the case without symmetries we found in Section 4.2 that the distri-
bution of |c,(t)|? is strongly dominated by Pauli strings v which fill most of the spatial
region [—vpt, +vpt], while the total weight contained in strings of a fixed length decays
exponentially, an observation that follows simply from the fact that there are exponen-
tially more long operators than short ones. Since the operator norm is conserved, the
average weight on a single string is |c,|? ~ ¢~#*B!. Assuming |c,|? is largely independent
of v, for typical strings when |r| < vpt, the sum in Eq. (8.11) would average to 0, as
the positive and negative contributions cancel. In practice not all strings have the same
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Figure 8.6.: Average weights of single-site Z operators, lezr ()[? (dots), compared to

———\2
their lower bound given by the squares of the average coefficients (|CZS (t)\)

(dashed lines). The weights approach the lower bound at times ¢ ~ 10. The
weight are computed using the classical partition function formalism of subsec-
tion 8.1.1, and for comparison we show TEBD data averaged over 100 circuit
realizations at time ¢t = 7 (black stars). Inset: the total weight contained in
single-site Z operators decays in time at the rate set by the diffusion of the
coefficients cgg (t), as t~1/2 at long times.

weight, but we expect such fluctuation to be suppressed (by the law of large numbers) as
O(y/1/q=*5t). Accounting for these fluctuations, and exponentially small contributions
from Pauli strings well behind the front, we were able to prove exponential decay of the
OTOC, Fi2y ~ Oe=).

The presence of conserved charges constrains some of the operator spread coefficients and
alters the above argument significantly. In particular, expressions of the form tr( f (Q)c}g‘ (1))
are independent of time, due to charge conservation, for any function f. One immediate
consequence for the operator Zo( ) is that its operator spread coefficients on single-site Z,
operators, defined as cgo (t) = ¢ *tr(Z,.Zo(t)), satisty 3, cgg (t) = 1 at all times, where
r ranges over all sites in the forward light cone of Zy. Indeed, as we have shown in Sec-
tion 7.2, the coefficients decay on average as t /2, rather than exponentially as they would
without conservation laws. Using |c, |2 > HQ and Eq. (7.3), and summing over all sites
r, implies that the total weight on single-site Z operators is lower bounded by a value that
decays as ~ t~1/2. We observe numerically that while this weight initially decays faster,
it approaches this lower bound at times ~ 10 (see Fig. 8.6). Based on these numerical
results, we expect that at longer times ) \cgg|2(t) ~ 1/+/t. In contrast, recall that the
same weight is expected to decay exponentially quickly for circuits without a conserved
charge.

The above argument shows that if we pick o = z in Eq. (8.11) there is an anomalously
large, slowly (diffusively) decaying positive contribution to the OTOC, coming from the
|c§é (t)|? coefficients discussed above. This suggests that OTOCs involving Z relax to their
long-time value as ~ 1/+/% at leading order in ¢, in agreement with the numerical evidence
in Fig. 8.3. We expect similar behavior for the relaxation of OTOCs in Hamiltonian
systems for operators that have a non-vanishing overlap with the local energy density,
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Chapter 8. Operator spreading with diffusion

an effect already observed numerically in Ref. [598]. One can also understand the more
detailed shape of the wavefront from similar arguments, which has been done in Ref. [549].
We will summarize their results later in subsection 8.2.4, after presenting a more rigorous
argument of our own which leads to the same result.

8.2.2. Diffusive tails in a superoperator formalism

An alternative, possibly more general way of understanding the effects of charge conser-
vation on operator spreading is possible using the language of superoperators.

Superoperator formalism

First we show that the objects defined in the formalism of Section 8.1.1 have a natural
interpretation as superoperators that act on the operators of the original spin chain. This
provides a general language for describing OTOCs which we will use for the ‘hydrodynamic’
interpretation of our results on OTOC dynamics in the rest of this subsection as well as
in subsection 8.3.1 where we show that the long-time limit of OTOCs can be understood
by generalizing the notion of thermalization to the space of operators (rather than states).
We expect these concepts to be useful in the future study of scrambling.

As described in subsection 8.1.1, the quantities |Py) and |Dy), appearing in Eq. (8.8),
have four indices, i.e. they live in a Hilbert space which comprises four copies of the
original system. We can naturally interpret this as the space of superoperators acting on
the spin chain. This identification goes as follows. Let us first note that an operator O of
the original system can be though of as a state \O) € H ® H in two copies of the original
Hilbert space, such that (a|0) = (a|O|8) = Onp. Operators thus naturally correspond to
states in a doubled space. Iterating this procedure once more we arrive at superoperators’
A that map one operator to another, i.e. A|O) = |O’). These can then be reinterpreted
as states in four copies of the original Hilbert space, defined as (a8vd|A) = (Bal|A|v0d).

A natural basis of superoperators is of the form |A)(B|. Another way to turn operators
into superoperators is via left and right multiplication, defined as £4|B) = |AB) and
Ra|B) = |EA) The two states appearing in Eq. (8.8) can then be interpreted as follows.
Py = |V)(V| is the ‘density matrix’ corresponding to the state |V, while Dy = L+ Ry
corresponds to multiplying from left and right with W1 and W, respectively. The OTOC
then has the interpretation of the time evolved expectation value of a superoperator,

Fudi (8) o (Py| Dy (t)) = (V (1) Dw |V (2)).

As we show in Section 8.3, the OTOC at p # 0 can be written in a similar form, with V
replaced by a slightly modified operator. As we argue in subsection 8.3.1, the long-time
limit of the ‘state’ |V (¢))(V ()] can be understood as relaxation to a state analogous to a
thermal equilibrium. This is also important for motivating hydrodynamic descriptions of
operator spreading (as we will do shortly). Once a notion of ‘operator thermalization’ has
been established, we can also imagine that at intermediate times, we can approximate (at
least for certain purposes) |V (£))(V (t)| with a ‘state’ that appears locally thermal. Such a
local equilibrium approximation is the key assumption behind hydrodynamic theories, as
we discussed in Section 2.3. Finally, we note here that the states appearing in Eq. (8.6)
also have simple interpretations in the superoperator language as 151622 = \PQ1>(]5Q2|

and T 0105 = EleRpQQ, where PQ are the projectors defined in Eq. (7.1), acting on the
two-site Hilbert space.

"Throughout the text, we use capital calligraphic letters to denote superoperators. Note that the
OTOCs, C and F are expectation values of superoperators.
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8.2. Explaining the presence and structure of the tails

OTOC tails are associated with diffusion of Ly and Rg

We now address the issue of tails, and when they appear in OTOCsS, in the language of
superoperators. Consider, from the preceeding subsection, the superoperators correspond-
ing to left and right multiplication by Q, namely Lo and Rqg. These super-operators are
conserved as a function of time,

EQ, RQ — ‘CUTQU?RUTQU — EQ,RQ

Both superoperators are extensive, that is, they can be written as sums of local superopera-

tors, e.g., Rg = >, Rq,. Note that the relation Lg, (t), Rq, (t) = £W’ Rarw: together

with the diffusion of the local charge Q,«, derived in Eq. (7.3), imply that Lg,,Rq, diffuse
on average as well. Thus, the presence of a diffusing conserved quantity in the original
many body problem leads to the presence of two new diffusing conserved quantities in
operator space. In a continuum approximation we can write this as

8t£QT(t) = DafﬁQr(t);
R, 1) = DR, ). (8.12)

We can make use of the conservation of Lg, Rq to shed new light on the diffusive relaxation
of certain OTOCs, discussed previously in Section 8.1.2. There, we noted that the 727
and Z6+t OTOCSs have a power law relaxation. We can account for both of these tails
in the following way. These two OTOCs can be written in the form (V(t) | Dz, | V(t))
where V = Z,6". Note that the superoperator in this expression can be rewritten

Dz, =1-2(Lo, ) — Ra,w)’

This expression is quadratic in Ly, — Rg,, which is a conserved density. In ergodic
theories, where diffusive hydrodynamics applies, conserved densities, and their variances,
are expected to show 1/v/t relaxation in 1D. The variances in conserved densities show
this diffusive behavior even in states with initially spatially homogeneous distributions of
the conserved quantity [287]. In the superoperator language, it is thus natural to conclude
at Z—type OTOCs relax as 1/v/t. The presence of hydrodynamic tails can be made even
more explicit in the case of the Z6+ OTOC by noting that the state |64) has an initial
imbalance of the conserved quantities of the form (6§ |Lq, — Rq,|6d) = d,0. Since both
Lg and R obey diffusion, this imbalance also relaxes diffusively, a fact picked up by the
OTOC. The remaining OTOCs do not involve Z, and also do not show diffusive decay.
We attribute this to the fact that the corresponding OTOC operator D,+ is orthogonal
to any algebraic combination of the only two available local conserved densities, Ly and
Rg-

8.2.3. OTOC Hydrodynamics from coarse-graining

Since an exact analytical calculation of the partition function (8.8) is out of reach, we
instead consider a modified version of the random circuit which we expect to reproduce
the behavior of the original model at long time- and length scales. We use this simplified
model to shed light on the hydrodynamic nature of the OTOC dynamics and give an
analytical estimate for the shape of the wavefront, reproducing the numerical results of
subsection 8.1.2.

To arrive at this approximate description, we consider the ‘coarse-grained’ version of
the circuit, which we introduced previously in Section 7.1. It is defined by increasing the
local Hilbert space to have size 2V, which we think of as N sites comprising a coarse-
grained ‘super-site’ (alternatively, one can think of this as increasing the range of the
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Chapter 8. Operator spreading with diffusion

random unitary gates such that each one acts on 2N consecutive sites), as illustrated in
Fig. 7.1(a). We change notation slightly, and label individual sites by r and super-sites by
x. Time evolution is then described by a brick-wall circuit of random unitary gates acting
pairs of super-sites and block diagonal in the total charge on them (with 2V 4 1 blocks
in total). We find that in the limit NV > 1 the dynamics simplifies considerably, allowing
for a closed approximate expression for the OTOC, which we detail below. We consider
evolving the operator Z, here and leave the ;" case for later work.
As noted above, the Z,. OTOC superoperator can be decomposed as

,DZT ~ Dy — 2£Q'r — 2RQr + 4£Q7‘RQT‘7 (8.13)

where Dy = L3Ry is a superoperator that acts on an operator by multiplying it from both
sides with the identity, which is equivalent to the ‘super-identity’, obeying Dy|0) = |O)
for any operator O. The decomposition (8.13) already suggests that the superoperator
Dy, should have a diffusive component, since, as we showed previously, Lo, and R,
diffuse on average. The main technical aim of this subsection is to understand the average
behavior of the non-linear term Lg, Rq,. Let us first evolve Dy with one unitary gate
on sites r,r + 1,...,7+ 2N — 1, corresponding to super-sites z,z + 1. A straightforward
application of Eq. (8.6) yields a sum of two terms

bQ xa:—i—l 1
Dz, (A7) Z IQ1Q2 2 PL(¢ottonn) (8.14)

where ; = Y ores Z, is the total charge on supersite z, while Zg, g, = I51Q2 = |Pg,)(Po,|

and Dl(C HCor1) = El(Cz+€z+1)R%(Cz+Cz+1) ar; the superoperators (acting on x,z + 1) in-

troduced in Section 8.1.1, and bg = 1—(1— N)2. In this equation we neglected terms that
are suppressed by at least 1/N2. As we argue in App. B.2, the first term in Eq. (8.14)
grows ballistically upon applying further layers of unitaries. For the second term, on the
other hand, we find that superoperators of the form Lg, R, diffuse, unless super-sites x
and y are acted upon by the same gate in the circuit, in which case extra contact terms
arise. Summing up these different contributions, and applying some further approxima-
tions which we detail in App. B.2, we arrive at the following form of the OTOC operator®
at time ¢:

~ LT2N i NpAY(t—t)
Dsen (1) Ty PO 4 D —Z E;m vyt = Kay)® ()P
Y

(8.15)
Here A, (t) = [x—t,z+1] is a ballistically spreading region around = and P4 = Py, /tr(14)
is a projection unto 1 4, the identity operator acting on this region. K, , denotes the dif-
fusion kernel defined by the right hand side of Eq. (7.3). Note that the time evolution
of the OTOC involves summing up contributions from diffusion processes starting at dif-
ferent times ¢'. This is a consequence of the aforementioned contact terms, wherein the
diffusively spreading densities Rq,, L, can be converted into ballistically propagating
Py superoperators. In App. B.2 we derive a more general version of Eq. (8.15) which also
involves corrections from finite p.
The result (8.15) might look intimidating, so let us take a moment to discuss its physical
meaning. The first term describes a ballistically spreading operator front, emitted at t = 0
and propagating at the butterfly speed, which in our simplified model is simply 1 in the

8While this equation is only heuristically motivated, rather than exactly derived, it passes a number
of consistency checks. In particular, it satisfies the condition that when evaluated on the identity operator
1, the resulting OTOC FZ! is one at all times. Moreover, it is constructed in such a way that the OTOC
saturates to the correct long-time value which we derive later in subsection 8.3.1.
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8.2. Explaining the presence and structure of the tails

appropriate units. This is completely analogous with the result of the non-symmetric
circuits in the ¢ — oo limit, where vg — 1 and the front diffusion is suppressed; similarly,
we expect that at finite N, this first term, P4*®) would be modified to describe a front
spreading with the appropriate vp and broadening in time. The second term, D¢, (), on

the other hand, describes the diffusive part, comprised of single-site Z operators, which
evolve according to the random walk process in Eq. (7.3). This can be identified with the
contribution we discussed earlier in subsection 8.2.1 in the language of operator spreading;
it spreads out diffusively, reflecting the nature of transport in the system.

Most interesting is the last term in Eq. (8.15), which describes the coupling between
the diffusive and ballistic parts. It takes the form of a sum over ballistic components, of
the exact same form as the first term, P4=(®) emitted at different times ¢ between 0 and
t. The probability of emitting one of these fronts at time ¢’ at position y is given by the
gradient of the diffusive charge profile; in a continuum notation: (9yK(y — z,t' ))?. Given
that the charge evolves diffusively, we can equate this with the square of the charge current
at position y at time ¢. At a fixed y, it decays as ~ (#')~2, making the total probability
of a new front being emitted at time ¢’ scale as [ dy (0,K (y — z,t))? ~ (¢')"3/2. This
compensates the decay of the total operator weight in the diffusive part?, so we can
interpret this as a gradual conversion from the diffusive part to newly emitted ballistic
fronts at each time step. This picture is sketched on the left panel of Fig. 8.7

To see what this result implies for the OTOC, we valuate Eq. (8.15) on the operator Z0
to get the 27 OTOC, which reads

2N -1
2N

Fhle 1 — (2 € Ag(t)) [ - Y(t, )|, (8.16)

n=0

where Y(t, x) stands for the double sum appearing in Eq. (8.15) evaluated at the operator
Z:, given by

2N1_ 1 SN (Kogai(t) — Koy(t))? x 6(z € Ayt —t')).

<t y

V(t,x) =

The formula Eq. (8.16) is plotted in Fig. 8.7. We find that it exhibits a tail behind the
front, where the OTOC decays as (t — x)~'/2, reproducing the shape found numerically
in Section 8.1.2. At the origin, the function Y relaxes as at™t + bt~/ 2, consistent with
our earlier discussion of power law tails in Section 8.2.
Evaluating Eq. (8.15) on the local operator 6 gives the result
1 K3, (1)

Zood
FL200 m6(r € Ao(t)) —iy(t,x) N2

+ 3000 ¢ Aol).

The main contribution that determines the shape of the OTOC front, is given by the same
function, Y(t,x), as for the ZZ OTOC. This implies that the shape of the tail behind the
front is the same as the one seen in Fig. 8.7. This is also in agreement with our numerics
on the spin-1/2 circuit as well as the results of Ref. [549].

The results and the formalism of this section marries two notions of hydrodynamics. As
we have seen in Section 4.2, the ballistic spreading of OTOCs can be understood to follow
from the biased diffusion equation that describes the spatial growth of an initially local
operator. The hydrodynamic nature of this equation is related to the emergent conserva-
tion law, that of the norm of the evolving operator, which follows from the unitarity of
time evoltuion. A second, more conventional, notion of hydrodynamics arises, as detailed
in Sections 7.2 and 8.2, due to the presence of the conserved charge Q, which leads to the

9As se saw in subsection 8.2.1, the operator weight summed over all local Z, operators decays in time
as ~ t71/2, making its time derivative ~ =372
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Figure 8.7.: Left: sketch of the OTOC and operator spreading for an initial operator that
overlaps with the conserved quantity, based on Eq. (8.16): the diffusive part
(red) has a total weight decreasing as ~ t~Y2 which is gradually converted
into ballistic components. The size of the ballistic component emitted at time ¢
is proportional to the derivative, ~ t~3/2. Right: Shape of the resulting OTOC
wave fron, arising from the solution Eq. (8.16) of the coarse-grained circuit,
substituting N = 1. In evaluating the formula we used the continuum form of

the diffusion kernel K, ,(t) = exp [%] /V4rt. While the numerical values

(for example the saturation value behind the front) have O(1/N) corrections,
the main features of the shape of the OTOC behind the front should be
captured by this solution. Notably, we find that the hydrodynamic tail behind
the main front is proportional to (t — z)~'/2, as illustrated by the inset.

two locally conserved, diffusing, superoperator densities L, and Rq,. Our approximate
coarse-grained description couples these two types of quantities: Eq. (8.15) includes bal-
listically spreading terms (namely P), as well as the conserved densities Lg,,Rq,, and
couplings between these terms. The couplings lead to a conversion of the conserved den-
sities into ballistically propagating components and all such terms, created at different
times ' < t, need to be summed up to get the OTOC at time ¢t. This process results in
the OTOC decaying as ~ 1/4/t — x behind the front, as shown in Fig. 8.7. It the next
subsection we make this connection more direct, writing down a set of coupled equations
for the various (true and emergent) conserved quantities.

8.2.4. Coupled hydrodynamics for operator densities

The discussion of the previous subsection, especially Eq. (8.15) and its physical interpre-
tation that we put forward, suggest a simple picture of operator dynamics, in which the
diffusive component acts as a source of ballistically spreading fronts. One might naturally
wonder whether it is possible to turn this picture into an equation of motion for the opera-
tor endpoint weights, as a direct generalization of the biased diffusion equation we derived
in subsection 4.2.1 for the case with no symmetries. This has been achieved in Ref. [549]
and we briefly summarize the results here.

The starting point is to split the time evolved operator into two components, a diffusive
part, containing all one-site conserved densities, and a ‘ballistic’ part'®, that contains all
longer operator strings: Zo(t) = ZPM(t) + ZBal(¢). The right endpoint density (defined

10The quotation marks refer to the fact that this second part still contains operators that are expected
to show some form of diffusive behavior, such as product of the form Z,.Z;. Nevertheless, it is dominated
by long strings of size ~ vgpt, so we refer to it as the ballistic part.
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8.2. Explaining the presence and structure of the tails

previously in Eq. (4.3)) is also a sum of two contributions:
. . 2
pr(r.t) = pR )+ pBt) Rt = |G| = letrol?,  (817)
where the second equation defines the diffusive component as simply the weight of the one-
site Z, operator. The total weight, summed over all r, is still conserved due to unitarity,
so any increase in the total ballistic weight has to come from the decrease of the diffusive
part. This decrease of the diffusive weight is a manifestation of dissipation, a key feature
of diffusive transport. In this sense, as Ref. [549] points out, the origin of dissipation can
be understood as the effect of an emergent ‘bath’, provided by the non-local degrees of
freedom that make up the ballistic part of the operator (we will have more to say on this
later in Chapter 9)

As we noted before in subsection 8.2.1, the total weight in the diffusive part, ), pgiﬁ(r, t)
decreases slowly in time, as ~ t~Y2 as a direct consequence of diffusion. One can also
consider this decay locally, without summing over r; in this case, the decrease in pgiﬁ
induced by a two-site gate on sites r, 7 + 1 is given by'* (c(r,t) — ¢(r + 1,t))* /2, which
is exactly the quantity appearing as the emission rate of a new ballistic component in
Eq. (8.15), and as we noted there, it can be interpreted as the square of the local current
density. In a scaling limit, where we take 7/t = & fixed and ¢ large, both the ~ /¢ size of the
diffusive ‘source’ region, and the diffusion of the front itself, become negligible. In this case,
the value of pr(kt,t) is dominated by the front that was emitted precisely at time t—r/vp.
By the above arguments, this is given by the rate of change in the conserved weight at that
time, which is 0; 3, pR(r, t) ~ t=3/2. This suggests that pg(r,t) ~ (t — r/vB)73/2, which
is the analogue of the slowly decaying tail we found for the OTOC in Fig. 8.7 (remember
that the OTOC was related to the integrated weight, R(x) = [* dypr(y)).

These results can be conveniently captured in a set of coupled hydrodynamic equations
for pr and the the local conserved density, measured by the coefficient ¢(r,t). For this,
let us now coarse-grain, and replace r with a continuous variable z. Consider first the
dynamics of the diffusive part, p%ff(x,t) = |c(x,t)]2. The equation of motion follows
simply from the diffusion of ¢(z,t) itself:

drc(x,t) = Dod2e(x,t) — 8p2(t) = 9y |c(x, t)|> = Dgd2pRif(x,t) — 2Dg|dxc(x, 1),
(8.18)
where Dg is the diffusion constant of the charge. This equation shows that indeed, the
local decay rate is given by the square of the gradient of ¢(z,t). This decay rate has to
be equal to the source term appearing in the equation of motion for p%a”, which therefore

reads
O (w,t) = vBOapp (x, 1) + Dpd2pp (z,t) + 2Dg|0pc(.t)|?, (8.19)

where we used D, for the diffusion constant associated with the biased diffusion of the
operator wavefront. Egs. (8.18) and (8.19) together provide a closed set of equations,
describing the coupled dynamics of the charge'? and the operator density of the remaining
part. This is expected to be, for the same reasons as described before, the leading order
hydrodynamic description in some coarse-grained limit, with both equations having further
subleading contributions'3. Finally, we can also combine the above two equations into an

HTo see this, consider.a case of an initial operator ¢y 21 +C222 on some pair of neighboring sites. A two-
site gate acting on these sites transforms the coefficients as (c1,c2) — (%, %) The corresponding
2
change in weights is then ¢f + 3 — 23 (c1 + 2)* = %
2More precisely, the infinite temperature charge-charge correlations, captured by c(z,t) =

(Q(z,)Q(0,0)) p=o.

13 As discussed in Section 2.3, taking into account corrections to the diffusion equation, one would find
that c¢(z,t) has subleading power laws apart from the leading t71/2. These would translate into subleading
corrections in the emission rate of ballistic fronts.
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equation of motion for pg itself,
Oupr(x,t) = v (2, 1) + D3R (2, 1) + DO pR " (1), (820)

which shows that the ballistic part obeys the biased diffusion dynamics we derived previ-
ously, while the diffusive part simply diffuses.

Note that while these hydrodynamic equations provide a good description for the spread-
ing of operators that correspond to densities of the conserved quantity, they miss effects
that arise for other operators. In particular, for a ‘charged’ operator, such as crar , the
operator weight pr does not directly couple to the conservation law (p]}%ﬂ, and thus the
source term in Eq. (8.19), vanishes at all times), and is therefore expected to behave as
in the systems without symmetries we discussed in Part I. Nevertheless, as we have seen,
the OTOCs between this operator and a conserved density still picks up the effect of the
hydrodynamic tails behind the front, which are hidden in the detailed structure of the
operator, and therefore do not appear in pg itself. Instead, they point to the fact that
even U(J{ only approaches ‘local equilibrium’ behind the front in an algebraically slow man-
ner. In this sense, OTOCs capture more details of the dynamics than merely the endpoint
densities, unlike the case without symmetries, where the fact that the operator behind
the front looks almost completely random provided a simple connection between the two
quantities.

8.3. Finite chemical potential

One question of great interest is how the behavior of OTOCs changes with temperature.
On general grounds it is expected that at higher temperatures many-body systems behave
more chaotically as there is effectively more states to scramble over. In Ref. [239] a
temperature dependent upper bound was derived for the growth rate of OTOCs (the
‘quantum Lyapunov exponent’) which is known to be saturated in certain holographic
models. However, as we have seen in Chapter 4, for systems with local interactions and
finite on-site Hilbert spaces, the Lyapunov exponent seems to vanish quite generically; as
such, not much is known about the detailed dependence of out-of-time-ordered correlators
on temperature in these systems [249]. While temperature is not well-defined for the
random circuits we study, due to the lack of energy conservation, it is plausible that the
chemical potential p can play a similar role, setting the equilibrium entropy density of
the system and thus effectively limiting the size of the Hilbert space available for the
dynamics. For example, taking the u — oo limit projects it down to a single stationary
state, analogous to 7" — 0 in conventional systems. On the other hand, p — 0 is equivalent
to the infinite temperature limit.

Motivated bu this, in this section we extend our discussion from the properties of OTOCs
in the infinite temperature state y = 0, discussed so far, to the case of a finite chemical
potential g > 0. Our results are as follows. i) We show how the finite chemical potential
affects the long-time saturation value of the OTOC and use the superoperator formalism
developed above in Section 8.2.2 to interpret this as a form of thermalization on the space
of operators. ii) We confirm our prediction for the saturation values in the random circuit
model and show that the hydrodynamic tails observed at p = 0 are also present at small
but finite chemical potential. iii) We examine the limit ;1 — oo, and find that in this case
the OTOC spreads out diffusively as a function of space and time, as opposed to having
a ballistic light-cone seen in previous sections. In this somewhat special limit, the OTOC
can exhibit a double plateau structure: it initially relaxes to a value different from the one
predicted in i), only decaying to its final saturation value on time scales O(L?); we refer
to this initial relaxation as a ‘prethermal plateau’. iv) Through a perturbative expansion,
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8.3. Finite chemical potential

we show that the p — oo results, including the diffusive space-time behavior and double
plateau structure, can survive at finite p to times ¢t ~ (’)(62”).
We begin our discussion by rewriting the OTOC, originally defined in Eq. (8.2), as

tr (Vf(t)v“vw(t)vv)
tr (e—“Q) 7

where we defined V = e~ 19Ve~ 1% (this is similar to the regularized version of the OTOC
introduced in Ref. [239]). Thus we see that the effect of finite chemical potential can be
incorporated entirely into modifying the boundary conditions of the partition function
defined in Eq. (8.8); the > 0 boundary conditions penalize states (of the four-layer
system) with large total charges. We can therefore easily generalize the calculation of the
classical partiton function, originally introduced in Section 8.1.1, to the case with finite u.

VIOWIV ()W), = e>Av+iw) (8.21)

8.3.1. Long-time saturation of OTOCs

Before examining the time evolution of OTOCs at finite i, we derive some analytical
results on their expected long-time behavior. For the purposes of this subsection, we
return to the definition of the OTOC in terms of the squared commutator (8.1). We will
show that the saturation value that the OTOC approaches as t — oo depends non-trivially
on both the chemical potential and the type of operators considered (i.e., their charges
Av,w). Notably, we will show that the out-of-time-ordered part has a non-zero saturation
value for p > 0 if either A\yy =0 or Ay = 0.

As a starting point of this calculation, we will assume that over vast time scales, well
in excess of the system size, our local random unitary dynamics for the OTOC becomes
indistinguishable from non-local dynamics with the same conserved quantity Q An anal-
ogous statement is known to hold for a random circuit without symmetries [600, 601],
which approximate finite moments of the Haar-distribution at long times, and therefore it
is natural to assume that the same would happen in our case for each symmetry sector.
Thus we will estimate the long time value of Eq. (8.1) by taking V (t) = Ut (t)VU(t) where
U is a unitary that conserves Q, but which is otherwise completely Haar random in each
symmetry block, without any notion of locality. Averaging the OTOC over such unitaries
should yield the saturation values CXW (tso). In the limit of large system size, provided

V,W are operators with subextensive charge (which automatically holds in the case of
interest, where V', W are local) this approach yields:

CIW (toe) = 5V (WIW ) (VL V)4 e (W, W VIV, + 0(U/L),  (8:22)

where VVH = ZQ %tr (PQW) is the part of W that is diagonal in charge and W, =

W — Wll is the off-diagonal part. The behavior of Eq. (8.22) as a function p for different
OTOCs of interest is shown in Fig. 8.8. Note that Eq. (8.22) indicates that for u # 0, if
one of the operators involved in the OTOC has non-zero overlap with Q, then the out-
of-time-ordered part does not saturate to zero, i.e., ]-'X%(too) # (0. This fact might also
be of relevance for Hamiltonian systems if the operators considered overlap with the local
energy density.

We can gain some further insight into the meaning of Eq. (8.22) by relating it to the
superoperator formalism developed in Section 8.2.2. As we show in App. B.3, the satu-
ration values, and indeed the long-time value of any superoperator, can be understood as
a form of thermalization, wherein the initial state (in operator space), |V (0))(V(0)], for
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Figure 8.8.: Long-time saturation values of different OTOCs C"'V', predicted by Eq. (8.22),
as a function of the chemical potential u.

the operator V = e~V e=1Q introduced in Eq. (8.21), becomes at long times locally
indistinguishable from the ‘thermal’ state

= = ~ 4~ e_%Q e_%Q ~ 4~ e (E +R )
V(b)) (V ()] = tr (VHTVH)| >i 4 (viv,) “ZQZQ (8.23)

where 7, = tr (e‘“Q). The latter part of this expression in Eq. (8.23) is none other

than the Gibbs ensemble with respect to the conserved quantities L, R¢ defined in Sec-
tion 8.2.2. This result suggests (in a manner we detail in App. B.3) that when considering
objects like OTOCs or operator weights, the usual notion of thermalization should be
supplemented by considering that of equilibration in operator space, as defined above.

The above result relies on averaging over all possible charge-conserving time evolutions
without restrictions of locality, which is a valid approximation at time scales long compared
to the system size. One might expect that this saturation value is in fact approached on
a much shorter, L-independent time scale. This is indeed the case for example at © =0
where the OTOCs relax to the above predicted long-time values either exponentially or as a
power law, as we showed above. We observe a similar behavior at sufficiently small u, as we
show in Section 8.3.2. In the limit of ;4 > 1, however, we find that the saturation of certain
OTOCs can take a time which is proportional to the mean collision time between particles,
and in the limit 4 — oo, the long-time value of the 6t6" OTOC in particular deviates
from the above prediction by an O(1) value in an infinite system. For a finite system,
this means that the OTOC first saturates to a prethermal plateau and only approaches
its final value on a time scale that grows as ~ L. At 1 < u < 0o, the plateau eventually
crosses over to the predicted value, but only on time scales that are large compared to the
average inter-particle spacing. We discuss this in Section 8.3.3.

8.3.2. Relaxation of OTOCs at i ~ O(1)

We now confirm the predictions of the previous subsection regarding the long-time sat-
uration values of OTOCs at finite u, by computing their time-evolution numerically in
the random circuit model. We also show that the relaxation to these long-time values ex-
hibits the same hydrodynamic tails (at least for small p) as the ones observed previously
in Section 8.1.2.
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8.3. Finite chemical potential

As discussed at the beginning of Section 8.3, the mapping of the average OTOC to
the classical partition function problem remains intact in the presence of finite u, except
for some additional Gibbs factors which can be incorporated into either (or both) of the
boundary conditions. We can then evaluate the average OTOC using the same tensor
network methods that we used at ;x = 0. The results for the OTOC between operators
Zo, Zo on the same site are shown in Fig. 8.9. We find that the OTOC indeed saturates
to the value predicted by Eq. (8.22). Interestingly, for p = 2, the OTOC first drops
below this value and then approaches it from below. Moreover, by plotting the distance

from saturation, | FZ0% (t) — F 50Z0 (too)|, we find that the hydrodynamical tail of the form

fuz 0%o(f) — ]-'NZ‘)ZO (tso)| o< t=1/2 is present also for finite small ;2. Namely, we observe that

the p = 1/2 OTOC decays in exactly the same manner as the one at y = 0 , which has
diffusive relaxation as discussed at length in the previous sections. We find deviations
from the t~1/2 behavior for larger chemical potentials, although these might correspond
to some intermediate-time behavior. As we discuss in the following subsection, the finite
1 behavior of OTOCs at short times can be very different from the one decribed so far in
the u = 0 case.

N 1.0g e . 100,

LS =

o (0.8 Weromnenessennen oo eesonoeeesss =

06

.6 e

< ;107!

00.4;-- Rl s s s s s s s s s s s s s s s e R N A A A A e e .. —

> £

@ Ny

£ (.2 S,

ES IIIIIIIII IR R R RN NN NNNENENNENNEN., ‘&%

B | S o e,
0 5 10 15 20 10 10 10

time ¢ time ¢

Figure 8.9.: Time evolution of the ZZ OTOC on site zero for chemical potentials 1 =
0,1/2,1,2 in the random circuit model. The left panel shows the OTOC
approaching the saturation value predicted by Eq. (8.22) (dashed horizontal
lines). For p = 2 the OTOC tends to the long-time value from below. The
right panel shows the distance from this equilibration value as a function of
time. The lines for 4 = 0 and p = 1/2 are parallel, indicating that the latter
also exhibits the diffusive ¢~/2 decay discussed in Section 8.2.

8.3.3. 1> 1 and OTOC diffusion

We next turn our attention to the behavior of OTOCs at low fillings, or large chemical
potentials, and argue perturbatively that there is an additional structure arising in this
limit, wherein the ballistic OTOC front does not appear at times that are short compared
to e2#. Moreover, certain OTOCs (F? 7" in particular) can initially relax to a value
different from the one predicted in subsection 8.3.1, only approaching their long-time
limit at ¢ > e?~.

As discussed in Part I, and in Sec. Section 8.2.1, in the infinite temperature ensemble,
i.e., at u =0, OTOCs are closely related to the problem of operator spreading, sampling
over all coefficients appearing in Eq. (8.10) with equal measures (see Eq. (8.11)). This
explains the ballistic spreading of OTOCs, which in this language is a simple consequence
of the fact that there are exponentially more long Pauli strings than short ones. However,
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Chapter 8. Operator spreading with diffusion

as i becomes larger the OTOC will be increasingly dominated by states with a few charges.
Here, we set out to explain how this affects their space-time structure and saturation
behavior in the limit g > 1. In this limit we can expand the OTOC in powers of e ™#
and find that the terms in this perturbative expansion describe a diffusively, rather than
ballistically, spreading OTOC. This diffusive behavior is exhibited by the three lowest
orders of the expansion, and we conjecture that it survives up to a time scale t ~ O(e?*),
at which point the perturbation theory breaks down. While the method is only well
controlled in the p > 1 limit, there is excellent qualitative agreement between the results
of this section and those from TEBD even when p ~ 3 (see Fig. 8.11). Thus, we believe
the results in this section could be useful in developing a qualitative description of the
early time behavior of OTOCs in low temperature strongly coupled systems.

The starting point of the perturbative description is given by expanding the boundary
conditions in orders of e #/4 as

L
e 59 =T] (pr n e—%QT) P=1-0,. (8.24)
r=1

When expanding this product, the different terms correspond to different number of ‘par-
ticles’, as defined in Section 8.1.1 (see Fig. 8.2 in particular). Since the total number of
such particles is conserved during evolution with the circuit, it has to be the same in both
boundary conditions. Gathering all terms with the same power of e™#, we find that the
average value of the OTOC can be expanded as a power series of the form

FYW(t)y =Y e MR (1), (8.25)
N

where the O(e~"#) term corresponds to initial and final conditions with 2N + Ay + Ay
particles. F ‘jVW(t) can then be evaluated by considering the same partition function as
defined in Section 8.1.1 but with the boundary conditions restricted by the total number
of particles, which can therefore be more efficiently calculated, even using exact diagonal-
ization techniques. Note that, since for p > 1 the average density of particles is n ~ e™#,
Eq. (8.25) is effectively an expansion in the charge density.

Here we focus on the 6767 OTOC which has a non-trivial behavior even at zeroth
order; other OTOCs show similar features [3]. The zeroth order contribution can be
computed from a random walk problem involving a pair of particles that annihilate upon
meeting each other, which has an exact solution as we show in App. B.4. One particularly
interesting property of the solution is the absence of a ballistically propagating front.
Indeed, as suggested by the formulation of the problem as a two-particle random walk,
the spreading of the OTOC front is entirely diffusive, depending only on the combination
r/v/t, where r is the spatial separation of the operators in the OTOC. We demonstrate
this in the left panel of Fig. 8.10. This result is in contrast to the behavior seen at u =0
in Fig. 8.3 (and general expectations of ballistic propagation), and as we argue below is a
property of the perturbative expansion that is in general valid up to a u-dependent time
scale.

Furthermore, if we consider the same OTOC at a fixed distance r as a function of time,
we find a double plateau structure: it first saturates to the value 3 — 1 on an O(r?/D)
timescale, where D is the charge diffusion constant defined by Eq. (7.4), and only goes
to zero, as predicted by Eq. (8.22), when the particles reach around the whole system,
at times O(L?/D). This is illustrated on the right panel of Fig. 8.10. As we show in
App. B.4, this latter result, the non-commutativity of the L — oo and the ¢ — oo limits,
can be understood from the fact that in an infinite system two random walkers have a
finite probability of avoiding each other forever, while they have to meet eventually if
the system is finite. Moreover, the mapping from the OTOC to the above random walk
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Figure 8.10.: The OTOC F between &, and ;" at infinite chemical potential. Left: The
OTOC as a function of initial distance r for times ¢t = 50, 100, ...,500 in an
infinite system. The OTOC spreads diffusively and saturates to a ‘prether-
mal’ plateau behind the front. The inset shows the data collapse when the
position is rescaled as 7 — r/v/t. Right: The OTOC first saturates to the
aforementioned prethermal value, 3 — 1 (dashed horizontal line), as 1/v/%.
Then at a later timescale, t ~ L?, it decays to zero. At late times its value
decreases as exp(—m?t/L?). The red dashed line shows the next order pre-
diction at p = 5, which indicates that the plateau survives up to a time scale

that diverges with pu.

problem also holds if we consider similar random circuits in higher dimensions, in which
case the probability for crossing paths is smaller, and the deviation from the thermal
expectation value in the thermodynamic limit is even larger.

Computing the next term, .7-"(”1;”+, which is of order O(e™#), we find that it increases

as vt up to an O(L) value, as shown in the inset of Fig. 8.11. Similarly, we find that the
ratio .7-"(”2;"+ /]—'E’lJ)r”+ of the second and first order terms (not shown here) also increases

as v/t. This suggests that the perturbative expansion is valid up to a time scale of order
t ~ €, at which point all terms become of comparable size. This time scale has a
simple physical interpretation. e* &~ 1/n is the average spacing between particles. Since
individual particles diffuse, their mean collision time scales as quadratically with their
distance, making it proportional to e?*. We thus find that the perturbative expansion
breaks down when the interactions between particles become relevant.

While the second order contribution does lead to a speed-up of the spreading of the
OTOC compared to the u = oo result shown in Fig. 8.10, it is still diffusive as also
illustrated by the same inset. This suggests that the diffusive behavior persists up to the
aforementioned O(n~2) time scale, that is up to the mean collision time. Therefore, the
6767 OTOC will saturate to the prethermal plateau seen in Fig. 8.10, if p is sufficiently
large, indicating that the scrambling time [239, 259] associated to saturation of the OTOC
is bounded by the time it takes for the particles to interact. While the fact that single-
particle physics is diffusive is somewhat particular to our noisy setup, it is natural to
expect that in deterministic systems one would also have separate regimes of different
OTOC behavior at times short (long) compared to the collision time. Recent results
support this conjecture [602].

As shown by Fig. 8.11, the expansion up to O(e#) agrees well with numerical TEBD
results even for 4 = 3 at short times ¢ < 7. To confirm the results from the perturbative
expansion we also computed the 676+ OTOC exactly at different finite y, using the exact
partition function (8.21). We find that by increasing u, it becomes harder to converge in
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observe an approximate collapse of the data when (1(3 " /y/t is plotted as a
function of r/v/t, indicating that the OTOC is still diffusive in nature.

the tensor-network evaluation of the partition function, limiting us to relatively small u
and short times. Nevertheless, we observe a pronounced slow-down of the OTOC spreading
even for u = 2 up to times t ~ 20, as shown in Fig. 8.12.

In summary, we find that a variety of intriguing phenomena can occur in OTOCs at
early times when the available space for the dynamic is restricted by a finite, large chemical
potential. The most robust of these seems to be the initial diffusive spreading of the OTOC
at early times. Whether this initial behavior has some bearing on the shape of the OTOC
front at later times is an interesting question for further study. Finally, let us comment
on the applicability of our results for deterministic dynamics. At high charge densities,
or small chemical potentials, we expect that our previous arguments continue to hold,
indicating that a strongly interacting deterministic system should appear effectively noisy
for the slow variables. Therefore, the result that increasing the chemical potential leads
to a decrease in vg should generalize. This is also consistent with a subsequent paper,
Ref. [597], where the authors also find a pronounced slowdown of the butterfly front
with decreasing temperature in a Hamiltonian system. The situation is different in the
large-p limit. In this case, at early times, the interactions of the particles are negligible,
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Figure 8.12.: Space-time spreading of the 6767 OTOC F,° " for different the chemical
potentials u = 0,2,5. The ballistic light cone observed for u = 0 slows down
and gives way to a diffusively spreading OTOC at large p.
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so the dynamics is dominated by single-particle physics. In our case, individual particles
behave diffusively due to the noise inherent in the circuit, which led to the lack of ballistic
propagation we observed above. In non-random systems, on the other hand, diffusion
originates from interactions, so at early times we expect to see a ballistic front propagating
at the single-particle group velocity'15. The behavior of deterministic circuits at finite
filling was studied in a recent paper [602]; interestingly, the authors claim that there is
an analogue of the early- to late-time cross-over we observed in the random circuit, even
in the deterministic case. There, the initial free-particle dynamics eventually crosses over
to a late-time regime, dominated by collisions; this latter regime has a much smaller vg,
proportional to the charge density, which becomes arbitrarily small as y — 0o, somewhat
reminiscent of our random circuit results.

MNote that, while in such noninteracting systems, a ballistic operator front exists, there is no scrambing
of the operator, in the sense that it becomes a superposition of only simple, local operators, without
populating long, non-local Pauli strings. This manifests in the OTOC C decaying back to zero after the
front has passed, instead of saturating to a finite value as in chaotic systems.

5This is true on systems where interaction effects dominate over disorder. One can also find diffusive
transport in non- (or weakly) interacting systems as a consequence of particles scattering off impurities
in three dimensional solids (while Anderson localization suppresses transport altogether in 1 and 2D). It
would be interesting to see if our results in this section bear any relevance for these systems.

99



9. Dissipation-assisted operator evolution

In the previous chapter, we discussed the question of operator spreading, assuming that
the underlying transport properties are well-described by diffusion, as was the case in our
random circuit models. Here, we shift our attention to the issue of how such dissipative
transport emerges from unitary dynamics in the first place. As we saw, non-local operators
effectively form a ‘bath’ that is necessary for dissipation to arise. Here, we aim to shed
some light on the internal behavior of this effective bath, and how it effects the details of
transport, such as the precise value of the diffusion constant. Our discussion culminates in
an explicit numerical scheme for calculating transport properties, which we use to calculate
diffusion constants of various deterministic models with a very high precision.

In Section 8.2, we developed a simple picture of the dynamics of a conserved density, such
as 2 (t). It splits up into two components, a diffusive part, made up by similar densities
Z,, and a remaining part which spreads ballistically. The dissipative nature of diffusion
manifests itself in a slow conversion of operator weight from the former to the latter.
As appealing as this picture is, and while it appears to correctly capture the qualitative
features of OTOCs, it certainly misses some important features of diffusive dynamics.
Crucial of these is the issue of backflow, from longer to shorter operators. In the random
circuit, we were able to calculate the behavior of the diffusive part by considering a simple
‘1-particle’ random walk (Eq. (7.2)) in the space spanned by the local densities {Z,},
without having to consider more complicated processes, where Z first grows to a multi-
site operator and then shrinks back to an on-site density (consider, Zo — &ar o, — 71, for
a simple example). The reason for this simplification in the random circuit case is clear: it
is due to phase cancellations. These contributions come with random signs, and therefore
quickly average to zero'.

The situation is quite different in a deterministic system: in that case, the dynamics
within the subspace of local densities is coupled to the dynamics of larger operators, due
the the aforementioned backflow events. At first sight, it would therefore seem that in order
to correctly capture the diffusive transport, one would need to simulate the full many-body
dynamics. However, there are physical reasons to believe that this is not the case, and
that the effect of backflow is limited to processes where the operator never becomes too
large. First of all, note that one expect diffusive transport to set in after some initial local
thermalization time, ¢, which is an O(1) quantity in the strongly interacting regime we
wish to consider. It therefore stands to reason what the effect of backflow from operators
of size > vptiye should not play a significant role. One can argue for this, on an intuitive
level, using the lessons from the random circuit case. Even if there is no explicit noise in
the dynamics, dephasing nevertheless arises due to interactions, and leads to cancellations
between the contributions from the large number of different possible paths in the space
of operators. This discussion is very similar in spirit to the approximations that led to the
hydrodynamic equations in Section 2.3: there is a separation of scales between ‘slow’ and
‘fast’ processes, the latter being characterized by an autocorrelation time that is set by
microscopic scales. One then only needs to consider backflow processes that occur within
this relatively small time window. In the following, we will to develop an efficient scheme

!Note that not only is the average contribution from these processes zero, but their typical size is
also very small after some early-time behavior. This can be deduced from the fact that the variance

—5 2
(cgg (t))2 - (cgg (t)) quickly becomes negligibly small; see Fig. 8.6.
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for incorporating backflow effects to compute transport properties numerically with high
precision. First, however, we make a small detour, and discuss a way of making the
intuition more precise.

9.1. The memory matrix formalism

Before discussing our numerical scheme, we first review the memory matrix formalism (also
known as projection operator technique) of Zwanzig and Mori [279, 293, 335-337, 339].
While we will not use this directly, it provides a very useful conceptual framework in which
to understand the kind of approximations we will make below.

Our goal is to calculate dynamical correlations of the form Cgp(t) = (On(t)Op)eq, evalu-
ated in an equilibrium thermal ensemble with respect to the Hamiltonian H that governs
the dynamics. We will be interested in the case when O, are local densities of some con-
served quantity; as we saw in Section 2.3, Cy(t) then contains all the information needed
to characterize transport in the system, at least in the linear response regime?.

The starting point is to rewrite the correlation function as a propagator in the space of
operators of the form

Cab(t) = (Oa(t)Op)eq = (Ople™|Ou), (9-1)

where £ is the Liouvillian superoperator, acting on an operator O as L[0] = —id;|O) =
—i[H, O] and we have defined an inner product® between operators as (Oy|O,) = <(’)£(’)a)eq.

The next step is to split the space of operators into two parts, one containing ‘slow’
variables and another containing ‘fast’ ones. At this point, this distinction is completely
arbitrary, except that the O, whose correlations we wish to compute should be included
among the slow variables. If this is granted, the following formal manipulations go through
independently of which other operators we include in the ‘slow’ subspace. However, as we
shall soon see, the formalism is only useful if there is a true separation of scales between
the two, with autocorrelations within the fast space decaying much more rapidly. One also
wants the slow subspace to be sufficiently small, containing only polynomial in system size
many operators. As a simplest example, one could just imagine the slow space being
spanned entirely by the conserved densities. We shall return to this question below.

Given a set of slow variables, {O,}, one can define a projection superoperator, P that
projects onto the subspace spanned by them®. The fast subspace then corresponds to the
projector Q@ =1 —"P. The key step in deriving the memory matrix formalism is to rewrite
the time-evolution as

t
eft = 9Lt 4 i/o dt' et P Let QL) (9.2)

This is an exact operator identity, which can be proven by either taking a time derivative,
or by performing a Laplace transformation on both sides. €’2£t describes propagation

2Note that at infinite temperature, Cop(t) is also the operator spreading coefficient from Op to O.
These correspond to what we called the ‘diffusive’ part of the operator.

3This is indeed an inner product when the equilibrium density matrix has full rank, i.e. at any non-
zero temperature. Also, note that in most discussions of memory matrices, a different definition is used,
although the two coincide at infinite temperature. At the general level of discussion here, the precise choice
of inner product is unimportant.

4The observables @, will typically be non-orthogonal, as characterized by the overlap matrix S, =
(Op|O0) = (O] O4)eq, given by their thermal correlations. To get the projector P one can instead define
the orthonormal basis [0a) = 3°,(S7?)as|Os), and then define P = 3, |04)(O4]. Note that this
contains an implicit temperature-dependence.
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entirely within the fast subspace. The intuitive meaning of the above equation is therefore
that t — ¢/ is the first time after 0 when the operator comes back into the slow subspace.

We can now use Eq. (9.2) to write down an equation of motion for |O,). Using also
that P = ). ]0.)(O.| (assuming, for simplicity, that we are working with variables that

have already been orthogonalized), we arrive at the following key expression:

Ot = 3 2 O0) = 3 / At Taclt = | O) +1fut)  (93)

Qac = <OC’at G>
Toe(t — ') = (8;0.] Q952 Q]0,0,)
[fa(t)) = Q"2 Q|8,0,).

This equation of motion tells a simple story, especially if we keep in mind the intuition
behind the separation of slow and fast variables. €2 describes the intrinsic, non-dissipative
dynamics of the slow subspace, and can often be ignored in practice. I' is the heralded
memory matriz. It describes processes wherein a slow variable at time ¢’ evolves to another
slow variable at time ¢t propagating entirely through the fast subspace. This is exactly what
we described by the word backflow above. Finally, |f) is a noise term, which captures the
fluctuating force exerted on the slow variable by the fast degrees of freedom. In this spirit,
Eq. (9.3) is also sometimes called a generalized Langevin equation. This equation makes
clear the intuition behind fast and slow modes: if there is indeed a separation of time
scales, then on the times relevant for the dynamics of O, the memory matrix will decay
rapidly and the dynamics will be well approximated by a Markov process. Notably, the
correlations of the noise are also given by the memory matrix,

(fe(t)]fa(t)) = Tac(t — '), (9-4)

an example of a fluctuation-dissipation relation.

To connect with our previous discussions of diffusion, it is useful to consider a case
where the slow subspace contains only local densities of single conserved quantity, ¢(z,t).
The label a then simply becomes the spatial coordinate z, which we now treat as a
continuum variable for simplicity. Let us take the expectation value of the operator in
some unspecified state p ((O) = (p|O), using the infinite temperature scalar product). The
equation of motion then reads (ignoring the € term and assuming translation invariance)

Oz, 1)) = —/dx’/o AT — 12— )G ) + (Fla1). (9.5)

Comparing this with Eq. (2.12), we recognize that I'(z,t) is essentially the space-time
dependent diffusion constant D(x,t). After a Fourier transform, the two are related as
I'(k,t) = k2D(k,t). The diffusion constant that characterizes transport can be obtained
by taking appropriate limits of this function. Eq. (9.5) also contains a noisy driving term
which we neglected in Eq. (2.12).

Another way to connect Eq. (9.3) to transport is by considering the correlations with
which we started. Since by definition, |f,(t)) lives in the fast subspace, it drops out and
one simply finds

at ab ZQacch Z/ dt I\ac - )ch(t/)‘ (96)

®One could also write down a slightly modified version of Eq. (9.2) where the order of £ and

e 1L (=) g exchanged. In that case, we would parametrize the time evolution in terms of the last time

when the operator is in the slow subspace before t.
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9.2. Dissipation-assisted evolution

This shows that indeed I' is the key object, that contains all the linear response transport
properties of the system.

As emphasized above, the splitting of the space of operators into slow and fast can be
done in any number of different ways. The conceptually simplest choice is to make the
slow subspace contain the conserved densities and nothing else, but this is not necessarily
the best solution in practice. Instead, one would like to make the separation of time scales
between the two as large as possible, while keeping the slow subspace small enough to be
manageable. One might, for example add products of local densities (or, at least, they
small momentum components) also to the list of slow variables. This suggests two natural
ways of approximating the exact formula (9.6). One is to work with a fixed slow subspace,
but truncate the time integral in the memory term at some time ¢ —t' < t;em. One would
then hope for a quick convergence of the result as a function of increasing fyem. The
other option is to fix a relatively small fyem, but gradually increase the size of the slow
subspace, until the characteristic time of the memory matrix becomes sufficiently small.
In the following, we will explore a combination of these two approaches, albeit in a slightly
modified language.

9.2. Dissipation-assisted evolution

While the memory matrix formalism provides a conceptually elegant way of connecting
macroscopic transport properties to the underlying microscopic evolution, it does not
directly lend itself to ab initio calculations, except in particular cases where the system
is close to some fine-tuned point [340, 341]. Here, we describe a scheme for numerically
approximating dynamical correlation functions for generic models in 1D, building on the
intuition developed above, regarding backflow and memory effects.

Our method can be thought of as a way of generating approximations to the mem-
ory matrix with increasing accuracy, controlled by which contributions to Cgy(t) we keep.
Based on the notion that the ‘fast’ degrees of freedom act as a bath for the slow ones, we
aim to construct an explicitly non-unitary evolution for initially local operators, designed
to correctly capture the parts of this operator that contribute to the hydrodynamic cor-
relations. In particular, our discussion above leads us to believe that the most relevant
contributions should come from short Pauli strings, acting on at most a handful of sites.
Therefore, we shall attempt to capture these correctly, at the expense of larger operators
which we expect to have very short memory times. We will focus on the case of infinite
temperature, although we expect the method to work well at finite but large temperatures
as well.

9.2.1. Artificial dissipation in operator space

Using the assumption that backflow effects are weak, we aim to apply a truncation that
affects non-local operators, without disturbing local ones. Let us denote ¢, the support of
a Pauli string o#, i.e., the number of sites where it acts differently from the identity. We
shall refer to this as the ‘length’ of the Pauli string. We introduce an artifical dissipation
by discarding non-local operators. This is done by the dissipation super-operator Dys .,
parametrized by a cutoff length £* and a dissipation strength ~, which acts on a Pauli
string as

ot if e, </¢
] — Bo—=
Pralr)= {8_7(4‘_@*)0“ otherwise. (97)

The cutoff length is introduced to ensure that the physically most relevant local operators,
such as conserved densities, are not affected by the dissipator. The strength + allows this
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Figure 9.1.: (a) Sketch of the non-unitary evolution defined by Eq. (9.8) as a sum over
paths in operator space. In the hard projection limit, At — 0, v — o0, all
paths that leave the £ </, subspace at any point are immediately discarded.
Keeping v = oo, but making At finite, we keep paths that wander off from
this subspace but return before the next integer multiple of At. Finally, when
both At and ~ are finite, all paths enter the calculation of the correlator, but
the weight of those that spend a lot of time outside the ‘slow’ subspace is
gradually reduced. (b): The operator (MPO) ¢; can be reinterpreted as a
state (MPS) |g;) on a doubled Hilbert space. (c): One period of the DAOE
as a tensor network. |g;) is evolved with the TEBD algorithm up to time At.
Then the dissipator Dy,  is applied as a bond dimension ¢, + 1 MPO.

to be a soft cutoff and lets the operator explore more of the full Hilbert space.

We then define a modified time evolution, by applying the dissipator every At time.
That is, at time t = NAt + 6t (for N € N and 6t < At), we consider the time evolved
operator

~ i i N
1G;(1)) = €% (Dy, ,e™2) 7 |g5), (9.8)

where the tilde is meant to denote that we are not dealing with the true, unitarily evolved
operator. We name this the dissipation-assisted operator evolution, or DAOE for short. In
this setup, At provides yet another way of tuning the strength of the dissipation, recovering
unitary dynamics in the limit At — co. Intuitively, At and 1/v play a similar role, limiting
the amount of time an operator is allowed to spend outside the £ < £* subspace. Indeed,
one can show that in the limit v < 1, the dynamics only depends on the ratio v/At% [4].

We can think of DAOE as summing up the contributions of the memory matrix succes-
sively, or alternatively, in a path integral language, depicted in Fig. 9.1. ¢* functions as
the cut-off between slow and fast variables”, while At and 1/ restrict the memory time

50ne could also make the dissipation continuous in time, by taking the limit At — 0 while keeping
At/~ fixed. We shall not explore this further here.

"In principle, we could further restrict the slow subspace to only contain products of conserved densities;
this is easily done in the case of spin/charge conservation, but less so when we consider energy density.
Moreover, even in the U(1) case, there are off-diagonal operator that have long-time tails, such as o; 0. 11
which has a characteristic ¢3/2 decay. Therefore, we find it better to keep all short operators and only
dissipate long ones.
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9.2. Dissipation-assisted evolution

we allow. In the hard projection limit, At — 0, v — oo, we are summing up only those
paths that never leave the slow subspace; this is analogous to the term  in Eq. (9.6)8.
Making either At or « finite allows for memory effects, or paths that wander out of the
slow space. but limiting the time they are allowed to spend there, cutting off the memory
matrix at time tpem ~ At/7.

9.2.2. Tensor network representation

How to calculate |G;(t))? By making the cut-off soft (as opposed to a hard projection,
v — oo and At — 0), we in principle need to work in the full space of operators. As
such, it is not immediately obvious whether we have gained anything by introducing the
dissipator. However, since the weight associated to large Pauli strings is significantly
reduced, we hope that |g;(t)) can in fact be efficiently compressed, without having to keep
track of exponentially many coefficients.

A simple way of going about this, which also allows us to avoid finite-size effects, is
to represent it as a matrix product state, which can be obtained from the more natural
matrix product operator (MPO) representation, by combining the two physical legs of
the local tensors into a single leg (see Fig. 9.1(b)). The unitary evolution of this state
can be calculated straightforwardly with standard MPS methodw, for example by an
appropriate version (doubling physical Hilbert spaces) of the TEBD algorithm mentioned
in Section 2.4. In this language, the dissipator itself becomes an MPO on the enlarged
Hilbert space; applying this to an MPS is also straightforward.

Dy, ~ in fact has an exact MPO representation with bond dimension ¢, + 1. We label
the local basis ‘states’ by n = 1, X, Y, Z (generalization to higher spin is straightforward).
We then write the local MPO tensor, gg‘,, as a matrix acting on the virtual indices
a,b=0,1,...,¢,. They read

1 01
T WX _YY _pyzz . (9.9)

1 e

all others being zero. The MPO is contracted with the vector vy, = (1,0,...,0) on the
left, and vg = (1,...,1,1) on the right. It acts as a ‘clock’, shifting the virtual index
by one for every non-trivial operator, until ¢, is reached, and multiplying the factor e™”
afterwards. It is easy to check that this reproduces the desired result.

In the MPS language, performing singular value decompositions across various bonds,
and throwing away very small singular values (which is already part of e.g. the TEBD
algorithm) naturally accomplishes the compression we seek. Of course, this compression
will only be approximate, its precision characterized by the size of the singular values we
discard. Our key observation is that the dissipator stops the growth of operator entan-
glement, making it possible to follow the evolution of |G;(t)) to arbitrary times, without
significant truncation errors.

This requires some explanation. What do we mean by operator entanglement? At this
point, the reader has probably gotten used to us treating operator as states in an enlarged
Hilbert space, which the notation |g;) is also meant to emphasize. In this language, it
becomes natural to consider Schmidt decompositions of an operator, e.g. between two
halves of a one-dimensional chain (this is in fact exactly the aforementioned singular value

8Previously, we argued that € is usually negligible. This is true if we choose the slow subspace to only
consist of local densities. As we increase what we include in the slow variables, we shuffle more-and-more
contributions from I' to 2, making it increasingly important.
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Chapter 9. Dissipation-assisted operator evolution

decomposition); this is especially natural in the MPO/MPS language of Fig. 9.1(b). From
the resulting Schmidt spectrum we can then calculate the Rényi entropies of the operator,
Saldj], in much the same way as we would for a state’. As an initial local operator grows
and becomes increasingly scrambled, its entropies also grow in time. A generalization of
the minimal polymer picture [277] suggests that the von Neumann entropy of the operator
should grow linearly in generic cases'®. This implies that evolving operators is just as hard
as evolving states, in both cases one has to deal with an exponentially growing complexity,
and a finite-y approximation tends to break down at times ~ log .

However, we find that applying the dissipator reduces the operator entanglement, and
in fact this effect always becomes dominant at long times. As a result, while S1[g;(t)]
grows initially, it eventually reaches a peak and starts decreasing, as shown by Fig. 9.2(a).
This situation is reminiscent of the entanglement of a quantum state subjected to both
unitary dynamics and weak local measurements [543, 604-607]. There, one finds a phase
transition, where the entanglement grows unbounded for sufficiently weak measurements,
but saturates when the measurements are strong. Our case is different, however, in that
the ‘measurement’ realized by Dy«  is a global (weak) measurement. This means that it
reduces the entanglement more strongly than local measurements do, and it eventually
always wins over the unitary dynamics that generates the entanglement. A similar effect
for operator entanglement of a density matrix was noticed very recently in the context of
noisy quantum circuits in Ref. [608].

For our calculations, this means that if we choose our maximal bond dimension such that
log x is sufficiently large compared to the size of the peak in the operator entanglement,
then we are able to capture the evolution without significant errors up to long times. Of
course, the x one needs will depend on the strength of the dissipation, as characterized
by the parameters ¢£*,~, At. This will put a limit to how weak a dissipation we can apply
while maintaining a low error threshold. The method is useful is this dissipation is already
weak enough to allow us to make predictions about the physical (zero dissipation) limit.
We shall demonstrate that this is indeed the case for several models of interest.

Let us make an important comment here. At first glance, it might look tempting to
consider the hard cut-off limit, At — 0, v — co. This amounts to replacing the Liouvillian
with its restricted form, £ — PgpLPp«, where Py« = limy o0 Dy+. This completely
restricts the dynamics to a much smaller space of operators!!. One could then try to
gradually increase £* to converge to physical results. While we believe that such a scheme
should work in principle, it does not perform well in practice. The reason for this is that
the projected dynamics is still completely unitary (a manifestation of the quantum Zeno
effect). Therefore, there is no decrease in entanglement, Si[g;(t)] simply saturates to a
value that is limited by the projection, but grows rapidly with £*. As a consequence,
making the dissipation weaker (by either making At or ~ finite) actually makes it easier
to simulate the dynamics: it allows operators to leak outside the £ < £* subspace and be
discarded.

9First, one has to normalize the (squared) Schmidt values as Ao — Ao/ Y oaMa

OTnterestingly, for operators that have power-law decaying autocorrelations, such as conserved densities,
the entropies with index o > 1 only grow logarithmically, as logt, at asymptotic times [603]. This is
somewhat reminiscent to our result about entropies of states, which we discuss in Chapter 10. The operator
case is relatively easy to understand from our discussion of operator spreading: the largest Schmidt values
are dominated by the diffusive part of the evolving operator. Nevertheless, the entropies that are important
for an accurate MPO/MPS representation are those with index o < 1, which grow linearly.

HSuch ‘restricted state space’ type approximations have been used previously in other contexts, see
Refs. [609-611]
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Figure 9.2.: Testing DAOE on the Ising model (9.11). (a) shows how the dissipation (for
0, = 2, At = 0.25) suppresses operator entanglement (measured in units of
In2). (b) shows that the MSD (9.10) is correctly captured to long times by the
DAOE (same /£,, At; v = 0.03, using bond dimensions x = 512), by comparing
to exact results on small chains (L =9,13,17,21).

9.3. Results

We use our method to calculate the dynamical correlations between the central site ¢ = %

(we take L odd) and all other positions, Cj(t) = tr <qjcj% (t)) /N. We normalize these

such that > j C;(0) = 1. One can characterize the spreading of correlations by the mean-
square displacement (MSD),

2

E(t) =) Ci(t)j° - Z Ci)J | - (9.10)

J

Diffusive transport manifests itself in a linear growth of the MSD at long times, d?(t) o t.
This suggests defining a time-dependent diffusion constant [196, 286, 612-614] as 2D(t) =
0yd?(t). The physical diffusion constant is then D = limy_,o, D(t) (assuming L — oo first).
Further information about the frequency- and wavevector-dependence of the conductivity
can be obtained by looking at space-time dependence of C;(t) [286, 291, 295].

We study two lattice models. One is the tilted field Ising chain, we met previously in
Chapter 6,

Zi1Zj+ ZiZjsa
H:Zhjzz<gxxj+gzzj+ ¢ 32 2 ) (9.11)
J J

We fix g, = 1.4 and g, = 0.9045. At these values, we expect the model to be strongly
chaotic [269, 615], and hard to simulate exactly, due to fast entanglement growth. Here,
h; is the energy associated to site j. This is the only local conserved density in the model,
and its correlations capture energy (or heat) transport [269]. We therefore take ¢; = h; in
this case, and evolve hryi, as an MPO, according to Eq. (9.8). We perform the unitary
part of the dynamics Wi2th TEBD, using a small Trotter time-step 0.01. We take large
enough systems (L = 51) such that finite size effects are negligible at the times we study.

The other system we consider is a spin-1/2 X X model on a two-leg ladder. We denote
by 7 =1,..., L the rungs of the ladder, and use a = 1,2 for the two legs. Pauli operators
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on a given site are specified as Xj,, etc. The Hamiltonian then reads

(Xj1Xj2 +Y51Y)2). (9.12)

L
=1

L
H=Y" " (XjuXji10+YjaYit1a) +
j=1a=1,2 j

Besides energy, this model also conserves the spin z component, i Zjq. We examine
the transport of the corresponding local conserved density ¢; = Z; = (Z;1 + Z;2)/2 along
the chain. We take a system of L = 41 rungs, which is large enough to avoid finite-size
effects, up to the times (¢ ~ 20) that we simulate. In the following, we first benchmark the
DAOE method in the Ising chain, and confirm some of its properties mentioned above.
We then go on to extract diffusion constants for both models.

9.3.1. Benchmarking on the Ising model

First, we confirm the statement made above, that the dissipation leads to a decay of
operator entanglement at long times. This is illustrated in Fig. 9.2(a) for the Ising model.
The time and height of the peak increase as = gets smaller, but for any non-zero -,
dissipation dominates at long times. Moreover, we find that after the peak, S;n approaches
an O(1) value in units of In 2, independent of ¢, and -, which indicates that the operator is
increasingly dominated by the local densities, h 1 () ~ >-; Cj(t)h;. One can understand
this from the operator spreading picture discusseél in Section 8.2.4: the remaining ballistic
component at time ¢ is mostly made up by operators recently emitted from the diffusive
‘core’, which did not have time to get dissipated yet. As we have seen, the weight of these
decays as t—3/2, which is parameterically faster than the weight of the diffusive part, which
goes as t—1/2 [4].

As we said before, the decay of operator entanglement suggests that the dynamics can be
accurately captured with a finite bond dimension even up to long times. We confirm this
explicitly in Fig. 9.3. While for small y, the truncation errors encountered around the peak
time are already significant, they decrease (roughly linearly) with x (Fig. 9.3(a)). This
also shows up in the results for the time-dependent diffusion constant, D(t) (Fig. 9.3(b)).
While at small x the truncation effects are clearly visible, the curves quickly converge as
X is increased. Another way of testing the effects of truncation is by looking at whether
the conservation law (in this case, of energy) is satisfied. The exact dissipative dynamics
would maintain the normalization Ej Cj(t) = 1 at all times due to energy conservation
(assuming ¢, is larger than the support of the terms in the Hamiltonian, in this case £, > 2).
This is crucial for correctly capturing transport properties. We find that the errors in the

conservation law, as measured by |1 — )" y Cj(t)|, quickly decrease as x becomes larger

(Fig. 9.3(c)). We conclude that it is possible to simulate the dissipative dynamics (9.8)
up to long times, with a bond dimension that is independent of total system size.

Next, we benchmark that despite the dissipation, our method can correctly capture the
spreading of correlations. We do this by comparing it to exact results on small systems,
calculated using the canonical typicality approach (see Section 2.4) [113, 389, 390], for
up to L = 21 sites. In this case, finite-size effects limit the times one can reach to
t =~ 10. We compare these to the dissipative method for a particular set of parameters,
L, =2, At = 0.25,v = 0.03, which we expect to be close to being converged to the physical
diffusion constant (see below). The results for the MSD are presented in Fig. 9.2(b). The
curve from the dissipative evolution follows the exact results, and then continues to grow
linearly to much longer times, well beyond the reach of exact numerics. This is despite
the fact that at these times, the dissipation already had a large effect (as measured, for
example, by the decay of Syn), and 71% (t) is far from the true time-evolved operator.

This reinforces our assumption that backflow effects remain relatively small. Note that
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Figure 9.3.: Convergence of results with bond dimension x in the Ising chain (9.11), for
dissipation parameters ¢, = 4, At = 1, v = 0.2. (a): Truncation error
per TEBD step, summed over all bonds in the chain (L = 51 sites). (b)
Convergence of results for the time-dependent diffusion constant D(t). (c)
Errors in the energy conservation, as measured by the sum of the coefficients
of local energy density terms C}(t).

the dissipation is essential in allowing us to reach long times; for the same bond dimension
(x = 512), TEBD without dissipation starts deviating from the exact results around times
t =~ 7 — 8 due to truncation errors.

9.3.2. Extracting diffusion constants

Having established the potential of the DAOE method, we now embark on using it to
achieve a precise calculation of diffusion constants. Our approach is as follows. We cal-
culate D(t) for the dissipative evolution, and then approach the unitary dynamics by
decreasing ~y, while keeping At and ¢, fixed. We decrease v until we observe signs of
convergence, allowing us to extrapolate the results for D back to v — 0. We will estimate
the accuracy of this extrapolation by comparing different values of /..

As stated above, the value of At is in principle irrelevant, as one finds a scaling collapse
as a function of /At for small v. However, in practice, At should be small enough so
that one can follow the full dynamics up to At with the given bond dimension. It is
also numerically more efficient not to make At too small, in order to reduce the number
of MPO-to-MPS multiplications we need to perform. We find that At &~ 1 (in units of
microscopic couplings) works well.

The results for the Ising chain are shown in Fig. 9.4(a,c), for At = 1 and ¢, = 2,3,4.
D(t) saturates to a y-dependent constant. When ~ is made sufficiently small, we find that
the results converge. The last few data points are well fit by a straight line, which allows
us to extrapolate D back to v = 0. The extrapolated results for different choices of Z,
all agree to within ~ 1% error, supporting our conclusions that we indeed reached the
physical diffusion constant (in this case, D &~ 1.40). This constitutes strong evidence that
our method can successfully capture transport coefficients to a high precision.

Next, we turn to the X X ladder model Eq. (9.12). Spin transport in this model has been
studied in a number of previous works, finding clear evidence of diffusive behavior with a
diffusion constant D ~ 0.95 [430, 616, 617]. Here we show that our method reproduces
this result on much larger systems. We perform the same analysis as in the Ising model,
comparing D for different v and extrapolating back to v = 0; the results are shown in
Fig. 9.4(b,d). We find that the extrapolated results are all within the range D ~ 0.96—0.98
(even for ¢, = 1, where energy-conservation is violated). The fact that these values are
all very close to one another, and to the previous result, strongly supports the validity of
our method.

In this chapter, we introduced a numerical method to extract transport coefficients
(diffusion constants) from microscopic lattice models. Our method was inspired by the
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Figure 9.4.: Estimating the diffusion constant for the Ising chain (9.11) (a,c) and for the
XX ladder (9.12) (b,d). We fix At = 1 and use bond dimensions up to
x = 768. In (c) and (d) we show results for the time-dependent diffusion
constant at a fixed ¢, = 3 for varying -y, showing clear signs of convergence.
In (a,b) we show the estimate for D (taken as the average of D(t) in the
interval ¢ € [15,20]). Data for the weakest dissipations is well fit by a linear
extrapolation, and results for different ¢, give consistent estimates for the
physical diffusion constant. In (b) and (d), the black triangle and dotted line
represent the estimate D = 0.95 from Ref. [616].

results on operator spreading presented in the earlier parts of this chapter, neglecting
the non-local, ballistic parts of the evolving operator, but taking into account backflow
processes that occur from the ballistic to the diffusive part on short time scales. While
testing the method on more models, our results presented here, both for a circuit and a
Hamiltonian system, are very encouraging. Moreover, not only can we estimate diffusion
constants, our method also offers the possibility of gaining physical understanding of
transport in these systems. Since each data point (for a fixed value of £,,7) corresponds
to summing up a certain subset of contributions to transport, by examining the dependence
on these parameters provides a way of probing the importance of different processes.
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10. Entanglement growth for global
quenches

We now turn to the discussion of entanglement dynamics in the presence of conserved
quantities and examine how coupling to the diffusive transport mode manifests in various
quantities. In this chapter, we focus on global quenches, i.e., the evolution of initial states
with no large-scale inhomogeneities (we still allow inhomogeneities on the lattice scale,
such as Néel states). We mostly focus on Rényi entropies of index a > 1, for which we
argue that the coupling to diffusion is a relevant perturbation, leading to qualitatively new
dynamics (this is in contrast with the von Neumann entropy, where the effects of diffusion
only become apparent for inhomogenous states, which is the topic of the next chapter). We
emphasize that understanding the dynamics of Rényi entropies is a particularly important
topic in light of recent experiments [108-110] which have been able to measure Sy of time-
evolving states. As the von Neumann entropy is currently out of reach for experimental
detection (except for the smallest subsystems), it is highly desirable to understand the
possible differences between these quantities, in order to be able to appropriately interpret
experimental results. Our results below, apart from their theoretical interest, are an
important contribution to this effort.

10.1. Sub-ballistic growth or Rényi entropies

As we saw in Section 5.2, both the study of random circuit models, and general ‘hy-
drodynamic’ considerations lead to an effective long-time, large-wavelength description of
entanglement dynamics in terms of the free energy of a minimal polymer (or membrane,
in higher dimension) in space-time. One key feature of this is a linear growth of Rényi
entropies as Sy = SeqUE,t in the thermodynamic limit, with some a-dependent entangle-
ment velocity. This prediction is in agreement with numerical studies of the von Neumann
entropy in chaotic Hamiltonian systems [269] and also with general arguments that relate
the linear growth of Sy to ballistic operator spreading [256, 574] (indeed, the latter argu-
ment becomes exact, and coincides with the minimal polymer result, in the random circuit
as we have shown in Section 5.1). Here we argue that this picture changes drastically in
systems exhibiting diffusive transport: we find that S,~1 grows diffusively, as v/t, rather
than ballistically. S;, on the other hand, we expect to remain ballistic, in agreement
with the numerical results of Ref. [269]. The difference between the two arises because
entropies with a > 1 are sensitive to the presence of a few anomalously large eigenvalues
of the reduced density matrix, while S; is dominated by the many exponentially small
eigenvalues’.

10.1.1. Numerical results

First, we consider the spin-1/2 local random unitary circuit, which we have studied in
the Chapter 8 (see subsection 8.1.1 in particular). We examine the circuit-averaged pu-
rity, P, where the purity is P = e=52 = tr(pQA). This defines the annealed average Rényi

!The possibility of such qualitative differences was discussed for global cat states in Ref. [277]; here
we propose that it arises much more generally, without the need to fine tune the initial state.
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Figure 10.1.: (a) Growth of (annealed average) second Rényi entropy in a spin 1/2, U(1)-
symmetric random circuit, averaged over all product states. At long times
the growth is diffusive (o< /). Inset: the discrete time derivative ASéa) (t) =
Séa)(t +1)— Séa) (t) decays as t~1/2. (b) Geometry of the random circuit
and block structure of the gates. (c): Rényi entropies of the tilted field
Ising model (10.1), Sy (solid lines) and 254 (dots) show a similar cross-over
to sub-ballistic growth, while (d) the von Neumann entropy grows mostly
linearly.

(a)

entropy, Sy = = —log P, which, as we pointed out before, lower bounds the average,

Sy > Séa). P can be represented as a classical partition function, using the mapping
derived in subsection 8.1.1. The boundary conditions in this case are modified to capture
the purity, as outlined in Section 5.2. In particular, on the bottom layer, the boundary
conditions correspond to a string of swap operators acting on subsystem A, and an identity
on its complement. On the top layer, they are given by two copies of the initial state,
|Wo)(Po| @ |Wg)(Pp|. Note that, unlike the non-symmetric case discussed in Section 5.2,
in the U(1)-symmetric circuit, different initial product states give different boundary con-
ditions, depending on their local filling, in terms of the six local states that define the
classical partition function.

We evaluate the partition function as before, using standard tensor network methods [84,
417], making sure that the results are converged in both system size and bond dimension.
Moreover, we average over all initial product states exactly. As shown in Fig. 10.1(a),
we find that at long times, the entanglement grows as Séa) o« Vt. As we have shown
in Sections 5.1 and 5.2, in the absence of a conservation law, the same quantity grows
linearly; thus we attribute its slow, diffusive growth to diffusive transport. This is the
main result of this chapter, and we shall argue that it holds quite generically for chaotic
dynamics with a diffusive conserved quantity.

To verify this, we consider the spin 1/2 tilted field Ising model, previously encountered
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Figure 10.2.: Entanglement growth in the tilted field Ising model, starting from an initial
state polarized in the positive Y direction, evolved with the iTEBD algorithm
at various bond dimensions x. We observe a cross-over to sub-ballistic growth
in the min-entropy S, as opposed to Sy, which remains ballistic (left). This
shows up in the spectrum of the half-chain reduced density matrix, where the
largest eigenvalue is separated from the bulk of the spectrum at long times
(right).

in Eq. (6.7). Here, we consider the model without spatial disorder, and we add an extra
boundary term that helps in reducing finite-size effects?

L—1 L
H=1J Z ZoZpit1 + Z(hzZT + ho X)) — J(Z1 + Z1), (10.1)
r=1 r=1

We choose J = 1, h, = (5++/5)/8, and h, = (1++/5)/4, as the same model was previously
shown to have diffusive energy transport and linear von Neumann entropy growth [269].
Fig. 10.1(c,d) show the growth of different entropies, averaged over N = 50 (N = 20)
random product states for system sizes L = 12 — 24 (L = 26). Here we average the
entropies, not their exponentials, unlike the random circuit case. We observe a mostly
linear growth of S, as in Ref. [269]. Sy, however, has a cross-over to sub-linear growth at
long times. Although the times we can reach are limited by finite system size, the long-
time behavior is consistent with Sy o v/t. The results become clearer when considering
the min-entropy, Sa—o0, Which provides an upper bound on Sy»1 < -%5S.. We find
that S, is less sensitive to finite size effects, and exhibits a more pronounced cross-over
towards v/t growth (dots in Fig. 10.1(c)).

Similar results hold also for particular initial states, without averaging, as we now
demonstrate for the Ising model. To have a state which is both translation invariant and
corresponds to infinite temperature, we take an initial product state which is an eigen-
state of the Y Pauli operator on each site with an eigenvalue +1. Since both the state and
the dynamics are translation invariant, we can time evolve directly in the thermodynamic
limit, utilizing the infinite time-evolving block decimation (iTEBD) algorithm [417]. The
times obtainable are then limited by the maximal bond dimension x. We find a behavior
analogous to the one observed for random product states: S1 grows approximately linearly,
while S curves over to an approximately diffusive growth at times ¢ ~ 10 (left panel of

2To be more precise, the reason for adding this term is that otherwise the definition of local energy
density is different at the edges compared to the bulk of the system. By modifying the Hamiltonian near
the boundary, one can get rid of this difficulty, which makes it easier to observe diffusive energy transport
in this system, as pointed out by Ref. [269].
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Fig. 10.2). One way to think about this phenomenon is as a separation of scales in the
spectrum of the reduced density matrix, whose largest eigenvalues decay as A; ~ e_\/i,
while the majority of the eigenvalues are exponentially small, A; ~ e~ (right panel of
Fig. 10.2). The behavior of the random circuit and Hamiltonian models leads us to con-
jecture that this separation of scales in the entanglement spectrum is a generic consequence
of diffusive hydrodynamic transport. In the following we provide further justification of
this conjecture.

10.1.2. Heuristic argument

We interpret our results in terms of the following non-rigorous argument. Let us focus
on a Z-conserving, not necessarily random, circuit, with the same brick-wall geometry
of 2-site gates as shown in Fig. 10.1(b), acting on an infinite spin-1/2 chain. We write
the circuit up to time ¢ as a product of layers, U(t) = [[,.,Urr41, and consider the
bipartite entanglement at a cut between sites r and r + 1 at time ¢. One can insert a
resolution of the identity after each layer, to rewrite the time evolved state as a ‘sum over
histories’, [¢(t)) = X _1,(ry A({o(7)})|o), where A({o(7)}) is the probability amplitude
of a world history {o(7)}|o<r<¢ in the z basis. We split this sum into two parts: i)
histories for which the sites r,7 + 1 have both spins pointing up at all times 7 > fjoc
for some local equilibration time t,c ~ O(1), and ii) all remaining paths. Let |¢o(t))
and |¢1(t)) denote the normalized states corresponding to i) and ii) respectively. Then
|(t)) = colpo(t)) + c1]|o1(t)). By construction, |¢pg) can only accumulate entanglement
across the bond r,r + 1 at times before t,,. and therefore has an O(1) Schmidt rank.
Denoting this Schmidt rank by y, one can then use the Eckart-Young theorem [618, 619]
to lower bound the largest Schmidt value of |¢)) as®

max = ‘<¢0W)>| |CO + cl<¢0‘¢1>’2' (102)

We will now argue that if transport is diffusive, the RHS is expected to decay slower than
exponentially with time.

First, we want to estimate the probability |co|? that the sites r, 74 1 remain in the state
11 at all times ¢ > tjo.. The simplest approximation is to treat every | in the system as
an independently diffusing particle. For a single particle, starting at position 7’ < r, the
probability of staying within the region [—oo,r| is given by (using a continuum notation

for simplicity)
1 r—r
lref( =21, 10.3
[ s =3 (e () 103

where D is the diffusion constant. Importantly, when " < r — +/2Dt, the probability
is very close to one*. Since we have assumed that the particles are independent, the
probability that all particles remain in the region left of r is the product of the different
probabilities over choices of initial position r’. The dominant contribution comes from the
region 7/ > r — v/2Dt; the result is therefore well approximated by a product of O(v/Dt)
numbers, which is expected to decay at long times as |co|? o e~ 7VDt for some constant v,
which is readily verified by calculating the product numerically. The key element of this
calculation was the fact that only particles that are initially within some O(\/ﬁ) distance
or r have any significant probability of crossing it. This is a direct consequence of diffusive
particle transport, and we therefore we expect the same quanitative scaling of |c|? to hold
more generally in diffusive systems. To further support this, we have confirmed by direct

3 As in Chapter 6, A, denotes the eigenvalues of the reduced density matrix (in this case, for a half-chain
bi-partition), which are the squares of the Schmidt values.

4To leading order, the difference scales as a Gaussian, erf(z) = 1 —
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numerical calculation that the same scaling holds in a system of hard-core interacting
random walkers on a lattice, initiated in a Néel state. We therefore expect |co|? ~ VD
to be the generic behavior dictated by diffusion.

To bound the overlap (¢o|¢1), we can apply the Eckart-Young theorem again, this time
for |¢1), which gives |(¢o|¢1)|? < yA%Ly. Consequently, if |¢1), which corresponds to
typical histories, has Rényi entropies S,~1 that grow faster than /¢, then the second term
on the RHS of Eq. (10.2) will be negligible at long times compared to ¢y, resulting in
XA%aX pe e WVDL TIf ASL, ~ e_‘/i, then there is in principle a possibility of cancellation
between the two terms, such that the RHS of Eq. (10.2) decays faster then ~ e_\/z; however
this would be highly fine-tuned and we see no sign of such cancellation when computing the
RHS in the random circuit model. Assuming that there is no such cancellation, Eq. (10.2)
implies that Aﬁax > e*V‘/ﬁ; this can be recast as an upper bound on the min-entropy,
S < vVDt. Tt has been shown subsequently that a similar argument can be used to
rigorously prove an upper bound that scales as So < v/tlogt for a particular set of initial
states (product states in the x basis) [619].

This argument implies that at long times, there is a growing distance between the
largest Schmidt value, Apayx = 9% ~ 6*7‘/5, and typical ones which we still expect
to be exponentially small, ~ ™!, in accordance with the linear growth of S; [269]. As
mentioned previously, the former upper bounds Rényi entropies Sy>1 < 5%7S. This
shows that at long times, t > v?/D, all a > 1 entropies are controlled by the largest
Schmidt value, making their growth diffusive. The time for this sub-ballistic growth to
set in depends also on the Rényi index, diverging in the limit &« — 1. The von Neumann
entropy itself is unconstrained by S, dominated instead by the many exponentially small
Schmidt values, leading to its linear growth®.

We presented the argument in terms of a circuit of 2-site gates. The generalization to cir-
cuits involving longer-range gates is trivial, one simply needs to choose the spin-polarized
region at the entanglement cut to be of the size of the largest gates; assuming this is O(1),
the argument goes through. For a continuous time, U (1)-symmetric Floquet model, which
does not have a direct circuit realization, one could generalize the argument by choosing
a region of size sufficiently larger than 2vrr7T, where vrr is the Lieb-Robinson speed an
T is the Floquet period. We also expect the argument to generalize to energy conserving
systems, in the form of rare events where the time evolved state locally resembles the
ground state®. This is in agreement with our numerical results in Fig. 10.1(c).

Our argument (as well as that of Ref. [619]) should also generalize to non-diffusive
systems, where we expect the behavior of —log |co|?, defined in the same way as above, to
be governed by the appropriate power of time, that characterizes the transport properties
of the system. In particular, for systems with sub-diffusive transport (for example due to
disorder [225-233] or dipole-moment conservation [331-333]), it should grow even slower
than ~ t'/2. Moreover, in the MBL phase, our argument would suggest that higher Rényi
entropies saturate to an area law, in contrast with the unbounded logarithmic growth of Sy
that is a characteristic feature of MBL [222]. This question in particular certainly merits
further study.

When do the transport properties fail to correctly predict the growth of Sp~1?7 The
crucial element entering our argument was the existence of regions where no dynamics is

5Tt is interesting to note that the difference between S1 and Sy>1 is entirely an interaction effect.
This can be shown by considering non-interacting particles subjected to external noise (e.g. a free fermion
version of our random circuit). In this case, the diffusion of particles (which is induced by the noise)
dominates both entropies, and one finds S1 ~ v/t in 1D [276, 620]. The linear growth in the generic case
is due to collisions that generate entanglement dynamically.

5The similarity of most apparent in the case of local frustration free Hamiltonians, where one can e.g.
consider states that are ground states of all local terms within a region.
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allowed by the symmetry. This was due to the fact that the smallest (or largest) eigenvalues
of the conserved charge corresponded to eigenspaces with only a single, low-entanglement
state (i.e., the completely empty/filled states). The heuristic argument clearly doesn’t
apply if there are some degrees of freedom in the systems that do not carry a conserved
charge (as in the finite ¢ random circuit model we study below). Such ‘sterile’ degrees
of freedom can be entangled without transporting charge across a bond. In this case, all
symmetry sectors contain many states, and therefore can have non-trivial dynamics. This
would mean that the state |¢g) defined above will no longer be a low-entanglement state,
and our argument breaks down. However, we do not expect this to be relevant for e.g.
Hamiltonian systems, where any such ‘sterile’ degree of freedom by definition would not
appear in the Hamiltonian and would therefore have no dynamics.

Finally, let us comment on what our results here tell us about the various approaches
to entanglement growth discussed in Chapter 5. First of all, let us emphasize that it is
rather surprising that we find a sub-ballistic growth of So, despite the ballistic spreading
of local operators discussed in the previous chapter. This is in contrast with the case
without symmetries, where the biased diffusion of operators directly led to the linear
growth of Sga), as we showed in Section 5.1. Indeed, several other works have suggested
previously that the mechanism we discussed there is generic, and that .S, should grow
linearly in typical systems for this reason [256, 574]. Our results show that the presence
of a conservation law breaks the central assumption behind such arguments, which is that
the operator spreading coefficients are essentially uncorrelated, making the off-diagonal
part of Eq. (5.2) vanish due to random signs. Instead, the symmetry imposes subtle
correlations between the different coefficients that cannot be neglected. Our result also
suggests that the minimal membrane picture of entanglement growth [277] discussed in
Section 5.2 does not accurately capture the behavior of S,~1”. It is natural to ask what
replaces the minimal polymer, and how to describe the coupling between S,~1 and the
conserved charge; this is what we turn to next.

10.1.3. Effective stochastic model in the large ¢ limit

To get a further analytical handle on this problem, we also consider the large-q version
of the random circuit, which we introduced in Section 7.1. In this case, a non-conserved,
g-state qudit degree of freedom is added to each site. This makes the size of each Haar
random unitary larger by a factor of ¢?, allowing us to derive an effective model that
governs the evolution of S;a) in the large ¢ limit. As we shall see, the result decomposes
into the sum of two contributions: a oc ¢ part from the non-conserved degrees of freedom,
and a oc v/t part associated to the conserved spins.

Recall, that the purity can be written as the expectation value on the doubled Hilbert
space, P(r) = tr(F(r)[p®p]) = (F(r)), where F(r) =[], F is a string of swap operators,
acting on one half of the entanglement cut (Fig. 10.3(a,b)). We will use the large-q circuit
to write down a simplified model for the dynamics of F(r). The resulting model will
shed light on how the minimal polymer picture is modified in the presence of conservation
laws and how this leads to the sub-ballistic growth of the Rényi entropy observed above.
Among other things, the model we discuss here has the explicit advantage that it leads an
actual stochastic process, with only positive weights; the negative weights we encountered

at ¢ =1 (see Fig. 8.2 for example) disappear in the large-¢ limit.

Averaging over a random gate on sites r, 7 + 1, to leading order in 1/¢q we find that the

"The possibility that the minimal membrane might work only for S; was pointed out previously in the
context of holography in Ref. [578].
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Figure 10.3.: Effective model at ¢ — oo. (a) The purity P, written in terms of the state
p as a matrix product operator. (b) This can be rewritten by introducing
the swap operator F. (c) Half-chain ‘swap-string’ F(r), along with a few of
the terms on the RHS of Eq. (10.4), with red and blue particles representing
local Z,, operators. (d) These particles obey a random walk with hard core
interactions, spreading out diffusively, which (e) leads to a Gaussian density
profile.

swap-string evolves as (see App. B.5 for details)

Fi) o o 3 (Fe) 4 Fls). (10.4)

q s=r+l1

where we have introduced new ‘two-copy’ operators
Fi(8) = (Zrpi1 ® Zppy1) F(s), (10.5)

with Z, 41 = (Z, + Zy41)/2, and the tensor product referring to the two copies of the
system. These are similar to F(r), but multiplied by the Z operators that measure the
conserved spin on sites near the entanglement cut.

To see how the entanglement evolves, one also needs equations of motion for F,(s). This
can be done analogously, by averaging over 2-site gates, resulting in the following effective
model, which we derive in App. B.5. The operators in Eq. (10.5), and their subsequent
circuit-averaged evolution, may be expressed as a sum of dressed swap operators of the
form [, (Zgg) ® Zggb)) F(r"), where {ngr’b) =0,1}. We refer to {ngr’b)} as configurations
of red’ and ’blue’ particles, while 7’ (the endpoint of the swap string) is called the ’cut
position’. Apart from an overall suppression factor of 2/¢ in each step, the circuit-averaged
dynamics gives a Markov process on configurations defined by these variables. This ef-
fective Markov dynamics has the following properties: away from the cut, the particles
independently obey diffusion with hard-core interactions, conserving the number of each
species. The cut itself also diffuses, moving one site either to the left or the right, while
emitting and absorbing an even number of particles at each step (Fig. 10.3(d)). More
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Figure 10.4.: Time derivative of the annealed average Rényi entropy in the random circuit
at different values of ¢, after subtracting the constant term, vg(q), associated
to the non-conserved degrees of freedom. Different curves correspond to
different initial states, as described in Section 10.2. All states show a decay
of the form oc t~1/2 (dashed line) at long times, indicating diffusive growth.

precisely, whenever the cut ‘jumps’ across a site, with 1/2 probability it flips the state
of red/blue particles on both copies simultaneously (from empty to filled and vice versa).
This means that the probability of emission vs. absorption decreases with the number of
particles on the two sites directly at the cut, changing sign at half filling.

The swap-string and both types of particles evolve as unbiased random walks, therefore,
by time t we expect them to occupy a region of width I(¢) oc v/t. Monte Carlo simulations of
the stochastic dynamics show (Fig. 10.3(e)) that the particle densities are Gaussian around
r, the original position of the cut. We therefore take a mean field approximation and write
the probability of a string ending at site r and a distribution of particles {ngr’b) =0,1} as

r2 1 () 4, () 2
p(r,n n®) o ¢ 27 ¢ 2007 s (nd74ni) s

(10.6)

if > S(ngr) + ngb)) is even, and zero otherwise. With this ansatz, one can evaluate the
half-chain purity at time ¢. For translation invariant product states, the result reads

P(t) <z>t X H <1 - 11+_e|2</22“>t|>2>2 (10.7)

This product has a relevant contributions only from a window of |s| < /¢, hence it
decays as e~ 7VE. Note that v is larger when |(Zs)| is smaller. By expanding each term
in e=5*/2l0? we can approximate the product as ~ e~ V2T(1=KZDU®)  which is in good
agreement with Monte Carlo results, at least away from (Z) ~ 0. Note that Eq. (10.7)
looks very similar to the probability of rare events from our heuristic argument in the
simplest approximation of independently diffusing particles.

Using Eq. (10.7), at large ¢ we get Séa) = log(q/2)t + av/t, with a ~ O(1). Here,
log(gq/2) is exactly the large ¢ limit of vg(q) = log q+21 / 9 the entanglement velocity of
a non-symmetric random circuit with ¢ states per site, which we derived in Section 5.1,
independently of the initial state. This suggests the following interpretation: there is an
entanglement vg(q)t coming entirely from non-conserved degrees of freedom, while the

conserved spins are responsible for the o v/ term. This is supported by numerical results,

presented in Fig. 10.4, which show that Séa) (t) — ve(g)t has only weak g-dependence and

grows as v/t for any ¢, including the original model with ¢ = 1, where Séa) is purely diffusive
as we saw above. The same plot also shows that the ~ v/t growth appears for a variety of
different initial states, including ones that are diagonal in product states in the z-basis (for
the definition of the initial states used, see Section 10.2) Our conclusion from this, is that
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the stochastic model discussed here contains the essential physics of the diffusive growth
of Sy in charge-conserving systems, and can be taken as the appropriate generalization of
the minimal polymer picture in this setup. Understanding its properties in more detail,
beyond the naive mean-field approximation we used here, and to understand the effect of
random fluctuations in this language, are interesting open problems.

Before concluding this section, let us mention that we expect the ~ v/t growth of Sp~1
to hold also in higher dimensions. In this case, the boundary of the subsystem A whose
entanglement we consider is a d— 1 dimensional object of size |0A|. From the standpoint of
our heuristic argument, this means that the probability of maintaining and empty region
that encompasses the whole boundary now decays much more rapidly, as ~ e~IAIVDE
However, this number should be compared with the size of the typical eigenvalue, which
decays as ~ e~ %aVBIOAlL i light of the fact that entanglement is generated along the entire
boundary. Therefore, at long times, the first number will still be much smaller than the
second, indicating a separation of scales between A . = e9>< and Atypical = e 51, On
the other hand, our effective, large-¢ model generalizes directly to higher dimensions if
we build our d dimensional circuit out of the same 2-site gates. The swap-operator F4(t)
now acts on a d dimensional region, whose boundary fluctuates due to the application
of the gates, while it emits Z, operators that diffuse on the lattice. The simple mean-
field approximation (which might even become better with increasing d) then suggests
that Sy oc v/t still holds. This conjecture recently received support from numerics on
U (1)-symmetric Clifford circuits [544].

10.2. Long-time tails in Rényi entropies

Diffusive modes also have a strong influence on the long-time behavior of finite subsystems,
which we turn to next. The entanglement eventually saturates to an equilibrium value
predicted by the appropriate Gibbs ensemble, provided ETH holds and the initial state
clusters. We now show that the approach of S to this thermodynamic value is also affected
by diffusion and shows long-time hydrodynamic tails, similar to the ones discussed in the
context of autocorrelations in Section 2.3. Interestingly, we find that the nature of these
tails depends strongly on the initial conditions, leading to the appearance of three different
power laws, t~1/2, =1 and t3/2. In particular we uncover a difference between states at
zero and finite chemical potential (infinite and finite temperature).

We take a spin 1/2 chain and rewrite the reduced density matrix of a small subsystem
of [ sites by inserting a complete basis of operators o*, given by products of local Pauli

operators acting only on the subsystem [574]. This yields Sy = [log 2—log (1 + Zu<a“>2>,
where the identity is excluded from the sum. Let (6c#) = (o) —(0#)eq denote the deviation
from equilibrium. Then at long times

S5 = Saeql o< D (2(0")eq(d0™) + (607)?) . (10.8)

Thus the long-time tails that describe how expectation values equilibrate appear directly
in the Rényi entropy.

One immediate consequence of Eq. (10.8) is that the hydrodynamic tails can differ
between states at half filling and away from half filling. At precisely half filling, the leading
order term is (d0#)?, while away from half filling (0#)eq(d0*) is expected to dominate.
Generically, hydrodynamic observables in d dimension should decay as t~%/2 [285, 287, 553,
554], with subleading corrections O(t~4), O(t=%/2~1) etc. Therefore, we generically expect
a saturation as o< t—% for states at half filling (infinite temperature) and oc t~%/2
However, this expectation can change for certain initial states, where all hydrodynamic
variables have (do#) = 0 initially. In this case one expects the leading diffusive tail to

otherwise.
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Figure 10.5.: (a) Saturation of S’éa) for a 4-site subsystem in the spin 1/2 random circuit
for different initial states. States away/at half filling generically saturate
as t~1/2 ¢! respectively. States with hydrodynamic variables in equilib-
rium at all times saturate with subleading exponent ¢t=3/2. (b): The same
t73/2 saturation is present for random product states in the tilted field Ising
model (10.1) (3-site subsystem, averaged over 50 initial states).

vanish and subleading corrections to take over. In particular, in the 1D random circuit
model one can argue that the leading contribution for translation invariant product states
should be of order ¢3/2; we detail this in App. B.6

We observe these three distinct power laws in Séa) for the spin 1/2 random circuit, as
shown in Fig. 10.5(a). We consider the following types of initial states:

e Néel-like states of the form | TTJ11) .. .).
e Finitely correlated states: |3) o e X020 ZeZri (I 1)+ IN®E
e Tilted ferromagnetic states: |0) = e i Yr| ).

We find that Néel-like states with less then half filling exhibit an overshooting effect, ap-
proaching their equilibrium value from above, as t~/2. At half-filling there is no overshoot-
ing, and the Rényi entropy of a Néel state approaches its final value as ¢!, in accordance
with our prediction about the special role of zero chemical potential. Finitely correlated
states are similarly at half filling, and consequently saturate as t~'. Tilted ferromagnetic
states, on the other hand, belong to the last category, where all diagonal operators take on
their equilibrium values at t = 0; this results in the aforementioned t~3/2 saturation. We
also provide evidence of the t~3/2 tail for random product states in the tilted field Ising
Hamiltonian (10.1), shown in Fig. 10.5(b).

10.3. Logarithmic growth of number entanglement

Before concluding, let us briefly comment on an aspect of entanglement growth after a
global quench in a charge-conserving system that is related to the dynamics of the von
Neumann entropy . The discussion that follows applies to initial states that are eigenstates
of the charge operator Q, such that there are no fluctuations in the total amount of charge
in the system. A simple example of such a state is a Néel state, where exactly every second
site is occupied. While this state is not completely homogenous, its charge-density becomes
uniformly 1/2 after some quick local equilibration process. The resulting state, however,
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Figure 10.6.: Evolution of the probability distribution of having total charge @ in the
left half of a spin chain, initialized in a Néel state and evolved with the
random unitary circuit. a) The charge variance Var(Q) grows as o< v/t and
saturates to a volume law. b) The number entropy S¢g grows as the logarithm
of the standard deviation, Sg = log t1/% + const. and saturates to a value
log L'/2 + const.

is still far from global equilibrium, as indicated, among other things, by the fluctuations
in the conserved charge. Consider a subsystem A, containing [ sites, and the total charge
contained in it, as measured by the operator Q4 = ) .4 Q. In an equilibrium state,

pa o< e #@A the charge variance should obey a volume law, Var(Q4) = <Q?4> —(Qa)?

In a diffusive system, to leading order the evolution of the variance should be governed
by diffusion [287] (see also App. B.6), indicating that it takes a time o I for it to reach
its final value. Our goal is to understand how this diffusively slow relaxation affect the
dynamics of entanglement.

To see the effects of charge diffusion more clearly, it is worthwhile to write the von
Neumann entropy as a sum of two contributions, one of which is related directly to the
distribution of total charge in the subsystem. In order to achieve this, note that the
conservation of a fixed total charge in the system implies that the reduced density matrix
has a block-diagonal structure

pa = ZPQAP(Q“‘ : (10.9)

where p(QA) corresponds to the block with total charge @4 in subsystem A, normalized
to have unit trace. With this normalization, the prefactor pg, is exactly the probability
of havmg a total number of @4 charges in A, given by the expectation value tr(p APQ 4)
where PQ , 1s the projector appearing in the spectral decomposition Q A= ZQA Q APQ -

With this block-decomposition in hand one can rewrite the von Neumann entropy
as [465]

Zan logpg, — ZpQAtr ( log p(QA)> = 5¢ + Scont- (10.10)

The first term is the entropy associated to the probability distribution pg,, which we will
refer to as the number entropy. The second term is the average entropy of the blocks, which,
following Ref. [465], we call the configurational entropy, as it is associated to superpositions
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Chapter 10. Entanglement growth for global quenches

between different ways of arranging the same number of total charges within the subsystem.
Importantly, the number entropy was shown to be an independently measurable quantity
in cold atom experiments [465].

For the types of initial states considered here, with roughly homogeneous charge distri-
butions, the mean value of the distribution pg, is close to its equilibrium value even after
short times. However, this distribution is initially very narrow, with a variance Var(Q )
that should grow as o< v/%, due to diffusion, as argued we argue in App. B.6. This provides
an upper bound on the number entropy, as Sg < In ( 27reVar(QA)) ~ log t'/*+ constant.
We indeed confirm that the growth of Sg has this form, by performing the exact random
circuit time evolution for a small system, as shown in Fig. 10.6. Note that approximat-
ing the entropy as the logarithm of the standard deviation is also consistent with the
long-time saturation value, which should be Sg(t — o0) = log v/1 + const. for the bino-
mial distribution. As emphasized earlier, Sq itself is a measurable quantity and therefore
this prediction could be directly confirmed in experiments. We also expect this to man-
ifest as a logarithmically growing component of the full von Neumann entropy (10.10),
although in principle it is possible that this contribution is cancelled by some part of the
configurational entropy.
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11. Entanglement growth for inhomogenous
quenches

So far, our discussion of entanglement growth has focused on global quenches, where
the initial state is homogenous in space (at least on scales large compared to the lattice
spacing). However, quenches starting from inhomogenous initial states are of interest on
their own right. This is a context where the transport of conserved quantities appears
most directly, as they need to be moved across the system in order to reach thermal
equilibrium, implying that the time scales needed to fully thermalize, even with respect to
local observables, are long compared to the associated wavelengths that characterize the
initial state. Here we ask the question of how this slow thermalization manifests itself in
the entanglement properties of the evolving state.

An extreme case, which we will discuss in detail below, is that of a domain wall: an initial
state where the density of some conserved quantity jumps between two extreme values in
the middle of the system. Entanglement growth starting from such a domain wall was
investigated for integrable systems, where both logarithmic [621-623] and power law [317,
624] growth have been found for the entanglement. More recently, the quasi-particle
picture has been extended to a variety of inhomogeneous initial states, using notions of
generalized hydrodynamics, applicable to integrable systems [625-627]. However, the case
of generic interacting systems remains largely unexplored.

In this chapter, we develop a general theory of the growth of von Neumann entropy
for inhomogenous quenches. Our approach here can be considered as a generalization of
the hydrodynamic minimal polymer picture of Section 5.2, modified to take into account
the coupling of the entropy to the simpler, diffusive hydrodynamic equations obeyed by
the conserved densities such as particle number, energy etc. For homogenous quenches,
our theory reduces to the original minimal polymer picture, which is indeed expect to
describe the growth of von Neumann entropy after a global quench, even in the presence
of conservation laws [277] (this is in contrast with the o > 1 entropies, for which this
picture needs to be modified, as we saw in the previous chapter).

As before, we use U(1)-symmetric random circuits to help develop a general theory.
The resulting equations of motion can be interpreted as a surface growth model, similar
to the one discussed in Section 5.3, but with a growth rate that is coupled to the diffusive
variable. This implies that inhomogeneities in the original charge get imprinted into the
growing ‘height’ profile of the entanglement. In particular, we show that whenever there
is a domain wall between two regions with different charge densities, the entanglement
entropy near the interface has a component that grows in time as v/t. The size of the
region where this scaling applies also grows in time as v/t as the charge density smooths
out due to diffusion; this is sketched in Fig. 11.1. For a charge density wave initial state,
this process leads to an inhomogeneous entanglement profile across the system with a
periodicity that is half the wavelength that characterizes the initial state. At longer times,
as the charge distribution flattens, the entanglement profile also smooths out exponentially,
but at a timescale that is parametrically larger than the time needed for the charge to
equilibrate. We illustrate this general picture on a variety of different initial states, both
for a random circuit model and for a deterministic system.
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Chapter 11. Entanglement growth for inhomogenous quenches

Figure 11.1.: Sketch of the evolving charge density (q) and entanglement (S) profiles for
inhomogenous initial states in a diffusive spin chain. The dashed horizontal
lines denote half filling. (a) Starting from a maximally polarized domain
wall state, entanglement builds up only in a region of size v/t around the
initial position of the domain wall, limiting the ‘height’ of the entanglement
profile to also be O(y/t). (b) For a more generic initial state, with domains
of different charge densities, the entanglement grows faster in regions where
the charge density is closer to half filling, leading to an inhomogenous profile.

11.1. Stochastic surface growth model

First, to motivate an effective description of entanglement growth in our inhomogenous
setup, we turn our attention to the coarse-grained version of the random circuit, which
we originally introduced in Section 7.1, and studied previously in subsection 8.2.3 in the
context of OTOCs. In this model, each ‘super-site’ contains N qubits. We imagine working
in a large-IN limit; the main reason for this is that in this limit, local fluctuations of the
charge as suppressed, and we can focus on the effect of the inhomogeneities in the average
charge. We first discuss how the entanglement entropy S(z) across the bond between
super-sites x,x + 1 evolves under the application of a single charge-conserving unitary
gate. Based on these considerations, we conjecture a simple random surface growth model
to capture certain universal features of entanglement growth. In Section 11.2 we will
compare the results of this surface growth model with numerics on various spin—% chains.

11.1.1. Effect of a single gate

We begin by considering the effect of a single charge-conserving 2-site gate, and use it
to conjecture an effective update rule for the half-chain entanglement across the bond at
these two sites. The main feature of this update rule, established using the subadditivity
of entropy, is that the growth of entanglement is limited by the local entropy density,
corresponding to the density of conserved charge. We also explore the possible interplay
between charge density and the gradient of the half-chain entanglement.

We mainly focus on the half-chain von Neumann entropy, Si(x,t) = —tr (pIn p), where
p is the reduced density matrix of the subsystem consisting of all sites < x, at time t. We
mostly focus on S; in this chapter, which captures (the logarithm of) the typical eigenvalue
of p, while later in this subsection we will briefly consider the case of & = 0, also known
as the Hartley entropy, which measures (the logarithm of) the rank of p. For this latter
quantity, we are able to establish an exact update rule in the case when a charge-conserving
gate is applied to a pair of neighboring sites with a fixed amount of total charge. Later
on, in subsection 11.2.1, we will also consider S5, which is more amenable to numerical
calculations in the random circuit setting.
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11.1. Stochastic surface growth model

Von Neumann entropy S

We begin by noting that the growth of S7 is constrained by the local entropy density, s, ¢
(the von Neumann entropy of the subsystem consisting of the site = alone), through the
subadditivity condition [233],

Sl($,t+1) < Sl(l‘*l,t)+sx7t+1, (111)

where we used the fact that the entanglement across the bond x — 1, x is unchanged by the
2-site gate acting on sites x,x + 1, so that we can replace S1(z — 1,t+ 1) with Sy(x —1,¢).
The same argument holds when replacing Si(x — 1,t) with Si(x + 1,t) and s, 41 with
Sz+1,t4+1, such that

Si(z,t+1) <min (S1(z — 1,t) + sp411, S1(z + 1,8) + Sat1,641)- (11.2)

What we will conjecture in the following is that replacing the inequality with an equality
in Eq. (11.2) provides a good qualitative description of the time evolution of the von
Neumann entropy, particularly in situations where the charge has locally equilibrated.
After local equilibration, we also expect that s; ;41 & Sz41,441 = Sz, so that it can be
pulled out of the min function. The resulting equation is already sufficient to capture the
qualitative features we discuss below.

The bound in Eq. (11.2) can be improved in certain circumstances, through the following
line of reasoning, although there does not appear to be a sharp qualitative change in the
physics in considering these subtler effects. In particular, we can consider a case where
the two sites on which our unitary gate acts have a fixed total charge. This is motivated
by the fact that if the charge distribution on the two sites in question is tightly peaked (as
we would expect it to be at times in excess of the local equilibration time, in the large-INV
limit), then the von Neumann entropy, which measures the size of typical Schmidt values,
should be well approximated by focusing on Schmidt values corresponding to the average
charge!

Thus, let us assume, for the time being, that the charge on sites x, x 4+ 1 takes a definite
value @, z+1 = @. In this case, the reduced density matrix on sites < x is block diagonal
in @z, the charge on site x. Let us denote the block with Q, = a as pgp,, where p, is the
probability of having charge a on site x, and tr(p,) = 1. Then the von Neumann entropy

can be written as [465]
S1 = ZPaSLa - Zpa In pq,
a a

where S1, = —tr(p,Inp,) is the von Neumann entropy of the density matrix associated
to charge a. Note that the last term is upper bounded by In(Q + 1), since a takes values
between 0 and (), and therefore should be strongly subleading, as the total von Neumann
entropy will eventually increase to an extensive value. This means that, to a good approx-
imation, the entropy can be written as a weighted sum over entropies of different charge
sectors. One can then apply subadditivity to each block separately

Sta(z,t+1) <min (S14(z —1,t) + Inng, S1,e(x+ 1,t) +Inng_q),

where 1, = (];[ ) is the dimension of the on-site Hilbert space with charge a. Here, the
entropies of the neighboring bonds also depend on a, since the projection to a given charge
sector can in principle change the entanglement even away from the bond x, x+1. However,
based on a simple numerical experiment involving a 4-site random MPS, we expect that
if there is a gradient Sy(x + 1,t) — Si(z — 1,t) in the original state, then there should

!Note that this is in contrast with Rényi entropies Sa>1, which are strongly influenced by fluctuations
of the conserved charge, as discussed in Chapter 10.
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Chapter 11. Entanglement growth for inhomogenous quenches

also be a a gradient S 4(x + 1,t) — S14(xz — 1,¢) in the projected state as well — albeit
one whose magnitude decreases with a. Therefore, one ends up with an upper bound
that depends on a particular combination of the charge density and the entropy gradient.
The same numerical experiment indicates that this bound is tighter then the bound in
Eq. (11.2), at least away from half filling. This suggests that there is a possibility of a
more complicated coupling between charge and entanglement, where the growth rate of
the latter depends not only on the charge density, but also on the local gradient of S;(x,t).
We will argue more rigorously for such a coupling in the case of Sy below. However, our
numerical experiments suggest that the main qualitative features are already captured by
the simpler bound in Eq. (11.2), ignoring these subtler effects.

Parameter counting argument for S

The above argument, regarding the coupling between charge and entanglement gradient,
can be made more precise if we consider the Hartley entropy, S,—o, which equals the
logarithm of the number of non-zero Schmidt values. Below we derive an update rule
for this quantity under the effect of a generic unitary acting on a generic state with well
defined charge on x, x+1. While the assumption of fixed local charge is not well motivated
in the case of Sy, it is nevertheless useful to consider, as it sheds some light on the nature
of the coupling between charge and entanglement gradient mentioned above.

Consider a matrix product state (MPS) with fixed 2-site charge @ on sites x,z + 1, and
a bond dimension x(z) = %) across this bond. One can then generalize the parameter
counting argument of Ref. [276] to estimate the bond dimension x(x) across the same
bond after a charge-conserving unitary has been applied to these two sites?. Since Q
is conserved, we can label the Schmidt values at x,z + 1 (after applying the unitary)
according to the amount of charge on site x. Let us denote this charge by @), = a. We
will estimate the number of non-zero Schmidt values x,(z) in each a sector separately,
by equating the number of parameters in the new MPS tensors on sites =,z + 1 with the
number of equations needed to relate the new MPS to the old one (consider Fig. 2.2 for
an illustration).

We want to find new MPS tensors on both  and x + 1 that describe the state after it
has been evolved with the unitary gate on these sites. For a given a, the two MPS tensors
have X (2 —1)Xa (%) + Xa(z)X (2 +1)Ng—a — Xa(z)? parameters in total, where x(z=+1) are
the bond dimensions on neighboring bonds and the last term takes into account the gauge
freedom in choosing the MPS tensors. The number of parameters has to be sufficiently
large to satisfy all the x(z — 1)x(z + 1)nang—q equations, coming from equating the new
tensors with the original MPS evolved by a single 2-site gate. Equating the number of
equations with the number of parameters gives a quadratic equation for y,(x). Taking
the smaller of the two solutions and adding up the Schmidt values for different a sectors
gives the total bond dimension across a bond x,x + 1 with charge @, after applying the
gate:

x(z,t+1) = Zmin (x(z —1,t) 10, x(x + 1,t) ng—a) - (11.3)

i.e., in each charge sector we end up with the maximal bond dimension allowed by subad-
ditivity.

Without loss of generality, let y(z + 1) = x(z — 1)e??, for some entropy gradient A > 0
going across the bond (note that e** < dg, due to subadditivity of entanglement). Then,
we get the update rule for the Hartley entropy, So(z,t) = log x(z,t), as

So(x,t+1) = min (So(z — 1,), So(x + 1,1)) + fn(Q, A), (11.4)

#While this parameter counting argument is not rigorous, in the sense that fine-tuned states or unitaries
could violate it, it is expected to hold for generic states, which we indeed find numerically for random MPS.
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Figure 11.2.: The entropy growth function f(q,0), appearing in the RHS of Eq. (11.4), in
N — oo limit, using rescaled variables q = Q/(2N) and 6 = A/N.

where fn(Q,A) = log (ZaQ:O min(na,nQ_aezA)), and we measure logarithms base 2.
Therefore, we find a result that has more structure then the simple subadditivity bound
in Eq. (11.2): the entropy increase depends not only on the local entropy, but also on the
spatial derivative of Sy(x,t) across the bond. This arises due to the fact that after fixing
Qz,z+1, we can count the entropy for each charge sector separately: having a gradient A
across the bond allows for putting more charge on one site in order to increase the total
entropy.

To get a sense of the behavior of the term fy(Q,A) in Eq. (11.4), we take its large-N
limit. In this case, 1, = (]Z) — eNh2(a/N) - ysing the binary entropy function, ha (&) =
—€&Ing — (1 —-¢) In(1l —¢). Defining rescaled variables, £ = a/N, q = Q/2N and § = A/N,
the condition 1, = 1ng_.e?? translates to ha(&) = ha(2q — &) + 2J. Let &(q,5) denote the
solution to this equation when it exists, and &, = 2q otherwise. The sum over a in the
definition of fy can then be replaced by a pair of integrals over £, on intervals [0, {,] and
[€«,2q]. In the limit N — oo these integrals can be approximated by the maximal value
inside the interval, giving the result

ha(C) ip e, < 1/2
) = ~(2Ng,N§) ={ In2 * =
f(4,6) = fNo00(2Nq, NO) {1 e > 12

(11.5)

Fig. 11.2 shows the resulting function f(q,d) as a function of the charge density q for a
variety of §. Its most notable feature is that for § > 0 it becomes constant for sufficiently
large values of q.

The arguments above, in particular the result (11.4), indicate a complicated coupling
between charge and entanglement entropy, where the local growth rate of the bipartite
entanglement depends on a particular combination of local charge density and the entropy
gradient. However, in the physical situations we consider in the next subsection, we find
that this dependence on the entropy gradient does not change the qualitative features of
entanglement growth, and in practice one can replace the constant term in the RHS with
just the on-site entropy ha(q), which is the original subadditivity bound in Eq. (11.2).
As we argue below, in subsection 11.1.2, this can be understood from the fact that in a
coarse-grained continuum description the difference only shows up in the form of higher
order subleading corrections. Nevertheless, it would be interesting to understand whether
there are physical situations where such a coupling can still play an important role.
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Chapter 11. Entanglement growth for inhomogenous quenches

11.1.2. Surface growth in a space-time dependent background

The equation of motion in Eq. (11.4) is a direct generalization of the local update rule for
a non-symmetric random gate, Eq. (5.20). The only difference is that the constant growth
term on the RHS now depends on space and time, through the local charge density q,
and also potentially on the entropy gradient. We can then construct an effective, ‘surface
growth’ model of entanglement growth, along the same lines as in Ref. [276]: in each
time step we apply the update rule on a randomly chosen bond (see Fig. 7.1(c)), using
the function f(q,d) derived in Eq. (11.5), to update the half-chain entanglement S(x,t)
(the ‘height’). At the same time we update the local charge densities q(z) = Q. /N as
q(z),q(z+1) — (q(x) +q(x+1))/2. This leads to a coupled stochastic evolution between
q(z) and the entropy S(z,t). Below, we investigate the behavior of this stochastic model,
which we compare to simulation of quantum systems in Section 11.2.

General considerations

As stated before, we find numerically that the coupling between the charge and the entropy
gradient does not affect the main qualitative features of the evolution, therefore in practice,
at least in the situations we consider below, one can replace f(q,d) with f(q,0) = ha(q),
the local binary entropy associated to the charge density. This leads to a simplified update
rule

S(z,t+1) =min (S(x — 1,1t), S(z + 1,t)) + ha(q). (11.6)

In the continuum limit this corresponds to a KPZ equation for the entanglement (as in
Section 5.3), but now coupled to the diffusion equation for the charge as

05(,1) = VIS — S(0S)? + sl ) v + (0,0

0rq(x,t) = DO2q + Cq(w, 1) (11.7)

where s(x,t) = ho(q(x,t)) is the entropy density, ((z,t) is uncorrelated white noise and
(q(z,t) is a noise field consistent with charge conservation (model B dynamics in the
language of Ref. [551]). Note that is we kept the function f(q,0) in Eq. (11.6) (instead
of replacing it with f(q,0) = ha(q)), the highest order terms we would need to add to
the continuum description would be of the form (9,q)?(9,S5)?, which are subleading in the
long wavelength limit, therefore we are justified in dropping them.

The above random surface growth model also admits an interpretation as a directed
polymer problem, along the lines discussed in Section 5.2. As shown there, on the longest
length and time scales, the entanglement resulting from Eq. (11.6) can be rewritten as the
energy of a minimal energy polymer, characterized by an ‘entanglement line tension’ £(v),
with v being the slope of the polymer, representing a space-tim cut through the unitary
circuit. Since our update rule differs from the one in Ref. [276] by having a constant term
s(x,t), rather then 1, on the RHS, one has to rescale S — S/s to get the same physics
locally. This implies that the line tension gets rescaled as £(v) — s(z,t)€(v). Therefore
the calculation of entanglement growth becomes that of finding a polymer with minimal
energy in a space-time dependent background, where the background itself contains a
deterministic evolving part, governed by the diffusion equation, as well as random noise.
In particular, parts of the systems with very low/high fillings act as bottlenecks for the
entanglement growth of nearby regions®. On the other hand, the charge density itself
undergoes diffusion, tending toward a more homogenous distribution. The entropy density
follows the charge distribution, leading to a speed-up of entanglement growth in regions
where it gets closer to half filling and vice versa.

3This is similar to the mechanism proposed in Ref. [233] for entanglement growth in disordered Griffith
phases, where the bottleneck is provided by localized regions which act as ‘weak links’.
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11.1. Stochastic surface growth model

We expect this generalized minimal cut picture to apply also to systems without noise,
much like its original version which did not take conservation laws into account [277]. In
our case, this would correspond to an equation of motion analogous to Eq. (11.7), but
with the noise terms omitted. The original minimal cut picture can also be generalized to
higher spatial dimensions, replacing the polymer with a ‘membrane’ [276, 277, 578]. We
expect that the model we consider here similarly generalizes, with a minimal membrane
whose local surface tension depends on the entropy density at a given position and time.

Application to various initial states

To see the effect that the diffusion of charge has on entanglement growth, let us first
consider the paradigmatic example of a maximally polarized domain wall initial state,
wherein all sites on the left half of the chain are empty (q(z < 0,t = 0) = 0) and all
sites on the right half are filled (q(z > 0, = 0) = 1). We imagine working in the
thermodynamic limit, so that x € Z and we can ignore boundary effects. At long times and
large distances we expect the charge profile q(z,t) to be well approximated by the solution
of the continuum diffusion equation, which for these initial conditions reads q(z,t) =

(1 + erf(z /v Dt)) /2, where erf(z) is the error function.

The important property of the solution of the diffusion equation is that the width of
the domain wall scales with time as o /¢, and consequently the local entropy density
s(z,t) is also a function solely of z/v/Dt. This, via Eq. (11.6), indicates that significant
entanglement growth can only occur within a region of order @(v/Dt) around the origin.
At long times this diffusive growth is very slow compared to the linear growth of the
entanglement surface that one would get for a homogeneous charge distribution. This
means that the charge diffusion acts as a bottleneck for the entanglement growth: for
the entanglement in the middle to grow further, it first has to ‘wait’ for the width of the
domain wall to increase. As a consequence, the height itself grows as S(0,t) o v/, as
sketched in Fig. 11.1(a). In fact, the upper bound S1(0,t) < O(v/t) in this case follows
simply from combining subadditivity with the assumption of local equilibrium, see below
in Eq. (11.8).

By performing the stochastic surface growth numerically, we find a scaling collapse of
the form S(x,t) = /Dt f(x/v/Dt) for some function f, as shown in Fig. 11.3(a). At long
enough times, Dt > 1 (in units of the lattice spacing), the surface profile is always close to
being saturated to the maximum value allowed by the charge distribution, with a distance
between the two becoming constant. This also means that there is no allowed ‘space’ for
the surface to develop large random fluctuations, which would be present for a flat surface
- such KPZ fluctuations are suppressed by the slow dynamics of the charge that is coupled
to the surface growth.

While the domain wall constitutes an extreme case, where the charge densities at the two
infinities take the two extreme values, 0 and 1, a similar behavior occurs more generally
if we take an initial state with a jump in the average charge at the origin. The simplest
generalization is to take an initial state where q(zx < 0) = n and q(z > 0) = 1 —n
for some 0 < n < 1/2. In this case, far from the origin, at positions x > Vv Dt, the
dynamics of entanglement is the same as for a homogenous state with charge density n,
i.e., it grows linearly with the rate set by n and exhibits KPZ fluctuations. However,
in a diffusively growing region around the origin, where the charge density has started
equalizing, the entanglement grows faster and exhibits a ‘bump’ on top of the linearly
growing background. Both the spatial size and the height of this bump is once again
increasing as v/t (see Fig. 11.3(c)) and the KPZ fluctuations are suppressed in this region.
This is shown in Fig. 11.3(b).

Another, slightly different, scenario where the diffusion plays an important role, is an
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Figure 11.3.: Entanglement growth generated by applying the update rule (11.6) to a
randomly chosen bond at each step. (a) For an initial domain wall state,
entanglement grows as o< v/t and is close to the maximum value allowed
by subadditivity (dashed lines). As a consequence, random fluctuations are
strongly suppressed. (b) For a generalized domain wall, with charge densities
ny, and ng = 1 —ny, on the two sides, the ‘bump’ appears on top of a linearly
growing background where KPZ fluctuations are present. (c) Subtracting
the average height of this background, we observe that the size of the bump
itself always grows as o< v/t. (d) For an asymmetric domain wall, ny, = 0,
nr = 1/2, there is a region with oc v/t entanglement interpolating between
the two bulk regions.

interface between two regions with different entropy densities. An extreme example of this
is when a region at half filling, such as a Néel state, expands into empty space. In this
case, in the middle of the half-filled region, far from the interface, we once again get linear
growth with the usual KPZ fluctuations. Far on the other side of the interface, the charge
density vanishes and so does the entanglement. Near the interface there is a diffusively
growing region that interpolates between these two extremes, where the entanglement
obeys the scaling S(z,t) = v/ Dt g(x/v/Dt) for some scaling function g. The middle region
where this scaling is valid then penetrates linearly into the half-filled region. This is shown
in Fig. 11.3(d). A similar situation would occur if the average charge densities on the two
halves of the chain are initially 0 < n;, < ng < 1 —ny. In this case there is linear growth
on both sides, but with different growth rates, so that there are two plateaus of different
heights with an interpolating region in-between.
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Figure 11.4.: Entanglement growth from the random surface growth model with charge
density wave initial state of equally spaced domain walls at a distance \/2
sites. (a) the initial melting of the domain walls creates an inhomogenous
entanglement profile (shown for A = 100 sites). This subsequently smooths
out once the charge has equilibrated. At the same time KPZ behavior takes
over, with fluctuations growing in time. (b) Consequently, the overall growth
rate at a domain wall has a cross-over from o v/t to o t at a time o A2,
when the domain walls melt into each other (shown for L = 5000).

The initial states described above all have charge-imbalances between the left and right
halves of the chain, such that in the thermodynamic limit it would take an infinite amount
of time for them to become homogeneous. We can also consider initial states which have
charge-inhomogeneities on some parametrically smaller length scale, 1 < A < L. An
example of such a state is a step-like charge density wave (CDW), consisting of domains of
\/2 filled sites followed by A\/2 empty ones in a regular pattern. At short times, t < \2/4D,
each domain wall in the initial state evolves independently, in the way described above,
while far from the domain walls there is no dynamics. This results in an entanglement
profile with peaks separated by a distance A\/2 from one another, whose width and height
grow as v/t. Once the peaks start to overlap, at times tg ~ O(A?/4D), i.e., when the do-
main walls start to melt together, the bottleneck disappears and the entanglement growth
speeds up from v/t to linear in ¢ (see Fig. 11.4(b)). At the same time the entanglement
profile starts to smooth out: the difference between the top and the bottom of a peak,
AS = S(0,t) — S(\/4,t), decreases to zero, as shown by Fig. 11.4. We find numerically
(see Fig. 11.5) that the average size of the peaks in the entanglement profile decreases

4r
exponentially, as AS o« e~ 22 *. We associate this with the first (diffusive) term on the
right hand side of the first equation in Eq. (11.7).

Using the results above we can associate two distinct time scales to the evolution of the
entanglement starting from a CDW, made out of regions of different charge densities of
typical size A. First there is the aforementioned time scale tg ~ A\?/D, until which each
domain wall evolves independently. By this time, the entanglement profile develops peaks
of size AS o< /Dtg oc A\. At times t = ¢y a second time regime begins, wherein the

_8 2t—tQ
entanglement features smooth out exponentially as AS o Ae "0 . The time needed

for the entanglement profile to become sufficiently smooth, i.e., AS < 1, is therefore
_ 2
% > log A\, or equivalently ¢ > %(1 + log A). Note that this is parametrically larger
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Figure 11.5.: Smoothing out of the inhomogeneities of S(x,t), starting from a charge den-
sity wave initial state. We calculate the size of the peaks due to the initial
inhomogenous growth (see Fig. 11.3(b)), averaged over all peaks in a sys-
tem and over 10 realizations of the stochastic dynamics. a) We find that
the size of the peaks grows up to some timescale tg (denoted by the dashed
vertical line), at which point the different domains melt together and the
profile starts smoothing out exponentially. Data is shown for a chain with

= 40000 sites and CDW wavelength A = 400. The thick blue curve is
numerical data for the average peak size AS, relative to the linearly growing
background; the thin red curve is a numerically smoothened extrapolating
curve and the dashed yellow line is an exponential fit. The inset shows the
same data as a function of t — tg with a logarithmic scale on the vertical

axis. b) Exponents from the exponential fit for different wavelengths A\. We
471'2

find that a decay oc e A2 L

than the time scale it takes for the charge-distribution to become approximately flat, which
merely requires % > 1.

To summarize our findings in this subsection, let us consider a rather broad set of initial
states, that consist of different domains of typical size A, each domain roughly homogeneous
with some specific average charge density. For such a state, we can distinguish four different
time scales. I) There is some short initial time scale t),. associated to reaching local
equilibrium. IT) This is followed by the transport of charge from domains of high density
to neighboring regions of lower density. In the middle of the domains, the entanglement
grows linearly at the rate set by the local entropy density of the region. At the interfaces
of different domains, the transport of charge is accompanied by the appearance of ‘bumps’
in the entanglement profile. These bumps grow as v/t with respect to the entanglement
in the middle of the domains which they separate (the one with the smaller entropy
density if those are different). IIT) This bumpy entanglement profile develops up to times
tg ~ O(N\?/D), at which point the domains start to melt completely into one another. The
entanglement growth at the domain walls speeds up to linear in time and the entanglement
profile smooths out. There is another timescale associated to this smoothing which scales
as tg(1 +log A). IV) Eventually there is a fourth time regime, when the entanglement
stops growing and saturates to its equilibrium value (assuming the system is finite). Note
that the III) regime is only present if there is a separation of scales A < L. If the initial
inhomogeneities are on the scale of the entire system then equilibration of the charge
density and the saturation of the entanglement profile happens simultaneously.

Befor moving on, we mention that there is a potentially important aspect of noisy
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11.2. Spin-3 chains

dynamics that is not captured by our surface growth model presented here, related to the
fact that noise can generate small-scale random inhomogeneities in the charge profile even
if the initial distribution is homogenous. This effect would be present in the continuum
model of Eq. (11.7), but not in the discrete update rule we consider. In this sense,
our model would rather correspond to a particular type of noise that is diagonal in the
conserved quantity, such as in Refs. [565, 566]. A similar stochastic model that does
capture such local random inhomogeneities in the charge was recently investigated in a
different context [628] (that of classical chaos)*. The results of Ref. [628] suggest that,
while adding these effects is not expected to affect the overall growth of entanglement
for inhomogenous states, which is our main concern here, they would lead to qualitatively
new features in the scaling of random fluctuations even within homogenous regions, driving
them away from the KPZ universality. We leave a more complete exploration of this to
future work.

11.2. Spin-3 chains

We now compare the predictions of the simple effective model of the previous subsection
1

with results on spin-5 chains. We first take the a version of the N = 1 random circuit
model defined in Section 7.1, one where the arrangement of random gates follows a regular
brick-wall pattern (Fig. 7.1(b)). In this case, the quantity we can compute efficiently is the
annealed average of the 2"! Rényi entropy. While, as shown in the previous chapter, a > 1
Rényi entropies have very different dynamics from the von Neumann entropy in the case of
a global quench, we find that the effects associated to charge inhomogeneities are similar to
those predicted by our surface growth model. In particular, for a domain wall initial state,
we find a scaling collapse of the entanglement profile of the form S(z,t) = vtf(z/vt). In
subsection 11.2.2 we compare to exact results on a non-random, periodically driven spin

chain.

11.2.1. Spin-; circuit model

The simplified model of the previous subsection relied on ignoring local fluctuations of the
charge, and using only the average local density as the only relevant variable. Here we
show that the features associated with inhomogeneities are quite similar even if we consider
the Spin—% random circuit, where we expect fluctuations in the local charge density to be
non-negligible. We take now a circuit where the unitary gates are applied in the regular

‘brick wall’ pattern, and each site contains a single conserved spin (N = 1).

We consider the annealed average of the second Rényi entropy, Séa) = —In (tr(pz%l)),

and calculate it by mapping to the effective 2D partition function as outlined previously
(see subsection 8.1.1 in particular). Note that the annealed average Rényi entropy provides

a lower bound on the von Neumann entropy, Séa)(t) < Sa(t) < Syn(t). As we now show,
several of the features predicted by our surface growth model in Section 11.1.2 appear also
in the dynamics of Séa), when computed for inhomogenous initial states.

We once again start by considering a domain wall initial state. As argued before in
subsection 11.1.2, since the charge density obeys the diffusion equation, it has a profile
(Q4(t)) that depends only on the combination x/v/Dt, where for the present case the
diffusion constant is D = 1/2. Assuming local equilibration, i.e., that the on-site reduced
density matrix takes the form p,(t) oc e #(#1)Q for some local chemical potential yu(x,t)
(which, as we show in App. B.7, indeed holds after some short-time relaxation process),

4We thank David Huse for bringing this to our attention.
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Figure 11.6.: Entanglement growth for an initial domain wall in the random circuit with
N = 1. The solid lines are data obtained from numerically evaluating the
annealed average of So, which provides a lower bound for S; and S>. (a)
Growth of entanglement in the middle of the domain wall, computed numer-
ically for a chain of L = 400 sites, is well described by ~ v/t asymptotically.
The dashed blue line is the upper bound from Eq. (11.8), given by the cumu-
lative sum of the on-site von Neumann entropies associated to the average
local charge density. The red dashed line is the cumulative sum of the local
second Rényi entropies, which gives a good approximation of the behavior
of the annealed average at long times. (b) shows the profile of entanglement
over a chain of 200 sites, which at long times exhibits a scaling collapse, when
both the position x and the entanglement Séa) are rescaled by v/t. Dashed
lines again indicate the cumulative sum of on-site entropies.

one can use subadditivity to upper bound for the von Neumann entropy as

Si(z,t) < Y s(a',t) = VDt f (\/%J , (11.8)

' <z

where s(z’,t) is the one-site von Neumann entropy of site 2’ at time ¢. Therefore, the von
Neumann entropy cannot grow faster than y/¢. Clearly the same upper bound applies to
(a)

all higher index Rényi entropies, as well as to S, .

The annealed average, Séa), on the other hand, provides a lower bound for both S; and

Sy.  Therefore if Séa) also grows as v/t then it follows that all of these quantities
have to have the same diffusive growth. This is exactly what we find by evaluating
the annealed average numerically: after some initial short-time dynamics its behavior
at x = 0 is well described by Séa)(O,t) = ay/t + b for some constants a, b, as shown in
Fig. 11.6. In fact we find that the profile of Séa) (x,t) is well approximated by the sum
of the second Rényi entropies of the local one-site density matrices, >, sa(z,t), where
so(w,t) = —log(1 — 2q + 2g°) is the Rényi entropy density associated to a state in local

equilibrium, parametrized by the charge density q = q(z,t) = <Qz(t)> That is, despite
the fact that S2 does not obey subadditivity, its annealed average behaves as if it satisfied
a modified version of the inequality in Eq. (11.8), where we replace the von Neumann
entropy density with that of the second Rényi entropy.
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11.3. Entanglement level statistics for a domain initial state

11.2.2. Deterministic Floquet spin chain

While random circuits have many advantages, we also wish to compare our predictions
to deterministic models of unitary dynamics. While the KPZ fluctuations mentioned in
Section 11.1.2 are particular to noisy dynamics, we expect that the imprints of charge
transport, such as the v/t growth of entanglement for a domain wall, do generalize to
the deterministic setting. We expect this to be the case, since many of the arguments
discussed above follow largely from the diffusive dynamics of conserved quantities, which
is generic at high temperatures [249, 279, 285, 553, 554].

To this end, we also perform calculations in a Floquet (periodically driven) spin chain,
which we introduced in Eq. (8.9), where it was shown to exhibit clear diffusive tails in
the OTOCs. Considering such a driven system has the advantage of simplicity; U(1) spin
is the only conserved quantity. We leave it to future studies to consider other models, in
particular those with energy conservation, and the appropriate generalizations of CDWs
and domain walls in that context.

As emphasized in the previous subsection, the scaling observed for domain wall-like
initial states, where both the size and the width of the features in the entanglement profile
grow as o« /t, is a direct consequence of diffusive transport. In particular, the upper
bound derived above in Eq. (11.8) only relies on the assumptions of a) local equilibration
and b) diffusive charge transport, both of which are expected to apply to generic many-
body systems at high temperatures [249, 279, 285, 553, 554]. While this is only an upper
bound, and in principle slower than v/t growth is possible, we do not expect this to be
the case unless there are some further constraints on the dynamics®. Indeed, evolving a
domain wall initial state with the Floquet unitary (8.9) we find that the entanglement
entropy across the middle of the chain grows slower than ballistically®, approximately as
t0-5=06 " This result, shown in Fig. 11.7, reinforces our expectation that the asymptotic
growth should be o /%.

Considering the full entanglement profile, however, we do not observe the scaling collapse
seen previously for the random circuit (i.e. a oc v/ width). Our interpretation for this
is the following. While the deterministic model we consider is expected to show diffusive
transport at ‘high temperatures’, or, in this case, at finite filling fractions, this is not the
case when the filling is very small (or very close to 1), which is the case far from the
middle of the domain wall. In these regions there are very few particles (or very few
holes), which therefore propagate without many scattering events. This suggest that in
the deterministic model there should be two distinct regimes: near the origin, where the
domain wall has sufficiently melted and the average density is close to 1/2, the diffusive
scaling should apply, while at the tails of the domain wall, where the filling is close to (but
different from) 0 or 1, there is a ballistic region [6].

11.3. Entanglement level statistics for a domain initial state

Finally, we return to the calculation of level statistics in the entanglement spectrum of
finite regions, which we discussed previously in Chapter 6. Recall, that there we shows
that level repulsion develops initially at very high entanglement energies (the smallest
eigenvalues of the reduced density matrix), and propagates linearly downwards, until the
entire spectrum becomes chaotic at times set by the Lieb-Robinson velocity. A particular
aspect of our proof was that it did not depend on the initial state in question, providing
instead a universal lower bound. A natural question then is how the time scale needed

5Such is the case of integrable systems, which can exhibit logarithmic growth of the entanglement [622,
623], even though their transport properties are typically faster than diffusive.

5Note that even in the random circuit results at N = 1, shown in Fig. 11.6, the +/ growth is only
true asymptotically and at short times a slightly faster growth is observed.
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Figure 11.7.: Entanglement growth between two halves of a domain wall, evolved with the
Floquet unitary (8.9). Solid lines represent the von Neumann entropy Si
while dashed lines are the second Rényi S2. Computed using exact diagonal-
ization for system sizes L = 22,24, 26.

to observe level repulsion depends on the initial state. While for a global quench cor-
responding to infinite temperature, the bound we derived might very well be tight, for
other initial states one might need much longer times. Here we address this question for
one particular initial state, one with a block of charges surrounded by empty regions in a
U(1)-symmetric chain.

In a spin-language, we consider a domain initial state where all spins within region
A are up, and all those outside of it are down. We evolve this state with the spin-1/2
U(1)-symmetric random circuit. Fig. 11.8(a) shows the resulting entanglement spectrum
dynamics, as well as the boundary-spin mutual information. Observe that the time scale
for the transition towards RMT behavior as seen in the r-ratio continues to coincide with
the onset of non-zero mutual information between the boundary spins, and both remain
linear in [, despite the diffusive charge dynamics. However, we see that the scale for the
Poisson-RMT crossover is now increased by a factor of 2 relative to the non-conserving
case, from t = 1/2vrc to t =1/vrc.

To understand why this is the case, first observe that for times 0 < t < [/2vr,c, we may
simply use the same sequence of arguments as for the non-conserving case (see Fig. 6.1(a)).
For times [/2vrc < t < l/vrc, the disentangled region constructed by the backward
lightcone argument does not partition the circuit into disjoint regions and so for a generic
circuit the density matrix does not factorize. However, the local conservation law strongly
constrains the dynamics, as each 2-site gates only entangles spins if they are anti-parallel.
It follows from this that that the dynamics deep within region A must be essentially trivial
at early times, and can only multiply the system by an overall phase. Accordingly, the
lightly shaded gates in Fig. 11.8(b) do not contribute to the entanglement, and may be
ignored. Evidently, this picture allows us to construct a ‘forward disentangled region’
where the gates act trivially, drawing lightcones inward from the ends of subsystem A
to the point (z,t) = (I/2,< [/2vrc). Combining these, we see that the entanglement
spectrum factorizes as long as the two disentangled regions intersect, i.e. for all times
t <1/vrc. Intuitively, this is the time for the lightcone emanating from one edge to reach
the opposite edge. For times longer than this, the two regions no longer intersect, and
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Figure 11.8.: (a) Evolution of entanglement level statistics (for entanglement energies E <
10) and boundary-spin mutual information in the charge-conserving random
circuit, starting in an domain initial state where the [ sites in the subsystem
A are occupied (up) and all other sites are empty (down). The time scale of
the transition towards random matrix statistics remains linear in [, despite
completely diffusive charge transport. However, the time scale increases by a
factor of 2 compared to e.g. a Neel initial state. (b) This can be understood
by an argument similar to that for the non-conserving case, by noting that
there is an additional cancellation from the fact that the state inside the
domain is an eigenstate of time evolution, so that the lightly shaded gates
are pure phase gates that produce no entanglement.

the gates that lie in the waist between them will spoil the factorization and drive RMT
behavior of the entanglement spectrum. We note that the timescale needed for the high
entanglement energies to develop level repulsion remains linear, despite the fact that the
entanglement growth at the edges of the domain is initially sub-ballistic, as we have shown
above. However, we observe that the later stage of the process, namely the approach
to RMT level statistics, is slower than for the non-conserving case (cf. Fig. 6.1(b); we
attribute this to the slow mode associated with charge diffusion in the conserving circuit.

We point out here, that the same argument would go through with little modifications, in
a Hamiltonian system, where we prepare region A to be in an eigenstate of the Hamiltonian
restricted to this region, and the state in A to be an eigenstate at a different energy density.
Then one would again find a similar cancellation of unitaries in the circuit-representation
of the time evolution (e.g., in the form of Fig. 6.2).

Our result here shows that the RMT time scale can indeed have a strong dependence on
the initial-state. Understanding the nature of this for more generic states is an interesting
open problem for future work.
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12. Conclusions and outlook

In this thesis, we discussed various topics in quantum many-body dynamics, with particu-
lar focus on aspects of the dynamics of quantum information. The two main tools we used
to characterize the spreading of quantum information were Rényi entanglement entropies
S and out-of-time-ordered correlations (OTOCs), which capture the spreading of local
operators. Our main goal was throughout was to elucidate the underlying principles that
govern the dynamics of these quantities and extract universal features that pertain to wide
classes of strongly interacting quantum systems.

In Part I, we focused on systems with no conventional conserved quantities. We con-
structed a minimal model, build from Haar random local unitary transformations, to cap-
ture the universal features in this class. As we showed, this model provides particularly
simple descriptions for both type of quantity, and argued in the spirit of hydrodynamics
that these should apply, on sufficiently long time- and length scales, to generic models as
well. The highlight of this part is our derivation of a simple hydrodynamic description for
operator spreading, which takes the form of a biased diffusion in one dimension. This led
us to realize a previously unappreciated feature, the diffusive broadening of the operator
wavefront, which we also confirmed numerically in a deterministic model.

In Part II we turned our attention to systems that exhibit diffusive transport of some
conserved quantity, and studied in detail the effects of such diffusive modes on the dynam-
ics of quantum correlations. Our main tool was a modified random circuit model, with
U(1) symmetry. Using this model, we extended our hydrodynamic description of operator
spreading to include the coupling to conserved densities. From this, we found that OTOCs
of the conserved density exhibit a slowly decaying tail behind their wavefront, which orig-
inates from the gradual conversion from the conserved to the non-conserved part of a
time-evolving operator. We also discussed in detail the behavior of entanglement in diffu-
sive systems. As a striking result of our investigations, we found that diffusion completely
modifies the behavior of & > 1 Rényi entropies, leading to sub-ballistic growth.

Chapter 9 stands somewhat apart from the rest of the thesis, focusing on conventional
hydrodynamic transport, rather than more exotic topics, such as operator spreading. How-
ever, we found that understanding the latter can actually shed new light on the former.
It allowed us to devise an innovative new numerical scheme, that managed to capture
transport properties with unprecedented accuracy.

In the remainder of this concluding chapter, we contemplate possible future directions
moving forward. The results established in this thesis provide a firm starting ground
for exploring many more intriguing properties of quantum many-body dynamics. This
includes developing a more comprehensive understanding of the hydrodynamic theories of
quantum information, as well as their extension to new situations, beyond their current
scope. Moreover, our numerical method developed in Chapter 9 invites many potential
applications.

12.1. Effective field theory for OTOCs and entanglement

In this thesis, we used random circuit models to arrive at simple descriptions for the
evolution of both OTOCs and entanglement entropies. However, the results bore all the
hallmarks of a hydrodynamic theory, which suggests that one should be able to rely on
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the existing vast literature on hydrodynamic transport [279, 280] to motivate and refine
them. A generalization of the memory matrix formalism, which we discussed briefly in
Section 9.1, to study operator spreading and entanglement growth is currently under
development! [629] Such a theory, for example, could shed further light on the stability
of the biased diffusion theory for operator spreading, and provide a more microscopic
understanding of the constants vg and D,,.

A related research direction is to understand the nature of corrections to these coarse-
grained hydrodynamic theories. This would amount to developing a full theory of nonlinear
fluctuating hydrodynamics [296-299] for these quantities. From this, one could deduce the
various subleading power laws that characterize their dynamics, and identify potential
instabilities that could lead to new dynamical universality classes. In particular, it would
be interesting to understand whether momentum conservation leads to any new effects,
as it is known to make regular diffusion unstable in low dimensions [291, 298-302], giving
rise to anomalous transport instead. An attempt to understand these various effects
might benefit from the recent results in developing a fully consistent effective field theory
description of hydrodynamic transport [281, 295].

Developing such a full theory is already an interesting, and non-trivial problem in the
case where the only relevant slow variables are entanglement or operator weights (that is,
in the universality class discussed in Part I of this thesis). Including effects of diffusive
transport, to arrive at a full effective field theory / nonlinear hydrodynamics treatment
of the effects we studied in Part II is even more challenging, but potentially also more
rewarding.

12.2. Other universality classes

Here, we studied what are arguably the two simples ‘universality classes’ for unitary many-
body quantum dynamics: systems with no conservation laws and systems with a single
diffusive mode. Many other universality classes remain to be explored. The simplest
generalization of the results of Part II would be to consider systems with multiple diffusive
modes, for example ones where both energy and particle number are conserved. While
these give rise to new transport phenomena, such as thermoelectric effects, we do not
expect them to qualitatively change the results for operator spreading and entanglement
growth we derived here. Nevertheless, a more explicit study would be desirable.

More interesting to consider are cases with qualitatively new types of conservation laws.
One of these was mentioned just above: momentum conservation in systems that live in
the continuum, rather than on a lattice. Momentum plays a crucial role in usual hydro-
dynamics, manifesting in ballistic sound modes, among other things. As mentioned in
Section 2.3, in low dimensions momentum conservation can also completely destabilize
diffusive transport. Understanding its effects of the dynamics of quantum information is
therefore a very interesting open problem, one with applications to cold atomic experi-
ments, and potentially also to high energy physics, where OTOCs and entanglement in
continuum field theories have been a topic of intense study recently [246, 256].

Other classes of systems worth examining in the future include those with non-Abelian
symmetries, such as isotropic spin chains, and higher moment conservations. According to
recent arguments, these generically have super-diffusive [310, 311], and sub-diffusive [331—
333] transport, respectively. Coupling of the new types of hydrodynamic modes that arise
in these cases to entanglement and OTOCs is yet to be understood. Moreover, while the
dynamics of entanglement in integrable models has received a lot of attention [106, 131,
264, 266-268]|, results on higher Rényi entropies are relatively rare [630, 631]. It would

!'See also Ref [260] for a similar approach.
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be interesting to see whether their qualitative differences compared to S7, which were the
main topic of Chapter 10, could show up in in these systems.

Finally, another hugely important universality class that remains unexplored when it
comes to the dynamics of quantum information, is that of systems with spontaneously
broken continuous symmetries. Spontaneous symmetry breaking is known to lead to the
emergence of new hydrodynamic slow modes [279] (essentially, the Goldstone modes). This
naturally brings up the question of how this new, richer type of hydrodynamics coupled
to the quantities studied in this thesis. This provides an extremely challenging task, due
to the lack of such symmetry breaking in one-dimensional systems; however, models with
long-range interactions might provide a way forward [632].

12.3. Entanglement dynamics with noise and measurements

The theories of entanglement growth developed in Chapters 10 and 11 provide many
possibilities for future extensions. In particular, we believe that the generalized minimal
membrane picture introduced in subsection 10.1.3 is worth developing further. Among
other things, this could provide a way to study the effects of noise. Since the leading
order behavior of Sy is modified drastically, for linear to sub-linear, by the presence of
conservation laws, the universal features of noisy fluctuations are also likely to be different
and no longer by captured by the KPZ equation; as of yet, there is no theory for these.
On another note, as mentioned at the end of Section 11.1, even for the von Neumann
entropy, where ballistic growth remains valid for global quenches, there is good reason to
believe that the coupling to diffusion can drive the behavior of fluctuations from KPZ to a
different universality class. This, and its connection to the o > 1 case, is worth examining
more closely.

In another front, recent years saw a burst of activity in studying the dynamics of en-
tanglement in circuits where unitary evolution is periodically interrupted by local (weak)
measurements [543, 604-607, 633-640]. The main finding of these studies is the existence
of a phase transition, as a function of measurement strength, between two types of long-
time steady states. For sufficiently weak measurements, the steady state is similar to that
of the purely unitary evolution, in that its entanglement satisfies a volume law:. When
measurements are strong, one finds the state saturating to an area law instead. The two
cases are separated by a phase transition, whose universality class is an intriguing problem
in itself? [604, 635-637]. These studies have all focused on circuits without any additional
symmetries. Examining the phase transition in U(1)-symmetric circuits remains an open
problem. In particular, it would be interesting to examine whether the qualitative differ-
ences between S7 and S,~1, which we observed in the absence of measurements, translate
into different transition points for these quantities, or potentially into different universality
classes for the transition.

12.4. Information dynamics at finite temperatures

One of the downsides of our random circuit approach is that it cannot directly access
Hamiltonian evolution. While we nevertheless believe that many of the conclusions we
derived on Part II remain valid in this case, due to the similarity between energy and
particle diffusion, it would be highly desirable to develop new tools that apply to the
Hamiltonian case and can potentially uncover new features that are specific to energy-
conserving systems. One can study Hamiltonians drawn from one of the standard random
ensembles [593], but these lack any notion of locality. Recent papers have developed tools

2Recently, it was shown that this transition is closely related to classical simulation 2D unitary circuits
without measurements [530]; a problem that is very relevant for demonstrating quantum supremacy [514].
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to address Hamiltonians composed of randomly drawn local terms [594]. However, so far
these calculations have proven intractable, except in the simplest (and still quite non-
local) cases [595]. Developing them further, with an eye towards calculating OTOCs or
entanglement, is an interesting problem for future study.

One of the important aspects of the Hamiltonian problem is understanding the role of
temperature. While we argued in Section 8.3 that finite chemical potential can capture
some of its effects, this is clearly not the whole story. For example, as discussed there, in a
true Hamiltonian system, lowering the temperature also leads to a change in the diffusion
constant, and in most cases an appearance of a ballistic transport regime at early times.
Explaining these phenomena from an operator-spreading perspective would enrich our
understanding of quantum transport. On the other hand, systems where transport remains
incoherent even at the lowest temperatures are of particular interest, and have indeed
driven much of the early work on OTOCsS in condensed matter systems [198, 559, 562].
Developing a more comprehensive theory for these remains a challenge.

12.5. Applications and extensions of DAOE

In Chapter 9, we introduced a new numerical technique for simulating diffusive transport
properties in quantum chains, combining ideas from operator spreading with tensor net-
work techniques. We demonstrated that this approach can be used to calculate diffusion
constants in the high temperature, strongly interacting regime, with a very high precision.
We therefore believe that it will be a fruitful method for studying transport in various
systems in the future.

On the technical side, there are several ways of potentially improving the performance
of our algorithm. One could, for example, utilize the truncation scheme developed in Ref.
[361] to ensure that conservation laws are represented appropriately; we expect that this
would lead to better convergence of our results with the bond dimension, and could extend
the parameter regimes we can reliably simulate. Another approach would be to apply the
algorithm in momentum space, evolving a Fourier transform of the local density [641].
This would allow one to study the system directly in the thermodynamic limit.

Regarding applications, there is a large variety of physical problems one could tackle
with this method. One that naturally comes to mind is transport at finite temperatures.
We expect that at sufficiently high temperatures, where correlations are sufficiently short-
ranged [399, 642-646], the algorithm should continue to work, and could be used to shed
light on the temperature-dependence of the diffusion constant, among other things. At
low temperatures, the method should eventually break down as increasingly non-local
components of the operator become relevant; understanding when and how this happens
is itself a physically interesting question. We also note that the temperature-dependent
notion of ‘operator size’, introduced in [647], might be useful for developing a modified
algorithm tailored towards finite-temperature studies.

Other potential applications include disordered systems, where diffusive transport is
expected to give way to sub-diffusion [225-233], and eventually localization [93, 96, 183—
185], as well as isotropic quantum magnets [310, 311], which also have direct experimental
relevance [648]. Another direction would be to study long-range interacting systems, which
have their own intriguing transport properties, and can become super-diffusive in certain
regimes [649]. Finally, and rather ambitiously, one could extend our method to higher
spatial dimensions; this research could build on recent developments in two-dimensional
tensor network algorithms [650].
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A. Additional calculations for the Haar
random circuit

In this appendix we gather some further calculations related to the Haar random circuit
model, discussed in Chapters 4 and 5 of the main text. We begin by stating some important
formulae regarding Haar averages, which are used for these calculations. We first use these
to describe time-dependent correlation functions in the model, verifying our claim that it
eventually relaxes to an infinite temperature state. We then describe a direct calculation of
all the average operator spreading weights for an initial local operator — these complement
the results of the main text where we focused on more coarse-grained quantities, such as
the endpoint density. Finally, we provide the derivations of some of the formulae that
appeared in the text.

A.1. Haar ldentities

We start by stating the first two non-vanishing moments of a Haar random unitary U of
size d X d, which are used to calculate various quantities throughout the main text. The
first non-vanishing moment is

/dHU X U1112Uz*12 5(5 1;15”;2 (Al)
This is used in calculating averages of time-ordered correlations, which are therefore iden-
tically zero for all 7 > 0 for traceless operators.

The following higher moment is needed for the derivation of the average square oper-
ator spread coefficients, and therefore the dynamics of pg fiscussed in Section 4.2; it is
also main ingredient that defines the local interactions in the classical partition function
representation discussed in Section 5.2:

1
/dHU X U1 1U1 1U% Sszzﬁ “ P21 (52%&5121% X 52%1552 -2 +5 —25%1 X 51%235@1;)
1
_m<5ﬁz?5ﬁ} X511622+61162§ X5125%;>.

(A.2)

This can be more elegantly expressed as a sum over elements of permutation group Ss:

1112 Z‘l,L'Q
/dHU X UppUsaUppUbs = > Wg(n)R(no)! HAR(0)33
112 ) 2112 2927 1919
)77652
h - 1 -1 n=(1,2) A
where, ng(n) = ﬁ <d) ( ‘3)

This last formula can be generalized to higher moments, where for the N-th moment, the
permutation group Sy appears [259, 651-653]. This is relevant in deriving classical parti-
tion function representations for more complicated quantities, in particular in performing
the replica trick to calculate quenched averages of Rényi entropies. This is detailed in Ref.
[278].
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A.2. Long time correlations

A.2. Long time correlations

In Chapter 3 we anticipated that random unitary circuits should ‘heat to infinite temper-
ature’, much like ergodic Floquet circuits. Here we back up this claim by examining the
long time behaviour of various time-ordered correlations functions, demonstrating that
they relax to their expected infinite temperature values. For simplicity we consider 1 and
2 point functions for specific 1-site Pauli operators of form of — although most of the
results below follow for more general operators as well. Fix any initial state w and times
to,t1. We find that

(06 (t2)0¥ (t1))w = 0.

This follows from two observations. First, the operator in the expectation value can
be written U01U1208‘U210§U10 where U;; = Uﬁl is shorthand for the unitary evolutions
between times ¢; and t;. Now Uy is statistically independent from Upq, so we can average
over these disjoint circuits independently. Provided ¢; # t2 and « # 0 it is straightforward
to see from Eq. (A.1) that the Haar average Ui20§Uz1 = 0. This can be re-expressed
succinctly as cfj(t) =0 for all t =t —t1 # 0, # 0. Note that this result is independent
of the initial state w and the value 8 — in particular we can recover the behavior of 1-point
functions by setting 5 = 0.

While the above correlation functions disappear on average, we may also quantify how
their variance behaves at long times. Indeed, the variance decays exponentially in time,
at least for random initial product states 1. The variance is

(08 (t2)od (t1))2 =D Jea(®)P(o" (tr) o (1))l

I

We argue that this variance vanishes as we increase t — oo while fixing ¢;. We can show
this rigorously for an infinite temperature state in App. A.2.1.

For a random product state we have a less rigorous argument which proceeds as follows.
First, given any € > 0, it will be true that for sufficiently long times ¢, all of the weight
of « is invested in strings p with left/right endpoints | < —(vg — €)t,r > (vp — €)t
respectively, up to exponentially small corrections in ¢t. These statements follow from
Eq. (4.10). Second, as a is a 1-site operator, |c%(¢)[? only depends on the endpoints of y
rather than the detailed internal structure (See the discussion under Eq. (4.16)). Hence,
up to exponentially small corrections in time, of(¢) is made up of an equal amplitude
superposition of all operators p with left/right endpoints near Fvpt respectively. The
vast majority of such strings contain an extensive O(vgt) number of Pauli operators. The
expectation values of such strings on a random product states is exponentially decaying in
the number of Pauli operators. As a typical p string contains O(vpt) Pauli operators, we

find \(aga§>w\2 ~ e~SB! for some constant . Hence for ¢;=0), <08‘(t2)0§(0)>i ~ e~CvBt,

For t; nonzero, we expect even more marked decay <08‘(t2)a§ (t1)>12p ~ e~CvB(H1) hecause

the support of off a? is further increased under time evolution.

A.2.1. Infinite temperature results

Consider the variance of the infinite temperature expectation value function

tr(2E(0§ (t2)0D (1)) = . [eOPI2 Px(otiol)P = [ (O (A4)
o

This is a Haar averaged single site weight. In the large ¢, s/t — 0 limit, we have an
expression for this quantity (in the coarse grained lattice basis). It is approximately equal
to Eq. (A.8) using x = s/2,y = x + 1,7 = 2t. Asymptotically then the variance in the

4t
infinite temperature average decays exponentially as ~ ((122%) .
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A.3. Exact operator spreading coefficients

In what follows, we give an exact expression for the averaged operator spread coefficients,
|CZ (t)|? and a sketch of the derivation. The averaged operator spread coefficients are

defined as

t,«— L

‘ |2 = / H H dHaar 2] +p777_)

T=1j=1

2

(aﬁTUT(t)aﬁU(t)) (A.5)

The Haar-averaging can be performed explicitly using the identity (A.3) in App. A.l.
After averaging, each two-site gate can be represented by a classical, Ising-like variable,
which takes only two possible values. Due to the geometry of the circuit, these Ising
variables form a triangular lattice (see Fig. A.1 and also Ref. [253]). Eq. (A.5) becomes a
classical partition function, i.e. a sum over all possible spin configurations, similar to the
one discussed in Section 5.2, but with modified boundary conditions that depend on the
operators o and ¢”. The bulk part which is independent of the Pauli strings considered,
and is the same as the one discussed in Section 9.1 in relation to calculating the average
purity. Due to the Haar-averaging, the only information that remains in the partition
function about the strings [ and ¥ is which sites they act on non-trivially. The bulk
transfer matrix enforces a light cone structure on the spin variables. A light cone with
velocity vr,c = 1 emanates from the two endpoints of the string ¥ such that all spins
outside of the light cone have to point up (otherwise the configuration has zero weight in

the partition function for \cz,(t)|2)

In the case of an initial Pauli operator acting on a single site the partition function for
the operator spreading can be evaluated exactly. In this case the fact that i acts on one site
only yields a boundary condition for the partition function wherein in the first row there is
a single spin pointing down while all others point up. The partition function then becomes
a sum over all possible ways this initially one-site domain can spread within the light cone,
as shown in Fig. A.1. Furthermore, the bulk interaction terms are only non-trivial at the
boundary between the two domains and consequently give the same contribution for all
domain configurations with the same depth. Thus the calculation simplifies to counting
the possible domain configurations which can be done by considering it as a two-particle
random walk for the two endpoints of the domain.

2 3 4 4
I S |
AR
I e )

Figure A.1.: Example of a classical spin configuration contributing to the operator spread-
ing coeflicients of an initial one-site Pauli operator. All such configurations
have a single domain of down spins spreading inside the light cone and each
of these configurations contributes equally to |c”(t)|2.

The calculation outlined above yields all average squared coefficients |cg(t)\2 where
p; = 01if 7 # 0. In the following we simplify the notation by dropping the first index
and denoting these as |c”(t)|2. The exact formula for these squared coefficients is given
in Eq. (A.6). A surprising property of this formula only depends on the positions of the
right and left endpoints [, r of the Pauli string ©, and not on more detailed information
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A.3. Exact operator spreading coefficients

concerning the internal structure of the string i.e., |¢”(¢)|2 = h(l,r). This is a consequence
of the Haar averaging which in each step washes out all memory of the internal structure.

Let us form a circuit with where the number of layers 2t is even. Number the spaces
between the two site unitaries in the last layer —¢,1 —t,...t. The support of an operator
string ¥ can be represented by z,y € {—t,1 —¢,...t} with x < y. The average square
coefficient is obtained by plugging z,y into the formula.

—2(y—z)—4t

1 q
(1 + q—2)2(2t—1) 1— q—4

2%\ oy pbtyta—uz
_ a-mbtyrazz
Jwwn= >, > (—b— >X<t—a—|—x>q ot (A.6)

0<a<t+z 0<b<t—y

j(;v? y7 t)?

Note that this expression depends only on z,y and ¢ so we also denote it as |c“ 2 =
h(z,y, D) where we drop the ¢ dependence for simplicity. These expressions are of-course
complicated. We note as an aside that this formula has a slightly neater expression in

terms of hypergeometric functions.

A.3.1. Useful limits

Let us calculate the weight on an operator with endpoints x, y, in the large ¢ limit, starting
from Eq. (A.6). We re-express the weight as

1 1
H’,l 2 — —4t X t
o= (1+q72)2 0 1= £ v,

) ) 2t 26 \bt+y+a-—=u
_ 2b— 2y 2a+2x _—
Glayth= Y x > 4 X<t—b—y><t—a+$> 2t '

0<a<ttz 0<b<i—y
Then define:

H(z,y,t) = ¢ (1 + )Mot + 2)v(t — y),

A
where v:(A) = (14 ¢*)~% Z <2t) q¥.

j=o \J
Combining these definitions, we find that
dH(z,y,t) 2t
—— = ——G(z,y,1).
a4 . (z,y,1)

Putting this altogether, we have

q74t 1 d

m g (1 — )l (A
W g P 0T g1 ¥ Tioggl? () ult+Dult =yl (A7)

h(.%’, y7t) = -

For fixed z,y taking the large ¢ limit, the v; functions can be approximated as (using the
same reasoning as in Eq. (4.13) ):

. 2@ +D) (%)%
ve(t + ) ~ — o .
Plugging in this approximation, we find
My 1) ~ ( 2 >4t (@) (@~ Dy ) + 2)g* vt
¢c+1 4t (g2 — 1)
So, fixing z, y, the weight on an operator with endpoints x, y decays exponentially quickly

0y VA
<q231> with large t.

(A.8)
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A.4. Derivation of operator spreading and OTOC

In the remainder of this Appendix, we provide further details on the derivation of some of
the equations presented in the main text, both for the right weight of an evolving operator,
and for the OTOC.

A.4.1. Validity of Eq. (4.13)

It suffices to work in coarse grained co-ordinates ¢, z. Recall that

- g2 (t+) 9t
p— Do Do t —_— — .
(.%') ZPR(y> pR(xa ) (1 I q2)2t (t—i—x)
y<z
Our task is to justify the formula Eq. (4.13), which can be more carefully phrased as
follows: In the limit, ¢ — oo, with |z — vpt|/t = € held to be a fixed nonzero number, the

integrated operator density obeys

E(a:) =cofor —1<k<up (A.9)
pr(z)
1;7]%(1‘) =c forvg <k <1 (A.10)
PR(Z)

where ¢g 1 are positive numbers, bounded in the ¢ — oo limit, and we defined x = z/t and
work in units where vr,c = 1. Define
_prR+1,t) 5 1-k

.= — . Al
R ET R (A1)

The quotient @), is always positive. It is easy to verify that for —1 < k < vg the quotient
is greater than 1, and an increasing function of . On the other hand, for vg < Kk < 1,
this quotient is less than 1, and a decreasing function of z.

When —1 < k < vg we use these facts to bound

R(z) <pr(z, )1+ Q' +Q,°...) = pr(x,1) (A.12)

1
1-Qx
At the same time, it is immediate that R(x) > pg(z,t). Noting that in the large ¢ limit

Q= %; we then find that

R(z,t o 1 1-
R ek ] (A.13)
pR(-r: t) 1- Qx 2e
Hence ¢ <1+ %is an O(1) constant.

Similarly we consider vg < £ < 1. Using 1 = > pr(y,t) it follows that R(x) =
1-— ZPI pr(y,t). In the present case, @, < 1 and is straightforward to derive a similar
bound

‘ 1 — R(z,t)
PR(z, )

=“1-0Q, %

Hence ¢; < 1+ w is an O(1) number in the large ¢ limit. Note that near the edge
of the light cone, k = F1, the results Eq. (A.9) become increasingly exact as each of the
bounds Eq. (A.13) and Eq. (A.14) become tighter. On the other hand, as we approach
the front e — 0 the bounds become looser and Eq. (A.9) is less reliable — in this regime,
the near front expansion Eq. (4.11) becomes more useful.
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A.4.2. Application to OTOC

Following Section 4.2.2, the quantity f(s,7) =1 —C(s,T) can be written as

[(s,7) = 3 Jer(r) P cos bz,

0

where €25 is a ¢ root of unity acquired by commuting o* past Z,. We can reparame-

terize this by summing over the left right endpoints of the Pauli string

t—1 t—1
Fs,m) =Y hlr) Y cosbuz, (8.15)
l=—tr=—t MES’(Z,T)

where h(l,r)is simply the average |c#(7)|? for a Pauli string ; with left/right endpoint —
recall that this value does not depend on the internal structure of p (see below eqnref or
above in App. A.3), only on the endpoints of pu. Here §(I,7) = {u : supp(pn) = [I,7]}.
Those intervals [[, 7] such that s € (I,7) do not on net contribute to this sum, because the
sum over ¢ roots of unity disappears:

h(l,r) Z cos bz, =0.
neEF(L,r)

There are also contributions to (A.15) which arise when s is on the left and/or right edge
of an interval i.e., s=1or s =r.
First, we perform the sum over p in (A.15) for the case r = s > I

Z COs e,u,Zs = _(q_26l<5—1 + 51:5—1,5((12 - 1)_1) |g(l7 S)| .. (A16)
neg(l,s)

Next, perform the sum over p in (A.15) for the case | = s < r:

Z COos gu,Zs = _(q725r>s+1 + 5r:s,s+1(q2 - 1)71 ‘3(37 T)’) . (A17)
HES(s,m)

Combining these sum identities, Eq. (A.16) and Eq. (A.17), back into Eq. (A.15) yields
(after some rearrangement)

Fen =1 >+ > =3 a2=-> > | xhll,r)[30r)

I<r<s—1 s+1<i<r r=sl<s l=s r>s

b3 (6 = (s~ 1,3) + o5+ 1) + (¢ = 2) (s, ))
The first line is

fr(s,7) = R(s — 1) + L(s + 1) — ¢ (77 () + 7L (5))

It is readily verified using Eq. (A.8) that the second line disappears exponentially quickly
in 7, as (2¢/(¢?41))?7, for any s. Hence, in the 7 — oo fixed s/7 limit, we can approximate

f($77—) ~ flS“(SaT)
= R(S - 1a 7-) - q_QIOiR (S’T)
+R(—s—2,7) —q pr(—s—2,7) (A.18)
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Appendix B. Additional calculations for U(1) random circuits

where we used the fact L(s+1) = R(—s—2) and pr(s+1) = pr(—s—2). For0 < s < 7/vc,
and for any ¢, we can use Eq. (4.11) and Eq. (4.14) to argue that the second line is
suppressed by a factor of ~ ¢~* relative to first line. Therefore, provided x > 0 in the
7 — oo limit, the OTOC behaves as

f(S,T) ~ R(S - 177_) - q_2P7R (8,7’)

up to exponentially small corrections in 7.

B. Additional calculations for U(1) random
circuits

Here, we gather various results about U (1) symmetric random circuit models, which were
omitted in the main text. We begin with a more complete discussion of the action of
a single gate, which is used to build the partition function in Section 8.1.1. We then
give detailed derivation of various results stated throughout Chapters 8, 10 and 11. In
Section B.6, we provide a derivation of the long-time hydrodynamic tails that appear
in expectation values and correlation functions; apart from being of interest on its own,
this calculation is useful in understanding the results on Rényi entropies presented in
Section 10.2. In the last part of this Appendix, we provide some numerical evidence that
the local equilibrium approximation, which is the key element entering a hydrodynamic
description, is satisfied at long times when quenching from an initial domain wall.

B.1. Average effect of a single gate

In this Appendix we derive Eq. (8.6) that describes the average effect of a single 2-site gate
on four copies of the Hilbert space (i.e., on the time evolution of superoperators), relevant
for calculation of average OTOCs and purities. Let us start by examining the simpler
problem of the average time evolution of an operator, already discussed in Eq. (7.1), and
re-derive the result in a slightly different language. An operator O evolves under the effect
of the unitary U as

(UTOU)ap = Uz 045Us5 = Oys(U* @ U) (15)(ap) (B.1)

i.e. we can think of it as being evolved by the superoperator U* ® U. Now let us imagine
that U is a 2-site unitary, with the block-diagonal structure U = ZQ Ug, where Ug acts
on states with total charge Q. We can then use the fact that the blocks are independent
Haar-random matrices to evaluate the average. For an n X n random unitary matrix
u, the properties of the Haar-distribution imply that © = 0 and u* @ u = %]]Al><fl|, where
|1)(il| = Py is a superoperator projecting (up to a normalization constant) on the identity,
using the notation of Section 8.2.2. We conclude that

1 - A
TFol=>Y U, ®U, :ZU@@UQ:ZCTWQMPQL (B.2)
Q1@ Q Q @

where PQ are projectors acting on the two-site Hilbert space. The above expression acts
on an operator as O — 3 o %tr(PQO)PQ.
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B.1. Average effect of a single gate

For evaluating OTOCs (or purities) we need to know how to average the time evolution
on four, rather than two copies of the Hilbert space. For this four-layer case we have three
distinct ways of pairing up the unitaries which gives

TFeleUel= Y (Ug?l@UQl ® U, ® Uy, + U, ®UQ2®U52®UQ1)
Q1#Q2
+Y U e U, 0 U, e U, (B.3)
Q

For the Q1 # @2 terms, where each block only appears at most twice, we can use the
result of Eq. (B.2). In the simplest case this gives

1, - . 1 - ~ 1
U U, U5 @U, =—/(Pg, (P, —(|Pp, M Pp,|) = ——|T} Th o,
0, ®Ug, ®@Ug, ®Ug, dQ1(| @) (Fo.]) ® dQ2(| @2)(FQs ) dQldQ2| Q1Q2>< Q1Q2|
(B.4)
where we defined ‘251Q2> = ZOIGHQI ZBGHQQ |aafBB). The second term in Eq. (B.3)
corresponds to swapping the second and fourth copies and thus gives

* * * 1 — —
UQl ® UQ2 ® UQ2 ®U* = M|IQ1Q2><IQ1Q2|’ (B.5)

where |Z o) = ZaeHQl ZBGHQ2 laBBa).
For the last term we need to apply the Haar identity for the fourth moment of U. The
result can be evaluated using Eq. (A.2), which gives

UgeUy@Us e U,
1

o 1 _ _
=31 {(II@“Q)%“Q! + yIQQ><IQQ\) o (|I5Q><IQQ] + yIQQ><15Q\)] . (B.6)

Combining Eqgs. (B.4)-(B.6) we get the full result for the average of a single gate in the
four-layer system given in Eq. (8.6).

A significant difficulty of this charge-conserving circuit, compared to the one without
symmetries, is that the states that appear when averaging over a two-site gate do not
factorize into independent states on the two sites. If we want to write them in terms of
such single-site states (living on four copies of a single site) they become

Zd,0,) = D 10aBB)1168)2 batr=q1 p+5=qa
aByd

Tg,0.) = D aBBa)17867)2 basr=1 85 46=0s- (B.7)
aByd

Let us focus on the case of only two states, |0) and |1), on each site site. A possible basis
of operators on a single sites is then given by @ = [1)(1|, P =1 — Q = [0)(0], 61 = |1)(0|
and 6~ = |0)(1]. We can then write Eq. (B.7) in terms of the following six local states:

P|=LpRp 1) = [1111) =
|

|
P|=L,+R,- |B) = [0011) = |
|

| |
|4) = [1100) = | )
6167 = LoRp D)= 0110) = |67)(67| = LpRg,  (B.S)

C) = [1001) = |6

where we have included their interpretation as superoperators, using the definitions of Sec-
tion 8.2.2. The states appearing in the tensor corresponding to a single two-site gate can
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then be written in terms of the above states on each site as

1 Zgo) = |Zg0) = 10)10) 1Z55) = |Ta5) = [1)]1)

I Z52) = |A)|A) Zo2) = 1O C)

|Z5) = |B)|B) Z30) = |D)|D)

IZ51) = [0)]4) + |4)]0) Zo1) = 10)IC) +1C)|0)

IZi5) = [0)|B) + |B)|0) Z1i0) = 10)|D) + |D)|0)

IZ51) = [1D)]4) +14)[1) 2210 = [DIC) +[C)|1)

IZ15) = [DIB) + |B)|1) Z12) = [DID) + [D)[1)

IZ17) = [0)[1) + [1)]0) + [A)[B) + |B)|A)  [Z;;) = [0 >|1>+|1>|0>+|C>|D>+|D>IC(’;3, 0

where the two states on the right hand side correspond to the two neighboring sites on
which the gate acts. Based on these we can compute all the matrix elements of the form
(IJIU*@U @U*®U|KL) for I,J,K,L = 0,A,B,C,D,1 which give us the transition
coefficients illustrated in Fig. 8.2. Applying these for each gate in the circuit, and con-
tracting with the appropriate boundary conditions defined by the operators f/', W and
the chemical potential p, give the 2D partition function one needs to evaluate to compute
the OTOC .7:,‘[ W The same partition function, with appropriately modified boundary
conditions, gives the average purity, used in Chapter 10 and Section 11.2.1.

We end this section by noting that the above formula for the average effect of the
2-site gate can be written in somewhat more compact form by introducing the states

0 . . . .
T0:) = 2g,0,) — QlQ?] 0,0,) and renaming ]IéngQ} — |Zg,qQ,)- Using this notation
Eq. (8.6) becomes

|T01Q2)(T01Qs |-

(B.10)
We will use this version of the formula in the following section to derive Eq. (8.15).

1
TFeUeU U= 120102)(Z01Q.| +
Q§2 dgdg, T Q§2 dg,dQ, = 9,0

B.2. Derivation of Eq. (8.15)

In this section, we detail the derivation that leads us to the conjectured long-time form
of the OTOC presented in Eq. (8.15). Here we consider a more general version of the
equation of motion in Eq. (8.14), where we also take into account effects of finite chemical
potential. We do this by considering a modified superoperator

Duyv = Loyvw, R, Vi, (B.11)

where we introduced the notation w, = e 19, Similarly, it is useful to define a generalized
version of the projection superoperators as

v _ |€*NQI > <6quz ‘
K tr(e=rQz)

, (B.12)

where @, is the total charge within a single ‘supersite’ z, consisting of M individual
qubits!, as shown in Fig. 7.1(a).

'Here we use a different notation compared to the main text, denoting the number of quibts per
supersite by M, rather than N.

152



B.2. Derivation of Eq. (8.15)

The superoperator defined in Eq. (B.11) becomes, on average, after a single application
of a unitary gate on 2M sites,

Dy, z, (AT) Z Im e hQp, X

1

LS TP (ST

quwu%(Cx-i-Czﬂ)wu' Lk,

where bg =1 — (1 — %)2 In the main text we argued that the 4 term is mainly respon-
sible for ballistic spreading, while the ¥ term is more complicated and involves diffusion
of conserved superoperator densities. We detail these arguments below. The resulting
solution for the OTOC superoperator is

~ y(t—t")
Duz, ()= @ PO + oD+ e 3 ST (Kt — Ky (PR,
t'<tyet'+2Z

(B.13)
where o), = lgﬁM cosh™2(y/2) and 73,;4 = Q,ca Py for the ballistically growing region

Ap(t) = [z —t,z +1].

B.2.1. Ballistic expansion of ¢

The operator ¢, defined above, occupies two supersites, x,x + 1. Considered as a super-
operator on the 22 dimensional Hilbert space on these two sites, the individual terms
give typical expectation values on local operators of size dQe_“Q. Such summands are, for
large M, dominated by @ in a small window around 2M /(1 + e#). The most significant
term is therefore

~ ~ z,x+1
’ 1 1
(1IPiPgl) ™ = X > IBnPEr e PR,
er+er=Q fL+frR=Q
where ey, g and fr r are local charges on the two sites and ng is a projection unto that
charge on site x. This term is similarly dominated by those terms with er, r = f1.r ~ Q/2.
Taking the approximations together gives

e — Q z+1 x z+1
*= dQe wQ\pz Pty (P2, Pat) (B.14)

where a,, = 152 cosh™?(u/2).

We will probe the dynamics of Eq. (B.14) under unitary dynamics on = + 1,z 4+ 2. At
this point it is useful to remember that the OTOC operator was originally defined on
the whole Hilbert space as £, R superoperators being pre- and post-multiplied by thermal
factors as in Eq. (B.11). Taking into account these additional factors coming from site
T+ 2 we get

| Q/2P5721><Pm P ’Ee*#Qm+2/2Re*#Qm+2/2

Q/27Q/2
e T 41
dQ P /QPQ/Qc *#Qm+2/2Re*#Qx+2/27

where Pg) = |155><P5| is a local projector on the space of operators.
A straightforward but tedious application of Eq. (B.10) gives two contributions to the
expression for (A7) = ¢(A7); + (A7), corresponding to the first and second terms in
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Appendix B. Additional calculations for U(1) random circuits

Eq. (B.10), respectively. We detail the calculation of both of these separately below. The
first we can write, making similar large M approximations as above, as

$(A7)) ~ e300

pr  pzr+l pr+2\/pr  pr+l px+2| o pr,x+l,e+2
(21)3|P@2P@2 PP, PEALP, P
m

~

Q/2°Q/27 Q/2 a ’

where we have defined Z; as the partition function of a singe supersite, which is peaked
at charge )/2. The second term, ¢(AT)sz, is obtained by applying the second term in
Eq. (B.10); it is sub-leading by a factor at least O(1/dg), which is typically exponentially
small in Q.

On net, considering the full Hilbert space, we can iterate the above procedure to argue
that

¢t)=0c, @ Pi Q Lonau2Renaus2,

z€A(L) ¢ A(t)

where A(t) is a region that ballistically spreads out from initial site 1 at a velocity of 2M.
We anticipate that there are O(1/M) errors involved in this approximation associated
with neglecting fluctuations in the charge arguments of the projectors P. We leave a more
thorough accounting of these errors to other works.

Computing ¢(A7);

Here we apply the first line of Eq. (B.10) to #. We act on supersites x + 1,z + 2. For the
sake of the calculation it is useful to define the local superoperators Z?; = | P.)(Py|, acting
on a single supersite. Using these we can write

41,242 +1 _
<IQ1Q2 |Px £67MQ1+2/2R67NQ1+2/2> -

Q/2
- Z Z <I€IL+f1LI:I:f2R |P%?21£6_“Q1’+2/QRE_“Q“’”/Q>
erter=Q1 fL+fr=Q2
- Z Z <I€IL+f1L |’P%J/r21><IZCR+f2R‘‘Cef“Q”C”/zRe*“Q%“/2>

eL+er=Q1 fL+fr=Q2

= > D XG2XQ20, 0201,/ OensaXen
er+er=Q1 fL+frR=Q2

2 _
= 0Q1Q> (X@ﬂ) eiﬂ(QliQ/mX(Ql—@/Q)’

where x( is the size of the 1-supersite Hilbert space with charge ). Now we put this back
into the first line of the evolution equation to get

1 41,242 Ome*#@ T 2 Q1-Q/2
sar =Y Tolr x P 5010 (X@/Q) @Dy o

010, rde
9 B Pz I:c+1,a:+2 B
_ - Q/2~Q - -Q/2
_<X@/z) ane 9 dg cliél x MO NG, gy
Q1 1

Note that when we take expectation values of this quantity, we should find a value of size
x> where y is the typical value of X in the thermal ensemble, which is exponentially large
in M for large system size. As a function of (1 the norm of the terms is peaked around
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B.2. Derivation of Eq. (8.15)

Q1 = Q giving

T Pw+lpx+2

3 _ Pz PZ P
(A7) = (d%m) Oéue_?’“Q/2 Q/2 5;2 Q2
Q

N 1
"z

= Py at1,a+2 ()

‘e*#(Qz+QAx+l+QAx+l)> <67N(QAI+Q$+1+Qx+1) |

where Zﬁ is the 1-site partition function.

Computing ¢(AT),

We now apply the second line of Eq. (B.10) to # i.e., to calculate 4#(A7)2. The main
object of interest is

<£PQ1 RPQ2 |P%—}_21ﬁef“Qz+2/2R67“Qz+2/2>

= 2 2 L RenlPo) e RpralL e, i0nR s, por)
ept+er=Q1 fL+fr=Q2 L "

_ — —+ 2

= D D SegpdpapXge X e T g,
er+er=Q1 fL+fr=Q2

o —pu(@1+Q2-Q)/2, 1 1
= XgpXe ( ) XQ,-q/2XQ.-q/2

We also need to calculate

0Q1Q 1,242 00,0 O D
d;f(l&cf |73%721£6—qu+2/2Re—qu+2/2> ~ d;IQ(XQ/Q)Q X XQ,-q/2¢ M@=/,

Now by putting everything together we arrive at

_.0 +1,242
‘(AT)Q ~ 1 aue Ho %3 £x+1,x+272a:+1,x+2 . 6Q1Q2I§21Qf
) dQ,dQ, = 0Q.Q> d@ @2 Fa P dg,

5Q1Q2

_ —1(Q1+Q2-Q)/2 _ _ _ )2 _
X (XQ/2 % e~ (Q1+Q2-Q)/ XQ1-Q/2XQ.—Q/2 — do, (XQ/Q) “XQ,-q/

Qe—u@l—cz/z)) ,

Note that expectation values here will take values of order O(x) on local product operators.
For the Q of interest, this is a factor of O(x?) smaller than #(A7);. So we ignore ¢(A7)s.

B.2.2. Evolution of %
Evolve 1> L¢, R¢, on sites z,z + 1

We now investigate the evolution of the ﬁﬁcﬂz@ term under a unitary gate on x,x + 1.
Label the two lines of the OTOC evolution in Eq. (B.10) as A and B, respectively. Consider
A first:

1 watt 2\ 2
A= 5 (T50 LaRe) = 00100 ) <1 - M> Xer XQi—er»

€L

where we have used

N A A A 2@ . 2@ A ey, 2
tI‘I (CfoLCngL) = tI‘x ((1 — ]\;) PxL <1 - Mz> PeIL) = M2 <1 — M> XeL(;eLfL'
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Appendix B. Additional calculations for U(1) random circuits

Hence

L atia42 2er\?
A= Z 42 ICDSlle 1- ﬂ Xer XQ1—epr-
Q1,Q2 @1 er,

Now we estimate H as

z,x+1
1 6Q1QQIQ151 Q1 Q2
Wngf“RPg;“ - TMCERCJ ~doudo, (1— 37 | (1— 47

We can drop the second term in the last line because it is a factor of (’)(sz) smaller than
the first — this translates into being exponentially smaller in M as our final expressions
for OTOCs are dominated by @ for which d% is exponentially large in M at finite chemical
potential. This leads to

LEDY Lot R $0:0:75G, do,d (1 Ql) (1 Q2>
~ x,z+1 zxe+l — ————————— —_ —_ .
Q1,02 dQldQ2 5Q1Q2 Fay Fay dQl Qe M M

Combining the two terms B + A and dropping further terms of relative size O(1/ dé)

gives
Q1 Q2
lec:h dQldQQ ErgrRey; ( M M

xz,x+1 2ey, 2 Q1 2
+271Q151 <Z <1_M XeLXQlfeL—dQl 1_M .

€r

The former is readily expressed as #E CotCor1 Rcutcayr - The latter term requires more
2

2
work. Note first that we can exactly evaluate

2er )\’ 1 Q1 Q1 Q1 1
> (1 —~ M) dl db,_., —dg, (1 —~ M) =7 (1 —~ 2M> (1 — > dg,

oL 2M

so that in total we get

1 1 1 1 a1 @1 Q1
Mzl et Reten + 3 (1 - ) 2 3o a3 (-2
1
1
M

2M

_ b CEZ‘-‘,—I
2£Cz+gx+1RCz+gx+l S ev— 2M -1 Z dQ QlQl bQ'

B.2.3. Evolve 5 Lc,., Re,, 1 L¢. Re,,, on sites z,z+ 1

The result of such an evolutlon can be obtalned from that of 7 > Le, Re, (AT) in the pre-

vious section by noting M2 Lo Re, = M2 Lo Re, — [, RCI and that (41 + (; is
conserved on x,x 4 1 for the gate considered. As a result
1
M2 ECx-HRCz (AT) M2 £C1+1+C1R1(§x+gz+1) M2£ Rﬁz (AT)
1

. xm+1
= 25 o) Rt tonn) 2M 1 Z *P

The result is the same for ﬁLQR@H (AT).
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B.3. Equilibration in operator space

v | (vr) <vivm> 37 <U;[Cx(t>vr<z<t)>

1] 1 1 <f2 ”y(t(l—fQ)>
1 (e =5 )

o | 0 | B30 0) |5 (GOGO) - Kap g f2 = K25 (1= 12)

Table B.1.: Useful expectation values for manipulating OTOC.

Summing up contact terms

Let us start by evolving the purely diffusive term at time ¢ by one time step. Using our
results earlier in this section, we obtain a sum of contact terms in addition to the expected
purely diffusive term:

1 1
TELeoRGw = 3 D Ky Ky Lo, Re,,

yy'
1 1 2 +1p,
saplotRaum o 2L (KL, 0+ K2, Z d = Ph b,
y:y=t mod 2 A
1 +1p,
- oM —1 Z 2K¢cchcy+1 Zd ,Pyy Q
y:y=t mod 2

1 1 1 .
%W£<z(t+l)7?’<z(t+l) + oM —1 Z (Kzyi1 — Kay)? () Z Tpé’f+ bQ:
y:y=t mod 2 Q1 Q1

where (3 (t) = >_, Kuy(y and Kyy is the diffusion kernel of Eq. (7.3).

B.3. Equilibration in operator space

In this appendix, we use the superoperator formalism, developed in Sec. 8.2.2, to show
that the expectation values of local superoperators, e.g. OTOCs, are at long times deter-
mined by a Gibbs ensemble on operator space, which reproduces the results established in
Sec. 8.3.1. Consider a spin system with L sites, each with on-site Hilbert space dimension
q = 2 (for concreteness). We want to time evolve the ‘density matrix’ corresponding to
a pure state in the space of operators, Py (t) = |V (¢))(V(t)|. It is convenient to consider
initial operators which include a Gibbs factor, e.g., take an operator of form V= (IJ#OAQ(IJM

where Og = Zo, &Oi is a local Pauli matrix on site 0 and w, = ef%Q. This is useful for our
purposes because the out-of-time-order part of the OTOC (the focus of our study) can be
expressed as an expectation value of a local superoperator with respect to such a Py as

(Pr(O)IL iRy, ) = (VO Ry, V(1) = tr (2,006, (02,000,7, (1) . (B.15)

If we apply local two site U(1) random unitaries to such a spin system for a very
long time, we expect the system to scramble completely, such that the time evolution is
essentially a non-local random unitary operator with conserved U(1) charge. Hence, at
long times, we expect the average density matrix to be that obtained by plugging Py into
Eq. (8.6) for a unitary that acts on the whole chain. The result is a Haar averaged ‘density
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Appendix B. Additional calculations for U(1) random circuits

matrix’ (on operator space) of the form

4
o o Lpy Rpy, — ~9-%2Pq
Py (toe) = ViV + 3 o (P, V, P, V] ) x —2— 20 =
d@,dgs — 0Q,Qs
Q1Q2

where we have separated V into two orthogonal components V= VII + V., with VII =

Potr(PoV - A . Ao
>0 % and V| =V — V], and used the notation Py = [Pg)(Pg|- In what follows,
we consider the expectation value of a local superoperator — for concreteness we will take
a superoperator L, R+ where W, is a local operator. When evaluated in the ‘state’

Py (t), this will have two separate contributions form the ||, L components respectively.
Let us deal first with the || component,

tr (PVH (too) Ly, RW:) =tr (wguéﬁw@zuouﬁ/})

Y e @@ (0], P, O ).
Q1Q2

It is readily verified by example that for two local observables, O and W,, this sum is for
large L sharply peaked for Q12 = Q + O(1) where Q@ = L/(1+ ¢*). (The key observation
here is that local operators have O(1) charge under the adjoint action of Q) This justifies
replacing Py, (too) With essentially any other distribution peaked in the same position. A
particularly simple choice is.

L _HQ _HQ
Py (too)—>tr<VTV)|e ole
I ol VA
“w
where Z,, = tr e‘“Q>.
The L part of the density matrix takes form
4 P
A o A EP RP _ ngz Q1
P, (t) = 3 tr (Po,V Po, V) x —2—=2 <
dQldQ2 - 5@1@2
Q1Q2

We again consider the expectation values of local superoperators (e.g., EW RWT)' Once

again, the sum is sharply peaked around Q12 = Q + O(1) in the large L limit, i.e.

. Lp. Rp
Pr, (o) ~ tr (VIVL) _ehwv Q@

Qg

As before, this justifies replacing Py, (to) with a similar distribution peaked at the same
charge,

I, e—u(ﬁQ-‘rRQ)
Py, (too) = tr (VIV, ) —;
n
We reiterate that the above approximations are also only expected to hold weakly (i.e.,
when we calculate the expectation values of observables with an O(1) charge).
In summary, our late time operator density matrix takes the form

6—;1([:@-0-72@)

eng engA
) le72¥){e™2¥] = (B.16)
o

Pv (too) = tr (f/*f/
m

v Ftr (m)
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B.4. Solution of cTo™ OTOC in the p = oo limit

This form, particularly the latter L term, is nothing other than a Gibbs ensemble for
the superoperator conserved quantities £g,R¢g. In fact, we could motivate Eq. (B.16)
using the language standard to discussions of equilibration to the Gibbs ensemble. Having
identified Lg,Rq as the conserved local densities, we could have proposed an obvious
ansatz of Gibbs form for the late time density matrix

_ 1,14 _ 1,24 (1) (2)
e 27 Qy 72 @ i\ e Lol Re
pansatz _ gy (V”TVH ) e (e | + tr (VLTVL) c ; (B.17)
Zl INCEINC) Z 02 o
m e AR
and determined nﬁ_l’HQ) via the conditions depending on the initial state,
A . &) @)
Vi|Lo|V. . [ e LTl Re
WilLolVi) _ ¢ (e Lo, (B.18)
(Vi |VL) an>an)
N N (1) (2)
VilLolVy) . (e ™M Femm Ra
WilLalViy _ ¢ (e Lol . (B.19)
Vilvip 21y 14

and an otherwise identical pair of equations for Rg. It is readily verified that for the

(1,2)

L T mas required, agreeing with our

choice of initial operator V= cD#OAch#, we get n
final result Eq. B.16.

These results point to an extension of the principle of thermalization to operator space.
Recall that for the usual notion of thermalization, if the time evolution U is completely
ergodic (save the presence of U(1) symmetry), we expect (and have indeed argued in

previous sections for random U) that local observables equilibrate according to

r (e=mQ0
<O (t — oo)>w - w (B.20)

in the thermodynamic limit. Here p,, is determined for a given state i) by balancing this
equation for O = Q. As we have found above, a similar notion of ETH occurs in operator
space. One uses the ansatz Eq. (B.17), and determines the chemical potentials nﬁ?f) by
ensuring that the superoperator charge densities in the initial state agree with that of
the final state (see Eq. (B.18) and Eq. (B.19)). The analogy is especially apparent for
the L terms, where the ensemble is precisely a Gibbs distribution with respect to the
superoperators.

B.4. Solution of o707 OTOC in the 1 = co limit

In this appendix we show how the OTOC .7-'00 il (the only non-trivial OTOC in the y — oo
limit) can be understood in terms of a two-particle random walk of absorbing particles, and
how this description gives rise to the two important qualitative features (double plateau
structure and lack of ballistic light cone) shown in Fig. 8.10. The considerations of this
appendix apply also for higher dimensional random circuits, which should therefore also
exhibit the same qualitative features.

As described in Section 8.3.3, the OTOC F,Z UO ’ , which is the zeroth order term in the
perturbative expansion, is given by a process Whereln the partition function is evaluated
between boundary conditions that contain 2 particles. These boundary conditions are the
following (using the notation of Fig. 8.1):
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Appendix B. Additional calculations for U(1) random circuits

e At time 0 there is a particle on site 0 on layers 21 and a second particle on site s # 0
on layers 22

e At time ¢ there is a particle on site 0 on layers 22 and a second particle on site s’ # r
on layers 21.

As long as the two particles in the initial state do not meet they each perform a random
walk process of the type described in Eq. (7.2). Upon meeting each other the two particles
annihilate, since there is no matrix element with this specific set of incoming particles (see,
e.g., Fig 8.2). This means that the computation of the OTOC reduces to the following
problem:

Given two random walkers, one that has to start at site 0, and another which has to end
up at site r at time t, what is the probability that their paths avoid each other?

The solution to this problem can be easily formulated in terms of single-particle transi-
tion probabilities, by noting that there is a one-to-one mapping between crossing paths of
the two particles with a fixed set of starting and endpoints and arbitrary paths where the
two endpoints at time ¢ are interchanged. This mapping is simply given by reinterpreting
the paths of the two particle by changing the last crossing into a reflection or vice versa
(this is a simple case of the Lindstrom-Gessel-Viennot Lemma, see Ref. [654] and the
references therein)?. Using this trick, the solution is given by

0= (L 8 i)~ Kot 20

s'<rs>0  s/>r s<0

where K, ,,(t) is the probability of a single random walker travelling from site r; to 72 in
time ¢

The problem of calculating the OTOC thus reduces to solving a single-particle diffusion
problem. This is easily done in an infinite system, with the result already stated in
Eq. (7.3). Plugging this formula into Eq. (B.21) yields a solution shown in the right panel
of Fig. 8.10, which is a function of /+v/t and saturates to the value % — % as t~1/2. This
saturation value is non-zero because in an infinite systems there is a finite probability that
the two particles avoid each other for arbitrarily long times, i.e. by travelling in opposite
directions. Note that the mapping of the u = co OTOC to the random walk problem
defined above is not restricted to 1D and we would end up with a similar counting of non-
crossing paths for random circuits in higher dimensions. This means that the saturation
value (which equals the probability of non-crossing paths) is even larger in those cases, as
random walkers in higher dimensions have a larger probability of avoiding each other.

To get the full form of the OTOC, with eventual saturation to the second plateau at
zero, one needs to solve the diffusion problem in a finite system with either periodic or
reflecting boundaries. For a finite system of size L, and for times ¢t > L?/D (where D is
the diffusion constant which is of O(1) in our case) the paths of the two particles have
to cross eventually, and as a result the OTOC decays to zero. Here we focus on the case
of reflecting boundaries, where the above way of counting crossing paths remains valid,
although we checked numerically that the the results are similar for closed boundaries
(the time signalling the end of the prethermal plateau is numerically larger in the case
with open boundaries, reflecting that fact that particles can evade each other for longer).
Instead of giving an exact solution on the lattice (which is nevertheless possible), we solve
the same problem in the continuum, substituting the single particle transition probabilities

2Note that this mapping works for an infinite system or a finite system with open boundaries. The
calculation is more complicated if we take closed boundary conditions, although this does not affect the
results qualitatively.
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B.5. Circuit-averaged purity dynamics

with the solution of the continuum diffusion equation with reflecting boundaries,

Oy K (z,t) = DO K (x,t); (B.22)
8&0 K(x7 t)|x:0,L = 07
where we defined K(z,t) = Ko,(t). This equation can be solved by doing an eigen-

decomposition of the operator —Dd?, using eigenstates with the appropriate boundary
conditions, resulting in the single-particle propagator

1 77r2 n?
K, y(t) = T Z e 288 cos % cos % (B.23)
nez

We can then approximate the OTOC by plugging this formula into Eq. (B.21). At short
times, when Dt < L? the resulting curve follows the result in an infinite system (which can
be seen explicitly ba applying the Poisson summation formula the the above expression

and then looking at the lowest order term in ]%i) while at times Dt > L? it goes to zero
as o exp(—gzLDQt)

B.5. Circuit-averaged purity dynamics

We first re-derive the mapping to the classical partiton function described in Section 8.1.1
and App. B.1 using a modified notation, generalizing it to the finite-¢ model described
in Chapter 7 in the process. This mapping provides the basis for an efficient method
for calculating the average purity of the time evolved state, which we make us of in our
numerical calculations. Furthermore, we take the ¢ — oo limit to arrive at the rules of
the effective model presented in Chapter 10.

We are interested in evaluating the partition with an on-site Hilbert space decomposing
into the product of a conserved spin-1/2 and a non-conserved qudit with ¢ states, C?> @ C9,
described in Ref. Chapter 7 (see also Ref. [549]). In what follows, Z, denotes the local
value of the conserved spin, which is an operator acting only on the C? component of the
on-site Hilbert space. It will not be necessary to construct an explicit operator basis for
the C? degrees of freedom. For arbitrary pairs of operators u, v, acting on a single site in
the original Hilbert space C? ® C9, we can assign the following operators acting on the
doubled Hilbert space

A’L_Ll’l)

=u®u AT

ulv

=(u®v)F, (B.24)

where F = Zij eij @ ej; is the on-site swap operator, with 7 labeling an arbitrary on-site
orthonormal basis. The tensor multiplication implicit in the second part of the above
expressions is (u®v)(v' ®v") = uu’ @ vv’. The notion of Frobenius inner product between
operators generalizes naturally to this two-copy space and yields

<Afjv | Ai['|vf> =tr <uTu') tr (’UTU/> <Aj|v | Aj,lv,> =tr (vTv/uTul) . (B.25)

The ‘purity operator’ for the half-chain containing sites < z then reads F(z) = Alg‘af’Jr ®
A>$,—
1 -

Consider now the effect of a U(1)-symmetric two-site unitary gate, acting on sites x, z+1.
The two-site Hilbert space decomposes into three subspaces, labeled by the total charge
@ = 0,1,2, corresponding to total spin-z components +2,0,—2 respectively. Let Py
denote the projector onto the two-site Hilbert spaces with charge @) = 0, 1,2, which have
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dimension dg = ¢, 242, ¢? respectively. Averaging over four moments of the random gate
yields an effective two-site evolution operator (equivalent to Eq. (8.6) above),

Wop (€1, €2 p
el al=T,u= Y 3 ddﬂ<5) AG, 1p )N | (B.26)
17e2 2

o,u==%1erez €ie

where wy = 1 and w_ = —561620{;1. The terms appearing in this effective evolution are
two-copy operators acting on the pair of sites x,x + 1. In order to contract the tensor
network one then needs to split them up to a sum of single-site two-copy operators, which in
principle can be done in a many different ways, depending on the choice of local basis; one
such choice was described in Eq. (B.9). Given such a local basis choice, the computation of
the average purity reduces to contracting 2t layers of such two-site tensors, along with the
boundary conditions defined by pp ® po (where pg is the initial density matrix) and F(x).
The contraction can be done in a variety of ways. In our numerical calculations we use a
boundary MPS method [84], wherein the boundary tensors defined by F(z) are written as
a matrix product state (MPS) and evolved layer-by-layer as in the Time Evolving Block
Decimation (TEBD) algorithm [417]. Calculting the purity then amounts to taking the
overlap of this time evolved MPS with another one that represents pg ® pg. A further
adventage of this method is that one can average over all product states analytically and
incorporate the result into the boundary conditions, which yields the curve shown e.g. in
Fig. 10.1a.

B.5.1. Large ¢ limit

While Eq. (B.26) yields an effective evolution that is numerically efficient, it is not an-
alytically solvable, unlike the case of a random circuit without symmetries discussed in
Section 5.2. One can, however, simplify the equations by taking the ¢ — oo limit, which
yields

1 1

X —,z+1 2 o o —
+

o=

The terms AjZEw 1| Zemyq ATC defined according to Z; ;41 = 24 Z, + Z,11) and Eq. B.24;

they are identical to ]:"mﬂ(:v + 1) introduced in Eq. (10.5) of the main text. Applied to
the purity operator, the above equation then yields

1 1 _3
ST,T-H [f($)] - 5:}07’57";(1') + 5%7"% EU ’F(w + U) + zw% - Zfz,w<$ + U) + O(q )7
(B.28)
where we have defined (C1yecs
— <t

Here, 7;,v; = 0,1 indicate the positions of the z operators which we refer to as the positions
of red and blue particles in the main text, as in Fig. 10.3(c,d). x is the position of the
entanglement cut. We have abbreviated a special case of such an operator with notation
Fy-(x) where x,y, z simply denote the position of the cut, and y, z are the positions at
which a single 7, v is nonzero. Eq. (B.28) is exactly the result stated in Eq. (10.4). It is
illustrated in terms of the red and blue particle picture in Fig. B.1

Before moving on to derive equations of motion for these operators, let us try to gain
some intuition about their physical meaning. When evaluated in a pure state they give,
focusing on the simplest case,

(Focr (@) = (For(a) | 00 ) = ||z (BE 20— 25 20) [ (B30)
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B.5. Circuit-averaged purity dynamics
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Figure B.1.: Illustration of some of the two-site update rules in the large g effective model.
Left: evolution of a swap-string, given by Eq. (B.28). The two-site gate (red
dotted line) moves the string by one site, while producing spin-operators on
both copies of the Hilbert space, denoted by red and blue particles respec-
tively. Right: evolution of a more complicated configuration, with several
particles already present near the endpoint of the string.

where Péil’x is a projector that projects onto eigenstates of the two-site charge operator

Qx—l,x with eigenvalue (). This expression is a direct measure of how distinguishable the
positive matrices Poppo and ]52,0152 are through measurements purely on the subsystem
consisting of sites to the right of x. It is therefore directly related to local quantum
fluctuation of the charge density on these two sites. In particular they are sensitive to the
sort of ‘rare configurations’ discussed in our heuristic argument, where the neighborhood
of the entanglement cut if completely empty/filled.

To find the equations of motion for the terms F;,(y), it is necessary and sufficient to
determine the dynamics of various two site operators of form A;ﬁf ® Azt,‘“zfr U and A;ﬁf Q
Af’iﬁ ! where a,b,a’;b = 1,Z. To begin, the following operators are exactly invariant
under €, ;41

+.x +,24+1 +.x +,2+1 +.z +,24+1 +.x +,2+1
Ay @AY Ay @A Mz, @Mz Az, @A Lz

These correspond to the statement that, far away from the cut, there are no dynamics for
red (blue) particles if the pair of sites in question are empty or fully occupied with red
(blue) particles.

The following superoperators have very simple evolutions under ¥, .41 which follow
immediately from Haar averaging.

A:t,ﬁl? ®A:‘:,IE+1’A:‘:,IE ®A§,I+1 N

+,x +,2+1 +,x +,24+1
AT 11 il Ay @A +A @A )

11 Zuy1/1

5
2
1
+,x +,2+1 +,x +.2+1 +.x +,2+1 +,x +,2+1
Nz, @M T A @A = 5 (A1|Zm QAT AT ® A1\Zm+1>
5
2

Ai,.’l? ®Ai,x+1 ’Ai,l‘ ®Ai,z+l N
T

+.x +.x+1 +.z +,24+1
707 1Zes1 M2 @70 1120 Az, ®A T A, @A )

Zz‘ x 1‘Zz+1 Zz+1|Zz+1

+.x +,x+1 +.x +,2+1 1 +.x +.2+1 +.z +,24+1
Mgz, @Az A en ® 82 zen 7 5 (A Nz OAL ot AL ® AZI+1|ZI+1>

We also meet more four more involved products

+,x +2+1 ,+x +,2+1 + 1 F —4
AZ:):lZac ® A1|1 ’Alll ® AZI+1|ZI+1 — AZz,zH\Zz,zﬂ + 2q2A1—ZxZZz+1|1—Zw2Zz+1 + (’)(q )

+,z +,z+1 +,z +,z+1 + . 1
AZIH ® AI‘ZI+1 ’ A1|Z1 ® AZI+1|1 - AZz,a:+1‘Zz,z+1 2q2 I_Zx2zz+l I 1_ZQCZZI+1
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Appendix B. Additional calculations for U(1) random circuits

The O(q~?) terms on the second line are subleading, and introduce a new entanglement
cut at the next time step, which will accrue additional suppressing O(¢~!) factors. We
henceforth ignore these terms, working in the large ¢ limit; understanding their effect at
finite ¢ is an interesting open problem. We note that the above 16 mappings reflect the
statement that, far from the cut and at leading order, red and blue particles undergo
single-file diffusion (i.e., random walk with hard-core interactions).

We have listed all the possible products on one site of a cut. Finally, we meet products
involving sites near the entanglement cut, such as

2 1 1

+.x F,z+1 -3
A1|1 ®A1|1 - 5 X 9 Z 9 < ifll +A%z,z+llzz,z+1) +0(¢)

o=

tz T+l 2 1 1 -3
AZIH ® AZx+1|1 - g X 5 Z § (A%zzx+l|1 + A%x,:c+1|Zac,ac+l> + O(q )

2 1 1
+,z F,z+1 -3
A1|Zr ® A1|Zz+1 - 6 X 5 Z 5 ( ({|ZZZ:E+1 + A%I,I+1|ZI,I+1> + O(q )

The first mapping above shows that the cut can create red and blue particles from nothing
in pairs, and is indeed equivalent to Eq. B.28. The second and third equation shows that
the particles created can correlate with the direction of motion of the cut. We have further
related equations showing that the cut can scatter a red to a blue particle and vice versa:

+,x F,xz+1 , F,x +,24+1
A @A AT @A

Loy + T ¥ -3
— 27q <AZ:L‘,1+1|I + AZa;ch+1‘Zz,z+l + AZz,z+1|I + A[‘Zz,z+1> + O(q )’

+.x F.xz+1 \ F.x +,2+1
Az, @ AT AT @A

L (p= = F T -3
- 27(] <AI‘Z(E,E+1 + AZz,z+l|Zl‘Zz+l + AI|Zz,a:+1 + AZz,aH»l‘I) + O(q )

Note also that

+,x F,xz+1 ) F,x +,24+1
Az, @M A ©AL g

1
— (A2 + F T -3
— 2q (AZCL’ZI+1‘ZLCZI+1 + AZz,z+1‘Zz,z+1 + A1|1 + AZz,z+1|Zz,z+l> + O(q )7
+,x F,xz+1 A F,x +,24+1
A @Ay A, @A,

L (p£ £ F F -3
- 27q (AZzZz+1‘1 + AZz,z+1|Zz,1-+1 + A1|ZIZ1-+1 + AZz-,z+1|Zz,w+1> + O(q )7

the first of which shows that the cut can destroy particles in pairs as well. Finally,

A:I:,a: F,z+1
ZIE‘ZI Zx-’-l‘ZlH’l
1
- o o -3
- 2q Z (AZmZI+1|ZxZI+1 + AZz,z+1|Za:,z+1) + O(q )’
o=
+,z F,z+1 F,z +,z+1
Az, @A e A @AYz

1

— (AZ + T F -3
- 2q <AZzZz+1|Zz,z+1 + AZI,.’L‘-‘(-l‘Z(L‘ZCL‘-‘rl + AZIZIE+1|ZI,CL‘+1 + AZI,:E+1|I) + O(q )7

+,x F,x+1 F,x +,24+1
AZIIJ‘Z(L‘®A1|Z7)+1’A1‘Z(E ® Zx+1|Zx+1

Lohx +

— ¥ ¥ -3
- 2q <AZz,a:+1‘ZJ:Za:+1 + AZsz+l|Zz,a:+1 + AZz,z+1|ZJ:Za:+1 + AI‘Zz,z+1> + O(q )

Note that each of the last 16 terms involves the action of the circuit in the vicinity of the
cut, and are correspondingly suppressed by a factor of 2/q. Otherwise, these equations
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B.6. Hydrodynamic tails in the spin 1/2 random circuit

exhibit a rich set of behaviors. For example, the cut can create and absorb particles in
pairs, and can convert a red particle to a blue particle and vice versa.

The full set of two site calculations above show that, up to O(g2) corrections, the
Haar averaged dynamics are closed in the space of operators spanned by Fr,(z) (see
Eq. B.29) where 7,v denote the possible configurations of red and blue particles alluded
to in the text. Moreover, saving for the overall factor of 2/¢ at each global time step, the
induced dynamics on this restricted space of operators is in fact Markovian leading to a
stochastic process on the configuration space of cuts and blue and red particle configura-
tions {z, {7, }, {vy}}; i.e., ignoring the 2/q¢ factor, the RHS coefficients in all the mappings
listed below Eq. B.30 add up to unity.

To summarize, the rules of this Markoc process are the following. Away from the
entanglement cut, the red and blue particles perform independent and unbiased random
walks, with hard-core intra-species interactions. The cut itself also performs an unbiased
random walk, moving one bond to the left or right with equal probabilities. On the site
that it crosses, it has a probability 1/2 of swapping the state of both red and blue particles
(from empty to filled or vice versa) simultaneously.

The result of the Markov process is a probability distribution p(z, {7}, {vy}). As stated
in the main text, one can take the mean field approximation

2

=zt 1 ) 2
p(@, {1y}, {vy}) ox ¢ B2 ¢~ mw? 2o (B.31)

with [(t)? = kt. Using this, and the definition of F,, (), one find that the purity of an
arbitrary initial state reads

2\ 2 2\ 2
Hy (1 + <Zy>e 2””2> + Hy (1 - <Zy>e 21(t)2>
92 2 y2 2 ’
T o112 T Y
I, (1 +e 20 > +11, (1 —e 2® )

For translation invariant product states, this expression simplifies to Eq. (10.7) in the
main text.

(B.32)

B.6. Hydrodynamic tails in the spin 1/2 random circuit

In this section we describe the behavior of various correlation functions in the U(1) con-
serving random circuit model, lifting intuition from our studies of operator spreading in
Chapter 8. Our results are in line with the standard lore of hydrodynamics: the space of
local observables splits into an orthogonal sum of hydrodynamic and non-hydrodynamic
variables. In a short range correlated initial state, the former can decay according to a
power law at long times and have diffusive spatiotemporal behavior, while the latter al-
ways decay exponentially quickly. An advantage of our approach, compared to the usual
scaling arguments [287], is that we are able to make statements about the differences in
behavior for different homogenous initial states; something we expect to be of independent
interest.
We start with an exact rewriting of the circuit evolved Z, operator

Zr(t) = Dr(t) + Br(t)v (B'33)

where D,(t) =", K, (t) Z and K,/ (t) is a lattice diffusion kernel, and where

Bty =33 Y (@eKeelr) Taltir). (B.34)

T7=12z=7 mod 2
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Appendix B. Additional calculations for U(1) random circuits

with Ty (¢;7) = (Zy — Zz+1) (t;7). No approximations have been made thus far. The
operator weight in D, is 3, K2, = O(t~'/2), while that in B, is 1—O(t~!/2), as discussed
in Chapter 8. We will assume that I';(¢;7) grows ballistically, so that it is effectively a
random superposition of operators of typical radius vp (t — 7). This assumption can only
be an approximation to the full story, in part because Z, — Z,41 is itself a hydrodynamical
variable. However, it turns out that the expectation values of this tail is either exactly
zero (0-states) or decays exponentially in time (Néel-like states), so we are justified in
ignoring it.
In considering the growth of fluctuations, we also consider operators of the form Z,.(t) Zs(t).

These we may similarly write exactly as

Zi(OZ,(t) = S KL (82 Zos + Brolt). (B.35)
r's!
The random circuit calculation demonstrates that, under averaging, the two operators
engage in single file diffusion, which we take to have kernel K'.*(t). B,4(t) is again
assumed to be a ballistically spreading and effectively random superposition of operators.
In the following we explain how to estimate the various correlation functions presented in
Table B.2, using operator spreading intuition.

One point functions The average behavior of (Z,(t)) is simple to compute for various
states through substitution of Eq. B.33. This leads to two expressions (D, (t)) and (B,(t)).
The former is independent of time for translation invariant states, and determined by the
filling, while for the Neel state it decays exponentially with ¢ because 3, (—1)" K, (t) ~

ﬂ_2
e~ 2. The B, term is more involved, but on average expected to be zero because I';(¢; 7)
is a superposition of operators with random signs.

Fluctuations in one point functions The average behavior of (Z,.(t)) (Zs(t)) can also be
computed using B.33. Using the results in the previous paragraph, two terms survive the
noise averaging, (D,(t)) (Ds(t)) and (B, (t)) (Bs(t)) . The former term can be calculated
using the paragraph above, while the latter require a more involved discussion. Using

¢

(Br(1)) (Bs(t)) = % Z Z O Ky (1) 0y Koy ()T (85 7)) (Ty (7)) (B.36)
g/t=1z,y=7 mod 2

To approximate this sum, we first note that, as I'y(¢; 7) tends to grow ballistically, its
expectation value on a short range correlated state will tend to decay exponentially quickly
(a string of operators of length R has a typical expectation value e~ on a product state).
So the sum is dominated by 7,7’ near ¢t. Moreover, due to the spatial randomness of the
circuit, the sign of the expectation values <Fm Jy(t; T)> are uncorrelated unless x = y. Hence
we approximate Eq. B.36 by restricting the sum to 7/,7 =t — 1,2 = y. At large times

t>|r— 3]2 /D, the distinction between r, s becomes unimportant, and the contribution
goes as [ dx (@;KM)2 ~ 732,

Two point functions In order to compute (Z,(t)Zs(t)) we substitute in Eq. B.35 and
assume the ballistic terms source random signs that cancel on averaging. This leads to
precisely one contribution Y, KI.* (t) (ZZy) where KL% (t) is the single file lattice
diffusion propagator. This is independent of time for translation invariant states, but
remarkably is found to decay as ~ % for the Neel state. In the case of € states we substitute

(ZwZy) ~ e I"=5'1/&; for finite €, this will have the effect of restricting |/ — s'| < &
in the sum above. The leading behavior is obtained by setting 7’ = s/, which gives
S KL () ~ 12,
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B.7. Local equilibration after a domain wall quench

| State | (6Z,) | (0Z,)(0Z.) | 6((Z,Z)) | 16Sa| |
o™ | o) | o ') | o
T [0 ™) | o¢®?) | o) | o)
f-state 0 O(t=3/2) 0 O(t=3/2)

[-state 0 o3y | o@t=%) | o@™h

Table B.2.: Summary of the saturation behavior of various circuit averaged correlation

functions, their moments and the Rényi entropy at large times ¢ > |r — s|* in
the spin 1/2 random circuit.
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Figure B.2.: Local equilibration for a domain wall state in the random circuit with N = 1.
(a) The local purity entropy on average is well approximated by the purity of
the local equilibrium state associated to the average charge. (b) The distance
to the equilibrium value for two different positions as a function of time
for different bond dimensions x shows a decay to zero. (c) the size of the
fluctuations between the local charge densities in different circuit realizations
(as captured by their variance) similarly decrease in time.

B.7. Local equilibration after a domain wall quench

Our general argument in Chapter 11, putting an upper bound proportional to v/t on
the growth of von Neumann entropy for a domain wall, relied on the notion of local
equilibration. Here we check numerically that this assumption indeed holds in the spin—%
local random circuit we considered in the main text. This consists of two parts. First of all,

in order for local equilibration to (Q,(t)) to make sense, the circuit-to-circuit fluctuations
in (Qz(t)) around this average should become small. This means that we can assign a
local charge to each site, which should be approximately the same for all realizations of
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Appendix B. Additional calculations for U(1) random circuits

the circuit, making the right hand side of Eq. (11.8) well-defined. Second, we need the
one-site density matrices to be close to the Gibbs state defined by this local charge density.
As we show in Fig. B.2 both of these requirements are satisfied at sufficiently long times.

To check the first requirement, we compute numerically the statistical variance of the
local charge in the random circuit, i.e. the variance between circuit realizations of the
quantum expectation value (Qx> This variance can be computed as a 2D partition func-
tion, similarly to the calculation of other quantities, such as OTOCs and purities, as
discussed before. We find that the variance decays in time, as shown by Fig. B.2(b), indi-
cating that at long times it is meaningful to consider locally equilibrated states depending
on a circuit-independent average local charge.

To check if the on-site density matrix is indeed locally equilibrated, we compare its
annealed average second Rényi entropy with the entropy density expected for an eqilibrium
state with the same charge density. Note that since the on-site density matrix only has two
parameters, one of which is fixed by the charge density, the equivalence of Rényi entropies
is sufficient to establish local equilibrium. We indeed find that the local Rényi entropy
tends to its equilibrium value at long times; this is shown in Fig. B.2(c). In both cases we
show results for different bond dimensions y used in the evaluation of these quantities as
2D tensor networks to indicate where the results are converged.
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